2024 : 11 : 23
Fateme Daneshfar

Fateme Daneshfar

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId: 35078447100
HIndex:
Faculty: Faculty of Engineering
Address: Department of Computer Engineering, Faculty of Engineering, University of Kurdistan
Phone:

Research

Title
A Review of the Potential of Artificial Intelligence Approaches to Forecasting COVID-19 Spreading
Type
JournalPaper
Keywords
artificial intelligence; COVID-19; deep learning; epidemiological disease; machine learning; LSTM; spreading; SARS-CoV-2
Year
2022
Journal AI
DOI
Researchers mohammad jamshidi ، sobhan roshani ، Jakub Talla ، ali lalbakhsh ، Zdenˇek Peroutka ، saeed roshani ، Fariborz Parandin ، zahra malek ، Fateme Daneshfar

Abstract

The spread of SARS-CoV-2 can be considered one of the most complicated patterns with a large number of uncertainties and nonlinearities. Therefore, analysis and prediction of the distribution of this virus are one of the most challenging problems, affecting the planning and managing of its impacts. Although different vaccines and drugs have been proved, produced, and distributed one after another, several new fast-spreading SARS-CoV-2 variants have been detected. This is why numerous techniques based on artificial intelligence (AI) have been recently designed or redeveloped to forecast these variants more effectively. The focus of such methods is on deep learning (DL) and machine learning (ML), and they can forecast nonlinear trends in epidemiological issues appropriately. This short review aims to summarize and evaluate the trustworthiness and performance of some important AI-empowered approaches used for the prediction of the spread of COVID-19. Sixty-five preprints, peer-reviewed papers, conference proceedings, and book chapters published in 2020 were reviewed. Our criteria to include or exclude references were the performance of these methods reported in the documents. The results revealed that although methods under discussion in this review have suitable potential to predict the spread of COVID-19, there are still weaknesses and drawbacks that fall in the domain of future research and scientific endeavors