Nuisance dust particles have emerged as a significant environmental concern within the Middle Eastern region. The principal aim of this research was to conduct an extensive investigation into the physical and chemical attributes of dust-fall particles located within the city of Sulaymaniyah, northeastern Iraq. Over a period of six months, a total of 72 dust-fall particle samples were systematically gathered from three distinct stations, with intervals of seven days. In addition to quantitative analysis, this study included detailed morphological examinations and mineralogical composition assessments, facilitated through the application of analytical methodologies, including Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The outcomes of these analytical procedures revealed predominantly irregular shapes of the dust particles, characterized by the presence of quartz and calcite minerals, confirming their natural origin due to wind-driven erosion originating from the arid desert landscapes of Iraq and its neighboring southern and western countries. Moreover, this investigation extended to encompass a comprehensive evaluation of both water-soluble and insoluble fractions, in addition to the overall concentration levels of alkali and alkaline earth metals including sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg). Furthermore, the levels of heavy metals of manganese (Mn), iron (Fe), copper (Cu), and arsenic (As) were investigated. The extent of pollution associated with these elements was assessed through the application of the Geo-accumulation index (Igeo) which revealed that, during the study, calcium, magnesium, and copper demonstrated noticeable levels of contamination within the dust-fall particles of Sulaymaniyah city.