2024 : 4 : 29
Behrouz Mehdinejadiani

Behrouz Mehdinejadiani

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 55561276500
Faculty: Faculty of Agriculture
Address: Room no. 302, Department of Water Science and Engineering, Faculty of Agriculture, University of Kurdistan
Phone: 33660067

Research

Title
Enhanced adsorption of nitrate from water by modified wheat straw: Equilibrium, kinetic and thermodynamic studies
Type
JournalPaper
Keywords
3-chloro propyl trimethoxysilane (CPTMS), agricultural by-product, general order kinetic model, Langmuir isotherm model, nonlinear fitting
Year
2019
Journal WATER SCIENCE AND TECHNOLOGY
DOI
Researchers Behrouz Mehdinejadiani ، Seyed Mojtaba Amininasab ، Leila Manhooei

Abstract

This study represents the first attempt to chemically modify wheat straw (WS) using 3-chloro propyl trimethoxysilane (CPTMS) and (1,4-diazabicyclo[2.2.2]octane) (DABCO). Field emission scanning electron micrographs (FESEM), energy dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectra confirmed the successful morphological and structural modification of WS and the thermal stability of the modified WS (MWS). The MWS was used to remove nitrate from water. The optimum conditions of nitrate adsorption onto MWS were examined by conducting batch experiments. The results indicated that 85% of nitrate was removed under the conditions of initial nitrate concentration=20 mg L-1, initial solution pH=7, contact time=10 min, MWS dosage=2 g L-1 and temperature≈25 °C. The kinetic adsorption data were best fitted to general order model and the adsorption process occurred at three distinct stages. The equilibrium adsorption data were well described by Langmuir isotherm. Additionally, separation factor values were smaller than 1, implying that the adsorption process was favorable. The presence of competing anions impeded the nitrate adsorption in the order of sulfate>chloride>bicarbonate> phosphate. Thermodynamic parameters suggested that the adsorption process was exothermic, feasible and spontaneous in nature. Overall, the MWS could achieve efficient removal of nitrate under the simplest operating conditions.