2025/12/5

Behrooz Malekolkalami

Academic rank: Associate Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Science
ScholarId:
E-mail: b.malakolkalami [at] uok.ac.ir
ScopusId: View
Phone: 09188711601
ResearchGate:

Research

Title
Observational constraints on FLRW, Bianchi type I and V brane models
Type
JournalPaper
Keywords
.Observational cosmology ;FLRW cosmology ;Bianchi cosmology; Brane gravity
Year
2024
Journal Physics of the Dark Universe
DOI
Researchers Raheleh Jalalzadeh ، Shahram Jalalzadeh ، Behrooz Malekolkalami ، Zahra Davari

Abstract

This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson– Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, 𝑓𝜎8(𝑧). Parameters for FLRW universe consist ( 𝛺(b) 0 ,𝛺(cd) 0 ,𝛺(k) 0 ,𝐻0, 𝛾, 𝜎8 ) , while for the Bianchi model are ( 𝛺(b) 0 ,𝛺(cd) 0 ,𝛺(𝛽) 0 ,𝐻0, 𝛾,𝛺(𝜃) 0 , 𝜎8 ) . By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of 𝛾 (which gives the time variation of gravitational constant in Hubble time unit): 𝛾 > 0 yields 𝛾 = 0.00008+0.00015 −0.00011, and 𝛺(k) 0 = 0.014+0.024 −0.022 and 𝛾 < 0 leads to 𝛾 = −0.0226+0.0054 −0.0062, and 𝛺(k) 0 = 0.023+0.039 −0.041. It should be noted that in both cases 𝛺(k) 0 > 0, which represents a closed universe. Similarly, for the Bianchi type-V brane model, the parameter values vary with the sign of 𝛾, resulting in 𝛾 = 0.00084+0.00019 −0.00021, 𝛺(𝛽) 0 = 0.0258+0.0052 −0.0063, and 𝛺𝜃 0(×10−5) = 4.19+0.67 −0.75 (as with the density parameter of stiff matter) for 𝛾 > 0, and 𝛾 = −0.00107+0.00019 −0.00020, 𝛺(𝛽) 0 = 0.0259+0.0050 −0.0062, and 𝛺𝜃 0(×10−5) = 4.17+0.91 −0.98 for 𝛾 < 0. In both cases 𝛺(𝛽) 0 > 0, which represents the Bianchi type-V, because in the Bianchi type-I, 𝛽 = 0. Subsequently, utilizing these obtained best values, we analyze the behavior of key cosmological parameters such as the Hubble parameter, deceleration parameter, distance modulus, equation of state, and density parameters that characterize both matter and the geometric component of dark energy, as functions of redshift. Our results notably show that the FLRW model with 𝛾 < 0 is more compatible with observational data than the Bianchi model, based on various statistical criteria.