The use of the kinetic coefficients for the mathematical expression of the biochemical processes and the relationship between the effective parameters is importance. Change of the biokinetic coefficients in the complete-mix activated sludge processes were calculated for 1 month operation of the activated sludge model (ASM) in a Lab-scale in three series. 15 mT intensity of static magnetic fields (SMFs) applied on the aeration reactor (ASM 1), clarifier reactor (ASM 2) and, sludge returning systems (ASM 3) for 1 h, daily. During the operation of the systems, five basic biokinetic coefficients such as maximum specific substrate utilization rate (k), heterotrophic half-saturation substrate concentration (Ks), decay coefficient (kd), yield coefficient (Y) and, maximum specific microbial growth rate (μmax) were determined. The rate of k (g COD/g Cells.d) in ASM 1 was 2.69% and, 22.79% higher than ASM 2 and, ASM 3. The value of Ks (mg COD/L) was 54.44 and, 71.13 (mg/L) lower than the ASM 2 and, ASM 3. The rate of kd ASM 1, ASM 2 and, ASM 3 was 0.070, 0.054 and, 0.516 ( d−1). The value of Y (kg VSS/kg COD) in ASM 1 was 0.58% and, 0.48% lower than ASM 2 and, ASM 3. The rate of μmax ( d−1) in ASM 1 was 0.197, this value for ASM 2 and ASM 3 were 0.324 and 0.309 ( d−1). Related to the biokinetic coefficients analyses the best location for the application of 15 mT SMFs was the aeration reactor, where the present of oxygen, substrate and, SMFs have the greatest impact on the positive changes of these coefficients.