2024 : 2 : 25
Hassan Bevrani

Hassan Bevrani

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 55913436700
Faculty: Faculty of Engineering
Address: Dept. Of Electrical and Computer Eng, University of Kurdistan, Allameh Hamdi Blvd, Sanandaj PO Box 416, P. C: 66177-15175, Kurdistan, Iran
Phone: +98-87-33624001

Research

Title
STABILITY AND INERTIA RESPONSE IMPROVEMENT OF BOOST CONVERTERS INTERLACED WITH CONSTANT POWER LOADS
Type
JournalPaper
Keywords
Boost converter, Constant power load, Dc microgrid, Dynamic response, Virtual capacitance, Virtual damping, Virtual inertia
Year
2020
Journal International Journal of Innovative Computing Information and Control
DOI
Researchers Hassan Bevrani ، Kei Eguchi ، Qobad Shafiee ، Mehran Jami

Abstract

In dc microgrids, the distributed sources and loads with different electrical characteristics are typically interconnected to the main bus through power electronic converters. The existence of interfaced converters creates two major problems: 1) the load-side converters and their associated loads, usually considered as constant power loads (CPLs), introduce destabilizing effects into the system; 2) the source-side converters do not possess any inertia or damping properties but reduce the overall inertia of the system. To overcome the stability problems caused by CPLs and low inertia, this paper proposes an active damping strategy based on a linear feedback. The proposed strategy measures the inductor current implemented in source-side boost converter in order to enhance the damping of the dc microgrids with CPLs. The control input-to-output voltage transfer function of a boost converter loaded with a CPL is inherently nonlinear, unstable and a non-minimum phase system that makes its control very difficult. In addition, the synthetic inertia of dc bus is enhanced by adding the virtual inertia control to the inner current control loop that is fast enough to emulate inertia and damping coefficient concept. In order to study the stability of dc MG with CPLs, a comprehensive small-signal model is derived and then, an acceptable range of inertia response parameters is determined by using the system’s root locus analysis. Performance of the proposed control structure is demonstrated through numerical simulations.