2024 : 7 : 6
Bandar Astinchap

Bandar Astinchap

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId: 24342779500
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Hubbard model and its impact on the thermoelectric properties of the penta-graphene structure
Type
JournalPaper
Keywords
Penta-graphene structure, Hubbard model, Seebeck coefficient, Parallel magnetic field, Tight-binding
Year
2024
Journal Chinese journal of Physics
DOI
Researchers Mona Abdi ، Bandar Astinchap

Abstract

The unique characteristics of penta-graphene structures have captivated scientists.Through our tight-binding and Hubbard calculations, we have made a prediction that the penta-graphene monolayer acts as a semiconductor. Our findings demonstrate that by applying influences like a field parallel magnetic field and voltage bias the band gap of this material decreases. This ability to manipulate its properties holds promise for practical applications in electronics. In this study, we delve into the impact of fields parallel magnetic fields and voltage bias, on the thermal conductivity, electrical conductivity, and Seebeck coefficient of penta-graphene structure using the tight-binding, Hubbard model, and Green function approach. Our analysis explains that the penta-graphene structure is a p-semiconductor, which is changed to an n-semiconductor by on-site Coulomb repulsion. This strategy displays that thermal and electrical conductivity decreases under the effect of parallel magnetic fields. The results presented to control the thermoelectric and electronic properties of the penta-graphene structure can promise a great future for this material in the field of thermoelectric and nanoelectric devices application.