2024 : 12 : 22
Abdollah Salimi

Abdollah Salimi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 57198900488
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity
Type
JournalPaper
Keywords
Glucose oxidase; Direct electron transfer; Nickel oxide nanoparticles; Biosensor; Glucose
Year
2007
Journal BIOSENSORS & BIOELECTRONICS
DOI
Researchers Abdollah Salimi ، Ensiyeh Sharifi ، Abdollah Noorbakhsh ، Saeid Soltaniyan

Abstract

For the first time glucose oxidase (GOx) was successfully co-deposited on nickel-oxide (NiO) nanoparticles at a glassy carbon electrode. In this paper we present a simple fabrication method of biosensor which can be easily operated without using any specific reagents. Cyclic voltammetry was used for electrodeposition of NiO nanoparticle and GOx immobilization. The direct electron transfer of immobilized GOx displays a pair of well defined and nearly reversible redox peaks with a formal potential (E0) of −0.420V in pH 7 phosphate buffer solution and the response shows a surface controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (ks) of GOx immobilized on NiO film glassy carbon electrode are 9.45×10−13 mol cm−2 and 25.2±0.5 s−1, indicating the high enzyme loading ability of the NiO nanoparticles and great facilitation of the electron transfer between GOx and NiO nanoparticles. The biosensor shows excellent electrocatalytical response to the oxidation of glucose when ferrocenmethanol was used as an artificial redox mediator. Furthermore, the apparent Michaelis–Menten constant 2.7 mM, of GOx on the nickel oxide nanoparticles exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. In addition, this glucose biosensor shows fast amperometric response (3 s) with the sensitivity of 446.2 nA/mM, detection limit of 24 Mand wide concentration range of 30 M to 5 mM. This biosensor also exhibits good stability, reproducibility and long life time.