2025/12/5
Amir Mafi

Amir Mafi

Academic rank: Professor
ORCID:
Education: PhD.
H-Index:
Faculty: Faculty of Science
ScholarId:
E-mail: a.mafi [at] uok.ac.ir
ScopusId: View
Phone: 33624133
ResearchGate:

Research

Title
A note on reduction numbers and Hilbert{Samuel functions of ideals over Cohen{Macaulay rings
Type
JournalPaper
Keywords
Cohen{Macaulay rings, Hilbert{Samuel functions
Year
2016
Journal Turkish Journal of Mathematics
DOI
Researchers Amir Mafi ، Dler Naderi

Abstract

\begin{abstract} Let $(R,\fm)$ be a Cohen-Macaulay local ring of dimension $d\geq 2$ with infinite residue field and $I$ an $\fm$-primary ideal of $R$. Let $I$ be integrally closed and $J$ be a minimal reduction of $I$. In this paper, we show that the following are equivalent: $(i)$ $P_I(n)=H_I(n)$ for $n=1,2$; $(ii)$ $P_I(n)=H_I(n)$ for all $n\geq 1$; $(iii)$ $I^3=JI^2$. Moreover if $\Dim R=3$, $n(I)\leq 1$ and $\grade gr_I(R)_+>0$, then the reduction number $r(I)$ is independent.