2024 : 11 : 21
Amir Mafi

Amir Mafi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 14627657300
HIndex:
Faculty: Faculty of Science
Address:
Phone: 33624133

Research

Title
Finiteness of graded generalized local cohomology modules
Type
JournalPaper
Keywords
Local cohomology modules, generalized local cohomology modules, graded modules
Year
2013
Journal Mathematical Notes
DOI
Researchers Amir Mafi ، Hero Saremi

Abstract

\begin{abstract} We consider two finitely generated graded modules over a homogeneous Noetherian ring $R=\oplus_{n\in{\mathbb{N}}_0}R_n$ with local base ring $(R_0,{\fm}_0)$ and irrelevant ideal $R_{+}$ of $R$ and we study the generalized local cohomology modules $H_{\fb}^i(M,N)$ with respect to the ideal $\fb={\fb}_0+{R}_+$, where ${\fb}_0$ is an ideal of $R_0$. We prove that if $\Dim R_0/{{\fb}_0}\leq 1$, then the following cases hold: \begin{itemize} \item[(i)] for all $i\geq 0$ the $R$-module $H_{\fb}^i(M,N)/{{\fa}_0H_{\fb}^i(M,N)}$ is Artinian , where $ \sqrt{{\fa}_0+{\fb}_0}={\fm}_0$; \item[(ii)] for all $i\geq 0$ the set $\Ass_{R_0}(H_{\fb}^i(M,N)_n)$ is asymptotically stable , where $n\longrightarrow{-\infty}$. \end{itemize} Moreover, if $H_{\fb}^j(M,N)_n$ is a finitely generated $R_0$-module for all $n\leqslant n_0$ and all $j