2024 : 11 : 21
Amir Mafi

Amir Mafi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 14627657300
HIndex:
Faculty: Faculty of Science
Address:
Phone: 33624133

Research

Title
Associated prime ideal of local cohomology ideal with respect to pair ideal
Type
Thesis
Keywords
Local cohomology_Artinian modules
Year
2008
Researchers Atie PorashemnanTalemi(Student)، Abolfazl Tehraniyan(PrimaryAdvisor)، Amir Mafi(Advisor)

Abstract

Let I, J be ideals of a commutative Noetherian local ring (R,m) andM, be a finite R-module. We prove that, inf{f − depth(a,M)| a 2 ˜W (I, J)} = inf{i|Hi I,J (M) 6= Him (M)} = inf{depthMp| p 2 W(I, J) \ {m}} and inf{f−depth(a,M)| a 2 ˜W (I, J)} is the least integer i such that Hi I,J (M) is not Artinian. By using the concept of the serre class of R–modules, we conclude some properties of local cohomology module with respect to a pair of ideals. In addition, we show that, if M is a finite module over a local ring R, then Hi m,J (M) is not Artinian for some non–zero ideal J of R and some integer i. In the remaining part of the thesis we discuss about finiteness properties of local cohomology with respect to a pair of ideals I, J. Firstly, by extending notion I–cofinite as (I, J)–cofinite, we conclude the main result of dibaei–Yassemi in [13] and [14]. Finally, we prove that, if t = inf{i|Hi I,J (M) 6= 0}, then for all p 2 AssHt I,J (M), gradeM p = t.