2024 : 11 : 21
Amir Mafi

Amir Mafi

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 14627657300
HIndex:
Faculty: Faculty of Science
Address:
Phone: 33624133

Research

Title
Property of Almost Cohen-Macaulay over Extension Modules
Type
JournalPaper
Keywords
almost Cohen-Macaulay module, Ext functor, finiteness dimension
Year
2017
Journal ALGEBRA COLLOQUIUM
DOI
Researchers Samaneh Tabejamaat ، Amir Mafi ، Kadijeh Ahmadi Amoli

Abstract

‎ ‎Let $(R,\fm)$ be a Cohen-Macaulay local ring of dimension $d$‎, ‎$C$ a canonical $R$-module and $M$ an almost Cohen-Macaulay $R$-module of dimension $n$ and of depth $t$‎. ‎We prove that $\Dim\Ext_R^{d-n}(M‎, ‎C)=n$ and if $n\leq 3$ then $\Ext_R^{d-n}(M‎, ‎C)$ is an almost Cohen-Macaulay $R$-module‎. ‎In particular‎, ‎if $n=d\leq 3$ then $\Hom_R(M,C)$ is an almost Cohen-Macaulay $R$-module‎. ‎In addition‎, ‎with some conditions‎, ‎we show that $\Ext_R^1( M,C)$ is also almost Cohen-Macaulay‎. ‎Finally‎, ‎we study the vanishing‎ ‎$\Ext_R^i(\Ext_R^{d-n}(M‎, ‎C)‎, ‎C)$ and $\Ext_R^i(\Ext_R^{d-t}(M‎, ‎C)‎, ‎C)$‎. ‎