Let a b be two ideals of commutative Noetherian ring R and A an
Artinian R-module. For a non-negative integer n, we show that
up+q=n Ann(TorR
p (R=b;Ha
q (A))) Ann(TorR
n (R=b;A)):
As an immediate consequence, if Ha
i (A) is Artinian for all i < n then a
Rad(Ann(Hb
i (A))) for all i < n. Moreover, we prove that if a = (x1; : : : ; xn)
and c = \t1\n
i=0 Ann(TorR
i (R=at;A)), then ck \n1
i=0 Ann(Ha
i (A)) where
k = (n
[n
2 ]).