1403/09/01
امیر مافی

امیر مافی

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس: 14627657300
دانشکده: دانشکده علوم پایه
نشانی: دانشگاه کردستان گروه ریاضی
تلفن: 33624133

مشخصات پژوهش

عنوان
نتایجی از تعمیم نامساوی بورخ و عمق جبر ریس و حلقه مدرج وابسته یک ایدآل نسبت به یک مدول کوهن - مکالی
نوع پژوهش
مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها
مدول مدرج وابسته، عدد بورخ، همبرش کامل، انحراف تحلیلی، بسط تحلیلی، عدد تقلیل
سال 1397
مجله پژوهش هاي نوين در رياضي (علوم پايه سابق)
شناسه DOI
پژوهشگران محمد توحیدی ، امیر مافی ، خدیجه احمدی آملی

چکیده

فرض کنید یک حلقه موضعی کوهن - مکالی با هیأت مانده ای نامتناهی ، یک - مدول کوهن - مکالیو ایدآلی از باشد. فرض کنید و ، به ترتیب جبر ریس و حلقه مدرج وابسته و نشان دهنده ی بسط تحلیلی باشد. نامساوی بورخ بیان می کند که و تساوی زمانی برقرار است که کوهن - مکالی باشد. بنابراین در این حالت می توان با محاسبه عمق حلقه مدرج وابسته ، بیان کرد . ما در این مقاله نتایج را به حالت مدولی تعمیم می دهیم و نشان خواهیم داد برای عمق مدول مدرج وابسته نسبت به ؛ یعنی ، این تساوی در حالت مدولی حتی اگر لزوماً کوهن - مکالی نباشد نیز برقرار است و تعمیم نامساوی بورخ را ثابت خواهیم کرد. همچنین به محاسبه عمق جبر ریس و حلقه مدرج وابسته به یک ایدآل نوعاً همبرش کامل نسبت به مدول در یک حلقه موضعی کوهن - مکالی خواهیم پرداخت و نتایجی را درباره ی ایدآل های با انحراف تحلیلی کوچکتر یا مساوی یک با عدد تقلیل حداکثر دو نسبت به مدول به دست می آوریم.