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Preface to the Second Edition

The basic structure of the first edition has been preserved in the second because it
remains congruent with the goal of writing “a book that would be a useful modern
treatment of a broad range of topics. . . [that] may be used as an undergraduate or
graduate text and as a self-contained reference for a variety of audiences.” The quotation
is from the Preface to the First Edition, whose declaration of goals for the work remains
unchanged.

What is different in the second edition?
The core role of canonical forms has been expanded as a unifying element in

understanding similarity (complex, real, and simultaneous), unitary equivalence, uni-
tary similarity, congruence, *congruence, unitary congruence, triangular equivalence,
and other equivalence relations. More attention is paid to cases of equality in the many
inequalities considered in the book. Block matrices are a ubiquitous feature of the
exposition in the new edition.

Learning mathematics has never been a spectator sport, so the new edition continues
to emphasize the value of exercises and problems for the active reader. Numerous
2-by-2 examples illustrate concepts throughout the book. Problem threads (some span
several chapters) develop special topics as the foundation for them evolves in the text.
For example, there are threads involving the adjugate matrix, the compound matrix,
finite-dimensional quantum systems, the Loewner ellipsoid and the Loewner–John
matrix, and normalizable matrices; see the index for page references for these threads.
The first edition had about 690 problems; the second edition has more than 1,100.
Many problems have hints; they may be found in an appendix that appears just before
the index.

A comprehensive index is essential for a book that is intended for sustained use as
a reference after initial use as a text. The index to the first edition had about 1,200
entries; the current index has more than 3,500 entries. An unfamiliar term encountered
in the text should be looked up in the index, where a pointer to a definition (in Chapter
0 or elsewhere) is likely to be found.

New discoveries since 1985 have shaped the presentation of many topics and have
stimulated inclusion of some new ones. A few examples of the latter are the Jordan
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xii Preface to the second edition

canonical form of a rank-one perturbation, motivated by enduring student interest in
the Google matrix; a generalization of real normal matrices (normal matrices A such
that AĀ is real); computable block matrix criteria for simultaneous unitary similarity
or simultaneous unitary congruence; G. Belitskii’s discovery that a matrix commutes
with a Weyr canonical form if and only if it is block upper triangular and has a
special structure; the discovery by K. C. O’Meara and C. Vinsonhaler that, unlike the
corresponding situation for the Jordan canonical form, a commuting family can be
simultaneously upper triangularized by similarity in such a way that any one specified
matrix in the family is in Weyr canonical form; and canonical forms for congruence
and ∗congruence.

Queries from many readers have motivated changes in the way that some topics are
presented. For example, discussion of Lidskii’s eigenvalue majorization inequalities
was moved from a section primarily devoted to singular value inequalities to the
section where majorization is discussed. Fortunately, a splendid new proof of Lidskii’s
inequalities by C. K. Li and R. Mathias became available and was perfectly aligned
with Chapter 4’s new approach to eigenvalue inequalities for Hermitian matrices. A
second example is a new proof of Birkhoff’s theorem, which has a very different flavor
from the proof in the first edition.

Instructors accustomed to the order of topics in the first edition may be interested in
a chapter-by-chapter summary of what is different in the new edition:

0. Chapter 0 has been expanded by about 75% to include a more comprehensive
summary of useful concepts and facts. It is intended to serve as an as-needed
reference. Definitions of terms and notations used throughout the book can be
found here, but it has no exercises or problems. Formal courses and reading for
self-study typically begin with Chapter 1.

1. Chapter 1 contains new examples related to similarity and the characteristic poly-
nomial, as well as an enhanced emphasis on the role of left eigenvectors in matrix
analysis.

2. Chapter 2 contains a detailed presentation of real orthogonal similarity, an
exposition of McCoy’s theorem on simultaneous triangularization, and a rigor-
ous treatment of continuity of eigenvalues that makes essential use of both the
unitary and triangular aspects of Schur’s unitary triangularization theorem. Sec-
tion 2.4 (Consequences of Schur’s triangularization theorem) is almost twice the
length of the corresponding section in the first edition. There are two new sections,
one devoted to the singular value decomposition and one devoted to the C S de-
composition. Early introduction of the singular value decomposition permits this
essential tool of matrix analysis to be used throughout the rest of the book.

3. Chapter 3 approaches the Jordan canonical form via the Weyr characteristic; it
contains an exposition of the Weyr canonical form and its unitary variant that
were not in the first edition. Section 3.2 (Consequences of the Jordan canonical
form) discusses many new applications; it contains 60% more material than the
corresponding section in the first edition.

4. Chapter 4 now has a modern presentation of variational principles and eigen-
value inequalities for Hermitian matrices via subspace intersections. It contains
an expanded treatment of inverse problems associated with interlacing and other
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classical results. Its detailed treatment of unitary congruence includes Youla’s
theorem (a normal form for a square complex matrix A under unitary congruence
that is associated with the eigenstructure of AĀ), as well as canonical forms for
conjugate normal, congruence normal, and squared normal matrices. It also has an
exposition of recently discovered canonical forms for congruence and ∗congruence
and new algorithms to construct a basis of a coneigenspace.

5. Chapter 5 contains an expanded discussion of norm duality, many new problems,
and a treatment of semi-inner products that finds application in a discussion of
finite-dimensional quantum systems in Chapter 7.

6. Chapter 6 has a new treatment of the “disjoint discs” aspect of Geršgorin’s theorem
and a reorganized discussion of eigenvalue perturbations, including differentiabil-
ity of a simple eigenvalue.

7. Chapter 7 has been reorganized now that the singular value decomposition is
introduced in Chapter 2. There is a new treatment of the polar decomposition, new
factorizations related to the singular value decomposition, and special emphasis on
row and column inclusion. The von Neumann trace theorem (proved via Birkhoff’s
theorem) is now the foundation on which many applications of the singular value
decomposition are built. The Loewner partial order and block matrices are treated
in detail with new techniques, as are the classical determinant inequalities for
positive definite matrices.

8. Chapter 8 uses facts about left eigenvectors developed in Chapter 1 to streamline its
exposition of the Perron–Frobenius theory of positive and nonnegative matrices.

D. Appendix D contains new explicit perturbation bounds for the zeroes of a poly-
nomial and the eigenvalues of a matrix.

F. Appendix F tabulates a modern list of canonical forms for a pair of Hermitian
matrices, or a pair of matrices, one of which is symmetric and the other is skew
symmetric. These canonical pairs are applications of the canonical forms for
congruence and ∗congruence presented in Chapter 4.

Readers who are curious about the technology of book making may be interested
to know that this book began as a set of LATEX files created manually by a company in
India from hard copy of the first edition. Those files were edited and revised using the
Scientific WorkPlace R© graphical user interface and typesetting system.

The cover art for the second edition was the result of a lucky encounter on a Delta
flight from Salt Lake City to Los Angeles in spring 2003. The young man in the
middle seat said he was an artist who paints abstract paintings that are sometimes
mathematically inspired. In the course of friendly conversation, he revealed that his
special area of mathematical enjoyment was linear algebra, and that he had studied
Matrix Analysis. After mutual expressions of surprise at the chance nature of our
meeting, and a pleasant discussion, we agreed that appropriate cover art would enhance
the visual appeal of the second edition; he said he would send something to consider.
In due course a packet arrived from Seattle. It contained a letter and a stunning 4.5- by
5-inch color photograph, identified on the back as an image of a 72- by 66-inch oil on
canvas, painted in 2002. The letter said that “the painting is entitled Surprised Again
on the Diagonal and is inspired by the recurring prevalence of the diagonal in math
whether it be in geometry, analysis, algebra, set theory or logic. I think that it would
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be an attractive addition to your wonderful book.” Thank you, Lun-Yi Tsai, for your
wonderful cover art!

A great many students, instructors, and professional colleagues have contributed
to the evolution of this new edition since its predecessor appeared in 1985. Special
thanks are hereby acknowledged to T. Ando, Wayne Barrett, Ignat Domanov, Jim Fill,
Carlos Martins da Fonseca, Tatiana Gerasimova, Geoffrey Goodson, Robert Guralnick,
Thomas Hawkins, Eugene Herman, Khakim Ikramov, Ilse Ipsen, Dennis C. Jespersen,
Hideki Kosaki, Zhongshan Li, Teck C. Lim, Ross A. Lippert, Roy Mathias, Dennis
Merino, Arnold Neumaier, Kevin O’Meara, Peter Rosenthal, Vladimir Sergeichuk,
Wasin So, Hugo Woerdeman, and Fuzhen Zhang.

R.A.H.



Preface to the First Edition

Linear algebra and matrix theory have long been fundamental tools in mathematical
disciplines as well as fertile fields for research in their own right. In this book, and in the
companion volume, Topics in Matrix Analysis, we present classical and recent results
of matrix analysis that have proved to be important to applied mathematics. The book
may be used as an undergraduate or graduate text and as a self-contained reference for a
variety of audiences. We assume background equivalent to a one-semester elementary
linear algebra course and knowledge of rudimentary analytical concepts. We begin
with the notions of eigenvalues and eigenvectors; no prior knowledge of these concepts
is assumed.

Facts about matrices, beyond those found in an elementary linear algebra course,
are necessary to understand virtually any area of mathematical science, whether it
be differential equations; probability and statistics; optimization; or applications in
theoretical and applied economics, the engineering disciplines, or operations research,
to name only a few. But until recently, much of the necessary material has occurred
sporadically (or not at all) in the undergraduate and graduate curricula. As interest
in applied mathematics has grown and more courses have been devoted to advanced
matrix theory, the need for a text offering a broad selection of topics has become more
apparent, as has the need for a modern reference on the subject.

There are several well-loved classics in matrix theory, but they are not well suited
for general classroom use, nor for systematic individual study. A lack of problems,
applications, and motivation; an inadequate index; and a dated approach are among
the difficulties confronting readers of some traditional references. More recent books
tend to be either elementary texts or treatises devoted to special topics. Our goal
was to write a book that would be a useful modern treatment of a broad range of
topics.

One view of “matrix analysis” is that it consists of those topics in linear algebra
that have arisen out of the needs of mathematical analysis, such as multivariable
calculus, complex variables, differential equations, optimization, and approximation
theory. Another view is that matrix analysis is an approach to real and complex linear
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algebraic problems that does not hesitate to use notions from analysis – such as limits,
continuity, and power series – when these seem more efficient or natural than a purely
algebraic approach. Both views of matrix analysis are reflected in the choice and
treatment of topics in this book. We prefer the term matrix analysis to linear algebra
as an accurate reflection of the broad scope and methodology of the field.

For review and convenience in reference, Chapter 0 contains a summary of
necessary facts from elementary linear algebra, as well as other useful, though not
necessarily elementary, facts. Chapters 1, 2, and 3 contain mainly core material likely
to be included in any second course in linear algebra or matrix theory: a basic treatment
of eigenvalues, eigenvectors, and similarity; unitary similarity, Schur triangularization
and its implications, and normal matrices; and canonical forms and factorizations,
including the Jordan form, LU factorization, QR factorization, and companion matrices.
Beyond this, each chapter is developed substantially independently and treats in some
depth a major topic:

1. Hermitian and complex symmetric matrices (Chapter 4). We give special emphasis
to variational methods for studying eigenvalues of Hermitian matrices and include
an introduction to the notion of majorization.

2. Norms on vectors and matrices (Chapter 5) are essential for error analyses of
numerical linear algebraic algorithms and for the study of matrix power series and
iterative processes. We discuss the algebraic, geometric, and analytic properties
of norms in some detail and make a careful distinction between those norm results
for matrices that depend on the submultiplicativity axiom for matrix norms and
those that do not.

3. Eigenvalue location and perturbation results (Chapter 6) for general (not neces-
sarily Hermitian) matrices are important for many applications. We give a detailed
treatment of the theory of Geršgorin regions, and some of its modern refinements,
and of relevant graph theoretic concepts.

4. Positive definite matrices (Chapter 7) and their applications, including inequalities,
are considered at some length. A discussion of the polar and singular value decom-
positions is included, along with applications to matrix approximation problems.

5. Entry-wise nonnegative and positive matrices (Chapter 8) arise in many applica-
tions in which nonnegative quantities necessarily occur (probability, economics,
engineering, etc.), and their remarkable theory reflects the applications. Our devel-
opment of the theory of nonnegative, positive, primitive, and irreducible matrices
proceeds in elementary steps based on the use of norms.

In the companion volume, further topics of similar interest are treated: the field
of values and generalizations; inertia, stable matrices, M-matrices and related special
classes; matrix equations, Kronecker and Hadamard products; and various ways in
which functions and matrices may be linked.

This book provides the basis for a variety of one- or two-semester courses through
selection of chapters and sections appropriate to a particular audience. We recommend
that an instructor make a careful preselection of sections and portions of sections of the
book for the needs of a particular course. This would probably include Chapter 1, much
of Chapters 2 and 3, and facts about Hermitian matrices and norms from Chapters 4
and 5.
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Most chapters contain some relatively specialized or nontraditional material. For
example, Chapter 2 includes not only Schur’s basic theorem on unitary triangularization
of a single matrix but also a discussion of simultaneous triangularization of families of
matrices. In the section on unitary equivalence, our presentation of the usual facts is
followed by a discussion of trace conditions for two matrices to be unitarily equivalent.
A discussion of complex symmetric matrices in Chapter 4 provides a counterpoint to
the development of the classical theory of Hermitian matrices. Basic aspects of a topic
appear in the initial sections of each chapter, while more elaborate discussions occur at
the ends of sections or in later sections. This strategy has the advantage of presenting
topics in a sequence that enhances the book’s utility as a reference. It also provides a
rich variety of options to the instructor.

Many of the results discussed are valid or can be generalized to be valid for
matrices over other fields or in some broader algebraic setting. However, we deliberately
confine our domain to the real and complex fields where familiar methods of classical
analysis as well as formal algebraic techniques may be employed.

Though we generally consider matrices to have complex entries, most examples
are confined to real matrices, and no deep knowledge of complex analysis is required.
Acquaintance with the arithmetic of complex numbers is necessary for an understanding
of matrix analysis and is covered to the extent necessary in an appendix. Other brief
appendices cover several peripheral, but essential, topics such as Weierstrass’s theorem
and convexity.

We have included many exercises and problems because we feel these are
essential to the development of an understanding of the subject and its implications.
The exercises occur throughout as part of the development of each section; they are
generally elementary and of immediate use in understanding the concepts. We rec-
ommend that the reader work at least a broad selection of these. Problems are listed
(in no particular order) at the end of each section; they cover a range of difficulties
and types (from theoretical to computational) and they may extend the topic, develop
special aspects, or suggest alternate proofs of major ideas. Significant hints are given
for the more difficult problems. The results of some problems are referred to in other
problems or in the text itself. We cannot overemphasize the importance of the reader’s
active involvement in carrying out the exercises and solving problems.

While the book itself is not about applications, we have, for motivational purposes,
begun each chapter with a section outlining a few applications to introduce the topic
of the chapter.

Readers who wish to consult alternative treatments of a topic for additional
information are referred to the books listed in the References section following the
appendices.

The list of book references is not exhaustive. As a practical concession to the
limits of space in a general multitopic book, we have minimized the number of citations
in the text. A small selection of references to papers – such as those we have explicitly
used – does occur at the end of most sections accompanied by a brief discussion, but
we have made no attempt to collect historical references to classical results. Extensive
bibliographies are provided in the more specialized books we have referenced.

We appreciate the helpful suggestions of our colleagues and students who have
taken the time to convey their reactions to the class notes and preliminary manuscripts
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that were the precursors of the book. They include Wayne Barrett, Leroy Beasley, Bryan
Cain, David Carlson, Dipa Choudhury, Risana Chowdhury, Yoo Pyo Hong, Dmitry
Krass, Dale Olesky, Stephen Pierce, Leiba Rodman, and Pauline van den Driessche.

R.A.H.
C.R.J.



CHAPTER 0

Review and Miscellanea

0.0 Introduction

In this initial chapter we summarize many useful concepts and facts, some of which
provide a foundation for the material in the rest of the book. Some of this material is
included in a typical elementary course in linear algebra, but we also include additional
useful items, even though they do not arise in our subsequent exposition. The reader
may use this chapter as a review before beginning the main part of the book in Chapter 1;
subsequently, it can serve as a convenient reference for notation and definitions that
are encountered in later chapters. We assume that the reader is familiar with the basic
concepts of linear algebra and with mechanical aspects of matrix manipulations, such
as matrix multiplication and addition.

0.1 Vector spaces

A finite dimensional vector space is the fundamental setting for matrix analysis.

0.1.1 Scalar field. Underlying a vector space is its field, or set of scalars. For our
purposes, that underlying field is typically the real numbers R or the complex numbers
C (see Appendix A), but it could be the rational numbers, the integers modulo a
specified prime number, or some other field. When the field is unspecified, we denote it
by the symbol F. To qualify as a field, a set must be closed under two binary operations:
“addition” and “multiplication.” Both operations must be associative and commutative,
and each must have an identity element in the set; inverses must exist in the set for
all elements under addition and for all elements except the additive identity under
multiplication; multiplication must be distributive over addition.

0.1.2 Vector spaces. A vector space V over a field F is a set V of objects (called
vectors) that is closed under a binary operation (“addition”) that is associative and
commutative and has an identity (the zero vector, denoted by 0) and additive inverses

1



2 Review and miscellanea

in the set. The set is also closed under an operation of “scalar multiplication” of
the vectors by elements of the scalar field F, with the following properties for all
a, b ∈ F and all x, y ∈ V : a(x + y) = ax + ay, (a + b)x = ax + bx , a(bx) = (ab)x ,
and ex = x for the multiplicative identity e ∈ F.

For a given field F and a given positive integer n, the set Fn of n-tuples with entries
from F forms a vector space over F under entrywise addition in Fn . Our convention
is that elements of Fn are always presented as column vectors; we often call them
n-vectors. The special cases Rn and Cn are the basic vector spaces of this book; Rn is
a real vector space (that is, a vector space over the real field), while Cn is both a real
vector space and a complex vector space (a vector space over the complex field). The
set of polynomials with real or with complex coefficients (of no more than a specified
degree or of arbitrary degree) and the set of real-valued or complex-valued functions on
subsets of R or C (all with the usual notions of addition of functions and multiplication
of a function by a scalar) are also examples of real or complex vector spaces.

0.1.3 Subspaces, span, and linear combinations. A subspace of a vector space
V over a field F is a subset of V that is, by itself, a vector space over F using the
same operations of vector addition and scalar multiplication as in V . A subset of V
is a subspace precisely when it is closed under these two operations. For example,
{[a, b, 0]T : a, b ∈ R} is a subspace of R3; see (0.2.5) for the transpose notation. An
intersection of subspaces is always a subspace; a union of subspaces need not be a
subspace. The subsets {0} and V are always subspaces of V , so they are often called
trivial subspaces; a subspace of V is said to be nontrivial if it is different from both
{0} and V . A subspace of V is said to be a proper subspace if it is not equal to V . We
call {0} the zero vector space. Since a vector space always contains the zero vector, a
subspace cannot be empty.

If S is a subset of a vector space V over a field F, span S is the intersection of all
subspaces of V that contain S. If S is nonempty, then span S = {a1v1 + · · · + akvk :
v1, . . . , vk ∈ S, a1, . . . , ak ∈ F, and k = 1, 2, . . .}; if S is empty, it is contained in every
subspace of V . The intersection of every subspace of V is the subspace {0}, so the
definition ensures that span S = {0}. Notice that span S is always a subspace even if S
is not a subspace; S is said to span V if span S = V .

A linear combination of vectors in a vector space V over a field F is any expression
of the form a1v1 + · · · + akvk in which k is a positive integer, a1, . . . , ak ∈ F, and
v1, . . . , vk ∈ V . Thus, the span of a nonempty subset S of V consists of all linear
combinations of finitely many vectors in S. A linear combination a1v1 + · · · + akvk

is trivial if a1 = · · · = ak = 0; otherwise, it is nontrivial. A linear combination is by
definition a sum of finitely many elements of a vector space.

Let S1 and S2 be subspaces of a vector space over a field F. The sum of S1 and S2 is
the subspace

S1 + S2 = span {S1 ∪ S2} = {x + y : x ∈ S1, y ∈ S2}

If S1 ∩ S2 = {0}, we say that the sum of S1 and S2 is a direct sum and write it as
S1 ⊕ S2; every z ∈ S1 ⊕ S2 can be written as z = x + y with x ∈ S1 and y ∈ S2 in one
and only one way.
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0.1.4 Linear dependence and linear independence. We say that a finite list of
vectors v1, . . . , vk in a vector space V over a field F is linearly dependent if and
only if there are scalars a1, . . . , ak ∈ F, not all zero, such that a1x1 + · · · + ak xk = 0.
Thus, a list of vectors v1, . . . , vk is linearly dependent if and only if some nontrivial
linear combination of v1, . . . , vk is the zero vector. It is often convenient to say that
“v1, . . . , vk are linearly dependent” instead of the more formal statement “the list of vec-
tors v1, . . . , vk is linearly dependent.” A list of vectors v1, . . . , vk is said to have length k.
A list of two or more vectors is linearly dependent if one of the vectors is a linear com-
bination of some of the others; in particular, a list of two or more vectors in which two
of the vectors in the list are identical is linearly dependent. Two vectors are linearly
dependent if and only if one of the vectors is a scalar multiple of the other. A list
consisting only of the zero vector is linearly dependent since a10 = 0 for a1 = 1.

A finite list of vectors v1, . . . , vk in a vector space V over a field F is linearly
independent if it is not linearly dependent. Again, it can be convenient to say that
“v1, . . . , vk are linearly independent” instead of “the list of vectors v1, . . . , vk is
linearly independent.”

Sometimes one encounters natural lists of vectors that have infinitely many elements,
for example, the monomials 1, t, t2, t3, . . . in the vector space of all polynomials with
real coefficients or the complex exponentials 1, eit , e2i t , e3i t , . . . in the vector space of
complex-valued continuous functions that are periodic on [0, 2π ].

If certain vectors in a list (finite or infinite) are deleted, the resulting list is a sublist
of the original list. An infinite list of vectors is said to be linearly dependent if some
finite sublist is linearly dependent; it is said to be linearly independent if every finite
sublist is linearly independent. Any sublist of a linearly independent list of vectors is
linearly independent; any list of vectors that has a linearly dependent sublist is linearly
dependent. Since a list consisting only of the zero vector is linearly dependent, any list
of vectors that contains the zero vector is linearly dependent. A list of vectors can be
linearly dependent, while any proper sublist is linearly independent; see (1.4.P12). An
empty list of vectors is not linearly dependent, so it is linearly independent.

The cardinality of a finite set is the number of its (necessarily distinct) elements.
For a given list of vectors v1, . . . , vk in a vector space V , the cardinality of the set
{v1, . . . , vk} is less than k if and only if two or more vectors in the list are identical;
if v1, . . . , vk are linearly independent, then the cardinality of the set {v1, . . . , vk} is k.
The span of a list of vectors (finite or not) is the span of the set of elements of the list;
a list of vectors spans V if V is the span of the list.

A set S of vectors is said to be linearly independent if every finite list of distinct
vectors in S is linearly independent; S is said to be linearly dependent if some finite
list of distinct vectors in S is linearly dependent.

0.1.5 Basis. A linearly independent list of vectors in a vector space V whose span
is V is a basis for V . Each element of V can be represented as a linear combination
of vectors in a basis in one and only one way; this is no longer true if any element
whatsoever is appended to or deleted from the basis. A linearly independent list of
vectors in V is a basis of V if and only if no list of vectors that properly contains it is
linearly independent. A list of vectors that spans V is a basis for V if and only if no
proper sublist of it spans V . The empty list is a basis for the zero vector space.
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0.1.6 Extension to a basis. Any linearly independent list of vectors in a vector space
V may be extended, perhaps in more than one way, to a basis of V . A vector space can
have a basis that is not finite; for example, the infinite list of monomials 1, t, t2, t3, . . .

is a basis for the real vector space of all polynomials with real coefficients; each
polynomial is a unique linear combination of (finitely many) elements in the basis.

0.1.7 Dimension. If there is a positive integer n such that a basis of the vector space
V contains exactly n vectors, then every basis of V consists of exactly n vectors; this
common cardinality of bases is the dimension of the vector space V and is denoted by
dimV . In this event, V is finite-dimensional; otherwise V is infinite-dimensional. In the
infinite-dimensional case, there is a one-to-one correspondence between the elements
of any two bases. The real vector space Rn has dimension n. The vector space Cn has
dimension n over the field C but dimension 2n over the field R. The basis e1, . . . , en

of Fn in which each n-vector ei has a 1 as its i th entry and 0s elsewhere is called the
standard basis.

It is convenient to say “V is an n-dimensional vector space” as a shorthand for
“V is a finite-dimensional vector space whose dimension is n.” Any subspace of an
n-dimensional vector space is finite-dimensional; its dimension is strictly less than n
if it is a proper subspace.

Let V be a finite-dimensional vector space and let S1 and S2 be two given subspaces
of V . The subspace intersection lemma is

dim (S1 ∩ S2) + dim (S1 + S2) = dim S1 + dim S2 (0.1.7.1)

Rewriting this identity as

dim (S1 ∩ S2) = dim S1 + dim S2 − dim (S1 + S2)

≥ dim S1 + dim S2 − dim V (0.1.7.2)

reveals the useful fact that if δ = dim S1 + dim S2 − dim V ≥ 1, then the subspace
S1 ∩ S2 has dimension at least δ, and hence it contains δ linearly independent vectors,
namely, any δ elements of a basis of S1 ∩ S2. In particular, S1 ∩ S2 contains a nonzero
vector. An induction argument shows that if S1, . . . , Sk are subspaces of V , and if
δ = dim S1 + · · · + dim Sk − (k − 1) dim V ≥ 1, then

dim (S1 ∩ · · · ∩ Sk) ≥ δ (0.1.7.3)

and hence S1 ∩ · · · ∩ Sk contains δ linearly independent vectors; in particular, it con-
tains a nonzero vector.

0.1.8 Isomorphism. If U and V are vector spaces over the same scalar field F, and
if f : U → V is an invertible function such that f (ax + by) = a f (x) + b f (y) for all
x, y ∈ U and all a, b ∈ F, then f is said to be an isomorphism and U and V are
said to be isomorphic (“same structure”). Two finite-dimensional vector spaces over
the same field are isomorphic if and only if they have the same dimension; thus, any
n-dimensional vector space over F is isomorphic to Fn . Any n-dimensional real vector
space is, therefore, isomorphic to Rn , and any n-dimensional complex vector space is
isomorphic to Cn . Specifically, if V is an n-dimensional vector space over a field F
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with specified basis B = {x1, . . . , xn}, then, since any element x ∈ V may be written
uniquely as x = a1x1 + · · · + anxn in which each ai ∈ F, we may identify x with the n-
vector [x]B = [a1 . . . an]T . For any basis B, the mapping x → [x]B is an isomorphism
between V and Fn .

0.2 Matrices

The fundamental object of study here may be thought of in two important ways: as a
rectangular array of scalars and as a linear transformation between two vector spaces,
given specified bases for each space.

0.2.1 Rectangular arrays. A matrix is an m-by-n array of scalars from a field F. If
m = n, the matrix is said to be square. The set of all m-by-n matrices over F is denoted
by Mm,n(F), and Mn,n(F) is often denoted by Mn(F). The vector spaces Mn,1(F) and Fn

are identical. If F = C, then Mn(C) is further abbreviated to Mn , and Mm,n(C) to Mm,n .
Matrices are typically denoted by capital letters, and their scalar entries are typically
denoted by doubly subscripted lowercase letters. For example, if

A =
[

2 − 3
2 0

−1 π 4

]
= [ai j ]

then A ∈ M2,3(R) has entries a11 = 2, a12 = −3/2, a13 = 0, a21 = −1, a22 = π,

a23 = 4. A submatrix of a given matrix is a rectangular array lying in specified subsets
of the rows and columns of a given matrix. For example, [π 4] is a submatrix (lying in
row 2 and columns 2 and 3) of A.

Suppose that A = [ai j ] ∈ Mn,m(F). The main diagonal of A is the list of entries
a11, a22, . . . , aqq , in which q = min{n, m}. It is sometimes convenient to express the
main diagonal of A as a vector diag A = [aii ]

q
i=1 ∈ Fq . The pth superdiagonal of A is

the list a1,p+1, a2,p+2, . . . , ak,p+k , in which k = min{n, m − p}, p = 0, 1, 2, . . . , m −
1; the pth subdiagonal of A is the list ap+1,1, ap+2,2, . . . , ap+�,�, in which � = min{n −
p, m}, p = 0, 1, 2, . . . , n − 1.

0.2.2 Linear transformations. Let U be an n-dimensional vector space and let V
be an m-dimensional vector space, both over the same field F; let BU be a basis of U
and let BV be a basis of V . We may use the isomorphisms x → [x]BU and y → [y]BV

to represent vectors in U and V as n-vectors and m-vectors over F, respectively. A
linear transformation is a function T : U → V such that T (a1x1 + a2x2) = a1T (x1) +
a2T (x2) for any scalars a1, a2 and vectors x1, x2. A matrix A ∈ Mm,n(F) corresponds
to a linear transformation T : U → V in the following way: y = T (x) if and only if
[y]BV = A[x]BU . The matrix A is said to represent the linear transformation T (relative
to the bases BU and BV ); the representing matrix A depends on the bases chosen. When
we study a matrix A, we realize that we are studying a linear transformation relative to
a particular choice of bases, but explicit appeal to the bases is usually not necessary.

0.2.3 Vector spaces associated with a matrix or linear transformation. Any
n-dimensional vector space over F may be identified with Fn; we may think of
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A ∈ Mm,n(F) as a linear transformation x → Ax from Fn to Fm (and also as an array).
The domain of this linear transformation is Fn; its range is range A = {y ∈ Fm : y =
Ax} for some x ∈ Fn; its null space is nullspace A = {x ∈ Fn : Ax = 0}. The range of
A is a subspace of Fm , and the null space of A is a subspace of Fn . The dimension of
nullspace A is denoted by nullity A; the dimension of range A is denoted by rank A.
These numbers are related by the rank-nullity theorem

dim (range A) + dim (nullspace A) = rank A + nullity A = n (0.2.3.1)

for A ∈ Mm,n(F). The null space of A is a set of vectors in Fn whose entries satisfy m
homogeneous linear equations.

0.2.4 Matrix operations. Matrix addition is defined entrywise for arrays of the
same dimensions and is denoted by + (“A + B”). It corresponds to addition of
linear transformations (relative to the same basis), and it inherits commutativity and
associativity from the scalar field. The zero matrix (all entries are zero) is the additive
identity, and Mm,n(F) is a vector space over F. Matrix multiplication is denoted by
juxtaposition (“AB”) and corresponds to the composition of linear transformations.
Therefore, it is defined only when A ∈ Mm,n(F) and B ∈ Mn,q (F). It is associative, but
not always commutative. For example,[

1 2
6 8

]
=
[

1 0
0 2

] [
1 2
3 4

]
�=
[

1 2
3 4

] [
1 0
0 2

]
=
[

1 4
3 8

]
The identity matrix

I =
[

1
. . .

1

]
∈ Mn(F)

is the multiplicative identity in Mn(F); its main diagonal entries are 1, and all other
entries are 0. The identity matrix and any scalar multiple of it (a scalar matrix) commute
with every matrix in Mn(F); they are the only matrices that do so. Matrix multiplication
is distributive over matrix addition.

The symbol 0 is used throughout the book to denote each of the following: the zero
scalar of a field, the zero vector of a vector space, the zero n-vector in Fn (all entries
equal to the zero scalar in F), and the zero matrix in Mm,n(F) (all entries equal to the
zero scalar). The symbol I denotes the identity matrix of any size. If there is potential
for confusion, we indicate the dimension of a zero or identity matrix with subscripts,
for example, 0p,q , 0k , or Ik .

0.2.5 The transpose, conjugate transpose, and trace. If A = [ai j ] ∈ Mm,n(F),
the transpose of A, denoted by AT , is the matrix in Mn,m(F) whose i, j entry is a ji ;
that is, rows are exchanged for columns and vice versa. For example,[

1 2 3
4 5 6

]T

=
⎡
⎣1 4

2 5
3 6

⎤
⎦

Of course, (AT )T = A. The conjugate transpose (sometimes called the adjoint or
Hermitian adjoint) of A ∈ Mm,n(C), is denoted by A∗ and defined by A∗ = ĀT , in
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which Ā is the entrywise conjugate. For example,[
1 + i 2 − i
−3 −2i

]∗
=
[

1 − i −3
2 + i 2i

]
Both the transpose and the conjugate transpose obey the reverse-order law: (AB)∗ =
B∗A∗ and (AB)T = BT AT . For the complex conjugate of a product, there is no
reversing: AB = Ā B̄. If x, y are real or complex vectors of the same size, then
y∗x is a scalar and its conjugate transpose and complex conjugate are the same:
(y∗x)∗ = y∗x = x∗y = yT x̄ .

Many important classes of matrices are defined by identities involving the transpose
or conjugate transpose. For example, A ∈ Mn(F) is said to be symmetric if AT = A,
skew symmetric if AT = −A, and orthogonal if AT A = I ; A ∈ Mn(C) is said to be
Hermitian if A∗ = A, skew Hermitian if A∗ = −A, essentially Hermitian if eiθ A is
Hermitian for some θ ∈ R, unitary if A∗A = I , and normal if A∗A = AA∗.

Each A ∈ Mn(F) can be written in exactly one way as A = S(A) + C(A), in which
S(A) is symmetric and C(A) is skew symmetric: S(A) = 1

2 (A + AT ) is the symmetric
part of A; C(A) = 1

2 (A − AT ) is the skew-symmetric part of A.
Each A ∈ Mm,n(C) can be written in exactly one way as A = B + iC , in which

B, C ∈ Mm,n(R): B = 1
2 (A + Ā) is the real part of A; C = 1

2i (A − Ā) is the imaginary
part of A.

Each A ∈ Mn(C) can be written in exactly one way as A = H (A) + i K (A), in
which H (A) and K (A) are Hermitian: H (A) = 1

2 (A + A∗) is the Hermitian part of
A; i K (A) = 1

2 (A − A∗) is the skew-Hermitian part of A. The representation A =
H (A) + i K (A) of a complex or real matrix is its Toeplitz decomposition.

The trace of A = [ai j ] ∈ Mm,n(F) is the sum of its main diagonal entries: tr A =
a11 + · · · + aqq , in which q = min{m, n}. For any A = [ai j ] ∈ Mm,n(C), tr AA∗ =
tr A∗A =∑

i, j |ai j |2, so

tr AA∗ = 0 if and only if A = 0 (0.2.5.1)

A vector x ∈ Fn is isotropic if xT x = 0. For example, [1 i]T ∈ C2 is a nonzero
isotropic vector. There are no nonzero isotropic vectors in Rn .

0.2.6 Metamechanics of matrix multiplication. In addition to the conventional
definition of matrix-vector and matrix-matrix multiplication, several alternative view-
points can be useful.

1. If A ∈ Mm,n(F), x ∈ Fn , and y ∈ Fm , then the (column) vector Ax is a linear
combination of the columns of A; the coefficients of the linear combination are
the entries of x . The row vector yT A is a linear combination of the rows of A; the
coefficients of the linear combination are the entries of y.

2. If b j is the j th column of B and aT
i is the i th row of A, then the j th column of

AB is Ab j and the i th row of AB is aT
i B.

To paraphrase, in the matrix product AB, left multiplication by A multiplies the
columns of B and right multiplication by B multiplies the rows of A. See (0.9.1) for an
important special case of this observation when one of the factors is a diagonal matrix.
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Suppose that A ∈ Mm,p(F) and B ∈ Mn,q (F). Let ak be the kth column of A and let
bk be the kth column of B. Then

3. If m = n, then AT B = [
aT

i b j
]
: the i, j entry of AT B is the scalar aT

i b j .
4. If p = q , then ABT =∑n

k=1 akbT
k : each summand is an m-by-n matrix, the outer

product of ak and bk .

0.2.7 Column space and row space of a matrix. The range of A ∈ Mm,n(F) is also
called its column space because Ax is a linear combination of the columns of A for any
x ∈ Fn (the entries of x are the coefficients in the linear combination); range A is the
span of the columns of A. Analogously, {yT A : y ∈ Fm} is called the row space of A.
If the column space of A ∈ Mm,n(F) is contained in the column space of B ∈ Mm,k(F),
then there is some X ∈ Mk,n(F) such that A = B X (and conversely); the entries in
column j of X tell how to express column j of A as a linear combination of the
columns of B.

If A ∈ Mm,n(F) and B ∈ Mm,q (F), then

range A + range B = range
[

A B
]

(0.2.7.1)

If A ∈ Mm,n(F) and B ∈ Mp,n(F), then

nullspace A ∩ nullspace B = nullspace

[
A
B

]
(0.2.7.2)

0.2.8 The all-ones matrix and vector. In Fn , every entry of the vector e = e1 +
· · · + en is 1. Every entry of the matrix Jn = eeT is 1.

0.3 Determinants

Often in mathematics, it is useful to summarize a multivariate phenomenon with a
single number, and the determinant function is an example of this. Its domain is Mn(F)
(square matrices only), and it may be presented in several different ways. We denote
the determinant of A ∈ Mn(F) by det A.

0.3.1 Laplace expansion by minors along a row or column. The determinant
may be defined inductively for A = [ai j ] ∈ Mn(F) in the following way. Assume that
the determinant is defined over Mn−1(F) and let Ai j ∈ Mn−1(F) denote the submatrix
of A ∈ Mn(F) obtained by deleting row i and column j of A. Then, for any i, j ∈
{1, . . . , n}, we have

det A =
n∑

k=1

(−1)i+kaik det Aik =
n∑

k=1

(−1)k+ j ak j det Akj (0.3.1.1)

The first sum is the Laplace expansion by minors along row i ; the second sum is the
Laplace expansion by minors along column j . This inductive presentation begins by
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defining the determinant of a 1-by-1 matrix to be the value of the single entry. Thus,

det [ a11] = a11

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21

det

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ = a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

and so on. Notice that det AT = det A, det A∗ = det A if A ∈ Mn(C), and det I = 1.

0.3.2 Alternating sums and permutations. A permutation of {1, . . . , n} is a one-
to-one function σ : {1, . . . , n} → {1, . . . , n}. The identity permutation satisfies σ (i) =
i for each i = 1, . . . , n. There are n! distinct permutations of {1, . . . , n}, and the
collection of all such permutations forms a group under composition of functions.

Consistent with the low-dimensional examples in (0.3.1), for A = [ai j ] ∈ Mn(F) we
have the alternative presentation

det A =
∑

σ

(
sgn σ

n∏
i=1

aiσ (i)

)
(0.3.2.1)

in which the sum is over all n! permutations of {1, . . . , n} and sgn σ , the “sign”
or “signum” of a permutation σ , is +1 or −1 according to whether the minimum
number of transpositions (pairwise interchanges) necessary to achieve it starting from
{1, . . . , n} is even or odd. We say that a permutation σ is even if sgn σ = +1; σ is odd
if sgn σ = −1.

If sgn σ in (0.3.2.1) is replaced by certain other functions of σ , one obtains general-
ized matrix functions in place of det A. For example, the permanent of A, denoted by
per A, is obtained by replacing sgn σ by the function that is identically +1.

0.3.3 Elementary row and column operations. Three simple and fundamental
operations on rows or columns, called elementary row and column operations, can
be used to transform a matrix (square or not) into a simple form that facilitates such
tasks as solving linear equations, determining rank, and calculating determinants and
inverses of square matrices. We focus on row operations, which are implemented by
matrices that act on the left. Column operations are defined and used in a similar
fashion; the matrices that implement them act on the right.
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Type 1: Interchange of two rows.
For i �= j , interchange of rows i and j of A results from left multiplication of A by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

0 · · · 1
1...

. . .
...

1
1 · · · · · · · · · 0

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The two off-diagonal 1s are in the i, j and j, i positions, the two diagonal 0s are in
positions i, i and j, j , and all unspecified entries are 0.

Type 2: Multiplication of a row by a nonzero scalar.
Multiplication of row i of A by a nonzero scalar c results from left multiplication of A
by

⎡
⎢⎢⎢⎢⎣

1
. . .

1
c

1
. . .

1

⎤
⎥⎥⎥⎥⎦

The i, i entry is c, all other main diagonal entries are 1, and all unspecified entries
are 0.

Type 3: Addition of a scalar multiple of one row to another row.
For i �= j , addition of c times row i of A to row j of A results from left multiplication
of A by

⎡
⎢⎢⎢⎣

1
. . .

1
1

c
. . .

1

⎤
⎥⎥⎥⎦

The j, i entry is c, all main diagonal entries are 1, and all unspecified entries are 0. The
displayed matrix illustrates the case in which j > i .

The matrices of each of the three elementary row (or column) operations are just
the result of applying the respective operation to the identity matrix I (on the left for a
row operation; on the right for a column operation). The effect of a type 1 operation on
the determinant is to multiply it by −1; the effect of a type 2 operation is to multiply
it by the nonzero scalar c; a type 3 operation does not change the determinant. The
determinant of a square matrix with a zero row is zero. The determinant of a square
matrix is zero if and only if some subset of the rows of the matrix is linearly dependent.
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0.3.4 Reduced row echelon form. To each A = [ai j ] ∈ Mm,n(F) there corresponds
a (unique) canonical form in Mm,n(F), the reduced row echelon form, also known as
the Hermite normal form.

If a row of A is nonzero, its leading entry is its first nonzero entry. The defining
specifications of the RREF are as follows:

(a) Any zero rows occur at the bottom of the matrix.
(b) The leading entry of any nonzero row is a 1.
(c) All other entries in the column of a leading entry are zero.
(d) The leading entries occur in a stairstep pattern, left to right; that is, if row i is

nonzero and aik is its leading entry, then either i = m, or row i + 1 is zero, or the
leading entry in row i + 1 is ai+1,�, in which � > k.

For example, ⎡
⎢⎢⎣

0 1 −1 0 0 2
0 0 0 1 0 π

0 0 0 0 1 4
0 0 0 0 0 0

⎤
⎥⎥⎦

is in RREF.
If R ∈ Mm,n(F) is the RREF of A, then R = E A, in which the nonsingular matrix

E ∈ Mm(F) is a product of type 1, type 2, and type 3 elementary matrices corresponding
to the sequence of elementary row operations performed to reduce A to RREF.

The determinant of A ∈ Mn(F) is nonzero if and only if its RREF is In . The value
of det A may be calculated by recording the effects on the determinant of each of the
elementary operations that lead to the RREF.

For the system of linear equations Ax = b, with A ∈ Mm,n(F) and b ∈ Fm given and
x ∈ Fn unknown, the set of solutions is unchanged if the same sequence of elementary
row operations is performed on both A and b. The solutions of Ax = b are revealed by
inspection of the RREF of [A b]. Since the RREF is unique, for given A1, A2 ∈ Mm,n

and given b1, b2 ∈ Fm , the systems of linear equations A1x = b1 and A2x = b2 have
the same set of solutions if and only if [A1 b1] and [A2 b2] have the same RREF.

0.3.5 Multiplicativity. A key property of the determinant function is that it is multi-
plicative: For A, B ∈ Mn(F)

det AB = det A det B

This may be proved using elementary operations that row-reduce both A and B.

0.3.6 Functional characterization of the determinant. If we think of the deter-
minant as a function of each row (or column) of a matrix separately with the others
fixed, the Laplace expansion (0.3.1.1) reveals that the determinant is a linear function
of the entries in any one given row (column). We summarize this property by saying
that the function A → det A is multilinear in the rows (columns) of A.
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The determinant function A→ det A is the unique function f : Mn(F)→ F that is

(a) Multilinear in the rows of its argument
(b) Alternating: any type 1 operation on A changes the sign of f (A)
(c) Normalized: f (I ) = 1

The permanent function is also multilinear (as are other generalized matrix func-
tions), and it is normalized, but it is not alternating.

0.4 Rank

0.4.1 Definition. If A ∈ Mm,n(F), rank A = dim range A is the length of a longest
linearly independent list of columns of A. There can be more than one linearly in-
dependent list of columns whose length equals the rank. It is a remarkable fact that
rank AT = rank A. Therefore, an equivalent definition of rank is the length of a longest
linearly independent list of rows of A: row rank = column rank.

0.4.2 Rank and linear systems. Let A ∈ Mm,n(F) and b ∈ Fn be given. The linear
system Ax = b may have no solution, exactly one solution, or infinitely many solutions;
these are the only possibilities. If there is at least one solution, the linear system is
consistent; if there is no solution, the linear system is inconsistent. The linear system
Ax = b is consistent if and only if rank[A b] = rank A. The matrix [A b] ∈ Mm,n+1(F)
is the augmented matrix. To say that the augmented matrix and the coefficient matrix
A of a linear system have the same rank is just to say that b is a linear combination
of the columns of A. In this case, appending b to the columns of A does not increase
the rank. A solution of the linear system Ax = b is a vector x whose entries are the
coefficients in a representation of b as a linear combination of the columns of A.

0.4.3 RREF and rank. Elementary operations do not change the rank of a matrix,
and thus rank A is the same as the rank of the RREF of A, which is just the number of
nonzero rows in the RREF. As a practical matter, however, numerical calculation of the
rank by calculation of the RREF is unwise. Round-off errors in intermediate numerical
calculations can make zero rows of the RREF appear to be nonzero, thereby affecting
perception of the rank.

0.4.4 Characterizations of rank. The following statements about a given matrix
A ∈ Mm,n(F) are equivalent; each can be useful in a different context. Note that in (b)
and (c) the key issue is linear independence of lists of columns or rows of a matrix:

(a) rank A = k.
(b) k, and no more than k, rows of A are linearly independent.
(c) k, and no more than k, columns of A are linearly independent.
(d) Some k-by-k submatrix of A has nonzero determinant, and every (k + 1)-by-

(k + 1) submatrix of A has zero determinant.
(e) dim (range A) = k.
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(f) There are k, but no more than k, linearly independent vectors b1, . . . , bk such that
the linear system Ax = b j is consistent for each j = 1, . . . , k.

(g) k = n − dim(nullspace A) (the rank-nullity theorem).
(h) k = min{p : A = XY T for some X ∈ Mm,p(F), Y ∈ Mn,p(F)}.
(i) k = min{p : A = x1 yT

1 + · · · + x p yT
p } for some x1, . . . , x p ∈ Fm, y1, . . . , yp ∈

Fn .

0.4.5 Rank inequalities. Some fundamental inequalities involving rank are:

(a) If A ∈ Mm,n(F), then rank A ≤ min{m, n}.
(b) If one or more rows and/or columns are deleted from a matrix, the rank of the

resulting submatrix is not greater than the rank of the original matrix.
(c) Sylvester inequality: If A ∈ Mm,k(F) and B ∈ Mk,n(F), then

(rank A + rank B) − k ≤ rank AB ≤ min{rank A, rank B}
(d) The rank-sum inequality: If A, B ∈ Mm,n(F), then

|rank A − rank B| ≤ rank(A + B) ≤ rank A + rank B (0.4.5.1)

with equality in the second inequality if and only if (range A) ∩ (range B) = {0}
and (range AT ) ∩ (range BT ) = {0}. If rank B = 1 then

| rank(A + B) − rank A| ≤ 1 (0.4.5.2)

in particular, changing one entry of a matrix can change its rank by at most 1.
(e) Frobenius inequality: If A ∈ Mm,k(F), B ∈ Mk,p(F), and C ∈ Mp,n(F), then

rank AB + rank BC ≤ rank B + rank ABC

with equality if and only if there are matrices X and Y such that B = BC X +
Y AB.

0.4.6 Rank equalities. Some fundamental equalities involving rank are:

(a) If A ∈ Mm,n(C), then rank A∗ = rank AT = rank Ā = rank A.
(b) If A ∈ Mm(F) and C ∈ Mn(F) are nonsingular and B ∈ Mm,n(F), then rank AB =

rank B = rank BC = rank ABC ; that is, left or right multiplication by a non-
singular matrix leaves rank unchanged.

(c) If A, B ∈ Mm,n(F), then rank A = rank B if and only if there exist a nonsingular
X ∈ Mm(F) and a nonsingular Y ∈ Mn(F) such that B = XAY.

(d) If A ∈ Mm,n(C), then rank A∗A = rank A.
(e) Full-rank factorization: If A ∈ Mm,n(F), then rank A = k if and only if A = XY T

for some X ∈ Mm,k(F) and Y ∈ Mn,k(F) that each have independent columns. The
equivalent factorization A = X BY T for some nonsingular B ∈ Mk(F) can also
be useful. In particular, rank A = 1 if and only if A = xyT for some nonzero
vectors x ∈ Fm and y ∈ Fn .

(f) If A ∈ Mm,n(F), then rank A = k if and only if there exist nonsingular matrices

S ∈ Mm(F) and T ∈ Mn(F) such that A = S
[

Ik 0
0 0

]
T .
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(g) Let A ∈ Mm,n(F). If X ∈ Mn,k(F) and Y ∈ Mm,k(F), and if W = Y T AX is non-
singular, then

rank(A − AX W−1Y T A) = rank A − rank AX W−1Y T A (0.4.6.1)

When k = 1, this is Wedderburn’s rank-one reduction formula: If x ∈ Fn and
y ∈ Fm , and if ω = yT Ax �= 0, then

rank
(

A − ω−1 AxyT A
) = rank A − 1 (0.4.6.2)

Conversely, if σ ∈ F, u ∈ Fn , v ∈ Fm , and rank
(

A − σuvT
)

< rank A, then
rank

(
A − σuvT

) = rank A − 1 and there are x ∈ Fn and y ∈ Fm such that
u = Ax , v = AT y, yT Ax �= 0, and σ = (yT Ax)−1.

0.5 Nonsingularity

A linear transformation or matrix is said to be nonsingular if it produces the output 0
only for the input 0. Otherwise, it is singular. If A ∈ Mm,n(F) and m < n, then A is
necessarily singular. An A ∈ Mn(F) is invertible if there is a matrix A−1 ∈ Mn(F) (the
inverse of A) such that A−1 A = I . If A ∈ Mn and A−1 A = I , then AA−1 = I ; that is,
A−1 is a left inverse if and only if it is a right inverse; A−1 is unique whenever it exists.

It is useful to be able to call on a variety of criteria for a square matrix to be
nonsingular. The following are equivalent for a given A ∈ Mn(F):

(a) A is nonsingular.
(b) A−1 exists.
(c) rank A = n.
(d) The rows of A are linearly independent.
(e) The columns of A are linearly independent.
(f) det A �= 0.
(g) The dimension of the range of A is n.
(h) The dimension of the null space of A is 0.
(i) Ax = b is consistent for each b ∈ Fn .
(j) If Ax = b is consistent, then the solution is unique.
(k) Ax = b has a unique solution for each b ∈ Fn .
(l) The only solution to Ax = 0 is x = 0.

(m) 0 is not an eigenvalue of A (see Chapter 1).

The conditions (g) and (h) are equivalent for a linear transformation T : V → V on
a finite dimensional vector space V ; that is, T x = y has a solution x for every y ∈ V
if and only if the only x such that T x = 0 is x = 0 if and only if T x = y has a unique
solution x for every y ∈ V .

The nonsingular matrices in Mn(F) form a group, the general linear group, often
denoted by GL(n, F).

If A ∈ Mn(F) is nonsingular, then ((A−1)T AT )T = A(A−1) = I , so (A−1)T AT = I ,
which means that (A−1)T = (AT )−1. It is convenient to write either (A−1)T or (AT )−1

as A−T . If A ∈ Mn(C) is nonsingular, then (A−1)∗ = (A∗)−1, and we may safely write
either as A−∗.
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0.6 The Euclidean inner product and norm

0.6.1 Definitions. The scalar 〈x, y〉 = y∗x is the Euclidean inner product (standard
inner product, usual inner product, scalar product, dot product) of x, y ∈ Cn. The
Euclidean norm (usual norm, Euclidean length) function on Cn is the real-valued
function ‖x‖2 = 〈x, x〉1/2 = (x∗x)1/2; two important properties of this function are that
‖x‖2 > 0 for all nonzero x ∈ Cn and ‖αx‖2 = |α| ‖x‖2 for all x ∈ Cn and all α ∈ C.

The function 〈·, ·〉 : Cn×Cn → C is linear in the first argument and conjugate linear
in the second; that is, 〈αx1 + βx2, y〉 = α〈x1, y〉 + β〈x2, y〉 and 〈x, αy1 + β y2〉 =
ᾱ〈x, y1〉 + β̄〈x, y2〉 for all α, β ∈ C and y1, y2 ∈ Cn . If V is a real or complex vector
space and f : V× V → C is a function that is linear in its first argument and conjugate
linear in its second argument, we say that f is sesquilinear on V ; f is a semi-inner
product on V if it is sesquilinear on V and f (x, x) ≥ 0 for every x ∈ V ; f is an inner
product on V if it is sesquilinear on V and f (x, x) > 0 for every nonzero x ∈ V . An
inner product space is a pair (V, f ) in which V is a real or complex vector space and
f is an inner product on V .

0.6.2 Orthogonality and orthonormality. Two vectors x, y ∈ Cn are orthogonal if
〈x, y〉 = 0. In R2 and R3, “orthogonal” has the conventional geometric interpretation of
“perpendicular.” A list of vectors x1, . . . , xm ∈ Cn is said to be orthogonal if 〈xi , x j 〉 =
0 for all distinct i, j ∈ {1, . . . , m}. An orthogonal list of nonzero vectors is linearly
independent. A vector whose Euclidean norm is 1 is said to be normalized (a unit
vector). For any nonzero x ∈ Cn , x/ ‖x‖2 is a unit vector. An orthogonal list of vectors is
an orthonormal list if each of its elements is a unit vector. An orthonormal list of vectors
is linearly independent. Each of these concepts has a straightforward generalization to
the context of an inner product space.

0.6.3 The Cauchy–Schwarz inequality. The Cauchy–Schwarz inequality states
that

|〈x, y〉| ≤ ‖x‖2 ‖y‖2

for all x, y ∈ Cn , with equality if and only if one of the vectors is a scalar multiple of
the other. The angle θ between two nonzero real vectors x, y ∈ Rn is defined by

cos θ = 〈x, y〉
‖x‖2 ‖y‖2

, 0 ≤ θ ≤ π (0.6.3.1)

0.6.4 Gram–Schmidt orthonormalization. Any finite independent list of vectors
in an inner product space may be replaced by an orthonormal list with the same span.
This replacement may be carried out in many ways, but there is a systematic way
to do so that has a useful special property. The Gram–Schmidt process starts with a
list of vectors v1, . . . , vn and (if the given list is linearly independent) produces an
orthonormal list of vectors z1, . . . , zn such that span{z1, . . . , zk} = span{x1, . . . , xk}
for each k = 1, . . . , n. The vectors zi may be calculated in turn as follows: Let y1 = x1

and normalize it: z1 = y1/ ‖y1‖2. Let y2 = x2 − 〈x2, z1〉z1 (y2 is orthogonal to z1) and
normalize it: z2 = y2/ ‖y2‖2. Once z1, . . . , zk−1 have been determined, the vector

yk = xk − 〈xk, zk−1〉zk−1 − 〈xk, zk−2〉zk−2 − · · · − 〈xk, z1〉z1
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is orthogonal to z1, . . . , zk−1; normalize it: zk = yk/ ‖yk‖2. Continue until k = n. If
we denote Z = [z1 . . . zn] and X = [x1 . . . xn], the Gram–Schmidt process gives a
factorization X = Z R, in which the square matrix R = [ri j ] is nonsingular and upper
triangular; that is, ri j = 0 whenever i > j .

If the vectors x1, . . . , xk are orthonormal and the vectors x1, . . . , xk, xk+1, . . . , xn

are linearly independent, applying the Gram–Schmidt process to the latter list produces
the list x1, . . . , xk, zk+1, . . . , zn of orthonormal vectors.

The Gram–Schmidt process may be applied to any finite list of vectors, independent
or not. If x1, . . . , xn are linearly dependent, the Gram–Schmidt process produces a vec-
tor yk = 0 for the least value of k for which xk is a linear combination of x1, . . . , xk−1.

0.6.5 Orthonormal bases. An orthonormal basis of an inner product space is a
basis whose elements constitute an orthonormal list. Since any finite ordered basis may
be transformed with the Gram–Schmidt process to an orthonormal basis, any finite-
dimensional inner product space has an orthonormal basis, and any orthonormal list
may be extended to an orthonormal basis. Such a basis is pleasant to work with, since
the cross terms in inner product calculations all vanish.

0.6.6 Orthogonal complements. Given any subset S ⊂ Cn , the orthogonal comple-
ment of S is the set S⊥ = {x ∈ Cn : x∗y = 0 for all y ∈ S}. Even if S is not a subspace,
S⊥ is always a subspace. We have (S⊥)⊥ = span S, and (S⊥)⊥ = S if S is a subspace.
It is always the case that dim S⊥ + dim(S⊥)⊥ = n. If S1 and S2 are subspaces, then
(S1 + S2)⊥ = S⊥

1 ∩ S⊥
2 .

For a given A ∈ Mm,n , rangeA is the orthogonal complement of nullspace A∗. There-
fore, for a given b ∈ Cm , the linear system Ax = b has a solution (not necessarily
unique) if and only if b∗z = 0 for every z ∈ Cm such that A∗z = 0. This equivalence
is sometimes stated as the Fredholm alternative (theorem of the alternative) — ex-
actly one of the following two statements is true: Either (1) Ax = b has a solution or
(2) A∗y = 0 has a solution such that y∗b �= 0.

If A ∈ Mm,n and B ∈ Mm,q , if X ∈ Mm,r and Y ∈ Mm,s , and if range X =
nullspace A∗ and range Y = nullspace B∗, then we have the following companion to
(0.2.7.1) and (0.2.7.2):

range A ∩ range B = nullspace

[
X∗

Y ∗

]
(0.6.6.1)

0.7 Partitioned sets and matrices

A partition of a set S is a collection of subsets of S such that each element of S
is a member of one and only one of the subsets. For example, a partition of the
set {1, 2, . . . , n} is a collection of subsets α1, . . . , αt (called index sets) such that
each integer between 1 and n is in one and only one of the index sets. A sequential
partition of {1, 2, . . . , n} is a partition in which the index sets have the special form
α1 = {1, . . . , i1}, α2 = {i1 + 1, . . . , i2}, . . . , αt = {it−1 + 1, . . . , n}.
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A partition of a matrix is a decomposition of the matrix into submatrices such that
each entry of the original matrix is in one and only one of the submatrices. Partitioning
of matrices is often a convenient device for perception of useful structure. For example,
partitioning B = [b1 . . . bn] ∈ Mn(F) according to its columns reveals the presentation
AB = [Ab1 . . . Abn] of the matrix product, partitioned according to the columns of
AB.

0.7.1 Submatrices. Let A ∈ Mm,n(F). For index sets α ⊆ {1, . . . , m} and β ⊆
{1, . . . , n}, we denote by A[α, β] the (sub)matrix of entries that lie in the rows of
A indexed by α and the columns indexed by β. For example,⎡

⎣1 2 3
4 5 6
7 8 9

⎤
⎦ [{1, 3}, {1, 2, 3}] =

[
1 2 3
7 8 9

]

If α = β, the submatrix A[α] = A[α, α] is a principal submatrix of A. An n-by-n
matrix has

(n
k

)
distinct principal submatrices of size k.

For A ∈ Mn(F) and k ∈ {1. . . . , n}, A[{1, . . . , k}] is a leading principal submatrix
and A[{k, . . . , n}] is a trailing principal submatrix.

It is often convenient to indicate a submatrix or principal submatrix via deletion,
rather than inclusion, of rows or columns. This may be accomplished by complementing
the index sets. Let αc = {1, . . . , m}\α and βc = {1, . . . , n}\β denote the index sets
complementary to α and β, respectively. Then A[αc, βc] is the submatrix obtained
by deleting the rows indexed by α and the columns indexed by β. For example,
the submatrix A[α, ∅c] contains the rows of A indexed by α; A[∅c, β] contains the
columns of A indexed by β.

The determinant of an r -by-r submatrix of A is called a minor; if we wish to
indicate the size of the submatrix, we call its determinant a minor of size r . If the
r -by-r submatrix is a principal submatrix, then its determinant is a principal minor (of
size r ); if the submatrix is a leading principal matrix, then its determinant is a leading
principal minor; if the submatrix is a trailing principal submatrix, then its determinant
is a trailing principal minor. By convention, the empty principal minor is 1; that is,
det A[∅] = 1.

A signed minor, such as those appearing in the Laplace expansion (0.3.1.1)
[(−1)i+ j det Ai j ] is called a cofactor; if we wish to indicate the size of the subma-
trix, we call its signed determinant a cofactor of size r .

0.7.2 Partitions, block matrices, and multiplication. If α1, . . . , αt constitute a
partition of {1, . . . , m} and β1, . . . , βs constitute a partition of {1, . . . , n}, then the
matrices A

[
αi , β j

]
form a partition of the matrix A ∈ Mm,n(F), 1 ≤ i ≤ t, 1 ≤ j ≤ s.

If A ∈ Mm,n(F) and B ∈ Mn,p(F) are partitioned so that the two partitions of {1, . . . , n}
coincide, the two matrix partitions are said to be conformal. In this event,

(AB)
[
αi , γ j

] = s∑
k=1

A
[
αi , βk

]
B
[
βk, γ j

]
(0.7.2.1)

in which the respective collections of submatrices A[αi , βk] and B[βk, γ j ] are confor-
mal partitions of A and B, respectively. The left-hand side of (0.7.2.1) is a submatrix
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of the product AB (calculated in the usual way), and each summand on the right-
hand side is a standard matrix product. Thus, multiplication of conformally partitioned
matrices mimics usual matrix multiplication. The sum of two partitioned matrices
A, B ∈ Mm,n(F) of the same size has a similarly pleasant representation if the parti-
tions of their rows (respectively, of their columns) are the same:

(A + B)
[
αi , β j

] = A
[
αi , β j

]+ B
[
αi , β j

]
If a matrix is partitioned by sequential partitions of its rows and columns, the result-

ing partitioned matrix is called a block matrix. For example, if the rows and columns
of A ∈ Mn(F) are partitioned by the same sequential partition α1 = {1, . . . , k}, α2 =
{k + 1, . . . , n}, the resulting block matrix is

A =
[

A[α1, α1] A[α1, α2]
A[α2, α1] A[α2, α2]

]
=
[

A11 A12

A21 A22

]
in which the blocks are Ai j = A[αi , α j ]. Computations with block matrices are em-
ployed throughout the book; 2-by-2 block matrices are the most important and useful.

0.7.3 The inverse of a partitioned matrix. It can be useful to know the correspond-
ing blocks in the inverse of a partitioned nonsingular matrix A, that is, to present the
inverse of a partitioned matrix in conformally partitioned form. This may be done in a
variety of apparently different, but equivalent, ways — assuming that certain subma-
trices of A ∈ Mn(F) and A−1 are also nonsingular. For simplicity, let A be partitioned
as a 2-by-2 block matrix

A =
[

A11 A12

A21 A22

]
with Aii ∈ Mni (F), i = 1, 2, and n1 + n2 = n. A useful expression for the correspond-
ingly partitioned presentation of A−1 is[(

A11 − A12 A−1
22 A21

)−1
A−1

11 A12
(

A21 A−1
11 A12 − A22

)−1

A−1
22 A21

(
A12 A−1

22 A21 − A11
)−1 (

A22 − A21 A−1
11 A12

)−1

]
(0.7.3.1)

assuming that all the relevant inverses exist. This expression for A−1 may be verified
by doing a partitioned multiplication by A and then simplifying. In general index set
notation, we may write

A−1 [α] =
(

A [α] − A
[
α, αc

]
A
[
αc
]−1

A
[
αc, α

])−1

and

A−1
[
α, αc

] = A [α]−1 A
[
α, αc

] (
A
[
αc, α

]
A [α]−1 A

[
α, αc

]− A
[
αc
])−1

=
(

A
[
α, αc

]
A
[
αc
]−1

A
[
αc, α

]− A [α]
)−1

A
[
α, αc

]
A
[
αc
]−1

again assuming that the relevant inverses exist. There is an intimate relationship between
these representations and the Schur complement; see (0.8.5). Notice that A−1[α] is a
submatrix of A−1, while A[α]−1 is the inverse of a submatrix of A; these two objects
are not, in general, the same.
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0.7.4 The Sherman–Morrison–Woodbury formula. Suppose that a nonsingular
matrix A ∈ Mn(F) has a known inverse A−1 and consider B = A + X RY , in which
X is n-by-r, Y is r-by-n, and R is r-by-r and nonsingular. If B and R−1 + Y A−1 X are
nonsingular, then

B−1 = A−1 − A−1 X (R−1 + Y A−1 X )−1Y A−1 (0.7.4.1)

If r is much smaller than n, then R and R−1 + Y A−1 X may be much easier to invert
than B. For example, if x, y ∈ Fn are nonzero vectors, X = x , Y = yT , yT A−1x �= −1,
and R = [1], then (0.7.4.1) becomes a formula for the inverse of a rank-1 adjustment
to A: (

A + xyT
)−1 = A−1 − (

1 + yT A−1x
)−1

A−1xyT A−1 (0.7.4.2)

In particular, if B = I + xyT for x, y ∈ Fn and yT x �= −1, then B−1 = I − (1 +
yT x)−1xyT .

0.7.5 Complementary nullities. Suppose that A ∈ Mn(F) is nonsingular, let α and
β be nonempty subsets of {1, . . . , n}, and write |α| = r and |β| = s for the cardinalities
of α and β. The law of complementary nullities is

nullity (A [α, β]) = nullity
(

A−1
[
βc, αc

])
(0.7.5.1)

which is equivalent to the rank identity

rank (A [α, β]) = rank
(

A−1
[
βc, αc

])+ r + s − n (0.7.5.2)

Since we can permute rows and columns to place first the r rows indexed by α and
the s columns indexed by β, it suffices to consider the presentations

A =
[

A11 A12

A21 A22

]
and A−1 =

[
B11 B12

B21 B22

]
in which A11 and BT

11 are r -by-s and A22 and BT
22 are (n − r )-by-(n − s). Then (0.7.5.1)

says that nullity A11 = nullity B22.
The underlying principle here is very simple. Suppose that the nullity of A11 is k. If

k ≥ 1, let the columns of X ∈ Ms,k(F) be a basis for the null space of A11. Since A is
nonsingular,

A

[
X
0

]
=
[

A11 X
A21 X

]
=
[

0
A21 X

]
has full rank, so A21 X has k independent columns. But[

B12 (A21 X )
B22 (A21 X )

]
= A−1

[
0

A21 X

]
= A−1 A

[
X
0

]
=
[

X
0

]
so B22(A21 X ) = 0 and hence nullity B22 ≥ k = nullity A11, a statement that is trivi-
ally correct if k = 0. A similar argument starting with B22 shows that nullity A11 ≥
nullity B22. For a different approach, see (3.5.P13).

Of course, (0.7.5.1) also tells us that nullity A12 = nullity B12, nullity A21 =
nullity B21, and nullity A22 = nullity B11. If r + s = n, then rank A11 = rank B22 and
rank A22 = rank B11, while if n = 2r = 2s, then we also have rank A12 = rank B12 and
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rank A21 = rank B21. Finally, (0.7.5.2) tells us that the rank of an r -by-s submatrix of
an n-by-n nonsingular matrix is at least r + s − n.

0.7.6 Rank in a partitioned matrix and rank-principal matrices. Partition A ∈
Mn(F) as

A =
[

A11 A12

A21 A22

]
, A11 ∈ Mr (F), A22 ∈ Mn−r (F)

If A11 is nonsingular, then of course rank [ A11 A12 ] = r and rank
[

A11
A21

]
= r . Remark-

ably, the converse is true:

if rank A = rank[A11 A12] = rank

[
A11

A21

]
, then A11 is nonsingular (0.7.6.1)

This follows from (0.4.6(c)): If A11 is singular, then rank A11 = k < r , and there are
nonsingular S, T ∈ Mr (F) such that

S A11T =
[

Ik 0
0 0r−k

]
Therefore,

Â =
[

S 0
0 In−r

]
A

[
T 0
0 In−r

]
=
⎡
⎣
[

Ik 0
0 0r−k

]
S A12

A21T A22

⎤
⎦

has rank r , as do its first block row and column. Because the r th row of the first
block column of Â is zero, there must be some column in S A12 whose r th entry is
not zero, which means that Â has at least r + 1 independent columns. This contradicts
rank Â = rank A = r , so A11 must be nonsingular.

Let A ∈ Mm,n(F) and suppose that rank A = r > 0. Let A = XY T be a full-
rank factorization with X, Y ∈ Mm,r (F); see (0.4.6c). Let α, β ⊆ {1, . . . , m} and
γ , δ ⊆ {1, . . . , n} be index sets of cardinality r . Then A[α, γ ] = X [α, ∅c]Y [γ , ∅c]T ∈
Mr (F), which is nonsingular whenever rank X [α, ∅c] = rank Y [γ , ∅c] = r . The mul-
tiplicativity property (0.3.5) ensures that

det A[α, γ ] det A[β, δ] = det A[α, δ] det A[β, γ ] (0.7.6.2)

Suppose that A ∈ Mn(F) and rank A = r . We say that A is rank principal if it has a
nonsingular r -by-r principal submatrix. It follows from (0.7.6.1) that if there is some
index set α ⊂ {1, . . . , n} such that

rank A = rank A
[
α, ∅c

] = rank A
[
∅c, α

]
(0.7.6.3)

(that is, if there are r linearly independent rows of A such that the corresponding
r columns are linearly independent), then A is rank principal; moreover, A[α] is
nonsingular.

If A ∈ Mn(F) is symmetric or skew symmetric, or if A ∈ Mn(C) is Hermitian or
skew Hermitian, then rank A [α, ∅c] = rank A [∅c, α] for every index set α, so A
satisfies (0.7.6.3) and is therefore rank principal.
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0.7.7 Commutativity, anticommutativity, and block diagonal matrices. Two
matrices A, B ∈ Mn(F) are said to commute if AB = B A. Commutativity is not typical,
but one important instance is encountered frequently. Suppose that � = [�i j ]s

i, j=1 ∈
Mn(F) is a block matrix in which �i j = 0 if i �= j ; �i i = λi Ini for some λi ∈ F for
each i = 1, . . . , s; and λi �= λ j if i �= j . Partition B = [Bi j ]s

i, j=1 ∈ Mn(F) conformally
with �. Then �B = B� if and only if λi Bi j = Bi jλ j for each i, j = 1, . . . , s, that is,
(λi − λ j )Bi j = 0 for each i, j = 1, . . . , s. These identities are satisfied if and only if
Bi j = 0 whenever i �= j . Thus, � commutes with B if and only if B is block diagonal
conformal with �; see (0.9.2).

Two matrices A, B ∈ Mn(F) are said to anticommute if AB = −B A. For example,

the matrices
[

1 0
0 −1

]
and

[
0 1
1 0

]
anticommute.

0.7.8 The vec mapping. Partition a matrix A ∈ Mm,n(F) according to its columns:
A = [a1 . . . an]. The mapping vec : Mm,n(F) → Fmn is

vec A = [aT
1 . . . aT

n ]T

that is, vec A is the vector obtained by stacking the columns of A, left to right. The vec
operator can be a convenient tool in problems involving matrix equations.

0.8 Determinants again

Some additional facts about and identities for the determinant are useful for reference.

0.8.1 Compound matrices. Let A ∈ Mm,n(F). Let α ⊆ {1, . . . , m} and β ⊆
{1, . . . , n} be index sets of cardinality r ≤ min{m, n} elements. The

(m
r

)
-by-

( n
r

)
matrix

whose α, β, entry is det A[α, β] is called the rth compound matrix of A and is denoted
by Cr (A). In forming the rows and column of Cr (A), we arrange index sets lexico-
graphically, that is, {1, 2, 4} before {1, 2, 5} before {1, 3, 4}, and so on. For example,
if

A =
⎡
⎣1 2 3

4 5 6
7 8 10

⎤
⎦ (0.8.1.0)

then C2(A) =⎡
⎢⎢⎢⎢⎣

det
[

1 2
4 5

]
det

[
1 3
4 6

]
det

[
2 3
5 6

]
det

[
1 2
7 8

]
det

[
1 3
7 10

]
det

[
2 3
8 10

]
det

[
4 5
7 8

]
det

[
4 6
7 10

]
det

[
5 6
8 10

]

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣−3 −6 −3
−6 −11 −4
−3 −2 2

⎤
⎦

If A ∈ Mm,k(F), B ∈ Mk,n(F), and r ≤ min{m, k, n}, it follows from the Cauchy–Binet
formula (0.8.7) that

Cr (AB) = Cr (A)Cr (B) (0.8.1.1)

which is the multiplicativity property of the rth compound matrix.
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We define C0(A) = 1. We have C1(A) = A; if A ∈ Mn(F), then Cn(A) = det A.

If A ∈ Mm,k(F) and t ∈ F, then Cr (t A) = tr Cr (A)
If 1 ≤ r ≤ n, then Cr (In) = I( n

r ) ∈ M( n
r )

If A ∈ Mn is nonsingular and 1 ≤ r ≤ n, then Cr (A)−1 = Cr (A−1)

If A ∈ Mn and 1 ≤ r ≤ n, then det Cr (A) = (det A)
(

n−1
r−1

)
If A ∈ Mm,n(F) and r = rank A, then rank Cr (A) = 1
If A ∈ Mm,n(F) and 1 ≤ r ≤ min{m, n}, then Cr (AT ) = Cr (A)T

If A ∈ Mm,n(C) and 1 ≤ r ≤ min{m, n}, then Cr (A∗) = Cr (A)∗

If  = [di j ] ∈ Mn(F) is upper (respectively, lower) triangular (see (0.9.3)), then
Cr () is upper (respectively, lower) triangular; its main diagonal entries are the

(n
r

)
possible products of r entries chosen from the list d11, . . . , dnn , that is, they are the(n

r

)
scalars di1i1 · · · dir ir such that 1 ≤ i1 < · · · < ir ≤ n, arranged lexicographically.

Consequently, if D = diag(d1, . . . , dn) ∈ Mn(F) is diagonal, then so is Cr (D); its
main diagonal entries are the

(n
r

)
possible products of r entries chosen from the list

d1, . . . , dn , that is, they are the
(n

r

)
scalars di1 · · · dir such that 1 ≤ i1 < · · · < ir ≤ n,

arranged lexicographically. See chapter 6 of (Fiedler, 1986) for a detailed discussion
of compound matrices.

0.8.2 The adjugate and the inverse. If A ∈ Mn(F) and n ≥ 2, the transposed matrix
of cofactors of A

adj A = [
(−1)i+ j det A

[{ j}c , {i}c
]]

(0.8.2.0)

is the adjugate of A; it is also called the classical adjoint of A. For example,

adj
[

a b
c d

]
=
[

d −b
−c a

]
.

A calculation using the Laplace expansion for the determinant reveals the basic
property of the adjugate:

(adj A) A = A (adj A) = (det A) I (0.8.2.1)

Thus, adj A is nonsingular if A is nonsingular, and det (adj A) = (det A)n−1.
If A is nonsingular, then

adj A = (det A) A−1, that is, A−1 = (det A)−1 adj A (0.8.2.2)

For example,
[

a b
c d

]−1
= (ad − bc)−1

[
d −b
−c a

]
if ad �= bc. In particular, adj(A−1) =

A/ det A = (adj A)−1.
If A is singular and rank A ≤ n − 2, then every minor of A of size n − 1 is zero, so

adj A = 0.
If A is singular and rank A = n − 1, then some minor of A of size n − 1 is nonzero,

so adj A �= 0 and rank adj A ≥ 1. Moreover, some list of n − 1 columns of A is lin-
early independent, so the identity (adj A) A = (det A) I = 0 ensures that the null space
of adj A has dimension at least n − 1 and hence rank adj A ≤ 1. We conclude that
rank adj A = 1. The full-rank factorization (0.4.6(e)) ensures that adj A = αxyT for
some nonzero α ∈ F and nonzero x, y ∈ Fn that are determined as follows: Compute

(Ax)yT = A(adj A) = 0 = (adj A)A = x(yT A)
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and conclude that Ax = 0 and yT A = 0, that is, x (respectively, y) is determined up
to a nonzero scalar factor as a nonzero element of the one-dimensional null space of A
(respectively, AT ).

The function A → adj A is continuous on Mn (each entry of adj A is a multinomial
in the entries of A) and every matrix in Mn is a limit of nonsingular matrices, so proper-
ties of the adjugate can be deduced from continuity and properties of the inverse func-
tion. For example, if A, B ∈ Mn are nonsingular, then adj(AB) = (det AB)(AB)−1 =
(det A)(det B)B−1 A−1 = (det B)B−1(det A)A−1 = (adj B)(adj A). Continuity then en-
sures that

adj (AB) = (adj B) (adj A) for all A, B ∈ Mn (0.8.2.3)

For any c ∈ F and any A ∈ Mn(F), adj(cA) = cn−1 adj A. In particular, adj(cI ) =
cn−1 I and adj 0 = 0.

If A is nonsingular, then

adj(adj A) = adj((det A)A−1) = (det A)n−1 adj A−1

= (det A)n−1 (A/ det A) = (det A)n−2 A

so continuity ensures that

adj(adj A) = (det A)n−2 A for all A ∈ Mn (0.8.2.4)

If A + B is nonsingular, then A(A + B)−1 B = B(A + B)−1 A, so continuity ensures
that

A adj (A + B) B = B adj (A + B) A for all A, B ∈ Mn (0.8.2.5)

Let A, B ∈ Mn and suppose that A commutes with B. If A is nonsingular,
then B A−1 = A−1 AB A−1 = A−1 B AA−1 = A−1 B, so A−1 commutes with B. But
B A−1 = (det A)−1 B adj A and A−1 B = (det A)−1(adj A)B, so adj A commutes with
B. Continuity ensures that adj A commutes with B whenever A commutes with B,
even if A is singular.

If A = [ai j ] is upper triangular, then adj A = [bi j ] is upper triangular and each
bii =

∏
j �=i a j j ; if A is diagonal, then so is adj A.

The adjugate is the transpose of the gradient of det A:

(adj A) =
[

∂

∂ai j
det A

]T

(0.8.2.6)

If A is nonsingular, it follows from (0.8.2.6) that[
∂

∂ai j
det A

]T

= (det A) A−1 (0.8.2.7)

If A ∈ Mn is nonsingular, then adj AT = (det AT )A−T = (det A)A−T =
((det A)A−1)T = (adj A)T . Continuity ensures that

adj AT = (adj A)T for all A ∈ Mn(F) (0.8.2.8)

A similar argument shows that

adj A∗ = (adj A)∗ for all A ∈ Mn (0.8.2.9)
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Let A = [a1 . . . an] ∈ Mn(F) be partitioned according to its columns and let b ∈ Fn .
Define (

A ←i b
) = [a1 . . . ai−1 b ai+1 . . . an]

that is, (A ←i b) denotes the matrix whose ith column is b and whose remaining
columns coincide with those of A. Examination of the Laplace expansion (0.3.1.1) of
det

(
A ←i b

)
by minors along column i reveals that it is the i th entry of the vector

(adj A) b, that is, [
det

(
A ←i b

)]n

i=1 = (adj A) b (0.8.2.10)

Applying this vector identity to each column of C = [c1 . . . cn] ∈ Mn(F) gives the
matrix identity [

det
(

A ←i c j
)]n

i, j=1 = (adj A) C (0.8.2.11)

0.8.3 Cramer’s rule. Cramer’s rule is a useful way to present analytically a particular
entry of the solution to Ax = b when A ∈ Mn(F) is nonsingular. The identity

A
[
det

(
A ←i b

)]n

i=1 = A (adj A) b = (det A) b

follows from (0.8.2.9). If det A �= 0, we obtain Cramer’s rule

xi = det(A ←i b)

det A

for the i th entry xi of the solution vector x . Cramer’s rule also follows directly from
multiplicativity of the determinant. The system Ax = b may be rewritten as

A(I ←i x) = A ←i b

and taking determinants of both sides (using multiplicativity) gives

(det A) det(I ←i x) = det(A ←i b)

But det(I ←i x) = xi , and the formula follows.

0.8.4 Minors of the inverse. Jacobi’s identity generalizes the adjugate formula for
the inverse of a nonsingular matrix and relates the minors of A−1 to those of A ∈ Mn(F):

det A−1
[
αc, βc

] = (−1)p(α,β) det A [β, α]

det A
(0.8.4.1)

in which p(α, β) =∑
i∈α

i +∑
j∈β

j . Our universal convention is that det A[∅] = 1.
For principal submatrices, Jacobi’s identity assumes the simple form

det A−1[αc] = det A [α]

det A
(0.8.4.2)

0.8.5 Schur complements and determinantal formulae. Let A = [ai j ] ∈ Mn(F)
be given and suppose that α ⊆ {1, . . . , n} is an index set such that A[α] is nonsingular.
An important formula for det A, based on the 2-partition of A using α and αc, is

det A = det A [α] det
(

A
[
αc
]− A

[
αc, α

]
A [α]−1 A

[
α, αc

])
(0.8.5.1)
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which generalizes the familiar formula for the determinant of a 2-by-2 matrix. The
special matrix

A/A [α] = A
[
αc
]− A

[
αc, α

]
A [α]−1 A

[
α, αc

]
(0.8.5.2)

which also appears in the partitioned form for the inverse in (0.7.3.1), is called the Schur
complement of A [α] in A. When convenient, we take α = {1, . . . , k} and write A as a
2-by-2 block matrix A = [Ai j ] with A11 = A[α], A22 = A[αc], A12 = A[α, αc], and
A21 = A[αc, α]. The formula (0.8.5.1) may be verified by computing the determinant
of both sides of the identity[

I 0
−A21 A−1

11 I

] [
A11 A12

A21 A22

] [
I −A−1

11 A12

0 I

]
(0.8.5.3)

=
[

A11 0
0 A22 − A21 A−1

11 A12

]
which contains a wealth of information about the Schur complement S = [si j ] =
A/A11 = A22 − A21 A−1

11 A12:

(a) The Schur complement S arises (uniquely) in the lower right corner if linear
combinations of the first k rows (respectively, columns) of A are added to the last
n − k rows (respectively, columns) in such a way as to produce a zero block in the
lower left (respectively, upper right) corner; this is block Gaussian elimination,
and it is (uniquely) possible because A11 is nonsingular. Any submatrix of A
that includes A11 as a principal submatrix has the same determinant before and
after the block eliminations that produce the block diagonal form in (0.8.5.3).
Thus, for any index set β = {i1, . . . , im} ⊆ {1, . . . , n − k}, if we construct the
shifted index set β̃ = {i1 + k, . . . , im + k}, then det A[α ∪ β̃, α ∪ γ̃ ] (before)
= det(A11 ⊕ S[β, γ ]) (after), so

det S [β, γ ] = det A
[
α ∪ β̃, α ∪ γ̃

]
/ det A [α] (0.8.5.4)

For example, if β = {i} and γ = { j}, then with α = {1, . . . , k}, we have

det S [β, γ ] = si j (0.8.5.5)

= det A [{1, . . . k, k + i} , {1, . . . , k, k + j}] / det A11

so all the entries of S are ratios of minors of A.
(b) rank A = rank A11 + rank S ≥ rank A11, and rank A = rank A11 if and only if

A22 = A21 A−1
11 A12.

(c) A is nonsingular if and only if S is nonsingular, since det A = det A11 det S. If A
is nonsingular, then det S = det A/ det A11.

Suppose that A is nonsingular. Then inverting both sides of (0.8.5.3) gives a presen-
tation of the inverse different from that in (0.7.3.1):

A−1 =
[

A11 + A−1
11 A12S−1 A21 A−1

11 −A−1
11 A12S−1

−S−1 A21 A−1
11 S−1

]
(0.8.5.6)

Among other things, this tells us that A−1[{k + 1, . . . , n}] = S−1, so

det A−1 [{k + 1, . . . , n}] = det A11/ det A (0.8.5.7)
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This is a form of Jacobi’s identity (0.8.4.1). Another form results from using the
adjugate to write the inverse, which gives

det ((adj A) [{k + 1, . . . , n}]) = (det A)n−k−1 det A11 (0.8.5.8)

When αc consists of a single element, the Schur complement of A[α] in A is a scalar
and (0.8.5.1) reduces to the identity

det A = A
[
αc
]

det A [α] − A
[
αc, α

]
(adj A [α]) A

[
α, αc

]
(0.8.5.9)

which is valid even if A[α] is singular. For example, if α = {1, . . . , n − 1}, then
αc = {n} and A is presented as a bordered matrix

A =
[

Ã x
yT a

]
with a ∈ F, x, y ∈ Fn−1, and Ã ∈ Mn−1(F); (0.8.5.9) is the Cauchy expansion of the
determinant of a bordered matrix

det

[
Ã x
yT a

]
= a det Ã − yT

(
adj Ã

)
x (0.8.5.10)

The Cauchy expansion (0.8.5.10) involves signed minors of A of size n − 2 (the entries
of adj Ã) and a bilinear form in the entries of a row and column; the Laplace expansion
(0.3.1.1) involves signed minors of A of size n − 1 and a linear form in the entries of
a row or column. If a �= 0, we can use the Schur complement of [a] in A to express

det

[
Ã x
yT a

]
= a det( Ã − a−1xyT )

Equating the right-hand side of this identity to that of (0.8.5.10) and setting a = −1
gives Cauchy’s formula for the determinant of a rank-one perturbation

det
(

Ã + xyT
) = det Ã + yT

(
adj Ã

)
x (0.8.5.11)

The uniqueness property of the Schur complement discussed in (a) can be used to
derive an identity involving a Schur complement within a Schur complement. Suppose
that the nonsingular k-by-k block A11 is partitioned as a 2-by-2 block matrix A11 =
[Ai j ] in which the upper left �-by-� block A11 is nonsingular. Write A21 = [A1 A2],
in which A1 is (n − k)-by-�, and write AT

12 = [BT
1 BT

2 ], in which B1 is �-by-(n − k);
this gives the refined partition

A =
⎡
⎣A11 A12 B1

A21 A22 B2

A1 A2 A22

⎤
⎦

Now add linear combinations of the first � rows of A to the next k − � rows to reduce
A21 to a zero block. The result is

A′ =
⎡
⎣A11 A12 B1

0 A11/A11 B′
2

A1 A2 A22

⎤
⎦

in which we have identified the resulting 2,2 block of A′ as the (necessarily nonsingular)
Schur complement of A11 in A11. Now add linear combinations of the first k rows of
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A′ to the last n − k rows to reduce [ A1 A2] to a zero block. The result is

A′′ =
⎡
⎣A11 A12 B1

0 A11/A11 B′
2

0 0 A/A11

⎤
⎦

in which we have identified the resulting 3,3 block of A′′ as the Schur complement of
A11 in A. The lower right 2-by-2 block of A′′ must be A/A11, the Schur complement
of A11 in A. Moreover, the lower right block of A/A11 must be the Schur complement
of A11/A11 in A/A11. This observation is the quotient property of Schur complements:

A/A11 = (A/A11) / (A11/A11) (0.8.5.12)

If the four blocks Ai j in (0.8.5.3) are square and the same size, and if A11 commutes
with A21, then

det A = det A11 det S = det(A11S)

= det(A11 A22 − A11 A21 A−1
11 A12) = det(A11 A22 − A21 A12)

If A11 commutes with A12, the same conclusion follows from computing det A =
(det S)(det A) = det(S A11). By continuity, the identity

det A = det(A11 A22 − A21 A12) (0.8.5.13)

is valid whenever A11 commutes with either A21 or A12, even if it is singular. If A22

commutes with either A12 or A21, a similar argument using the Schur complement of
A22 shows that

det A = det(A11 A22 − A12 A21) (0.8.5.14)

if A22 commutes with either A21 or A12.

0.8.6 Determinantal identities of Sylvester and Kronecker. We consider two
consequences of (0.8.5.4). If we set

B = [
bi j
] = [det A [{1, . . . k, k + i} , {1, . . . , k, k + j}]]n−k

i, j=1

then each entry of B is the determinant of a bordered matrix of the form (0.8.5.10): Ã
is A11, x is the j th column of A12, yT is the i th row of A21, and a is the i, j entry of
A22. The identity (0.8.5.5) tells us that B = (det A11)S, so

det B = (det A11)n−k det S

= (det A11)n−k (det A/ det A11) = (det A11)n−k−1 det A

This observation about B is Sylvester’s identity for bordered determinants:

det B = (det A [α])n−k−1 det A (0.8.6.1)

in which B = [det A[α ∪ {i} , α ∪ { j}]] and i, j are indices not contained in α.
If A22 = 0, then each entry of B is the determinant of a bordered matrix of the form

(0.8.5.10) with a = 0. In this case, the Schur complement A/A11 = −A21 A−1
11 A12 has

rank at most k, so the determinant of every (k + 1)-by-(k + 1) submatrix of B is zero;
this observation about B is Kronecker’s theorem for bordered determinants.
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0.8.7 The Cauchy–Binet formula. This useful formula can be remembered because
of its similarity in appearance to the formula for matrix multiplication. This is no
accident, since it is equivalent to multiplicativity of the compound matrix (0.8.1.1).
Let A ∈ Mm,k(F), B ∈ Mk,n(F), and C = AB. Furthermore, let 1 ≤ r ≤ min{m, k, n},
and let α ⊆ {1, . . . , m} and β ⊆ {1, . . . , n} be index sets, each of cardinality r. An
expression for the α, β minor of C is

det C [α, β] =
∑

γ

det A [α, γ ] det B [γ , β]

in which the sum is taken over all index sets γ ⊆ {1, . . . , k} of cardinality r.

0.8.8 Relations among minors. Let A ∈ Mm,n(F) be given and let a fixed index set
α ⊆ {1, . . . , m} of cardinality k be given. The minors det A [α, ω], as ω ⊆ {1, . . . , n}
runs over ordered index sets of cardinality k, are not algebraically independent since
there are more minors than there are distinct entries among the submatrices. Quadratic
relations are known among these minors. Let i1, i2, . . . , ik ∈ {1, . . . , n} be k distinct
indices, not necessarily in natural order, and let A[α; i1, . . . , ik] denote the matrix
whose rows are indicated by α and whose jth column is column ij of A[α, {1, . . . , n}].
The difference between this and our previous notation is that columns might not occur
in natural order as in A({1, 3}; 4, 2), whose first column has the 1, 4 and 3, 4 entries of
A. We then have the relations

det A [α; i1, . . . , ik] det A [α; j1, . . . , jk]

=
k∑

t=1

det A [α; i1, . . . , is−1, jt , is+1, . . . , ik] det A [α; j1, . . . , jt−1, is, jt+1, . . . , jk]

for each s = 1, . . . , k and all sequences of distinct indices i1, . . . , ik ∈ {1, . . . , n} and
j1, . . . , jk ∈ {1, . . . , n}.

0.8.9 The Laplace expansion theorem. The Laplace expansion (0.3.1.1) by minors
along a given row or column is included in a natural family of expressions for the
determinant. Let A ∈ Mn(F), let k ∈ {1, . . . , n} be given, and let β ⊆ {1, . . . , n} be
any given index set of cardinality k. Then

det A =
∑

α

(−1)p(α,β) det A [α, β] det A
[
αc, βc

]
=
∑

α

(−1)p(α,β) det A [β, α] det A
[
βc, αc

]
in which the sums are over all index sets α ⊆ {1, . . . , n} of cardinality k, and p(α, β) =∑

i∈α i +∑
j∈β j . Choosing k = 1 and β = {i} or { j} gives the expansions in (0.3.1.1).

0.8.10 Derivative of the determinant. Let A(t) = [a1(t) . . . an(t)] = [ai j (t)] be
an n-by-n complex matrix whose entries are differentiable functions of t and define
A′(t) = [a′

i j (t)]. It follows from multilinearity of the determinant (0.3.6(a)) and the
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definition of the derivative that

d

dt
det A(t) =

n∑
j=1

det
(

A(t) ←j a′
j (t)
) = n∑

j=1

n∑
i=1

((adj A(t))T )i j a
′
i j (t)

= tr((adj A(t))A′(t)) (0.8.10.1)

For example, if A ∈ Mn and A(t) = t I − A, then A′(t) = I and

d

dt
det (t I − A) = tr((adj A(t))I ) = tr adj (t I − A) (0.8.10.2)

0.8.11 Dodgson’s identity. Let A ∈ Mn(F). Define a = det A[{n}c], b = A[{n}c,

{1}c], c = A[{1}c, {n}c], d = det A[{1}c], and e = det A[[{1, n}c]. If e �= 0, then
det A = (ad − bc)/e.

0.8.12 Adjugates and compounds. Let A, B ∈ Mn(F). Let α ⊆ {1, . . . , m} and
β ⊆ {1, . . . , n} be index sets of cardinality r ≤ n. The α, β entry of the rth adjugate
matrix adjr (A) ∈ M(n

r)(F) is

(−1)p(α,β) det A[βc, αc] (0.8.12.1)

in which p(α, β) =∑
i∈α i +∑

j∈β j . The rows and columns of adjr (A) are formed
by arranging the index sets lexicographically, just as for the r th compound matrix. For
example, using the matrix A in (0.8.1.0), we have

adj2(A) =
⎡
⎣ 10 −6 3
−8 5 −2
7 −4 1

⎤
⎦

The multiplicativity property of the r th adjunct matrix is

adjr (AB) = adjr (B) adjr (A) (0.8.12.2)

We define adjn(A) = 1. We have adj0(A) = det A and adj1(A) = A. The r th adjugate
and r th compound matrices are related by the identity

adjr (A)Cr (A) = Cr (A) adjr (A) = (det A)I(n
r)

of which the identities in (0.8.9) are special cases. In particular, Cr (A)−1 =
(det A)−1 adjr (A) if A is nonsingular.

The determinant of a sum of matrices can be expressed using the r th adjugate and
r th compound matrices:

det(s A + t B) =
n∑

k=0

sktn−k tr(adjk(A)Cr (B)) (0.8.12.3)

In particular, det(A + I ) =∑n
k=0 tr adjk(A) =∑n

k=0 tr Cr (B).
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0.9 Special types of matrices

Certain matrices of special form arise frequently and have important properties. Some
of these are cataloged here for reference and terminology.

0.9.1 Diagonal matrices. A matrix D = [di j ] ∈ Mn,m(F) is diagonal if di j = 0
whenever j �= i . If all the diagonal entries of a diagonal matrix are positive (non-
negative) real numbers, we refer to it as a positive (nonnegative) diagonal matrix. The
term positive diagonal matrix means that the matrix is diagonal and has positive diag-
onal entries; it does not refer to a general matrix with positive diagonal entries. The
identity matrix I ∈ Mn is a positive diagonal matrix. A square diagonal matrix D is a
scalar matrix if its diagonal entries are all equal, that is, D = α I for some α ∈ F. Left
or right multiplication of a matrix by a scalar matrix has the same effect as multiplying
it by the corresponding scalar.

If A = [ai j ] ∈ Mn,m(F) and q = min{m, n}, then diag A = [a11, . . . , aqq]T ∈ Fq de-
notes the vector of diagonal entries of A (0.2.1). Conversely, if x ∈ Fq and if m and
n are positive integers such that min{m, n} = q, then diag x ∈ Mn,m(F) denotes the
n-by-m diagonal matrix A such that diag A = x ; for diag x to be well-defined, both
m and n must be specified. For any a1, . . . , an ∈ F, diag(a1, . . . , an) always denotes
the matrix A = [ai j ] ∈ Mn(F) such that aii = ai for each i = 1, . . . , n and ai j = 0 if
i �= j .

Suppose that D = [di j ], E = [ei j ] ∈ Mn(F) are diagonal and let A = [ai j ] ∈ Mn(F)
be given. Then (a) det D =∏n

i=1 dii ; (b) D is nonsingular if and only if all dii �= 0; (c)
left multiplication of A by D multiplies the rows of A by the diagonal entries of D (the
i th row of D A is dii times the ith row of A); (d) right multiplication of A by D multiplies
the columns of A by the diagonal entries of D, that is, the j th column of AD is d j j

times the j th column of A; (e) D A = AD if and only if ai j = 0 whenever dii �= d j j ;
(f) if all the diagonal entries of D are distinct and D A = AD, then A is diagonal; (g)
for any positive integer k, Dk = diag(dk

11, . . . , dk
nn); and (h) any two diagonal matrices

D and E of the same size commute: DE = diag(d11e11, . . . , dnnenn) = E D.

0.9.2 Block diagonal matrices and direct sums. A matrix A ∈ Mn(F) of the form

A =

⎡
⎢⎣ A11 0

. . .
0 Akk

⎤
⎥⎦

in which Aii ∈ Mni (F), i = 1, . . . , k,
∑k

i=1 ni = n, and all blocks above and below the
block diagonal are zero blocks, is called block diagonal. It is convenient to write such
a matrix as

A = A11 ⊕ A22 ⊕ · · · ⊕ Akk =
k⊕

i=1

Aii

This is the direct sum of the matrices A11, . . . , Akk . Many properties of block di-
agonal matrices generalize those of diagonal matrices. For example, det(⊕k

i=1 Aii ) =∏k
i=1 det Aii , so that A = ⊕Aii is nonsingular if and only if each Aii is nonsingular,
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i = 1, . . . , k. Furthermore, two direct sums A = ⊕k
i=1 Aii and B = ⊕k

i=1 Bii , in which
each Aii is the same size as Bii , commute if and only if each pair Aii and Bii commutes,
i = 1, . . . , k. Also, rank(⊕k

i=1 Aii ) =
∑k

i=1 rank Aii .
If A ∈ Mn and B ∈ Mm are nonsingular, then (A ⊕ B)−1 = A−1 ⊕ B−1

and (det(A ⊕ B))(A ⊕ B)−1 = (det A)(det B)(A−1 ⊕ B−1) = ((det B)(det A)A−1 ⊕
(det A)(det B)B−1), so a continuity argument ensures that

adj(A ⊕ B) = (det B) adj A ⊕ (det A) adj B (0.9.2.1)

0.9.3 Triangular matrices. A matrix T = [ti j ] ∈ Mn,m(F) is upper triangular if
ti j = 0 whenever i > j . If ti j = 0 whenever i ≥ j , then T is said to be strictly upper
triangular. Analogously, T is lower triangular (or strictly lower triangular) if its
transpose is upper triangular (or strictly upper triangular). A triangular matrix is either
lower or upper triangular; a strictly triangular matrix is either strictly upper triangular
or strictly lower triangular. A unit triangular matrix is a triangular matrix (upper or
lower) that has ones on its main diagonal. Sometimes the terms right (in place of upper)
and left (in place of lower) are used to describe triangular matrices.

Let T ∈ Mn,m(F) be given. If T is upper triangular, then T = [R T2] if n ≤ m,

whereas T =
[

R
0

]
if n ≥ m; R ∈ Mmin{n,m}(F) is upper triangular and T2 is arbitrary

(empty if n = m). If T is lower triangular, then T = [L 0] if n ≤ m, whereas T =
[

L
T2

]
if n ≥ m; L ∈ Mmin{n,m}(F) is lower triangular and T2 is arbitrary (empty if n = m).

A square triangular matrix shares with a square diagonal matrix the property that its
determinant is the product of its diagonal entries. Square triangular matrices need not
commute with other square triangular matrices of the same size. However, if T ∈ Mn

is triangular, has distinct diagonal entries, and commutes with B ∈ Mn , then B must
be triangular of the same type as T (2.4.5.1).

For each i = 1, . . . , n, left multiplication of A ∈ Mn(F) by a lower triangular matrix
L (A → L A) replaces the i th row of A by a linear combination of the first through
i th rows of A. The result of performing a finite number of type 3 row operations on
A (0.3.3) is a matrix L A, in which L is a unit lower triangular matrix. Corresponding
statements may be made about column operations and right multiplication by an upper
triangular matrix.

The rank of a triangular matrix is at least, and can be greater than, the number of
nonzero entries on the main diagonal. If a square triangular matrix is nonsingular, its
inverse is a triangular matrix of the same type. A product of square triangular matrices
of the same size and type is a triangular matrix of the same type; each i, i diagonal
entry of such a matrix product is the product of the i, i entries of the factors.

0.9.4 Block triangular matrices. A matrix A ∈ Mn(F) of the form

A =

⎡
⎢⎣ A11 � �

. . . �
0 Akk

⎤
⎥⎦ (0.9.4.1)

in which Aii ∈ Mni (F), i = 1, . . . , k, �k
i=1ni = n, and all blocks below the block

diagonal are zero, is block upper triangular; it is strictly block upper triangular if, in
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addition, all the diagonal blocks are zero blocks. A matrix is block lower triangular
if its transpose is block upper triangular; it is strictly block lower triangular if its
transpose is strictly block upper triangular. We say that a matrix is block triangular if it
is either block lower triangular or block upper triangular; a matrix is both block lower
triangular and block upper triangular if and only if it is block diagonal.

A block upper triangular matrix in which all the diagonal blocks are 1-by-1 or 2-by-2
is said to be upper quasitriangular. A matrix is lower quasitriangular if its transpose is
upper quasitriangular; it is quasitriangular if it is either upper quasitriangular or lower
quasitriangular. A matrix that is both upper quasitriangular and lower quasitriangular
is said to be quasidiagonal.

Consider the square block triangular matrix A in (0.9.4.1). We have det A =
det A11 · · · det Akk and rank A ≥ rank A11 + · · · + rank Akk . If A is nonsingular (that
is, if Aii is nonsingular for all i = 1, . . . , k), then A−1 is a block triangular matrix
partitioned conformally to A whose diagonal blocks are A−1

11 , . . . , A−1
kk .

If A ∈ Mn(F) is upper triangular, then [A[αi , α j ]]t
i, j=1 is block upper triangular for

any sequential partition α1, . . . , αt of {1, . . . , n} (0.7.2).

0.9.5 Permutation matrices. A square matrix P is a permutation matrix if exactly
one entry in each row and column is equal to 1 and all other entries are 0. Multiplication
by such matrices effects a permutation of the rows or columns of the matrix multiplied.
For example, ⎡

⎣0 1 0
1 0 0
0 0 1

⎤
⎦
⎡
⎣1

2
3

⎤
⎦ =

⎡
⎣2

1
3

⎤
⎦

illustrates how a permutation matrix produces a permutation of the rows (entries) of
a vector: it sends the first entry to the second position, sends the second entry to the
first position, and leaves the third entry in the third position. Left multiplication of a
matrix A ∈ Mm,n by an m-by-m permutation matrix P permutes the rows of A, while
right multiplication of A by an n-by-n permutation matrix P permutes the columns of
A. The matrix that carries out a type 1 elementary operation (0.3.3) is an example of a
special type of permutation matrix called a transposition. Any permutation matrix is a
product of transpositions.

The determinant of a permutation matrix is ±1, so permutation matrices are nonsin-
gular. Although permutation matrices need not commute, the product of two permuta-
tion matrices is again a permutation matrix. Since the identity is a permutation matrix
and PT = P−1 for every permutation matrix P, the set of n-by-n permutation matrices
is a subgroup of GL(n, C) with cardinality n!.

Since right multiplication by PT = P−1 permutes columns in the same way that left
multiplication by P permutes rows, the transformation A → P APT permutes the rows
and columns (and hence also the main diagonal entries) of A ∈ Mn in the same way. In
the context of linear equations with coefficient matrix A, this transformation amounts to
renumbering the variables and the equations in the same way. A matrix A ∈ Mn such
that P APT is triangular for some permutation matrix P is called essentially triangular;
these matrices have much in common with triangular matrices.
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If � ∈ Mn is diagonal and P ∈ Mn is a permutation matrix, then P�PT is a diagonal
matrix.

The n-by-n reversal matrix is the permutation matrix

Kn =
⎡
⎣ 1

. .
.

1

⎤
⎦ = [

κ i j
] ∈ Mn (0.9.5.1)

in which κ i,n−i+1 = 1 for i = 1, . . . , n and all other entries are zero. The rows of
Kn A are the rows of A presented in reverse order; the columns of AKn are the
columns of A presented in reverse order. The reversal matrix is sometimes called the
sip matrix (standard involutory permutation), the backward identity, or the exchange
matrix.

For any n-by-n matrix A = [ai j ], the entries ai,n−i+1 for i = 1, . . . , n comprise its
counterdiagonal (sometimes called the secondary diagonal, backward diagonal, cross
diagonal, dexter-diagonal, or antidiagonal).

A generalized permutation matrix is a matrix of the form G = P D, in which
P, D ∈ Mn , P is a permutation matrix, and D is a nonsingular diagonal matrix. The
set of n-by-n generalized permutation matrices is a subgroup of GL(n, C).

0.9.6 Circulant matrices. A matrix A ∈ Mn(F) of the form

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2
...

...
. . .

. . .
...

a2 a3 · · · an a1

⎤
⎥⎥⎥⎥⎥⎦ (0.9.6.1)

is a circulant matrix. Each row is the previous row cycled forward one step; the entries
in each row are a cyclic permutation of those in the first. The n-by-n permutation matrix

Cn =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
... 0 1 ..

. . . .
. . . 0

0 1
1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦ =

[
0 In−1

1 01,n−1

]
(0.9.6.2)

is the basic circulant permutation matrix. A matrix A ∈ Mn(F) can be written in the
form

A =
n−1∑
k=0

ak+1Ck
n (0.9.6.3)

(a polynomial in the matrix Cn) if and only if it is a circulant. We have C0
n = I = Cn

n , and
the coefficients a1, . . . , an are the entries of the first row of A. This representation reveals
that the circulant matrices of size n are a commutative algebra: linear combinations
and products of circulants are circulants; the inverse of a nonsingular circulant is a
circulant; any two circulants of the same size commute.
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0.9.7 Toeplitz matrices. A matrix A = [
ai j
] ∈ Mn+1(F) of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · · · · an

a−1 a0 a1 a2 · · · an−1

a−2 a−1 a0 a1 · · · an−2
...

...
. . . . .

. . . . .
. . . . .

...
...

...
. . . . .

. . . . . a1

a−n a−n+1 · · · · · · a−1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a Toeplitz matrix. The entry ai j is equal to a j−i for some given sequence
a−n, a−n+1, . . . , a−1, a0, a1, a2, . . . , an−1, an ∈ C. The entries of A are constant down
the diagonals parallel to the main diagonal. The Toeplitz matrices

B =

⎡
⎢⎢⎢⎢⎣

0 1 0

0
. . .
. . . 1

0 0

⎤
⎥⎥⎥⎥⎦ and F =

⎡
⎢⎢⎢⎣

0 0
1 0

. . .
. . .

0 1 0

⎤
⎥⎥⎥⎦

are called the backward shift and forward shift because of their effect on the elements of
the standard basis {e1, . . . , en+1}. Moreover, F = BT and B = F T . A matrix A ∈ Mn+1

can be written in the form

A =
n∑

k=1

a−k Fk +
n∑

k=0

ak Bk (0.9.7.1)

if and only if it is a Toeplitz matrix. Toeplitz matrices arise naturally in problems
involving trigonometric moments.

Using a reversal matrix K of appropriate size (0.9.5.1), notice that the forward
and backward shift matrices are related: F = K BK = BT and B = K F K = F T . The
representation (0.9.7.1) ensures that K A = AT K for any Toeplitz matrix A, that is,
AT = K AK = K AK−1.

An upper triangular Toeplitz matrix A ∈ Mn+1(F) can be represented as a polynomial
in B:

A = a0 I + a1 B + · · · + an Bn

This representation (and the fact that Bn+1 = 0) makes it clear why the upper trian-
gular Toeplitz matrices of size n are a commutative algebra: Linear combinations and
products of upper triangular Toeplitz matrices are upper triangular Toeplitz matrices; A
is nonsingular if and only if a0 �= 0, in which case A−1 = b0 I + b1 B + · · · + bn Bn is
also an upper triangular Toeplitz matrix with b0 = a−1

0 and bk = a−1
0 (
∑k−1

m=0 ak−mbm)
for k = 1, . . . , n. Any two upper triangular Toeplitz matrices of the same size commute.
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0.9.8 Hankel matrices. A matrix A ∈ Mn+1(F) of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an

a1 a2 · · · · · · an+1

a2 · · ·
...

... an a2n−1

an an+1 · · · a2n−1 a2n

⎤
⎥⎥⎥⎥⎥⎥⎦

is a Hankel matrix . Each entry ai j is equal to ai+ j−2 for some given sequence a0, a1, a2,

. . . , a2n−1, a2n . The entries of A are constant along the diagonals perpendicular to the
main diagonal. Hankel matrices arise naturally in problems involving power moments.
Using a reversal matrix K of appropriate size (0.9.5.1), notice that K A and AK are
Hankel matrices for any Toeplitz matrix A; K H and H K are Toeplitz matrices for
any Hankel matrix H. Since K = K T = K−1 and Hankel matrices are symmetric, this
means that any Toeplitz matrix is a product of two symmetric matrices with special
structure: a reversal matrix and a Hankel matrix.

0.9.9 Hessenberg matrices. A matrix A = [ai j ] ∈ Mn(F) is said to be in upper
Hessenberg form or to be an upper Hessenberg matrix if ai j = 0 for all i > j + 1:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 �
a21 a22

a32
. . .
. . .

. . .
0 an,n−1 ann

⎤
⎥⎥⎥⎥⎥⎥⎦

An upper Hessenberg matrix A is said to be unreduced if all its subdiagonal entries are
nonzero, that is, if ai+1,i �= 0 for all i = 1, . . . , n − 1; the rank of such a matrix is at
least n − 1 since its first n − 1 columns are independent.

Let A ∈ Mn(F) be unreduced upper Hessenberg. Then A − λI is unreduced upper
Hessenberg for all λ ∈ F, so rank(A − λI ) ≥ n − 1 for all λ ∈ F.

A matrix A ∈ Mn(F) is lower Hessenberg if AT is upper Hessenberg.

0.9.10 Tridiagonal, bidiagonal, and other structured matrices. A matrix A =
[ai j ] ∈ Mn(F) that is both upper and lower Hessenberg is called tridiagonal, that is, A
is tridiagonal if ai j = 0 whenever |i − j | > 1:

A =

⎡
⎢⎢⎢⎢⎣

a1 b1 0

c1 a2
. . .

. . .
. . . bn−1

0 cn−1 an

⎤
⎥⎥⎥⎥⎦ (0.9.10.1)

The determinant of A can be calculated inductively starting with det A1 = a1, det A2 =
a1a2 − b1c1, and then computing a sequence of 2-by-2 matrix products[

det Ak+1 0
det Ak 0

]
=
[

ak+1 −bkck

1 0

] [
det Ak 0

det Ak−1 0

]
, k = 2, . . . , n − 1
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A Jacobi matrix is a real symmetric tridiagonal matrix with positive subdiagonal entries.
An upper bidiagonal matrix A ∈ Mn(F) is a tridiagonal matrix (0.9.10.1) in which

c1 = · · · = cn−1 = 0. A matrix A ∈ Mn(F) is lower bidiagonal if AT is upper bidiag-
onal.

A block tridiagonal or block bidiagonal matrix has a block structure like the pattern
in (0.9.10.1); the diagonal blocks are square and the sizes of the superdiagonal and
subdiagonal blocks are determined by the sizes of their nearest diagonal blocks.

A matrix A = [ai j ] ∈ Mn(F) is persymmetric if ai j = an+1− j,n+1−i for all i, j =
1, . . . , n; that is, a persymmetric matrix is symmetric with respect to the counterdiag-
onal. An alternative, and very useful, characterization is that A is persymmetric if
Kn A = AT Kn , in which Kn is the reversal matrix (0.9.5.1). If A is persymmetric and
invertible, then A−1 is also persymmetric since Kn A−1 = (AKn)−1 = (Kn AT )−1 =
A−T Kn . Toeplitz matrices are persymmetric. We say that A ∈ Mn(F) is skew persym-
metric if Kn A = −AT Kn; the inverse of a nonsingular skew-persymmetric matrix is
skew persymmetric.

A complex matrix A ∈ Mn such that Kn A = A∗Kn is perhermitian; A is skew per-
hermitian if Kn A = −A∗Kn . The inverse of a nonsingular perhermitian (respectively,
skew perhermitian) matrix is perhermitian (respectively, skew perhermitian).

A matrix A = [ai j ] ∈ Mn(F) is centrosymmetric if ai j = an+1−i,n+1− j for all
i, j = 1, . . . , n. Equivalently, A is centrosymmetric if Kn A = AKn; A is skew cen-
trosymmetric if Kn A = −AKn . A centrosymmetric matrix is symmetric about its
geometric center, as illustrated by the example

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
0 6 7 8 9

−1 −2 −3 −2 −1
9 8 7 6 0
5 4 3 2 1

⎤
⎥⎥⎥⎥⎦

If A is nonsingular and centrosymmetric (respectively, skew centrosymmetric), then
A−1 is also centrosymmetric (respectively, skew centrosymmetric) since K A−1 =
(AKn)−1 = (Kn A)−1 = A−1 Kn . If A and B are centrosymmetric, then AB is cen-
trosymmetric since Kn AB = AKn B = ABKn . If A and B are skew centrosymmetric,
then AB is centrosymmetric.

A centrosymmetric matrix A ∈ Mn(F) has a special block structure. If n = 2m, then

A =
[

B KmC Km

C Km BKm

]
, B, C ∈ Mm(F) (0.9.10.2)

If n = 2m + 1, then

A =
⎡
⎣ B Km y KmC Km

xT α xT Km

C y Km BKm

⎤
⎦ , B, C ∈ Mm(F), x, y ∈ Fm, α ∈ F (0.9.10.3)

A complex matrix A ∈ Mn such that Kn A = ĀKn is centrohermitian; it is skew
centrohermitian if Kn A = − ĀKn . The inverse of a nonsingular centrohermitian
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(respectively, skew centrohermitian) matrix is centrohermitian (respectively, skew cen-
trohermitian). A product of centrohermitian matrices is centrohermitian.

0.9.11 Vandermonde matrices and Lagrange interpolation. A Vandermonde
matrix A ∈ Mn(F) has the form

A =

⎡
⎢⎢⎢⎣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

⎤
⎥⎥⎥⎦ (0.9.11.1)

in which x1, . . . , xn ∈ F; that is, A = [ai j ] with ai j = x j−1
i . It is a fact that

det A =
n∏

i, j=1
i> j

(xi − x j ) (0.9.11.2)

so a Vandermonde matrix is nonsingular if and only if the parameters x1, . . . , xn are
distinct.

If x1, . . . , xn are distinct, the entries of the inverse A−1 = [αi j ] of the Vandermonde
matrix (0.9.11.1) are

αi j = (−1)i−1 Sn−i (x1, . . . , x̂ j , . . . , xn)∏
k �= j

(xk − x j )
, i, j = 1, . . . , n

in which S0 = 1, and if m > 0, then Sm(x1, . . . , x̂ j , . . . , xn) is the mth elementary
symmetric function of the n − 1 variables xk , k = 1, . . . , n, k �= j ; see (1.2.14).

The Vandermonde matrix arises in the interpolation problem of finding a poly-
nomial p(x) = an−1xn−1 + an−2xn−2 + · · · + a1x + a0 of degree at most n − 1 with
coefficients from F such that

p(x1) = a0 + a1x1 + a2x2
1 + · · · + an−1xn−1

1 = y1

p(x2) = a0 + a1x2 + a2x2
2 + · · · + an−1xn−1

2 = y2

...
...

...
...

... (0.9.11.3)

p(xn) = a0 + a1xn + a2x2
n + · · · + an−1xn−1

n = yn

in which x1, . . . , xn and y1, . . . , yn are given elements of F. The interpolation conditions
(0.9.11.3) are a system of n equations for the n unknown coefficients a0, . . . , an−1, and
they have the form Aa = y, in which a = [a0 . . . an−1]T ∈ Fn , y = [y1 . . . yn]T ∈ Fn ,
and A ∈ Mn(F) is the Vandermonde matrix (0.9.11.1). This interpolation problem
always has a solution if the points x1, x2, . . . , xn are distinct, since A is nonsingular in
this event.

If the points x1, . . . , xn are distinct, the coefficients of the interpolating polynomial
could in principle be obtained by solving the system (0.9.11.3), but it is usually more
useful to represent the interpolating polynomial p(x) as a linear combination of the
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Lagrange interpolating polynomials

Li (x) =

∏
j �=i

(x − x j )∏
j �=i

(xi − x j )
, i = 1, . . . , n

Each polynomial Li (x) has degree n − 1 and has the property that Li (xk) = 0 if k �= i ,
but Li (xi ) = 1. Lagrange’s interpolation formula

p(x) = y1L1(x) + · · · + yn Ln(x) (0.9.11.4)

provides a polynomial of degree at most n − 1 that satisfies the equations (0.9.11.3).

0.9.12 Cauchy matrices. A Cauchy matrix A ∈ Mn(F) is a matrix of the form A =
[(ai + b j )−1]n

i, j=1, in which a1, . . . , an, b1, . . . , bn are scalars such that ai + b j �= 0 for
all i, j = 1, . . . , n. It is a fact that

det A =

∏
1≤i< j≤n

(a j − ai )(b j − bi )∏
1≤i≤ j≤n

(ai + b j )
(0.9.12.1)

so A is nonsingular if and only if ai �= a j and bi �= b j for all i �= j . A Hilbert matrix
Hn = [(i + j − 1)−1]n

i, j=1 is a Cauchy matrix that is also a Hankel matrix. It is a fact
that

det Hn = (1!2! · · · (n − 1)!)4

1!2! · · · (2n − 1)!
(0.9.12.2)

so a Hilbert matrix is always nonsingular. The entries of its inverse H−1
n = [hi j ]n

i, j=1
are

hi j = (−1)i+ j (n + i − 1)!(n + j − 1)!

((i − 1)!( j − 1)!)2(n − i)!(n − j)!(i + j − 1)
(0.9.12.3)

0.9.13 Involution, nilpotent, projection, coninvolution. A matrix A ∈ Mn(F) is

� an involution if A2 = I , that is, if A = A−1 (the term involutory is also used)
� nilpotent if Ak = 0 for some positive integer k; the least such k is the index of

nilpotence of A
� a projection if A2 = A (the term idempotent is also used)

Now suppose that F = C. A matrix A ∈ Mn is

� a Hermitian projection if A∗ = A and A2 = A (the term orthogonal projection is
also used; see (4.1.P19))

� a coninvolution if AĀ = I , that is, if Ā = A−1 (the term coninvolutory is also
used)
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0.10 Change of basis

Let V be an n-dimensional vector space over the field F, and let the list B1 = v1, v2,

. . . , vn be a basis for V . Any vector x ∈ V can be represented as x = α1v1 + α2v2 +
· · · + αnvn because B1 spans V. If there were some other representation of x = β1v1 +
β2v2 + · · · + βnvn in the same basis, then

0 = x − x = (α1 − β1)v1 + (α2 − β2)v2 + · · · + (αn − βn)vn

from which it follows that all αi − β i = 0 because the list B1 is independent. Given
the basis B1, the linear mapping

x → [x]B1
=

⎡
⎢⎣α1

...
αn

⎤
⎥⎦ , in which x = α1v1 + α2v2 + · · · + αnvn

from V to Fn is well-defined, one-to-one, and onto. The scalars αi are the coordinates of
x with respect to the basis B1, and the column vector [x]B1 is the unique B1-coordinate
representation of x.

Let T : V → V be a given linear transformation. The action of T on any x ∈ V is
determined once one knows the n vectors Tv1, Tv2, . . . , Tvn , because any x ∈ V has
a unique representation x = α1v1 + · · · + αnvn and T x = T (α1v1 + · · · + αnvn) =
T (α1v1) + · · · + T (αnvn) = α1T v1 + · · · + αnT vn by linearity. Thus, the value of Tx
is determined once [x]B1 is known.

Let B2 = {w1, w2, . . . , wn} also be a basis for V (either different from or the same
as B1) and suppose that the B2-coordinate representation of T v j is

[
T v j

]
B2

=

⎡
⎢⎣ t1 j

...
tnj

⎤
⎥⎦ , j = 1, 2, . . . , n

Then, for any x ∈ V , we have

[T x]B2
=
⎡
⎣ n∑

j=1

α j T v j

⎤
⎦

B2

=
n∑

j=1

α j
[
T v j

]
B2

=
n∑

j=1

α j

⎡
⎢⎣ t1 j

...
tnj

⎤
⎥⎦ =

⎡
⎢⎣ t11 · · · t1n

...
. . .

...
tn1 · · · tnn

⎤
⎥⎦
⎡
⎢⎣α1

...
αn

⎤
⎥⎦

The n-by-n array [ti j ] depends on T and on the choice of the bases B1 and B2, but it
does not depend on x. We define the B1-B2 basis representation of T to be

B2 [T ]B1
=

⎡
⎢⎣ t11 · · · t1n

...
. . .

...
tn1 · · · tnn

⎤
⎥⎦ = [

[T v1]B2
. . . [T vn]B2

]

We have just shown that [T x]B2 = B2 [T ]B1
[x]B1 for any x ∈ V . In the important special

case B2 = B1, we have B1 [T ]B1
, which is called the B1 basis representation of T.
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Consider the identity linear transformation I : V → V defined by I x = x for all x.
Then

[x]B2
= [I x]B2

= B2 [I ]B1
[x]B1

= B2 [I ]B1
[I x]B1

= B2 [I ]B1 B1 [I ]B2
[x]B2

for all x ∈ V . By successively choosing x = w1, w2, . . . , wn , this identity permits us
to identify each column of B2 [I ]B1B1 [I ]B2

and shows that

B2 [I ]B1 B1 [I ]B2
= In

If we do the same calculation starting with [x]B1 = [I x]B1 = · · · , we find that

B1 [I ]B2 B2 [I ]B1
= In

Thus, every matrix of the form B2 [I ]B1
is invertible and B1 [I ]B2

is its inverse.
Conversely, every invertible matrix S = [s1 s2 . . . sn] ∈ Mn(F) has the form B1 [I ]B
for some basis B. We may take B to be the vectors {s̃1, s̃2, . . . , s̃n} defined by
[s̃i ]B1

= si , i = 1, 2, . . . , n. The list B is independent because S is invertible.
Notice that

B2 [I ]B1
= [

[Iv1]B2
. . . [Ivn]B2

]
] = [

[v1]B2
. . . [vn]B2

]
so B2 [I ]B1

describes how the elements of the basis B1 are formed from elements of the
basis B2. Now let x ∈ V and compute

B1 [T ]B2
[x]B2

= [T x]B2
= [I (T x)]B2

= B2 [I ]B1
[T x]B1

= B2 [I ]B1 B1 [T ]B1
[x]B1

= B2 [I ]B1 B1 [T ]B1
[I x]B1

= B2 [I ]B1 B1 [T ]B1 B1 [I ]B2
[x]B2

By choosing x = w1, w2, . . . , wn successively, we conclude that

B2 [T ]B2
= B2 [I ]B1 B1 [T ]B1 B1 [I ]B2

(0.10.1.1)

This identity shows how theB1 basis representation of T changes if the basis is changed
to B2. For this reason, the matrix B2 [I ]B1

is called the B1 − B2 change of basis matrix.
Any matrix A ∈ Mn(F) is a basis representation of some linear transformation

T : V → V , for if B is any basis of V , we can determine Tx by [T x]B = A[x]B. For
this T, a computation reveals that B[T ]B = A.

0.11 Equivalence relations

Let S be a given set and let � be a given subset of S × S = {(a, b) : a ∈ S and b ∈ S}.
Then � defines a relation on S in the following way: We say that a is related to b,
written a ∼ b, if (a, b) ∈ �. A relation on S is said to be an equivalence relation if it
is (a) reflexive (a ∼ a for every a ∈ S), (b) symmetric (a ∼ b whenever b ∼ a), and
(c) transitive (a ∼ c whenever a ∼ b and b ∼ c). An equivalence relation on S gives a
disjoint partition of S in a natural way: If we define the equivalence class of any a ∈ S
by Sa = {b ∈ S : b ∼ a}, then S = ∪a∈S Sa , and for each a, b ∈ S, either Sa = Sb (if
a ∼ b) or Sa ∩ Sb = ∅ (if a �∼ b). Conversely, any disjoint partition of S can be used
to define an equivalence relation on S.
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The following table lists several equivalence relations that arise in matrix analysis.
The factors D1, D2, S, T , L , and R are square and nonsingular; U and V are unitary; L
is lower triangular; R is upper triangular; D1 and D2 are diagonal; and A and B need
not be square for equivalence, unitary equivalence, triangular equivalence, or diagonal
equivalence.

Equivalence Relation ∼ A ∼ B

congruence A = SBST

unitary congruence A = U BU T

*congruence A = SBS∗

consimilarity A = SBS̄−1

equivalence A = SBT
unitary equivalence A = U BV
diagonal equivalence A = D1 B D2

similarity A = SBS−1

unitary similarity A = U BU ∗

triangular equivalence A = L B R

Whenever an interesting equivalence relation arises in matrix analysis, it can be
useful to identify a set of distinguished representatives of the equivalence classes (a
canonical form or normal form for the equivalence relation). Alternatively, we often
want to have effective criteria (invariants) that can be used to decide if two given
matrices belong to the same equivalence class.

Abstractly, a canonical form for an equivalence relation ∼ on a set S is a subset
C of S such that S = ∪a∈C Sa and Sa ∩ Sb = ∅ whenever a, b ∈ C and a �= b; the
canonical form of an element a ∈ S is the unique element c ∈ C such that a ∈ Sc.

For a given equivalence relation in matrix analysis, it is important to make an artful
and simple choice of canonical form, and one sometimes does this in more than one
way to tailor the canonical form to a specific purpose. For example, the Jordan and
Weyr canonical forms are different canonical forms for similarity; the Jordan canonical
form works well in problems involving powers of matrices, while the Weyr canonical
form works well in problems involving commutativity.

An invariant for an equivalence relation ∼ on S is a function f on S such that
f (a) = f (b) whenever a ∼ b. A family of invariants F for an equivalence relation ∼

on S is said to be complete if f (a) = f (b) for all f ∈ F if and only if a ∼ b; a complete
family of invariants is often called a complete system of invariants. For example, the
singular values of a matrix are a complete system of invariants for unitary equivalence.





CHAPTER 1

Eigenvalues, Eigenvectors,
and Similarity

1.0 Introduction

In the initial section of each chapter, we motivate some key issues discussed in the
chapter with examples of how they arise, either conceptually or in applications.

Throughout the book, we use the notation and terminology introduced in Chapter 0.
Readers should consult the index to find the definition of an unfamiliar term; unfamiliar
notation can usually be identified by consulting the Notation section that follows the
Bibliography.

1.0.1 Change of basis and similarity. Every invertible matrix is a change-of-basis
matrix, and every change-of-basis matrix is invertible (0.10). Thus, if B is a given basis
of a vector space V , if T is a given linear transformation on V, and if A = B[T ]B is the
B basis representation of T, the set of all possible basis representations of T is

{B1 [I ]B B[T ]B B[I ]B1 : B1 is a basis of V }
= {S−1 AS: S ∈ Mn(F) is invertible}

This is just the set of all matrices that are similar to the given matrix A. Similar but
not identical matrices are therefore just different basis representations of a single linear
transformation.

One would expect similar matrices to share many important properties – at least,
those properties that are intrinsic to the underlying linear transformation – and this is an
important theme in linear algebra. It is often useful to step back from a question about
a given matrix to a question about some intrinsic property of the linear transformation
of which the matrix is only one of many possible representations.

The notion of similarity is a key concept in this chapter.

1.0.2 Constrained extrema and eigenvalues. A second key concept in this chapter
is the notion of eigenvector and eigenvalue. Nonzero vectors x such that Ax is a
scalar multiple of x play a major role in analyzing the structure of a matrix or linear
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transformation, but such vectors arise in the more elementary context of maximizing
(or minimizing) a real symmetric quadratic form subject to a geometric constraint: For
a given real symmetric A ∈ Mn(R),

maximize xT Ax, subject to x ∈ Rn, xT x = 1 (1.0.3)

A conventional approach to such a constrained optimization problem is to introduce
the Lagrangian L = x T Ax − λxT x . Necessary conditions for an extremum are

0 = ∇L = 2(Ax − λx) = 0

Thus, if a vector x ∈ Rn with xT x = 1 (and hence x �= 0) is an extremum of x T Ax , it
must satisfy the equation Ax = λx . A scalar λ such that Ax = λx for some nonzero
vector x is an eigenvalue of A.

Problems

1.0.P1 Use Weierstrass’s theorem (see Appendix E) to explain why the constrained ex-
tremum problem (1.0.3) has a solution, and conclude that every real symmetric matrix has
at least one real eigenvalue.

1.0.P2 Suppose that A ∈ Mn(R) is symmetric. Show that max{xT Ax : x ∈ Rn, xT x = 1}
is the largest real eigenvalue of A.

1.1 The eigenvalue–eigenvector equation

A matrix A ∈ Mn can be thought of as a linear transformation from Cn into Cn , namely,

A : x → Ax (1.1.1)

but it is also useful to think of it as an array of numbers. The interplay between these two
concepts of A, and what the array of numbers tells us about the linear transformation,
is a central theme of matrix analysis and a key to applications. A fundamental concept
in matrix analysis is the set of eigenvalues of a square complex matrix.

Definition 1.1.2. Let A ∈ Mn. If a scalar λ and a nonzero vector x satisfy the equation

Ax = λx, x ∈ Cn, x �= 0, λ ∈ C (1.1.3)

then λ is called an eigenvalue of A and x is called an eigenvector of A associated with
λ. The pair λ, x is an eigenpair for A.

The scalar λ and the vector x in the preceding definition occur inextricably as a pair.
It is a key element of the definition that an eigenvector can never be the zero vector.

Exercise. Consider the diagonal matrix D = diag(d1, d2, . . . , dn). Explain why
the standard basis vectors ei , i = 1, . . . , n, are eigenvectors of D. With what
eigenvalue is each eigenvector ei associated?

Equation 1.1.3 can be rewritten as λx − Ax = (λI − A)x = 0, a square system of
homogeneous linear equations. If this system has a nontrivial solution, then λ is an
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eigenvalue of A and the matrix λI − A is singular. Conversely, if λ ∈ C and if λI − A
is singular, then there is a nonzero vector x such that (λI − A) x = 0, so Ax = λx ,
that is, λ, x is an eigenvalue–eigenvector pair for A.

Definition 1.1.4. The spectrum of A ∈ Mn is the set of all λ ∈ C that are eigenvalues
of A; we denote this set by σ (A).

For a given A ∈ Mn , we do not know at this point whether σ (A) is empty, or, if it is
not empty, whether it contains finitely or infinitely many complex numbers.

Exercise. If x is an eigenvector associated with an eigenvalue λ of A, show that
any nonzero scalar multiple of x is an eigenvector of A associated with λ.

If x is an eigenvector of A ∈ Mn associated with λ, it is often convenient to normalize
it, that is, to form the unit vector ξ = x/ ‖x‖2, which is still an eigenvector of A
associated with λ. Normalization does not select a unique eigenvector associated with
λ, however: λ, eiθ ξ is an eigenvalue-eigenvector pair for A for all θ ∈ R.

Exercise. If Ax = λx , observe that Āx̄ = λ̄x̄ . Explain why σ ( Ā) = σ (A). If
A ∈ Mn(R) and λ ∈ σ (A), explain why λ̄ ∈ σ (A) as well.

Even if they had no other importance, eigenvalues and eigenvectors would be in-
teresting algebraically: according to (1.1.3), the eigenvectors are just those nonzero
vectors such that multiplication by the matrix A is the same as multiplication by the
scalar λ.

Exercise. Consider the matrix

A =
[

7 −2
4 1

]
∈ M2 (1.1.4a)

Then 3 ∈ σ (A) and
[

1
2

]
is an associated eigenvector since

A

[
1
2

]
=
[

3
6

]
= 3

[
1
2

]

Also, 5 ∈ σ (A). Find an eigenvector associated with the eigenvalue 5.

Sometimes the structure of a matrix makes an eigenvector easy to perceive, so the
associated eigenvalue can be computed easily.

Exercise. Let Jn be the n-by-n matrix whose entries are all equal to 1. Consider
the n-vector e whose entries are all equal to 1, and let xk = e − nek , in which
{e1, . . . , en} is the standard basis for Cn . For n = 2, show that e and x1 are
linearly independent eigenvectors of J2 and that 2 and 0, respectively, are the
associated eigenvalues. For n = 3, show that e, x1, and x2 are linearly independent
eigenvectors of J3 and that 2, 0, and 0, respectively, are the associated eigenvalues.
In general, show that e, x1, . . . , xn−1 are linearly independent eigenvectors of Jn

and that n, 0, . . . , 0, respectively, are the associated eigenvalues.
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Exercise. Show that 1 and 4 are eigenvalues of the matrix

A =
⎡
⎣ 3 −1 −1
−1 3 −1
−1 −1 3

⎤
⎦

Hint: Use eigenvectors. Write A = 4I − J3 and use the preceding exercise.

Evaluation of a polynomial of degree k

p(t) = aktk + ak−1t k−1 + · · · + a1t + a0, ak �= 0 (1.1.5a)

with real or complex coefficients at a matrix A ∈ Mn is well-defined since we may
form linear combinations of integral powers of a given square matrix. We define

p(A) = ak Ak + ak−1 Ak−1 + · · · + a1 A + a0 I (1.1.5b)

in which we observe the universal convention that A0 = I . A polynomial (1.1.5a) of
degree k is said to be monic if ak = 1; since ak �= 0, a−1

k p(t) is always monic. Of
course, a monic polynomial cannot be the zero polynomial.

There is an alternative way to represent p(A) that has very important consequences.
The fundamental theorem of algebra (Appendix C) ensures that any monic polynomial
(1.1.5a) of degree k ≥ 1 can be represented as a product of exactly k complex or real
linear factors:

p(t) = (t − α1) · · · (t − αk) (1.1.5c)

This representation of p(t) is unique up to permutation of its factors. It tells us that
p(α j ) = 0 for each j = 1, . . . , k, so that each α j is a root of the equation p(t) = 0;
one also says that each α j is a zero of p(t). Conversely, if β is a complex number such
that p(β) = 0, then β ∈ {α1, . . . , αk}, so a polynomial of degree k ≥ 1 has at most k
distinct zeroes. In the product (1.1.5c), some factors might be repeated, for example,
p(t) = t2 + 2t + 1 = (t + 1)(t + 1). The number of times a factor (t − α j ) is repeated
is the multiplicity of α j as a zero of p(t). The factorization (1.1.5c) gives a factorization
of p(A):

p(A) = (A − α1 I ) · · · (A − αk I ) (1.1.5d)

The eigenvalues of p(A) are linked to the eigenvalues of A in a simple way.

Theorem 1.1.6. Let p(t) be a given polynomial of degree k. If λ, x is an eigenvalue–
eigenvector pair of A ∈ Mn, then p(λ), x is an eigenvalue–eigenvector pair of p(A).
Conversely, if k ≥ 1 and if μ is an eigenvalue of p(A), then there is some eigenvalue λ

of A such that μ = p(λ).

Proof. We have

p(A)x = ak Ak x + ak−1 Ak−1x + · · · + a1 Ax + a0x , ak �= 0

and A j x = A j−1 Ax = A j−1λx = λA j−1x = · · · = λ j x by repeated application of the
eigenvalue–eigenvector equation. Thus,

p(A)x = akλ
k x + · · · + a0x = (akλ

k + · · · + a0)x = p(λ)x
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Conversely, if μ is an eigenvalue of p(A), then p(A) − μI is singular. Since p(t)
has degree k ≥ 1, the polynomial q(t) = p(t) − μ has degree k ≥ 1, and we can
factor it as q(t) = (t − β1) · · · (t − βk) for some complex or real β1, . . . , βk . Since
p(A) − μI = q(A) = (A − β1 I ) · · · (A − βk I ) is singular, some factor A − β j I is
singular, which means that β j is an eigenvalue of A. But 0 = q(β j ) = p(β j ) − μ, so
μ = p(β j ), as claimed. �

Exercise. Suppose that A ∈ Mn . If σ (A) = {−1, 1}, what is σ (A2)? Caution: The
first assertion in Theorem 1.1.6 permits you to identify a point in σ (A2), but you
must invoke the second assertion to find out if it is the only point in σ (A2).

Exercise. Consider A = [ 0
0

1
0

]
. What is A2? Show that e1 is an eigenvector of

A and of A2, both associated with the eigenvalue λ = 0. Show that e2 is an
eigenvector of A2 but not of A. Explain why the “converse” part of Theorem
1.1.6 speaks only about eigenvalues of p(A), not eigenvectors. Show that A has
no eigenvectors other than scalar multiples of e1, and explain why σ (A) = {0}.

Observation 1.1.7. A matrix A ∈ Mn is singular if and only if 0 ∈ σ (A).

Proof. The matrix A is singular if and only if Ax = 0 for some x �= 0. This happens
if and only if Ax = 0x for some x �= 0, that is, if and only if λ = 0 is an eigenvalue
of A. �

Observation 1.1.8. Let A ∈ Mn and λ, μ ∈ C be given. Then λ ∈ σ (A) if and only if
λ + μ ∈ σ (A + μI ).

Proof. If λ ∈ σ (A), there is a nonzero vector x such that Ax = λx and hence (A +
μI )x = Ax + μx = λx + μx = (λ + μ)x . Thus, λ + μ ∈ σ (A + μI ). Conversely, if
λ + μ ∈ σ (A + μI ), there is a nonzero vector y such that Ay + μy = (A + μI )y =
(λ + μ)y = λy + μy. Thus, Ay = λy and λ ∈ σ (A). �

We are now prepared to make a very important observation: every complex matrix
has a nonempty spectrum, that is, for each A ∈ Mn , there is some scalar λ ∈ C and
some nonzero x ∈ Cn such that Ax = λx .

Theorem 1.1.9. Let A ∈ Mn be given. Then A has an eigenvalue. In fact, for each
given nonzero y ∈ Cn, there is a polynomial g(t) of degree at most n − 1 such that
g(A)y is an eigenvector of A.

Proof. Let m be the least integer k such that the vectors y, Ay, A2 y, . . . , Ak y are
linearly dependent. Then m ≥ 1 since y �= 0, and m ≤ n since any n + 1 vectors in Cn

are linearly dependent. Let a0, a1, . . . , am be scalars, not all zero, such that

am Am y + am−1 Am−1 y + · · · + a1 Ay + a0 y = 0 (1.1.10)

If am = 0, then (1.1.10) implies that the vectors y, Ay, A2 y, . . . , Am−1 y are linearly
dependent, contradicting the minimality of m. Thus, am �= 0, and we may consider
the polynomial p(t) = tm + (am−1/am)tm−1 + · · · + (a1/am)t + (a0/am). The identity
(1.1.10) ensures that p(A)y = 0, so 0, y is an eigenvalue–eigenvector pair for p(A).
Theorem 1.1.6 ensures that one of the m zeroes of p(t) is an eigenvalue of A.
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Suppose that λ is a zero of p(t) that is an eigenvalue of A and factor p(t) =
(t − λ)g(t), in which g(t) is a polynomial of degree m − 1. If g(A)y = 0, the min-
imality of m would be contradicted again, so g(A)y �= 0. But 0 = p(A)y = (A −
λI )(g(A)y), so the nonzero vector g(A)y is an eigenvector of A associated with the
eigenvalue λ. �

The preceding argument shows that for a given A ∈ Mn we can find a polynomial
of degree at most n such that at least one of its zeroes is an eigenvalue of A. In the
next section, we introduce a polynomial pA(t) of degree exactly n such that each of
its zeroes is an eigenvalue of A and each eigenvalue of A is a zero of pA(t); that is,
pA(λ) = 0 if and only if λ ∈ σ (A).

Problems

1.1.P1 Suppose that A ∈ Mn is nonsingular. According to (1.1.7), this is equivalent to
assuming that 0 /∈ σ (A). For each λ ∈ σ (A), show that λ−1 ∈ σ (A−1). If Ax = λx and
x �= 0, show that A−1x = λ−1x .

1.1.P2 Let A ∈ Mn be given. (a) Show that the sum of the entries in each row of A is 1 if
and only if 1 ∈ σ (A) and the vector e = [1, 1, . . . , 1]T is an associated eigenvector, that is,
Ae = e. (b) Suppose that the sum of the entries in each row of A is 1. If A is nonsingular,
show that the sum of the entries in each row of A−1 is also 1. Moreover, for any given
polynomial p(t), show that the sums of the entries in each row p(A) are equal. Equal to
what?

1.1.P3 Let A ∈ Mn(R). Suppose that λ is a real eigenvalue of A and that Ax = λx, x ∈
Cn, x �= 0. Let x = u + iv, in which u, v ∈ Rn are the respective real and imaginary parts
of x ; see (0.2.5). Show that Au = λu and Av = λv. Explain why at least one of u, v must
be nonzero, and conclude that A has a real eigenvector associated with λ. Must both u and
v be eigenvectors of A? Can A have a real eigenvector associated with an eigenvalue that
is not real?

1.1.P4 Consider the block diagonal matrix

A =
[

A11 0
0 A22

]
, Aii ∈ Mni

Show that σ (A) = σ (A11) ∪ σ (A22). You must show three things: (a) if λ is an eigenvalue
of A, then it is an eigenvalue of either A11 or of A22; (b) if λ is an eigenvalue of A11, then
it is an eigenvalue of A; and (c) if λ is an eigenvalue of A22, then it is an eigenvalue of A.

1.1.P5 Let A ∈ Mn be idempotent, that is, A2 = A. Show that each eigenvalue of A is
either 0 or 1. Explain why I is the only nonsingular idempotent matrix.

1.1.P6 Show that all eigenvalues of a nilpotent matrix are 0. Give an example of a nonzero
nilpotent matrix. Explain why 0 is the only nilpotent idempotent matrix.

1.1.P7 If A ∈ Mn is Hermitian, show that all eigenvalues of A are real.

1.1.P8 Explain how the argument in (1.1.9) fails if we try to use it to show that every square
real matrix has a real eigenvalue.



1.2 The characteristic polynomial and algebraic multiplicity 49

1.1.P9 Use the definition (1.1.3) to show that the real matrix A = [ 0
−1

1
0

]
has no real

eigenvalue. However, (1.1.9) says that A has a complex eigenvalue. Actually, there are two;
what are they?

1.1.P10 Provide details for the following example, which shows that a linear opera-
tor on an infinite dimensional complex vector space might have no eigenvalues. Let
V = {(a1, a2, . . .) : ai ∈ C, i = 1, 2, . . .} be the vector space of all formal infinite se-
quences of complex numbers, and define the right-shift operator S on V by S(a1, a2, . . .) =
(0, a1, a2, . . .). Verify that S is a linear transformation. If Sx = λx , show that x = 0.

1.1.P11 Let A ∈ Mn and λ ∈ σ (A) be given. Then A − λI is singular, so (A − λI ) adj(A −
λI ) = (det(A − λI ))I = 0; see (0.8.2). Explain why there is some y ∈ Cn (y = 0 is possi-
ble) such that adj(A − λI ) = xy∗. Conclude that every nonzero column of adj(A − λI ) is
an eigenvector of A associated with the eigenvalue λ. Why is this observation useful only
if rank(A − λI ) = n − 1?

1.1.P12 Suppose that λ is an eigenvalue of A = [ a
c

b
d

] ∈ M2. Use (1.1.P11) to show that
if either column of

[ d−λ

−c
−b

a−λ

]
is nonzero, then it is an eigenvector of A associated with λ.

Why must one of the columns be a scalar multiple of the other? Use this method to find
eigenvectors of the matrix (1.1.4a) associated with the eigenvalues 3 and 5.

1.1.P13 Let A ∈ Mn and let λ, x be an eigenvalue-eigenvector pair of A. Show that x is an
eigenvector of adj A.

1.2 The characteristic polynomial and algebraic multiplicity

How many eigenvalues does a square complex matrix have? How may they be charac-
terized in a systematic way?

Rewrite the eigenvalue–eigenvector equation (1.1.3) as

(λI − A)x = 0, x �= 0 (1.2.1)

Thus, λ ∈ σ (A) if and only if λI − A is singular, that is, if and only if

det(λI − A) = 0 (1.2.2)

Definition 1.2.3. Thought of as a formal polynomial in t , the characteristic polynomial
of A ∈ Mn is

pA(t) = det(t I − A)

We refer to the equation pA(t) = 0 as the characteristic equation of A.

Observation 1.2.4. The characteristic polynomial of each A = [ai j ] ∈ Mn has degree
n and pA(t) = tn − (tr A)tn−1 + · · · + (−1)n det A. Moreover, pA(λ) = 0 if and only
if λ ∈ σ (A), so σ (A) contains at most n complex numbers.

Proof. Each summand in the presentation (0.3.2.1) of the determinant of t I − A is a
product of exactly n entries of t I − A, each from a different row and column, so each
summand is a polynomial in t of degree at most n. The degree of a summand can be n
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only if every factor in the product involves t , which happens only for the summand

(t − a11) · · · (t − ann) = tn − (a11 + · · · + ann)tn−1 + · · · (1.2.4a)

that is the product of the diagonal entries. Any other summand must contain a factor
−ai j with i �= j , so the diagonal entries (t − aii ) (in the same row as ai j ) and (t − aii )
(in the same column as ai j ) cannot also be factors; this summand therefore cannot
have degree larger than n − 2. Thus, the coefficients of tn and tn−1 in the polynomial
pA(t) arise only from the summand (1.2.4a). The constant term in pA(t) is just pA(0) =
det(0I − A) = det(−A) = (−1)n det A. The remaining assertion is the equivalence of
(1.2.1) and (1.2.2), together with the fact that a polynomial of degree n ≥ 1 has at most
n distinct zeroes. �

Exercise. Show that the roots of det(A − t I ) = 0 are the same as those of
det(t I − A) = 0 and that det(A − t I ) = (−1)n det(t I − A) = (−1)n(tn + · · · )

The characteristic polynomial could alternatively be defined as det(A − t I ) =
(−1)ntn + · · · . The convention we have chosen ensures that the coefficient of tn in
the characteristic polynomial is always +1.

Exercise. Let A = [ a
c

b
d

] ∈ M2. Show that the characteristic polynomial of A is

pA(t) = t2 − (a + d)t + (ad − bc) = t2 − (tr A) t + det A

Let r = (− tr A)2 − 4 det A = (a − d)2 + 4bc (this is the discriminant of pA(t))
and let

√
r be a fixed square root of r . Deduce that each of

λ1 = 1
2

(
a + d +√

r
)

and λ2 = 1
2

(
a + d −√

r
)

(1.2.4b)

is an eigenvalue of A. Verify that tr A = λ1 + λ2 and det A = λ1λ2. Explain why
λ1 �= λ2 if and only if r �= 0. If A ∈ M2(R), show that (a) the eigenvalues of A
are real if and only if r ≥ 0; (b) the eigenvalues of A are real if bc ≥ 0; and
(c) if r < 0, then λ1 = λ2, that is, λ1 is the complex conjugate of λ2.

The preceding exercise illustrates that an eigenvalue λ of a matrix A ∈ Mn with
n > 1 can be a multiple zero of pA(t) (equivalently, a multiple root of its characteristic
equation). Indeed, the characteristic polynomial of I ∈ Mn is

pI (t) = det(t I − I ) = det((t − 1)I ) = (t − 1)n det I = (t − 1)n

so the eigenvalue λ = 1 has multiplicity n as a zero of pI (t). How should we account
for such repetitions in an enumeration of the eigenvalues?

For a given A ∈ Mn with n > 1, factor its characteristic polynomial as pA(t) =
(t − α1) · · · (t − αn). We know that each zero αi of pA(t) (regardless of its multiplicity)
is an eigenvalue of A. A computation reveals that

pA(t) = tn − (α1 + · · · + αn)tn−1 + · · · + (−1)nα1 · · ·αn (1.2.4c)

so a comparison of (1.2.4) and (1.2.4c) tells us that the sum of the zeroes of pA(t) is the
trace of A, and the product of the zeroes of pA(t) is the determinant of A. If each zero of
pA(t) has multiplicity 1, that is, if αi �= α j whenever i �= j , then σ (A) = {α1, . . . , αn},
so tr A is the sum of the eigenvalues of A and det A is the product of the eigenvalues
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of A. If these two statements are to remain true even if some zeroes of pA(t) have
multiplicity greater than 1, we must enumerate the eigenvalues of A according to their
multiplicities as roots of the characteristic equation.

Definition 1.2.5. Let A ∈ Mn. The multiplicity of an eigenvalue λ of A is its multiplicity
as a zero of the characteristic polynomial pA(t). For clarity, we sometimes refer to the
multiplicity of an eigenvalue as its algebraic multiplicity.

Henceforth, the eigenvalues of A ∈ Mn will always mean the eigenvalues together
with their respective (algebraic) multiplicities. Thus, the zeroes of the characteristic
polynomial of A (including their multiplicities) are the same as the eigenvalues of A
(including their multiplicities):

pA(t) = (t − λ1)(t − λ2) · · · (t − λn) (1.2.6)

in which λ1, . . . , λn are the n eigenvalues of A, listed in any order. When we refer to
the distinct eigenvalues of A, we mean the elements of the set σ (A).

We can now say without qualification that each matrix A ∈ Mn has exactly n
eigenvalues among the complex numbers; the trace and determinant of A are the sum
and product, respectively, of its eigenvalues. If A is real, some or all of its eigenvalues
might not be real.

Exercise. Consider a real matrix A ∈ Mn(R). (a) Explain why all the coefficients
of pA(t) are real. (b) Suppose that A has an eigenvalue λ that is not real. Use (a)
to explain why λ̄ is also an eigenvalue of A and why the algebraic multiplicities
of λ and λ̄ are the same. If x, λ is an eigenpair for A, we know that x̄, λ̄ is also an
eigenpair (why?). Notice that x and x̄ are eigenvectors of A that are associated
with distinct eigenvalues λ and λ̄.

Example 1.2.7. Let x, y ∈ Cn . What are the eigenvalues and determinant of
I + xy∗? Using (0.8.5.11) and the fact that adj(α I ) = αn−1 I , we compute

pI+xy∗(t) = det(t I − (I + xy∗)) = det((t − 1)I − xy∗)

= det((t − 1)I ) − y∗ adj((t − 1)I )x

= (t − 1)n − (t − 1)n−1 y∗x = (t − 1)n−1(t − (1 + y∗x))

Thus, the eigenvalues of I + xy∗ are 1 + y∗x and 1 (with multiplicity n − 1), so
det(I + xy∗) = (1 + y∗x)(1)n−1 = 1 + y∗x .

Example 1.2.8. Brauer’s theorem. Let x, y ∈ Cn , x �= 0, and A ∈ Mn . Sup-
pose that Ax = λx and let the eigenvalues of A be λ, λ2, . . . , λn . What are the
eigenvalues of A + xy∗? First observe that (t − λ)x = (t I − A)x implies that
(t − λ) adj(t I − A)x = adj(t I − A)(t I − A)x = det(t I − A)x , that is,

(t − λ) adj(t I − A)x = pA(t)x (1.2.8a)

Use (0.8.5.11) to compute

pA+xy∗(t) = det(t I − (A + xy∗)) = det((t I − A) − xy∗)

= det(t I − A) − y∗ adj(t I − A)x
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Multiply both sides by (t − λ), use (1.2.8a), and obtain

(t − λ) pA+xy∗(t) = (t − λ) det (t I − A) − y∗(t − λ) adj(t I − A)x

= (t − λ)pA(t) − pA(t)y∗x

which is the polynomial identity

(t − λ)pA+xy∗(t) = (t − (λ + y∗x))pA(t)

The zeroes of the left-hand polynomial are λ together with the n eigenvalues of
A + xy∗. The zeroes of the right-hand polynomial are λ + y∗x, λ, λ2, . . . , λn . It
follows that the eigenvalues of A + xy∗ are λ + y∗x, λ2, . . . , λn .

Since we now know that each n-by-n complex matrix has finitely many eigenvalues,
we may make the following definition.

Definition 1.2.9. Let A ∈ Mn. The spectral radius of A is ρ(A) = max{|λ| : λ ∈ σ (A)}.
Exercise. Explain why every eigenvalue of A ∈ Mn lies in the closed bounded
disk {z : z ∈ C and |z| ≤ ρ(A)} in the complex plane.

Exercise. Suppose that A ∈ Mn has at least one nonzero eigenvalue. Explain why
min{|λ| : λ ∈ σ (A) and λ �= 0} > 0.

Exercise. Underlying both of the two preceding exercises is the fact that σ (A) is
a nonempty finite set. Explain why.

Sometimes the structure of a matrix makes the characteristic polynomial easy to
calculate. This is the case for diagonal or triangular matrices.

Exercise. Consider an upper triangular matrix

T =

⎡
⎢⎣ t11 · · · t1n

. . .
...

0 tnn

⎤
⎥⎦ ∈ Mn

Show that pT (t) = (t − t11) · · · (t − tnn), so the eigenvalues of T are its diagonal
entries t11, t22, . . . , tnn . What if T is lower triangular? What if T is diagonal?

Exercise. Suppose that A ∈ Mn is block upper triangular

A =

⎡
⎢⎣ A11 �

. . .
0 Akk

⎤
⎥⎦ , Aii ∈ Mni for i = 1, . . . , nk

Explain why pA(t) = pA11 (t) · · · pAkk (t) and the eigenvalues of A are the eigenval-
ues of A11, together with those of A22, . . . , together with those of Akk including
all their respective algebraic multiplicities. This observation is the basis of many
algorithms to compute eigenvalues. Explain why the preceding exercise is a
special case of this one.

Definition 1.2.10. Let A ∈ Mn. The sum of its principal minors of size k (there are
( n

k

)
of them) is denoted by Ek(A).
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We have already encountered principal minor sums as two coefficients of the char-
acteristic polynomial

pA(t) = tn + an−1tn−1 + · · · + a2t2 + a1t + a0 (1.2.10a)

If k = 1, then
( n

k

) = n and E1(A) = a11 + · · · + ann = tr A = −an−1; if k = n, then( n
k

) = 1 and En(A) = det A = (−1)na0. The broader connection between coefficients
and principal minor sums is a consequence of the fact that the coefficients are explicit
functions of certain derivatives of pA(t) at t = 0:

ak = 1

k!
p(k)

A (0), k = 0, 1, . . . , n − 1 (1.2.11)

Use (0.8.10.2) to evaluate the derivative

p′
A(t) = tr adj(t I − A)

Observe that tr adj A is the sum of the principal minors of A of size n − 1, so tr adj
A = En−1(A). Then

a1 = p′
A(t)

∣∣
t=0 = tr adj(t I − A)|t=0 = tr adj(−A)

= (−1)n−1 tr adj(A) = (−1)n−1 En−1(A)

Now observe that tr adj(t I − A) =∑n
i=1 pA(i) (t) is the sum of the characteristic

polynomials of the n principal submatrices of A of size n − 1, which we denote by
A(1), . . . , A(n). Use (0.8.10.2) again to evaluate

p′′
A(t) = d

dt
tr adj(t I − A) =

n∑
i=1

d

dt
pA(i) (t) =

n∑
i=1

tr adj(t I − A(i)) (1.2.12)

Each summand tr adj(t I − A(i)) is the sum of the n − 1 principal minors of size n − 2
of a principal minor of t I − A, so each summand is a sum of certain principal minors
of t I − A of size n − 2. Each of the ( n

n−2 ) principal minors of t I − A of size n − 2
appears twice in (1.2.12): the principal minor with rows and columns k and � omitted
appears when i = k as well as when i = �. Thus,

a2 = 1

2
p′′

A(t)
∣∣
t=0 = 1

2

n∑
i=1

tr adj(t I − A(i))
∣∣
t=0 = 1

2

n∑
i=1

tr adj(−A(i))

= 1

2
(−1)n−2

n∑
i=1

tr adj(A(i)) = 1

2
(−1)n−2 (2En−2(A))

= (−1)n−2 En−2(A)

Repeating this argument reveals that p(k)
A (0) = k!(−1)n−k En−k(A), k = 0, 1, . . . ,

n − 1, so the coefficients of the characteristic polynomial (1.2.11) are

ak = 1

k!
p(k)

A (0) = (−1)n−k En−k(A), k = 0, 1, . . . , n − 1

and hence

pA(t) = tn − E1(A)tn−1 + · · · + (−1)n−1 En−1(A)t + (−1)n En(A) (1.2.13)
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With the identity (1.2.6) in mind, we make the following definition:

Definition 1.2.14. The kth elementary symmetric function of n complex numbers
λ1, . . . , λn, k ≤ n, is

Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n

k∏
j=1

λi j

Notice that the sum has
( n

k

)
summands. If A ∈ Mn and λ1, . . . , λn are its eigenvalues,

we define Sk(A) = Sk(λ1, . . . , λn).

Exercise. What are S1(λ1, . . . , λn) and Sn(λ1, . . . , λn)? Explain why each of the
functions Sk(λ1, . . . , λn) is unchanged if the list λ1, . . . , λn is reindexed and
rearranged.

A calculation with (1.2.6) reveals that

pA(t) = tn − S1(A)tn−1 + · · · + (−1)n−1Sn−1(A)t + (−1)n Sn(A) (1.2.15)

Comparison of (1.2.13) and (1.2.15) gives the following identities between elementary
symmetric functions of eigenvalues of a matrix and sums of its principal minors.

Theorem 1.2.16. Let A ∈ Mn. Then Sk(A) = Ek(A) for each k = 1, . . . , n.

The next theorem shows that a singular complex matrix can always be shifted
slightly to become nonsingular. This important fact often permits us to use continuity
arguments to deduce results about singular matrices from properties of nonsingular
matrices.

Theorem 1.2.17. Let A ∈ Mn. There is some δ > 0 such that A + ε I is nonsingular
whenever ε ∈ C and 0 < |ε| < δ.

Proof. Observation 1.1.8 ensures that λ ∈ σ (A) if and only if λ + ε ∈ σ (A + ε I ).
Therefore, 0 ∈ σ (A + ε I ) if and only if λ + ε = 0 for some λ ∈ σ (A), that is, if and
only if ε = −λ for some λ ∈ σ (A). If all the eigenvalues of A are zero, take δ = 1. If
some eigenvalue of A is nonzero, let δ = min{|λ| : λ ∈ σ (A) and λ �= 0}. If we choose
any ε such that 0 < |ε| < δ, we are assured that −ε /∈ σ (A), so 0 /∈ σ (A + ε I ) and
A + ε I is nonsingular. �

There is a useful connection between the derivatives of a polynomial p(t) and the
multiplicity of its zeroes: α is a zero of p(t) with multiplicity k ≥ 1 if and only if we
can write p(t) in the form

p(t) = (t − α)kq(t)

in which q(t) is a polynomial such that q(α) �= 0. Differentiating this identity gives
p′(t) = k(t − α)k−1q(t) + (t − α)kq ′(t), which shows that p′(α) = 0 if and only if
k > 1. If k ≥ 2, then p′′(t) = k(k − 1)(t − α)k−2q(t) + polynomial terms each involv-
ing a factor (t − α)m with m ≥ k − 1, so p′′(α) = 0 if and only if k > 2. Repetition
of this calculation shows that α is a zero of p(t) of multiplicity k if and only if
p(α) = p′(α) = · · · = p(k−1)(α) = 0 and p(k)(α) �= 0.
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Theorem 1.2.18. Let A ∈ Mn and suppose that λ ∈ σ (A) has algebraic multiplicity
k. Then rank(A − λI ) ≥ n − k with equality for k = 1.

Proof. Apply the preceding observation to the characteristic polynomial pA(t) of a
matrix A ∈ Mn that has an eigenvalue λ with multiplicity k ≥ 1. If we let B = A −
λI , then zero is an eigenvalue of B with multiplicity k and hence p(k)

B (0) �= 0. But
p(k)

B (0) = k!(−1)n−k En−k(B), so En−k(B) �= 0. In particular, some principal minor
of B = A − λI of size n − k is nonzero, so rank(A − λI ) ≥ n − k. If k = 1, we
can say more: A − λI is singular, so n > rank(A − λI ) ≥ n − 1, which means that
rank(A − λI ) = n − 1 if the eigenvalue λ has algebraic multiplicity 1. �

Problems

1.2.P1 Let A ∈ Mn . Use the identity Sn(A) = En(A) to verify (1.1.7).

1.2.P2 For matrices A ∈ Mm,n and B ∈ Mn,m , show by direct calculation that tr(AB) =
tr(B A). For any A ∈ Mn and nonsingular S ∈ Mn , deduce that tr(S−1 AS) = tr A. For any
A, B ∈ Mn , use multiplicativity of the determinant function to show that det(S−1 AS) =
det A. Conclude that the determinant function on Mn is similarity invariant.

1.2.P3 Let D ∈ Mn be a diagonal matrix. Compute the characteristic polynomial pD(t)
and show that pD(D) = 0.

1.2.P4 Suppose that A ∈ Mn is idempotent. Use (1.2.15) and (1.1.P5) to show that every
coefficient of pA(t) is an integer (positive, negative, or zero).

1.2.P5 Use (1.1.P6) to show that the trace of a nilpotent matrix is 0. What is the characteristic
polynomial of a nilpotent matrix?

1.2.P6 If A ∈ Mn and λ ∈ σ (A) has multiplicity 1, we know that rank(A − λI ) = n − 1.
Consider the converse: If rank(A − λI ) = n − 1, must λ be an eigenvalue of A? Must it
have multiplicity 1?

1.2.P7 Use (1.2.13) to determine the characteristic polynomial of the tridiagonal matrix⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎦

Consider how this procedure could be used to compute the characteristic polynomial of a
general n-by-n tridiagonal matrix.

1.2.P8 Let A ∈ Mn and λ ∈ C be given. Suppose that the eigenvalues of A are λ1, . . . , λn .
Explain why pA+λI (t) = pA(t − λ) and deduce from this identity that the eigenvalues of
A + λI are λ1 + λ, . . . , λn + λ.

1.2.P9 Explicitly compute S2(λ1, . . . , λ6), S3(λ1, . . . , λ6), S4(λ1, . . . , λ6), and
S5(λ1, . . . , λ6).

1.2.P10 If A ∈ Mn(R) and if n is odd, show that A has at least one real eigenvalue.
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1.2.P11 Let V be a vector space over a field F. An eigenvalue of a linear transformation
T : V → V is a scalar λ ∈ F such that there is a nonzero vector υ ∈ V with T υ = λυ. If
F = C and if V is finite dimensional, show that every linear transformation T : V → V
has an eigenvalue. Give examples to show that if either hypothesis is weakened (V is not
finite dimensional or F �= C), then T might not have an eigenvalue.

1.2.P12 Let x = [xi ], y = [yi ] ∈ Cn , and a ∈ C be given and let A = [ 0n

y∗
x
a

] ∈ Mn+1.

Show that pA(t) = tn−1(t2 − at − y∗x) in two ways: (a) Use Cauchy’s expansion (0.8.5.10)
to calculate pA(t). (b) Explain why rank A ≤ 2 and use (1.2.13) to calculate pA(t). Why
do only E1(A) and E2(A) need to be calculated and only principal submatrices of the form[ 0

ȳi

xi

a

]
need to be considered? Show that the eigenvalues of A are (a ±

√
a2 + 4y∗x)/2

together with n − 1 zero eigenvalues.

1.2.P13 Let x, y ∈ Cn , a ∈ C, and B ∈ Mn . Consider the bordered matrix A = [ B
y∗

x
a

] ∈
Mn+1. (a) Use (0.8.5.10) to show that

pA(t) = (t − a)pB(t) − y∗(adj(t I − B))x (1.2.19)

(b) If B = λIn , deduce that

pA(t) = (t − λ)n−1(t2 − (a + λ)t + aλ − y∗x) (1.2.20)

and conclude that the eigenvalues of
[

λIn

y∗
x
a

]
are λ with multiplicity n − 1, together with

1
2 (a + λ ± ((a − λ)2 + 4y∗x)1/2).

1.2.P14 Let n ≥ 3, B ∈ Mn−2, and λ,μ ∈ C. Consider the block matrix

A =
⎡
⎣λ � �

0 μ 0
0 � B

⎤
⎦

in which the � entries are not necessarily zero. Show that pA(t) = (t − λ)(t − μ)pB(t).

1.2.P15 Suppose that A(t) ∈ Mn is a given continuous matrix-valued function and each of
the vector valued functions x1(t), . . . , xn(t) ∈ Cn satisfies the system of ordinary differential
equations x ′

j (t) = A(t)x j (t). Let X (t) = [x1(t) . . . xn(t)] and let W (t) = det X (t). Use
(0.8.10) and (0.8.2.11) and provide details for the following argument:

W ′(t) =
n∑

j=1

det
(
X (t) ←j x ′

j (t)
) = tr

[
det

(
X (t) ←i x ′

j (t)
)]n

i, j=1

= tr
(
(adj X (t)) X ′(t)

) = tr ((adj X (t)) A(t)X (t)) = W (t) tr A(t)

Thus, W (t) satisfies the scalar differential equation W ′(t) = tr A(t)W (t), whose solution is
Abel’s formula for the Wronskian

W (t) = W (t0)e
∫ t

t0
tr A(s) ds

Conclude that if the vectors x1(t), . . . , xn(t) are linearly independent for t = t0, then
they are linearly independent for all t . How did you use the identity tr BC = tr C B
(1.2.P2)?

1.2.P16 Let A ∈ Mn and x, y ∈ Cn be given. Let f (t) = det(A + t xyT ). Use (0.8.5.11) to
show that f (t) = det A + βt , a linear function of t . What is β? For any t1 �= t2, show that
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det A = (t2 f (t1) − t1 f (t2))/(t2 − t1). Now consider

A =

⎡
⎢⎢⎢⎢⎣

d1 b · · · b

c d2
. . .

...
...

. . .
. . . b

c · · · c dn

⎤
⎥⎥⎥⎥⎦ ∈ Mn

x = y = e (the vector of all ones), t1 = b, and t2 = c. Let q(t) = (d1 − t) · · · (dn − t).
Show that det A = (bq(c) − cq(b))/(b − c) if b �= c, and det A = q(b) − bq ′(b) if b =
c. If d1 = · · · = dn = 0, show that pA(t) = (b(t + c)n − c(t + b)n)/(b − c) if b �= c, and
pA(t) = (t + b)n−1(t − (n − 1)b) if b = c.

1.2.P17 Let A, B ∈ Mn and let C = [ 0n

B
A
0n

]
. Use (0.8.5.13–14) to show that pC (t) =

pAB(t2) = pB A(t2), and explain carefully why this implies that AB and B A have the same
eigenvalues. Explain why this confirms that tr AB = tr B A and det AB = det B A. Also
explain why det(I + AB) = det(I + B A).

1.2.P18 Let A ∈ M3. Explain why pA(t) = t3 − (tr A)t2 + (tr adj A)t − det A.

1.2.P19 Suppose that all the entries of A = [ai j ] ∈ Mn are either zero or one, and suppose
that all the eigenvalues λ1, . . . , λn of A are positive real numbers. Explain why det A is a
positive integer, and provide details for the following:

n ≥ tr A = 1

n
(λ1 + · · · + λn)n ≥ n(λ1 · · · λn)1/n

= n(det A)1/n ≥ n

Conclude that all λi = 1, all aii = 1, and det A = 1.

1.2.P20 For any A ∈ Mn , show that det(I + A) = 1 + E1(A) + · · · + En(A).

1.2.P21 Let A ∈ Mn and nonzero vectors x, v ∈ Cn be given. Suppose that c ∈ C, v∗x = 1,
Ax = λx , and the eigenvalues of A are λ, λ2, . . . , λn . Show that the eigenvalues of the
Google matrix A(c) = cA + (1 − c)λxv∗ are λ, cλ2, . . . , cλn .

1.2.P22 Consider the n-by-n circulant matrix Cn in (0.9.6.2). For a given ε > 0, let Cn(ε)
be the matrix obtained from Cn by replacing its n, 1 entry by ε. Show that the characteristic
polynomial of Cn(ε) is pCn (ε)(t) = tn − ε, its spectrum is σ (Cn(ε)) = {ε1/ne2π ik/n : k =
0, 1, . . . , n − 1}, and the spectral radius of I + Cn(ε) is ρ(I + Cn(ε)) = 1 + ε1/n .

1.2.P23 If A ∈ Mn is singular and has distinct eigenvalues, show that it has a nonsingular
principal minor of size n − 1.

Notes: Sums of principal minors arose in our discussion of the coefficients of a char-
acteristic polynomial. Products of principal minors also arise in a natural way; see
(7.8.11).

1.3 Similarity

We know that a similarity transformation of a matrix in Mn corresponds to representing
its underlying linear transformation on Cn in another basis. Thus, studying similarity
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can be thought of as studying properties that are intrinsic to one linear transformation
or the properties that are common to all its basis representations.

Definition 1.3.1. Let A, B ∈ Mn be given. We say that B is similar to A if there exists
a nonsingular S ∈ Mn such that

B = S−1 AS

The transformation A → S−1 AS is called a similarity transformation by the similarity
matrix S. We say that B is permutation similar to A if there is a permutation matrix
P such that B = PT AP. The relation “B is similar to A” is sometimes abbreviated
B ∼ A.

Observation 1.3.2. Similarity is an equivalence relation on Mn; that is, similarity is
reflexive, symmetric, and transitive; see (0.11).

Like any equivalence relation, similarity partitions the set Mn into disjoint equiva-
lence classes. Each equivalence class is the set of all matrices in Mn similar to a given
matrix, a representative of the class. All matrices in an equivalence class are similar,
and matrices in different classes are not similar. The crucial observation is that matri-
ces in a similarity class share many important properties. Some of these are mentioned
here; a complete description of the similarity invariants (e.g., Jordan canonical form)
is in Chapter 3.

Theorem 1.3.3. Let A, B ∈ Mn. If B is similar to A, then A and B have the same
characteristic polynomial.

Proof. Compute

pB(t) = det (t I − B)
= det (t S−1S − S−1 AS) = det (S−1(t I − A)S)
= det S−1det (t I − A) det S = (det S)−1(det S)det (t I − A)
= det (t I − A) = pA(t) �

Corollary 1.3.4. Let A, B ∈ Mn and suppose that A is similar to B. Then

(a) A and B have the same eigenvalues.
(b) If B is a diagonal matrix, its main diagonal entries are the eigenvalues of A.
(c) B = 0 (a diagonal matrix) if and only if A = 0.
(d) B = I (a diagonal matrix) if and only if A = I .

Exercise. Verify the assertions in the preceding corollary.

Example 1.3.5. Having the same eigenvalues is a necessary but not sufficient
condition for similarity. Consider

[ 0
0

1
0

]
and

[ 0
0

0
0

]
, which have the same eigen-

values but are not similar (why not?).

Exercise. Suppose that A, B ∈ Mn are similar and let q(t) be a given polynomial.
Show that q(A) and q(B) are similar. In particular, show that A + α I and B + α I
are similar for any α ∈ C.

Exercise. Let A, B, C, D ∈ Mn . Suppose that A ∼ B and C ∼ D, both via the
same similarity matrix S. Show that A + C ∼ B + D and AC ∼ B D.
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Exercise. Let A, S ∈ Mn and suppose that S is nonsingular. Show that
Sk(S−1 AS) = Sk(A) for all k = 1, . . . , n and explain why Ek(S−1 AS) = Ek(A)
for all k = 1, . . . , n. Thus, all the principal minor sums (1.2.10) are similarity
invariants, not just the determinant and trace.

Exercise. Explain why rank is a similarity invariant: If B ∈ Mn is similar to
A ∈ Mn , then rank B = rank A. Hint: See (0.4.6).

Since diagonal matrices are especially simple and have very nice properties, we
would like to know which matrices are similar to diagonal matrices.

Definition 1.3.6. If A ∈ Mn is similar to a diagonal matrix, then A is said to be
diagonalizable.

Theorem 1.3.7. Let A ∈ Mn be given. Then A is similar to a block matrix of the form[
� C
0 D

]
, � = diag(λ1, . . . , λk), D ∈ Mn−k, 1 ≤ k < n (1.3.7.1)

if and only if there are k linearly independent vectors in Cn, each of which is an
eigenvector of A. The matrix A is diagonalizable if and only if there are n linearly
independent vectors, each of which is an eigenvector of A. If x (1), . . . , x (n) are linearly
independent eigenvectors of A and if S = [x (1) . . . x (n)], then S−1 AS is a diagonal
matrix. If A is similar to a matrix of the form (1.3.7.1), then the diagonal entries of �

are eigenvalues of A; if A is similar to a diagonal matrix �, then the diagonal entries
of � are all of the eigenvalues of A.

Proof. Suppose that k < n, the n-vectors x (1), . . . , x (k) are linearly independent, and
Ax (i) = λi x (i) for each i = 1, . . . , k. Let � = diag(λ1, . . . , λk), let S1 = [x (1) . . . x (k)],
and choose any S2 ∈ Mn such that S = [S1 S2] is nonsingular. Calculate

S−1 AS = S−1[Ax (1) . . . Ax (k) AS2] = S−1[λ1x (1) . . . λk x (k) AS2]

= [λ1S−1x (1) . . . λk S−1x (k) S−1 AS2] = [λ1e1 . . . λkek S−1 AS2]

=
[

� C
0 D

]
, � = diag(λ1, . . . , λk),

[
C
D

]
= S−1 AS2

Conversely, if S is nonsingular, S−1 AS =
[

�

0
C
D

]
, and we partition S = [S1 S2]

with S1 ∈ Mn,k , then S1 has linearly independent columns and [AS1 AS2] = AS =
S
[

�

0
C
D

]
= [S1� S1C + S2 D]. Thus, AS1 = S1�, so each column of S1 is an eigen-

vector of A.
If k = n and we have a basis {x (1), . . . , x (n)} of Cn such that Ax (i) = λi x (i) for

each i = 1, . . . , n, let � = diag(λ1, . . . , λn) and let S = [x (1) . . . x (n)], which is non-
singular. Our previous calculation shows that S−1 AS = �. Conversely, if S is non-
singular and S−1 AS = �, then AS = S�, so each column of S is an eigenvector
of A.

The final assertions about the eigenvalues follow from an examination of the char-
acteristic polynomials: pA(t) = p�(t)pD(t) if k < n and pA(t) = p�(t) if k = n. �
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The proof of Theorem 1.3.7 is, in principle, an algorithm for diagonalizing a diag-
onalizable matrix A ∈ Mn: Find all n of the eigenvalues of A; find n associated (and
linearly independent!) eigenvectors; and construct the matrix S. However, except for
small examples, this is not a practical computational procedure.

Exercise. Show that
[ 0

0
1
0

]
is not diagonalizable. Hint: If it were diagonalizable, it

would be similar to the zero matrix. Alternatively, how many linearly independent
eigenvectors are associated with the eigenvalue 0?

Exercise. Let q(t) be a given polynomial. If A is diagonalizable, show that q(A)
is diagonalizable. If q(A) is diagonalizable, must A be diagonalizable? Why?

Exercise. If λ is an eigenvalue of A ∈ Mn that has multiplicity m ≥ 1, show that
A is not diagonalizable if rank (A − λI ) > n − m.

Exercise. If there are k linearly independent vectors in Cn , each of which is an
eigenvector of A ∈ Mn associated with a given eigenvalue λ, explain carefully
why the (algebraic) multiplicity of λ is at least k.

Diagonalizability is assured if all the eigenvalues are distinct. The basis for this fact
is the following important lemma about some of the eigenvalues.

Lemma 1.3.8. Let λ1, . . . , λk be k ≥ 2 distinct eigenvalues of A ∈ Mn (that is, λi �= λ j

if i �= j and 1 ≤ i, j ≤ k), and suppose that x (i) is an eigenvector associated with λi

for each i = 1, . . . , k. Then the vectors x (1), . . . , x (k) are linearly independent.

Proof. Suppose that there are complex scalars α1, . . . αk such that α1x (1) + α2x (2) +
· · · + αr x (r ) = 0. Let B1 = (A − λ2 I )(A − λ3 I ) · · · (A − λk I ) (the product omits A −
λ1 I ). Since x (i) is an eigenvector associated with the eigenvalue λi for each i =
1, . . . , n, we have B1x (i) = (λi − λ2)(λi − λ3) · · · (λi − λk)x (i), which is zero if 2 ≤
i ≤ k (one of the factors is zero) and nonzero if i = 1 (no factor is zero and x (1) �= 0).
Thus,

0 = B1
(
α1x (1) + α2x (2) + · · · + αk x (k)

)
= α1 B1x (1) + α2 B1x (2) + · · · + αk B1x (k)

= α1 B1x (1) + 0 + · · · + 0 = α1 B1x (1)

which ensures that α1 = 0 since B1x (1) �= 0. Repeat this argument for each j =
2, . . . , k, defining B j by a product like that defining B1, but in which the factor
A − λ j I is omitted. For each j we find that α j = 0, so α1 = · · · = αk = 0 and hence
x (1), . . . , x (k) are linearly independent. �
Theorem 1.3.9. If A ∈ Mn has n distinct eigenvalues, then A is diagonalizable.

Proof. Let x (i) be an eigenvector associated with the eigenvalue λi for each i =
1, . . . , n. Since all the eigenvalues are distinct, Lemma 1.3.8 ensures that the vec-
tors x (1), . . . , x (n) are linearly independent. Theorem 1.3.7 then ensures that A is
diagonalizable. �

Having distinct eigenvalues is sufficient for diagonalizability, but of course, it is not
necessary.
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Exercise. Give an example of a diagonalizable matrix that does not have distinct
eigenvalues.

Exercise. Let A, P ∈ Mn and suppose that P is a permutation matrix, so every
entry of P is either 0 or 1 and PT = P−1; see (0.9.5). Show that the permutation
similarity P AP−1 reorders the diagonal entries of A. For any given diagonal
matrix D ∈ Mn explain why there is a permutation similarity P D P−1 that puts
the diagonal entries of D into any given order. In particular, explain why P can
be chosen so that any repeated diagonal entries occur contiguously.

In general, matrices A, B ∈ Mn do not commute, but if A and B are both dia-
gonal, they always commute. The latter observation can be generalized somewhat; the
following lemma is helpful in this regard.

Lemma 1.3.10. Let B1 ∈ Mn1, . . . , Bd ∈ Mnd be given and let B be the direct sum

B =

⎡
⎢⎣ B1 0

. . .
0 Bd

⎤
⎥⎦ = B1 ⊕ · · · ⊕ Bd

Then B is diagonalizable if and only if each of B1, . . . , Bd is diagonalizable.

Proof. If for each i = 1, . . . , d there is a nonsingular Si ∈ Mni such that S−1
i Bi Si is

diagonal, and if we define S = S1 ⊕ · · · ⊕Sd , then one checks that S−1 BS is diagonal.
For the converse, we proceed by induction. There is nothing to prove for d = 1.

Suppose that d ≥ 2 and that the assertion has been established for direct sums with
d − 1 or fewer direct summands. Let C = B1 ⊕ · · · ⊕ Bd−1, let n = n1 + · · · + nd−1,
and let m = nd . Let S ∈ Mn+m be nonsingular and such that

S−1 BS = S−1 (C ⊕ Bd ) S = � = diag(λ1, λ2, . . . , λn+m)

Rewrite this identity as BS = S�. Partition S = [s1 s2 . . . sn+m] with

si =
[

ξ i

ηi

]
∈ Cn+m, ξ i ∈ Cn, ηi ∈ Cm, i = 1, 2, . . . , n + m

Then Bsi = λi si implies that Cξ i = λiξ i and Bdηi = λiηi for i = 1, 2, . . . , n + m.
The row rank of [ξ 1 . . . ξ n+m] ∈ Mn,n+m is n because this matrix comprises the
first n rows of the nonsingular matrix S. Thus, its column rank is also n, so the
list ξ 1, . . . , ξ n+m contains a linearly independent list of n vectors, each of which is an
eigenvector of C . Theorem 1.3.7 ensures that C is diagonalizable and the induction
hypothesis ensures that its direct summands B1, . . . , Bd are all diagonalizable. The
row rank of [η1 . . . ηn+m] ∈ Mn,n+m is m, so the list η1, . . . , ηn+m contains a linearly
independent list of m vectors; it follows that Bd is diagonalizable as well. �

Definition 1.3.11. Two matrices A, B ∈ Mn are said to be simultaneously diagonal-
izable if there is a single nonsingular S ∈ Mn such that S−1AS and S−1BS are both
diagonal.
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Exercise. Let A, B, S ∈ Mn and suppose that S is nonsingular. Show that A
commutes with B if and only if S−1 AS commutes with S−1 BS.

Exercise. If A, B ∈ Mn are simultaneously diagonalizable, show that they com-
mute. Hint: Diagonal matrices commute.

Exercise. Show that if A ∈ Mn is diagonalizable and λ ∈ C, then A and λI are
simultaneously diagonalizable.

Theorem 1.3.12. Let A, B ∈ Mn be diagonalizable. Then A and B commute if and
only if they are simultaneously diagonalizable.

Proof. Assume that A and B commute, perform a similarity transformation on both A
and B that diagonalizes A (but not necessarily B) and groups together any repeated
eigenvalues of A. If μ1, . . . , μd are the distinct eigenvalues of A and n1, . . . , nd are
their respective multiplicities, then we may assume that

A =

⎡
⎢⎣

μ1 In1 0
μ2 In2 . . .

0 μd Ind

⎤
⎥⎦ , μi �= μ j if i �= j (1.3.13)

Since AB = B A, (0.7.7) ensures that

B =

⎡
⎢⎣ B1 0

. . .
0 Bd

⎤
⎥⎦ , each Bi ∈ Mni (1.3.14)

is block diagonal conformal to A. Since B is diagonalizable, (1.3.10) ensures that each
Bi is diagonalizable. Let Ti ∈ Mni be nonsingular and such that T −1

i Bi Ti is diagonal
for each i = 1, . . . , d; let

T =

⎡
⎢⎣

T1 0
T2 . . .

0 Td

⎤
⎥⎦ (1.3.15)

Then T −1
i μi I ni

Ti = μi Ini , so T −1 AT = A and T −1 BT are both diagonal. The con-
verse is included in an earlier exercise. �

We want to have a version of Theorem 1.3.12 involving arbitrarily many commuting
diagonalizable matrices. Central to our investigation is the notion of an invariant
subspace and the companion notion of a block triangular matrix.

Definitions 1.3.16. A family F ⊆ Mn of matrices is a nonempty finite or infinite set of
matrices; a commuting family is a family of matrices in which every pair of matrices
commutes. For a given A ∈ Mn, a subspace W ⊆ Cn is A-invariant if Aw ∈ W for
every w ∈ W . A subspace W ⊆ Cn is trivial if either W = {0} or W = Cn; otherwise,
it is nontrivial. For a given family F ⊆ Mn, a subspace W ⊆ Cn is F-invariant if W
is A-invariant for each A ∈ F . A given family F ⊆ Mn is reducible if some nontrivial
subspace of Cn is F-invariant; otherwise, F is irreducible.



1.3 Similarity 63

Exercise. For A ∈ Mn , show that each nonzero element of a one-dimensional
A-invariant subspace of Cn is an eigenvector of A.

Exercise. Suppose that n ≥ 2 and S ∈ Mn is nonsingular. Partition S = [S1 S2],
in which S1 ∈ Mn,k and S2 ∈ Mn,n−k with 1 < k < n. Explain why

S−1S1 = [e1 . . . ek] =
[

Ik

0

]
and S−1S2 = [ek+1 . . . en] =

[
0

In−k

]

Invariant subspaces and block triangular matrices are two sides of the same valuable
coin: The former is the linear algebra side, while the latter is the matrix analysis side.
Let A ∈ Mn with n ≥ 2 and suppose that W ⊆ Cn is a k-dimensional subspace with
1 < k < n. Choose a basis s1, . . . , sk of W and let S1 = [s1 . . . sk] ∈ Mn,k . Choose
any sk+1, . . . , sn such that s1, . . . , sn is a basis for Cn , let S2 = [sk+1 . . . sn] ∈ Mn,n−k ,
and let S = [S1 S2]; S has linearly independent columns, so it is nonsingular. If W
is A-invariant, then As j ∈ W for each j = 1, . . . , k, so each As j is a linear com-
bination of s1, . . . , sk , that is, AS1 = S1 B for some B ∈ Mk . If AS1 = S1 B, then
AS = [AS1 AS2] = [S1 B AS2] and hence

S−1 AS = [
S−1S1 B S−1 AS2

] = [[
Ik

0

]
B S−1 AS2

]

=
[

B C
0 D

]
, B ∈ Mk, 1 ≤ k ≤ n − 1 (1.3.17)

The conclusion is that A is similar to a block triangular matrix (1.3.17) if it has a
k-dimensional invariant subspace. But we can say a little more: We know that B ∈ Mk

has an eigenvalue, so suppose that Bξ = λξ for some scalar λ and a nonzero ξ ∈ Ck .
Then 0 �= S1ξ ∈ W and A(S1ξ ) = (AS1)ξ = S1 Bξ = λ(S1ξ ), which means that A has
an eigenvector in W .

Conversely, if S = [S1 S2] ∈ Mn is nonsingular, S1 ∈ Mn,k , and S−1 AS has the
block triangular form (1.3.17), then

AS1 = AS

[
Ik

0

]
= S

[
B C
0 D

] [
Ik

0

]
= [

S1 S2
] [ B1

0

]
= S1 B

so the (k-dimensional) span of the columns of S1 is A-invariant. We summarize the
foregoing discussion in the following observation.

Observation 1.3.18. Suppose that n ≥ 2. A given A ∈ Mn is similar to a block tri-
angular matrix of the form (1.3.17) if and only if some nontrivial subspace of Cn is
A-invariant. Moreover, if W ⊆ Cn is a nonzero A-invariant subspace, then some vector
in W is an eigenvector of A. A given family F ⊆ Mn is reducible if and only if there
is some k ∈ {2, . . . , n − 1} and a nonsingular S ∈ Mn such that S−1 AS has the form
(1.3.17) for every A ∈ F .

The following lemma is at the heart of many subsequent results.

Lemma 1.3.19. Let F ⊂ Mn be a commuting family. Then some nonzero vector in Cn

is an eigenvector of every A ∈ F .
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Proof. There is always a nonzero F-invariant subspace, namely, Cn . Let m =
min{dim V : V is a nonzero F-invariant subspace of Cn} and let W be any given
F-invariant subspace such that dim W = m. Let any A ∈ F be given. Since W is F-
invariant, it is A-invariant, so (1.3.18) ensures that there is some nonzero x0 ∈ W and
some λ ∈ C such that Ax0 = λx0. Consider the subspace WA,λ = {x ∈ W : Ax = λx}.
Then x0 ∈ WA,λ, so WA,λ is a nonzero subspace of W . For any B ∈ F and any x ∈ WA,λ,
F-invariance of W ensures that Bx ∈ W . Using commutativity of F , we compute

A(Bx) = (AB)x = (B A)x = B(Ax) = B(λx) = λ(Bx)

which shows that Bx ∈ WA,λ. Thus, WA,λ is F-invariant and nonzero, so dim WA,λ ≥
m. But WA,λ ⊆ W , so dim WA,λ ≤ m and hence W = WA,λ. We have now shown that
for each A ∈ F , there is some scalar λA such that Ax = λAx for all x ∈ W , so every
nonzero vector in W is an eigenvector of every matrix in F . �

Exercise. Consider the nonzero F-invariant subspace W in the preceding proof.
Explain why m = dim W = 1.

Exercise. Suppose that F ⊂ Mn is a commuting family. Show that there is a
nonsingular S ∈ Mn such that for every A ∈ F , S−1 AS has the block triangular
form (1.3.17) with k = 1.

Lemma 1.3.19 concerns commuting families of arbitrary nonzero cardinality. Our
next result shows that Theorem 1.3.12 can be extended to arbitrary commuting families
of diagonalizable matrices.

Definition 1.3.20. A family F ⊂ Mn is said to be simultaneously diagonalizable if
there is a single nonsingular S ∈ Mn such that S−1 AS is diagonal for every A ∈ F .

Theorem 1.3.21. Let F ⊂ Mn be a family of diagonalizable matrices. Then F is a
commuting family if and only if it is a simultaneously diagonalizable family. Moreover,
for any given A0 ∈ F and for any given ordering λ1, . . . , λn of the eigenvalues of A0,
there is a nonsingular S ∈ Mn such that S−1 A0S = diag(λ1, . . . , λn) and S−1 BS is
diagonal for every B ∈ F .

Proof. If F is simultaneously diagonalizable, then it is a commuting family by a
previous exercise. We prove the converse by induction on n. If n = 1, there is nothing
to prove since every family is both commuting and diagonal. Let us suppose that n ≥ 2
and that, for each k = 1, 2, . . . , n − 1, any commuting family of k-by-k diagonalizable
matrices is simultaneously diagonalizable. If every matrix in F is a scalar matrix, there
is nothing to prove, so we may assume that A ∈ F is a given n-by-n diagonalizable
matrix with distinct eigenvalues λ1, λ2, . . . , λk and k ≥ 2, that AB = B A for every
B ∈ F , and that each B ∈ F is diagonalizable. Using the argument in (1.3.12), we
reduce to the case in which A has the form (1.3.13). Since every B ∈ F commutes
with A, (0.7.7) ensures that each B ∈ F has the form (1.3.14). Let B, B̂ ∈ F , so
B = B1 ⊕ · · · ⊕ Bk and B̂ = B̂1 ⊕ · · · ⊕ B̂k , in which each of Bi , B̂i has the same
size and that size is at most n − 1. Commutativity and diagonalizability of B and B̂
imply commutativity and diagonalizability of Bi and B̂i for each i = 1, . . . , d. By the
induction hypothesis, there are k similarity matrices T1, T2, . . . , Tk of appropriate size,
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each of which diagonalizes the corresponding block of every matrix in F . Then the
direct sum (1.3.15) diagonalizes every matrix in F .

We have shown that there is a nonsingular T ∈ Mn such that T −1 BT is diagonal for
every B ∈ F . Then T −1 A0T = P diag(λ1, . . . , λn)PT for some permutation matrix
P , PT (T −1 A0T )P = (T P)−1 A0(T P) = diag(λ1, . . . , λn) and (T P)−1 B(T P) =
PT (T −1 BT )P is diagonal for every B ∈ F (0.9.5). �

Remarks: We defer two important issues until Chapter 3: (1) Given A, B ∈ Mn,

how can we determine if A is similar to B? (2) How can we tell if a given matrix is
diagonalizable without knowing its eigenvectors?

Although AB and B A need not be the same (and need not be the same size even
when both products are defined), their eigenvalues are as much the same as possible.
Indeed, if A and B are both square, then AB and B A have exactly the same eigenvalues.
These important facts follow from a simple but very useful observation.

Exercise. Let X ∈ Mm,n be given. Explain why
[ Im

0
X
In

] ∈ Mm+n is nonsingular

and verify that its inverse is
[ Im

0
−X
In

]
.

Theorem 1.3.22. Suppose that A ∈ Mm,n and B ∈ Mn,m with m ≤ n. Then the n
eigenvalues of B A are the m eigenvalues of AB together with n − m zeroes; that
is, pB A(t) = tn−m pAB(t). If m = n and at least one of A or B is nonsingular, then AB
and B A are similar.

Proof. A computation reveals that[
Im −A
0 In

] [
AB 0
B 0n

] [
Im A
0 In

]
=
[

0m 0
B B A

]

and the preceding exercise ensures that C1 = [ AB
B

0
0n

]
and C2 = [ 0m

B
0

B A

]
are simi-

lar. The eigenvalues of C1 are the eigenvalues of AB together with n zeroes. The
eigenvalues of C2 are the eigenvalues of B A together with m zeroes. Since the eigen-
values of C1 and C2 are the same, the first assertion of the theorem follows. The
final assertion follows from the observation that AB = A(B A)A−1 if A is nonsingular
and m = n. �

Theorem 1.3.22 has many applications, several of which emerge in the following
chapters. Here are just four.

Example 1.3.23. Eigenvalues of a low-rank matrix. Suppose that A ∈ Mn is
factored as A = XY T , in which X, Y ∈ Mn,r and r < n. Then the eigenvalues of
A are the same as those of the r -by-r matrix Y T X , together with n − r zeroes. For
example, consider the n-by-n all-ones matrix Jn = eeT (0.2.8). Its eigenvalues
are the eigenvalue of the 1-by-1 matrix eT e = [n], namely, n, together with n − 1
zeroes. The eigenvalues of any matrix of the form A = xyT with x, y ∈ Cn

(rank A is at most 1) are yT x , together with n − 1 zeroes. The eigenvalues of any
matrix of the form A = xyT + zwT = [x z][y w]T with x, y, z, w ∈ Cn (rank A
is at most 2) are the two eigenvalues of [y w]T [x z] = [ yT x

wT x
yT z
wT z

]
(1.2.4b) together

with n − 2 zeroes.
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Example 1.3.24. Cauchy’s determinant identity. Let a nonsingular A ∈ Mn

and x, y ∈ Cn be given. Then

det(A + xyT ) = (det A)
(
det(I + A−1xyT )

)
= (det A)

n∏
i=1

λi (I + A−1xyT )

= (det A)
n∏

i=1

(
1 + λi (A−1xyT )

)
= (det A)

(
1 + yT A−1x

)
(use (1.3.23))

= det A + yT
(
(det A) A−1

)
x = det A + yT (adj A) x

Cauchy’s identity det(A + xyT ) = det A + yT (adj A) x , valid for any A ∈ Mn ,
now follows by continuity. For a different approach, see (0.8.5).

Example 1.3.25. For any n ≥ 2, consider the n-by-n real symmetric Hankel
matrix

A = [i + j]n
i, j=1 =

⎡
⎢⎢⎢⎣

2 3 4 · · ·
3 4 5 · · ·
4 5 6 · · ·
...

. . .

⎤
⎥⎥⎥⎦ = veT + evT = [v e][e v]T

in which every entry of e ∈ Rn is 1 and v = [1 2 . . . n]T . The eigenvalues of A
are the same as those of

B = [e v]T [v e] =
[

eT v eT e
vT v vT e

]
=
[ n(n+1)

2 n
n(n+1)(2n+1)

6
n(n+1)

2

]
together with n − 2 zeroes. According to (1.2.4b), the eigenvalues B (one positive
and one negative) are

n(n + 1)

[
1

2
±
√

2n + 1

6(n + 1)

]

Example 1.3.26. For any n ≥ 2, consider the n-by-n real skew-symmetric
Toeplitz matrix

A = [i − j]n
i, j=1 =

⎡
⎢⎢⎢⎣

0 −1 −2 · · ·
1 0 −1 · · ·
2 1 0 · · ·
...

. . .

⎤
⎥⎥⎥⎦ = veT − evT = [v − e][e v]T

in which every entry of e ∈ Rn is 1 and v = [1 2 . . . n]T . Except for n − 2
zeroes, the eigenvalues of A are the same as those of

B = [e v]T [v − e] =
[

eT v −eT e
vT v −vT e

]

which, using (1.2.4b) again, are ± ni
2

√
n2−1

3 .
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Theorem 1.3.22 on the eigenvalues of AB versus B A is only part of the story; we
return to that story in (3.2.11).

If A ∈ Mn is diagonalizable and A = S�S−1, then aS also diagonalizes A for any
a �= 0. Thus, a diagonalizing similarity is never unique. Nevertheless, every similarity
of A to a particular diagonal matrix can be obtained from just one given similarity.

Theorem 1.3.27. Suppose that A ∈ Mn is diagonalizable, let μ1, . . . , μd be its distinct
eigenvalues with respective multiplicities n1, . . . , nd, let S, T ∈ Mn be nonsingular, and
suppose that A = S�S−1, in which � is a diagonal matrix of the form (1.3.13). Then

(a) A = T �T −1 if and only if T = S(R1 ⊕ · · · ⊕ Rd ) in which each Ri ∈ Mni is
nonsingular.

(b) If S = [S1 . . . Sd ] and T = [T1 . . . Td ] are partitioned conformally to �, then
A = S�S−1 = T �T −1 if and only if for each i = 1, . . . , d the column space of
Si is the same as the column space of Ti .

(c) If A has n distinct eigenvalues and S = [s1 . . . sn] and T = [t1 . . . tn] are par-
titioned according to their columns, then A = S�S−1 = T �T −1 if and only if
there is a nonsingular diagonal matrix R = diag(r1, . . . , rn) such that T = S R if
and only if, for each i = 1, . . . , n, the column si is a nonzero scalar multiple of
the corresponding column ti .

Proof. We have S�S−1 = T �T −1 if and only if (S−1T )� = �(S−1T ) if and only
if S−1T is block diagonal conformal to � (0.7.7), that is, if and only if S−1T =
R1 ⊕ · · · ⊕ Rd and each Ri ∈ Mni is nonsingular. For (b), observe that if 1 ≤ k ≤ n,
then the column space of X ∈ Mn,k is contained in the column space of Y ∈ Mn,k if and
only if there is some C ∈ Mk such that X = Y C ; if, in addition, rank X = rank Y = k,
then C must be nonsingular. The assertion (c) is a special case of (a) and (b). �

If real matrices are similar via a complex matrix, are they similar via a real matrix?
Is there a real version of (1.3.21) for commuting real matrices? The following lemma
is the key to answering such questions.

Lemma 1.3.28. Let S ∈ Mn be nonsingular and let S = C + i D, in which C, D ∈
Mn(R). There is a real number τ such that T = C + τ D is nonsingular.

Proof. If C is nonsingular, take α = 0. If C is singular, consider the polynomial
p(t) = det(C + t D), which is not a constant (degree zero) polynomial since p(0) =
det C = 0 �= det S = p(i). Since p(t) has only finitely many zeroes in the complex
plane, there is a real τ such that p(τ ) �= 0, so C + τ D is nonsingular. �

Theorem 1.3.29. LetF = {Aα : α ∈ I} ⊂ Mn(R) andG = {Bα : α ∈ I} ⊂ Mn(R) be
given families of real matrices. If there is a nonsingular S ∈ Mn such that Aα = SBα S−1

for every α ∈ I, then there is a nonsingular T ∈ Mn(R) such that Aα = T BαT −1 for
every α ∈ I. In particular, two real matrices that are similar over C are similar
over R.

Proof. Let S = C + i D be nonsingular, in which C, D ∈ Mn(R). The preceding
lemma ensures that there is a real number τ such that T = C + τ D is nonsingu-
lar. The similarity Aα = SBα S−1 is equivalent to the identity Aα(C + i D) = Aα S =
SBα = (C + i D)Bα . Equating the real and imaginary parts of this identity shows that
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AαC = C Bα and Aα D = DBα . Consequently, AαC = C Bα and Aα(τ D) = (τ D)Bα ,
so AαT = T Bα and Aα = T BαT −1. �

An immediate consequence of the preceding theorem is a real version of (1.3.21).

Corollary 1.3.30. Let F = {Aα : α ∈ I} ⊂ Mn(R) be a family of real diagonalizable
matrices with real eigenvalues. Then F is a commuting family if and only if there is
a nonsingular real matrix T such that T−1 AαT = �α is diagonal for every A ∈ F .
Moreover, for any given α0 ∈ I and for any given ordering λ1, . . . , λn of the eigenvalues
of Aα0 , there is a nonsingular T ∈ Mn(R) such that T −1 Aα0 T = diag(λ1, . . . , λn) and
T −1 AαT is diagonal for every α ∈ I.

Proof. For the “only if” assertion, apply the preceding theorem to the families F =
{Aα : α ∈ I} and G = {�α : α ∈ I}. The “if” assertion follows as in (1.3.21). �

Our final theorem about similarity shows that the only relationship between the
eigenvalues and main diagonal entries of a complex matrix is that their respective sums
be equal.

Theorem 1.3.31 (Mirsky). Let an integer n ≥ 2 and complex scalars λ1, . . . , λn and
d1, . . . , dn be given. There is an A ∈ Mn with eigenvalues λ1, . . . , λn and main diagonal
entries d1, . . . , dn if and only if

∑n
i=1 λi =

∑n
i=1 di . If λ1, . . . , λn and d1, . . . , dn are

all real and have the same sums, there is an A ∈ Mn(R) with eigenvalues λ1, . . . , λn

and main diagonal entries d1, . . . , dn.

Proof. We know that tr A = E1(A) = S1(A) for any A ∈ Mn (1.2.16), which estab-
lishes the necessity of the stated condition. We must prove its sufficiency.

If k ≥ 2 and if λ1, . . . , λk and d1, . . . , dk are any given complex scalars such that∑k
i=1 λi =

∑k
i=1 di , we claim that the upper bidiagonal matrix

T (λ1, . . . , λk) =

⎡
⎢⎢⎢⎢⎣

λ1 1

λ2
. . .
. . . 1

λk

⎤
⎥⎥⎥⎥⎦ ∈ Mk

is similar to a matrix with diagonal entries d1, . . . , dk ; that matrix has the property

asserted. Let L(s, t) =
[

1
s−t

0
1

]
, so L(s, t)−1 =

[
1

t−s
0
1

]
.

Consider first the case k = 2, so λ1 + λ2 = d1 + d2. Compute the similarity

L(λ1, d1)T (λ1, λ2)L(λ1, d1)−1 =
[

1 0
λ1 − d1 1

] [
λ1 1
0 λ2

] [
1 0

d1 − λ1 1

]

=
[

d1 �
� λ1 + λ2 − d1

]
=
[

d1 �
� d2

]
in which we use the hypothesis λ1 + λ2 − d1 = d1 + d2 − d1 = d2. This verifies our
claim for k = 2.

We proceed by induction. Assume that our claim has been proved for
some k ≥ 2 and that

∑k+1
i=1 λi =

∑k+1
i=1 di . Partition T (λ1, . . . , λk+1) = [Ti j ]2

i, j=1, in
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which T11 = T (λ1, λ2), T12 = E2, T21 = 0, and T22 = T (λ3, . . . , λk+1), with E2 =
[e2 0 . . . 0] ∈ M2,k−1 and e2 = [0 1]T ∈ C2. Let L = L(λ1, d1) ⊕ Ik−1 and compute
LT (λ1, . . . , λk+1)L−1

=
[

L(λ1, d1) 0
0 Ik−1

] [
T (λ1, λ2) E2

0 T (λ3, . . . , λk+1)

] [
L(d1, λ1) 0

0 Ik−1

]

=
⎡
⎣
[

d1 �
� λ1 + λ2 − d1

]
E2

0 T (λ3, . . . , λk+1)

⎤
⎦

=
[

d1 �
� T (λ1 + λ2 − d1, λ3, . . . , λk+1)

]
=
[

d1 �
� D

]
The sum of the eigenvalues of D = T (λ1 + λ2 − d1, λ3, . . . , λk+1) ∈ Mk is

∑k+1
i=1 λi −

d1 =∑k+1
i=1 di − d1 =∑k+1

i=2 di , so the induction hypothesis ensures that there is a
nonsingular S ∈ Mk such that the diagonal entries of SDS−1 are d2, . . . , dk+1. Then[

1
0

0
S

] [
d1

�
�
D

] [
1
0

0
S

]−1
=
[

d1

�
�

SDS−1

]
has diagonal entries d1, d2, . . . , dk+1.

If λ1, . . . , λn and d1, . . . , dn are all real, all of the matrices and similarities in the
preceding constructions are real. �

Exercise. Write out the details of the inductive step k = 2 ⇒ k = 3 in the pre-
ceding proof.

Problems

1.3.P1 Let A, B ∈ Mn . Suppose that A and B are diagonalizable and commute. Let
λ1, . . . , λn be the eigenvalues of A and let μ1, . . . , μn be the eigenvalues of B. (a) Show
that the eigenvalues of A + B are λ1 + μi1

, λ2 + μi2
, . . . , λn + μin

, for some permutation
i1, . . . , in of 1, . . . , n. (b) If B is nilpotent, explain why A and A + B have the same
eigenvalues. (c) What are the eigenvalues of AB?

1.3.P2 If A, B ∈ Mn and if A and B commute, show that any polynomial in A commutes
with any polynomial in B.

1.3.P3 If A ∈ Mn , S AS−1 = � = diag(λ1, . . . , λn), and p(t) is a polynomial, show that
p(A) = S−1 p(�)S and that p(�) = diag(p(λ1), . . . , p(λn)). This provides a simple way
to evaluate p(A) if one can diagonalize A.

1.3.P4 If A ∈ Mn has distinct eigenvalues α1, . . . , αn and commutes with a given matrix
B ∈ Mn , show that B is diagonalizable and that there is a polynomial p(t) of degree at
most n − 1 such that B = p(A).

1.3.P5 Give an example of two commuting matrices that are not simultaneously diagonal-
izable. Does this contradict (1.3.12)? Why?

1.3.P6 (a) If � = diag(λ1, . . . , λn), show that p�(�) is the zero matrix. (b) Suppose
that A ∈ Mn is diagonalizable. Explain why pA(t) = p�(t) and p�(A) = Sp�(�)S−1.
Conclude that pA(A) is the zero matrix.

1.3.P7 A matrix A ∈ Mn is a square root of B ∈ Mn if A2 = B. Show that every dia-
gonalizable B ∈ Mn has a square root. Does B = [ 0

0
1
0

]
have a square root? Why?
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1.3.P8 If A, B ∈ Mn and if at least one has distinct eigenvalues (no assumption, even of
diagonalizability, about the other), provide details for the following geometric argument
that A and B commute if and only if they are simultaneously diagonalizable: One direction
is easy; for the other, suppose that B has distinct eigenvalues and Bx = λx with x �= 0.
Then B(Ax) = A(Bx) = Aλx = λAx , so Ax = μx for some μ ∈ C (Why? See (1.2.18).)
Thus, we can diagonalize A with the same matrix of eigenvectors that diagonalizes B. Of
course, the eigenvalues of A need not be distinct.

1.3.P9 Consider the singular matrices A =
[

1
0

0
0

]
and B =

[
0
1

0
0

]
. Show that AB and B A

are not similar but that they do have the same eigenvalues.

1.3.P10 Let A ∈ Mn be given, and let λ1, . . . , λk be distinct eigenvalues of A. For each
i = 1, 2, . . . , k, suppose that x (i)

1 , x (i)
2 , . . . , x (i)

ni
is a list of linearly independent eigen-

vectors of A associated with the eigenvalue λi . Show that the list x (1)
1 , x (1)

2 , . . . ,

x (1)
n1

, . . . , x (k)
1 , x (k)

2 , . . . , x (k)
nk

of all of these vectors is linearly independent.

1.3.P11 Provide details for the following alternative proof of (1.3.19): (a) Suppose
that A, B ∈ Mn commute, x �= 0, and Ax = λx . Consider the sequence of vectors
x, Bx, B2x, B3x, . . . . Suppose that k is the smallest positive integer such that Bk x is
a linear combination of its predecessors; S = span{x, Bx, B2x, . . . , Bk−1x} is B-invariant
and hence contains an eigenvector of B. But AB j x = B j Ax = B jλx = λB j x , so every
nonzero vector in S is an eigenvector for A. Conclude that A and B have a common
eigenvector. (b) If F = {A1, A2, . . . , Am} ⊂ Mn is a finite commuting family, use induc-
tion to show that it has a common eigenvector: If y �= 0 is a common eigenvector for
A1, A2, . . . , Am−1, consider y, Am y, A2

m y, A3
m y, . . . . (c) If F ⊂ Mn is an infinite commut-

ing family, then no list of more than n2 matrices in F can be linearly independent. Select
a maximal linearly independent set and explain why a common eigenvector for this finite
set of matrices is a common eigenvector for F .

1.3.P12 Let A, B ∈ Mn , and suppose that either A or B is nonsingular. If AB is diagonal-
izable, show that B A is also diagonalizable. Consider A = [ 0

0
1
0

]
and B = [ 1

0
1
0

]
to show

that this need not be true if both A and B are singular.

1.3.P13 Show that two diagonalizable matrices are similar if and only if their characteristic
polynomials are the same. Is this true for two matrices that are not both diagonalizable?

1.3.P14 Suppose that A ∈ Mn is diagonalizable. (a) Prove that the rank of A is equal to the
number of its nonzero eigenvalues. (b) Prove that rank A = rank Ak for all k = 1, 2, . . . .

(c) Prove that A is nilpotent if and only if A = 0. (d) If tr A = 0, prove that rank A �= 1.
(e) Use each of the four preceding results to show that B = [ 0

0
1
0

]
is not diagonalizable.

1.3.P15 Let A ∈ Mn and a polynomial p(t) be given. If A is diagonalizable, show that
p(A) is diagonalizable. What about the converse?

1.3.P16 Let A ∈ Mn and suppose that n > rank A = r ≥ 1. If A is similar to B ⊕ 0n−r (so
B ∈ Mr is nonsingular), show that A has a nonsingular r -by-r principal submatrix (that is,
A is rank principal (0.7.6)). If A is rank principal, must it be similar to B ⊕ 0n−r ?

1.3.P17 Let A, B ∈ Mn be given. Prove that there is a nonsingular T ∈ Mn(R) such that
A = T BT −1 if and only if there is a nonsingular S ∈ Mn such that both A = SBS−1 and
Ā = SB̄S−1.

1.3.P18 Suppose that A, B ∈ Mn are coninvolutory, that is, AĀ = B B̄ = I . Show that A
and B are similar over C if and only if they are similar over R.
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1.3.P19 Let B, C ∈ Mn and define A = [ B
C

C
B

] ∈ M2n . Let Q = 1√
2

[ In

In

In

−In

]
and verify

that Q−1 = Q = QT . Let K2n =
[

0n In

In 0n

]
. (a) A matrix in M2n with the block structure

of A is said to be 2-by-2 block centrosymmetric. Show that A ∈ M2n is 2-by-2 block
centrosymmetric if and only if K2n A = AK2n . Deduce from this identity that the inverse of
a nonsingular 2-by-2 block centrosymmetric matrix is 2-by-2 block centrosymmetric, and
that a product of 2-by-2 block centrosymmetric matrices is 2-by-2 block centrosymmetric.
(b) Show that Q−1AQ = (B + C) ⊕ (B − C). (c) Explain why detA = det(B2 + C B −
BC − C2) and rankA = rank(B + C) + rank(B − C). (d) Explain why

[ 0
C

C
0

]
is similar

to C ⊕ (−C) and why its eigenvalues occur in ± pairs. What more can you say about the
eigenvalues if C is real? For a more precise statement, see (4.6.P20).

1.3.P20 Represent any A, B ∈ Mn as A = A1 + i A2 and B = B1 + i B2, in which
A1, A2, B1, B2 ∈ Mn(R). Define R1(A) = [ A1

−A2

A2

A1

] ∈ M2n(R). Show the following:
(a) R1(A + B) = R1(A) + R1(B), R1(AB) = R1(A)R1(B), and R(In) = I2n .
(b) If A is nonsingular then R1(A) is nonsingular, R1(A)−1 = R1(A−1), and R1(A)−1 =[

X Y
−Y X

]
has the same block structure as R1(A).

(c) If S is nonsingular, then R1(S AS−1) = R1(S)R1(A)R1(S)−1.
(d) If A and B are similar, then R1(A) and R1(B) are similar.

Let the eigenvalues of A be λ1, . . . , λn , let S = [ In

0
i In

In

]
, and let U = 1√

2

[ In

i I n

i In

In

]
.

Show the following:
(e) S−1 = S̄ and U−1 = Ū = U ∗.
(f) S−1 R1(A)S = [ A

−A2

0
Ā

]
and U−1 R1(A)U = [ A

0
0
Ā

]
.

(g) The eigenvalues of R1(A) are the same as the eigenvalues of A ⊕ Ā, which are
λ1, . . . , λn, λ1, . . . , λn (see (1.3.P30) for a more precise statement).

(h) det R1(A) = | det A|2 ≥ 0 and rank R1(A) = 2 rank A.
(i) If R1(A) is nonsingular then A is nonsingular.
(j) i In is not similar to −i In , but R1(i In) is similar to R1(−i In), so the implication in (d)

cannot be reversed.
(k) pR1(A)(t) = pA(t)pĀ(t).
(l) R1(A∗) = R1(A)T , so A is Hermitian if and only if R1(A) is (real) symmetric and A

is unitary if and only if R1(A) is real orthogonal.
(m) A commutes with A∗ if and only if R1(A) commutes with R1(A)T , that is, the complex

matrix A is normal if and only if the real matrix R1(A) is normal; see (2.5).
(n) A matrix in M2n(R) with the block structure of R1(A) is said to be a matrix of complex

type. Let S2n =
[

0n In

−In 0n

]
. Show that A ∈ M2n(R) is a matrix of complex type if and

only if S2n A = AS2n . Deduce from this identity that the inverse of a real matrix of
complex type is a matrix of complex type and that a product of real matrices of complex
type is a matrix of complex type.

The block matrix R1(A) is an example of a real representation of A; see (4.4.P29)
for a generalization to a complex representation, also known as a matrix of quaternion
type.

1.3.P21 Using the same notation as in the preceding problem, define R2(A) = [ A1

A2

A2

−A1

] ∈
M2n(R). Let V = 1√

2

[−i In

In

−i In

−In

]
, and consider R2(i In) = [ 0

In

In

0

]
and R2(In) = [ In

0
0

−In

]
.

Show the following:
(a) V −1 = V ∗, R2(In)−1 = R2(In) = R2(In)∗, R2(i In)−1 = R2(i In) = R2(i In)∗, and

R2(i In) = V −1 R2(In)V .
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(b) A = B if and only if R2(A) = R2(B), and R2(A + B) = R2(A) + R2(B).
(c) R2(A) = V

[ 0
A

Ā
0

]
V −1.

(d) det R2(A) = (−1)n| det A|2; see (0.8.5.13).
(e) R2(A) is nonsingular if and only if A is nonsingular.
(f) Characteristic polynomials and eigenvalues: pR2(A)(t) = det(t2 I − AĀ) = pAĀ(t2)

(0.8.5.13), so if μ1, . . . , μn are the eigenvalues of AĀ then ±μ1, . . . ,±μn are the
eigenvalues of R2(A). Moreover, pR2(A)(t) has real coefficients, so the non-real eigen-
values of AĀ occur in conjugate pairs.

(g) R2(AB) = R2(A · In · B) = R2(A)R2(In)R2(B).
(h) R2( Ā) = R2(In)R2(A)R2(In), so R2( Ā) is similar to R2(A) and R2(AB̄C) =

R2(A)R2(B)R2(C).
(i) −R2(A) = R2(−A) = R2(i In · A · i In) = (R2(i In)R2(In)) · R2(A) · (R2(i In)

R2(In))−1, so R2(−A) is similar to R2(A).
(j) R2(A)R2(B) = V ( ĀB ⊕ AB̄)V −1.
(k) If A is nonsingular, then R2(A)−1 = R2( Ā−1).
(l) R2(A)2 = R1( ĀA) = R2(AĀ)R2(In).

(m) If S is nonsingular, then R2(S AS̄−1) = (R2(S)R2(In)) · R2(A) · (R2(S)R2(In))−1, so
R2(S AS̄−1) is similar to R2(A). See (4.6.P19) for the converse: if R2(A) is similar to
R2(B), then there is a nonsingular S such that B = S AS̄−1.

(n) R2(AT ) = R2(A)T , so A is (complex) symmetric if and only if R2(A) is (real)
symmetric.

(o) A is unitary if and only if R2(A) is real orthogonal.

The block matrix R2(A) is a second example of a real representation of A.

1.3.P22 Let A, B ∈ Mn . Show that A and B are similar if and only if there are X, Y ∈ Mn ,
at least one of which is nonsingular, such that A = XY and B = Y X .

1.3.P23 Let B ∈ Mn and C ∈ Mn,m and define A = [ B
0

C
0m

] ∈ Mn+m . Show that A is
similar to B ⊕ 0m if and only if rank[B C] = rank B, that is, if and only if there is some
X ∈ Mn,m such that C = B X .

1.3.P24 For a given integer n ≥ 3, let θ = 2π/n and let A = [cos( jθ + kθ )]n
j,k=1 ∈ Mn(R).

Show that A = [x y][x y]T , in which x = [α α2 . . . αn]T , y = [α−1 α−2 . . . α−n]T , and
α = e2π i/n . Show that the eigenvalues of A are n/2 and −n/2, together with n − 2 zeroes.

1.3.P25 Let x, y ∈ Cn be given and suppose that y∗x �= −1. (a) Verify that (I + xy∗)−1 =
I − cxy∗, in which c = (1 + y∗x)−1. (b) Let � = diag(λ1, . . . , λn) and suppose that y∗x =
0. Explain why the eigenvalues of

A = (I + xy∗)�(I − xy∗) = � + xy∗� − �xy∗ − (y∗�x)xy∗

are λ1, . . . , λn . Notice that A has integer entries if the entries of x , y, and � are integers.
Use this observation to construct an interesting 3-by-3 matrix with integer entries and
eigenvalues 1, 2, and 7; verify that your construction has the asserted eigenvalues.

1.3.P26 Let e1, . . . , en and ε1, . . . , εm denote the standard orthonormal bases of Cn and
Cm , respectively. Consider the n-by-m block matrix P = [Pi j ] ∈ Mmn in which each block
Pi j ∈ Mm,n is given by Pi j = ε j eT

i . (a) Show that P is a permutation matrix. (b) Similarity
of any matrix A ∈ Mmn by P gives a matrix Ã = P APT whose entries are a rearrangement
of the entries of A. Appropriate partitioning of both A and Ã permits us to describe this



1.3 Similarity 73

rearrangement in a simple way. Write A = [Ai j ] ∈ Mmn as an m-by-m block matrix in
which each block Ak� = [a(k,�)

i j ] ∈ Mn , and write Ã = [ Ãi j ] as an n-by-n block matrix in
which each block Ãi j ∈ Mm . Explain why the i, j entry of Ã pq is the p, q entry of Ai j

for all i, j = 1, . . . , m and all p, q = 1, . . . , n, that is, Ã pq = [a(i, j)
pq ]. Since A and Ã are

permutation similar, they have the same eigenvalues, determinant, and so forth. (c) Various
special patterns in the entries of A result in special patterns in the entries of Ã (and vice
versa). For example, explain why (i) all of the blocks Ai j are upper triangular if and only if
Ã is block upper triangular; (ii) all of the blocks Ai j are upper Hessenberg if and only if Ã
is block upper Hessenberg; (iii) all of the blocks Ai j are diagonal if and only if Ã is block
diagonal; and (iv) A is block upper triangular and all of the blocks Ai j are upper triangular
if and only if Ã is block diagonal and all of its main diagonal blocks are upper triangular.

1.3.P27 (Continuation of 1.3.P26) Let A = [Ak�] ∈ Mmn be a given m-by-m block
matrix with each Ak� = [a(k,�)

i j ] ∈ Mn , and suppose that each block Ak� is upper triangular.
Explain why the eigenvalues of A are the same as those of Ã11 ⊕ · · · ⊕ Ãnn , in which
Ã pp = [a(i, j)

pp ] for p = 1, . . . , n. Thus, the eigenvalues of A depend only on the main di-
agonal entries of the blocks Ai j . In particular, det A = (det Ã11) · · · (det Ãnn). What can
you say about the eigenvalues and determinant of A if the diagonal entries of each block
Ai j are constant (so there are scalars αk� such that a(k,�)

i i = αk� for all i = 1, . . . , n and all
k, � = 1, . . . , m)?

1.3.P28 Let A ∈ Mm,n and B ∈ Mn,m be given. Prove that det(Im + AB) = det(In + B A).

1.3.P29 Let A = [ai j ] ∈ Mn . Suppose that each aii = 0 for i = 1, . . . , n and ai j ∈ {−1, 1}
for all i �= j . Explain why det A is an integer. Use Cauchy’s identity (1.3.24) to show that if
any −1 entry of A is changed to +1, then the parity of det A is unchanged, that is, it remains
even if it was even and odd if it was odd. Show that the parity of det A is the same as the
parity of det(Jn − I ), which is opposite to the parity of n. Conclude that A is nonsingular
if n is even.

1.3.P30 Suppose that A ∈ Mn is diagonalizable and A = S�S−1, in which � has the
form (1.3.13). If f is a complex valued function whose domain includes σ (A), we define
f (A) = S f (�)S−1, in which f (�) = f (μ1)In1 ⊕ · · · ⊕ f (μd )Ind . Does f (A) depend on
the choice of the diagonalizing similarity (which is never unique)? Use Theorem 1.3.27 to
show that it does not; that is, if A = S�S−1 = T �T −1, show that S f (�)S−1 = T f (�)T −1.
If A has real eigenvalues, show that cos2 A + sin2 A = I .

1.3.P31 Let a, b ∈ C. Show that the eigenvalues of
[ a
−b

b
a

]
are a ± ib.

1.3.P32 Let x ∈ Cn be a given nonzero vector, and write x = u + iv, in which u, v ∈ Rn .
Show that the vectors x, x̄ ∈ Cn are linearly independent if and only if the vectors u, v ∈ Rn

are linearly independent.

1.3.P33 Suppose that A ∈ Mn(R) has a non-real eigenvalue λ and write λ = a + ib with
a, b ∈ R and b > 0. Let x be an eigenvector of A associated with λ and write x = u + iv
with u, v ∈ Rn . (a) Explain why λ̄, x̄ is an eigenpair of A. (b) Explain why x and x̄
are linearly independent and deduce that u and v are linearly independent. (c) Show that

Au = au − bv and Av = bu + av, so A[u v] = [u v]B, in which B =
[

a
−b

b
a

]
. (d) Let S =

[u v S1] ∈ Mn(R) be nonsingular. Explain why S−1[u v] =
[

I2

0

]
and check that S−1 AS =

S−1
[

A[u v] AS1
] = S−1

[
[u v]B AS1

] = [
B
0

�
A1

]
, in which A1 ∈ Mn−2. Thus, a real
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square matrix with a non-real eigenvalue λ is real similar to a 2-by-2 block upper triangular
matrix whose upper left block reveals the real and imaginary parts of λ. (e) Explain why
the multiplicity of each of λ and λ̄ as an eigenvalue of A1 is 1 less than its multiplicity as
an eigenvalue of A.

1.3.P34 If A, B ∈ Mn are similar, show that adj A and adj B are similar.

1.3.P35 A set A ⊆ Mn is an algebra if (i) A is a subspace and (ii) AB ∈ A whenever
A, B ∈ A. Provide details for the following assertions and assemble a proof of Burnside’s
theorem on matrix algebras: Let n ≥ 2 and let A ⊆ Mn be a given algebra. Then A = Mn

if and only if A is irreducible.

(a) If n ≥ 2 and an algebraA ⊆ Mn is reducible, thenA �= Mn . This is the easy implication
in Burnside’s theorem; some work is required to show that if A is irreducible, then
A = Mn . In the following, A ⊆ Mn is a given algebra and A∗ = {A∗ : A ∈ A}.

(b) If n ≥ 2 and A is irreducible, then A �= {0}.
(c) If x ∈ Cn is nonzero, then Ax = {Ax : A ∈ A} is an A-invariant subspace of Cn .
(d) If n ≥ 2, x ∈ Cn is nonzero, and A is irreducible, then Ax = Cn .
(e) For any given x ∈ Cn , A∗x = {A∗x : A ∈ A} is a subspace of Cn .
(f) If n ≥ 2, x ∈ Cn is nonzero, and A is irreducible, then A∗x = Cn .
(g) If n ≥ 2 and A is irreducible, there is some A ∈ A such that rank A = 1.
(h) If n ≥ 2, A is irreducible, and there are nonzero y, z ∈ Cn such that yz∗ ∈ A, then A

contains every rank-one matrix.
(i) If A contains every rank-one matrix, then A = Mn; see (0.4.4(i)).

1.3.P36 Let A, B ∈ Mn and suppose that n ≥ 2. The algebra generated by A and B
(denoted by A(A, B)) is the span of the set of all words in A and B (2.2.5). (a) If A and B
have no common eigenvector, explain whyA(A, B) = Mn . (b) Let A = [ 0

0
1
0

]
and B = AT .

Show that A and B have no common eigenvector, so A(A, B) = M2. Give a direct proof
by exhibiting a basis of M2 consisting of words in A and B.

1.3.P37 Let A ∈ Mn be centrosymmetric. If n = 2m and A is presented in the block form
(0.9.10.2), show that A is similar to (B − KmC) ⊕ (B + KmC) via the real orthogonal

matrix Q = 1√
2

[ Im

−Km

Im

Km

]
. If n = 2m + 1 and A is presented in the block form (0.9.10.3),

show that A is similar to

(B − KmC) ⊕
[

α
√

2xT√
2Km y B + KmC

]
via Q = 1√

2

⎡
⎣ Im 0 Im

0
√

2 0
−Km 0 Km

⎤
⎦

and that Q is real orthogonal.

1.3.P38 Let Jn be the all-ones matrix (0.2.8) and let B(t) = (1 − t)In + t Jn , with n ≥ 2.
(a) Describe the entries of B(t). Explain why its eigenvalues are 1 + (n − 1)t and 1 − t
with multiplicity n − 1. (b) Verify that if 1 �= t �= −(n − 1)−1, then B(t) is nonsingular and
B(t)−1 = (1 − t)−1(In − t(1 + (n − 1)t)−1 Jn).

1.3.P39 Let A ∈ Mn be given and suppose that tr A = 0. If A is diagonalizable, explain
why rank A �= 1. One of the matrices in (1.3.5) has rank one and trace zero. What can you
conclude about it?
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1.3.P40 The Jordan product of A, B ∈ Mn is ]A, B[ = AB + B A. The matrices A and
B anticommute if ]A, B[ = 0; see (0.7.7). (a) Give an example of a commuting family
of matrices that contains infinitely many distinct matrices. (b) Let F = {A1, A2, ...} be a
family of matrices such that ]Ai , A j [= 0 if i �= j , but A2

i �= 0 for all i = 1, 2, ...; that is, no
matrix in F anticommutes with itself. Show that I /∈ F and that any finite set of matrices
in F is linearly independent. Conclude that F contains at most n2 − 1 matrices. (c) If
F = {A1, A2, ...} is a family of distinct pairwise anticommuting diagonalizable matrices,
show that it is a finite family and that {A2

1, A2
2, ...} is a (finite) commuting family of

diagonalizable matrices.

1.3.P41 If A ∈ Mn does not have distinct eigenvalues, then no matrix that is simi-
lar to A has distinct eigenvalues, but perhaps some matrix that is diagonally equiv-
alent to A has distinct eigenvalues. (a) If D1, D2 ∈ Mn are diagonal and nonsin-
gular, and if D1 AD2 has distinct eigenvalues, explain why there is a nonsingular
D ∈ Mn such that D A has distinct eigenvalues. (b) If A ∈ Mn is strictly triangu-
lar and n ≥ 2, explain why no matrix that is diagonally equivalent to A has dis-
tinct eigenvalues. (c) Let n = 2, let A = [ a

c
b
d

]
, and suppose that no matrix that is

diagonally equivalent to A has distinct eigenvalues. Then Az =
[ 1

0
0
z

]
A = [ a

zc
b
zd

]
has

a double eigenvalue for all nonzero z ∈ C. Show that the discriminant of pAz (t) is
(a + dz)2 − 4(ad − bc)z = d2z2 + (2ad − 4(ad − bc))z + a2. Why is this discriminant
equal to zero for all nonzero z ∈ C? Explain why d = 0, a = 0, and bc = 0, and conclude
that A is strictly triangular. (d) In the case n = 2, explain why A ∈ Mn is not diagonally
equivalent to a matrix with distinct eigenvalues if and only if A is singular and every prin-
cipal minor of A of size n − 1 is zero. (e) The assertion in (d) is known to be correct for all
n ≥ 2.

Notes and Further Readings: Theorem 1.3.31 is due to L. Mirsky (1958); our proof is
adapted from E. Carlen and E. Lieb, Short proofs of theorems of Mirsky and Horn on
diagonals and eigenvalues of matrices, Electron. J. Linear Algebra 18 (2009) 438–441.
A result complementary to Mirsky’s is known: If n2 complex numbers λ1, . . . , λn and
ai j , i, j = 1, . . . , n, i �= j are given, then there exist n complex numbers a11, . . . , ann

such that λ1, . . . , λn are the eigenvalues of A = [ai j ]n
i, j=1; see S. Friedland, Matrices

with prescribed off-diagonal elements, Israel J. Math. 11 (1975) 184–189. The proof
of Burnside’s theorem in (1.3.P35) is adapted from I. Halperin and P. Rosenthal,
Burnside’s theorem on algebras of matrices, Amer. Math. Monthly 87 (1980) 810.
For alternative approaches, see Radjavi and Rosenthal (2000) and V. Lomonosov and
P. Rosenthal, The simplest proof of Burnside’s theorem on matrix algebras, Linear
Algebra Appl. 383 (2004) 45–47. For a proof of the claim in (1.3.P41(e)) see M. D.
Choi, Z. Huang, C. K. Li, and N. S. Sze, Every invertible matrix is diagonally equivalent
to a matrix with distinct eigenvalues, Linear Algebra Appl. 436 (2012) 3773–3776.

1.4 Left and right eigenvectors and geometric multiplicity

The eigenvectors of a matrix are important not only for their role in diagonalization but
also for their utility in a variety of applications. We begin with an important observation
about eigenvalues.
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Observation 1.4.1. Let A ∈ Mn. (a) The eigenvalues of A and AT are the same.
(b) The eigenvalues of A∗ are the complex conjugates of the eigenvalues of A.

Proof. Since det(t I − AT ) = det(t I − A)T = det(t I − A), we have pAT (t) = pA(t),
so pAT (λ) = 0 if and only if pA(λ) = 0. Similarly, det(t̄ I − A∗) = det[(t I − A)∗] =
det(t I − A), so pA∗(t̄ ) = pA(t), and pA∗(λ̄ ) = 0 if and only if pA(λ) = 0. �

Exercise. If x, y ∈ Cn are both eigenvectors of A ∈ Mn associated with the eigen-
value λ, show that any nonzero linear combination of x and y is also an eigenvec-
tor associated with λ. Conclude that the set of all eigenvectors associated with a
particular λ ∈ σ (A), together with the zero vector, is a subspace of Cn .

Exercise. The subspace described in the preceding exercise is the null space of
A − λI , that is, the solution set of the homogeneous linear system (A − λI )x = 0.
Explain why the dimension of this subspace is n − rank(A − λI ).

Definition 1.4.2. Let A ∈ Mn. For a given λ ∈ σ (A), the set of all vectors x ∈ Cn

satisfying Ax = λx is called the eigenspace of A associated with the eigenvalue λ.
Every nonzero element of this eigenspace is an eigenvector of A associated with λ.

Exercise. Show that the eigenspace of A associated with an eigenvalue λ is an
A-invariant subspace, but an A-invariant subspace need not be an eigenspace of
A. Explain why a minimal A-invariant subspace (an A-invariant subspace that
contains no strictly lower-dimensional, nonzero A-invariant subspace) W is the
span of a single eigenvector of A, that is, dim W = 1.

Definition 1.4.3. Let A ∈ Mn and let λ be an eigenvalue of A. The dimension of the
eigenspace of A associated with λ is the geometric multiplicity of λ. The multiplicity of
λ as a zero of the characteristic polynomial of A is the algebraic multiplicity of λ. If the
term multiplicity is used without qualification in reference to λ, it means the algebraic
multiplicity. We say that λ is simple if its algebraic multiplicity is 1; it is semisimple if
its algebraic and geometric multiplicities are equal.

It can be very useful to think of the geometric multiplicity of an eigenvalue λ of
A ∈ Mn in more than one way: Since the geometric multiplicity is the dimension of the
nullspace of A − λI , it is equal to n − rank(A − λI ). It is also the maximum number
of linearly independent eigenvectors associated with λ. Theorems 1.2.18 and 1.3.7
both contain an inequality between the geometric and algebraic multiplicities of an
eigenvalue but from two different viewpoints.

Exercise. Use (1.2.18) to explain why the algebraic multiplicity of an eigenvalue
is greater than or equal to its geometric multiplicity. If the algebraic multiplicity
is 1, why must the geometric multiplicity also be 1?

Exercise. Use (1.3.7) to explain why the geometric multiplicity of an eigenvalue
is less than or equal to its algebraic multiplicity. If the algebraic multiplicity is 1,
why must the geometric multiplicity also be 1?

Exercise. Verify the following statements about the respective matrices and their
eigenvalue λ = 1:
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(a) A1 = [ 1
0

0
2

]
: geometric multiplicity = algebraic multiplicity = 1; simple.

(b) A2 = [ 1
0

0
1

]
: geometric multiplicity = algebraic multiplicity = 2; semisimple.

(c) A3 = [ 1
0

1
1

]
: geometric multiplicity = 1; algebraic multiplicity = 2.

Definitions 1.4.4. Let A ∈ Mn. We say that A is defective if the geometric multiplicity
of some eigenvalue of A is strictly less than its algebraic multiplicity. If the geometric
multiplicity of each eigenvalue of A is the same as its algebraic multiplicity, we say
that A is nondefective. If each eigenvalue of A has geometric multiplicity 1, we say
that A is nonderogatory; otherwise, it is derogatory.

A matrix is diagonalizable if and only if it is nondefective; it has distinct eigenvalues
if and only if it is nonderogatory and nondefective.

Exercise. Explain why, in the preceding exercise, A1 is nondefective; A2 is
nondefective and derogatory; and A3 is defective and nonderogatory.

Example 1.4.5. Even though A and AT have the same eigenvalues, their
eigenspaces associated with a given eigenvalue can be different. For example,
let A = [ 2

0
3
4

]
. Then the (one-dimensional) eigenspace of A associated with the

eigenvalue 2 is spanned by
[

1
0

]
, while the eigenspace of AT associated with the

eigenvalue 2 is spanned by
[ 1
−3/2

]
.

Definition 1.4.6. A nonzero vector y ∈ Cn is a left eigenvector of A ∈ Mn associated
with an eigenvalue λ of A if y∗A = λy∗. If necessary for clarity, we refer to the vector
x in (1.1.3) as a right eigenvector; when the context does not require distinction, we
continue to call x an eigenvector.

Observation 1.4.6a. Let x ∈ Cn be nonzero, let A ∈ Mn, and suppose that Ax = λx.
If x∗A = μx∗, then λ = μ.

Proof. We may assume that x is a unit vector. Compute μ = μx∗x = (x∗A)x =
x∗Ax = x∗(Ax) = x∗(λx) = λx∗x = λ. �

Exercise. Show that a left eigenvector y associated with an eigenvalue λ of
A ∈ Mn is a right eigenvector of A∗ associated with λ̄; also show that ȳ is a right
eigenvector of AT associated with λ.

Exercise. Suppose that A ∈ Mn is diagonalizable, S is nonsingular, and S−1 AS =
� = diag(λ1, . . . , λn). Partition S = [x1 . . . xn] and S−∗ = [y1 . . . yn] (0.2.5)
according to their columns. The identity AS = S� tells us that each column x j

of S is a right eigenvector of A associated with the eigenvalue λ j . Explain why:
(S−∗)∗A = �(S−∗)∗; each column y j of S−∗ is a left eigenvector of A associated
with the eigenvalue λ j ; y∗j x j = 1 for each j = 1, . . . , n; and y∗i x j = 0 whenever
i �= j .

One should not dismiss left eigenvectors as merely a parallel theoretical alternative
to right eigenvectors. Each type of eigenvector can convey different information about
a matrix, and it can be very useful to know how the two types of eigenvectors interact.
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We next examine a version of the results in the preceding exercise for matrices that are
not necessarily diagonalizable.

Theorem 1.4.7. Let A ∈ Mn, nonzero vectors x, y ∈ Cn, and scalars λ, μ ∈ C be
given. Suppose that Ax = λx and y∗A = μy∗.

(a) If λ �= μ, then y∗x = 0.
(b) If λ = μ and y∗x �= 0, then there is a nonsingular S ∈ Mn of the form S = [x S1]

such that S−∗ = [y/(x∗y) Z1] and

A = S

[
λ 0
0 B

]
S−1, B ∈ Mn−1 (1.4.8)

Conversely, if A is similar to a block matrix of the form (1.4.8), then it has a nonorthog-
onal pair of left and right eigenvectors associated with the eigenvalue λ.

Proof. (a) Let y be a left eigenvector of A associated with μ and let x be a right
eigenvector of A associated with λ. Manipulate y∗Ax in two ways:

y∗Ax = y∗(λx) = λ(y∗x)
= (μy∗)x = μ(y∗x)

Since λ �= μ, λy∗x = μy∗x only if y∗x = 0.
(b) Suppose that Ax = λx , y∗A = λy∗, and y∗x �= 0. If we replace y by y/(x∗y),
we may assume that y∗x = 1. Let the columns of S1 ∈ Mn,n−1 be any basis for the
orthogonal complement of y (so y∗S1 = 0) and consider S = [x S1] ∈ Mn . Let z =
[z1 ζ T ]T with ζ ∈ Cn−1 and suppose that Sz = 0. Then

0 = y∗Sz = y∗(z1x + S1ζ ) = z1(y∗x) + (y∗S1)ζ = z1

so z1 = 0 and 0 = Sz = S1ζ , which implies that ζ = 0 since S1 has full column rank.
We conclude that S is nonsingular. Partition S−∗ = [η Z1] with η ∈ Cn and compute

In = S−1S =
[

η∗

Z∗
1

] [
x S1

] = [
η∗x η∗S1

Z∗
1 x Z∗

1 S1

]
=
[

1 0
0 In−1

]
which contains four identities. The identity η∗S1 = 0 implies that η is orthogonal to the
orthogonal complement of y, so η = αy for some scalar α. The identity η∗x = 1 tells us
that η∗x = (αy)∗x = ᾱ(y∗x) = ᾱ = 1, so η = y. Using the identities η∗S1 = y∗S1 = 0
and Z∗

1 x = 0 as well as the eigenvector properties of x and y, compute the similarity

S−1 AS =
[

y∗

Z∗
1

]
A
[

x S1
] = [

y∗Ax y∗AS1

Z∗
1 Ax Z∗

1 AS1

]

=
[

(λy∗)x (λy∗)S1

Z∗
1(λx) Z∗

1 AS1

]
=
[

λ(y∗x) λ(y∗S1)
λ(Z∗

1 x) Z∗
1 AS1

]

=
[

λ 0
0 Z∗

1 AS1

]
which verifies (1.4.8).

Conversely, suppose that there is a nonsingular S such that A = S([λ] ⊕ B)S−1. Let
x be the first column of S, let y be the first column of S−∗, and partition S = [x S1]
and S−∗ = [y Z1]. The 1, 1 entry of the identity S−1S = I tells us that y∗x = 1; the
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first column of the identity

[Ax AS1] = AS = S([λ] ⊕ B) = [λx S1 B]

tells us that Ax = λx ; and the first row of the identity[
y∗A
Z∗

1 A

]
= S−1 A = ([λ] ⊕ B)S−1 =

[
λy∗

B Z∗
1

]

tells us that y∗A = λy∗. �

The assertion in (1.4.7(a)) is the principle of biorthogonality. One might also ask
what happens if left and right eigenvectors associated with the same eigenvalue are
either orthogonal or linearly dependent; these cases are discussed in (2.4.11.1).

The eigenvalues of a matrix are unchanged by similarity; its eigenvectors transform
under similarity in a simple way.

Theorem 1.4.9. Let A, B ∈ Mn and suppose that B = S−1 AS for some nonsingular
S. If x ∈ Cn is a right eigenvector of B associated with an eigenvalue λ, then Sx is a
right eigenvector of A associated with λ. If y ∈ Cn is a left eigenvector of B associated
with λ, then S−∗y is a left eigenvector of A associated with λ.

Proof. If Bx = λx , then S−1 ASx = λx , or A(Sx) = λ(Sx). Since S is nonsingular and
x �= 0, Sx �= 0, and hence Sx is an eigenvector of A. If y∗B = λy∗, then y∗S−1 AS =
λy∗, or (S−∗y)∗A = λ(S−∗y)∗. �

Information about eigenvalues of principal submatrices can refine the basic obser-
vation that the algebraic multiplicity of an eigenvalue cannot be less than its geometric
multiplicity.

Theorem 1.4.10. Let A ∈ Mn and λ ∈ C be given, and let k ≥ 1 be a given positive
integer. Consider the following three statements:

(a) λ is an eigenvalue of A with geometric multiplicity at least k.
(b) For each m = n − k + 1, . . . , n, λ is an eigenvalue of every m-by-m principal

submatrix of A.
(c) λ is an eigenvalue of A with algebraic multiplicity at least k.

Then (a) implies (b), and (b) implies (c). In particular, the algebraic multiplicity of
an eigenvalue is at least as great as its geometric multiplicity.

Proof. (a) ⇒ (b): Let λ be an eigenvalue of A with geometric multiplicity at least k,
which means that rank(A − λI ) ≤ n − k. Suppose that m > n − k. Then every m-by-
m minor of A − λI is zero. In particular, every principal m-by-m minor of A − λI
is zero, so every m-by-m principal submatrix of A − λI is singular. Thus, λ is an
eigenvalue of every m-by-m principal submatrix of A.
(b)⇒ (c): Suppose that λ is an eigenvalue of every m-by-m principal submatrix of A for
each m ≥ n − k + 1. Then every principal minor of A − λI of size at least n − k + 1
is zero, so each principal minor sum E j (A − λI ) = 0 for all j ≥ n − k + 1. Then
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(1.2.13) and (1.2.11) ensure that p(i)
A−λI (0) = 0 for i = 0, 1, . . . , k − 1. But pA−λI (t) =

pA(t + λ), so p(i)
A (λ) = 0 for i = 0, 1, . . . , k − 1; that is, λ is a zero of pA(t) with

multiplicity at least k. �
An eigenvalue λ with geometric multiplicity 1 can have algebraic multiplicity 2 or

more, but this can happen only if the left and right eigenvectors associated with λ are
orthogonal. If λ has algebraic multiplicity 1, however, then it has geometric multiplicity
1; left and right eigenvectors associated with λ can never be orthogonal. Our approach
to these results relies on the following lemma.

Lemma 1.4.11. Let A ∈ Mn, λ ∈ C, and nonzero vectors x, y ∈ Cn be given. Suppose
that λ has geometric multiplicity 1 as an eigenvalue of A, Ax = λx, and y∗A = λy∗.
Then there is a nonzero γ ∈ C such that adj(λI − A) = γ xy∗.

Proof. We have rank(λI − A) = n − 1 and hence rank adj(λI − A) = 1, that is,
adj(λI − A) = ξη∗ for some nonzero ξ, η ∈ Cn; see (0.8.2). But (λI − A)(adj(λI −
A)) = det(λI − A)I = 0, so (λI − A)ξη∗ = 0 and (λI − A)ξ = 0, which implies that
ξ = αx for some nonzero scalar α. Using the identity (adj(λI − A))(λI − A) = 0
in a similar fashion, we conclude that η = β y for some nonzero scalar β. Thus,
adj(λI − A) = αβxy∗. �

Theorem 1.4.12. Let A ∈ Mn, λ ∈ C, and nonzero vectors x, y ∈ Cn be given. Sup-
pose that λ is an eigenvalue of A, Ax = λx, and y∗A = λy∗.

(a) If λ has algebraic multiplicity 1, then y∗x �= 0.
(b) If λ has geometric multiplicity 1, then it has algebraic multiplicity 1 if and only

if y∗x �= 0.

Proof. In both cases (a) and (b), λ has geometric multiplicity 1; the preceding lemma
tells us that there is a nonzero γ ∈ C such that adj(λI − A) = γ xy∗. Then pA(λ) = 0
and p′

A(λ) = tr adj(λI − A) = γ y∗x ; see (0.8.10.2). In (a) we assume that the algebraic
multiplicity is 1, so p′

A(λ) �= 0 and hence y∗x �= 0. In (b) we assume that y∗x �= 0, so
p′

A(λ) �= 0 and hence the algebraic multiplicity is 1. �

Problems

1.4.P1 Let nonzero vectors x, y ∈ Mn be given, let A = xy∗, and let λ = y∗x . Show that
(a) λ is an eigenvalue of A; (b) x is a right and y is a left eigenvector of A associated with
λ; and (c) if λ �= 0, then it is the only nonzero eigenvalue of A (algebraic multiplicity =
1). Explain why any vector that is orthogonal to y is in the null space of A. What is the
geometric multiplicity of the eigenvalue 0? Explain why A is diagonalizable if and only if
y∗x �= 0.

1.4.P2 Let A ∈ Mn be skew symmetric. Show that pA(t) = (−1)n pA(−t) and deduce that
if λ is an eigenvalue of A with multiplicity k, then so is −λ. If n is odd, explain why A must
be singular. Explain why every principal minor of A with odd size is singular. Use the fact
that a skew-symmetric matrix is rank principal (0.7.6) to show that rank A must be even.

1.4.P3 Suppose that n ≥ 2 and let T = [ti j ] ∈ Mn be upper triangular. (a) Let x be an
eigenvector of T associated with the eigenvalue tnn; explain why en is a left eigenvector
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associated with tnn . If tii �= tnn for each i = 1, . . . , n − 1, show that the last entry of x must
be nonzero. (b) Let k ∈ {1, . . . , n − 1}. Show that there is an eigenvector x of T associated
with the eigenvalue tkk whose last n − k entries of x are zero, that is, xT = [ξ T 0]T with
ξ ∈ Ck . If tii �= tkk for all i = 1, . . . , k − 1, explain why the kth entry of x must be nonzero.

1.4.P4 Suppose that A ∈ Mn is tridiagonal and has a zero main diagonal. Let S =
diag(−1, 1,−1, . . . , (−1)n) and show that S−1 AS = −A. If λ is an eigenvalue of A with
multiplicity k, explain why −λ is also an eigenvalue of A with multiplicity k. If n is odd,
show that A is singular.

1.4.P5 Consider the block triangular matrix

A =
[

A11 A12

0 A22

]
, Aii ∈ Mni , i = 1, 2

If x ∈ Cn1 is a right eigenvector of A11 associated with λ ∈ σ (A11), and if y ∈ Cn2 is
a left eigenvector of A22 associated with μ ∈ σ (A22), show that [ x

0 ] ∈ Cn1+n2 is a right
eigenvector, and

[ 0
y

]
is a left eigenvector, of A associated with λ and μ, respectively. Use

this observation to show that the eigenvalues of A are the eigenvalues of A11 together with
those of A22.

1.4.P6 Suppose that A ∈ Mn has an entrywise positive left eigenvector and an entrywise
positive right eigenvector, both associated with an eigenvalue λ. (a) Show that A has no
entrywise nonnegative left or right eigenvectors associated with any eigenvalue different
from λ. (b) If λ has geometric multiplicity 1, show that it has algebraic multiplicity 1. See
(8.2.2) and (8.4.4) for properties of A that are sufficient to ensure the existence of positive
left and right eigenvectors associated with a special eigenvalue of A.

1.4.P7 In this problem we outline a simple version of the power method for finding the
largest modulus eigenvalue and an associated eigenvector of A ∈ Mn . Suppose that A ∈ Mn

has distinct eigenvalues λ1, . . . , λn and that there is exactly one eigenvalue λn of maximum
modulus ρ(A). If x (0) ∈ Cn is not orthogonal to a left eigenvector associated with λn , show
that the sequence

x (k+1) = 1

(x (k)∗x (k))1/2
Ax (k), k = 0, 1, 2, . . .

converges to an eigenvector of A, and the ratios of a given nonzero entry in the vectors
Ax (k) and x (k) converge to λn .

1.4.P8 Continue with the assumptions and notation of (1.4.P7). Further eigenvalues (and
eigenvectors) of A can be calculated by combining the power method with a deflation that
delivers a square matrix of size one smaller, whose spectrum (with multiplicities) contains
all but one eigenvalue of A. Let S ∈ Mn be nonsingular and have as its first column an
eigenvector y(n) associated with the eigenvalue λn . Show that S−1 AS = [

λn

0
∗
B

]
and the

eigenvalues of B ∈ Mn−1 are λ1, . . . , λn−1. Another eigenvalue may be calculated from B
and the deflation repeated.

1.4.P9 Let A ∈ Mn have eigenvalues λ1, . . . , λn−1, 0, so that rank A ≤ n − 1. Suppose
that the last row of A is a linear combination of the first n − 1 rows. Partition A = [ B

yT
x
α

]
,

in which B ∈ Mn−1. (a) Explain why there is a z ∈ Cn−1 such that yT = zT B and α =
zT x . Why is

[ z
−1

]
a left eigenvector of A associated with the eigenvalue 0? (b) Show

that B + xzT ∈ Mn−1 has eigenvalues λ1, . . . , λn−1. This construction is another type of
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deflation; see (1.3.P33) for a further example of a deflation. (c) If one eigenvalue λ of A
is known, explain how this construction can be applied to P(A − λI )P−1 for a suitable
permutation P .

1.4.P10 Let T ∈ Mn be a nonsingular matrix whose columns are left eigenvectors of
A ∈ Mn . Show that the columns of T −∗ are right eigenvectors of A.

1.4.P11 Suppose that A ∈ Mn is an unreduced upper Hessenberg matrix (0.9.9). Explain
why rank(A − λI ) ≥ n − 1 for every λ ∈ C and deduce that every eigenvalue of A has
geometric multiplicity 1, that is, A is nonderogatory.

1.4.P12 Let λ be an eigenvalue of A ∈ Mn . (a) Show that every list of n − 1 columns of
A − λI is linearly independent if and only if no eigenvector of A associated with λ has a
zero entry. (b) If no eigenvector of A associated with λ has a zero entry, why must λ have
geometric multiplicity 1?

1.4.P13 Let A ∈ Mn and nonzero vectors x, y ∈ Cn be given, and let λ, λ2, . . . , λn

be the eigenvalues of A. Suppose that Ax = λx and y∗ A = λy∗, and that λ has
geometric multiplicity 1. Then (1.4.11) says that adj(λI − A) = γ xy∗ and γ �= 0.
(a) Explain why γ y∗x = tr(λI − A) = En−1(λI − A) = Sn−1(λI − A) = (λ − λ2)(λ −
λ3) · · · (λ − λn). (b) Deduce from (a) that y∗x �= 0 if and only if λ is a simple eigen-
value. (c) The parameter γ is nonzero no matter what the multiplicity of λ is. If λ is simple,
explain why γ = (λ − λ2) · · · (λ − λn)/y∗x . See (2.6.P12) for a different way to evaluate
γ . (d) Explain why every entry of x and y is nonzero ⇔ every principal minor of λI − A
is nonzero ⇔ every main diagonal entry of adj(λI − A) is nonzero ⇔ every entry of
adj(λI − A) is nonzero.

1.4.P14 Let A ∈ Mn and let t ∈ C. Explain why (A − t I ) adj(A − t I ) = adj(A − t I )(A −
t I ) = pA(t)I . Now suppose that λ is an eigenvalue of A. Show that (a) every nonzero
column of adj(A − λI ) is an eigenvector of A associated with λ; (b) every nonzero row
of adj(A − λI ) is the conjugate transpose of a left eigenvector of A associated with λ;
(c) adj(A − λI ) �= 0 if and only if λ has geometric multiplicity one; and (d) if λ is an
eigenvalue of A = [ a

c
b
d

]
, then each nonzero column of

[ d−λ

−c
−b

a−λ

]
is an eigenvector of A

associated with λ; each nonzero row is the conjugate transpose of a left eigenvector of A
associated with λ.

1.4.P15 Suppose that λ is a simple eigenvalue of A ∈ Mn , and suppose that x, y, z, w ∈ Cn ,
Ax = λx , y∗ A = λy∗, y∗z �= 0, and w∗x �= 0. Show that A − λI + κzw∗ is nonsingular
for all κ �= 0. Explain why it is possible to take z = x .

1.4.P16 Show that the complex tridiagonal Toeplitz matrix

A =

⎡
⎢⎢⎢⎢⎣

a b

c a
. . .

. . .
. . . b
c a

⎤
⎥⎥⎥⎥⎦ ∈ Mn, bc �= 0 (1.4.13)

is diagonalizable and has spectrum σ (A) = {a + 2
√

bc cos( πκ
n+1 ) : κ = 1, . . . , n}, in which

Re
√

bc ≥ 0 and Im
√

bc > 0 if bc is real and negative.

1.4.P17 If a = 2 and b = c = −1 in (1.4.13), show that σ (A) = {4 sin2( πκ
2(n+1) ) :

κ = 1, . . . , n}.



CHAPTER 2

Unitary Similarity and
Unitary Equivalence

2.0 Introduction

In Chapter 1, we made an initial study of similarity of A ∈ Mn via a general nonsingular
matrix S, that is, the transformation A → S−1 AS. For certain very special nonsingular
matrices, called unitary matrices, the inverse of S has a simple form: S−1 = S∗.
Similarity via a unitary matrix U , A → U ∗AU , is not only conceptually simpler
than general similarity (the conjugate transpose is much easier to compute than the
inverse), but it also has superior stability properties in numerical computations. A
fundamental property of unitary similarity is that every A ∈ Mn is unitarily similar
to an upper triangular matrix whose diagonal entries are the eigenvalues of A. This
triangular form can be further refined under general similarity; we study the latter in
Chapter 3.

The transformation A → S∗AS, in which S is nonsingular but not necessarily uni-
tary, is called *congruence; we study it in Chapter 4. Notice that similarity by a unitary
matrix is both a similarity and a *congruence.

For A ∈ Mn,m , the transformation A → U AV , in which U ∈ Mm and V ∈ Mn

are both unitary, is called unitary equivalence. The upper triangular form achiev-
able under unitary similarity can be greatly refined under unitary equivalence and
generalized to rectangular matrices: Every A ∈ Mn,m is unitarily equivalent to a non-
negative diagonal matrix whose diagonal entries (the singular values of A) are of great
importance.

2.1 Unitary matrices and the QR factorization

Definition 2.1.1. A list of vectors x1, . . . , xk ∈ Cn is orthogonal if x∗
i x j = 0 for all

i �= j , i, j ∈ {1, . . . , k}. If, in addition, x∗
i xi = 1 for all i = 1, . . . , k (that is, the

vectors are normalized), then the list is orthonormal. It is often convenient to say that
“x1, . . . , xk are orthogonal (respectively, orthonormal)” instead of the more formal
statement “the list of vectors v1, . . . , vk is orthogonal (orthonormal, respectively).”
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Exercise. If y1, . . . , yk ∈ Cn are orthogonal and nonzero, show that the vectors
x1, . . . , xk defined by xi = (y∗i yi )−1/2 yi , i = 1, . . . , k, are orthonormal.

Theorem 2.1.2. Every orthonormal list of vectors in Cn is linearly independent.

Proof. Suppose that {x1, . . . , xk} is an orthonormal set, and suppose that 0 = α1x1 +
· · · + αk xk . Then 0 = (α1x1 + · · · + αk xk)∗(α1x1 + · · · + αk xk) = �i, j ᾱiα j x∗

i x j =
�k

i=1|αi |2x∗
i xi = �k

i=1|αi |2 because the vectors xi are orthogonal and normalized. Thus,
all αi = 0 and hence {x1, . . . , xk} is a linearly independent set. �

Exercise. Show that every orthogonal list of nonzero vectors in Cn is linearly
independent.

Exercise. If x1, . . . , xk ∈ Cn are orthogonal, show that either k ≤ n or at least
k − n of the vectors xi are zero vectors.

A linearly independent list need not be orthonormal, of course, but one can apply the
Gram–Schmidt orthonormalization procedure (0.6.4) to it and obtain an orthonormal
list with the same span.

Exercise. Show that any nonzero subspace of Rn or Cn has an orthonormal basis
(0.6.5).

Definition 2.1.3. A matrix U ∈ Mn is unitary if U ∗U = I . A matrix U ∈ Mn(R) is real
orthogonal if U T U = I .

Exercise. Show that U ∈ Mn and V ∈ Mm are unitary if and only if U ⊕ V ∈
Mn+m is unitary.

Exercise. Verify that the matrices Q, U, and V in (P19, P20, and P21) in (1.3)
are unitary.

The unitary matrices in Mn form a remarkable and important set. We list some of
the basic equivalent conditions for U to be unitary in (2.1.4).

Theorem 2.1.4. If U ∈ Mn, the following are equivalent:

(a) U is unitary.
(b) U is nonsingular and U ∗ = U−1.
(c) UU ∗ = I .
(d) U ∗ is unitary.
(e) The columns of U are orthonormal.
(f ) The rows of U are orthonormal.
(g) For all x ∈ Cn, ‖x‖2 = ‖U x‖2, that is, x and U x have the same Euclidean norm.

Proof. (a) implies (b) since U−1 (when it exists) is the unique matrix, left multiplication
by which produces I (0.5); the definition of unitary says that U ∗ is such a matrix. Since
B A = I if and only if AB = I (for A, B ∈ Mn (0.5)), (b) implies (c). Since (U ∗)∗ = U ,
(c) implies that U ∗ is unitary; that is, (c) implies (d). The converse of each of these
implications is similarly observed, so (a)–(d) are equivalent.

Partition U = [u1 . . . un] according to its columns. Then U ∗U = I means that
u∗

i ui = 1 for all i = 1, . . . , n and u∗
i u j = 0 for all i �= j . Thus, U ∗U = I is another
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way of saying that the columns of U are orthonormal, and hence (a) is equivalent to
(e). Similarly, (d) and (f) are equivalent.

If U is unitary and y = U x , then y∗y = x∗U ∗U x = x∗ I x = x∗x , so (a) implies (g).
To prove the converse, let U ∗U = A = [ai j ], let z, w ∈ C be given, and take x = z +
w in (g). Then x∗x = z∗z + w∗w + 2 Re z∗w and y∗y = x∗Ax = z∗Az + w∗Aw +
2 Re z∗Aw; (g) ensures that z∗z = z∗Az and w∗w = w∗Aw, and hence Re z∗w =
Re z∗Aw for any z and w. Take z = ep and w = ieq and compute Re ieT

p eq = 0 =
Re ieT

p Aeq = Re iapq = − Im apq , so every entry of A is real. Finally, take z = ep and
w = eq and compute eT

p eq = Re eT
p eq = Re eT

p Aeq = apq , which tells us that A = I
and U is unitary. �

Definition 2.1.5. A linear transformation T : Cn → Cm is called a Euclidean isometry
if ‖x‖2 = ‖T x‖2 for all x ∈ Cn. Theorem 2.1.4 says that a square complex matrix
U ∈ Mn is a Euclidean isometry (via U : x → U x) if and only if it is unitary. For other
kinds of isometries, see (5.4.P11–13).

Exercise. Let Uθ =
[

cos θ − sin θ

sin θ cos θ

]
, in which θ is a real parameter. (a) Show that

a given U ∈ M2(R) is real orthogonal if and only if either U = Uθ or U =[ 1 0
0 −1

]
Uθ for some θ ∈ R. (b) Show that a given U ∈ M2(R) is real orthogonal

if and only if either U = Uθ or U = [ 0 1
1 0

]
Uθ for some θ ∈ R. These are two

different presentations, involving a parameter θ , of the 2-by-2 real orthogonal
matrices. Interpret them geometrically.

Observation 2.1.6. If U, V ∈ Mn are unitary (respectively, real orthogonal), then U V
is also unitary (respectively, real orthogonal).

Exercise. Use (b) of (2.1.4) to prove (2.1.6).

Observation 2.1.7. The set of unitary (respectively, real orthogonal) matrices in Mn

forms a group. This group is generally referred to as the n-by-n unitary (respectively,
real orthogonal) group, a subgroup of GL(n, C) (0.5).

Exercise. A group is a set that is closed under a single associative binary operation
(“multiplication”) and is such that the identity for and inverses under the operation
are contained in the set. Verify (2.1.7). Hint: Use (2.1.6) for closure; matrix
multiplication is associative; I ∈ Mn is unitary; and U ∗ = U−1 is again unitary.

The set (group) of unitary matrices in Mn has another very important property.
Notions of “convergence” and “limit” of a sequence of matrices are presented precisely
in Chapter 5, but can be understood here as “convergence” and “limit” of entries. The
defining identity U ∗U = I means that every column of U has Euclidean norm 1, and
hence no entry of U = [ui j ] can have absolute value greater than 1. If we think of the
set of unitary matrices as a subset of Cn2

, this says it is a bounded subset. If Uk = [u(k)
i j ]

is an infinite sequence of unitary matrices, k = 1, 2, . . . , such that limk→∞ u(k)
i j = ui j

exists for all i, j = 1, 2, . . . , n, then from the identity U ∗
k Uk = I for all k = 1, 2, . . . ,

we see that limk→∞ U ∗
k Uk = U ∗U = I , in which U = [ui j ]. Thus, the limit matrix U

is also unitary. This says that the set of unitary matrices is a closed subset of Cn2
.
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Since a closed and bounded subset of a finite dimensional Euclidean space is a
compact set (see Appendix E), we conclude that the set (group) of unitary matrices in
Mn is compact. For our purposes, the most important consequence of this observation
is the following selection principle for unitary matrices.

Lemma 2.1.8. Let U1, U2, . . . ∈ Mn be a given infinite sequence of unitary matrices.
There exists an infinite subsequence Uk1, Uk2, . . . , 1 ≤ k1 < k2 < · · · , such that all
of the entries of Uki converge (as sequences of complex numbers) to the entries of a
unitary matrix as i → ∞.

Proof. All that is required here is the fact that from any infinite sequence in a compact
set, one may always select a convergent subsequence. We have already observed that
if a sequence of unitary matrices converges to some matrix, then the limit matrix must
be unitary. �

The unitary limit guaranteed by the lemma need not be unique; it can depend on the
subsequence chosen.

Exercise. Consider the sequence of unitary matrices Uk =
[

0 1
1 0

]k
, k = 1, 2, . . . .

Show that there are two possible limits of subsequences.

Exercise. Explain why the selection principle (2.1.8) applies as well to the (real)
orthogonal group; that is, an infinite sequence of real orthogonal matrices has an
infinite subsequence that converges to a real orthogonal matrix.

A unitary matrix U has the property that U−1 equals U ∗. One way to generalize
the notion of a unitary matrix is to require that U−1 be similar to U ∗. The set of
such matrices is easily characterized as the range of the mapping A → A−1 A∗ for all
nonsingular A ∈ Mn .

Theorem 2.1.9. Let A ∈ Mn be nonsingular. Then A−1 is similar to A∗ if and only if
there is a nonsingular B ∈ Mn such that A = B−1 B∗.

Proof. If A = B−1 B∗ for some nonsingular B ∈ Mn , then A−1 = (B∗)−1 B and
B∗A−1(B∗)−1 = B(B∗)−1 = (B−1 B∗)∗ = A∗, so A−1 is similar to A∗ via the sim-
ilarity matrix B∗. Conversely, if A−1 is similar to A∗, then there is a nonsin-
gular S ∈ Mn such that S A−1S−1 = A∗ and hence S = A∗S A. Set Sθ = eiθ S for
θ ∈ R so that Sθ = A∗Sθ A and S∗

θ = A∗S∗
θ A. Adding these two identities gives

Hθ = A∗Hθ A, in which Hθ = Sθ + S∗
θ is Hermitian. If Hθ were singular, there would be

a nonzero x ∈ Cn such that 0 = Hθ x = Sθ x + S∗
θ x , so −x = S−1

θ S∗
θ x = e−2iθ S−1S∗x

and S−1S∗x = −e2iθ x . Choose a value of θ = θ0 ∈ [0, 2π) such that −e2iθ0 is not an
eigenvalue of S−1S∗; the resulting Hermitian matrix H = Hθ0 is nonsingular and has
the property that H = A∗H A.

Now choose any complex α such that |α| = 1 and α is not an eigenvalue of A∗. Set
B = β(α I − A∗)H , in which the complex parameter β �= 0 is to be chosen, and observe
that B is nonsingular. We want to have A = B−1 B∗, that is, B A = B∗. Compute B∗ =
H (β̄ᾱ I − β̄ A), and B A = β(α I − A∗)H A = β(αH A − A∗H A) = β(αH A − H ) =
H (αβ A − β I ). We are done if we can select a nonzero β such that β = −β̄ᾱ, but if
α = eiψ , then β = ei(π−ψ)/2 will do. �
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If a unitary matrix is presented as a 2-by-2 block matrix, then the ranks of its off-
diagonal blocks are equal; the ranks of its diagonal blocks are related by a simple
formula.

Lemma 2.1.10. Let a unitary U ∈ Mn be partitioned as U =
[

U11 U12
U21 U22

]
, in which

U11 ∈ Mk. Then rank U12 = rank U21 and rank U22 = rank U11 + n − 2k. In particular,
U12 = 0 if and only if U21 = 0, in which case U11 and U22 are unitary.

Proof. The two assertions about rank follow immediately from the law of complemen-

tary nullities (0.7.5) using the fact that U−1 =
[

U ∗
11 U ∗

21
U ∗

12 U ∗
22

]
. �

Exercise. Use the preceding lemma to show that a unitary matrix is upper trian-
gular if and only if it is diagonal.

Plane rotations and Householder matrices are special (and very simple) unitary
matrices that play an important role in establishing some basic matrix factorizations.

Example 2.1.11. Plane rotations. Let 1 ≤ i < j ≤ n and let

U (θ ; i, j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cos θ − sin θ

1
. . .

1
sin θ cos θ

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

denote the result of replacing the i, i and j, j entries of the n-by-n identity matrix
by cos θ , replacing its i, j entry by − sin θ and replacing its j, i entry by sin θ .
The matrix U (θ ; i, j) is called a plane rotation or Givens rotation.

Exercise. Verify that U (θ ; i, j) ∈ Mn(R) is real orthogonal for any pair of indices
i, j with 1 ≤ i < j ≤ n and any parameter θ ∈ [0, 2π ). The matrix U (θ ; i, j)
carries out a rotation (through an angle θ) in the i , j coordinate plane of Rn . Left
multiplication by U (θ ; i, j) affects only rows i and j of the matrix multiplied;
right multiplication by U (θ ; i, j) affects only columns i and j of the matrix
multiplied.

Exercise. Verify that U (θ ; i, j)−1 = U (−θ ; i, j).

Example 2.1.12. Householder matrices. Let w ∈ Cn be a nonzero vector. The
Householder matrix Uw ∈ Mn is defined by Uw = I − 2(w∗w)−1ww∗. If w is a
unit vector, then Uw = I − 2ww∗.
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Exercise. Show that a Householder matrix Uw is both unitary and Hermitian, so
U−1

w = Uw.

Exercise. Let w ∈ Rn be a nonzero vector. Show that the Householder matrix
Uw is real orthogonal and symmetric. Why is every eigenvalue of Uw either +1
or −1?

Exercise. Show that a Householder matrix Uw acts as the identity on the subspace
w⊥ and that it acts as a reflection on the one-dimensional subspace spanned by
w; that is, Uwx = x if x ⊥ w and Uww = −w.

Exercise. Use (0.8.5.11) to show that det Uw = −1 for all n. Thus, for all n and
every nonzero w ∈ Rn , the Householder matrix Uw ∈ Mn(R) is a real orthogonal
matrix that is never a proper rotation matrix (a real orthogonal matrix whose
determinant is +1).

Exercise. Use (1.2.8) to show that the eigenvalues of a Householder matrix are
always −1, 1, . . . , 1 and explain why its determinant is always −1.

Exercise. Let n ≥ 2 and let x, y ∈ Rn be unit vectors. If x = y, let w be any real
unit vector that is orthogonal to x . If x �= y, let w = x − y. Show that Uwx = y.
Conclude that any x ∈ Rn can be transformed by a real Householder matrix into
any y ∈ Rn such that ‖x‖2 = ‖y‖2.

Exercise. The situation is different in Cn . Show that there is no w ∈ Cn such that
Uwe1 = ie1.

Householder matrices and unitary scalar matrices can be used to construct a unitary
matrix that takes any given vector in Cn into any other vector in Cn that has the same
Euclidean norm.

Theorem 2.1.13. Let x, y ∈ Cn be given and suppose that ‖x‖2 = ‖y‖2 > 0. If y =
eiθ x for some real θ , let U (y, x) = eiθ In; otherwise, let φ ∈ [0, 2π ) be such that
x∗y = eiφ|x∗y| (take φ = 0 if x∗y = 0); let w = eiφx − y; and let U (y, x) = eiφUw,
in which Uw = I − 2(w∗w)−1ww∗ is a Householder matrix. Then U (y, x) is unitary
and essentially Hermitian, U (y, x)x = y, and U (y, x)z ⊥ y whenever z ⊥ x. If x and
y are real, then U (y, x) is real orthogonal: U (y, x) = I if y = x, and U (y, x) is the
real Householder matrix Ux−y otherwise.

Proof. The assertions are readily verified if x and y are linearly dependent, that is, if
y = eiθ x for some real θ . If x and y are linearly independent, the Cauchy–Schwarz
inequality (0.6.3) ensures that x∗x �= |x∗y|. Compute

w∗w = (eiφx − y)∗(eiφx − y) = x∗x − e−iφx∗y − eiφ y∗x + y∗y

= 2(x∗x − Re(e−iφx∗y)) = 2(x∗x − |x∗y|)
and

w∗x = e−iφx∗x − y∗x = e−iφx∗x − e−iφ|y∗x | = e−iφ(x∗x − |x∗y|)
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and, finally,

eiφUwx = eiφ(x − 2(w∗w)−1ww∗x) = eiφ(x − (eiφx − y)e−iφ) = y

If z is orthogonal to x , then w∗z = −y∗z and

y∗U (y, x)z = eiφ

(
y∗z − 1

‖x‖2
2 − |x∗y|

(
eiφ y∗x − ‖y‖2

2

) (−y∗x
))

= eiφ
(
y∗z + (−y∗x

)) = 0

Since Uw is unitary and Hermitian, U (y, x) = (eiφ I )Uw is unitary (as a product of two
unitary matrices) and essentially Hermitian; see (0.2.5). �

Exercise. Let y ∈ Cn be a given unit vector and let e1 be the first column of the n-
by-n identity matrix. Construct U (y, e1) using the recipe in the preceding theorem
and verify that its first column is y (which it should be, since y = U (y, e1)e1).

Exercise. Let x ∈ Cn be a given nonzero vector. Explain why the matrix
U (‖x‖2 e1, x) constructed in the preceding theorem is an essentially Hermitian
unitary matrix that takes x into ‖x‖2 e1.

The following Q R factorization of a complex or real matrix is of considerable
theoretical and computational importance.

Theorem 2.1.14 ( Q R factorization). Let A ∈ Mn,m be given.

(a) If n ≥ m, there is a Q ∈ Mn,m with orthonormal columns and an upper triangular
R ∈ Mm with nonnegative main diagonal entries such that A = Q R.

(b) If rank A = m, then the factors Q and R in (a) are uniquely determined and the
main diagonal entries of R are all positive.

(c) If m = n, then the factor Q in (a) is unitary.
(d) There is a unitary Q ∈ Mn and an upper triangular R ∈ Mn,m with nonnegative

diagonal entries such that A = Q R.
(e) If A is real, then the factors Q and R in (a), (b), (c), and (d) may be taken to be

real.

Proof. Let a1 ∈ Cn be the first column of A, let r1 = ‖a1‖2, and let U1 be a unitary
matrix such that U1a1 = r1e1. Theorem 2.1.13 gives an explicit construction for such a
matrix, which is either a unitary scalar matrix or the product of a unitary scalar matrix
and a Householder matrix. Partition

U1 A =
[

r1 �
0 A2

]

in which A2 ∈ Mn−1,m−1. Let a2 ∈ Cn−1 be the first column of A2 and let r2 = ‖a2‖2.
Use (2.1.13) again to construct a unitary V2 ∈ Mn−1 such that V2a2 = r2e1 and let
U2 = I1 ⊕ V2. Then

U2U1 A =
⎡
⎣ r1 �

0 r2

0 0 A3

⎤
⎦
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Repeat this construction m times to obtain

UmUm−1 · · ·U2U1 A =
[

R
0

]
in which R ∈ Mm is upper triangular. Its main diagonal entries are r1, . . . , rm ; they
are all nonnegative. Let U = UmUm−1 · · ·U2U1. Partition U ∗ = U ∗

1 U ∗
2 · · ·U ∗

m−1U ∗
m =

[Q Q2], in which Q ∈ Mn,m has orthonormal columns (it contains the first m columns
of a unitary matrix). Then A = Q R, as desired. If A has full column rank, then R is
nonsingular, so its main diagonal entries are all positive.

Suppose that rank A = m and A = Q R = Q̃ R̃, in which R and R̃ are upper triangu-
lar and have positive main diagonal entries, and Q and Q̃ have orthonormal columns.
Then A∗A = R∗(Q∗Q)R = R∗ I R = R∗R and also A∗A = R̃∗ R̃, so R∗R = R̃∗ R̃ and
R̃−∗R∗ = R̃ R−1. This says that a lower triangular matrix equals an upper triangular
matrix, so both must be diagonal: R̃ R−1 = D is diagonal, and it must have positive
main diagonal entries because the main diagonal entries of both R̃ and R−1 are positive.
But R̃ = DR implies that D = R̃ R−1 = R̃−∗R∗ = (DR)−∗R∗ = D−1 R−∗R∗ = D−1,
so D2 = I and hence D = I . We conclude that R̃ = R and hence Q̃ = Q.

The assertion in (c) follows from the fact that a square matrix with orthonormal
columns is unitary.

If n ≥ m in (d), we may start with the factorization in (a), let Q̃ = [Q Q2] ∈ Mn

be unitary, let R̃ =
[

R
0

]
∈ Mn,m , and observe that A = Q R = Q̃ R̃. If n < m, we

may undertake the construction in (a) (left multiplication by a sequence of scalar
multiples of Householder transformations) and stop after n steps, when the factorization
Un · · ·U1 A = [R �] is achieved and R is upper triangular. Entries in the � block
need not be zero.

The final assertion (e) follows from the assurance in (2.1.13) that the unitary matrices
Ui involved in the constructions in (a) and (d) may all be chosen to be real. �

Exercise. Show that any B ∈ Mn of the form B = A∗A, A ∈ Mn , may be written
as B = L L∗, in which L ∈ Mn is lower triangular and has non-negative diagonal
entries. Explain why this factorization is unique if A is nonsingular. This is the
Cholesky factorization of B; every positive definite or semidefinite matrix may
be factored in this way; see (7.2.9).

Some easy variants of the Q R factorization of A ∈ Mn,m can be useful. First,
suppose that n ≤ m and let A∗ = Q R, in which Q ∈ Mn,m has orthonormal columns
and R ∈ Mm is upper triangular. Then A = R∗Q∗ is a factorization of the form

A = L Q (2.1.15a)

in which Q ∈ Mn,m has orthonormal rows and L ∈ Mn is lower triangular. If Q̃ =
[

Q
Q̃2

]
is unitary, we have a factorization of the form

A = [L 0]Q̃ (2.1.15b)

Now let K p be the (real orthogonal and symmetric) p-by-p reversal matrix (0.9.5.1),
which has the pleasant property that K 2

p = Ip. For square matrices R ∈ Mp, the matrix
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L = K p RK p is lower triangular if R is upper triangular; the main diagonal entries of
L are those of R, with the order reversed.

If n ≥ m and AKm = Q R as in (2.1.14a), then A = (QKm)(Km RKm), which is a
factorization of the form with a unitary Q ∈ Mn and an upper triangular R ∈ Mn , then

A = QL (2.1.17a)

in which Q ∈ Mn,m has orthonormal columns and L ∈ Mm is lower triangular. If
Q̃ = [Q Q2] is unitary, we have a factorization of the form

A = Q̃
[

L
0

]
(2.1.17b)

If n ≤ m, we can apply (2.1.17a) and (2.1.17b) to A∗ and obtain factorizations of
the form

A = RQ = [R 0]Q̃ (2.1.17c)

in which R ∈ Mn is upper triangular, Q ∈ Mn,m has orthonormal rows, and Q̃ ∈ Mm is
unitary. If n ≤ m and we apply (2.1.14d) to AKm , we obtain A = (QKn)(Kn[R �]Km),
which is a factorization of the form

A = Q̃L (2.1.17d)

in which Q̃ ∈ Mn is unitary and L ∈ Mn,m is lower triangular.

An important geometrical fact is that any two lists containing equal numbers of
orthonormal vectors are related via a unitary transformation.

Theorem 2.1.18. If X = [x1 . . . xk] ∈ Mn,k and Y = [y1 . . . yk] ∈ Mn,k have or-
thonormal columns, then there is a unitary U ∈ Mn such that Y = U X. If X and Y are
real, then U may be taken to be real.

Proof. Extend each of the orthonormal lists x1, . . . , xk and y1, . . . , yk to orthonormal
bases of Cn; see (0.6.4–5). That is, construct unitary matrices V = [X X2] and W =
[Y Y2] ∈ Mn . Then U = W V ∗ is unitary and [Y Y2] = W = U V = [U X U X2], so
Y = U X . If X and Y are real, the matrices [X X2] and [Y Y2] may be chosen to be real
orthogonal (their columns are orthonormal bases of Rn). �

Problems

2.1.P1 If U ∈ Mn is unitary, show that | det U | = 1.

2.1.P2 Let U ∈ Mn be unitary and let λ be a given eigenvalue of U . Show that (a) |λ| = 1
and (b) x is a (right) eigenvector of U associated with λ if and only if x is a left eigenvector
of U associated with λ.

2.1.P3 Given real parameters θ1, θ2, . . . , θn , show that U = diag(eiθ1 , eiθ2 , . . . , eiθn ) is
unitary. Show that every diagonal unitary matrix has this form.

2.1.P4 Characterize the diagonal real orthogonal matrices.
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2.1.P5 Show that the permutation matrices (0.9.5) in Mn are a subgroup (a subset that is
itself a group) of the group of real orthogonal matrices. How many different permutation
matrices are there in Mn?

2.1.P6 Give a parametric presentation of the 3-by-3 orthogonal group. Two presentations
of the 2-by-2 orthogonal group are given in the exercise following (2.1.5).

2.1.P7 Suppose that A, B ∈ Mn and AB = I . Provide details for the following argument
that B A = I : Every y ∈ Cn can be represented as y = A(By), so rank A = n and hence
dim(nullspace(A)) = 0 (0.2.3.1). Compute A(AB − B A) = A(I − B A) = A − (AB)A =
A − A = 0, so AB − B A = 0.

2.1.P8 A matrix A ∈ Mn is complex orthogonal if AT A = I . (a) Show that a complex

orthogonal matrix is unitary if and only if it is real. (b) Let S =
[

0 1
−1 0

]
∈ M2(R). Show

that A(t) = (cosht)I + (i sinh t)S ∈ M2 is complex orthogonal for all t ∈ R, but that A(t)
is unitary only for t = 0. The hyperbolic functions are defined by cosh t = (et + e−t )/2,
sinh t = (et − e−t )/2. (c) Show that, unlike the unitary matrices, the set of complex orthog-
onal matrices is not a bounded set, and it is therefore not a compact set. (d) Show that the set
of complex orthogonal matrices of a given size forms a group. The smaller (and compact)
group of real orthogonal matrices of a given size is often called the orthogonal group.
(e) If A ∈ Mn is complex orthogonal, show that | det A| = 1; consider A(t) in (b) to show
that A can have eigenvalues λ with |λ| �= 1. (f) If A ∈ Mn is complex orthogonal, show
that Ā, AT , and A∗ are all complex orthogonal and nonsingular. Are the rows (respectively,
columns) of A orthogonal? (g) Characterize the diagonal complex orthogonal matrices.
Compare with 2.1.P4 (h) Show that A ∈ Mn is both complex orthogonal and unitary if and
only if it is real orthogonal.

2.1.P9 If U ∈ Mn is unitary, show that Ū , U T , and U ∗ are all unitary.

2.1.P10 If U ∈ Mn is unitary, show that x, y ∈ Cn are orthogonal if and only if Ux and Uy
are orthogonal.

2.1.P11 A nonsingular matrix A ∈ Mn is skew orthogonal if A−1 = −AT . Show that A
is skew orthogonal if and only if ±i A is orthogonal. More generally, if θ ∈ R, show that
A−1 = eiθ AT if and only if eiθ/2 A is orthogonal. What is this for θ = 0 and π?

2.1.P12 Show that if A ∈ Mn is similar to a unitary matrix, then A−1 is similar to A∗.

2.1.P13 Consider diag(2, 1
2 ) ∈ M2 and show that the set of matrices that are similar to

unitary matrices is a proper subset of the set of matrices A for which A−1 is similar to A∗.

2.1.P14 Show that the intersection of the group of unitary matrices in Mn with the group
of complex orthogonal matrices in Mn is the group of real orthogonal matrices in Mn .

2.1.P15 If U ∈ Mn is unitary, α ⊂ {1, . . . , n}, and U [α, αc] = 0, (0.7.1) show that
U [αc, α] = 0, and U [α] and U [αc] are unitary.

2.1.P16 Let x, y ∈ Rn be given linearly independent unit vectors and let w = x + y.
Consider the Palais matrix Px,y = I − 2(wT w)−1wwT + 2yxT . Show that: (a) Px,y =
(I − 2(wT w)−1wwT )(I − 2xxT ) = UwUx is a product of two real Householder matrices,
so it is a real orthogonal matrix; (b) det Px,y = +1, so Px,y is always a proper rotation matrix;
(c) Px,y x = y and Px,y y = −x + 2(xT y)y; (d) Px,y z = z if z ∈ Rn , z ⊥ x, and z ⊥ y; (e)
Px,y acts as the identity on the (n − 2)-dimensional subspace (span{x, y})⊥ and it is a proper
rotation on the 2-dimensional subspace span{x, y} that takes x into y; (f ) If n = 3, explain
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why Px,y is the unique proper rotation that takes x into y and leaves fixed their vector cross
product x × y; (g) the eigenvalues of Px,y are xT y ± i(1 − (xT y)2)1/2 = e±iθ , 1, . . . , 1, in
which cos θ = xT y.

2.1.P17 Suppose that A ∈ Mn,m , n ≥ m, and rank A = m. Describe the steps of the Gram–
Schmidt process applied to the columns of A, proceeding from left to right. Explain why
this process produces, column–by–column, an explicit matrix Q ∈ Mn,m with orthonormal
columns and an explicit upper triangular matrix R ∈ Mm such that Q = AR. How is this
factorization related to the one in (2.1.14)?

2.1.P18 Let A ∈ Mn be factored as A = Q R as in (2.1.14), partition A = [a1 . . . an]
and Q = [q1 . . . qn] according to their columns and let R = [ri j ]n

i, j=1. (a) Explain why
{q1, . . . , qk} is an orthonormal basis for span{a1, . . . , ak} for each k = 1, . . . , n. (b) Show
that rkk is the Euclidean distance from ak to span{a1, . . . , ak−1} for each k = 2, . . . , n.

2.1.P19 Let X = [x1 . . . xm] ∈ Mn,m , suppose that rank X = m, and factor X = Q R as
in (2.1.14). Let Y = Q R−∗ = [y1 . . . ym]. (a) Show that the columns of Y are a basis
for the subspace S = span{x1, . . . , xm} and that Y ∗X = Im , so y∗i x j = 0 if i �= j and each
y∗i xi = 1. Given the basis x1, . . . , xm of S, its dual basis (reciprocal basis) is the list
y1, . . . , ym . (b) Explain why the dual basis of x1, . . . , xm is unique, that is, if the columns
of Z ∈ Mn,m are in S and Z∗X = I , then Z = Y . (c) Show that the dual basis of the list
y1, . . . , ym is x1, . . . , xm . (d) If n = m, show that the columns of X−∗ are a basis of Cn that
is dual to the basis x1, . . . , xn .

2.1.P20 If U ∈ Mn is unitary, show that adj U = (det U )U ∗ and conclude that adj U is
unitary.

2.1.P21 Explain why (2.1.10) remains true if unitary is replaced with complex orthogonal.
Deduce that a complex orthogonal matrix is upper triangular if and only if it is diagonal.
What does a diagonal complex orthogonal matrix look like?

2.1.P22 Suppose that X, Y ∈ Mn,m have orthonormal columns. Show that X and Y have
the same range (column space) if and only if there is a unitary U ∈ Mm such that X = YU .

2.1.P23 Let A ∈ Mn , let A = Q R be a Q R factorization, let R = [ri j ], and partition
A, Q, and R according to their columns: A = [a1 . . . an], Q = [q1 . . . qn], and R =
[r1 . . . rn]. Explain why | det A| = det R = r11 · · · rnn and why ‖ai‖2 = ‖ri‖2 ≥ rii for each
i = 1, . . . , n, with equality for some i if and only if ai = rii qi . Conclude that | det A| ≤∏n

i=1 ‖ai‖2, with equality if and only if either (a) some ai = 0 or (b) A has orthogonal
columns (i.e., A∗A = diag(‖a1‖2

2 , . . . , ‖an‖2
2)). This Hadamard’s inequality.

2.1.P24 Let E = [ei j ] ∈ M3, in which each ei j = +1. (a) Show that the permanent of E
(0.3.2) is per E = 6. (b) Let B = [bi j ] ∈ M3, in which each bi j = ±1. Use Hadamard’s
inequality to show that there is no choice of ± signs such that per E = det B.

2.1.P25 If U ∈ Mn is unitary and r ∈ {1, . . . , n}, explain why the compound matrix Cr (U )
is unitary.

2.1.P26 Explain why (a) each A ∈ Mn can be factored as A = H1 · · · Hn−1 R, in which
each Hi is a Householder matrix and R is upper triangular; (b) each unitary U ∈ Mn

can be factored as U = H1 · · · Hn−1 D, in which each Hi is a Householder matrix
and D is a diagonal unitary matrix; and (c) each real orthogonal Q ∈ Mn(R) can be
factored as Q = H1 · · · Hn−1 D, in which each Hi is a real Householder matrix and
D = diag(1, . . . , 1,±1) = diag(1, . . . , 1, (−1)n−1 det Q).
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The following three problems provide an analog of the preceding problem, in which
plane rotations are used instead of Householder matrices.

2.1.P27 Let n ≥ 2 and let x = [xi ] ∈ Rn . If xn = xn−1 = 0, let θ1 = 0; otherwise, choose

θ1 ∈ [0, 2π ) such that cos θ1 = xn−1/

√
x2

n + x2
n−1 and sin θ1 = −xn/

√
x2

n + x2
n−1. Let

x (1) = [x (1)
i ] = U (θ1; n − 1, n)x . Show that x (1)

n = 0 and x (1)
n−1 ≥ 0. Let x (2) = [x (2)

i ] =
U (θ2; n − 2, n − 1)U (θ1; n − 1, n)x . How can you choose θ2 so that x (2)

n = x (2)
n−1 = 0 and

x (2)
n−2 ≥ 0? If 1 ≤ k < n, explain how to construct a sequence of k plane rotations U1, . . . , Uk

such that the vector x (k) = [x (k)
i ] = Uk · · ·U1x has x (k)

n = · · · = x (k)
n−k+1 = 0 and x (k)

n−k ≥ 0.
Why is ‖x‖2 = ∥∥x (k)

∥∥
2?

2.1.P28 Let A ∈ Mn,m(R) with n ≥ m. (a) Explain how to construct a finite sequence of

plane rotations U1, . . . , UN such that UN · · ·U1 A =
[

B
0

]
, in which B = [bi j ] ∈ Mm(R)

is upper triangular and each of b11, . . . , bm−1,m−1 is nonnegative. (b) Explain why this
reduction to upper triangular form can be achieved with a sequence of N = m(n − m+1

2 )
plane rotations; some of them may be the identity, so fewer than N nontrivial plane rotations
are possible. (c) Use (a) to prove that each A ∈ Mn(R) can be factored as A = U1 · · ·UN R,
in which N = n(n − 1)/2, each Ui is a plane rotation, R = [ri j ] is upper triangular, and
each r11, . . . , rn−1,n−1 (but not necessarily rnn) is nonnegative.

2.1.P29 Explain why each real orthogonal matrix Q ∈ Mn(R) can be factored as
Q = U1 · · ·UN D, in which N = n(n − 1)/2, each Ui is a plane rotation, and D =
diag(1, . . . , 1, det Q) = diag(1, . . . , 1,±1) ∈ Mn(R).

Further Reading. For more information about matrices that satisfy the conditions of
(2.1.9), see C. R. DePrima and C. R. Johnson, The range of A−1 A∗ in GL(n, C), Linear
Algebra Appl. 9 (1974) 209–222.

2.2 Unitary similarity

Since U ∗ = U−1 for a unitary U , the transformation on Mn given by A → U ∗AU is a
similarity transformation if U is unitary. This special type of similarity is called unitary
similarity.

Definition 2.2.1. Let A, B ∈ Mn be given. We say that A is unitarily similar to B if
there is a unitary U ∈ Mn such that A = U BU ∗. If U may be taken to be real (and
hence is real orthogonal), then A is said to be real orthogonally similar to B. We say
that A is unitarily diagonalizable if it is unitarily similar to a diagonal matrix; A is real
orthogonally diagonalizable if it is real orthogonally similar to a diagonal matrix.

Exercise. Show that unitary similarity is an equivalence relation.

Theorem 2.2.2. Let U ∈ Mn and V ∈ Mm be unitary, let A = [ai j ] ∈ Mn,m and
B = [bi j ] ∈ Mn,m, and suppose that A = U BV . Then

∑n,m
i, j=1 |bi j |2 =∑n,m

i, j=1 |ai j |2.
In particular, this identity is satisfied if m = n and V = U ∗, that is, if A is unitarily
similar to B.

Proof. It suffices to check that tr B∗B = tr A∗A; see (0.2.5). Compute tr A∗A =
tr(U BV )∗(U BV ) = tr(V ∗B∗U ∗U BV ) = tr V ∗B∗BV = tr B∗BV V ∗ = tr B∗B. �
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Exercise. Show that the matrices
[

3 1
−2 0

]
and

[
1 1
0 2

]
are similar but not unitarily

similar.

Unitary similarity implies similarity but not conversely. The unitary similarity equiv-
alence relation partitions Mn into finer equivalence classes than the similarity equiv-
alence relation. Unitary similarity, like similarity, corresponds to a change of basis,
but of a special type—it corresponds to a change from one orthonormal basis to
another.

Exercise. Using the notation of (2.1.11), explain why only rows and columns
i and j are changed under real orthogonal similarity via the plane rotation
U (θ ; i, j).

Exercise. Using the notation of (2.1.13), explain why U (y, x)∗AU (y, x) =
U ∗

w AUw for any A ∈ Mn; that is, a unitary similarity via an essentially Hermi-
tian unitary matrix of the form U (y, x) is a unitary similarity via a Householder
matrix. Unitary (or real orthogonal) similarity via a Householder matrix is often
called a Householder transformation.

For computational or theoretical reasons, it is often convenient to transform a given
matrix by unitary similarity into another matrix with a special form. Here are two
examples.

Example 2.2.3. Unitary similarity to a matrix with equal diagonal entries.
Let A = [ai j ] ∈ Mn be given. We claim that there is a unitary U ∈ Mn such that
all the main diagonal entries of U ∗AU = B = [bi j ] are equal; if A is real, then U
may be taken to be real orthogonal. If this claim is true, then tr A = tr B = nb11,
so every main diagonal entry of B is equal to the average of the main diagonal
entries of A.

Begin by considering the complex case and n = 2. Since we can replace
A ∈ M2 by A − ( 1

2 tr A)I , there is no loss of generality to assume that tr A = 0,
in which case the two eigenvalues of A are ±λ for some λ ∈ C. We wish to
determine a unit vector u such that u∗Au = 0. If λ = 0, let u be any unit vec-
tor such that Au = 0. If λ �= 0, let w and z be any unit eigenvectors associated
with the distinct eigenvalues ±λ. Let x(θ ) = eiθw + z, which is nonzero for all
θ ∈ R since w and z are linearly independent. Compute x(θ )∗Ax(θ ) = λ(eiθw +
z)∗(eiθw − z) = 2iλ Im(eiθ z∗w). If z∗w = eiφ|z∗w|, then x(−φ)∗Ax(−φ) = 0.
Let u = x(−φ)/ ‖x(−φ)‖2. Now let v ∈ C2 be any unit vector that is orthogo-
nal to u and let U = [u v]. Then U is unitary and (U ∗AU )11 = u∗Au = 0. But
tr(U ∗AU ) = 0, so (U ∗AU )22 = 0 as well.

Now suppose that n = 2 and A is real. If the diagonal entries of A = [ai j ] are

not equal, consider the plane rotation matrix Uθ =
[

cos θ − sin θ

sin θ cos θ

]
. A calculation

reveals that the diagonal entries of Uθ AU T
θ are equal if (cos2 θ − sin2 θ )(a11 −

a22) = 2 sin θ cos θ (a12 + a21), so equal diagonal entries are achieved if θ ∈
(0, π/2) is chosen so that cot 2θ = (a12 + a21)/(a11 − a22).

We have now shown that any 2-by-2 complex matrix A is unitarily similar to
a matrix with both diagonal entries equal to the average of the diagonal entries
of A; if A is real, the similarity may be taken to be real orthogonal.
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Now suppose that n > 2 and define f (A) = max{|aii − a j j | : i, j =
1, 2, . . . , n}. If f (A) > 0, let A2 =

[
aii ai j

a ji a j j

]
for a pair of indices i, j for which

f (A) = |aii − a j j | (there could be several pairs of indices for which this maxi-
mum positive separation is attained; choose any one of them). Let U2 ∈ M2 be
unitary, real if A is real, and such that U ∗

2 A2U2 has both main diagonal entries
equal to 1

2 (aii + a j j ). Construct U (i, j) ∈ Mn from U2 in the same way that
U (θ ; i, j) was constructed from a 2-by-2 plane rotation in (2.1.11). The unitary
similarity U (i, j)∗AU (i, j) affects only entries in rows and columns i and j , so it
leaves unchanged every main diagonal entry of A except the entries in positions
i and j , which it replaces with the average 1

2 (aii + a j j ). For any k �= i, j the
triangle inequality ensures that

|akk − 1

2
(aii + a j j )| = |1

2
(akk − aii ) + 1

2
(akk − a j j )|

≤ 1

2
|akk − aii | + 1

2
|akk − a j j |

≤ 1

2
f (A) + 1

2
f (A) = f (A)

with equality only if the scalars akk − aii and akk − a j j both lie on the same ray in
the complex plane and |akk − aii | = |akk − a j j |. These two conditions imply that
aii = a j j , so it follows that |akk − 1

2 (aii + a j j )| < f (A) for all k �= i, j . Thus,
the unitary similarity we have just constructed reduces by one the finitely many
pairs of indices k, � for which f (A) = |akk − a��|. Repeat the construction, if
necessary, to deal with any such remaining pairs and achieve a unitary U (real if
A is real) such that f (U ∗AU ) < f (A).

Finally, consider the compact set R(A) = {U ∗AU : U ∈ Mn is unitary}. Since
f is a continuous nonnegative-valued function on R(A), it achieves its minimum
value there, that is, there is some B ∈ R(A) such that f (A) ≥ f (B) ≥ 0 for all
A ∈ R(A). If f (B) > 0, we have just seen that there is a unitary U (real if A is
real) such that f (B) > f (U∗BU ). This contradiction shows that f (B) = 0, so
all the diagonal entries of B are equal.

Example 2.2.4. Unitary similarity to an upper Hessenberg matrix. Let A =
[ai j ] ∈ Mn be given. The following construction shows that A is unitarily similar
to an upper Hessenberg matrix with nonnegative entries in its first subdiagonal.
Let a1 be the first column of A, partitioned as aT

1 = [a11 ξ T ] with ξ ∈ Cn−1. Let
U1 = In−1 if ξ = 0; otherwise, use (2.1.13) to construct U1 = U (‖ξ‖2 e1, ξ ) ∈
Mn−1, a unitary matrix that takes ξ into a positive multiple of e1. Form the
unitary matrix V1 = I1 ⊕ U1 and observe that the first column of V1 A is the
vector [a11 ‖ξ‖2 0]T . Moreover, A1 = (V1 A)V ∗

1 has the same first column as
V1 A and is unitarily similar to A. Partition it as

A1 =
⎡
⎣ a11 �[‖ξ‖2

0

]
A2

⎤
⎦ , A2 ∈ Mn−1



2.2 Unitary similarity 97

Use (2.1.13) again to form, in the same way, a unitary matrix U2 that takes the
first column of A2 into a vector whose entries below the second are all zero and
whose second entry is nonnegative. Let V2 = I2 ⊕ U2 and let A2 = V2 AV ∗

2 . This
similarity does not affect the first column of A1. After at most n − 1 steps, this
construction produces an upper Hessenberg matrix An−1 that is unitarily similar
to A and has nonnegative subdiagonal entries.

Exercise. If A is Hermitian or skew Hermitian, explain why the construction
in the preceding example produces a tridiagonal Hermitian or skew-Hermitian
matrix that is unitarily similar to A.

Theorem 2.2.2 provides a necessary but not sufficient condition for two given
matrices to be unitarily similar. It can be augmented with additional identities that
collectively do provide necessary and sufficient conditions. A key role is played by
the following simple notion. Let s, t be two given noncommuting variables. Any finite
formal product of nonnegative powers of s and t

W (s, t) = sm1 tn1 sm2 tn2 · · · smk tnk , m1, n1, . . . , mk, nk ≥ 0 (2.1)

is called a word in s and t . The length of the word W (s, t) is the nonnegative integer
m1 + n1 + m2 + n2 + · · · + mk + nk , that is, the sum of all the exponents in the word.
If A ∈ Mn is given, we define a word in A and A∗ as

W (A, A∗) = Am1 (A∗)n1 Am2 (A∗)n2 · · · Amk (A∗)nk

Since the powers of A and A∗ need not commute, it may not be possible to simplify
the expression of W (A, A∗) by rearranging the terms in the product.

Suppose that A is unitarily similar to B ∈ Mn , that is, A = U BU ∗ for some unitary
U ∈ Mn . For any word W (s, t) we have

W (A, A∗) = (U BU ∗)m1 (U B∗U ∗)n1 · · · (U BU ∗)mk (U B∗U ∗)nk

= U Bm1U ∗U (B∗)n1U ∗ · · ·U Bmk U ∗U (B∗)nk U ∗

= U Bm1 (B∗)n1 · · · Bmk (B∗)nk U ∗

= U W (B, B∗)U ∗

so W (A, A∗) is unitarily similar to W (B, B∗). Thus, tr W (A, A∗) = trW (B, B∗). If we
take the word W (s, t) = ts, we obtain the identity in (2.2.2).

If one considers all possible words W (s, t), this observation gives infinitely many
necessary conditions for two matrices to be unitarily similar. A theorem of W. Specht,
which we state without proof, guarantees that these necessary conditions are also
sufficient.

Theorem 2.2.6. Two matrices A, B ∈ Mn are unitarily similar if and only if

tr W (A, A∗) = tr W (B, B∗) (2.2.7)

for every word W (s, t) in two noncommuting variables.

Specht’s theorem can be used to show that two matrices are not unitarily similar
by exhibiting a specific word that violates (2.2.7). However, except in special situa-
tions (see 2.2.P6) it may be useless in showing that two given matrices are unitarily
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similar because infinitely many conditions must be verified. Fortunately, a refinement
of Specht’s theorem ensures that it suffices to check the trace identities (2.2.7) for only
finitely many words, which can provide a practical criterion to assess unitary similarity
of matrices of small size.

Theorem 2.2.8. Let A, B ∈ Mn be given.

(a) A and B are unitarily similar if and only if (2.2.7) is satisfied for every word
W (s, t) in two noncommuting variables whose length is at most

n

√
2n2

n − 1
+ 1

4
+ n

2
− 2

(b) If n = 2, A and B are unitarily similar if and only if (2.2.7) is satisfied for the
three words W (s, t) = s; s2, and st .

(c) If n = 3, A and B are unitarily similar if and only if (2.2.7) is satisfied for the
seven words W (s, t) = s; s2, st; s3, s2t; s2t2; and s2t2st .

(d) If n = 4, A and B are unitarily similar if and only if (2.2.7) is satisfied for the 20
words W (s, t) in the following table:

s s2, st
s3, s2t s4, s3t, s2t2, stst
s3t2 s2ts2t, s2t2st, t2s2ts
s3t2st s3t2s2t, s3t3st, t3s3ts
s3ts2tst, s2t2sts2t s3t3s2t2

Two real matrices are unitarily similar if and only if they are real orthogonally
similar; see (2.5.21). Thus, the criteria in (2.2.8) are necessary and sufficient for two
real matrices A and B to be real orthogonally similar.

Problems

2.2.P1 Let A = [ai j ] ∈ Mn(R) be symmetric but not diagonal, and choose indices i, j
with i < j so that |ai j | = max{|apq | : p < q}. Define θ by cot 2θ = (aii − a j j )/2ai j , let
U (θ ; i, j) be the plane rotation (2.1.11), and let B = U (θ ; i, j)T AU (θ ; i, j) = [bpq ]. Show
that bi j = 0,

∑n
p,q=1 |bpq |2 =∑n

p,q=1 |apq |2, and

∑
p �=q

|bpq |2 =
∑
p �=q

|apq |2 − 2|ai j |2 ≤
(

1 − 2

n2 − n

)∑
p �=q

|apq |2

Explain why a sequence of real orthogonal similarities via plane rotations chosen in this
way (at each step, do a plane rotation that annihilates a largest-magnitude off-diagonal
entry) converges to a diagonal matrix whose diagonal entries are the eigenvalues of A.
How can corresponding eigenvectors be obtained as a by-product of this process? This is
Jacobi’s method for calculating the eigenvalues of a real symmetric matrix. In practice, one
implements Jacobi’s method with an algorithm that avoids calculation of any trigonometric
functions or their inverses; see Golub and VanLoan (1996).
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2.2.P2 The eigenvalue calculation method of Givens for real matrices also uses plane
rotations, but in a different way. For n ≥ 3, provide details for the following argument to
show that every A = [ai j ] ∈ Mn(R) is real orthogonally similar to a real lower Hessenberg
matrix, which is necessarily tridiagonal if A is symmetric; see (0.9.9) and (0.9.10). Choose
a plane rotation U1,3 of the form U (θ ; 1, 3), as in the preceding problem, so that the 1,3
entry of U ∗

1,3 AU1,3 is 0. Choose another plane rotation of the form U1,4 = U (θ ; 1, 4) so that
the 1,4 entry of U ∗

1,4(U ∗
1,3 AU1,3)U1,4 is 0; continue in this way to zero out the rest of the first

row with a sequence of real orthogonal similarities. Then start on the second row beginning
with the 2,4 entry and zero out the 2,4, 2,5, . . . , 2,n entries. Explain why this process does
not disturb previously manufactured zero entries and why it preserves symmetry if A is
symmetric. Proceeding in this way through row n − 3 produces a lower Hessenberg matrix
after finitely many real orthogonal similarities via plane rotations; that matrix is tridiagonal
if A is symmetric. However, the eigenvalues of A are not displayed as in Jacobi’s method;
they must be obtained from a further calculation.

2.2.P3 Let A ∈ M2. (a) Show that tr W (A, A∗) = tr W (AT Ā) for each of the three words in
(2.2.8b). (b) Explain why every 2-by-2 complex matrix is unitarily similar to its transpose.

2.2.P4 Let A ∈ M3. (a) Show that tr W (A, A∗) = tr W (AT Ā) for each of the first six
words of the list in (2.2.8c), and conclude that A is unitarily similar to AT if and only if
tr(A2(A∗2)AA∗) = tr((AT )2 Ā2 AT Ā). (b) Explain why A is unitarily similar to AT if and
only if tr(AA∗(A∗A − AA∗)A∗A) = 0. (c) Use the criterion in either (b) or (c) to show that
the matrix ⎡

⎣ 1 1 1
−1 0 1
−1 −1 −1

⎤
⎦

is not unitarily similar to its transpose. Note, however that every square complex matrix is
similar to its transpose (3.2.3).

2.2.P5 If A ∈ Mn and there is a unitary U ∈ Mn such that A∗ = U AU ∗, show that U
commutes with A + A∗. Apply this observation to the 3-by-3 matrix in the preceding
problem and conclude that if it is unitarily similar to its transpose, then any such unitary
similarity must be diagonal. Show that no diagonal unitary similarity can take this matrix
into its transpose, so it is not unitarily similar to its transpose.

2.2.P6 Let A ∈ Mn and B, C ∈ Mm be given. Use either (2.2.6) or (2.2.8) to show that B
and C are unitarily similar if and only if any one of the following conditions is satisfied:

(a)
[

A 0
0 B

]
and

[
A 0
0 C

]
are unitarily similar.

(b) B ⊕ · · · ⊕ B and C ⊕ · · · ⊕ C are unitarily similar if both direct sums contain the same
number of direct summands.

(c) A ⊕ B ⊕ · · · ⊕ B and A ⊕ C ⊕ · · · ⊕ C are unitarily similar if both direct sums contain
the same number of direct summands.

2.2.P7 Give an example of two 2-by-2 matrices that satisfy the identity (2.2.2) but are not
unitarily similar. Explain why.

2.2.P8 Let A, B ∈ M2 and let C = AB − B A. Use Example 2.2.3 to show that C2 = λI
for some scalar λ.
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2.2.P9 Let A ∈ Mn and suppose that tr A = 0. Use (2.2.3) to show that A can be written
as a sum of two nilpotent matrices. Conversely, if A can be written as a sum of nilpotent
matrices, explain why tr A = 0.

2.2.P10 Let n ≥ 2 be a given integer and define ω = e2π i/n . (a) Explain why
∑n−1

k=0ω
k� =

0 unless � = mn for some m = 0,±1,±2, . . . , in which case the sum is equal to n.
(b) Let Fn = n−1/2[ω(i−1)( j−1)]n

i, j=1 denote the n-by-n Fourier matrix. Show that Fn is

symmetric, unitary, and coninvolutory: Fn F∗
n = Fn Fn = I . (c) Let Cn denote the basic

circulant permutation matrix (0.9.6.2). Explain why Cn is unitary (real orthogonal). (d) Let
D = diag(1, ω, ω2, . . . , ωn−1) and show that Cn Fn = Fn D, so Cn = Fn DF∗

n and Ck
n =

Fn Dk F∗
n for all k = 1, 2, . . . . (e) Let A denote the circulant matrix (0.9.6.1) whose first

row is [a1 . . . an], expressed as the sum in (0.9.6.3). Explain why A = Fn�F∗
n , in which

� = diag(λ1, . . . , λn), the eigenvalues of A are

λ� =
n−1∑
k=0

ak+1ω
k(�−1), � = 1, . . . , n (2.2.9)

and λ1, . . . , λn are the entries of the vector n1/2 F∗
n Ae1. Thus, the Fourier matrix provides an

explicit unitary diagonalization for every circulant matrix. (f ) If there is some i ∈ {1, . . . , n}
such that |ai | >

∑
j �=i |a j |, deduce from (2.2.9) that A is nonsingular. We can restate this

criterion as follows: If a circulant matrix is singular and has first row [a1 . . . an], then that
row vector is balanced; see (7.2.P28). (g) Write Fn = Cn + iSn , in which Cn and Sn are
real. What are the entries of Cn and Sn? The matrix Hn = Cn + Sn is the n-by-n Hartley
matrix. (h) Show that C2

n + S2
n = I , CnSn = SnCn = 0, Hn is symmetric, and Hn is real

orthogonal. (i) Let Kn denote the reversal matrix (0.9.5.1). Show that Cn Kn = KnCn = Cn ,
Sn Kn = KnSn = −Sn , and Hn Kn = Kn Hn , so Cn , Sn , and Hn are centrosymmetric. It is
known that Hn AHn = � is diagonal for any matrix of the form A = E + Kn F , in which E
and F are real circulant matrices, E = ET , and F = −F T ; the diagonal entries of � (the
eigenvalues of such a matrix A) are the entries of the vector n1/2 Hn Ae1. In particular, the
Hartley matrix provides an explicit real orthogonal diagonalization for every real symmetric
circulant matrix.

Notes and Further Readings. For the original proof of (2.2.6), see W. Specht, Zur
Theorie der Matrizen II, Jahresber. Deutsch. Math.-Verein. 50 (1940) 19–23; there
is a modern proof in [Kap]. For a survey of the issues addressed in (2.2.8), see D.
Ðjoković and C. R. Johnson, Unitarily achievable zero patterns and traces of words
in A and A∗, Linear Algebra Appl. 421 (2007) 63–68. The list of words in (2.2.8d)
is in Theorem 4.4 of D. Ðjoković, Poincaré series of some pure and mixed trace
algebras of two generic matrices, J. Algebra 309 (2007) 654–671. A 4-by-4 complex
matrix is unitarily similar to its transpose if and only if seven zero-trace identities
of the type in (2.2.P4(b)) are satisfied; see Theorem 1 in S. R. Garcia, D. E. Poore,
and J. E. Tener, Unitary equivalence to a complex symmetric matrix: low dimensions,
Linear Algebra Appl. 437 (2012) 271–284. There is an approximate version of (2.2.6)
for two nonsingular matrices A, B ∈ Mn: A and B are unitarily similar if and only
if | tr W (A, A∗) − tr W (B, B∗)| ≤ 1 and | tr W ((A, A∗)−1) − tr W ((B, B∗)−1)| ≤ 1 for
every word W (s, t) in two noncommuting variables; see L. W. Marcoux, M. Mastnak,



2.3 Unitary and real orthogonal triangularizations 101

and H. Radjavi, An approximate, multivariable version of Specht’s theorem, Linear
Multilinear Algebra 55 (2007) 159–173.

2.3 Unitary and real orthogonal triangularizations

Perhaps the most fundamentally useful fact of elementary matrix theory is a theorem
attributed to I. Schur: Any square complex matrix A is unitarily similar to a triangular
matrix whose diagonal entries are the eigenvalues of A, in any prescribed order. Our
proof involves a sequence of deflations by unitary similarities.

Theorem 2.3.1 (Schur form; Schur triangularization). Let A ∈ Mn have eigenval-
ues λ1, . . . , λn in any prescribed order and let x ∈ Cn be a unit vector such that
Ax = λ1x.

(a) There is a unitary U = [x u2 . . . un] ∈ Mn such that U ∗AU = T = [ti j ] is upper
triangular with diagonal entries tii = λi , i = 1, . . . , n.

(b) If A ∈ Mn(R) has only real eigenvalues, then x may be chosen to be real and there
is a real orthogonal Q = [x q2 . . . qn] ∈ Mn(R) such that QT AQ = T = [ti j ]
is upper triangular with diagonal entries tii = λi , i = 1, . . . , n.

Proof. Let x be a normalized eigenvector of A associated with the eigenvalue λ1, that
is, x∗x = 1 and Ax = λ1x . Let U1 = [x u2 . . . un] be any unitary matrix whose first
column is x . For example, one may take U1 = U (x, e1) as in (2.1.13), or one can
proceed as in 2.3.P1. Then

U ∗
1 AU1 = U ∗

1

[
Ax Au2 . . . Aun

] = U ∗
1

[
λ1x Au2 . . . Aun

]

=

⎡
⎢⎢⎢⎣

x∗

u∗
2
...

u∗
n

⎤
⎥⎥⎥⎦[λ1x Au2 . . . Aun

]

=

⎡
⎢⎢⎢⎣

λ1x∗x x∗Au2 . . . x∗Aun

λ1u∗
2x

... A1

λ1u∗
nx

⎤
⎥⎥⎥⎦ =

[
λ1 �
0 A1

]

because the columns of U1 are orthonormal. The eigenvalues of the submatrix A1 =
[u∗

i Au j ]n
i, j=2 ∈ Mn−1 are λ2, . . . , λn . If n = 2, we have achieved the desired unitary

triangularization. If not, let ξ ∈ Cn−1 be a unit eigenvector of A1 associated with λ2,
and perform the preceding reduction on A1. If U2 ∈ Mn−1 is any unitary matrix whose
first column is ξ , then we have seen that

U ∗
2 A1U2 =

[
λ2 �
0 A2

]
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Let V2 = [1] ⊕ U2 and compute the unitary similarity

(U1V2)∗ AU1V2 = V ∗
2 U ∗

1 AU1V2 =
⎡
⎣λ1 � �

0 λ2 �
0 0 A2

⎤
⎦

Continue this reduction to produce unitary matrices Ui ∈ Mn−i+1, i = 1, . . . , n − 1
and unitary matrices Vi ∈ Mn, i = 2, . . . , n − 2. The matrix U = U1V2V3 · · · Vn−2 is
unitary and U ∗AU is upper triangular.

If all the eigenvalues of A ∈ Mn(R) are real, then all of the eigenvectors and
unitary matrices in the preceding algorithm can be chosen to be real (1.1.P3 and
(2.1.13)). �

Exercise. Using the notation of (2.3.1), let U ∗AT U be upper triangular. Let
V = Ū and explain why V ∗AV is lower triangular.

Example 2.3.2. If the eigenvalues of A are reordered and the corresponding
upper triangularization (2.3.1) is performed, the entries of T above the main
diagonal can be different. Consider

T1 =
⎡
⎣1 1 4

0 2 2
0 0 3

⎤
⎦ , T2 =

⎡
⎣2 −1 3

√
2

0 1
√

2
0 0 3

⎤
⎦ , U = 1√

2

⎡
⎣1 1 0

1 −1 0
0 0

√
2

⎤
⎦

Verify that U is unitary and T2 = U T1U ∗.

Exercise (Schur’s inequality; defect from normality). If A = [ai j ] ∈ Mn has
eigenvalues λ1, . . . , λn and is unitarily similar to an upper triangular matrix
T = [ti j ] ∈ Mn , the diagonal entries of T are the eigenvalues of A in some order.
Apply (2.2.2) to A and T to show that

n∑
i=1

|λi |2 =
n∑

i, j=1

|ai j |2 −
∑
i< j

|ti j |2 ≤
n∑

i, j=1

|ai j |2 = tr(AA∗) (2.3.2a)

with equality if and only if T is diagonal.

Exercise. If A = [ai j ] and B = [bi j ] ∈ M2 have the same eigenvalues and if∑2
i, j=1 |ai j |2 =∑2

i, j=1 |bi j |2, use the criterion in (2.2.8) to show that A and B
are unitarily similar. However, consider

A =
⎡
⎣1 3 0

0 2 4
0 0 3

⎤
⎦ and B =

⎡
⎣1 0 0

0 2 5
0 0 3

⎤
⎦ (2.3.2b)

which have the same eigenvalues and the same sums of squared entries. Use the
criterion in (2.2.8) or the exercise following (2.4.5.1) to show that A and B are
not unitarily similar. Nevertheless, A and B are similar. Why?

There is a useful extension of (2.3.1): A commuting family of complex matri-
ces can be reduced simultaneously to upper triangular form by a single unitary
similarity.
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Theorem 2.3.3. Let F ⊆ Mn be a nonempty commuting family. There is a unitary
U ∈ Mn such that U ∗AU is upper triangular for every A ∈ F .

Proof. Return to the proof of (2.3.1). Exploiting (1.3.19) at each step of the proof
in which a choice of an eigenvector (and unitary matrix) is made, choose a unit
eigenvector that is common to every A ∈ F and construct a unitary matrix that has
this common eigenvector as its first column; it deflates (via unitary similarity) every
matrix in F in the same way. Similarity preserves commutativity, and a partitioned

multiplication calculation reveals that, if two matrices of the form
[

A11 A12
0 A22

]
and[

B11 B12
0 B22

]
commute, then A22 and B22 commute also. We conclude that all ingredients

in the U of (2.3.1) may be chosen in the same way for all members of a commuting
family. �

In (2.3.1) we may specify the main diagonal of T (that is, we may specify in advance
the order in which the eigenvalues of A appear as the deflation progresses), but (2.3.3)
makes no such claim. At each stage of the deflation, the common eigenvector used is
associated with some eigenvalue of each matrix in F , but we may not be able to specify
which one. We must take the eigenvalues as they come, according to the common
eigenvectors guaranteed by (1.3.19).

The following exercise illuminates why quasitriangular and quasidiagonal matrices
arise when one looks for triangular forms that a real matrix can achieve under real
similarity; see (0.9.4).

Exercise. Show that a ± ib are the eigenvalues of the real 2-by-2 matrix
[

a b
−b a

]
.

If a real matrix A has any non-real eigenvalues, there is no hope of reducing it to
upper triangular form T by a real similarity because some main diagonal entries of
T (eigenvalues of A) would be non-real. However, we can always reduce A to a real
upper quasitriangular form by a real orthogonal similarity; conjugate pairs of non-real
eigenvalues are associated with 2-by-2 blocks.

Theorem 2.3.4 (real Schur form). Let A ∈ Mn(R) be given.

(a) There is a real nonsingular S ∈ Mn(R) such that S−1 AS is a real upper quasi-
triangular matrix⎡

⎢⎢⎢⎣
A1 �

A2

. . .

0 Am

⎤
⎥⎥⎥⎦ , each Ai is 1-by-1 or 2-by-2 (2.3.5)

with the following properties: (i) its 1-by-1 diagonal blocks display the real
eigenvalues of A; (ii) each of its 2-by-2 diagonal blocks has a special form that
displays a conjugate pair of non-real eigenvalues of A:[

a b
−b a

]
, a, b ∈ R, b > 0, and a ± ib are eigenvalues of A (2.3.5a)

(iii) its diagonal blocks are completely determined by the eigenvalues of A; they
may appear in any prescribed order.



104 Unitary similarity and unitary equivalence

(b) There is a real orthogonal Q ∈ Mn(R) such that QT AQ is a real upper qua-
sitriangular matrix with the following properties: (i) its 1-by-1 diagonal blocks
display the real eigenvalues of A; (ii) each of its 2-by-2 diagonal blocks has a
conjugate pair of non-real eigenvalues (but no special form); (iii) the ordering of
its diagonal blocks may be prescribed in the following sense: If the real eigenval-
ues and conjugate pairs of non-real eigenvalues of A are listed in a prescribed
order, then the real eigenvalues and conjugate pairs of non-real eigenvalues of
the respective diagonal blocks A1, . . . , Am of QT AQ are in the same order.

Proof. (a) The proof of (2.3.1) shows how to deflate A by a real orthogonal similarity
corresponding to any given real eigenpair; that deflation produces a real 1-by-1 diagonal

block and a deflated matrix of the form
[

λ ∗
0 A

]
. Problem 1.3.P33 describes how to

deflate A via a real similarity corresponding to an eigenpair λ, x in which λ is not
real; that deflation produces a real 2-by-2 diagonal block B of the special form (2.3.5a)

and a deflated matrix of the form
[

B ∗
0 A

]
. Only finitely many deflations are needed

to construct a nonsingular S such that S−1 AS has the asserted upper quasitriangular
form. We can control the order in which the diagonal blocks appear by choosing, in
each deflation step, a particular eigenvalue and corresponding eigenvector.
(b) Suppose that an ordering of the real and conjugate non-real pairs of eigenvalues
of A has been given, and let S be a nonsingular real matrix such that S−1 AS has the
form (2.3.5) with diagonal blocks in the prescribed order. Use (2.1.14) to factor S as
S = Q R, in which Q is real orthogonal and R is real and upper triangular. Partition
R = [Ri j ] conformally to (2.3.5) and compute S−1 AS = R−1 QT AQ R, so

QT AQ = R

⎡
⎢⎢⎢⎣

A1 �
A2

. . .
0 Am

⎤
⎥⎥⎥⎦ R−1

=

⎡
⎢⎢⎢⎣

R11 A1 R−1
11 �

R22 A2 R−1
22

. . .
0 Rmm Am R−1

mm

⎤
⎥⎥⎥⎦

is upper quasitriangular, its 1-by-1 diagonal blocks are identical to those of (2.3.5), and
its 2-by-2 diagonal blocks are similar to the corresponding blocks of (2.3.5). �

There is a commuting families version of the preceding theorem: A commuting
family of real matrices may be reduced simultaneously to a common upper quasitrian-
gular form by a single real or real orthogonal similarity. It is convenient to describe the
partitioned structure of (2.3.5) by saying that it is partitioned conformally to a given
quasidiagonal matrix D = Jn1 ⊕ · · · ⊕ Jnm ∈ Mn , in which Jk denotes the k-by-k all-
ones matrix (0.2.8) and each n j is either 1 or 2.
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Theorem 2.3.6. Let F ⊆ Mn(R) be a nonempty commuting family.

(a) There is a nonsingular S ∈ Mn (R) and a quasidiagonal D = Jn1 ⊕ · · · ⊕ Jnm ∈
Mn such that: (i) for each A ∈ F , S−1 AS is a real upper quasitriangular matrix
of the form ⎡

⎢⎢⎢⎣
A1(A) �

A2(A)
. . .

0 Am(A)

⎤
⎥⎥⎥⎦ (2.3.6.1)

that is partitioned conformally to D; (ii) if n j = 2, then for each A ∈ F we have

A j (A) =
[

a j (A) b j (A)
−b j (A) a j (A)

]
∈ M2(R) (2.3.6.2)

and a j (A) ± ib j (A) are eigenvalues of A; and (iii) for each j ∈ {1, . . . , m} such
that n j = 2, there is some A ∈ F such that b j (A) �= 0. If every matrix in F has
only real eigenvalues, then S−1 AS is upper triangular for every A ∈ F .

(b) There is a real orthogonal Q ∈ Mn (R) and a quasidiagonal D = Jn1 ⊕ · · · ⊕
Jnm ∈ Mn such that (i) for each A ∈ F , QT AQ is an upper quasitriangular
matrix of the form (2.3.6.1) that is partitioned conformally to D, and (ii) for
each j ∈ {1, . . . , m} such that n j = 2, there is some A ∈ F such that A j (A)
has a conjugate pair of non-real eigenvalues. If every matrix in F has only real
eigenvalues, then QT AQ is upper triangular for every A ∈ F .

Proof. (a) Following the inductive pattern of the proof of (2.3.3), it suffices to construct
a nonsingular real matrix that deflates (via similarity) each matrix in F in the same
way. Use (1.3.19) to choose a common unit eigenvector x ∈ Cn of every A ∈ F . Write
x = u + iv, in which u, v ∈ Rn . There are two possibilities, the first of which is (i)
{u, v} is linearly dependent. In this event, there is a real unit vector w ∈ Rn and real
scalars α and β, not both zero, such that u = aw and v = βw. Then x = (α + iβ)w and
w = (α + iβ)−1x is a real unit eigenvector of every A ∈ F . Let Q be a real orthogonal

matrix whose first column is w and observe that for every A ∈ F , QT AQ =
[

λ(A) ∗
0 ∗

]
,

in which λ(A) is a real eigenvalue of A. The second possibility is (ii) {u, v} is linearly
independent. In this event (1.3.P3) shows how to construct a real nonsingular matrix S

such that for every A ∈ F , S−1 AS =
[

A1(A) ∗
0 ∗

]
, in which A1(A) has the form (2.3.6.2).

If b1(A) �= 0, then a1(A) ± ib1(A) is a conjugate pair of non-real eigenvalues of A.
If b1(A) = 0, however, then a1(A) is a double real eigenvalue of A. If b1(A) = 0 for
every A ∈ F (for example, if every matrix in F has only real eigenvalues), then split
the 2-by-2 block into two 1-by-1 blocks.
(b) Let S be a nonsingular real matrix that has the properties asserted in (a), and let
S = Q R be a Q R factorization (2.1.14). In the same way as in the proof of (2.3.4),
one shows that Q has the asserted properties. �

Just as in (2.3.3), we cannot control the order of appearance of the eigenvalues cor-
responding to the diagonal blocks in the preceding theorem; we have to take the eigen-
values as they come, according to the common eigenvectors guaranteed by (1.3.19).
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Exercise. Let A ∈ Mn . Explain why A commutes with Ā if and only if AĀ is
real.

Exercise. Let A =
[

1 i
−i 1

]
. Show that AĀ is real and that Re A commutes with

Im A.

Exercise. Let A ∈ Mn and write A = B + iC , in which B and C are real. Show
that AĀ = ĀA if and only if BC = C B.

The set S = {A ∈ Mn : AĀ = ĀA} of matrices such that AĀ is real is larger than
the set Mn(R) of real matrices, but they have an important property in common: Any
real square matrix is real orthogonally similar to a real upper quasitriangular matrix,
while any matrix in S is real orthogonally similar to a complex upper quasitriangular
matrix.

Corollary 2.3.7. Let A ∈ Mn and suppose that AĀ = ĀA. There is a real orthogonal
Q ∈ Mn (R) and a quasidiagonal D = Jn1 ⊕ · · · ⊕ Jnm ∈ Mn such that QT AQ ∈ Mn

is a complex upper quasitriangular matrix of the form (2.3.6.1) that is partitioned
conformally to D and has the following property: For each j ∈ {1, . . . , m} such that
n j = 2, at least one of Re A j or Im A j has a conjugate pair of non-real eigenvalues. If
each of Re A and Im A has only real eigenvalues, then QT AQ ∈ Mn is upper triangular.

Proof. Write A = B + iC , in which B and C are real. The hypothesis and the preceding
exercise ensure that B and C commute. It follows from (2.3.6b) that there is a real
orthogonal Q ∈ Mn (R) and a quasidiagonal D = Jn1 ⊕ · · · ⊕ Jnm ∈ Mn such that each
of QT B Q and QT C Q is a real upper quasitriangular matrix of the form (2.3.6.1)
that is partitioned conformally to D. Moreover, for each j ∈ {1, . . . , m} such that
n j = 2, at least one of A j (B) or A j (C) has a conjugate pair of non-real eigenvalues.
It follows that QT AQ = QT (B + iC)Q = QT B Q + i QT C Q is a complex upper
quasitriangular matrix that is partitioned conformally to D. If each of B and C has
only real eigenvalues, then every n j = 1 and each of QT B Q and QT C Q is upper
triangular. �

Problems

2.3.P1 Let x ∈ Cn be a given unit vector and write x = [x1 yT ]T , in which x1 ∈ C and
y ∈ Cn−1. Choose θ ∈ R such that eiθ x1 ≥ 0 and define z = eiθ x = [z1 ζ T ]T , in which
z1 ∈ R is nonnegative and ζ ∈ Cn−1. Consider the Hermitian matrix

Vx =
[

z1 ζ ∗
- - - - - - - - - - - - - - - - - - - -
ζ −I + 1

1+z1
ζ ζ ∗

]
(2.3.8)

Use partitioned multiplication to compute V ∗
x Vx = V 2

x . Conclude that U = e−iθ Vx =
[x u2 . . . un] is a unitary matrix whose first column is the given vector x .

2.3.P2 If x ∈ Rn is a given unit vector, show how to streamline the construction described
in (2.3.P1) to produce a real orthogonal matrix Q ∈ Mn(R) whose first column is x . Prove
that your construction works.
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2.3.P3 Let A ∈ Mn(R). Explain why the non-real eigenvalues of A (if any) must occur in
conjugate pairs.

2.3.P4 Consider the familyF =
{[

0 −1
0 −1

]
,
[

1 1
0 −1

]}
and show that the hypothesis of com-

mutativity in (2.3.3), while sufficient to imply simultaneous unitary upper triangularizability
of F , is not necessary.

2.3.P5 Let F = {A1, . . . , Ak} ⊂ Mn be a given family, and let G = {Ai A j : i, j =
1, 2, . . . , k} be the family of all pairwise products of matrices in F . If G is commuta-
tive, it is known that F can be simultaneously unitarily upper triangularized if and only
if every eigenvalue of every commutator Ai A j − A j Ai is zero. Show that assuming com-
mutativity of G is a weaker hypothesis than assuming commutativity of F . Show that the
family F in (2.3.P4) has a corresponding G that is commutative and that it also satisfies the
zero eigenvalue condition.

2.3.P6 Let A, B ∈ Mn be given, and suppose A and B are simultaneously similar to
upper triangular matrices; that is, S−1 AS and S−1 BS are both upper triangular for some
nonsingular S ∈ Mn . Show that every eigenvalue of AB − B A must be zero.

2.3.P7 If a given A ∈ Mn can be written as A = QQT , in which Q ∈ Mn is complex
orthogonal and  ∈ Mn is upper triangular, show that A has at least one eigenvector x ∈ Cn

such that xT x �= 0. Consider A =
[

1 i
i −1

]
to show that not every A ∈ Mn can be upper

triangularized by a complex orthogonal similarity.

2.3.P8 Let Q ∈ Mn be complex orthogonal, and suppose that x ∈ Cn is an eigenvector of
Q associated with an eigenvalue λ �= ±1. Show that xT x = 0. See (2.1.P8a) for an example
of a family of 2-by-2 complex orthogonal matrices with both eigenvalues different from
±1. Show that none of these matrices can be reduced to upper triangular form by complex
orthogonal similarity.

2.3.P9 Let λ, λ2, . . . , λn be the eigenvalues of A ∈ Mn , suppose that x is a nonzero vector
such that Ax = λx , and let y ∈ Cn and α ∈ C be given. Provide details for the following

argument to show that the eigenvalues of the bordered matrix A =
[

α y∗
x A

]
∈ Mn+1 are

the two eigenvalues of
[

α y∗x
1 λ

]
together with λ2, . . . , λn: Form a unitary U whose first

column is x/ ‖x‖2, let V = [1] ⊕ U , and show that V ∗AV =
[

B �
0 C

]
, in which B =[

α y∗x/ ‖x‖2
‖x‖2 λ

]
∈ M2 and C ∈ Mn−2 has eigenvalues λ2, . . . , λn . Consider a similarity of

B via diag(1, ‖x‖−1
2 ). If y ⊥ x , conclude that the eigenvalues of A are α, λ, λ2, . . . , λn .

Explain why the eigenvalues of
[

α y∗
x A

]
and

[
A x
y∗ α

]
are the same.

2.3.P10 Let A = [ai j ] ∈ Mn and let c = max{|ai j | : 1 ≤ i, j ≤ n}. Show that | det A| ≤
cnnn/2 in two ways: (a) Let λ1, . . . , λn be the eigenvalues of A. Use the arithmetic-geometric
mean inequality and (2.3.2a) to explain why | det A|2 = |λ1 · · · λn|2 ≤ ((|λ1|2 + · · · +
|λn|2)/n)n ≤ (

∑n
i, j=1 |ai j |2/n)n ≤ (nc2)n . (b) Use Hadamard’s inequality in (2.1.P23).

2.3.P11 Use (2.3.1) to prove that if all the eigenvalues of A ∈ Mn are zero, then An = 0.

2.3.P12 Let A ∈ Mn , let λ1, . . . , λn be its eigenvalues, and let r ∈ {1, . . . , n}. (a)
Use (2.3.1) to show that the eigenvalues of the compound matrix Cr (A) are the(n

r

)
possible products λi1 · · · λir such that 1 ≤ i1 < i2 < · · · < ir ≤ n. (b) Explain why

tr Cr (A) = Sr (λ1, . . . , λn) = Er (A); see (1.2.14) and (1.2.16). (c) If the eigenvalues of
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A are arranged so that |λ1| ≥ · · · ≥ |λn|, explain why the spectral radius of Cr (A)
is ρ(Cr (A)) = |λ1 · · · λr |. (d) Explain why pA(t) =∑n

k=0(−1)k tn−k tr Cr (A) and hence
det(I + A) =∑n

k=0 tr Cr (A). (e) Provide details for the following: If A is nonsingular,
then

det(A + B) = det A det(I + A−1 B) = det A
n∑

k=0

tr Cr (A−1 B)

= det A
n∑

k=0

tr(Cr (A−1)Cr (B)) = det A
n∑

k=0

tr(Cr (A)−1Cr (B))

= det A
n∑

k=0

tr(det A−1 adjk(A)Cr (B)) =
n∑

k=0

tr(adjk(A)Cr (B)).

(f ) Prove the identity (0.8.12.3).

2.3.P13 Consider A =
[
−2 5
−1 2

]
. (a) Show that ±i are the eigenvalues of A and explain why

A is real similar to B =
[

0 1
−1 0

]
. (b) Explain why A is not real orthogonally similar to B.

2.3.P14 Let A = [ai j ] ∈ Mn . (a) Let V = [vi j ] ∈ Mn be unitary. Explain why | tr V A| =
|∑i, j vi j a ji | ≤

∑
i, j |a ji |. (b) Let λ1, . . . , λn be the eigenvalues of A. Show that

∑
i |λi | ≤∑

i, j |a ji |.

Further Readings. See (3.4.3.1) for a refinement of the upper triangularization (2.3.1).
For a proof of the stronger form of (2.3.3) asserted in (2.3.P5) see Y. P. Hong and R.
A. Horn, On simultaneous reduction of families of matrices to triangular or diagonal
form by unitary congruences, Linear Multilinear Algebra 17 (1985) 271–288.

2.4 Consequences of Schur’s triangularization theorem

A bounty of results can be harvested from Schur’s unitary triangularization theorem.
We investigate several of them in this section.

2.4.1 The trace and determinant. Suppose that A ∈ Mn has eigenvalues
λ1, . . . , λn . In (1.2) we used the characteristic polynomial to show that

∑n
i=1 λi = tr A,∑n

i=1 �n
j �=iλ j = tr(adj A), and det A = �n

i=1λi , but these identities and others follow
simply from inspection of the triangular form in (2.3.1).

For any nonsingular S ∈ Mn we have tr(S−1 AS) = tr(ASS−1) = tr A;
tr(adj(S−1 AS)) = tr((adj S)(adj A)(adj S−1)) = tr((adj S)(adj A)(adj S)−1) = tr(adj A);
and det(S−1 AS) = (det S−1)(det A)(det S) = (det S)−1(det A)(det S) = det A. Thus,
tr A, tr(adj A), and det A can be evaluated using any matrix that is similar to A.
The upper triangular matrix T = [ti j ] in (2.3.1) is convenient for this purpose,
since its main diagonal entries t11, . . . , tnn are the eigenvalues of A, tr T =∑n

i=1 tii ,
det T = �n

i=1tii , and the main diagonal entries of adj T are �n
j �=1t j j , . . . , �

n
j �=nt j j .

2.4.2 The eigenvalues of a polynomial in A. Suppose that A ∈ Mn has eigenvalues
λ1, . . . , λn and let p(t) be a given polynomial. We showed in (1.1.6) that p(λi ) is
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an eigenvalue of p(A) for each i = 1, . . . , n and that if μ is an eigenvalue of p(A),
then there is some i ∈ {1, . . . , n} such that μ = p(λi ). These observations identify the
distinct eigenvalues of p(A) (that is, its spectrum (1.1.4)) but not their multiplicities.
Schur’s theorem 2.3.1 reveals the multiplicities.

Let A = U T U ∗, in which U is unitary and T = [ti j ] is upper triangular with main di-
agonal entries t11 = λ1, t22 = λ2, . . . , tnn = λn . Then p(A) = p(U T U ∗) = U p(T )U ∗

(1.3.P2). The main diagonal entries of p(T ) are p(λ1), p(λ2), . . . , p(λn), so these are
the eigenvalues (including multiplicities) of p(T ) and hence also of p(A). In particular,
for each k = 1, 2, . . . , the eigenvalues of Ak are λk

1, . . . , λ
k
n and

tr Ak = λk
1 + · · · + λk

n (2.4.2.1)

Exercise. If T ∈ Mn is strictly upper triangular, show that all of the entries in the
main diagonal and the first p − 1 superdiagonals of T p are zero, p = 1, . . . , n;
in particular, T n = 0.

Suppose that A ∈ Mn . We know (1.1.P6) that if Ak = 0 for some positive integer
k, then σ (A) = {0}, so the characteristic polynomial of A is pA(t) = tn . We can now
prove the converse, and a little more. If σ (A) = {0}, then there is a unitary U and a
strictly upper triangular T such that A = U T U ∗; the preceding exercise tells us that
T n = 0, so An = U T nU ∗ = 0. Thus, the following are equivalent for A ∈ Mn: (a) A
is nilpotent; (b) An = 0; and (c) σ (A) = {0}.

2.4.3 The Cayley–Hamilton theorem. The fact that every square complex matrix
satisfies its own characteristic equation follows from Schur’s theorem and an observa-
tion about multiplication of triangular matrices with special patterns of zero entries.

Lemma 2.4.3.1. Suppose that R = [ri j ], T = [ti j ] ∈ Mn are upper triangular and that
ri j = 0, 1 ≤ i, j ≤ k < n, and tk+1,k+1 = 0. Let S = [si j ] = RT . Then si j = 0, 1 ≤
i, j ≤ k + 1.

Proof. The hypotheses describe block matrices R and T of the form

R =
[

0k R12

0 R22

]
, T =

[
T11 T12

0 T22

]
, T11 ∈ Mk

in which R22, T11, and T22 are upper triangular and the first column of T22 is zero. The
product RT is necessarily upper triangular. We must show that it has a zero upper-left
principal submatrix of size k + 1. Partition T22 = [0 Z ] to reveal its first column and
perform a block multiplication

RT =
[

0k T11 + R120 0k T12 + R12[0 Z ]
0T11 + R220 0T12 + R22[0 Z ]

]
=
[

0k [0 R12 Z ]
0 [0 R22 Z ]

]
which reveals the desired zero upper-left principal submatrix of size k + 1. �

Theorem 2.4.3.2 (Cayley–Hamilton). Let pA(t) be the characteristic polynomial of
A ∈ Mn . Then pA(A) = 0

Proof. Factor pA(t) = (t − λ1)(t − λ2) · · · (t − λn) as in (1.2.6) and use (2.3.1) to write
A as A = U T U ∗, in which U is unitary, T is upper triangular, and the main diagonal
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entries of T are λ1, . . . , λn . Compute

pA(A) = pA(U T U ∗) = U pA(T )U ∗

= U [(T − λ1 I )(T − λ2 I ) · · · (T − λn I )]U ∗

It suffices to show that pA(T ) = 0. The upper left 1-by-1 block of T − λ1 I is 0, and
the 2, 2 entry of T − λ2 I is 0, so the preceding lemma ensures that the upper left
2-by-2 principal submatrix of (T − λ1 I )(T − λ2 I ) is 0. Suppose that the upper left
k-by-k principal submatrix of (T − λ1 I ) · · · (T − λk I ) is zero. The k + 1, k + 1 entry
of (T − λk+1 I ) is 0, so invoking the lemma again, we know that the upper left principal
submatrix of (T − λ1 I ) · · · (T − λk+1 I ) of size k + 1 is 0. By induction, we conclude
that ((T − λ1 I ) · · · (T − λn−1 I ))(T − λn I ) = 0. �

Exercise. What is wrong with the following argument? “Since pA(λi ) = 0
for every eigenvalue λi of A ∈ Mn , and since the eigenvalues of pA(A) are
pA(λ1), . . . , pA(λn), all eigenvalues of pA(A) are 0. Therefore, pA(A) = 0.”
Give an example to illustrate the fallacy in the argument.

Exercise. What is wrong with the following argument? “Since pA(t) =
det(t I − A), we have pA(A) = det(AI − A) = det(A − A) = det 0 = 0. There-
fore, pA(A) = 0.”

The Cayley–Hamilton theorem is often paraphrased as “every square matrix satisfies
its own characteristic equation” (1.2.3), but this must be understood carefully: The
scalar polynomial pA(t) is first computed as pA(t) = det(t I − A); one then computes
the matrix pA(A) by substituting t → A.

We have proved the Cayley–Hamilton theorem for matrices with complex entries,
and hence it must hold for matrices whose entries come from any subfield of the complex
numbers (the reals or the rationals, for example). In fact, the Cayley–Hamilton theorem
is a completely formal result that is valid for matrices whose entries come from any
field or, more generally, any commutative ring; see (2.4.P3).

One important use of the Cayley–Hamilton theorem is to write powers Ak of A ∈ Mn ,
for k ≥ n, as linear combinations of I, A, A2, . . . , An−1.

Example 2.4.3.3. Let A =
[

3 1
−2 0

]
. Then pA(t) = t2 − 3t + 2, so A2 − 3A +

2I = 0. Thus, A2 = 3A − 2I ; A3 = A(A2) = 3A2 − 2A = 3(3A − 2I ) − 2A =
7A − 6I ; A4 = 7A2 − 6A = 15A − 14I , and so on. We can also express
negative powers of the nonsingular matrix A as linear combinations of A
and I . Write A2 − 3A + 2I = 0 as 2I = −A2 + 3A = A(−A + 3I ), or I =
A[ 1

2 (−A + 3I )]. Thus, A−1 = − 1
2 A + 3

2 I =
[

0 −1/2
1 3/2

]
, A−2 = (− 1

2 A + 3
2 I )2 =

1
4 A2 − 3

2 A + 9
4 I = 1

4 (3A − 2I ) − 3
2 A + 9

4 I = − 3
4 A + 7

4 I , and so on.

Corollary 2.4.3.4. Suppose A ∈ Mn is nonsingular and let pA(t) = tn + an−1tn−1 +
· · · + a1t + a0. Let q(t) = −(tn−1 + an−1tn−2 + · · · + a2t + a1)/a0. Then A−1 =
q(A) is a polynomial in A.

Proof. Write pA(A) = 0 as A(An−1 + an−1 An−2 + · · · + a2 A + a1 I ) = −a0 I , that is,
Aq(A) = I . �
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Exercise. If A, B ∈ Mn are similar and g(t) is any given polynomial, show that
g(A) is similar to g(B), and that any polynomial equation satisfied by A is satisfied
by B. Give some thought to the converse: Satisfaction of the same polynomial
equations implies similarity – true or false?

Example 2.4.3.5. We have shown that each A ∈ Mn satisfies a polynomial equa-
tion of degree n, for example, its characteristic equation. It is possible for A ∈ Mn

to satisfy a polynomial equation of degree less than n, however. Consider

A =
⎡
⎣1 0 0

0 1 1
0 0 1

⎤
⎦ ∈ M3

The characteristic polynomial is pA(t) = (t − 1)3 and indeed (A − I )3 = 0. But
(A − I )2 = 0 so A satisfies a polynomial equation of degree 2. There is no
polynomial h(t) = t + a0 of degree 1 such that h(A) = 0 since h(A) = A +
a0 I �= 0 for all a0 ∈ C.

Exercise. Suppose that a diagonalizable matrix A ∈ Mn has d ≤ n distinct eigen-
values λ1, . . . , λd . Let q(t) = (t − λ1) · · · (t − λd ). Show that q(A) = 0, so A
satisfies a polynomial equation of degree d. Why is there no polynomial g(t)
of degree strictly less than d such that g(A) = 0? Consider the matrix in the
preceding example to show that the minimum degree of a polynomial equation
satisfied by a nondiagonalizable matrix can be strictly larger than the number of
its distinct eigenvalues.

2.4.4 Sylvester’s theorem on linear matrix equations. The equation AX − X A =
0 associated with commutativity is a special case of the linear matrix equation AX −
X B = C , often called Sylvester’s equation. The following theorem gives a necessary
and sufficient condition for Sylvester’s equation to have a unique solution X for every
given C . It relies on the Cayley–Hamilton theorem and on the observation that if AX =
X B, then A2 X = A(AX ) = A(X B) = (AX )B = (X B)B = X B2, A3 X = A(A2 X ) =
A(X B2) = (AX )B2 = X B3, and so on. Thus, with the standard understanding that A0

denotes the identity matrix, we have(
m∑

k=0

ak Ak

)
X =

m∑
k=0

ak Ak X =
m∑

k=0

ak X Bk = X

(
m∑

k=0

ak Bk

)

We formalize this observation in the following lemma.

Lemma 2.4.4.0. Let A ∈ Mn, B ∈ Mm, and X ∈ Mn,m. If AX − X B = 0, then
g(A)X − Xg(B) = 0 for any polynomial g(t).

Theorem 2.4.4.1 (Sylvester). Let A ∈ Mn and B ∈ Mm be given. The equation AX −
X B = C has a unique solution X ∈ Mn,m for each given C ∈ Mn,m if and only if
σ (A) ∩ σ (B) = ∅, that is, if and only if A and B have no eigenvalue in common. In
particular, if σ (A) ∩ σ (B) = ∅ then the only X such that AX − X B = 0 is X = 0. If
A and B are real, then AX − X B = C has a unique solution X ∈ Mn,m(R) for each
given C ∈ Mn,m(R).
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Proof. Consider the linear transformation T : Mn,m → Mn,m defined by T (X ) =
AX − X B. To ensure that the equation T (X ) = C has a unique solution X for
every given C ∈ Mn,m it suffices to show that the only solution of T (X ) = 0 is
X = 0; see (0.5). If AX − X B = 0, we know from the preceding discussion that
pB(A)X − X pB(B) = 0. The Cayley–Hamilton theorem ensures that pB(B) = 0, so
pB(A)X = 0.

Let λ1, . . . , λn be the eigenvalues of B, so pB(t) = (t − λ1) · · · (t − λn) and
pB(A) = (A − λ1 I ) · · · (A − λn I ). If σ (A) ∩ σ (B) = ∅, then each factor A − λ j I is
nonsingular, pB(A) is nonsingular, and the only solution of pB(A)X = 0 is X = 0.
Conversely, if pB(A)X = 0 has a nontrivial solution, then pB(A) must be singular,
some factor A − λ j I is singular, and some λ j is an eigenvalue of A.

If A and B are real, consider the linear transformation T : Mn,m(R) → Mn,m(R)
defined by T (X ) = AX − X B. The same argument shows that the real matrix pB(A)
is nonsingular if and only if σ (A) ∩ σ (B) = ∅ (even if some of the eigenvalues λi of
B are not real). �

A matrix identity of the form AX = X B is known as an intertwining relation. The
commutativity equation AB = B A is perhaps the most familiar intertwining relation;
other examples are the anticommutativity equation AB = −B A, AB = B AT , AB =
B Ā, and AB = B A∗. The following consequence of Sylvester’s theorem is often used
to show that a matrix is block diagonal if it satisfies a certain type of intertwining
relation.

Corollary 2.4.4.2. Let B, C ∈ Mn be block diagonal and partitioned conformally as
B = B1 ⊕ · · · ⊕ Bk and C = C1 ⊕ · · · ⊕ Ck. Suppose that σ (Bi ) ∩ σ (C j ) = ∅ when-
ever i �= j . If A ∈ Mn and AB = C A, then A is block diagonal conformal to B and
C, that is, A = A1 ⊕ · · · ⊕ Ak, and Ai Bi = Ci Ai for each i = 1, . . . , k.

Proof. Partition A = [Ai j ] conformally to B and C . Then AB = C A if and only if
Ai j B j = Ci Ai j . If i �= j , then (2.4.4.1) ensures that Ai j = 0. �

A fundamental principle worth keeping in mind is that if AX = X B and if there is
something special about the structure of A and B, then there is likely to be something
special about the structure of X . One may be able to discover what that special structure
is by replacing A and B by canonical forms and studying the resulting intertwining
relation involving the canonical forms and a transformed X . The following corollary
is an example of a result of this type.

Corollary 2.4.4.3. Let A, B ∈ Mn. Suppose that there is a nonsingular S ∈ Mn such
that A = S(A1 ⊕ · · · ⊕ Ad )S−1, in which each A j ∈ Mn j , j = 1, . . . , d, and σ (Ai ) ∩
σ (A j ) = ∅ whenever i �= j . Then AB = B A if and only if B = S(B1 ⊕ · · · ⊕ Bd )S−1,
in which each B j ∈ Mn j , j = 1, . . . , d, and Ai Bi = Bi Ai for each i = 1, . . . , d.

Proof. If A commutes with B, then (S−1 AS)(S−1 BS) = (S−1 BS)(S−1 AS), so the
asserted direct sum decomposition of S−1 BS follows from the preceding corollary.
The converse follows from a computation. �

In a common application of the preceding result, each matrix Ai has a single
eigenvalue and is often a scalar matrix: Ai = λi Ini .
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2.4.5 Uniqueness in Schur’s triangularization theorem. For a given A ∈ Mn , an
upper triangular form T described in (2.3.1) that can be achieved by unitary similarity
need not be unique. That is, different upper triangular matrices with the same main
diagonals can be unitarily similar.

If T, T ′ ∈ Mn are upper triangular and have identical main diagonals in which equal
entries are grouped together, what can be said about a unitary W ∈ Mn such that
T ′ = W T W ∗, that is, W T = T ′W ? The following theorem says that W must be block
diagonal, and under certain assumptions about the superdiagonal entries of T , W must
be a diagonal matrix or even a scalar matrix. In the latter case, T = T ′.

Theorem 2.4.5.1. Let n, d, n1, . . . , nd be positive integers such that n1 + · · · + nd =
n. Let � = λ1 In1 ⊕ · · · ⊕ λd Ind ∈ Mn, in which λi �= λ j if i �= j . Let T = [ti j ] ∈ Mn

and T ′ = [t ′i j ] ∈ Mn be upper triangular matrices that have the same main diagonal
as �. Partition T = [Ti j ]d

i, j=1, T ′ = [T ′
i j ]

d
i, j=1, and W = [Wi j ]d

i, j=1 ∈ Mn conformally
to �. Suppose that W T = T ′W . Then

(a) Wi j = 0 if i > j , that is, W is block upper triangular conformal to �.
(b) If W is unitary, then it is block diagonal conformal to �: W = W11 ⊕ · · · ⊕ Wdd.
(c) Suppose that every entry in the first superdiagonal of each block T11, . . . , Tdd

is nonzero. Then W is upper triangular. If W is unitary, then it is diagonal:
W = diag(w1, . . . , wn).

(d) If W is unitary, and if ti,i+1 > 0 and t ′i,i+1 > 0 for each i = 1, . . . , n − 1, then
W is a scalar unitary matrix: W = w I . In this event, T = T ′.

Proof. (a) If d = 1, there is nothing to prove, so assume that d ≥ 2. Our strategy is to
exploit the equality of corresponding blocks of both sides of the identity W T = T ′W .
The d, 1 block of W T is Wd1T11 and the d, 1 block of T ′W is T ′

dd Wd1. Since σ (T11)
and σ (T ′

dd ) are disjoint, (2.4.4.1) ensures that Wd1 = 0 is the only solution to Wd1T11 =
T ′

dd Wd1. If d = 2, we stop at this point. If d > 2, then the d, 2 block of W T is Wd2T22

(since Wd1 = 0), and the d, 2 block of T ′W is T ′
d,d Wd2; we have Wd2T22 = T ′

d,d Wd2.
Again, (2.4.4.1) ensures that Wd2 = 0 since σ (T22) and σ (T ′

dd) are disjoint. Proceeding
in this way across the dth block row of T W = W T ′, we find that Wd1, . . . , Wd,d−1

are all zero. Now equate the blocks of W T = T ′W in positions (d − 1), k for k =
1, . . . , d − 2 and conclude in the same way that Wd−1,1, . . . , Wd−1,d−2 are all zero.
Working our way up the block rows of W T = T ′W , left to right, we conclude that
Wi j = 0 for all i > j .

(b) Now assume that W is unitary. Partition W =
[

W11 X
0 Ŵ

]
and conclude from (2.1.10)

that X = 0. Since Ŵ is also block upper triangular and unitary, an induction leads to
the conclusion that W = W11 ⊕ · · · ⊕ Wdd ; see (2.5.2).
(c) We have d identities Wii Tii = T ′

i i Wii , i = 1, . . . , d, and we assume that all the
entries in the first superdiagonal of each Tii are nonzero. Thus, it suffices to consider
the case d = 1: T = [ti j ] ∈ Mn and T ′ = [t ′i j ] ∈ Mn are upper triangular, tii = t ′i i = λ

for all i = 1, . . . , n, ti,i+1 is nonzero for all i = 1, . . . , n − 1, and W T = T ′W . As
in (a), we equate corresponding entries of the identity W T = T ′W : In position n, 2
we have wn1t12 + wn2λ = λwn2 or wn1t12 = 0; since t12 �= 0 it follows that wn1 = 0.
Proceeding across the nth row of W T = T ′W we obtain a sequence of identities
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wni ti,i+1 + wn,i+1λ = λwn,i+1, i = 1, . . . , n − 1, from which it follows that wni = 0
for all i = 1, . . . , n − 1. Working our way up the rows of W T = T ′W in this fashion,
left to right, we find that wi j = 0 for all i > j . Thus, W is upper triangular; if it is
unitary, the argument in (b) ensures that it is diagonal.
(d) The hypotheses and (c) ensure that W = diag(w1, . . . , wn) is diagonal and unitary.
Equating the entries of W T = T ′W in position i, i + 1, we have wi ti,i+1 = t ′i,i+1wi+1,
so ti,i+1/t ′i,i+1 = wi+1/wi , which is real, positive, and has modulus one. We con-
clude that wi+1/wi = 1 for each i = 1, . . . n − 1, and hence w1 = · · · = wn and
W = w11 I . �

Exercise. Suppose that A, B ∈ Mn are unitarily similar via a scalar unitary ma-
trix. Explain why A = B.

Exercise. Suppose that T, T ′ ∈ Mn are upper triangular, have identical main
diagonals with distinct entries, and are similar via a unitary U ∈ Mn . Explain
why U must be diagonal. If all the entries of the first superdiagonals of T and T ′

are real and positive, explain why T = T ′.

Exercise. If A = [ai j ] ∈ Mn and ai,i+1 �= 0 for each i = 1, . . . , n − 1, show that
there is a diagonal unitary matrix D such that D AD∗ has real positive entries
in its first superdiagonal. Hint: Consider D = diag(1, a12/|a12|, a12a23/|a12a23|,
. . .).

2.4.6 Every square matrix is block diagonalizable. The following application
and extension of (2.3.1) is an important step toward the Jordan canonical form, which
we discuss in the next chapter.

Theorem 2.4.6.1. Let the distinct eigenvalues of A ∈ Mn be λ1, . . . , λd , with respective
multiplicities n1, . . . , nd. Theorem 2.3.1 ensures that A is unitarily similar to a d-by-d
block upper triangular matrix T = [Ti j ]d

i, j=1 in which each block Ti j is ni -by-n j ,
Ti j = 0 if i > j , and each diagonal block Tii is upper triangular with diagonal entries
λi , that is, each Tii = λi Ini + Ri and Ri ∈ Mni is strictly upper triangular. Then A is
similar to ⎡

⎢⎢⎢⎣
T11 0

T22

. . .
0 Tdd

⎤
⎥⎥⎥⎦ (2.4.6.2)

If A ∈ Mn(R) and if all its eigenvalues are real, then the unitary similarity that reduces
A to the special upper triangular form T and the similarity matrix that reduces T to
the block diagonal form (2.4.6.2) may both be taken to be real.

Proof. Partition T as

T =
[

T11 Y
0 S2

]
in which S2 = [Ti j ]d

i, j=2. Notice that the only eigenvalue of T11 is λ1 and that the
eigenvalues of S2 are λ2, . . . , λd . Sylvester’s theorem 2.4.4.1 ensures that the equation
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T11 X − X S = −Y has a solution X ; use it to construct

M =
[

In1 X
0 I

]
and its inverse M−1 =

[
In1 −X
0 I

]
Then

M−1T M =
[

In1 −X
0 I

] [
T11 Y
0 S2

] [
In1 X
0 I

]

=
[

T11 T11 X − X S2 + Y
0 S2

]
=
[

T11 0
0 S2

]
If d = 2, this is the desired block diagonalization. If d > 2, repeat this reduction process
to show that S2 is similar to T22 ⊕ S3 in which S3 = [Ti j ]d

i, j=3. After d − 1 reductions,
we find that T is similar to T11 ⊕ · · · ⊕ Tdd .

If A is real and has real eigenvalues, then it is real orthogonally similar to a real
block upper triangular matrix of the form just considered. Each of the reduction steps
can be carried out with a real similarity. �

Exercise. Suppose that A ∈ Mn is unitarily similar to a d-by-d block upper
triangular matrix T = [Ti j ]d

i, j=1. If any block Ti j with j > i is nonzero, use
(2.2.2) to explain why T is not unitarily similar to T11 ⊕ · · · ⊕ Tdd .

There are two extensions of the preceding theorem that, for commuting families
and simultaneous (but not necessarily unitary) similarity, significantly refine the block
structure achieved in (2.3.3).

Theorem 2.4.6.3. LetF ⊂ Mn be a commuting family, let A0 be any given matrix inF ,
and suppose that A0 has d distinct eigenvalues λ1, . . . , λd , with respective multiplicities
n1, . . . , nd. Then there is a nonsingular S ∈ Mn such that

(a) Â0 = S−1 A0S = T1 ⊕ · · · ⊕ Td, in which each Ti ∈ Mni is upper triangular and
all its diagonal entries are λi ; and

(b) for every A ∈ F , S−1 AS is upper triangular and block diagonal conformal to Â0.

Proof. First use (2.4.6.1) to choose a nonsingular S0 such that S−1
0 A0S0 = R1 ⊕

· · · ⊕ Rd = Ã0, in which each Ri ∈ Mni has λi as its only eigenvalue. Let S−1
0 FS0 =

{S−1
0 AS0 : A ∈ F}, which is also a commuting family. Partition any given B ∈ S−1

0 FS0

as B = [Bi j ]d
i, j=1, conformal to Ã0. Then [Ri Bi j ] = Ã0 B = B Ã0 = [Bi j R j ], so

Ri Bi j = Bi j R j for all i, j = 1, . . . , d. Sylvester’s theorem 2.4.4.1 now ensures that
Bi j = 0 for all i �= j since Ri and R j have no eigenvalues in common. Thus, S−1

0 FS0

is a commuting family of block diagonal matrices that are all conformal to Ã0. For
each i = 1, . . . , d, consider the family Fi ⊂ Mni consisting of the i th diagonal block
of every matrix in S−1

0 FS0; notice that Ri ∈ Fi for each i = 1, . . . , d. Each Fi is a
commuting family, so (2.3.3) ensures that there is a unitary Ui ∈ Mni such that U ∗

i FiUi

is an upper triangular family. The main diagonal entries of U ∗
i RiUi are its eigenval-

ues, which are all equal to λi . Let U = U1 ⊕ · · · ⊕ Ud and observe that S = S0U
accomplishes the asserted reduction, in which Ti = U ∗

i RiUi . �
Corollary 2.4.6.4. Let F ⊂ Mn be a commuting family. There is a nonsingular
S ∈ Mn and positive integers k, n1, . . . , nk such that n1 + · · · + nk = n and, for every
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A ∈ F , S−1 AS = A1 ⊕ · · · ⊕ Ak is block diagonal with Ai ∈ Mni for each i =
1, . . . , k. Moreover, each diagonal block Ai is upper triangular and has exactly one
eigenvalue.

Proof. If every matrix in F has only one eigenvalue, apply (2.3.3) and stop. If some
matrix in F has at least two distinct eigenvalues, let A0 ∈ F be any matrix that has
the maximum number of distinct eigenvalues among all matrices in F . Construct
a simultaneous block diagonal upper triangularization as in the preceding theorem,
and observe that the size of every diagonal block obtained is strictly smaller than
the size of A0. Associated with each diagonal block of the reduced form of A0 is a
commuting family of matrices. Among the members of that family, either (a) each
matrix has only one eigenvalue (no further reduction required) or (b) some matrix has
at least two distinct eigenvalues, in which case, we choose any matrix that has the
maximum number of distinct eigenvalues and reduce again to obtain a set of strictly
smaller diagonal blocks. Recursively repeat this reduction, which must terminate in
finitely many steps, until no member of any commuting family has more than one
eigenvalue. �

2.4.7 Every square matrix is almost diagonalizable. Another use of Schur’s result
is to make it clear that every square complex matrix is “almost diagonalizable” in two
possible interpretations of the phrase. The first says that arbitrarily close to a given
matrix, there is a diagonalizable matrix; the second says that any given matrix is similar
to an upper triangular matrix whose off-diagonal entries are arbitrarily small.

Theorem 2.4.7.1. Let A = [ai j ] ∈ Mn. For each ε > 0, there exists a matrix A(ε) =
[ai j (ε)] ∈ Mn that has n distinct eigenvalues (and is therefore diagonalizable) and is
such that

∑n
i, j=1 |ai j − ai j (ε)|2 < ε.

Proof. Let U ∈ Mn be unitary and such that U ∗AU = T is upper triangular. Let
E = diag(ε1, ε2, . . . , εn), in which ε1, . . . , εn are chosen so that |εi | <

(
ε
n

)1/2
and so

that tii + εi �= t j j + ε j for all i �= j . (Reflect for a moment to see that this can be done.)
Then T + E has n distinct eigenvalues: t11 + ε1, . . . , tnn + εn , and so does A + U EU ∗,
which is similar to T + E . Let A(ε) = A + U EU ∗, so that A − A(ε) = −U EU ∗, and
hence (2.2.2) ensures that

∑
i, j |ai j − ai j (ε)|2 =∑n

i=1 |εi |2 < n
(

ε
n

) = ε. �

Exercise. Show that the condition
∑

i, j |ai j − ai j (ε)|2 < ε in (2.4.6) could be
replaced by maxi, j |ai j − ai j (ε)| < ε. Hint: Apply the theorem with ε2 in place
of ε and realize that, if a sum of squares is less than ε2, each of the items must be
less than ε in absolute value.

Theorem 2.4.7.2. Let A ∈ Mn. For each ε > 0 there is a nonsingular matrix Sε ∈ Mn

such that S−1
ε ASε = Tε = [ti j (ε)] is upper triangular and |ti j (ε)| ≤ ε for all i, j ∈

{1, . . . , n} such that i < j .

Proof. First apply Schur’s theorem to produce a unitary matrix U ∈ Mn and an upper
triangular matrix T ∈ Mn such that U ∗AU = T . Define Dα = diag(1, α, α2, . . . , αn−1)
for a nonzero scalar α and set t = maxi< j |ti j |. Assume that ε < 1, since it certainly
suffices to prove the statement in this case. If t ≤ 1, let Sε = U Dε ; if t > 1, let
Sε = U D1/t Dε . In either case, the appropriate Sε substantiates the claim of the theorem.
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If t ≤ 1, a calculation reveals that ti j (ε) = ti jε
−iε j = ti jε

j−i , whose absolute value is
no more than ε j−i , which is, in turn, no more than ε if i < j . If t > 1, the similarity
by D1/t preprocesses the matrix, producing one in which all off-diagonal entries are
no more than 1 in absolute value. �

Exercise. Prove the following variant of (2.4.7.2): If A ∈ Mn and ε > 0, there is
a nonsingular Sε ∈ Mn such that S−1

ε ASε = Tε = [ti j (ε)] is upper triangular and∑
j>i |ti j (ε)| ≤ ε. Hint: Apply (2.4.7) with [2/n(n − 1)]ε in place of ε.

2.4.8 Commuting families and simultaneous triangularization. We now use the
commuting families version (2.3.3) of Schur’s theorem to show that the eigenvalues
“add” and “multiply” – in some order – for commuting matrices.

Theorem 2.4.8.1. Suppose that A, B ∈ Mn commute. Then there is an ordering
α1, . . . , αn of the eigenvalues of A and an ordering β1, . . . , βn of the eigenvalues of B
such that the eigenvalues of A + B are α1 + β1, α2 + β2, . . . , αn + βn and the eigen-
values of AB are α1β1, α2β2, . . . , αnβn. In particular, σ (A + B) ⊆ σ (A) + σ (B),
σ (AB) ⊆ σ (A)σ (B).

Proof. Since A and B commute, (2.3.3) ensures that there is a unitary U ∈ Mn such
that U ∗AU = T = [ti j ] and U ∗BU = R = [ri j ] are both upper triangular. The main
diagonal entries (and hence also the eigenvalues) of the upper triangular matrix T +
R = U ∗(A + B)U are t11 + r11, . . . , tnn + rnn; these are the eigenvalues of A + B
since A + B is similar to T + R. The main diagonal entries (and hence also the
eigenvalues) of the upper triangular matrix T R = U ∗(AB)U are t11r11, . . . , tnnrnn;
these are the eigenvalues of AB, which is similar to T R. �

Exercise. Suppose that A, B ∈ Mn commute. Explain why ρ(A + B) ≤ ρ(A) +
ρ(B) and ρ(AB) ≤ ρ(A)ρ(B), so the spectral radius function is subadditive and
submultiplicative for commuting matrices.

Example 2.4.8.2. Even if A and B commute, not every sum of their respective
eigenvalues need be an eigenvalue of A + B. Consider the diagonal matrices

A =
[

1 0
0 2

]
and B =

[
3 0
0 4

]
Since 1 + 4 = 5 /∈ {4, 6} = σ (A + B), we see that σ (A + B) is contained in, but
is not equal to, σ (A) + σ (B).

Example 2.4.8.3. If A and B do not commute, it is difficult to say how σ (A + B)
is related to σ (A) and σ (B). In particular, σ (A + B) need not be contained in
σ (A) + σ (B). Let

A =
[

0 1
0 0

]
and B =

[
0 0
1 0

]
Then σ (A + B) = {−1, 1}, while σ (A) = σ (B) = {0}.
Exercise. Consider the matrices in the preceding example. Explain why ρ(A +
B) > ρ(A) + ρ(B), so the spectral radius function is not subadditive on Mn .
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Example 2.4.8.4. Is there a converse of (2.4.8.1)? If the eigenvalues of A and
B add, in some order, must A and B commute? The answer is no, even if the
eigenvalues of αA and βB add, in some order, for all scalars α and β. This is an
interesting phenomenon, and the characterization of such pairs of matrices is an
unsolved problem! Consider the noncommuting matrices

A =
⎡
⎣0 1 0

0 0 −1
0 0 0

⎤
⎦ and B =

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦

for which σ (A) = σ (B) = {0}. Moreover, pαA+β B(t) = t3, so σ (αA + β B) =
{0} for all α, β ∈ C and the eigenvalues add. If A and B were simultaneously
upper triangularizable, the proof of (2.4.8.1) shows that the eigenvalues of AB
would be products, in some order, of the eigenvalues of A and B. However,
σ (AB) = {−1, 0, 1} is not contained in σ (A) · σ (B) = {0}, so A and B are not
simultaneously triangularizable.

Corollary 2.4.8.5. Suppose that A, B ∈ Mn commute, σ (A) = {α1, . . . , αd1}, and
σ (B) = {β1, . . . , βd2

}. If αi �= −β j for all i, j , then A + B is nonsingular.

Exercise. Verify (2.4.8.5) using (2.4.8.1).

Exercise. Suppose that T = [ti j ] and R = [ri j ] are n-by-n upper triangular ma-
trices of the same size and let p(s, t) be a polynomial in two noncommuting
variables, that is, any linear combination of words in two noncommuting vari-
ables. Explain why p(T, R) is upper triangular and its main diagonal entries
(its eigenvalues) are p(t11, r11), . . . , p(tnn, rnn).

For complex matrices, simultaneous triangularization and simultaneous unitary
triangularization are equivalent concepts.

Theorem 2.4.8.6. Let A1, . . . , Am ∈ Mn be given. There is a nonsingular S ∈ Mn such
that S−1 Ai S is upper triangular for all i = 1, . . . , m if and only if there is a unitary
U ∈ Mn such that U ∗AiU is upper triangular for all i = 1, . . . , m.

Proof. Use (2.1.14) to write S = Q R, in which Q is unitary and R is upper tri-
angular. Then Ti = S−1 Ai S = (Q R)−1 Ai (Q R) = R−1(Q∗Ai Q)R is upper triangular,
so Q∗Ai Q = RTi R−1 is upper triangular, as the product of three upper triangular
matrices. �

Simultaneous upper triangularizability of m matrices by similarity is com-
pletely characterized by the following theorem of McCoy. It involves a polynomial
p(t1, . . . , tm) in m noncommuting variables, which is a linear combination of prod-
ucts of powers of the variables, that is, a linear combination of words in m non-
commuting variables. The key observation is captured in the preceding exercise: If
T1, . . . , Tm are upper triangular, then so is p(T1, . . . , Tm), and the main diagonals
of T1, . . . , Tm and p(T1, . . . , Tm) exhibit specific orderings of their eigenvalues. For
each k = 1, . . . , n, the kth main diagonal entry of p(T1, . . . , Tm) (an eigenvalue of
p(T1, . . . , Tm)) is the same polynomial in the respective kth main diagonal entries of
T1, . . . , Tm .
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Theorem 2.4.8.7 (McCoy). Let m ≥ 2 and let A1, . . . , Am ∈ Mn be given. The fol-
lowing statements are equivalent:

(a) For every polynomial p(t1, . . . , tm) in m noncommuting variables and every
k, � = 1, . . . , m, p(A1, . . . , Am)(Ak A� − A� Ak) is nilpotent.

(b) There is a unitary U ∈ Mn such that U ∗AiU is upper triangular for each i =
1, . . . , m.

(c) There is an ordering λ
(i)
1 , . . . , λ(i)

n of the eigenvalues of each of the matrices Ai ,
i = 1, . . . , m such that for any polynomial p(t1, . . . , tm) in m noncommuting
variables, the eigenvalues of p(A1, . . . , Am) are p(λ(1)

i , . . . , λ
(m)
i ), i = 1, . . . , n.

Proof. (b) ⇒ (c): Let Tk = U ∗AkU = [t (k)
i j ] be upper triangular and let λ

(k)
1 =

t (k)
11 , . . . , λ(k)

n = t (k)
nn . Then the eigenvalues of p(A1, . . . , Am) = p(U T1U ∗, . . . ,

U TmU ∗) = U p(T1, . . . , Tm)U ∗ are the main diagonal entries of p(T1, . . . , Tm), which
are p(λ(1)

i , . . . , λ
(m)
i ), i = 1, . . . , m.

(c) ⇒ (a) For any given polynomial p(t1, . . . , tm) in m noncommuting variables,
consider the polynomials qk�(t1, . . . , tm) = p(t1, . . . , tm)(tk t� − t�tk), k, � = 1, . . . , m
in m noncommuting variables. The eigenvalues of qk�(A1, . . . , Am) are, according
to (c), qk�(λ(1)

i , . . . , λ
(m)
i ) = p(λ(1)

i , . . . , λ
(m)
i )(λ(k)

i λ
(�)
i − λ

(�)
i λ

(k)
i ) = p(λ(1)

i , . . . , λ
(m)
i ) ·

0 = 0 for all i = 1, . . . , n. Thus, each matrix p(A1, . . . , Am)(Ak A� − A� Ak) is nilpo-
tent; see (2.4.2).
(a) ⇒ (b): Suppose (see the following lemma) that A1, . . . , Am have a common unit
eigenvector x . Subject to this assumption, we proceed by induction as in the proof of
(2.3.3). Let U1 be any unitary matrix that has x as its first column. Use U1 to deflate
each Ai in the same way:

Ai = U ∗
1 AiU1 =

[
λ

(i)
1 �
0 Ãi

]
, Ãi ∈ Mn−1, i = 1, . . . , m (2.4.8.8)

Let p(t1, . . . , tm) be any given polynomial in m noncommuting variables. Then (a)
ensures that the matrix

U ∗ p(A1, . . . , Am)(Ak A� − A� Ak)U = p(A1, . . . ,Am)(AkA� −A�Ak) (2.4.8.9)

is nilpotent for each k, � = 1, . . . , m. Partition each of the matrices (2.4.8.9) confor-
mally to (2.4.8.8) and observe that its 1, 1 entry is zero and its lower right block
is p( Ã1, . . ., Ãm)( Ãk Ã� − Ã� Ãk), which is necessarily nilpotent. Thus, the matrices
Ã1, . . . , Ãm ∈ Mn−1 inherit property (a), and hence (b) follows by induction, as in
(2.3.3). �

We know that commuting matrices always have a common eigenvector (1.3.19). If
the matrices A1, . . . , Am in the preceding theorem commute, then the condition (a)
is trivially satisfied since p(A1, . . . , Am)(Ak A� − A� Ak) = 0 for all k, � = 1, . . . , m.
The following lemma shows that the condition (a), weaker than commutativity, is
sufficient to ensure existence of a common eigenvector.

Lemma 2.4.8.10. Let A1, . . . , Am ∈ Mn be given. Suppose that for every polynomial
p(t1, . . . , tm) in m ≥ 2 noncommuting variables and every k, � = 1, . . . , m, each of
the matrices p(A1, . . . , Am)(Ak A� − A� Ak) is nilpotent. Then, for each given nonzero
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vector x ∈ Cn, there is a polynomial q(t1, . . . , tm) in m noncommuting variables such
that q(A1, . . . , Am)x is a common eigenvector of A1, . . . , Am.

Proof. We consider only the case m = 2, which illustrates all the features of the general
case. Let A, B ∈ Mn , let C = AB − B A, and assume that p(A, B)C is nilpotent for
every polynomial p(s, t) in two noncommuting variables. Let x ∈ Cn be any given
nonzero vector. We claim that there is a polynomial q(s, t) in two noncommuting
variables such that q(A, B)x is a common eigenvector of A and B.

Begin with (1.1.9) and let g1(t) be a polynomial such that ξ 1 = g1(A)x is an eigen-
vector of A: Aξ 1 = λξ 1.

Case I: Suppose that Cp(B)ξ 1 = 0 for every polynomial p(t), that is,

ABp(B)ξ 1 = B Ap(B)ξ 1 for every polynomial p(t) (2.4.8.11)

Using this identity with p(t) = 1 shows that ABξ 1 = B Aξ 1. Now proceed by induc-
tion: Suppose ABkξ 1 = Bk Aξ 1 for some k ≥ 1. Using (2.4.8.11) and the induction
hypothesis, we compute

ABk+1ξ 1 = AB · Bkξ 1 = B A · Bkξ 1 = B · ABkξ 1

= B · Bk Aξ 1 = Bk+1 Aξ 1

We conclude that ABkξ 1 = Bk Aξ 1 for every k ≥ 1, and hence Ap(B)ξ 1 = p(B)Aξ 1 =
p(B)λξ 1 = λ(p(B)ξ 1) for every polynomial p(t). Thus, p(B)ξ 1 is an eigenvector of
A if it is nonzero. Use (1.1.9) again to choose a polynomial g2(t) such that g2(B)ξ 1 =
g2(B)g1(A)x is an eigenvector of B (necessarily nonzero). Let q(s, t) = g2(t)g1(s). We
have shown that q(A, B)x is a common eigenvector of A and B, as claimed.

Case II: Suppose that there is some polynomial f1(t) such that C f1(B)ξ 1 �= 0. Use
(1.1.9) to find a polynomial q1(t) such that ξ 2 = q1(A)C f1(B)ξ 1 is an eigenvector of
A. If Cp(B)ξ 2 = 0 for every polynomial p(t), then Case I permits us to construct the
desired common eigenvector; otherwise, let f2(t) be a polynomial such that C f2(B)ξ 2 �=
0 and let q2(t) be a polynomial such that ξ 3 = q2(A)C f2(B)ξ 2 is an eigenvector of A.
Continue in this fashion to construct a sequence of eigenvectors

ξ k = qk−1(A)C fk−1(B)ξ k−1, k = 2, 3, . . . (2.4.8.12)

of A until either (i) Cp(B)ξ k = 0 for every polynomial p(t) or (ii) k = n + 1. If (i)
occurs for some k ≤ n, Case I permits us to construct the desired common eigenvector of
A and B. If (i) is false for each k = 1, 2, . . . , n, our construction produces n + 1 vectors
ξ 1, . . . , ξ n+1 that must be linearly dependent, so there are n + 1 scalars c1, . . . , cn+1,
not all zero, such that c1ξ 1 + · · · + cn+1ξ n+1 = 0. Let r = min{i : ci �= 0}. Then

−crξ r =
n∑

i=r

ci+1ξ i+1 =
n∑

i=r

ci+1qi (A)C fi (B)ξ i

= cr+1qr (A)C fr (B)ξ r

+
n−1∑
i=r

ci+2qi+1(A)C fi+1(B)ξ i+1 (2.4.8.13)
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Using (2.4.8.12), the summand in (2.4.8.13) in which i = r can be expanded to the
expression

cr+2qr+1(A)C fr+1(B)qr (A)C fr (B)ξ r

In the same fashion, we can use (2.4.8.12) to expand each of the summands in (2.4.8.13)
with i = r + 1, r + 2, . . . , n − 1 to an expression of the form hi (A, B)C fr (B)ξ r , in
which each hi (A, B) is a polynomial in A and B. We obtain in this way an identity of
the form −crξ r = p(A, B)C fr (B)ξ r , in which p(s, t) is a polynomial in two noncom-
muting variables. This means that fr (B)ξ r is an eigenvector of p(A, B)C associated
with the nonzero eigenvalue −cr , in contradiction to the hypothesis that p(A, B)C is
nilpotent. This contradiction shows that (i) is true for some k ≤ n, and hence A and B
have a common eigenvector of the asserted form. �

We have stated McCoy’s theorem 2.4.8.7 for complex matrices, but if we restate (b)
to assert only simultaneous similarity (not simultaneous unitary similarity), then the
theorem is valid for matrices and polynomials over any subfield of C that contains the
eigenvalues of all the matrices A1, . . . , Am .

2.4.9 Continuity of eigenvalues. Schur’s unitary triangularization theorem can be
used to prove a basic and widely useful fact: The eigenvalues of a square real or
complex matrix depend continuously on its entries. Both aspects of Schur’s theorem –
unitary and triangular – play key roles in the proof. The following lemma encapsulates
the fundamental principle involved.

Lemma 2.4.9.1. Let an infinite sequence of matrices A1, A2, . . . ∈ Mn be given
and suppose that limk→∞ Ak = A (entrywise convergence). Then there is an infi-
nite sequence of positive integers k1 < k2 < · · · and unitary matrices Uki ∈ Mn for
i = 1, 2, . . . such that

(a) Ti = U ∗
ki

Aki Uki is upper triangular for all i = 1, 2, . . .;
(b) U = limi→∞ Uki exists and is unitary;
(c) T = U ∗AU is upper triangular; and
(d) limi→∞ Ti = T .

Proof. Using (2.3.1), for each k = 1, 2, . . . , let Uk ∈ Mn be unitary and such that
U ∗

k AUk is upper triangular. Lemma 2.1.8 ensures that there is an infinite subsequence
Uk1, Uk2, . . . and a unitary U such that Uki → U as i → ∞. Then convergence of
each of its three factors ensures that the product Ti = U ∗

ki
Aki Uki converges to a limit

T = U ∗AU , which is upper triangular because each Ti is upper triangular. �

In the preceding argument, the main diagonal of each upper triangular matrix
T, T1, T2, . . . is a particular presentation (think of it as an n-vector) of the eigenval-
ues of A, Ak1, Ak2, . . . , respectively. The entrywise convergence Ti → T ensures that
among the up to n! different ways of presenting the eigenvalues of each of the matrices
A, Ak1, Ak2, . . . as an n-vector, there is at least one presentation for each matrix such
that the respective vectors of eigenvalues converge to a vector whose entries comprise
all the eigenvalues of A. It is in this sense, formalized in the following theorem, that
the eigenvalues of a square real or complex matrix depend continuously on its entries.
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Theorem 2.4.9.2. Let an infinite sequence A1, A2, . . . ∈ Mn be given and suppose
that limk→∞ Ak = A (entrywise convergence). Let λ(A) = [λ1(A) . . . λn(A)]T and
λ(Ak) = [λ1(Ak) . . . λn(Ak)]T be given presentations of the eigenvalues of A and Ak,
respectively, for k = 1, 2, . . . . Let Sn = {π : π is a permutation of {1, 2, . . . , n}}. Then
for each given ε > 0 there exists a positive integer N = N (ε) such that

min
π∈Sn

max
i=1,...,n

{∣∣λπ(i)(Ak) − λi (A)
∣∣} ≤ ε for all k ≥ N (2.4.9.3)

Proof. If the assertion (2.4.9.3) is false, then there is some ε0 > 0 and an infinite
sequence of positive integers k1 < k2 < · · · such that for every j = 1, 2, . . . we have

max
i=1,...,n

∣∣λπ (i)(Ak j ) − λi (A)
∣∣ > ε0 for every π ∈ Sn (2.4.9.4)

However, (2.4.9.1) ensures that there is an infinite sub-subsequence k1 ≤ k j1 < k j2 <

· · · , unitary matrices U, Uk j1
, Uk j2

, . . . , and upper triangular matrices T = U ∗AU and
Tp = U ∗

k jp
Ak jp

Uk jp
for p = 1, 2, . . . such that all of the entries of Tp (in particular, the

main diagonal entries) converge to the corresponding entries of T as p → ∞. Since
the vectors of main diagonal entries of T, T1, T2, . . . are obtained, respectively, from
the given presentations of eigenvalues λ(A), λ(Ak j1

), λ(Ak j2
), . . . by permuting their

entries, the entrywise convergence we have observed contradicts (2.4.9.4) and proves
the theorem. �

The existential assertion “for each given ε > 0 there exists a positive integer N =
N (ε)” in the preceding theorem can be replaced by an explicit bound; see (D2) in
Appendix D.

2.4.10 Eigenvalues of a rank-one perturbation. It is often useful to know that
any one eigenvalue of a matrix can be shifted arbitrarily by a rank-one perturbation,
without disturbing the rest of the eigenvalues.

Theorem 2.4.10.1 (A. Brauer). Suppose that A ∈ Mn has eigenvalues λ, λ2, . . . , λn,
and let x be a nonzero vector such that Ax = λx. Then for any v ∈ Cn the eigenvalues
of A + xv∗ are λ + v∗x, λ2, . . . , λn.

Proof. Let ξ = x/ ‖x‖2 and let U = [ξ u2 . . . un] be unitary. Then the proof of (2.3.1)
shows that

U ∗AU =
[

λ �
0 A1

]
in which A1 ∈ Mn−1 has eigenvalues λ2, . . . , λn . Also,

U ∗xv∗U =

⎡
⎢⎢⎢⎣

ξ ∗x
u∗

2x
...

u∗
nx

⎤
⎥⎥⎥⎦ v∗U =

⎡
⎢⎢⎢⎣
‖x‖2

0
...
0

⎤
⎥⎥⎥⎦[v∗ξ v∗u2 · · · v∗un

]

=
[‖x‖2 v∗ξ �

0 0

]
=
[

v∗x �
0 0

]
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Therefore,

U ∗(A + xv∗)U =
[

λ + v∗x �
0 A1

]
has eigenvalues λ + v∗x, λ2, . . . , λn . �

For a different approach to this result, see (1.2.8).

2.4.11 The complete principle of biorthogonality. The principle of biorthogo-
nality says that left and right eigenvectors associated with different eigenvalues are
orthogonal; see (1.4.7(a)). We now address all the possibilities for left and right
eigenvectors.

Theorem 2.4.11.1. Let A ∈ Mn, unit vectors x, y ∈ Cn, and λ, μ ∈ C be given.

(a) If Ax = λx, y∗ A = μy∗, and λ �= μ, then y∗x = 0. Let U = [x y u3 . . . un] ∈
Mn be unitary. Then

U ∗AU =
⎡
⎣λ � �

0 μ 0
0 � An−2

⎤
⎦ , An−2 ∈ Mn−2 (2.4.11.2)

(b) Suppose that Ax = λx, y∗A = λy∗, and y∗x = 0. Let U = [x y u3 . . . un] ∈ Mn

be unitary. Then

U ∗AU =
⎡
⎣λ � �

0 λ 0
0 � An−2

⎤
⎦ , An−2 ∈ Mn−2 (2.4.11.3)

and the algebraic multiplicity of λ is at least two.
(c) Suppose that Ax = λx, y∗ A = λy∗, and y∗x �= 0. Let S = [x S1] ∈ Mn, in which

the columns of S1 are any given basis for the orthogonal complement of y. Then
S is nonsingular, the first column of S−∗ is a nonzero scalar multiple of y, and
S−1 AS has the block form[

λ 0
0 An−1

]
, An−1 ∈ Mn−1 (2.4.11.4)

If the geometric multiplicity of λ is 1, then its algebraic multiplicity is also
1. Conversely, if A is similar to a block matrix of the form (2.4.11.4), then
it has a nonorthogonal pair of left and right eigenvectors associated with the
eigenvalue λ.

(d) Suppose that Ax = λx, y∗ A = λy∗, and x = y (such an x is called a normal
eigenvector). Let U = [x U1] ∈ Mn be unitary. Then U ∗AU has the block form
(2.4.11.4).

Proof. (a) Compared with the reduction in (2.3.1), the extra zeroes in the second row
of (2.4.11.2) come from the left eigenvector: y∗Aui = μy∗ui = 0 for i = 3, . . . , n.
(b) The zero pattern in (2.4.11.3) is the same as that in (2.4.11.2), and for the same
reason. For the assertion about the algebraic multiplicity, see (1.2.P14).
(c) See (1.4.7) and (1.4.12).
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(d) Compared with the reduction in (2.3.1), the extra zeroes in the first row of (2.4.11.4)
appear because x is also a left eigenvector: x∗AU1 = λx∗U1 = 0. �

Problems

2.4.P1 Suppose that A = [ai j ] ∈ Mn has n distinct eigenvalues. Use (2.4.9.2) to show that
there is an ε > 0 such that every B = [bi j ] ∈ Mn with

∑n
i, j=1 |ai j − bi j |2 < ε has n distinct

eigenvalues. Conclude that the set of matrices with distinct eigenvalues is an open subset
of Mn .

2.4.P2 Why is the rank of an upper triangular matrix at least as large as the number of
its nonzero main diagonal entries? Let A = [ai j ] ∈ Mn , and suppose A has exactly k ≥ 1
nonzero eigenvalues λ1, . . . , λk . Write A = U T U ∗, in which U is unitary and T = [ti j ]
is upper triangular. Show that rank A ≥ k, with equality if A is diagonalizable. Explain
why

|
k∑

i=1

λi |2 ≤ k
k∑

i=1

|λi |2 = k
n∑

i=1

|tii |2 ≤ k
n∑

i, j=1

|ti j |2 = k
k∑

i, j=1

|ai j |2

and conclude that rank A ≥ | tr A|2/(tr A∗A), with equality if and only if T = aIk ⊕ 0n−k

for some nonzero a ∈ C.

2.4.P3 Our proof of (2.4.3.2) relies on the fact that complex matrices have eigenvalues, but
neither the definition of the characteristic polynomial nor the substitution pA(t) → pA(A)
involves eigenvalues or any special properties of the complex field. In fact, the Cayley–
Hamilton theorem is valid for matrices whose entries come from a commutative ring with
unit, examples of which are the ring of integers modulo some integer k (which is a field if
and only if k is prime) and the ring of polynomials in one or more formal indeterminants
with complex coefficients. Provide details for the following proof of (2.4.3.2). Observe
that the algebraic operations used in the proof involve addition and multiplication, but no
division operations or roots of polynomial equations are involved.

(a) Start with the fundamental identity (t I − A)(adj(t I − A)) = det(t I − A)I = pA(t)I
(0.8.2) and write

pA(t)I = I tn + an−1 I tn−1 + an−2 I tn−2 + · · · + a1 I t + a0 I (2.4.12)

a polynomial in t of degree n with matrix coefficients; each coefficient is a scalar matrix.
(b) Explain why adj(t I − A) is a matrix whose entries are polynomials in t of degree at

most n − 1, and hence it can be written as

adj(t I − A) = An−1tn−1 + An−2tn−2 + · · · + A1t + A0 (2.4.13)

in which A0 = (−1)n−1 adj A and each Ak is an n-by-n matrix whose entries are
polynomial functions of the entries of A.

(c) Use (2.4.13) to compute the product (t I − A)(adj(t I − A)) as

An−1tn + (An−2 − AAn−1)tn−1 + · · · + (A0 − AA1)t − AA0 (2.4.14)
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(d) Equate corresponding coefficients of (2.4.12) and (2.4.14) to obtain n + 1 equations

An−1 = I

An−2 − AAn−1 = an−1 I

... (2.4.15)

A0 − AA1 = a1 I

−AA0 = a0 I

(e) For each k = 1, . . . , n, left-multiply the kth equation in (2.4.15) by An−k+1, add all
n + 1 equations, and obtain the Cayley–Hamilton theorem 0 = pA(A).

(f ) For each k = 1, . . . , n − 1, left-multiply the kth equation in (2.4.15) by An−k , add only
the first n equations, and obtain the identity

adj A = (−1)n−1(An−1 + an−1 An−2 + · · · + a2 A + a1 I ) (2.4.16)

Thus, adj A is a polynomial in A whose coefficients (except for a0 = (−1)n det A) are
the same as the coefficients in pA(t), but in reversed order.

(g) Use (2.4.15) to show that the matrix coefficients in the right-hand side of (2.4.13) are
An−1 = I and

An−k−1 = Ak + an−1 Ak−1 + · · · + an−k+1 A + an−k I (2.4.17)

for k = 1, . . . , n − 1.

2.4.P4 Let A, B ∈ Mn and suppose that A commutes with B. Explain why B commutes
with adj A and why adj A commutes with adj B. If A is nonsingular, deduce that B commutes
with A−1.

2.4.P5 Consider the matrices
[

0 ε

0 0

]
and explain why there can be nondiagonalizable

matrices arbitrarily close to a given diagonalizable matrix. Use (2.4.P1) to explain why this
cannot happen if the given matrix has distinct eigenvalues.

2.4.P6 Show that for

A =
⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ and B =

⎡
⎣−2 1 2
−1 −2 −1
1 1 1

⎤
⎦

σ (a A + bB) = {a − 2b, 2a − 2b, 3a + b} for all scalars a, b ∈ C, but A and B are not
simultaneously similar to upper triangular matrices. What are the eigenvalues of AB?

2.4.P7 Use the criterion in (2.3.P6) to show that the two matrices in (2.4.8.4) can-
not be simultaneously upper triangularized. Apply the same test to the two matrices
in (2.4.P6).

2.4.P8 An observation in the spirit of McCoy’s theorem can sometimes be useful in showing
that two matrices are not unitarily similar. Let p(t, s) be a polynomial with complex
coefficients in two noncommuting variables, and let A, B ∈ Mn be unitarily similar with
A = U BU ∗ for some unitary U ∈ Mn . Explain why p(A, A∗) = U p(B, B∗)U ∗. Conclude
that if A and B are unitarily similar, then tr p(A, A∗) = tr p(B, B∗) for every complex
polynomial p(t, s) in two noncommuting variables. How is this related to (2.2.6)?
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2.4.P9 Let p(t) = tn + an−1tn−1 + · · · + a1t + a0 be a given monic polynomial of degree
n with zeroes λ1, . . . , λn . Let μk = λk

1 + · · · + λk
n denote the kth moments of the zeroes,

k = 0, 1, . . . (take μ0 = n). Provide details for the following proof of Newton’s identities:

kan−k + an−k+1μ1 + an−k+2μ2 + · · · + an−1μk−1 + μk = 0 (2.4.18)

for k = 1, 2, . . . , n − 1 and

a0μk + a1μk+1 + · · · + an−1μn+k−1 + μn+k = 0 (2.4.19)

for k = 0, 1, 2, . . . . First show that if |t | > R = max{|λi | : i = 1, . . . , n}, then (t −
λi )−1 = t−1 + λi t−2 + λ2

i t−3 + · · · and hence

f (t) =
n∑

i=1

(t − λi )
−1 = nt−1 + μ1t−2 + μ2t−3 + · · · for |t | > R

Now show that p′(t) = p(t) f (t) and compare coefficients. Newton’s identities show that
the first n moments of the zeroes of a monic polynomial of degree n uniquely determine its
coefficients. See (3.3.P18) for a matrix-analytic approach to Newton’s identities.

2.4.P10 Show that A, B ∈ Mn have the same characteristic polynomials, and hence the
same eigenvalues, if and only if tr Ak = tr Bk for all k = 1, 2, . . . , n. Deduce that A is
nilpotent if and only if tr Ak = 0 for all k = 1, 2, . . . , n.

2.4.P11 Let A, B ∈ Mn be given and consider their commutator C = AB − B A. Show

that (a) tr C = 0. (b) Consider A =
[

0 0
1 0

]
and B =

[
0 1
0 0

]
and show that a commutator

need not be nilpotent; that is, a commutator can have some nonzero eigenvalues, but their
sum must be zero. (c) If rank C ≤ 1, show that C is nilpotent. (d) If rank C = 0, explain why
A and B are simultaneously unitarily triangularizable. (e) If rank C = 1, Laffey’s theorem
says that A and B are simultaneously triangularizable by similarity. Provide details for
the following sketch of a proof of Laffey’s theorem: We may assume that A is singular
(replace A by A − λI , if necessary). If the null space of A is B-invariant, then it is a
common nontrivial invariant subspace, so A and B are simultaneously similar to a block
matrix of the form (1.3.17). If the null space of A is not B-invariant, let x �= 0 be such that
Ax = 0 and ABx �= 0. Then Cx = ABx so there is a z �= 0 such that C = ABxzT . For
any y, (zT y)ABx = Cy = ABy − B Ay, B Ay = AB(y − (zT y)x), and hence range B A ⊂
range AB ⊂ range A, range A is B-invariant, and A and B are simultaneously similar to

a block matrix of the form (1.3.17). Now assume that A =
[

A11 A12
0 A22

]
, B =

[
B11 B12
0 B22

]
,

A11, B11 ∈ Mk, 1 ≤ k < n, and C =
[

A11 B11 − B11 A11 X
0 A22 B22 − B22 A22

]
has rank one. At least

one of the diagonal blocks of C is zero, so we may invoke (2.3.3). If one diagonal block has
rank one and size greater than one, repeat the reduction. A 1-by-1 diagonal block cannot
have rank one.

2.4.P12 Let A, B ∈ Mn and let C = AB − B A. This problem examines some conse-
quences of assuming that C commutes with either A or B, or both. (a) If C commutes
with A, explain why tr Ck = tr(Ck−1(AB − B A)) = tr(ACk−1 B − Ck−1 B A) = 0 for all
k = 2, . . . , n. Deduce Jacobson’s Lemma from (2.4.P10): C is nilpotent if it commutes
with either A or B. (b) If n = 2, show that C commutes with both A and B if and only
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if C = 0, that is, if and only if A commutes with B. (c) If A is diagonalizable, show that
C commutes with A if and only if C = 0. (d) A and B are said to quasicommute if they
both commute with C . If A and B quasicommute and p(s, t) is any polynomial in two
noncommuting variables, show that p(A, B) commutes with C , invoke (2.4.8.1), and use
(a) to show that p(A, B)C is nilpotent. (e) If A and B quasicommute, use (2.4.8.7) to
show that A and B are simultaneously triangularizable. This is known as the little McCoy
theorem. (f ) Let n = 2. If C commutes with A, (3.2.P32) ensures that A and B (and hence
also B and C) are simultaneously triangularizable. Show that A and B are simultaneously
triangularizable if and only if C2 = 0. (g) The situation is different for n = 3. Consider

A =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ and B =

⎡
⎣0 0 0

0 0 1
1 0 0

⎤
⎦

Show that (i) A commutes with C , so A and C are simultaneously triangularizable; (ii)
B does not commute with C ; and (iii) B and C (and hence also A and B) are not simul-
taneously triangularizable. (h) Let n = 3. Another theorem of Laffey says that A and B
are simultaneously triangularizable if and only if C , AC2, BC2, and at least one of A2C2,
ABC2, and B2C2 is nilpotent. Deduce from this theorem that A and B are simultaneously
triangularizable if C2 = 0. Give an example to show that the condition C3 = 0 does not
imply that A and B are simultaneously triangularizable.

2.4.P13 Provide details for the following alternative proof of (2.4.4.1) on the linear matrix
equation AX − X B = C : Suppose that A ∈ Mn and B ∈ Mm have no eigenvalues in com-
mon. Consider the linear transformations T1, T2 : Mn,m → Mn,m defined by T1(X ) = AX
and T2(X ) = X B. Show that T1 and T2 commute, and deduce from (2.4.8.1) that the eigen-
values of T = T1 − T2 are differences of eigenvalues of T1 and T2. Argue that λ is an
eigenvalue of T1 if and only if there is a nonzero X ∈ Mn,m such that AX − λX = 0, which
can happen if and only if λ is an eigenvalue of A (and every nonzero column of X is a
corresponding eigenvector). The spectra of T1 and A are therefore the same, and similarly
for T2 and B. Thus, T is nonsingular if A and B have no eigenvalues in common. If x
is an eigenvector of A associated with the eigenvalue λ and y is a left eigenvector of B
associated with the eigenvalue μ, consider X = xy∗, show that T (X ) = (λ − μ)X , and
conclude that the spectrum of T consists of all possible differences of eigenvalues of A
and B.

2.4.P14 Let A ∈ Mn and suppose that rank A = r . Show that A is unitarily similar to an
upper triangular matrix whose first r rows are linearly independent and whose last n − r
rows are zero.

2.4.P15 Let A, B ∈ Mn and consider the polynomial in two complex variables defined by
pA,B(s, t) = det(t B − s A). (a) Suppose that A and B are simultaneously triangularizable,
with A = SAS−1, B = SBS−1, A and B upper triangular, diagA = (α1, . . . , αn), and
diagB = (β1, . . . , βn). Show that pA,B(s, t) = det(tB − sA) =∏n

i=1(tβ i − sαi ). (b) Now
suppose that A and B commute. Deduce that

pA,B(B, A) =∏n
i=1(β i A − αi B) = S(

∏n
i=1(β iA− αiB))S−1
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Explain why the i, i entry of the upper triangular matrix β iA− αiB is zero. (c) Use Lemma
2.4.3.1 to show that pA,B(B, A) = 0 if A and B commute. Explain why this identity is a
two-variable generalization of the Cayley–Hamilton theorem. (d) Suppose that A, B ∈ Mn

commute. For n = 2, show that pA,B(B, A) = (det B)A2 − (tr(A adj B))AB + (det A)B2.
For n = 3, show that pA,B(B, A) = (det B)A3 − (tr(A adj B))A2 B + (tr(B adj A))AB2 −
(det A)B3. What are these identities for B = I ? (e) Calculate det(t B − s A) for the matrices
in Examples 2.4.8.3 and 2.4.8.4; discuss. (f ) Why did we assume commutativity in (b) but
not in (a)?

2.4.P16 Let λ be an eigenvalue of A =
[

a b
c d

]
∈ M2. (a) Explain why μ = a + d − λ

is an eigenvalue of A. (b) Explain why (A − λI )(A − μI ) = (A − μI )(A − λI ) = 0.

(c) Deduce that any nonzero column of
[

a − λ b
c d − λ

]
is an eigenvector of A associated

with μ, and any nonzero row is the conjugate transpose of a left eigenvector associated with

λ. (d) Deduce that any nonzero column of
[

λ − d b
c λ − a

]
is an eigenvector of A associated

with μ and any nonzero row is the conjugate transpose of a left eigenvector associated
with λ.

2.4.P17 Let A, B ∈ Mn be given and consider A(A, B), the subalgebra of Mn generated
by A and B (see (1.3.P36)). Then A(A, B) is a subspace of Mn , so dimA(A, B) ≤ n2.

Consider n = 2, A =
[

0 1
0 0

]
, and B = AT ; show in this case that dimA(A, B) =

n2. Use the Cayley–Hamilton theorem to show that dimA(A, I ) ≤ n for any A ∈
Mn . Gerstenhaber’s theorem says that if A, B ∈ Mn commute, then dimA(A, B)
≤ n.

2.4.P18 Suppose that A =
[

A11 A12
0 A22

]
∈ Mn, A11 ∈ Mk, 1 ≤ k < n, A22 ∈ Mn−k . Show

that A is nilpotent if and only if both A11 and A22 are nilpotent.

2.4.P19 Let n ≥ 3 and k ∈ {1, . . . , n − 1} be given. (a) Suppose that A =
[

A11 A12
0 A22

]
∈

Mn , B =
[

B11 B12
0 B22

]
∈ Mn , A11, B11 ∈ Mk , and A22, B22 ∈ Mn−k . Show that A and B are

simultaneously upper triangularizable if and only if both (i) A11 and B11 are simultaneously
upper triangularizable and (ii) A22 and B22 are simultaneously upper triangularizable. (b)

If m ≥ 3, F = {A1, . . . , Am} ⊂ Mn , and each A j =
[

A j1 A j2
0 A j3

]
with A j1 ∈ Mk , show that

F is simultaneously upper triangularizable if and only if each of {A11, . . . , Am1} and
{A13, . . . , Am3} is (separately) simultaneously upper triangularizable.

2.4.P20 Suppose that A, B ∈ Mn and AB = 0, so C = AB − B A = −B A. Let p(s, t) be
a polynomial in two noncommuting variables. (a) If p(0, 0) = 0, show that Ap(A, B)B = 0
and hence (p(A, B)C)2 = 0. (b) Show that C2 = 0. (c) Use (2.4.8.7) to show that A and

B are simultaneously upper triangularizable. (d) Are
[
−3 3
−4 4

]
and

[
2 −1
2 −1

]
simultaneously

upper triangularizable?

2.4.P21 Let A ∈ Mn have eigenvalues λ1, . . . , λn . The Hankel matrix K = [tr Ai+ j−2]n
i, j=1

is the moment matrix associated with A. We always take A0 = I , so tr A0 = n. (a) Show that
K = V V T , in which V ∈ Mn is the Vandermonde matrix (0.9.11.1) whose j th column is
[1 λ j λ2

j . . . λm−1
j ]T , j = 1, . . . , n. (b) Explain why det K = (det V )2 =∏

i< j (λ j − λi )2;
this product is the discriminant of A. (c) Conclude that the eigenvalues of A are distinct if
and only if its moment matrix is nonsingular. (d) Explain why K (and hence the discriminant
of A) is invariant under similarity of A. (e) Calculate the determinant of the moment matrix
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of A =
[

a b
c d

]
∈ M2; verify that it is the discriminant of A, as computed in the exercise

containing (1.2.4b). (f ) Consider the real matrix

A =
⎡
⎣ a b 0

0 0 c
d −e 0

⎤
⎦ , a, b, c, d, e are positive (2.4.20)

whose zero entries are specified, but only the sign pattern of the remaining entries is
specified. The moment matrix of A is

K =
⎡
⎣ 3 a a2 − 2ce

a a2 − 2ce a3 + 3bcd
a2 − 2ce a3 + 3bcd a4 + 4bdac + 2e2c2

⎤
⎦

and det K = −27b2c2d2 − 4c3e3 − 4a4ce − 8a2c2e2 − 4a3bcd − 36abc2de. Explain why
A always has three distinct eigenvalues.

2.4.P22 Suppose that A ∈ Mn has d distinct eigenvalues μ1, . . . , μd with respective mul-
tiplicities ν1, . . . , νd . The matrix Km = [tr Ai+ j−2]m

i, j=1 is the moment matrix of order m
associated with A, m = 1, 2, . . . ; if m ≤ n, it is a leading principal submatrix of the mo-
ment matrix K in the preceding problem. Let v

(m)
j = [1 μ j μ2

j . . . μm−1
j ]T , j = 1, . . . , d

and form the m-by-d matrix Vm = [v(m)
1 . . . v

(m)
d ]. Let D = diag(ν1, . . . , νd ) ∈ Md . Show

that (a) Vm has row rank m if m ≤ d and has column rank d if m ≥ d; (b) Km = Vm DV T
m ;

(c) if 1 ≤ p < q , K p is a leading principal submatrix of Kq ; (d) Kd is nonsingular; (e)
rank Km = d if m ≥ d; (f ) d = max{m ≥ 1 : Km is nonsingular} but K p can be singular
for some p < d; (g) Kd is nonsingular and each of Kd+1, . . . , Kn, Kn+1 are all singular;
(h) Kn = K , the moment matrix in the preceding problem; (i) rank K is exactly the number
of distinct eigenvalues of A.

2.4.P23 Suppose that T = [ti j ] ∈ Mn is upper triangular. Show that adj T = [τ i j ] is upper
triangular and has main diagonal entries τ i i =

∏
j �=i t j j .

2.4.P24 Let A ∈ Mn have eigenvalues λ1, . . . , λn . Show that the eigenvalues of adj A are∏
j �=iλ j , i = 1, . . . , n.

2.4.P25 Let A, B ∈ M2 and suppose that λ1, λ2 are the eigenvalues of A. (a) Show that A is

unitarily similar to
[

λ1 x
0 λ2

]
in which x ≥ 0 and x2 = tr AA∗ − |λ1|2 − |λ2|2. (b) Show that

A is unitarily similar to B if and only if tr A = tr B, tr A2 = tr B2, and tr AA∗ = tr B B∗.

2.4.P26 Let B ∈ Mn,k and C ∈ Mk,n . Show that BCp(BC) = Bp(C B)C for any polyno-
mial p(t).

2.4.P27 Let A ∈ Mn be given. (a) If A = BC and B, CT ∈ Mn,k , use (2.4.3.2) to show that
there is a polynomial q(t) of degree at most k + 1 such that q(A) = 0.

2.4.P28 Suppose A ∈ Mn is singular and let r = rank A. Show that there is a polynomial
p(t) of degree at most r + 1 such that p(A) = 0.

2.4.P29 Let A ∈ Mn and suppose that x, y ∈ Cn are nonzero vectors such that Ax = λx
and y∗ A = λy∗. If λ is a simple eigenvalue of A, show that A − λI + κxy∗ is nonsingular
for all κ �= 0.

2.4.P30 There is a systematic approach to the calculations illustrated in (2.4.3.3). Let
A ∈ Mn be given and suppose that p(t) is a polynomial of degree greater than n. Use



130 Unitary similarity and unitary equivalence

the Euclidean algorithm (polynomial long division) to express p(t) = h(t)pA(t) + r (t),
in which the degree of r (t) is strictly less than n (possibly zero). Explain why p(A) =
r (A).

2.4.P31 Use (2.4.3.2) to prove that if all the eigenvalues of A ∈ Mn are zero, then An = 0.

2.4.P32 Let A, B ∈ Mn and let C = AB − B A. Explain why tr C �= 0 is impossible. In
particular, C = cI is impossible if c �= 0.

2.4.P33 Let A, B ∈ Mn and let p be a positive integer. Suppose that A =
[

A11 A12
0 A22

]
, in

which A11 ∈ Mk and A22 ∈ Mn−k have no eigenvalues in common. If B p = A, show that

B is block upper triangular conformal to A, B =
[

B11 B12
0 B22

]
, B p

11 = A11, and B p
22 = A22.

2.4.P34 Let A =
[

a b
c d

]
∈ M2. Verify the Cayley–Hamilton theorem for A by an explicit

computation, that is, verify that A2 − (a + d)A + (ad − bc)I2 = 0.

2.4.P35 Let A ∈ Mn(F) (F = R or C). Use (2.4.4.2) to show that A commutes with every
unitary matrix in Mn(F) if and only if A is a scalar matrix.

Notes and Further Readings. See Radjavi and P. Rosenthal (2000) for a detailed
exposition of simultaneous triangularization. Theorem 2.4.8.7 and its generalizations
were proved by N. McCoy, On the characteristic roots of matric polynomials, Bull.
Amer. Math. Soc. 42 (1936) 592–600. Our proof for (2.4.8.7) is adapted from M. P.
Drazin, J. W. Dungey, and K. W. Gruenberg, Some theorems on commutative matrices,
J. Lond. Math. Soc. 26 (1951) 221–228, which contains a proof of (2.4.8.10) in the
general case m ≥ 2. The relationship between eigenvalues and linear combinations is
discussed in T. Motzkin and O. Taussky, Pairs of matrices with property L, Trans. Amer.
Math. Soc. 73 (1952) 108–114. A pair A, B ∈ Mn such that σ (a A + bB) = {aα j +
bβ i j

: j = 1, . . . , n} for all a, b ∈ C is said to have property L; the condition (2.4.8.7(c))
is called property P. Property P implies property L for all n = 2, 3, . . . ; property L
implies property P only for n = 2. Property L is not fully understood, but it is known
that a pair of normal matrices has property L if and only if they commute; see N. A.
Wiegmann, A note on pairs of normal matrices with property L , Proc. Amer. Math. Soc.
4 (1953) 35–36. There is a remarkable approximate version of the assertion in (2.4.P10):
Nonsingular matrices A, B ∈ Mn have the same characteristic polynomial (and hence
have the same eigenvalues) if and only if | tr Ak − tr Bk | ≤ 1 for all k = ±1,±2, . . .; see
the paper by Marcoux, Mastnak, and Radjavi cited at the end of (2.2). Jacobson’s lemma
(2.4.P12) is Lemma 2 in N. Jacobson, Rational methods in the theory of Lie algebras,
Ann. of Math. (2) 36 (1935) 875–881. The notion of quasicommutativity (2.4.P12)
arises in quantum mechanics: The position and momentum operators x and px (linear
operators, but not finite dimensional; see (2.4.P32)) satisfy the identity xpx − px x =
i�I . This identity, which implies the Heisenberg uncertainty principle for position and
momentum, ensures that both x and px commute with their commutator. The example
in (2.4.P12(g)) is due to Gérald Bourgeois. The Laffey theorems mentioned in (2.4.P11
and 2.4.P12) are proved in T. J. Laffey, Simultaneous triangularization of a pair of
matrices – low rank cases and the nonderogatory case, Linear Multilinear Algebra
6 (1978) 269–306, and T. J. Laffey, Simultaneous quasidiagonalization of a pair of
3 × 3 complex matrices, Rev. Roumaine Math. Pures Appl. 23 (1978) 1047–1052). The
matrix (2.4.20) is an example of a sign pattern matrix that requires distinct eigenvalues.
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For a discussion of this fascinating property, see Z. Li and L. Harris, Sign patterns that
require all distinct eigenvalues, JP J. Algebra Number Theory Appl. 2 (2002) 161–179;
the paper contains a list of all the irreducible 3-by-3 sign pattern matrices with this
property. The explicit calculation required in (2.4.P34) was published in A. Cayley, A
memoir on the theory of matrices, Philos. Trans. R. Soc. London 148 (1858) 17–37;
see p. 23. On p. 24, Cayley says that he had also verified the 3-by-3 case (presumably
by another explicit calculation, which he does not present in the paper), but he had
“not thought it necessary to undertake the labour of a formal proof of the theorem
in the general case of a matrix of any degree.” In a paper published in 1878, F. G.
Frobenius gave a rigorous proof that every square complex matrix satisfies its own
characteristic equation, but his approach was very different from our proof of (2.4.3.2).
Frobenius first defined the minimal polynomial of a matrix (a new concept of his own
invention; see (3.3)) and then showed that it divides the characteristic polynomial; see
p. 355 in Vol. I of Ferdinand Georg Frobenius: Gesammelte Abhandlungen, ed. by J-P.
Serre, Springer, Berlin, 1968. The proof of the Cayley–Hamilton theorem outlined in
(2.4.P3) is taken from A. Buchheim, Mathematical notes, Messenger Math. 13 (1884)
62–66.

2.5 Normal matrices

The class of normal matrices, which arises naturally in the context of unitary
similarity, is important throughout matrix analysis; it includes the unitary, Hermi-
tian, skew Hermitian, real orthogonal, real symmetric, and real skew-symmetric
matrices.

Definition 2.5.1. A matrix A ∈ Mn is normal if AA∗ = A∗A, that is, if A commutes
with its conjugate transpose.

Exercise. If A ∈ Mn is normal and α ∈ C, show that αA is normal. The class
of normal matrices of a given size is closed under multiplication by complex
scalars.

Exercise. If A ∈ Mn is normal, and if B is unitarily similar to A, show that B
is normal. The class of normal matrices of a given size is closed under unitary
similarity.

Exercise. If A ∈ Mn and B ∈ Mm are normal, show that A ⊕ B ∈ Mn+m is nor-
mal. The class of normal matrices is closed under direct sums.

Exercise. If A ∈ Mn and B ∈ Mm , and if A ⊕ B ∈ Mn+m is normal, show that A
and B are normal.

Exercise. Let a, b ∈ C be given. Show that
[

a b
−b a

]
is normal and has eigenvalues

a ± ib.

Exercise. Show that every unitary matrix is normal.
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Exercise. Show that every Hermitian or skew-Hermitian matrix is normal.

Exercise. Verify that A =
[

1 eiπ/4

−eiπ/4 1

]
is normal but that no scalar multiple of

A is unitary, Hermitian, or skew Hermitian.

Exercise. Explain why every diagonal matrix is normal. If a diagonal matrix is
Hermitian, why must it be real?

Exercise. Show that each of the classes of unitary, Hermitian, and skew-
Hermitian matrices is closed under unitary similarity. If A is unitary and |α| = 1,
show that αA is unitary. If A is Hermitian and α is real, show that αA is Hermitian.
If A is skew Hermitian and α is real, show that αA is skew Hermitian.

Exercise. Show that a Hermitian matrix has real main diagonal entries. Show
that a skew-Hermitian matrix has pure imaginary main diagonal entries. What
are the main diagonal entries of a real skew-symmetric matrix?

Exercise. Review the proof of (1.3.7) and conclude that A ∈ Mn is unitarily
diagonalizable if and only if there is a set of n orthonormal vectors in Cn , each
of which is an eigenvector of A.

In understanding and using the defining identity for normal matrices – AA∗ = A∗A –
it can be helpful to keep a geometric interpretation in mind. Partition A = [c1 . . . cn]
and AT = [r1 . . . rn] according to their columns; the vectors c j are the columns of A
and the vectors r T

i are the rows of A. Inspection of the defining identity A∗A = AA∗

reveals that A is normal if and only if c∗i c j = r∗i r j for all i, j = 1, . . . , n. In particular,
c∗i ci = ‖ci‖2

2 = ‖ri‖2
2 = r∗i ri , so each column of A has the same Euclidean norm as its

corresponding row; a column is zero if and only if the corresponding row is zero.
If A ∈ Mn(R) is a real normal matrix, then cT

i c j =
〈
ci , c j

〉 = 〈
ri , r j

〉 = r T
i r j for all

i and j . If columns i and j are nonzero, then rows i and j are nonzero and the identity〈
ci , c j

〉
‖ci‖2

∥∥c j

∥∥
2

=
〈
ri , r j

〉
‖ri‖2

∥∥r j

∥∥
2

tells us that the angle between the vectors in columns i and j of A is the same as the
angle between the vectors in rows i and j of A; see (0.6.3.1).

There is something special not only about zero rows or columns of a normal matrix,
but also about certain zero blocks.

Lemma 2.5.2. Let A ∈ Mn be partitioned as A =
[

A11 A12
0 A22

]
, in which A11 and A22

are square. Then A is normal if and only if A11 and A22 are normal and A12 = 0. A
block upper triangular matrix is normal if and only if each of its off-diagonal blocks
is zero and each of its diagonal blocks is normal; in particular, an upper triangular
matrix is normal if and only if it is diagonal.

Proof. If A11 and A22 are normal and A12 = 0, then A = A11 ⊕ A22 is a direct sum of
normal matrices, so it is normal.
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Conversely, if A is normal, then

AA∗ =
[

A11 A∗
11 + A12 A∗

12 �
� �

]
=
[

A∗
11 A11 �
� �

]
= A∗A

so A∗
11 A11 = A11 A∗

11 + A12 A∗
12, which implies that

tr A∗
11 A11 = tr(A11 A∗

11 + A12 A∗
12)

= tr A11 A∗
11 + tr A12 A∗

12 = tr A∗
11 A11 + tr A12 A∗

12

and hence tr A12 A∗
12 = 0. Since tr A12 A∗

12 is the sum of squares of the absolute values
of the entries of A12 (0.2.5.1), it follows that A12 = 0. Then A = A11 ⊕ A22 is normal,
so A11 and A22 are normal.

Suppose that B = [Bi j ]k
i, j=1 ∈ Mn is normal and block upper triangular, that is,

Bii ∈ Mni for i = 1, . . . , k and Bi j = 0 if i > j . Partition it as B =
[

B11 X
0 B̃

]
, in which

X = [B12 . . . B1k] and B̃ = [Bi j ]k
i, j=2 is block upper triangular. Then X = 0 and B̃

is normal, so a finite induction permits us to conclude that B is block diagonal. For
the converse, we have observed in a preceding exercise that a direct sum of normal
matrices is normal. �

Exercise. Let A ∈ Mn be normal and let α ∈ {1, . . . , n} be a given index set. If
A[α, αc] = 0, show that A[αc, α] = 0.

We next catalog the most fundamental facts about normal matrices. The equivalence
of (a) and (b) in the following theorem is often called the spectral theorem for normal
matrices.

Theorem 2.5.3. Let A = [ai j ] ∈ Mn have eigenvalues λ1, . . . , λn. The following state-
ments are equivalent:

(a) A is normal.
(b) A is unitarily diagonalizable.
(c)

∑n
i, j=1 |ai j |2 =∑n

i=1 |λi |2.
(d) A has n orthonormal eigenvectors.

Proof. Use (2.3.1) to write A = U T U ∗, in which U = [u1 . . . un] is unitary and
T = [ti j ] ∈ Mn is upper triangular.

If A is normal, then so is T (as is every matrix that is unitarily similar to A).
The preceding lemma ensures that T is actually a diagonal matrix, so A is unitarily
diagonalizable.

If there is a unitary V such that A = V �V ∗ and � = diag(λ1, . . . , λn), then
tr A∗A = tr �∗� by (2.2.2), which is the assertion in (c).

The diagonal entries of T are λ1, . . . , λn in some order, and hence tr A∗A =
tr T ∗T =∑n

i=1 |λi |2 +
∑

i< j |ti j |2. Thus, (c) implies that
∑n

i< j |ti j |2 = 0, so T is di-
agonal. The factorization A = U T U ∗ is equivalent to the identity AU = U T , which
says that Aui = tii ui for each i = 1, . . . , n. Thus, the n columns of U are orthonormal
eigenvectors of A.

Finally, an orthonormal list is linearly independent, so (d) ensures that A is diago-
nalizable and that a diagonalizing similarity can be chosen with orthonormal columns
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(1.3.7). This means that A is unitarily similar to a diagonal (and hence normal) matrix,
so A is normal. �

A representation of a normal matrix A ∈ Mn as A = U�U ∗, in which U is unitary
and � is diagonal, is called a spectral decomposition of A.

Exercise. Explain why a normal matrix is nondefective, that is, the geometric
multiplicity of every eigenvalue is the same as its algebraic multiplicity.

Exercise. If A ∈ Mn is normal, show that x ∈ Cn is a right eigenvector of A
associated with the eigenvalue λ of A if and only if x is a left eigenvector of A
associated with λ; that is, Ax = λx is equivalent to x∗A = λx∗ if A is normal.
Hint: Normalize x and write A = U�U ∗ with x as the first column of U . Then
what is A∗? A∗x? See (2.5.P20) for another proof.

Exercise. If A ∈ Mn is normal, and if x and y are eigenvectors of A associ-
ated with distinct eigenvalues, use the preceding exercise and the principle of
biorthogonality to show that x and y are orthogonal.

Once the distinct eigenvalues λ1, . . . , λd of a normal matrix A ∈ Mn are known,
it can be unitarily diagonalized via the following conceptual prescription: For each
eigenspace {x ∈ Cn : Ax = λx}, determine a basis and orthonormalize it to obtain an
orthonormal basis. The eigenspaces are mutually orthogonal and the dimension of each
eigenspace is equal to the multiplicity of the corresponding eigenvalue (normality of
A is the reason for both), so the union of these bases is an orthonormal basis for Cn .
Arraying these basis vectors as the columns of a matrix U produces a unitary matrix
such that U ∗AU is diagonal.

However, an eigenspace always has more than one orthonormal basis, so the di-
agonalizing unitary matrix constructed in the preceding conceptual prescription is
never unique. If X, Y ∈ Mn,k have orthonormal columns (X∗X = Ik = Y ∗Y ), and if
range X = range Y , then each column of X is a linear combination of the columns of Y ,
that is, X = Y G for some G ∈ Mk . Then Ik = X∗X = (Y G)∗(Y G) = G∗(Y ∗Y )G =
G∗G, so G must be unitary. This observation gives a geometric interpretation for the
first part of the following uniqueness theorem.

Theorem 2.5.4. Let A ∈ Mn be normal and have distinct eigenvalues λ1, . . . , λd , with
respective multiplicities n1, . . . , nd. Let � = λ1 In1 ⊕ · · · ⊕ λd Ind , and suppose that
U ∈ Mn is unitary and A = U�U ∗.

(a) A = V �V ∗ for some unitary V ∈ Mn if and only if there are unitary matrices
W1, . . . , Wd with each Wi ∈ Mni such that U = V (W1 ⊕ · · · ⊕ Wd ).

(b) Two normal matrices are unitarily similar if and only if they have the same
eigenvalues.

Proof. (a) If U�U ∗ = V �V ∗, then �U ∗V = U ∗V �, so W = U ∗V is unitary and
commutes with �; (2.4.4.2) ensures that W is block diagonal conformal to �.
Conversely, if U = V W and W = W1 ⊕ · · · ⊕ Wd with each Wi ∈ Mni , then W
commutes with � and U�U ∗ = V W�W ∗V ∗ = V �W W ∗V ∗ = V �V ∗.
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(b) If B = V �V ∗ for some unitary V , then (U V ∗)B(U V ∗)∗ =
(U V ∗)V �V ∗(U V ∗)∗ = U�U ∗ = A. Conversely, if B is similar to A, then
they have the same eigenvalues; if B is unitarily similar to a normal matrix, then it is
normal. �

We next note that commuting normal matrices may be simultaneously unitarily
diagonalized.

Theorem 2.5.5. Let N ⊆ Mn be a nonempty family of normal matrices. Then N is a
commuting family if and only if it is a simultaneously unitarily diagonalizable family.
For any given A0 ∈ N and for any given ordering λ1, . . . , λn of the eigenvalues of
A0, there is a unitary U ∈ Mn such that U ∗A0U = diag(λ1, . . . , λn) and U ∗BU is
diagonal for every B ∈ N .

Exercise. Use (2.3.3) and the fact that a triangular normal matrix must be diagonal
to prove (2.5.5). The final assertion about A0 follows as in the proof of (1.3.21)
since every permutation matrix is unitary.

Application of (2.5.3) to the special case of Hermitian matrices yields a fundamental
result called the spectral theorem for Hermitian matrices.

Theorem 2.5.6. Let A ∈ Mn be Hermitian and have eigenvalues λ1, . . . , λn. Let � =
diag(λ1, . . . , λn). Then

(a) λ1, . . . , λn are real.
(b) A is unitarily diagonalizable.
(c) There is a unitary U ∈ Mn such that A = U�U ∗.

Proof. A diagonal Hermitian matrix must have real diagonal entries, so (a) follows from
(b) and the fact that the set of Hermitian matrices is closed under unitary similarity.
Statement (b) follows from (2.5.3) because Hermitian matrices are normal. Statement
(c) restates (b) and incorporates the information that the diagonal entries of � are
necessarily the eigenvalues of A. �

In contrast to the discussion of diagonalizability in Chapter 1, there is no reason to
assume distinctness of eigenvalues in (2.5.4) and (2.5.6), and diagonalizability need
not be assumed in (2.5.5). A basis of eigenvectors (in fact, an orthonormal basis) is
structurally guaranteed by normality. This is one reason why Hermitian and normal
matrices are so important and have such pleasant properties.

We now turn to a discussion of real normal matrices. They can be diagonalized by a
complex unitary similarity, but what special form can be achieved by a real orthogonal
similarity? Since a real normal matrix can have non-real eigenvalues, it might not
be possible to diagonalize it with a real similarity. However, each real matrix is real
orthogonally similar to a real quasitriangular matrix, which must be quasidiagonal if it
is normal.

Lemma 2.5.7. Suppose that A =
[

a b
c d

]
∈ M2(R) is normal and has a conjugate pair

of non-real eigenvalues. Then c = −b �= 0 and d = a.

Proof. A computation reveals that AAT = AT A if and only if b2 = c2 and ac + bd =
ab + cd. If b = c, then A is Hermitian (because it is real symmetric), so the preceding
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theorem ensures that it has two real eigenvalues. Therefore, we must have b = −c �= 0
and b(d − a) = b(a − d), which implies that a = d. �

Theorem 2.5.8. Let A ∈ Mn(R) be normal.

(a) There is a real orthogonal Q ∈ Mn(R) such that QT AQ is a real quasidiagonal
matrix

A1 ⊕ · · · ⊕ Am ∈ Mn(R), each Ai is 1-by-1 or 2-by-2 (2.5.9)

with the following properties: The 1-by-1 direct summands in (2.5.9) display all
the real eigenvalues of A. Each 2-by-2 direct summand in (2.5.9) has the special
form [

a b
−b a

]
(2.5.10)

in which b > 0; it is normal and has eigenvalues a ± ib.
(b) The direct summands in (2.5.9) are completely determined by the eigenvalues of

A; they may appear in any prescribed order.
(c) Two real normal n-by-n matrices are real orthogonally similar if and only if they

have the same eigenvalues.

Proof. (a) Theorem 2.3.4b ensures that A is real orthogonally similar to a real upper
quasitriangular matrix, each of whose 2-by-2 diagonal blocks has a conjugate pair of
non-real eigenvalues. Since this upper quasitriangular matrix is normal, (2.5.2) ensures
that it is actually quasidiagonal, and each of its 2-by-2 direct summands is normal
and has a conjugate pair of non-real eigenvalues. The preceding lemma tells us that
each of these 2-by-2 direct summands has the special form (2.5.10) in which b �= 0. If

necessary, we can ensure that b > 0 by performing a similarity via the matrix
[

1 0
0 −1

]
.

(b) The direct summands in (2.5.9) display all the eigenvalues of A, and any desired
ordering of these direct summands may be achieved via a permutation similarity.
(c) Two real normal n-by-n matrices with the same eigenvalues are real orthogonally
similar to the same direct sum of the form (2.5.9). �

The preceding theorem reveals a canonical form for real normal matrices under
real orthogonal similarity. It leads to canonical forms for real symmetric, real skew-
symmetric, and real orthogonal matrices under real orthogonal similarity.

Corollary 2.5.11. Let A ∈ Mn(R). Then

(a) A = AT if and only if there is a real orthogonal Q ∈ Mn(R) such that

QT AQ = diag(λ1, . . . , λn) ∈ Mn(R) (2.5.12)

The eigenvalues of A are λ1, . . . , λn. Two real symmetric matrices are real
orthogonally similar if and only if they have the same eigenvalues.

(b) A = −AT if and only if there is a real orthogonal Q ∈ Mn(R) and a nonnegative
integer p such that QT AQ has the form

0n−2p ⊕ b1

[
0 1
−1 0

]
⊕ · · · ⊕ bp

[
0 1
−1 0

]
, all b j > 0 (2.5.13)
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If A �= 0, its nonzero eigenvalues are ±ib1, . . . ,±ibp. Two real skew-symmetric
matrices are real orthogonally similar if and only if they have the same eigen-
values.

(c) AAT = I if and only if there is a real orthogonal Q ∈ Mn(R) and a nonnegative
integer p such that QT AQ has the form

�n−2p ⊕
[

cos θ1 sin θ1
− sin θ1 cos θ1

]
⊕ · · · ⊕

[
cos θ p sin θ p

− sin θ p cos θ p

]
(2.5.14)

in which �n−2p = diag(±1, . . . ,±1) ∈ Mn−2p(R) and each θ j ∈ (0, π ). The
eigenvalues of A are the diagonal entries of �n−2p together with e±iθ1 , . . . , e±iθ p .
Two real orthogonal matrices are real orthogonally similar if and only if they
have the same eigenvalues.

Proof. Each of the hypotheses ensures that A is real and normal, so it is real orthog-
onally similar to a quasidiagonal matrix of the form (2.5.9). It suffices to consider
what each of the hypotheses implies about the direct summands in (2.5.9). If A = AT ,
there can be no direct summands of the form (2.5.10). If A = −AT , then every 1-by-1
direct summand is zero and any 2-by-2 direct summand has zero diagonal entries. If
AAT = I , then each 1-by-1 direct summand has the form [±1] and any 2-by-2 block
(2.5.10) has determinant ±1, so a2 + b2 = 1 and there is some θ ∈ (0, π) such that
a = cos θ and b = sin θ , that is, a ± ib = e±iθ . �

Exercise. Let A1 =
[

a b
−b a

]
∈ M2, A2 =

[
α β

γ δ

]
∈ M2, and suppose that b �= 0.

Show that A1 and A2 commute if and only if α = δ and γ = −β.

Exercise. Let a, b ∈ C. Explain why
[

a b
−b a

]
and

[
a −b
b a

]
are real orthogonally

similar. Hint: Consider a similarity via
[

1 0
0 −1

]
.

The following theorem is the real normal version of (2.5.5).

Theorem 2.5.15. Let N ⊆ Mn(R) be a nonempty commuting family of real normal
matrices. There is a real orthogonal matrix Q and a nonnegative integer q such that,
for each A ∈ N , QT AQ is a real quasidiagonal matrix of the form

�(A) ⊕
[

a1(A) b1(A)
−b1(A) a1(A)

]
⊕ · · · ⊕

[
aq (A) bq (A)
−bq (A) aq (A)

]
(2.5.15a)

in which each �(A) ∈ Mn−2q (R) is diagonal; the parameters a j (A) and b j (A) are real
for all A ∈ N and all j = 1, . . . , q; and for each j ∈ {1, . . . , q} there is some A ∈ N
for which b j (A) > 0.

Proof. Theorem 2.3.6b ensures that there is a real orthogonal Q and a quasidiagonal
matrix D = Jn1 ⊕ · · · ⊕ Jnm such that for every A ∈ N , QT AQ is an upper quasitri-
angular matrix of the form (2.3.6.1) that is partitioned conformally to D. Moreover,
if n j = 2, then for some A ∈ N , A j (A) has a conjugate pair of non-real eigenvalues.
Because each upper quasitriangular matrix QT AQ is normal, (2.5.2) ensures that it is
actually quasidiagonal, that is, every A ∈ N , QT AQ = A1(A) ⊕ · · · ⊕ Am(A) is par-
titioned conformally to D and each direct summand A j (A) is normal. If every n j = 1,
there is nothing further to prove. Suppose that n j = 2 and consider the commuting
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family F = {A j (A) : A ∈ N }. Since some matrix in F has a conjugate pair of non-
real eigenvalues, (2.5.7) tells us that it has the special form (2.5.10) with b �= 0; if

necessary, we can ensure that b > 0 by performing a similarity via the matrix
[

1 0
0 −1

]
.

The preceding exercise now tells us that every matrix inF has the special form (2.5.10).
Perform a final simultaneous permutation similarity to achieve the ordering of direct
summands displayed in the partitioned matrix (2.5.15a). �

If A, B ∈ Mn are normal (either complex or real) and satisfy an intertwining relation,
the Fuglede–Putnam theorem says that A∗ and B∗ satisfy the same intertwining relation.
The key to our proof of this result is the fact that, for a, b ∈ C, ab = 0 if and only if
ab̄ = 0; for a different proof, see (2.5.P26).

Theorem 2.5.16 (Fuglede–Putnam). Let A ∈ Mn and B ∈ Mm be normal and let
X ∈ Mn,m be given. Then AX = X B if and only if A∗X = X B∗.

Proof. Let A = U�U ∗ and B = V MV ∗ be spectral decompositions in
which � = diag(λ1, . . . , λn) and M = diag(μ1, . . . , μm). Let U ∗X V = [ξ i j ].
Then AX = X B ⇐⇒ U�U ∗X = X V MV ∗ ⇐⇒ �(U ∗X V ) = (U ∗X V )M ⇐⇒
λiξ i j = ξ i jμ j for all i, j ⇐⇒ ξ i j (λi − μ j ) = 0 for all i, j ⇐⇒ ξ i j (λi − μ j ) =
0 for all i, j ⇐⇒ λiξ i j = ξ i jμ j for all i, j ⇐⇒ �̄(U ∗X V ) = (U ∗X V )M̄ ⇐⇒
U�̄U ∗X = X V M̄V ∗ ⇐⇒ A∗X = X B∗. �

The preceding two theorems lead to a useful representation for normal matri-
ces that commute with their transpose or, equivalently, with their complex conju-
gate.

Exercise. Suppose that A ∈ Mn is normal, ĀA = AĀ, and A = B + iC , in which
B and C are real. Explain why B and C are normal and commute. Hint: B =
(A + Ā)/2.

Exercise. Let A =
[

a b
−b a

]
∈ M2(C) be given with b �= 0, let A0 =

[
1 i
−i 1

]
, and

let Q =
[

1 0
0 −1

]
. Show that (a) A is nonsingular if and only if A = c

[
α β

−β α

]
,

c, β �= 0, and α2 + β2 = 1; (b) A is singular and nonzero if and only A is a
nonzero scalar multiple of A0 or Ā0; and (c) Q is real orthogonal and Ā0 =
Q A0 QT .

Theorem 2.5.17. Let A ∈ Mn be normal. The following three statements are equiva-
lent:

(a) ĀA = AĀ.
(b) AT A = AAT .
(c) There is a real orthogonal Q such that QT AQ is a direct sum of blocks, in any

prescribed order, each of which is either a zero block or a nonzero scalar multiple
of

[1],
[

0 1
−1 0

]
,
[

a b
−b a

]
, or

[
1 i
−i 1

]
, a, b ∈ C (2.5.17.1)

in which a �= 0 �= b and a2 + b2 = 1.
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Conversely, if A is real orthogonally similar to a direct sum of complex scalar multiples
of blocks of the form (2.5.17.1), then A is normal and AĀ = ĀA.

Proof. Equivalence of (a) and (b) follows from the preceding theorem: ĀA = AĀ if
and only if AT A = ( Ā)∗A = A( Ā)∗ = AAT .

Let A = B + iC , in which B and C are real. The exercise following (2.5.16) shows
that {B, C} is a commuting real normal family, so (2.5.15) ensures that there is a real
orthogonal Q and a nonnegative integer q such that

QT B Q = �(B) ⊕
[

a1(B) b1(B)
−b1(B) a1(B)

]
⊕ · · · ⊕

[
aq (B) bq (B)
−bq (B) aq (B)

]
and

QT C Q = �(C) ⊕
[

a1(C) b1(C)
−b1(C) a1(C)

]
⊕ · · · ⊕

[
aq (C) bq (C)
−bq (C) aq (C)

]
in which each of �(B), �(C) ∈ Mn−2q is diagonal and, for each j ∈ {1, . . . , q}, at
least one of b j (B) or b j (C) is positive. Therefore,

QT AQ = QT (B + iC)Q (2.5.17.2)

= �(A) ⊕
[

α1(A) β1(A)
−β1(A) α1(A)

]
⊕ · · · ⊕

[
αq (A) βq (A)
−βq (A) αq (A)

]
in which �(A) = �(B) + i�(C), each α j (A) = a j (B) + ia j (C), and each β j (A) =
b j (B) + ib j (C) �= 0. The preceding exercise shows that every nonsingular 2-by-2 block

in (2.5.17.2) is a nonzero scalar multiple of either
[

0 1
−1 0

]
or
[

a b
−b a

]
, in which a �=

0 �= b and a2 + b2 = 1. It also shows that every singular 2-by-2 block in (2.5.17.2) is

either a nonzero scalar multiple of
[

1 i
−i 1

]
or is real orthogonally similar to a nonzero

scalar multiple of it. �

Two special cases of the preceding theorem play an important role in the next
section: unitary matrices that are either symmetric or skew symmetric.

Exercise. Show that the first two blocks in (2.5.17.1) are unitary; the third block
is complex orthogonal but not unitary; the fourth block is singular, so it is neither
unitary nor complex orthogonal.

Corollary 2.5.18. Let U ∈ Mn be unitary.

(a) If U is symmetric, then there is a real orthogonal Q ∈ Mn(R) and real
θ1, . . . , θn ∈ [0, 2π ) such that

U = Q diag(eiθ1 , . . . , eiθn )QT (2.5.19.1)

(b) If U is skew symmetric, then n is even and there is a real orthogonal Q ∈ Mn(R)
and real θ1, . . . , θn/2 ∈ [0, 2π ) such that

U = Q
(

eiθ1

[
0 1
−1 0

]
⊕ · · · ⊕ eiθn/2

[
0 1
−1 0

])
QT (2.5.19.2)

Conversely, any matrix of the form (2.5.19.1) is unitary and symmetric; any matrix of
the form (2.5.19.2) is unitary and skew symmetric.
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Proof. A unitary matrix U that is either symmetric or skew symmetric satisfies the
identity UU T = U T U , so (2.5.17) ensures that there is a real orthogonal Q such that
QT AQ is a direct sum of nonzero scalar multiples of blocks selected from the four
types in (2.5.17.1).
(a) If U is symmetric, only symmetric blocks may be selected from (2.5.17.1), so
QT U Q is a direct sum of blocks of the form c[1], in which |c| = 1 because U is
unitary.
(b) If U is skew symmetric, only skew-symmetric blocks may be selected from

(2.5.17.1), so QT U Q is a direct sum of blocks of the form c
[

0 1
−1 0

]
, in which |c| = 1

because U is unitary. It follows that n is even. �
Our final theorem is an analog of (1.3.29) in the setting of unitary similarity: Real

matrices are unitarily similar if and only if they are real orthogonally similar. We
prepare for it with the following exercise and corollary.

Exercise. Let U ∈ Mn be given. Explain why U is both unitary and complex
orthogonal if and only if it is real orthogonal. Hint: U−1 = U ∗ = U T .

Corollary 2.5.20. Let U ∈ Mn be unitary.

(a) If U is symmetric, there is a unitary symmetric V such that V 2 = U and V is
a polynomial in U. Consequently, V commutes with any matrix that commutes
with U.

(b) (QS factorization of a unitary matrix) There is a real orthogonal Q and a sym-
metric unitary S such that U = QS and S is a polynomial in U T U. Consequently,
S commutes with any matrix that commutes with U T U.

Proof. (a) Use the preceding corollary to factor U = P diag(eiθ1, . . . , eiθn )PT , in
which P is real orthogonal and θ1, . . . , θn ∈ [0, 2π ) are real. Let p(t) be a poly-
nomial such that p(eiθ j ) = eiθ j /2 for each j = 1, . . . , n (0.9.11.4), and let V = p(U ).
Then

V = p(U ) = p(P diag(eiθ1, . . . , eiθn )PT )

= Pp(diag(eiθ1, . . . , eiθn ))PT = P diag(p(eiθ1 ), . . . , p(eiθn ))PT

= P diag(eiθ1/2, . . . , eiθn/2)PT

so V is unitary and symmetric, and V 2 = P(diag(eiθ1/2, . . . , eiθn/2)2 PT =
P diag(eiθ1, . . . , eiθn )PT = U . The final assertion follows from (2.4.4.0).
(b) Part (a) ensures that there is a symmetric unitary matrix S such that S2 = U T U
and S is a polynomial in U T U . Consider the unitary matrix Q = U S∗, which has the
property that QS = U S∗S = U . Compute QT Q = S∗U T U S∗ = S∗S2S∗ = I . Thus,
Q is both orthogonal and unitary, so the preceding exercise ensures that it is real
orthogonal. �

Exercise. If U ∈ Mn is unitary, explain why there is a real orthogonal matrix Q
and a symmetric unitary matrix S such that U = SQ and S is a polynomial in
UU T .
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Theorem 2.5.21. LetF = {Aα : α ∈ I} ⊂ Mn(R) andG = {Bα : α ∈ I} ⊂ Mn(R) be
given families of real matrices. If there is a unitary U ∈ Mn such that Aα = U BαU ∗

for every α ∈ I, then there is a real orthogonal Q ∈ Mn(R) such that Aα = Q Bα QT

for every α ∈ I. In particular, two real matrices that are unitarily similar are real
orthogonally similar.

Proof. Since each Aα and Bα is real, Aα = U BαU ∗ = Ū BαU T = Āα and hence
U T U Bα = BαU T U for every α ∈ I. The preceding corollary ensures that there is
a symmetric unitary matrix S and a real orthogonal matrix Q such that U = QS and
S commutes with Bα . Thus, Aα = U BαU ∗ = QSBα S∗QT = Q Bα SS∗QT = Q Bα QT

for every α ∈ I. �

Problems

2.5.P1 Show that A ∈ Mn is normal if and only if (Ax)∗(Ax) = (A∗x)∗(A∗x) for all x ∈ Cn ,
that is, ‖Ax‖2 = ‖A∗x‖2 for all x ∈ Cn .

2.5.P2 Show that a normal matrix is unitary if and only if all its eigenvalues have absolute
value 1.

2.5.P3 Show that a normal matrix is Hermitian if and only if all its eigenvalues are real.

2.5.P4 Show that a normal matrix is skew Hermitian if and only if all its eigenvalues are
pure imaginary (have real part equal to 0).

2.5.P5 If A ∈ Mn is skew Hermitian (respectively, Hermitian), show that iA is Hermitian
(respectively, skew Hermitian).

2.5.P6 Show that A ∈ Mn is normal if and only if it commutes with some normal matrix
with distinct eigenvalues.

2.5.P7 Consider matrices A ∈ Mn of the form A = B−1 B∗ for a nonsingular B ∈ Mn , as
in (2.1.9). (a) Show that A is unitary if and only if B is normal. (b) If B has the form
B = H N H , in which N is normal and H is Hermitian (and both are nonsingular), show
that A is similar to a unitary matrix.

2.5.P8 Write A ∈ Mn as A = H (A) + i K (A) in which H (A) and K (A) are Hermitian; see
(0.2.5). Show that A is normal if and only if H (A) and K (A) commute.

2.5.P9 Write A ∈ Mn as A = H (A) + i K (A) in which H (A) and K (A) are Hermitian. If
every eigenvector of H (A) is an eigenvector of K (A), show that A is normal. What about

the converse? Consider A =
[

1 i
−i 1

]
.

2.5.P10 Suppose A, B ∈ Mn are both normal. If A and B commute, show that AB and

A ± B are all normal. What about the converse? Verify that A =
[

1 −1
1 1

]
, B =

[
−1 1
1 1

]
,

AB, and B A are all normal, but A and B do not commute.

2.5.P11 For any complex number z ∈ C, show that there are θ, τ ∈ R such that z̄ = eiθ z
and |z| = eiτ z. Notice that [eiθ ] ∈ M1 is a unitary matrix. What do diagonal unitary matrices
U ∈ Mn look like?
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2.5.P12 Generalize (2.5.P11) to show that if � = diag(λ1, . . . , λn) ∈ Mn , then there
are diagonal unitary matrices U and V such that �̄ = U� = �U and |�| =
diag(|λ1|, . . . , |λn|) = V � = �V .

2.5.P13 Use (2.5.P12) to show that A ∈ Mn is normal if and only if there is a unitary
V ∈ Mn such that A∗ = AV . Deduce that range A = range A∗ if A is normal.

2.5.P14 Let A ∈ Mn(R) be given. Explain why A is normal and all its eigenvalues are real
if and only if A is symmetric.

2.5.P15 Show that two normal matrices are similar if and only if they have the same
characteristic polynomial. Is this true if we omit the assumption that both matrices are

normal? Consider
[

0 0
0 0

]
and

[
0 1
0 0

]
.

2.5.P16 If U, V,� ∈ Mn and U, V are unitary, show that U�U ∗ and V �V ∗ are unitarily
similar. Deduce that two normal matrices are similar if and only if they are unitarily
similar. Give an example of two diagonalizable matrices that are similar but not uni-
tarily similar.

2.5.P17 If A ∈ Mn is normal and p(t) is a given polynomial, use (2.5.1) to show that p(A)
is normal. Give another proof of this fact using (2.5.3).

2.5.P18 If A ∈ Mn and there is nonzero polynomial p(t) such that p(A) is normal, does it
follow that A is normal?

2.5.P19 Let A ∈ Mn and a ∈ C be given. Use the definition (2.5.1) to show that A is normal
if and only if A + aI is normal; do not invoke the spectral theorem (2.5.3).

2.5.P20 Let A ∈ Mn be normal and suppose that x ∈ Cn is a right eigenvector of A asso-
ciated with the eigenvalue λ. Use (2.5.P1) and (2.5.P19) to show that x is a left eigenvector
of A associated with the same eigenvalue λ.

2.5.P21 Suppose that A ∈ Mn is normal. Use the preceding problem to show that Ax = 0
if and only if A∗x = 0, that is, the null space of A is the same as that of A∗. Consider

B =
[

0 1
0 1

]
to show that the null space of a non-normal matrix B need not be the same as

the null space B∗, even if B is diagonalizable.

2.5.P22 Use (2.5.6) to show that the characteristic polynomial of a complex Hermitian
matrix has real coefficients.

2.5.P23 The matrices
[

1 i
i 1

]
and

[
i i
i −1

]
are both symmetric. Show that one is normal

and the other is not. This is an important difference between real symmetric matrices and
complex symmetric matrices.

2.5.P24 If A ∈ Mn is both normal and nilpotent, show that A = 0.

2.5.P25 Suppose that A ∈ Mn and B ∈ Mm are normal and let X ∈ Mn,m be given. Explain
why B̄ is normal and deduce that AX = X B̄ if and only if A∗X = X BT .

2.5.P26 Let A ∈ Mn be given. (a) If there is a polynomial p(t) such that A∗ = p(A),
show that A ∈ Mn is normal. (b) If A is normal, show that there is a polynomial p(t) of
degree at most n − 1 such that A∗ = p(A). (c) If A is real and normal, show that there is a
polynomial p(t) with real coefficients and degree at most n − 1 such that AT = p(A). (d) If
A is normal, show that there is a polynomial p(t) with real coefficients and degree at most
2n − 1 such that A∗ = p(A). (e) If A is normal and B ∈ Mm is normal, show that there
is a polynomial p(t) of degree at most n + m − 1 such that A∗ = p(A) and B∗ = p(B).
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(f) If A is normal and B ∈ Mm is normal, show that there is a polynomial p(t) with real
coefficients and degree at most 2n + 2m − 1 such that A∗ = p(A) and B∗ = p(B). (g) Use
(e) and (2.4.4.0) to prove the Fuglede–Putnam theorem (2.5.16). (h) Use (f) to prove the
assertion in (2.5.P25).

2.5.P27 (a) Let A, B ∈ Mn,m . If AB∗ and B∗ A are both normal, show that B A∗ A = AA∗B.
(b) Let A ∈ Mn . Prove that AĀ is normal (such a matrix is said to be congruence normal)
if and only if AA∗AT = AT A∗A. (c) If A ∈ Mn is congruence normal, show that the three
normal matrices AĀ, A∗A, and AA∗ commute and hence are simultaneously unitarily
diagonalizable.

2.5.P28 Let Hermitian matrices A, B ∈ Mn be given and assume that AB is normal. (a)
Why is B A normal? (b) Show that A commutes with B2 and B commutes with A2. (c) If
there is a polynomial p(t) such that either A = p(A2) or B = p(B2), show that A commutes
with B and AB is actually Hermitian. (d) Explain why the condition in (c) is met if either
A or B has the property that whenever λ is a nonzero eigenvalue, then −λ is not also an
eigenvalue. For example, if either A or B has all nonnegative eigenvalues, this condition is

met. (d) Discuss the example A =
[

0 1
1 0

]
, B =

[
0 i
−i 0

]
.

2.5.P29 Let A =
[

a b
c d

]
∈ M2 and assume that bc �= 0. (a) Show that A is normal if and

only if there is some θ ∈ R such that c = eiθ b and a − d = eiθb(ā − d̄)/b̄. In particular, if
A is normal, it is necessary that |c| = |b|. (b) Let b = |b|eiφ . If A is normal and c = beiθ ,
show that e−i(φ+θ/2)(A − aI ) is Hermitian. Conversely, if there is a γ ∈ C such that A − γ I
is essentially Hermitian, show that A is normal. (c) If A is real, deduce from part (a) that it
is normal if and only if either c = b (A = AT ) or c = −b and a = d (AAT = (a2 + b2)I
and A = −AT if a = 0).

2.5.P30 Show that a given A ∈ Mn is normal if and only if (Ax)∗(Ay) = (A∗x)∗(A∗y)
for all x, y ∈ Cn . If A, x , and y are real, this means that the angle between Ax and
Ay is always the same as the angle between AT x and AT y. Compare with (2.5.P1).
What does this condition say if we take x = ei and y = e j (the standard Euclidean
basis vectors)? If (Aei )∗(Ae j ) = (A∗ei )∗(A∗e j ) for all i, j = 1, . . . , n, show that A is
normal.

2.5.P31 Let A ∈ Mn(R) be a real normal matrix, that is, AAT = AT A. If AAT has n distinct
eigenvalues, show that A is symmetric.

2.5.P32 If A ∈ M3(R) is real orthogonal, observe that A has either one or three real eigen-
values. If it has a positive determinant, use (2.5.11) to show that it is orthogonally similar to
the direct sum of [1] ∈ M1 and a plane rotation. Discuss the geometrical interpretation of
this as a rotation by an angle θ around some fixed axis passing through the origin in R3. This
is part of Euler’s theorem in mechanics: Every motion of a rigid body is the composition
of a translation and a rotation about some axis.

2.5.P33 If F ⊆ Mn is a commuting family of normal matrices, show that there exists a
single Hermitian matrix B such that for each Aα ∈ F there is a polynomial pα(t) of degree
at most n − 1 such that Aα = pα(B). Notice that B is fixed for all of F but the polynomial
may depend on the element of F .

2.5.P34 Let A ∈ Mn , and let x ∈ Cn be nonzero. We say that x is a normal eigenvector of
A if it is both a right and left eigenvector of A. (a) If Ax = λx and x∗ A = μx∗, show that
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λ = μ. (b) If x is a normal eigenvector of A associated with an eigenvalue λ, show that A
is unitarily similar to [λ] ⊕ A1, in which A1 ∈ Mn−1 is upper triangular. (c) Show that A is
normal if and only if each of its eigenvectors is a normal eigenvector.

2.5.P35 Let x, y ∈ Cn be given nonzero vectors. (a) Show that xx∗ = yy∗ if and only if
there is some real θ such that x = eiθ y. (b) Show that the following are equivalent for a
rank-one matrix A = xy∗: (i) A is normal; (ii) there is a positive real number r and a real
θ ∈ [0, 2π ) such that x = reiθ y; (iii) A is essentially Hermitian.

2.5.P36 For any A ∈ Mn , show that
[

A A∗
A∗ A

]
∈ M2n is normal. Thus, any square matrix

can be a principal submatrix of a normal matrix (every A ∈ Mn has a dilation to a normal
matrix). Can any square matrix be a principal submatrix of a Hermitian matrix? Of a
unitary matrix?

2.5.P37 Let n ≥ 2 and suppose that A =
[

a x∗
y B

]
∈ Mn is normal with B ∈ Mn−1 and

x, y ∈ Cn−1. (a) Show that ‖x‖2 = ‖y‖2 and xx∗ − yy∗ = B B∗ − B∗B. (b) Explain why
rank(F F∗ − F∗F) �= 1 for every square complex matrix F . (c) Explain why there are
two mutually exclusive possibilities: either (i) the principal submatrix B is normal or
(ii) rank(B B∗ − B∗B) = 2. (d) Explain why B is normal if and only if x = eiθ y for

some real θ . (e) Discuss the example B =
[

0 1
0 0

]
, x = [−√

2 1]T , y = [1 −√
2]T , and

a = 1 −√
2.

2.5.P38 Let A = [ai j ] ∈ Mn and let C = AA∗ − A∗A. (a) Explain why C is Hermitian
and why C is nilpotent if and only if C = 0. (b) Show that A is normal if and only
if it commutes with C . (c) Show that rank C �= 1. (d) Explain why A is normal if and
only if rank C ≤ 1, that is, there are only two possibilities: rank C = 0 (A is normal) and
rank C ≥ 2 (A is not normal). We say that A is nearly normal if rank C = 2. (d) Suppose
that A is a tridiagonal Toeplitz matrix. Show that C = diag(α, 0, . . . , 0,−α), in which
α = |a12|2 − |a21|2. Conclude that A is normal if and only if |a12| = |a21|; otherwise, A is
nearly normal.

2.5.P39 Suppose that U ∈ Mn is unitary, so all its eigenvalues have modulus one. (a) If U
is symmetric, show that its eigenvalues uniquely determine its representation (2.5.19.1), up
to permutation of the diagonal entries. (b) If U is skew symmetric, explain how the scalars
eiθ j in (2.5.19.2) are related to its eigenvalues. Why must the eigenvalues of U occur in ±
pairs? Show that the eigenvalues of U uniquely determine its representation (2.5.19.2), up
to permutation of direct summands.

2.5.P40 Let A =
[

0 B
0 0

]
∈ M4, in which B =

[
1 i
−i 1

]
. Verify that A commutes with AT ,

A commutes with Ā, but A does not commute with A∗, that is, A is not normal.

2.5.P41 Let z ∈ Cn be nonzero and write z = x + iy with x, y ∈ Rn . (a) Show that the
following three statements are equivalent: (1) {z, z̄} is linearly dependent; (2) {x, y} is
linearly dependent; (3) there is a unit vector u ∈ Rn and a nonzero c ∈ C such that
z = cu. (b) Show that the following are equivalent: (1) {z, z̄} is linearly independent;
(2) {x, y} is linearly independent; (3) there are real orthonormal vectors v,w ∈ Rn such
that span{z, z̄} = span{v,w} (over C).

2.5.P42 Let A, B ∈ Mn and suppose that λ1, . . . , λn are the eigenvalues of A. The function
(A) = tr A∗A −∑n

i=1 |λi |2 is the defect of A from normality. Schur’s inequality (2.3.2a)
says that (A) ≥ 0, and 2.5.3(c) ensures that A is normal if and only if (A) = 0. (a) If A,
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B, and AB are normal, show that tr ((AB)∗(AB)) = tr ((B A)∗(B A)) and explain why B A
is normal. (b) Suppose that A is normal, A and B have the same characteristic polynomials,
and tr A∗A = tr B∗B. Show that B is normal and unitarily similar to A. Compare with
(2.5.P15).

2.5.P43 Let A = [ai j ] ∈ Mn be normal. (a) Partition A = [Ai j ]k
i, j=1, in which each Aii is

square. Suppose that the eigenvalues of A are the eigenvalues of A11, A22, . . . , and Akk (in-
cluding their multiplicities); for example, we could assume that pA(t) = pA11 (t) · · · pAkk (t).
Show that A is block diagonal, that is, Ai j = 0 for all i �= j , and each diagonal block Aii is
normal. (b) If each diagonal entry ai j of A is an eigenvalue of A, explain why A is diagonal.
(c) If n = 2 and one of the main diagonal entries of A is an eigenvalue of A, explain why
it is diagonal.

2.5.P44 (a) Show that A ∈ Mn is Hermitian if and only if tr A2 = tr A∗A. (b) Show that
Hermitian matrices A, B ∈ Mn commute if and only if tr(AB)2 = tr(A2 B2).

2.5.P45 Let N ⊆ Mn(R) be a commuting family of real symmetric matrices. Show that
there is a single real orthogonal matrix Q such that QT AQ is diagonal for every A ∈ N .

2.5.P46 Use (2.3.1) to show that any non-real eigenvalues of a real matrix must occur in
complex conjugate pairs.

2.5.P47 Suppose A ∈ Mn is normal and has eigenvalues λ1, . . . , λn . Show that (a) adj A is
normal and has eigenvalues

∏
j �=iλ j , i = 1, . . . , n; (b) adj A is Hermitian if A is Hermitian;

(c) adj A has positive (respectively, nonnegative) eigenvalues if A has positive (respectively,
nonnegative) eigenvalues; (d) adj A is unitary if A is unitary.

2.5.P48 Let A ∈ Mn be normal and suppose that rank A = r > 0. Use (2.5.3) to write
A = U�U ∗, in which U ∈ Mn is unitary and � = �r ⊕ 0n−r is diagonal. (a) Explain
why det �r �= 0. Let det �r = | det �r |eiθ with θ ∈ [0, 2π ). (b) Partition U = [V U2],
in which V ∈ Mn,r . Explain why A = V �r V ∗; this is a full-rank factorization of A.
(c) Let α, β ⊆ {1, . . . , n} be index sets of cardinality r , and let V [α, ∅c] = Vα . Explain
why A[α, β] = Vα�r V ∗

β ; det A[α] det A[β] = det A[α, β] det A[β, α]; and det A[α] =
| det Vα|2 det �r . (d) Explain why every principal minor of A of size r lies on the ray
{seiθ : s ≥ 0} in the complex plane, and at least one of those principal minors is nonzero.
(e) Conclude that A is rank principal. For a version of this result if A is Hermitian, see
(4.2.P30); see also (3.1.P20).

2.5.P49 Suppose that A ∈ Mn is upper triangular and diagonalizable. Show that it can be
diagonalized via an upper triangular similarity.

2.5.P50 The reversal matrix Kn (0.9.5.1) is real symmetric. Check that it is also real
orthogonal, and explain why its eigenvalues can only be ±1. Check that tr Kn = 0 if n is
even and tr Kn = 1 if n is odd. Explain why if n is even, the eigenvalues of Kn are ±1, each
with multiplicity n/2; if n is odd, the eigenvalues of Kn are +1 with multiplicity (n + 1)/2
and −1 with multiplicity (n − 1)/2.

2.5.P51 Let A ∈ Mn be normal, let A = U�U ∗ be a spectral decomposition in which
� = diag(λ1, . . . , λn), let x ∈ Cn be any given unit vector, and let ξ = [ξ i ] = U x . Explain
why x∗ Ax =∑n

i=1 |ξ i |2λi , why the x∗ Ax lies in the convex hull of the eigenvalues of A,
and why each complex number in the convex hull of the eigenvalues of A equals x∗ Ax for
some unit vector x . Thus, if A is normal, x∗ Ax �= 0 for every unit vector x if and only if 0
is not in the convex hull of the eigenvalues of A.
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2.5.P52 Let A, B ∈ Mn be nonsingular. The matrix C = AB A−1 B−1 is the multiplicative
commutator of A and B. Explain why C = I if and only if A commutes with B. Suppose
that A and C are normal and 0 is not in the convex hull of the eigenvalues of B. Provide
details for the following sketch of a proof that A commutes with C if and only if A com-
mutes with B (this is the Marcus-Thompson theorem): Let A = U�U ∗ and C = U MU ∗

be spectral decompositions in which � = diag(λ1, . . . , λn) and M = diag(μ1, . . . , μn).
Let B = U ∗BU = [β i j ]. Then all β i i �= 0 and M = U ∗CU = �B�−1B−1 ⇒ MB =
�B�−1 ⇒ μiβ i i = β i i ⇒ M = I ⇒ C = I . Compare with (2.4.P12(c)).

2.5.P53 Let U, V ∈ Mn be unitary and suppose that all of the eigenvalues of V lie on an
open arc of the unit circle of length π ; such a matrix is called a cramped unitary matrix. Let
C = U V U ∗V ∗ be the multiplicative commutator of U and V . Use the preceding problem
to prove Frobenius’s theorem: U commutes with C if and only if U commutes with V .

2.5.P54 If A, B ∈ Mn are normal, show that (a) the null space of A is orthogonal to the
range of A; (b) the ranges of A and A∗ are the same; (c) the null space of A is contained in
the null space of B if and only if the range of A contains the range of B.

2.5.P55 Verify the following improvement of (2.2.8) for normal matrices: If A, B ∈ Mn

are normal, then A is unitarily similar to B if and only if tr Ak = trBk, k = 1, 2, . . . , n.

2.5.P56 Let A ∈ Mn and an integer k ≥ 2 be given, and let ω = e2π i/(k+1). Show that Ak =
A∗ if and only if A is normal and its spectrum is contained in the set {0, 1, ω, ω2, . . . , ωk}.
If Ak = A∗ and A is nonsingular, explain why it is unitary.

2.5.P57 Let A ∈ Mn be given. Show that (a) A is normal and symmetric if and only if
there is a real orthogonal Q ∈ Mn and a diagonal � ∈ Mn such that A = Q�QT ; (b) A
is normal and skew symmetric if and only if there is a real orthogonal Q ∈ Mn such that

QT AQ is a direct sum of a zero block and blocks of the form
[

0 z j

−z j 0

]
, z j ∈ C.

2.5.P58 Let A ∈ Mn be normal. Then AĀ = 0 if and only if AAT = AT A = 0. (a) Use
(2.5.17) to prove this. (b) Provide details for an alternative proof: AĀ = 0 ⇒ 0 = A∗ AĀ =
AA∗ Ā ⇒ ĀAT A = 0 ⇒ (AT A)∗(AT A) = 0 ⇒ AT A = 0 (0.2.5.1).

2.5.P59 Let A, B ∈ Mn . Suppose that A is normal and has distinct eigenvalues. If AB =
B A, show that B is normal. Compare with (1.3.P3).

2.5.P60 Let x = [xi ] ∈ Cn be given. (a) Explain why maxi |xi | ≤ ‖x‖2 (0.6.1). (b) Let
e = e1 + · · · + en ∈ Cn be the vector all of whose entries are +1. If xT e = 0, show that

maxi |xi | ≤
√

n−1
n ‖x‖2 with equality if and only if, for some c ∈ Mn and some index j ,

x = c(ne j − e).

2.5.P61 Let the eigenvalues of a given A ∈ Mn be λ1, . . . , λn . (a) Show that

max
i=1,...,n

∣∣∣∣λi − tr A

n

∣∣∣∣ ≤
√

n − 1

n

(
n∑

i=1

|λi |2 − | tr A|2
n

)1/2

and deduce that

max
i=1,...,n

∣∣∣∣λi − tr A

n

∣∣∣∣ ≤
√

n − 1

n

(
tr A∗ A − | tr A|2

n

)1/2

with equality if and only if A is normal and has eigenvalues (n − 1)c,−c, . . . ,−c for some
c ∈ C. (b) What does this say geometrically about the eigenvalues of A? What if A is
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Hermitian? (c) The quantity spread A = max{|λ − μ| : λ,μ ∈ σ (A)} is the max-
imum distance between any two eigenvalues of A. Explain why spread A ≤
2
√

n−1
n

(
tr A∗A − | tr A|2

n

)1/2
and, if A is Hermitian, spread A ≤ 2

√
n−1

n

(
tr A2 − | tr A|2

n

)1/2
.

For a lower bound on spread A, see (4.3.P16).

2.5.P62 If A ∈ Mn has exactly k nonzero eigenvalues, we know that rank A ≥ k. If A is
normal, why is rank A = k?

2.5.P63 Suppose that A = [ai j ] ∈ Mn is tridiagonal. If A is normal, show that |ai,i+1| =
|ai+1,i | for each i = 1, . . . , n − 1. What about the converse? Compare with (2.5.P38(d)).

2.5.P64 Let A ∈ Mn be given. (a) Show that rank(AA∗ − A∗A) �= 1.

2.5.P65 Suppose that A ∈ Mn is normal and let r ∈ {1, . . . . , n}. Explain why the compound
matrix Cr (A) is normal.

2.5.P66 Let A ∈ Mn . We say that A is squared normal if A2 is normal. It is known that
A is squared normal if and only if A is unitarily similar to a direct sum of blocks, each of
which is

[λ] or τ
[

0 1
μ 0

]
, in which τ ∈ R, λ,μ ∈ C, τ > 0, and |μ| < 1 (2.5.22a)

This direct sum is uniquely determined by A, up to permutation of its blocks. Use (2.2.8) to

show that each 2-by-2 block in (2.5.22a) is unitarily similar to a block of the form
[

ν r
0 −ν

]
,

in which ν = τ
√

μ ∈ D+, r = τ (1 − |μ|), and D+ = {z ∈ C : Re z > 0} ∪ {i t : t ∈ R and
t ≥ 0}. Conclude that A2 is normal if and only if A is unitarily similar to a direct sum of
blocks, each of which is

[λ] or
[

ν r
0 −ν

]
, in which λ, ν ∈ C, r ∈ R, r > 0, and ν ∈ D+ (2.5.22b)

Explain why this direct sum is uniquely determined by A, up to permutation of its blocks.

2.5.P67 Let A, B ∈ Mn be normal. Show that AB = 0 if and only if B A = 0.

2.5.P68 Let A, B ∈ Mn . Suppose that B is normal and that every null vector of A is a
normal eigenvector. Show that AB = 0 if and only if B A = 0.

2.5.P69 Consider a k-by-k block matrix MA = [Ai j ]k
i, j=1 ∈ Mkn in which Ai j = 0 if i ≥ j

and Ai j = In if j = i + 1. Define MB = [Bi j ]k
i, j=1 similarly. Let W = [Wi j ]k

i, j=1 ∈ Mkn be
partitioned conformally to MA and MB . (a) If MAW = W MB , show that W is block upper
triangular and W11 = · · · = Wkk . (b) If W is unitary and MAW = W MB (that is, MA =
W MB W ∗, so MA is unitarily similar to MB via W ), show that W is block diagonal, W11 = U
is unitary, W = U ⊕ · · · ⊕ U , and Ai j = U Bi jU ∗ for all i, j . For further properties of the
block matrices MA and MB , see (4.4.P46) and (4.4.P47).

2.5.P70 Let pairs (A1, B1), . . . , (Am, Bm) of n-by-n complex matrices be given. We say
that these pairs are simultaneously unitarily similar if there is a unitary U ∈ Mn such that
A j = U B jU ∗ for each j = 1, . . . , m. Consider an (m + 2)-by-(m + 2) block matrix NA =
[Ni j ]k

i, j=1 in which Ni j = In if j = i + 1, Ni j = Ai if j = i + 2, and Ni j = 0 if j − i /∈
{1, 2}. Define NB in a similar fashion. (a) Explain why NA is unitarily similar to NB if and
only if the pairs (A1, B1), . . . , (Am, Bm) are simultaneously unitarily similar. (b) Describe
some other block matrices with this pleasant property. (c) Explain how simultaneous unitary
similarity of finitely many pairs of complex matrices of the same size can be verified or
refuted with finitely many computations.
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2.5.P71 The matrix
[

a b
−b a

]
∈ M2(R) plays an important role in our discussion of real

normal matrices. Discuss properties of this matrix as a special case of the real representation
R1(A) studied in (3.1.P20).

2.5.P72 Consider the matrices A1 =
[

i 0
0 −i

]
and A2 =

[
0 1
−1 0

]
. (a) Show that each matrix

is normal and commutes with its complex conjugate. (b) What are the eigenvalues of
each matrix? (c) Explain why A1 is unitarily similar to A2. (d) Show that A1 is not real
orthogonally similar to A2. (e) Let A ∈ Mn be normal and satisfy either of the conditions
(a) or (b) in (2.5.17). Then A is real orthogonally similar to the direct sum of a zero matrix
and nonzero scalar multiples of one or more of the four types of blocks in (2.5.17.1). To
determine which blocks and scalar multiples can occur in that direct sum, explain why one
must know more about A than just its eigenvalues.

2.5.P73 Let A ∈ Mn(R) be normal and let λ, x be an eigenpair of A in which λ = a + ib
is not real. (a) Show that λ̄, x̄ is an eigenpair of A and that xT x = 0. (b) Let x = u + iv,
in which u and v are real vectors. Show that uT u = vT v �= 0 and uT v = 0. (c) Let q1 =
u/

√
uT u and q2 = v/

√
vT v, and let Q = [q1 q2 Q1] ∈ Mn(R) be real orthogonal. Show

that QT AQ =
[

B ∗
0 ∗

]
in which B =

[
a b
−b a

]
. (d) Give an alternative proof of (2.5.8) that

does not rely on (2.3.4b).

2.5.P74 Let A, B, X ∈ Mn . If AX = X B and X is normal, is it correct that AX∗ = X∗B?
Compare with the Fuglede–Putnam theorem (2.5.16).

2.5.P75 Let A, B, X ∈ Mn . (a) Show that AX = X B and X A = B X if and only if
[

0 X
X 0

]
commutes with

[
A 0
0 B

]
. (b) If X is normal, AX = X B, and X A = B X , show that AX∗ =

X∗B and X∗A = B X∗.

2.5.P76 Suppose that every entry of A ∈ Mn(R) is either zero or one, let e ∈ Rn be the
all-ones vector, and let J ∈ Mn(R) be the all-ones matrix. Let A = [c1 . . . cn] and AT =
[r1 . . . rn]. (a) Explain why the entries of Ae are both the row sums and the squares of
the Euclidean norms of the rows of A. Interpret the entries of AT e in a similar manner. (b)
Show that A is normal if and only if Ae = AT e and cT

i c j = r T
i r j for all i �= j . (c) Show

that A is normal if and only if the complementary zero-one matrix J − A is normal.

Notes and Further Readings. For a discussion of 89 characterizations of normality, see
R. Grone, C. R. Johnson, E. Sa, and H. Wolkowicz, Normal matrices, Linear Algebra
Appl. 87 (1987) 213–225 as well as L. Elsner and Kh. Ikramov, Normal matrices:
an update, Linear Algebra Appl. 285 (1998) 291–303. Despite the issue raised in
(2.5.P72), the representation described in (2.5.17) is actually a canonical form under
real orthogonal similarity, up to permutation of direct summands and replacement of
any direct summand by its transpose (there are real orthogonal similarity invariants
other than eigenvalues); see G. Goodson and R. A. Horn, Canonical forms for normal
matrices that commute with their complex conjugate, Linear Algebra Appl. 430 (2009)
1025–1038. For a proof of the canonical forms (2.5.22a,b) for squared-normal matrices,
see R. A. Horn and V. V. Sergeichuk, Canonical forms for unitary congruence and
∗congruence, Linear Multilinear Algebra 57 (2009) 777–815. Problem 4.4.P38 contains
a far-reaching generalization of (2.5.20(b)): Every nonsingular square complex matrix
(and some singular matrices) has a QS factorization.
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2.6 Unitary equivalence and the singular value decomposition

Suppose that a given matrix A is the basis representation of a linear transformation T :
V → V on an n-dimensional complex vector space, with respect to a given orthonormal
basis. A unitary similarity A → U AU ∗ corresponds to changing the basis from the
given one to another orthonormal basis; the unitary matrix U is the change of basis
matrix.

If T : V1 → V2 is a linear transformation from an n-dimensional complex vector
space into an m-dimensional one, and if A ∈ Mm,n is its basis representation with
respect to given orthonormal bases of V1 and V2, then the unitary equivalence A →
U AW ∗ corresponds to changing the bases of V1 and V2 from the given ones to other
orthonormal bases.

A unitary equivalence A → U AV involves two unitary matrices that can be selected
independently. This additional flexibility permits us to achieve some reductions to
special forms that may be unattainable with unitary similarity.

To ensure that we can reduce A, B ∈ Mn to upper triangular form by the same
unitary similarity, some condition (commutativity, for example) must be imposed on
them. However, we can reduce any two given matrices to upper triangular form by the
same unitary equivalence.

Theorem 2.6.1. Let A, B ∈ Mn. There are unitary V, W ∈ Mn such that A = V TAW ∗,
B = V TB W ∗, and both TA and TB are upper triangular. If B is nonsingular, the main
diagonal entries of T −1

B TA are the eigenvalues of B−1 A.

Proof. Suppose that B is nonsingular, and use (2.3.1) to write B−1 A = U T U ∗, in
which U is unitary and T is upper triangular. Use the Q R factorization (2.1.14)
to write BU = Q R, in which Q is unitary and R is upper triangular. Then
A = BU T U ∗ = Q(RT )U ∗, RT is upper triangular, and B = Q RU ∗. Moreover, the
eigenvalues of B−1 A = U R−1 Q∗Q RT U ∗ = U T U ∗ are the main diagonal entries
of T .

If both A and B are singular, there is a δ > 0 such that Bε = B + ε I is nonsin-
gular whenever 0 < ε < δ; see (1.2.17). For any ε satisfying this constraint, we have
shown that there are unitary Vε, Wε ∈ Mn such that V ∗

ε AWε and V ∗
ε BWε are both

upper triangular. Choose a sequence of nonzero scalars εk such that εk → 0 and both
limk→∞ Vεk = V and limk→∞ Wεk = W exist; each of the limits V and W is unitary;
see (2.1.8). Then each of limk→∞ V ∗

εk
AWεk = V ∗AW = TA and limk→∞ V ∗

εk
BWεk =

V ∗BW = TB is upper triangular. We conclude that A = V TAW ∗ and B = V TB W ∗, as
asserted. �

There is also a real version of this theorem, which uses the following fact.

Exercise. Suppose that A, B ∈ Mn , A is upper triangular, and B is upper quasi-
triangular. Show that AB is upper quasitriangular conformal to B.

Theorem 2.6.2. Let A, B ∈ Mn(R). There are real orthogonal V, W ∈ Mn such that
A = V TAW T , B = V TB W T , TA is real and upper quasitriangular, and TB is real and
upper triangular.
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Proof. If B is nonsingular, one uses (2.3.4) to write B−1 A = U T U T , in which U
is real orthogonal and T is real and upper quasitriangular. Use (2.1.14(d)) to write
BU = Q R, in which Q is real orthogonal and R is real and upper triangular. Then
RU is upper quasitriangular, A = Q(RT )U T , and B = Q RU T . If both A and B are
singular, one can use a real version of the limit argument in the preceding proof. �

Although only square matrices that are normal can be diagonalized by unitary
similarity, any complex matrix can be diagonalized by unitary equivalence.

Theorem 2.6.3 (Singular value decomposition). Let A ∈ Mn,m be given, let q =
min{m, n}, and suppose that rank A = r .

(a) There are unitary matrices V ∈ Mn and W ∈ Mm, and a square diagonal matrix

�q =

⎡
⎢⎣

σ 1 0
. . .

0 σ q

⎤
⎥⎦ (2.6.3.1)

such that σ 1 ≥ σ 2 ≥ · · · ≥ σ r > 0 = σ r+1 = · · · = σ q and A = V �W ∗, in
which

� = �q if m = n,

� = [
�q 0

] ∈ Mn,m if m > n, and (2.6.3.2)

� =
[

�q

0

]
∈ Mn,m if n > m

(b) The parameters σ 1, . . . , σ r are the positive square roots of the decreasingly
ordered nonzero eigenvalues of AA∗, which are the same as the decreasingly
ordered nonzero eigenvalues of A∗A.

Proof. First suppose that m = n. The Hermitian matrices AA∗ ∈ Mn and A∗A ∈ Mn

have the same eigenvalues (1.3.22), so they are unitarily similar (2.5.4(d)), and hence
there is a unitary U such that A∗A = U (AA∗)U ∗. Then

(U A)∗(U A) = A∗U ∗U A = A∗A = U AA∗U ∗ = (U A)(U A)∗

so U A is normal. Let λ1 = |λ1|eiθ1, . . . , λn = |λn|eiθn be the eigenvalues of U A,
ordered so that |λ1| ≥ · · · ≥ |λn|. Then r = rank A = rank U A is the number of
nonzero eigenvalues of the normal matrix U A, so |λr | > 0 and λr+1 = · · · = λn = 0.
Let � = diag(λ1, . . . , λn), let D = diag(eiθ1, . . . , eiθn ), let �q = diag(|λ1|, . . . , |λn|),
and let X be a unitary matrix such that U A = X�X∗. Then D is unitary and
A = U ∗X�X∗ = U ∗X�q DX∗ = (U ∗X )�q (DX∗) exhibits the desired factorization,
in which V = U ∗X and W = X D∗ are unitary and σ j = |λ j |, j = 1, . . . , n.

Now suppose that m > n. Then r ≤ n, so the null space of A has dimension m − r ≥
m − n. Let x1, . . . , xm−n be any orthonormal list of vectors in the null space of A, let
X2 = [x1 . . . xm−n] ∈ Mm,m−n , and let X = [X1 X2] ∈ Mm be unitary, that is, extend
the given orthonormal list to a basis of Cm . Then AX = [AX1 AX2] = [AX1 0] and
AX1 ∈ Mn . Using the preceding case, write AX1 = V �q W ∗, in which V, W ∈ Mn are
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unitary and �q has the form (2.6.3.1). This gives

A = [AX1 0]X∗ = [V �q W ∗ 0]X∗ = V [�q 0]

([
W ∗ 0
0 Im−n

]
X∗
)

which is a factorization of the asserted form.
If n > m, apply the preceding case to A∗.
Using the factorization A = V �W ∗, notice that rank A = rank � since V and W are

nonsingular. But rank � equals the number of nonzero (and hence positive) diagonal
entries of �, as asserted. Now compute AA∗ = V �W ∗W�T V ∗ = V ��T V ∗, which
is unitarily similar to ��T . If n = m, then ��T = �2

q = diag(σ 2
1, . . . , σ

2
n). If m > n,

then ��T = [�q 0][�q 0]T = �2
q + 0n = �2

q . Finally, if n > m, then

��T =
[

�q

0

] [
�q 0

] = [
�2

q 0
0 0n−m

]

In each case, the nonzero eigenvalues of AA∗ are σ 2
1, . . . , σ

2
r , as asserted. �

The diagonal entries of the matrix � in (2.6.3.2) (that is, the scalars σ 1, . . . , σ q that
are the diagonal entries of the square matrix �q ) are the singular values of A. The
multiplicity of a singular value σ of A is the multiplicity of σ 2 as an eigenvalue of AA∗

or, equivalently, of A∗A. A singular value σ of A is said to be simple if σ 2 is a simple
eigenvalue of AA∗ or, equivalently, of A∗A. The rank of A is equal to the number of
its nonzero singular values, while rank A is not less than (and can be greater than) the
number of its nonzero eigenvalues.

The singular values of A are uniquely determined by the eigenvalues of A∗A (equiv-
alently, by the eigenvalues of AA∗), so the diagonal factor � in the singular value
decomposition of A is determined up to permutation of its diagonal entries; a conven-
tional choice that makes � unique is to require that the singular values be arranged in
nonincreasing order, but other choices are possible.

Exercise. Let A ∈ Mm,n . Explain why A, Ā, AT , and A∗ have the same singular
values.

Let σ 1, . . . , σ n be the singular values of A ∈ Mn . Explain why

σ 1 · · · σ n = | det A| and σ 2
1 + · · · + σ 2

n = tr A∗A (2.6.3.3)

Exercise. Show that the two squared singular values of A ∈ M2 are

σ 2
1, σ

2
2 = 1

2

((
tr A∗A

)±√
(tr A∗A)2 − 4| det A|2

)
. (2.6.3.4)

Exercise. Explain why the singular values of the nilpotent matrix

A =

⎡
⎢⎢⎢⎢⎣

0 a12 0
. . .

. . .

. . . an−1,n

0 0

⎤
⎥⎥⎥⎥⎦ ∈ Mn
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(zero entries everywhere except for some nonzero entries in the first superdiago-
nal) are 0, |a12|, . . . , |an−1,n|.
The following theorem gives a precise formulation of the assertion that the singular

values of a matrix depend continuously on its entries.

Theorem 2.6.4. Let an infinite sequence A1, A2, . . . ∈ Mn,m be given, suppose that
limk→∞ Ak = A (entrywise convergence), and let q = min{m, n}. Let σ 1(A) ≥ · · · ≥
σ q (A) and σ 1(Ak) ≥ · · · ≥ σ q (Ak) be the nonincreasingly ordered singular values
of A and Ak, respectively, for k = 1, 2, . . . . Then limk→∞ σ i (Ak) = σ i (A) for each
i = 1, . . . , q.

Proof. If the assertion of the theorem is false, then there is some ε0 > 0 and an infinite
sequence of positive integers k1 < k2 < · · · such that for every j = 1, 2, . . . we have

max
i=1,...,q

∣∣σ i (Ak j ) − σ i (A)
∣∣ > ε0 (2.6.4.1)

For each j = 1, 2, . . . let Ak j = Vk j �k j W
∗
k j

, in which Vk j ∈ Mn and Wk j ∈ Mm are
unitary and �k j ∈ Mn,m is the nonnegative diagonal matrix such that diag �k j =
[σ 1(Ak j ) . . . σ q (Ak j )]

T . Lemma 2.1.8 ensures that there is an infinite sub-subsequence
k j1 < k j2 < · · · and unitary matrices V and W such that lim�→∞ Vk j�

= V and
lim�→∞ Wk j�

= W . Then

lim
�→∞

�k j�
= lim

�→∞
V ∗

k j�
Ak j�

Wk j�
=
(

lim
�→∞

V ∗
k j�

)(
lim

�→∞
Ak j�

)(
lim

�→∞
Wk j�

)
= V ∗AW

exists and is a nonnegative diagonal matrix with nonincreasingly ordered diagonal
entries; we denote it by � and observe that A = V �W ∗. Uniqueness of the singular
values of A ensures that diag � = [σ 1(A) . . . σ q (A)]T , contradicts (2.6.4.1), and
proves the theorem. �

The unitary factors in a singular value decomposition are never unique. For example,
if A = V �W ∗, we may replace V by −V and W by −W . The following theorem
describes in an explicit and very useful fashion how, given one pair of unitary factors
in a singular value decomposition, all possible pairs of unitary factors can be obtained.

Theorem 2.6.5 (Autonne’s uniqueness theorem). Let A ∈ Mn,m be given with
rank A = r . Let s1, . . . , sd be the distinct positive singular values of A, in any order, with
respective multiplicities n1, . . . , nd, and let �d = s1 In1 ⊕ · · · ⊕ sd Ind ∈ Mr . Let A =
V �W ∗ be a singular value decomposition with � =

[
�d 0
0 0

]
∈ Mn,m as in (2.6.3.2), so

that �T � = s2
1 In1 ⊕ · · · ⊕ s2

d Ind ⊕ 0n−r and ��T = s2
1 In1 ⊕ · · · ⊕ s2

d Ind ⊕ 0m−r (one
zero direct summand is absent if A has full rank; both are absent if A is square and
nonsingular). Let V̂ ∈ Mn and Ŵ ∈ Mm be unitary. Then A = V̂ �Ŵ ∗ if and only if
there are unitary matrices U1 ∈ Mn1, . . . , Ud ∈ Mnd , Ṽ ∈ Mn−r , and W̃ ∈ Mm−r such
that

V̂ = V (U1 ⊕ · · · ⊕ Ud ⊕ Ṽ ) and Ŵ = W (U1 ⊕ · · · ⊕ Ud ⊕ W̃ ) (2.6.5.1)

If A is real and the factors V, W, V̂ , Ŵ are real orthogonal, then the matrices
U1, . . . , Ud , Ṽ , and W̃ may be taken to be real orthogonal.
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Proof. The Hermitian matrix A∗A is represented as A∗A = (V �W ∗)∗(V �W ∗) =
W�T �W ∗ and also as A∗A = Ŵ�T �Ŵ ∗. Theorem 2.5.4 ensures that there are
unitary matrices W1, . . . , Wd , Wd+1 with Wi ∈ Mni for i = 1, . . . , d such that Ŵ =
W (W1 ⊕ · · · ⊕ Wd ⊕ Wd+1). We also have AA∗ = V ��T V ∗ = V̂ ��T V̂ ∗, so (2.5.4)
again tells us that there are unitary matrices V1, . . . , Vd , Vd+1 with Vi ∈ Mni for
i = 1, . . . , d such that V̂ = V (V1 ⊕ · · · ⊕ Vd ⊕ Vd+1). Since A = V �W ∗ = V̂ �Ŵ ∗,
we have � = (V ∗V̂ )�(Ŵ ∗W ), that is, si Ini = Vi (si Ini )W

∗
i for i = 1, . . . , d + 1, or

Vi W ∗
i = Ini for each i = 1, . . . , d. The matrices Ṽ and W̃ , if present, are arbitrary.

It follows that Vi = Wi for each i = 1, . . . , d. The final assertion follows from the
preceding argument and the fact that V T V̂ and W T Ŵ are real. �

The singular value decomposition is a very important tool in matrix analysis, with
myriad applications in engineering, numerical computation, statistics, image compres-
sion, and many other areas; for more details, see Chapter 7 and chapter 3 of Horn and
Johnson (1991).

We close this chapter with three applications of the preceding uniqueness theorem:
Singular value decompositions of symmetric or skew-symmetric matrices can be chosen
to be unitary congruences, and a real matrix has a singular value decomposition in which
all three factors are real.

Corollary 2.6.6. Let A ∈ Mn and let r = rank A.
(a) (Autonne) A = AT if and only if there is a unitary U ∈ Mn and a nonnegative

diagonal matrix � such that A = U�U T . The diagonal entries of � are the
singular values of A.

(b) If A = −AT , then r is even and there is a unitary U ∈ Mn and positive real
scalars s1, . . . , sr/2 such that

A = U

([
0 s1

−s1 0

]
⊕ · · · ⊕

[
0 sr/2

−sr/2 0

]
⊕ 0n−r

)
U T (2.6.6.1)

The nonzero singular values of A are s1, s1, . . . , sr/2, sr/2. Conversely, any matrix
of the form (2.6.6.1) is skew symmetric.

Proof. (a) If A = U�U T for a unitary U ∈ Mn and a nonnegative diagonal matrix �,
then A is symmetric and the diagonal entries of � are its singular values. Conversely,
let s1, . . . , sd be the distinct positive singular values of A, in any order, with respective
multiplicities n1, . . . , nd , and let A = V �W ∗ be a singular value decomposition in
which V, W ∈ Mn are unitary and � = s1 In1 ⊕ · · · ⊕ sd Ind ⊕ 0n−r ; the zero block is
missing if A is nonsingular. We have A = V �W ∗ = W̄�V̄ ∗ = A, so the preceding
theorem ensures that there are unitary matrices UW and UV such that V̄ = WUW , W̄ =
V UV , UV = U1 ⊕ · · · ⊕ Ud ⊕ Ṽ , UW = U1 ⊕ · · · ⊕ Ud ⊕ W̃ , and each Ui ∈ Mni , i =
1, . . . , d. Then UW = W ∗V̄ = (V ∗W̄ )T = U T

V , which implies that each U j = U T
j ,

that is, each U j is unitary and symmetric. Corollary 2.5.20a ensures that there are
symmetric unitary matrices R j such that R2

j = U j for each j = 1, . . . , d. Let R =
R1 ⊕ · · · ⊕ Rd ⊕ In−r . Then R is symmetric and unitary, and UV � = R2� = R�R,
so A = W̄�V T = V UV �V T = V R�RV T = (V R)�(V R)T is a factorization of the
asserted form.
(b) Starting with the identity V �W ∗ = −W̄�V T = −W̄�V̄ ∗ and proceeding exactly
as in (a), we have V̄ = WUW , W̄ = −V UV , that is, UW = W ∗V̄ and UV = −V ∗W̄ =
−U T

W . In particular, U j = −U T
j for j = 1, . . . , d, that is, each U j is unitary and
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skew symmetric. Corollary 2.5.18b ensures that, for each j = 1, . . . , d, n j is even and
there are real orthogonal matrices Q j and real parameters θ

( j)
1 , . . . , θ

( j)
n j /2 ∈ [0, 2π )

such that

U j = Q j

(
eiθ ( j)

1

[
0 1
−1 0

]
⊕ · · · ⊕ e

iθ ( j)
n j /2

[
0 1
−1 0

])
QT

j

Define the real orthogonal matrix Q = Q1 ⊕ · · · ⊕ Qd ⊕ In−r and the skew-symmetric
unitary matrices

Sj = eiθ ( j)
1

[
0 1
−1 0

]
⊕ · · · ⊕ e

iθ ( j)
n j /2

[
0 1
−1 0

]
, j = 1, . . . , d

Let S = S1 ⊕ · · · ⊕ Sd ⊕ 0n−r . Then UV � = QSQT � = QS�QT , so A =
−W̄�V T = V UV �V T = V QS�QT V T = (V Q)S�(V Q)T is a factorization of the
asserted form and rank A = n1 + · · · + nd is even. �

Corollary 2.6.7. Let A ∈ Mn,m(R) and suppose that rank A = r . Then A = P�QT ,
in which P ∈ Mn(R) and Q ∈ Mm(R) are real orthogonal, and � ∈ Mn,m(R) is non-
negative diagonal and has the form (2.6.3.1) or (2.6.3.2).

Proof. Using the notation of (2.6.4), let A = V �W ∗ be a given singular value de-
composition; the unitary matrices V and W need not be real. We have V �W ∗ =
A = Ā = V̄ �W̄ ∗, so V T V � = �W T W . Theorem 2.6.5 ensures that there are uni-
tary matrices UV = U1 ⊕ · · · ⊕ Ud ⊕ Ṽ ∈ Mn and UW = U1 ⊕ · · · ⊕ Ud ⊕ W̃ ∈ Mm

such that V̄ = V UV and W̄ = WUW . Then UV = V ∗V̄ = V̄ T V̄ and UW = W̄ T W
are unitary and symmetric, so Ṽ , W̃ , and each Ui is unitary and symmetric.
Corollary 2.5.20(a) ensures that there are symmetric unitary matrices RṼ , RW̃ , and
R1, . . . , Rd such that R2

Ṽ
= Ṽ , R2

W̃
= W̃ , and R2

i = Ui for each i = 1, . . . , d. Let
RV = R1 ⊕ · · · ⊕ Rd ⊕ RṼ and RW = R1 ⊕ · · · ⊕ Rd ⊕ RW̃ . Then RV and RW are
symmetric and unitary, R−1

V = R∗
V = RV , R−1

W = R∗
W = RW , R2

V = UV , R2
W = UW ,

and RV �RW = �, so

A = V̄ �W̄ ∗ = V UV �(WUW )∗ = V R2
V �(W R2

W )∗

= (V RV )(RV �RW )(W RW )∗ = (V RV )�(W RW )∗

We conclude the argument by observing that V̄ = V UV = V R2
V and W̄ = WUW =

W R2
W , so V RV = V̄ R∗

V = V RV and W RW = W̄ R∗
W = W RW . That is, both V RV and

W RW are unitary and real, so they are both real orthogonal. �

Problems

2.6.P1 Let A ∈ Mn,m with n ≥ m. Show that A has full column rank if and only if all of
its singular values are positive.

2.6.P2 Suppose that A, B ∈ Mn,m can be simultaneously diagonalized by unitary equiv-
alence, that is, suppose that there are unitary X ∈ Mn and Y ∈ Mm such that each of
X∗ AY = � and X∗BY = M is diagonal (0.9.1). Show that both AB∗ and B∗A are normal.
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2.6.P3 When are A, B ∈ Mn,m simultaneously unitarily equivalent to diagonal matrices?
Show that AB∗ and B∗A are both normal if and only if there are unitary X ∈ Mn and
Y ∈ Mm such that A = X�Y ∗; B = X�Y ∗; �,� ∈ Mn,m are diagonal; and � ∈ Mn,m

has the form (2.6.3.1,2).

2.6.P4 When are A, B ∈ Mn,m simultaneously unitarily equivalent to real or nonnegative
real diagonal matrices? (a) Show that AB∗ and B∗ A are both Hermitian if and only if there
are unitary X ∈ Mn and Y ∈ Mm such that A = X�Y ∗; B = X�Y ∗; �,� ∈ Mn,m(R) are
diagonal; and � has the form (2.6.3.1,2). (b) If A and B are real, show that ABT and BT A
are both real symmetric if and only if there are real orthogonal matrices X ∈ Mn(R) and
Y ∈ Mm(R) such that A = X�Y T ; B = X�Y T ; �,� ∈ Mn,m(R) are diagonal; and � has
the form (2.6.3.1,2). (c) In both (a) and (b), show that � can be chosen to have nonnegative
diagonal entries if and only if all the eigenvalues of the Hermitian matrices AB∗ and B∗A
are nonnegative.

2.6.P5 Let A ∈ Mn,m be given and write A = B + iC , in which B, C ∈ Mn,m(R). Show
that there are real orthogonal matrices X ∈ Mn(R) and Y ∈ Mm(R) such that A = X�Y T

and � ∈ Mn,m(C) is diagonal if and only if both BCT and CT B are real symmetric.

2.6.P6 Let A ∈ Mn be given and let A = Q R be a Q R factorization (2.1.14). (a) Explain
why Q R is normal if and only if RQ is normal. (b) Show that A is normal if and only if Q
and R∗ can be simultaneously diagonalized by unitary equivalence.

2.6.P7 Show that two complex matrices of the same size are unitarily equivalent if and
only if they have the same singular values.

2.6.P8 Let A ∈ Mn,k and B ∈ Mk,m be given. Use the singular value decomposition to
show that rank AB ≤ min{rank A, rank B}.
2.6.P9 Let A ∈ Mn be given. Suppose that rank A = r , form �1 = diag(σ 1, . . . , σ r ) from
its decreasingly ordered positive singular values, and let � = �1 ⊕ 0n−r . Suppose that
W ∈ Mn is unitary and A∗A = W�2W ∗. Show that there is a unitary V ∈ Mn such that
A = V �W ∗.

2.6.P10 Let A, B ∈ Mn be given, let σ 1 ≥ · · · ≥ σ n ≥ 0 be the singular values of A, and
let � = diag(σ 1, . . . , σ n). Show that the following three statements are equivalent: (a)
A∗A = B∗B; (b) there are unitary matrices W, X, Y ∈ Mn such that A = X�W ∗ and B =
Y�W ∗; (c) there is a unitary U ∈ Mn such that B = U A. See (7.3.11) for a generalization.

2.6.P11 Let A ∈ Mn,m and a normal B ∈ Mm be given. Show that A∗A commutes with
B if and only if there are unitary matrices V ∈ Mn and W ∈ Mm , and diagonal matrices
� ∈ Mn,m and � ∈ Mm , such that A = V �W ∗ and B = W�W ∗.

2.6.P12 Let A ∈ Mn have a singular value decomposition A = V �W ∗, in which � =
diag(σ 1, . . . , σ n) and σ 1 ≥ · · · ≥ σ n . (a) Show that adj A has a singular value de-
composition adj A = X∗SY in which X = (det W )(adj W ), Y = (det V )(adj V ), and S =
diag(s1, . . . , sn), in which each si =

∏
j �=iσ j . (b) Use (a) to explain why adj A = 0 if

rank A ≤ n − 2. (c) If rank A = n − 1 and vn, wn ∈ Cn are the last columns of V and W ,
respectively, show that adj A = σ 1 · · · σ n−1eiθwnv

∗
n , in which det(V W ∗) = eiθ , θ ∈ R.

2.6.P13 Let A ∈ Mn and let A = V �W ∗ be a singular value decomposition. (a) Show that
A is unitary if and only if � = I . (b) Show that A is a scalar multiple of a unitary matrix
if and only if Ax is orthogonal to Ay whenever x, y ∈ Cn are orthogonal.
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2.6.P14 Let A ∈ Mn be given. (a) Suppose that A is normal and let A = U�U ∗

be a spectral decomposition, in which U is unitary and � = diag(λ1, . . . , λn) =
diag(eiθ1 |λ1|, . . . , eiθn |λn|). Let D = diag(eiθ1 , . . . , eiθn ) and � = diag(|λ1|, . . . , |λn|). Ex-
plain why A = (U D)�U ∗ is a singular value decomposition of A and why the singular
values of A are the absolute values of its eigenvalues. (b) Let s1, . . . , sd be the distinct
singular values of A and let A = V �W ∗ be a singular value decomposition, in which
V, W ∈ Mn are unitary and � = s1 In1 ⊕ · · · ⊕ sd Ind . Show that A is normal if and only if
there is a block diagonal unitary matrix U = U1 ⊕ · · · ⊕ Ud , partitioned conformally to �,
such that V = WU . (c) If A is normal and has distinct singular values, and if A = V �W ∗

is a singular value decomposition, explain why V = W D, in which D is a diagonal unitary
matrix. What does the hypothesis of distinct singular values say about the eigenvalues
of A?

2.6.P15 Let A = [ai j ] ∈ Mn have eigenvalues λ1, . . . , λn ordered so that |λ1| ≥ · · · ≥ |λn|
and singular values σ 1, . . . , σ n ordered so that σ 1 ≥ · · · ≥ σ n . Show that (a)

∑n
i, j=1|ai j |2 =

tr A∗A =∑n
i=1σ

2
i ; (b)

∑n
i=1|λi |2 ≤∑n

i=1σ
2
i with equality if and only if A is normal

(Schur’s inequality); (c) σ i = |λi | for all i = 1, . . . , n if and only if A is normal; (d) if
|aii | = σ i for all i = 1, . . . , n, then A is diagonal; (e) if A is normal and |aii | = |λi | for all
i = 1, . . . , n, then A is diagonal.

2.6.P16 Let U, V ∈ Mn be unitary. (a) Show that there are always unitary X, Y ∈ Mn and
a diagonal unitary D ∈ Mn such that U = X DY and V = Y ∗DX∗. (b) Explain why the
unitary equivalence map A → U AV = X DY AY ∗DX∗ on Mn is the composition of a
unitary similarity, a diagonal unitary congruence, and a unitary similarity.

2.6.P17 Let A ∈ Mn,m . Use the singular value decomposition to explain why rank A =
rank AA∗ = rank A∗A.

2.6.P18 Let A ∈ Mn be a projection and suppose that rank A = r . (a) Show that A is

unitarily similar to
[

Ir X
0 0n−r

]
; see (1.1.P5). (b) Let X = V �W ∗ be a singular value de-

composition. Show that A is unitarily similar to
[

Ir �

0 0n−r

]
via V ⊕ W , and hence the

singular values of A are the diagonal entries of (Ir + ��T ) ⊕ 0n−r ; let σ 1, . . . , σ g be
the singular values of A that are greater than 1. (c) Show that A is unitarily similar to

0n−r−g ⊕ Ir−g ⊕
[

1 (σ 2
1 − 1)1/2

0 0

]
⊕ · · · ⊕

[
1 (σ 2

g − 1)1/2

0 0

]
.

2.6.P19 Let U =
[

U11 U12
U21 U22

]
∈ Mk+� be unitary with U11 ∈ Mk , U22 ∈ M�, and k ≤ �. Show

that the nonincreasingly ordered singular values of the blocks of U are related by the
identities σ i (U11) = σ i (U22) and σ i (U12) = σ i (U21) = (1 − σ 2

k−i+1(U11))1/2 for each i =
1, . . . , k; and σ i (U22) = 1 for each i = k + 1, . . . , �. In particular, | det U11| = | det U22|
and det U12U ∗

12 = det U ∗
21U21. Explain why these results imply (2.1.10).

2.6.P20 Let A ∈ Mn be symmetric. Suppose that the special singular value decomposition
in (2.6.6(a)) is known if A is nonsingular. Provide details for the following two approaches
to showing that it is valid even if A is singular. (a) Consider Aε = A + ε I ; use (2.1.8) and
(2.6.4). (b) Let the columns of U1 ∈ Mn,ν be an orthonormal basis for the null space of
A and let U = [U1 U2] ∈ Mn be unitary. Let U T AU = [Ai j ]2

i, j=1 (partitioned conformally
to U ). Explain why A11, A12, and A21 are zero matrices, while A22 is nonsingular and
symmetric.
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2.6.P21 Let A, B ∈ Mn be symmetric. Show that AB̄ is normal if and only if there is
a unitary U ∈ Mn such that A = U�U T , B = U�U T , �,� ∈ Mn are diagonal and the
diagonal entries of � are nonnegative.

2.6.P22 Let A, B ∈ Mn be symmetric. (a) Show that AB̄ is Hermitian if and only if there is
a unitary U ∈ Mn such that A = U�U T , B = U�U T , �,� ∈ Mn(R) are diagonal and the
diagonal entries of � are nonnegative. (b) Show that AB̄ is Hermitian and has nonnegative
eigenvalues if and only if there is a unitary U ∈ Mn such that A = U�U T , B = U�U T ,
�,� ∈ Mn(R) are diagonal and the diagonal entries of � and � are nonnegative.

2.6.P23 Let A ∈ Mn be given. Suppose that rank A = r ≥ 1 and suppose that A is self-
annihilating, that is, A2 = 0. Provide details for the following outline of a proof that A is
unitarily similar to

σ 1

[
0 1
0 0

]
⊕ · · · ⊕ σ r

[
0 1
0 0

]
⊕ 0n−2r (2.6.8)

in which σ 1 ≥ · · · ≥ σ r > 0 are the positive singular values of A. (a) range A ⊆ nullspace A
and hence 2r ≤ n. (b) Let the columns of U2 ∈ Mn,n−r be an orthonormal basis for the null
space of A∗, so U ∗

2 A = 0. Let U = [U1 U2] ∈ Mn be unitary. Explain why the columns
of U1 ∈ Mn,r are an orthonormal basis for the range of A and AU1 = 0. (c) U ∗AU =[

0 B
0 0

]
, in which B ∈ Mr,n−r and rank B = r . (d) B = V [�r 0r,n−2r ]W ∗, in which V ∈

Mr and W ∈ Mn−r are unitary, and �r = diag(σ 1, . . . , σ r ). (e) Let Z = V ⊕ W . Then

Z∗(U ∗AU )Z =
[

0 �r

0 0

]
⊕ 0n−2r , which is similar to (2.6.8) via a permutation matrix.

2.6.P24 Let A ∈ Mn be given. Suppose that rank A = r ≥ 1 and that A is conjugate
self-annihilating: AĀ = 0. Provide details for the following outline of a proof that A
is unitarily congruent to (2.6.8), in which σ 1 ≥ · · · ≥ σ r > 0 are the positive singu-
lar values of A. (a) range Ā ⊆ nullspace A and hence 2r ≤ n. (b) Let the columns
of U2 ∈ Mn,n−r be an orthonormal basis for the null space of AT , so U T

2 A = 0. Let
U = [U1 U2] ∈ Mn be unitary. Explain why the columns of U1 ∈ Mn,r are an orthonor-

mal basis for the range of Ā and AU1 = 0. (c) U T AU =
[

0 B
0 0

]
, in which B ∈ Mr,n−r

and rank B = r . (d) B = V [�r 0r,n−2r ]W ∗, in which V ∈ Mr and W ∈ Mn−r are unitary,

and �r = diag(σ 1, . . . , σ r ). (e) Let Z = V̄ ⊕ W . Then Z T (U T AU )Z =
[

0 �r

0 0

]
⊕ 0n−2r ,

which is unitarily congruent to (2.6.8) via a permutation matrix. For a different approach,
see (3.4.P5).

2.6.P25 Let A ∈ Mn and suppose that rank A = r < n. Let σ 1 ≥ · · · ≥ σ r > 0 be the
positive singular values of A and let �r = diag(σ 1, . . . , σ r ). Show that there is a unitary
U ∈ Mn , and matrices K ∈ Mr and L ∈ Mr,n−r , such that

A = U

[
�r K �r L

0 0n−r

]
U ∗, K K ∗ + L L∗ = Ir (2.6.9)

2.6.P26 Let A ∈ Mn , suppose that 1 ≤ rank A = r < n, and consider the representation
(2.6.9). Show that (a) A is normal if and only if L = 0 and �r K = K�r ; (b) A2 = 0 if and
only if K = 0 (in which case L L∗ = Ir ); (c) A2 = 0 if and only if A is unitarily similar to
a direct sum of the form (2.6.8).

2.6.P27 Let A ∈ Mn be skew symmetric. If rank A ≤ 1, explain why A = 0.
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2.6.P28 A matrix A ∈ Mn is an EP matrix if the ranges of A and A∗ are the same. Every
normal matrix is an EP matrix (2.5.P54(b)) and every nonsingular matrix (normal or not)
is an EP matrix. (a) Show that A is an EP matrix and rank A = r if and only if there is a

nonsingular B ∈ Mr and a unitary V ∈ Mn such that A = V
[

B 0
0 0

]
V ∗. (b) Explain why an

EP matrix is rank principal.

2.6.P29 If x ∈ Cn is a normal eigenvector of A ∈ Mn with associated eigenvalue λ, show
that |λ| is a singular value of A.

2.6.P30 Use the singular value decomposition to verify (0.4.6(f)) for complex matrices:
A ∈ Mm,n has rank r if and only if there are nonsingular matrices S ∈ Mm and T ∈ Mn

such that A = S
[

Ir 0
0 0

]
T .

2.6.P31 Let A ∈ Mm,n . (a) Use the singular value decomposition A = V �W ∗ to show

that the Hermitian matrix A =
[

0 A
A∗ 0

]
∈ Mm+n is unitarily similar to the real matrix[

0 �

�T 0

]
. (b) If m = n and � = diag(σ 1, . . . , σ n), explain why the eigenvalues of A are

±σ 1, . . . ,±σ n .

2.6.P32 Let A ∈ Mn and let A =
[

0 A
AT 0

]
∈ M2n . If σ 1, . . . , σ n are the singular values of

A, show that σ 1, σ 1, . . . , σ n, σ n are the singular values of A.

2.6.P33 Let σ 1 ≥ · · · ≥ σ n be the ordered singular values of A ∈ Mn and let r ∈ {1, . . . , n}.
Show that the singular values of the compound matrix Cr (A) are the

(n
r

)
possible prod-

ucts σ i1 · · · σ ir in which 1 ≤ i1 < i2 < · · · < ir ≤ n. Explain why tr(Cr (A)Cr (A)∗) =
tr Cr (AA∗) = Sr (σ 2

1, . . . , σ
2
n) is the sum of the squares of the singular values of Cr (A);

see (1.2.14). In particular, tr C2(AA∗) =∑
1≤i< j≤n σ 2

i (A)σ 2
j (A). Explain why σ 1 · · · σ r is

the largest singular value of Cr (A). See (2.3.P12) for related results about eigenvalues
of Cr (A).

2.6.P34 Denote the eigenvalues of A ∈ Mn and A2 by λ1(A), . . . , λn(A) and λ1(A2), . . . ,
λn(A2), respectively; denote their singular values by σ 1(A), . . . , σ n(A) and
σ 1(A2), . . . , σ n(A2), respectively. (a) Derive the inequality

∑n
i=1 |λi (A)|4 ≤∑n

i=1 σ 2
i (A2) by applying Schur’s inequality (2.3.2a) to A2. (b) Derive the inequality∑

1≤i< j≤n |λi (A)λ j (A)|2 ≤∑
1≤i< j≤n σ 2

i (A)σ 2
j (A) by applying Schur’s inequality to

the compound matrix C2(A). (c) Show that (tr AA∗)2 =∑n
i=1 σ 4

i (A) + 2
∑

1≤i< j≤n

σ 2
i (A)σ 2

j (A). (d) Show that tr((AA∗ − A∗A)2) = 2
∑n

i=1 σ 4
i (A) − 2

∑n
i=1 σ 2

i (A2). (e) Show
that (

∑n
i=1 |λi (A)|2)2 =∑n

i=1 |λi (A)|4 + 2
∑

1≤i< j≤n |λi (A)λ j (A)|2. (f ) Conclude that

n∑
i=1

|λi (A)|2 ≤
√

(tr AA∗)2 − 1

2
tr((AA∗ − A∗A)2) (2.6.9)

which strengthens Schur’s inequality (2.3.2a). Why is (2.6.9) an equality if A is normal?
Explain why (2.6.9) is an equality if and only if both A2 and C2(A) are normal.

2.6.P35 Using the notation of the preceding problem, show that

n∑
i=1

|λi (A)|2 ≤
√

(tr AA∗ − 1

n
| tr A|2)2 − 1

2
tr((AA∗ − A∗A)2) + 1

n
| tr A|2 (2.6.10)

In addition, show that the upper bound in (2.6.10) is less than or equal to the upper bound
in (2.6.9), with equality if and only if either tr A = 0 or A is normal.
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2.6.P36 Let A ∈ Mn have rank r , let s1, . . . , sd be the distinct positive singular values of
A, in any order, with respective multiplicities n1, . . . , nd , and let A = V �W ∗ be a singular
value decomposition in which V, W ∈ Mn are unitary and � = s1 In1 ⊕ · · · ⊕ sd Ind ⊕ 0n−r .
(a) Explain why A is symmetric if and only if V = W̄ (S1 ⊕ · · · ⊕ Sd ⊕ W̃ ), in which
W̃ ∈ Mn−r is unitary and each Sj ∈ Mn j is unitary and symmetric. (b) If the singular values
of A are distinct (that is, if d ≥ n − 1), explain why A is symmetric if and only if V = W̄ D,
in which D ∈ Mn is a diagonal unitary matrix.

2.6.P37 Suppose that A ∈ Mn has distinct singular values. Let A = V �W ∗ and A =
V̂ �Ŵ ∗ be singular value decompositions. (a) If A is nonsingular, explain why there is a
diagonal unitary matrix D such that V̂ = V D and Ŵ = W D. (b) If A is singular, explain
why there are diagonal unitary matrices D and D̃ that differ in at most one diagonal entry
such that V̂ = V D and Ŵ = W D̃.

2.6.P38 Let A ∈ Mn be nonsingular and let σ n be the smallest singular value of A + A−∗.
Show that σ n ≥ 2. What can you say about the case of equality?

2.6.P39 Let A ∈ Mn be coninvolutory, so A is nonsingular and A = Ā−1. Explain why the
singular values of A that are not equal to 1 occur in reciprocal pairs.

2.6.P40 Using the notation of (2.4.5.1), suppose that T and T ′ are unitarily similar.
(a) Explain why, for each i, j = 1, . . . , d , it is necessary that the singular values of Ti j

and T ′
i j be the same. (b) What does this necessary condition say when n = 2? Why is it

both necessary and sufficient in this case? (c) Let n = 4 and d = 2. Consider the example

T11 = T ′
11 =

[
1 1
0 1

]
, T22 = T ′

22 =
[

2 2
0 2

]
, T12 =

[
3 0
0 4

]
, and T ′

11 =
[

0 4
3 0

]
; explain why the

necessary condition in (a) need not be sufficient.

Notes and Further Readings. The special singular value decomposition (2.6.6a) for
complex symmetric matrices was published by L. Autonne in 1915; it has been re-
discovered many times since then. Autonne’s proof used a version of (2.6.4), but his
approach required that the matrix be nonsingular; (2.6.P20) shows how to deduce the
singular case from the nonsingular case. See section 3.0 of Horn and Johnson (1991)
for a history of the singular value decomposition, including an account of Autonne’s
contributions.

2.7 The CS decomposition

The C S decomposition is a canonical form for partitioned unitary matrices under
partitioned unitary equivalence. Its proof involves the singular value decomposition,
the Q R factorization, and the observation in the following exercise.

Exercise. Let �, L ∈ Mp. Suppose that � = diag(γ 1, . . . , γ p) with 0 ≤ γ 1 ≤
· · · ≤ γ p ≤ 1, L = [�i j ] is lower triangular, and the rows of [� L 0] ∈ Mp,2p+k

are orthonormal. Explain why L is diagonal, L = diag(λ1, . . . , λp), and |λ j |2 =
1 − γ 2

j , j = 1, . . . , p. Hint: If γ 1 = 1, why is L = 0? If γ 1 < 1, then |�11|2 =
1 − γ 2

1. Why does orthogonality ensure that �21 = · · · = �p1 = 0? Work down
the rows.
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Theorem 2.7.1 (C S decomposition). Let p, q, and n be given integers with 1 < p ≤
q < n and p + q = n. Let U =

[
U11 U12
U21 U22

]
∈ Mn be unitary, with U11 ∈ Mp and U22 ∈

Mq. There are unitary V1, W1 ∈ Mp and V2, W2 ∈ Mq such that

[
V1 0
0 W1

] [
U11 U12

U21 U22

] [
V2 0
0 W2

]
=
⎡
⎣ C S 0
−S C 0
0 0 Iq−p

⎤
⎦ (2.7.1.2)

in which C = diag(σ 1, . . . , σ p), σ 1 ≥ · · · ≥ σ p are the nonincreasingly ordered sin-
gular values of U11 and S = diag((1 − σ 2

1)1/2, . . . , (1 − σ 2
p)1/2).

Proof. Our strategy is to perform a sequence of partitioned unitary equivalences
that, step by step, reduce U to a block matrix that has the asserted form.
The first step is to use the singular value decomposition: Write U11 = V �W =
(V K p)(K p�K p)(K pW ) = Ṽ �W̃ , in which V, W ∈ Mp are unitary, K p is the p-
by-p reversal matrix (0.9.5.1), Ṽ = V K p, W̃ = K pW , � = diag(σ 1, . . . , σ p) with
σ 1 ≥ · · · ≥ σ p, and � = K p�K p = diag(σ p, . . . , σ 1). Compute[

Ṽ ∗ 0
0 Iq

] [
U11 U12

U21 U22

] [
W̃ ∗ 0
0 Iq

]
=
[

� Ṽ ∗U12

U21W̃ ∗ U22

]
This matrix is unitary (a product of three unitary matrices), so each column has unit
Euclidean norm, which means that σ 1 = γ p ≤ 1. Now invoke the Q R factorization

(2.1.14) and its variant (2.1.15b) to write Ṽ ∗U12 = [L 0]Q̃ and U21W̃ ∗ = Q
[

R
0

]
, in

which Q̃, Q ∈ Mq are unitary, L = [�i j ] ∈ Mp is lower triangular, and R = [ri j ] ∈ Mp

is upper triangular. Compute

[
Ip 0
0 Q∗

] [
� Ṽ ∗U12

U21W̃ ∗ U22

] [
Ip 0
0 Q̃∗

]
=
⎡
⎣ �

[
L 0

][
R
0

]
Q∗U22 Q̃∗

⎤
⎦

The argument in the preceding exercise shows that both L and R are diagonal and that

|rii | = |�i i | =
√

1 − γ 2
i for each i = 1, . . . , p. Let M = diag(

√
1 − γ 2

1, . . . ,
√

1 − γ 2
p)

and let t = max{i : γ i < 1}. (We may assume that t ≥ 1, for if γ 1 = 1, then � = Ip

and M = 0, so we have (2.7.1.2) with C = Ip and S = 0p.) There are diagonal unitary
matrices D1, D2 ∈ Mp such that D1 R = −M and L D2 = M , so a unitary congruence
via Ip ⊕ D1 ⊕ In−2p on the left and Ip ⊕ D2 ⊕ In−2p on the right results in a unitary
matrix of the form

⎡
⎣ �

[
M 0

][−M
0

]
Z

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

�1 0 M1 0 0
0 Ip−t 0 0p−t 0

−M1 0 Z11 Z12 Z13

0 0p−t Z21 Z22 Z23

0 0 Z31 Z32 Z33

⎤
⎥⎥⎥⎥⎦

in which we have partitioned � = �1 ⊕ Ip−t and M = M1 ⊕ 0p−t , so M1 is nonsin-
gular. Orthogonality of the first and third block columns (and nonsingularity of M1)
implies that Z11 = �1, whereupon the requirement that each row and each column be
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a unit vector ensures that Z12, Z13, Z21, and Z31 are all zero blocks. Thus, we have⎡
⎢⎢⎢⎢⎣

�1 0 M1 0 0
0 Ip−t 0 0p−t 0

−M1 0 �1 0 0
0 0p−t 0 Z22 Z23

0 0 0 Z32 Z33

⎤
⎥⎥⎥⎥⎦

The lower-right block Z̃ =
[

Z22 Z23
Z32 Z33

]
∈ Mq−t is a direct summand of a unitary matrix,

so it is unitary, and hence Z̃ = V̂ Iq−t Ŵ for some unitary V̂ , Ŵ ∈ Mq−t . A unitary
equivalence via Ip+t ⊕ V̂ ∗ on the left and Ip+t ⊕ Ŵ ∗ on the right produces the block
matrix ⎡

⎢⎢⎢⎢⎣
�1 0 M1 0 0
0 Ip−t 0 0p−t 0

−M1 0 �1 0 0
0 0p−t 0 Ip−t 0
0 0 0 0 Iq−p

⎤
⎥⎥⎥⎥⎦

Finally, a unitary similarity via K p ⊕ K p ⊕ Iq−p produces a unitary matrix with the
required structure (2.7.1.2). �

The C S decomposition is a parametric description of the set of all unitary matrices

U =
[

U11 U12
U21 U22

]
∈ Mn of size n = p + q (by convention, p ≤ q, but that is not essential)

that are partitioned conformally to Ip ⊕ Iq . The parameters are four smaller arbitrary
unitary matrices V1, W1 ∈ Mp and V2, W2 ∈ Mq , and any p real numbers σ 1, . . . , σ p

such that 1 ≥ σ 1 ≥ · · · ≥ σ p ≥ 0. The parametrization of the four blocks is

U11 = V1CW1, U12 = V1[S 0]W2, (2.7.1.3)

U21 = V2

[−S
0

]
W1, and U22 = V2

[
C 0
0 Iq−p

]
W2

in which C = diag(σ 1, . . . , σ p) and S = diag((1 − σ 2
1)1/2, . . . , (1 − σ 2

p)1/2). The C S
decomposition is a widely useful tool, notably in problems involving distances and
angles between subspaces.

Problems

Use the C S decomposition to solve each of the following problems, even though other
approaches are possible. A given A ∈ Mn,m is a contraction if its largest singular value
is less than or equal to 1.

2.7.P1 Show that every submatrix of a unitary matrix is a contraction; the submatrix need
not be principal and need not be square.

2.7.P2 There is an interesting converse to the preceding problem. Let A ∈ Mm,n be a
contraction and suppose that exactly ν of its singular values are strictly less than 1. Show
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that there are matrices B, C , and D such that U =
[

D B
C A

]
∈ Mmax{m,n}+|m−n|+ν is unitary.

Such a matrix U is called a unitary dilation of the contraction A.

2.7.P3 If A is a k-by-k submatrix of an n-by-n unitary matrix, and if 2k > n, show that
some singular value of A is equal to 1.

2.7.P4 Let U =
[

U11 U12
U21 U22

]
be unitary, with U11 ∈ Mp and U22 ∈ Mq . Show that the nullities

of U11 and U22 are equal and the nullities of U12 and U21 are equal. Compare with (0.7.5).

2.7.P5 Prove the assertions in (2.6.P19).

2.7.P6 Let U =
[

u11 u12
u21 u22

]
∈ M2 be unitary. (a) Show that |u11| = |u22| and |u21| = |u12| =

(1 − |u11|2)1/2. (b) Show that U is diagonally unitarily similar to a complex symmetric
matrix.

Further Reading. For a historical survey and a version of the C S decomposition that em-
braces an arbitrary 2-by-2 partition of a unitary U = [Ui j ] ∈ Mn (Ui j ∈ Mri ,c j , i, j =
1, 2 with r1 + r2 = n = c1 + c2), see C. Paige and M. Wei, History and generality of
the C S decomposition, Linear Algebra Appl. 208/209 (1994) 303–326.



CHAPTER 3

Canonical Forms for Similarity
and Triangular Factorizations

3.0 Introduction

How can we tell if two given matrices are similar? The matrices

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (3.0.0)

have the same eigenvalues, and hence they have the same characteristic polynomial,
trace, and determinant. They also have the same rank, but A2 = 0 and B2 �= 0, so A
and B are not similar.

One approach to determining whether given square complex matrices A and B are
similar would be to have in hand a set of special matrices of prescribed form and see if
both given matrices can be reduced by similarity to the same special matrix. If so, then
A and B must be similar because the similarity relation is transitive and reflexive. If
not, then we would like to be able to conclude that A and B are not similar. What sets
of special matrices would be suitable for this purpose?

Every square complex matrix is similar to an upper triangular matrix. However, two
upper triangular matrices with the same main diagonals but some different off-diagonal
entries can still be similar (2.3.2b). Thus, we have a uniqueness problem: If we reduce
A and B to two unequal upper triangular matrices with the same main diagonal, we
cannot conclude from this fact alone that A and B are not similar.

The class of upper triangular matrices is too large for our purposes, but what about
the smaller class of diagonal matrices? Uniqueness is no longer an issue, but now we
have an existence problem: Some similarity equivalence classes contain no diagonal
matrices.

One approach to finding a suitable set of special matrices turns out to be a deft
compromise between diagonal matrices and upper triangular matrices: A Jordan matrix
is a special block upper triangular form that can be achieved by similarity for every
complex matrix. Two Jordan matrices are similar if and only if they have the same
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diagonal blocks, without regard to their ordering. Moreover, no other matrix in the
similarity equivalence class of a Jordan matrix J has strictly fewer nonzero off-diagonal
entries than J.

Similarity is only one of many equivalence relations of interest in matrix theory;
several others are listed in (0.11). Whenever we have an equivalence relation on a set of
matrices, we want to be able to decide whether given matrices A and B are in the same
equivalence class. A classical and broadly successful approach to this decision problem
is to identify a set of representative matrices for the given equivalence relation such that
(a) there is a representative in each equivalence class and (b) distinct representatives
are not equivalent. The test for equivalence of A and B is to reduce each via the
given equivalence to a representative matrix and see if the two representative matrices
are the same. Such a set of representatives is a canonical form for the equivalence
relation.

For example, (2.5.3) provides a canonical form for the set of normal matrices
under unitary similarity: The diagonal matrices are a set of representative matrices (we
identify two diagonal matrices if one is a permutation similarity of the other). Another
example is the singular value decomposition (2.6.3), which provides a canonical form
for Mn under unitary equivalence: The diagonal matrices � = diag(σ 1, . . . , σ n) with
σ 1 ≥ · · · ≥ σ n ≥ 0 are the representative matrices.

3.1 The Jordan canonical form theorem

Definition 3.1.1. A Jordan block Jk(λ) is a k-by-k upper triangular matrix of the form

Jk(λ) =

⎡
⎢⎢⎢⎢⎢⎣

λ 1
λ 1

. . .
. . .
λ 1

λ

⎤
⎥⎥⎥⎥⎥⎦ ; J1(λ) = [λ], J2(λ) =

[
λ 1
0 λ

]
(3.1.2)

The scalar λ appears k times on the main diagonal; if k > 1, there are k − 1 entries
“+1” in the superdiagonal; all other entries are zero. A Jordan matrix J ∈ Mn is a
direct sum of Jordan blocks

J = Jn1 (λ1) ⊕ Jn2 (λ2) ⊕ · · · ⊕ Jnq (λq ), n1 + n2 + · · · + nq = n (3.1.3)

Neither the block sizes ni nor the scalars λi need be distinct.

The main result of this section is that every complex matrix is similar to an essentially
unique Jordan matrix. We proceed to this conclusion in three steps, two of which have
already been taken:

Step 1. Theorem 2.3.1 ensures that every complex matrix is similar to an upper trian-
gular matrix whose eigenvalues appear on the main diagonal, and equal eigenvalues
are grouped together.
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Step 2. Theorem 2.4.6.1 ensures that a matrix of the form described in Step 1 is
similar to a block diagonal upper triangular matrix (2.4.6.2) in which each diagonal
block has equal diagonal entries.

Step 3. In this section, we show that an upper triangular matrix with equal diagonal
entries is similar to a Jordan matrix.

We are also interested in concluding that if a matrix is real and has only real
eigenvalues, then it can be reduced to a Jordan matrix via a real similarity. If a real
matrix A has only real eigenvalues, then (2.3.1) and (2.4.6.1) ensure that there is a
real similarity matrix S such that S−1 AS is a (real) block diagonal upper triangular
matrix of the form (2.4.6.2). Thus, it suffices to show that a real upper triangular matrix
with equal main diagonal entries can be reduced to a direct sum of Jordan blocks via a
real similarity.

The following lemma is helpful in taking Step 3; its proof is an entirely straightfor-
ward computation. The k-by-k Jordan block with eigenvalue zero is called a nilpotent
Jordan block.

Lemma 3.1.4. Let k ≥ 2 be given. Let ei ∈ Ck denote the ith standard unit basis vector,
and let x ∈ Ck be given. Then

J T
k (0)Jk(0) =

[
0 0
0 Ik−1

]
and Jk(0)p = 0 if p ≥ k

Moreover, Jk(0)ei+1 = ei for i = 1, 2, . . . , k − 1 and [Ik − J T
k (0)Jk(0)]x = (x T e1)e1.

We now address the issue in Step 3.

Theorem 3.1.5. Let A ∈ Mn be strictly upper triangular. There is a nonsingular S ∈
Mn and there are integers n1, n2, . . . , nm with n1 ≥ n2 ≥ · · · ≥ nm ≥ 1 and n1 + n2 +
· · · + nm = n such that

A = S
(
Jn1 (0) ⊕ Jn2 (0) ⊕ · · · ⊕ Jnm (0)

)
S−1 (3.1.6)

If A is real, the similarity matrix S may be chosen to be real.

Proof. If n = 1, A = [0] and the result is trivial. We proceed by induction on n. Assume
that n > 1 and that the result has been proved for all strictly upper triangular matrices

of size less than n. Partition A =
[

0 aT

0 A1

]
, in which a ∈ Cn−1 and A1 ∈ Mn−1 is strictly

upper triangular. By the induction hypothesis, there is a nonsingular S1 ∈ Mn−1 such
that S−1

1 A1S1 has the desired form (3.1.6); that is,

S−1
1 A1S1 =

⎡
⎢⎣ Jk1

. . .
Jks

⎤
⎥⎦ =

[
Jk1 0
0 J

]
(3.1.7)

in which k1 ≥ k2 ≥ · · · ≥ ks ≥ 1, k1 + k2 + · · · + ks = n − 1, Jki = Jki (0), and J =
Jk2 ⊕ · · · ⊕ Jks ∈ Mn−k1−1. No diagonal Jordan block in J has size greater than k1, so
J k1 = 0. A computation reveals that[

1 0
0 S−1

1

]
A

[
1 0
0 S1

]
=
[

0 aT S1

0 S−1
1 A1S1

]
(3.1.8)
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Partition aT S1 = [aT
1 aT

2 ] with a1 ∈ Ck1 and a2 ∈ Cn−k1−1, and write (3.1.8) as

[
1 0
0 S−1

1

]
A

[
1 0
0 S1

]
=
⎡
⎣0 aT

1 aT
2

0 Jk1 0
0 0 J

⎤
⎦

Now consider the similarity⎡
⎣1 −aT

1 J T
k1

0
0 I 0
0 0 I

⎤
⎦
⎡
⎣0 aT

1 aT
2

0 Jk1 0
0 0 J

⎤
⎦
⎡
⎣1 aT

1 J T
k1

0
0 I 0
0 0 I

⎤
⎦

=
⎡
⎣0 aT

1 (I − J T
k1

Jk1 ) aT
2

0 Jk1 0
0 0 J

⎤
⎦ =

⎡
⎣0 (aT

1 e1)eT
1 aT

2
0 Jk1 0
0 0 J

⎤
⎦ (3.1.9)

in which we use the identity (I − J T
k Jk)x = (xT e1)e1. There are now two possibilities,

depending on whether aT
1 e1 �= 0 or aT

1 e1 = 0.
If aT

1 e1 �= 0, then⎡
⎣1/aT

1 e1 0 0
0 I 0
0 0 (1/aT

1 e1)I

⎤
⎦
⎡
⎣0 (aT

1 e1)eT
1 aT

2
0 Jk1 0
0 0 J

⎤
⎦
⎡
⎣aT

1 e1 0 0
0 I 0
0 0 aT

1 e1 I

⎤
⎦

=
⎡
⎣0 eT

1 aT
2

0 Jk1 0
0 0 J

⎤
⎦ =

[
J̃ e1aT

2
0 J

]

Notice that J̃ =
[

0 eT
1

0 Jk1

]
= Jk1+1(0). Since J̃ ei+1 = ei for i = 1, 2, . . . , k1, a compu-

tation reveals that[
I e2aT

2
0 I

] [
J̃ e1aT

2
0 J

] [
I −e2aT

2
0 I

]
=
[

J̃ − J̃ e2aT
2 + e1aT

2 + e2aT
2 J

0 J

]

=
[

J̃ e2aT
2 J

0 J

]

We can proceed recursively to compute the sequence of similarities[
I ei+1aT

2 J i−1

0 I

] [
J̃ ei aT

2 J i−1

0 J

] [
I −ei+1aT

2 J i−1

0 I

]
=
[

J̃ ei+1aT
2 J i

0 J

]
,

for i = 2, 3, . . . . Since J k1 = 0, after at most k1 steps in this sequence of similarities,

the off-diagonal term finally vanishes. We conclude that A is similar to
[

J̃ 0
0 J

]
, which

is a strictly upper triangular Jordan matrix of the required form.
If aT

1 e1 = 0, then (3.1.9) shows that A is similar to⎡
⎣0 0 aT

2
0 J̃ k1 0
0 0 J

⎤
⎦
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which is permutation similar to ⎡
⎣ Jk1 0 0

0 0 aT
2

0 0 J

⎤
⎦ (3.1.10)

By the induction hypothesis, there is a nonsingular S2 ∈ Mn−k1 such that

S−1
2

[
0 aT

2
0 J

]
S2 = Ĵ ∈ Mn−k1 is a Jordan matrix with zero main diagonal. Thus, the

matrix (3.1.10), and therefore A itself, is similar to
[

Jk1 0
0 Ĵ

]
, which is a Jordan matrix

of the required form, except that the diagonal Jordan blocks might not be arranged in
nonincreasing order of their size. A block permutation similarity, if necessary, produces
the required form.

Finally, observe that if A is real, then all the similarities in this proof are real, so A
is similar via a real similarity to a Jordan matrix of the required form. �

Theorem 3.1.5 essentially completes Step 3, as the general case is an easy conse-
quence of the nilpotent case. If A ∈ Mn is an upper triangular matrix with all diagonal
entries equal to λ, then A0 = A − λI is strictly upper triangular. If S ∈ Mn is non-
singular and S−1 A0S is a direct sum of nilpotent Jordan blocks Jni (0), as guaranteed
by (3.1.5), then S−1 AS = S−1 A0S + λI is a direct sum of Jordan blocks Jni (λ) with
eigenvalue λ. We have now established the existence assertion of the Jordan canonical
form theorem.

Theorem 3.1.11. Let A ∈ Mn be given. There is a nonsingular S ∈ Mn, positive inte-
gers q and n1, . . . , nq with n1 + n2 + · · · + nq = n, and scalars λ1, . . . , λq ∈ C such
that

A = S

⎡
⎢⎣ Jn1 (λ1)

. . .
Jnq (λq )

⎤
⎥⎦ S−1 (3.1.12)

The Jordan matrix JA = Jn1 (λ1) ⊕ · · · ⊕ Jnq (λq ) is uniquely determined by A up to
permutation of its direct summands. If A is real and has only real eigenvalues, then S
can be chosen to be real.

The Jordan matrix JA in the preceding theorem is (up to permutation of its direct
summands) the Jordan canonical form of A. The matrices Jk(λ), λ ∈ C, k = 1, 2, . . .

are canonical blocks for similarity.
Two facts provide the key to understanding the uniqueness assertion in the Jordan

canonical form theorem: (1) similarity of two matrices is preserved if they are both
translated by the same scalar matrix and (2) rank is a similarity invariant.

If A, B, S ∈ Mn , S is nonsingular, and A = SBS−1, then for any λ ∈ C, A − λI =
SBS−1 − λSS−1 = S(B − λI )S−1. Moreover, for every k = 1, 2, . . . , the matrices
(A − λI )k and (B − λI )k are similar; in particular, their ranks are equal. We focus
on this assertion when B = J = Jn1 (λ1) ⊕ · · · ⊕ Jnq (λq ) is a Jordan matrix that is
similar to A (the existence assertion of (3.1.11)) and λ is an eigenvalue of A. After a
permutation of the diagonal blocks of J (a permutation similarity), we may assume
that J = Jm1 (λ) ⊕ · · · ⊕ Jm p (λ) ⊕ Ĵ , in which the Jordan matrix Ĵ is a direct sum of
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Jordan blocks with eigenvalues different from λ. Then A − λI is similar to

J − λI = (Jm1 (λ) − λI ) ⊕ · · · ⊕ (Jm p (λ) − λI ) ⊕ ( Ĵ − λI )

= Jm1 (0) ⊕ · · · ⊕ Jm p (0) ⊕ ( Ĵ − λI )

which is a direct sum of p nilpotent Jordan blocks of various sizes and a nonsingular
Jordan matrix Ĵ − λI ∈ Mm , in which m = n − (m1 + · · · + m p). Moreover,
(A − λI )k is similar to (J − λI )k = Jm1 (0)k ⊕ · · · ⊕ Jm p (0)k ⊕ ( Ĵ − λI )k for each
k = 1, 2, . . . . Since the rank of a direct sum is the sum of the ranks of the summands
(0.9.2), we have

rank(A − λI )k = rank(J − λI )k

= rank Jm1 (0)k + · · · + rank Jm p (0)k + rank( Ĵ − λI )k

= rank Jm1 (0)k + · · · + rank Jm p (0)k + m (3.1.13)

for each k = 1, 2, . . . .

What is the rank of a power of a nilpotent Jordan block? Inspection of (3.1.2) reveals
that the first column of J�(0) is zero and its last � − 1 columns are linearly independent
(the only nonzero entries are ones in the first superdiagonal), so rank J�(0) = � − 1.
The only nonzero entries in J�(0)2 are ones in the second superdiagonal, so its first two
columns are zero, its last � − 2 columns are linearly independent, and rank J�(0)2 =
� − 2. The ones move up one superdiagonal (so the number of zero columns increases
by one and the rank drops by one) with each successive power until J�(0)�−1 has just
one nonzero entry (in position 1, �) and rank J�(0)�−1 = 1 = � − (� − 1). Of course,
J�(0)k = 0 for all k = �, � + 1, . . . . In general, we have rank J�(0)k = max{� − k, 0}
for each k = 1, 2, . . ., and so

rank J�(0)k−1 − rank J�(0)k =
{

1 if k ≤ �

0 if k > �
, k = 1, 2, . . . (3.1.14)

in which we observe the standard convention that rank J�(0)0 = �.
Now let A ∈ Mn , let λ ∈ C, let k be a positive integer, let

rk(A, λ) = rank(A − λI )k, r0(A, λ) := n (3.1.15)

and define

wk(A, λ) = rk−1(A, λ) − rk(A, λ), w1(A, λ) := n − r1(A, λ) (3.1.16)

Exercise. If A ∈ Mn and λ ∈ C is not an eigenvalue of A, explain why
wk(A, λ) = 0 for all k = 1, 2, . . . .

Exercise. Consider the Jordan matrix

J = J3(0) ⊕ J3(0) ⊕ J2(0) ⊕ J2(0) ⊕ J2(0) ⊕ J1(0) (3.1.16a)

Verify that r1(J, 0) = 7, r2(J, 0) = 2, and r3(J, 0) = r4(J, 0) = 0. Also verify
that w1(J, 0) = 6 is the number of blocks of size at least 1, w2(J, 0) = 5 is
the number of blocks of size at least 2, w3(J, 0) = 2 is the number of blocks
of size at least 3, and w4(J, 0) = 0 is the number of blocks of size at least
4. Observe that w1(J, 0) − w2(J, 0) = 1 is the number of blocks of size 1,
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w2(J, 0) − w3(J, 0) = 3 is the number of blocks of size 2, and w3(J, 0) −
w4(J, 0) = 2 is the number of blocks of size 3. This is not an accident.

Exercise. Use (3.1.13) and (3.1.14) to explain the algebraic meaning of wk(A, λ):

wk(A, λ) = (
rank Jm1 (0)k−1 − rank Jm1 (0)k

)+
· · · + (

rank Jm p (0)k−1 − rank Jm p (0)k
)

= (1 if m1 ≥ k) + · · · + (1 if m p ≥ k) (3.1.17)

= number of blocks with eigenvalue λ that have size at least k

In particular, w1(A, λ) is the number of Jordan blocks of A of all sizes that have
eigenvalue λ, which is the geometric multiplicity of λ as an eigenvalue of A.

Using the characterization (3.1.17), we see that wk(A, λ) − wk+1(A, λ) is the number
of blocks with eigenvalue λ that have size at least k but do not have size at least k + 1;
this is the number of blocks with eigenvalue λ that have size exactly k.

Exercise. Let A, B ∈ Mn and λ ∈ C be given. If A and B are similar, explain
why wk(A, λ) = wk(B, λ) for all k = 1, 2, . . . .

Exercise. Let A ∈ Mn and λ ∈ C be given. Explain why w1(A, λ) ≥ w2(A, λ) ≥
w3(A, λ) ≥ · · · , that is, the sequence w1(A, λ), w2(A, λ), . . . is nonincreasing.
Hint: wk(A, λ) − wk+1(A, λ) is always a nonnegative integer. Why?

Exercise. Let A ∈ Mn and λ ∈ C be given. Let q denote the size of the largest
Jordan block of A with eigenvalue λ, and consider the rank identity (3.1.13).
Explain why (a) rank(A − λI )k = rank(A − λI )k+1 for all k ≥ q, (b) wq (A, λ)
is the number of Jordan blocks of A with eigenvalue λ and maximum size q,
and (c) wk(A, λ) = 0 for all k > q. This integer q is called the index of λ as an
eigenvalue of A.

Exercise. Let A ∈ Mn and λ ∈ C be given. Explain why the index of λ as an
eigenvalue of A may (equivalently) be defined as the smallest integer k ≥ 0
such that rank(A − λI )k = rank(A − λI )k+1. Delicate point: Why must such a
smallest integer exist?

Exercise. Let A ∈ Mn and λ ∈ C be given. If λ is not an eigenvalue of A, explain
why its index as an eigenvalue of A is zero.

The preceding exercises ensure that only finitely many terms of the sequence
w1(A, λ), w2(A, λ), . . . defined by (3.1.16) are nonzero. The number of nonzero terms
is the index of λ as an eigenvalue of A.

Exercise. Let A ∈ Mn and let λ have index q as an eigenvalue of A. Explain
why (a) w1(A, λ) is the geometric multiplicity of λ (the number of Jordan blocks
with eigenvalue λ in the Jordan canonical form of A); (b) w1(A, λ) + w2(A, λ) +
· · · + wq (A, λ) is the algebraic multiplicity of λ (the sum of the sizes of all the
Jordan blocks of A with eigenvalue λ); (c) for each p = 2, 3, . . . , q, wp(A, λ) +
wp+1(A, λ) + · · · + wq (A, λ) = rank(A − λI )p−1.
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The Weyr characteristic of A ∈ Mn associated with λ ∈ C is

w(A, λ) = (w1(A, λ), . . . , wq (A, λ))

in which the sequence of integers w1(A, λ), w2(A, λ), . . . is defined by (3.1.16) and q is
the index of λ as an eigenvalue of A. It is sometimes convenient to refer to the sequence
w1(A, λ), w2(A, λ), . . . itself as the Weyr characteristic of A associated with λ. We
have just seen that the structure of a Jordan matrix J that is similar to A is completely
determined by the Weyr characteristics of A associated with its distinct eigenvalues: If
λ is an eigenvalue of A, and if J is a Jordan matrix that is similar to A, then the number
of Jordan blocks Jk(λ) in J is exactly wk(A, λ) − wk+1(A, λ), k = 1, 2, . . . . This
means that two essentially different Jordan matrices (that is, for some eigenvalue, their
respective lists of nonincreasingly ordered block sizes associated with that eigenvalue
are not identical) cannot both be similar to A because their Weyr characteristics must
be different. We have now proved the uniqueness portion of (3.1.11) and a little more.

Lemma 3.1.18. Let λ be a given eigenvalue of A ∈ Mn and let w1(A, λ), w2(A, λ),
. . . be the Weyr characteristic of A associated with λ. The number of blocks of the form
Jk(λ) in the Jordan canonical form of A is wk(A, λ) − wk+1(A, λ), k = 1, 2, . . . . Two
square complex matrices A, B ∈ Mn are similar if and only if (a) they have the same
distinct eigenvalues λ1, . . . , λd , and (b) for each i = 1, . . . , d, wk(A, λi ) = wk(B, λi )
for all k = 1, 2, . . . , that is, the same Weyr characteristics are associated with each
eigenvalue.

The Jordan structure of a given A ∈ Mn can be completely specified by giving, for
each distinct eigenvalue λ of A, a list of the sizes of all the Jordan blocks of A that
have eigenvalue λ. The nonincreasingly ordered list of sizes of Jordan blocks of A with
eigenvalue λ,

s1(A, λ) ≥ s2(A, λ) ≥ · · · ≥ sw1(A,λ)(A, λ) > 0

= 0 = sw1(A,λ)+1(A, λ) = · · · (3.1.19)

is called the Segre characteristic of A associated with the eigenvalue λ. It is convenient
to define sk(A, λ) = 0 for all k > w1(A, λ). Observe that s1(A, λ) is the index of λ

as an eigenvalue of A (the size of the largest Jordan block of A with eigenvalue λ)
and sw1(A,λ)(A, λ) is the size of the smallest Jordan block of A with eigenvalue λ.
For example, the Segre characteristic of the matrix (3.1.16a) associated with the zero
eigenvalue is 3, 3, 2, 2, 2, 1 (s1(J, 0) = 3 and s6(J, 0) = 1).

If sk = sk(A, λ), k = 1, 2, . . . is the Segre characteristic of A ∈ Mn associated with
the eigenvalue λ and w1 = w1(A, λ), the part of the Jordan canonical form that contains
all the Jordan blocks of A with eigenvalue λ is⎡

⎢⎢⎢⎣
Js1 (λ)

Js2 (λ)
. . .

Jsw1
(λ)

⎤
⎥⎥⎥⎦ (3.1.20)

It is easy to derive the Weyr characteristic if the Segre characteristic is known, and
vice versa. For example, from the Segre characteristic 3, 3, 2, 2, 2, 1 we see that there
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are 6 blocks of size 1 or greater, 5 blocks of size 2 or greater, and 2 blocks of size 3
or greater: The Weyr characteristic is 6,5,2. Conversely, from the Weyr characteristic
6,5,2, we see that there are 6 − 5 = 1 blocks of size 1, 5 − 2 = 3 blocks of size 2, and
2 − 0 = 2 blocks of size 3: The Segre characteristic is 3, 3, 2, 2, 2, 1.

Our derivation of the Jordan canonical form is based on an explicit algorithm,
but it cannot be recommended for implementation in a software package to compute

Jordan canonical forms. A simple example illustrates the difficulty: If Aε =
[

ε 0
1 0

]
and

ε �= 0, then Aε = Sε Jε S−1
ε with Sε =

[
0 ε

1 1

]
and Jε =

[
0 0
0 ε

]
. If we let ε → 0, then

Jε →
[

0 0
0 0

]
= J1(0) ⊕ J1(0), but Aε → A0 =

[
0 0
1 0

]
, whose Jordan canonical form

is J2(1). Small variations in the entries of a matrix can result in major changes in its
Jordan canonical form. The root of the difficulty is that rank A is not a continuous
function of the entries of A.

It is sometimes useful to know that every matrix is similar to a matrix of the form
(3.1.12) in which all the “+1” entries in the Jordan blocks are replaced by any ε �= 0.

Corollary 3.1.21. Let A ∈ Mn and a nonzero ε ∈ C be given. Then there exists a
nonsingular S(ε) ∈ Mn such that

A = S(ε)

⎡
⎢⎣ Jn1 (λ1, ε)

. . .
Jnk (λk, ε)

⎤
⎥⎦ S(ε)−1 (3.1.22)

in which n1 + n2 + · · · + nk = n and

Jm(λ, ε) =

⎡
⎢⎢⎢⎢⎣

λ ε

. . .
. . .
. . . ε

λ

⎤
⎥⎥⎥⎥⎦ ∈ Mm

If A is real and has real eigenvalues, and if ε ∈ R, then S(ε) may be taken to be real.

Proof. First find a nonsingular matrix S1 ∈ Mn such that S−1
1 AS1 is a Jordan ma-

trix of the form (3.1.3) (with a real S1 if A is real and has real eigenvalues).
Let Dε,i = diag(1, ε, ε2, . . . , εni−1), define Dε = Dε,1 ⊕ · · · ⊕ Dε,q , and compute
D−1

ε (S−1
1 AS1)Dε . This matrix has the form (3.1.22), so S(ε) = S1 Dε meets the stated

requirements. �

Problems

3.1.P1 Supply the computational details to prove (3.1.4).

3.1.P2 What are the Jordan canonical forms of the two matrices in (3.0.0)?

3.1.P3 Suppose that A ∈ Mn has some non-real entries, but only real eigenvalues. Show
that A is similar to a real matrix. Can the similarity matrix ever be chosen to be real?
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3.1.P4 Let A ∈ Mn be given. If A is similar to cA for some complex scalar c with |c| �= 1,
show that σ (A) = {0} and hence A is nilpotent. Conversely, if A is nilpotent, show that A
is similar to cA for all nonzero c ∈ C.

3.1.P5 Explain why every Jordan block Jk(λ) has a one-dimensional eigenspace associ-
ated with the eigenvalue λ. Conclude that λ has geometric multiplicity 1 and algebraic
multiplicity k as an eigenvalue of Jk(λ).

3.1.P6 Carry out the three steps in the proof of (3.1.11) to find the Jordan canonical forms
of

[
1 1
1 1

]
and

⎡
⎣3 1 2

0 3 0
0 0 3

⎤
⎦

Confirm your answers by using (3.1.18).

3.1.P7 Let A ∈ Mn , let λ be an eigenvalue of A, and let k ∈ {1, . . . , n}. Explain why
rk−1(A, λ) − 2rk(A, λ) + rk+1(A, λ) is the number of Jordan blocks of A that have size k
and eigenvalue λ.

3.1.P8 Let A ∈ Mn be given. Suppose that rank A = r ≥ 1 and A2 = 0. Use the preceding
problem or (3.1.18) to show that the Jordan canonical form of A is J2(0) ⊕ · · · ⊕ J2(0) ⊕
0n−2r (there are r 2-by-2 blocks). Compare with (2.6.P23).

3.1.P9 Let n ≥ 3. Show that the Jordan canonical form of Jn(0)2 is Jm(0) ⊕ Jm(0) if
n = 2m is even, and it is Jm+1(0) ⊕ Jm(0) if n = 2m + 1 is odd.

3.1.P10 For any λ ∈ C and any positive integer k, show that the Jordan canonical form of
−Jk(λ) is Jk(−λ). In particular, the Jordan canonical form of −Jk(0) is Jk(0).

3.1.P11 The information contained in the Weyr characteristic of a matrix associated with
a given eigenvalue can be presented as a dot diagram, sometimes called a Ferrers diagram
or Young diagram. For example, consider the Jordan matrix J in (3.1.16a) and its Weyr
characteristic w(J, 0) = (w1, w2, w3). Construct the dot diagram

w1 • • • • • •
w2 • • • • •
w3 • •

s1 s2 s3 s4 s5 s6

by putting w1 dots in the first row, w2 dots in the second row, and w3 dots in the third
row. We stop with the third row since wk = 0 for all k ≥ 4. Proceeding from the left,
the respective column lengths are 3, 3, 2, 2, 2, 1, which is the Segre characteristic sk =
sk(J, 0), k = 1, 2, . . . , 6. That is, J has 2 Jordan blocks of the form J3(0), 3 blocks of the
form J2(0), and 1 block of the form J1(0). Conversely, if one first constructs a dot diagram
by putting s1 dots in the first column, s2 dots in the second column, and so forth, then there
are w1 dots in the first row, w2 dots in the second row, and w3 dots in the third row. In
this sense, the Segre and Weyr characteristics are conjugate partitions of their common
sum n; either characteristic can be derived from the other via a dot diagram. In general,
for A ∈ Mn and a given eigenvalue λ of A, use the Weyr characteristic to construct a dot
diagram with wk(A, λ) dots in row k = 1, 2, . . . so long as wk(A, λ) > 0. (a) Explain why
there are s j (A, λ) dots in column j for each j = 1, 2, . . . . (b) Explain why one can also
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start with the Segre characteristic, construct the columns of a dot diagram from it, and then
read off the Weyr characteristic from the rows.

3.1.P12 Let A ∈ Mn , and let k and p be given positive integers. Let wk = wk(A, λ),
k = 1, 2, . . . and sk = sk(A, λ), k = 1, 2, . . . denote the Weyr and Segre characteristics
of A, respectively, both associated with a given eigenvalue λ. Show that (a) swk ≥ k if
wk > 0; (b) k > swk+1 for all k = 1, 2, . . . ; (c) wsk ≥ k if sk > 0; and (d) k > wsk+1 for
all k = 1, 2, . . . . (e) Explain why sk ≥ p > sk+1 if and only if wp = k. (f) Show that the
following three statements are equivalent: (i) sk ≥ p > p − 1 > sk+1; (ii) sk ≥ p > sk+1

and sk ≥ p − 1 > sk+1; (iii) p ≥ 2 and wp = wp−1 = k. (g) Explain why sk > sk − 1 >

sk+1 if and only if there is no block J�(λ) of size � = sk − 1 in the Jordan canonical
form of A. (h) Show that the following four statements are equivalent: (i) sk − sk+1 ≥ 2;
(ii) sk = sk ≥ sk − 1 > sk+1; (iii) p = sk ≥ 2 and there is no block Jp−1(λ) in the Jordan
canonical form of A; (iv) p = sk ≥ 2 and wp = wp−1 = k.

3.1.P13 Let k and m be given positive integers and consider the block Jordan matrix

J+
k (λIm) :=

⎡
⎢⎢⎢⎢⎣

λIm Im

λIm
. . .
. . . Im

λIm

⎤
⎥⎥⎥⎥⎦ ∈ Mkm

(a block k-by-k matrix). Compute the Weyr characteristic of J+
k (λIm) and use it to show

that the Jordan canonical form of J+
k (λIm) is Jk(λ) ⊕ · · · ⊕ Jk(λ) (m summands).

3.1.P14 Let A ∈ Mn . Use (3.1.18) to show that A and AT are similar. Are A and A∗

similar?

3.1.P15 Let n ≥ 2, let x, y ∈ Cn be given nonzero vectors, and let A = xy∗. (a) Show

that the Jordan canonical form of A is B ⊕ 0n−2, in which B =
[

y∗x 0
0 0

]
if y∗x �= 0 and

B = J2(0) if y∗x = 0. (b) Explain why a rank-one matrix is diagonalizable if and only if
its trace is nonzero.

3.1.P16 Suppose that λ �= 0 and k ≥ 2. Then Jk(λ)−1 is a polynomial in Jk(λ) (2.4.3.4).
(a) Explain why Jk(λ)−1 is an upper triangular Toeplitz matrix, all of whose main diagonal
entries are λ−1. (b) Let [λ−1 a2 . . . an] be the first row of Jk(λ)−1. Verify that the 1, 2 entry
of Jk(λ)Jk(λ)−1 is λa2 + λ−1 and explain why all the entries in the first superdiagonal of
Jk(λ)−1 are −λ−2; in particular, these entries are all nonzero. (c) Show that rank(Jk(λ)−1 −
λ−1 I )k = n − k for k = 1, . . . , n and explain why the Jordan canonical form of Jk(λ)−1 is
Jk(λ−1).

3.1.P17 Suppose that A ∈ Mn is nonsingular. Show that A is similar to A−1 if and only if
for each eigenvalue λ of A with λ �= ±1, the number of Jordan blocks of the form Jk(λ)
in the Jordan canonical form of A is equal to the number of blocks of the form Jk(λ−1),
that is, the blocks Jk(λ) and Jk(λ−1) occur in pairs if λ �= ±1 (there is no restriction on the
blocks with eigenvalues ±1).

3.1.P18 Suppose that A ∈ Mn is nonsingular. (a) If each eigenvalue of A is either +1 or
−1, explain why A is similar to A−1. (b) Suppose that there are nonsingular B, C, S ∈ Mn

such that A = BC , B−1 = SBS−1, and C−1 = SC S−1. Show that A is similar to A−1.
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3.1.P19 Let x, y ∈ Rn and t ∈ R be given. Define the upper triangular matrix

Ax,y,t =
⎡
⎣1 xT t

In y
1

⎤
⎦ ∈ Mn+2(R)

and let Hn(R) = {Ax,y,t : x, y ∈ Rn and t ∈ R}. (a) Show that Ax,y,t Aξ,η,τ = Ax+ξ,y+η,t+τ

and (Ax,y,t )−1 = A−x,−y,−t . (b) Explain whyHn(R) is a subgroup (called the nth Heisenberg
group) of the group of upper triangular matrices in Mn+2(R) that have all main diagonal
entries equal to +1. (c) Explain why the Jordan canonical form of Ax,y,t is J3(1) ⊕ In−1 if
xT y �= 0; if xT y = 0, it is either J2(1) ⊕ J2(1) ⊕ In−2 (x �= 0 �= y), or J2(1) ⊕ In (x = 0
or y = 0 but not both), or In+2 (x = y = 0). (d) Explain why Ax,y,t is always similar to its
inverse.

3.1.P20 Let A ∈ Mn and suppose that n > rank A ≥ 1. If rank A = rank A2, that is, if 0 is
a semisimple eigenvalue of A, show that A is rank principal; see (0.7.6). For special cases
of this result, see (2.5.P48) and (4.1.P30).

3.1.P21 Let A ∈ Mn be an unreduced upper Hessenberg matrix; see (0.9.9). (a) For each
eigenvalue λ of A, explain why w1(A, λ) = 1 and A is nonderogatory. (b) Suppose that A
is diagonalizable (for example, A might be Hermitian and tridiagonal). Explain why A has
n distinct eigenvalues.

3.1.P22 Let A ∈ Mn(R) be tridiagonal. (a) If ai,i+1ai+1,i > 0 for all i = 1, . . . , n − 1, show
that A has n distinct real eigenvalues. (b) If ai,i+1ai+1,i ≥ 0 for all i = 1, . . . , n − 1, show
that all the eigenvalues of A are real.

3.1.P23 Let A = [ai j ] ∈ Mn be tridiagonal with aii real for all i = 1, . . . , n. (a) If
ai,i+1ai+1,i is real and positive for i = 1, . . . , n − 1, show that A has n distinct real eigen-
values. (b) If ai,i+1ai+1,i is real and nonnegative for all i = 1, . . . , n − 1, show that all
the eigenvalues of A are real. (c) If each aii = 0 and ai,i+1ai+1,i is real and negative
for i = 1, . . . , n − 1, deduce from (a) that A has n distinct pure imaginary eigenval-
ues. In addition, show that those eigenvalues occur in ± pairs, so A is singular if n
is odd.

3.1.P24 Consider the 4-by-4 matrices A = [Ai j ]2
i, j=1 and B = [Bi j ]2

i, j=1, in which A11 =
A22 = B11 = B22 = J2(0), A21 = B21 = 02, A12 =

[
0 1
1 1

]
, and B12 =

[
1 1
1 0

]
. (a) For all

k = 1, 2, . . . , show that Ak and Bk are 0 − 1 matrices (that is, every entry is 0 or 1) that
have the same number of entries equal to 1. (b) Explain why A and B are nilpotent and
similar. What is their Jordan canonical form? (c) Explain why two permutation-similar
0 − 1 matrices have the same number of entries equal to 1. (d) Show that A and B are not
permutation similar.

3.1.P25 Use (3.1.11) to show that A ∈ Mn is diagonalizable if and only if the following
condition is satisfied for each eigenvalue λ of A: If x ∈ Cn and (A − λI )2x = 0, then
(A − λI )x = 0.

3.1.P26 Let A ∈ Mn be normal. Use the preceding problem to deduce from the definition
(2.5.1) that A is diagonalizable; do not invoke the spectral theorem (2.5.3).

3.1.P27 Let A ∈ Mn be normal. Use the preceding problem and the Q R factorization
(2.1.14) to show that A is unitarily diagonalizable.
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3.1.P28 Let A, B ∈ Mn . Show that A and B are similar if and only if rk(A, λ) = rk(B, λ)
for every eigenvalue λ of A and every k = 1, . . . , n.

3.1.P29 Let A ∈ Mk be upper triangular. Suppose that aii = 1 for each i = 1, . . . , n and
ai,i+1 �= 0 for each i = 1, . . . , n − 1. Show that A is similar to Jk(1).

3.1.P30 Suppose that the only eigenvalue of A ∈ Mn is λ = 1. Show that A is similar to
Ak for each k = 1, 2, . . . .

Notes and Further Readings. Camille Jordan published his eponymous canonical form
in C. Jordan, Traité des Substitutions et des Équations Algébriques, Gauthier-Villars,
Paris, 1870; see section 157, pp. 125–126. Our proof of (3.1.11) is in the spirit
of R. Fletcher and D. Sorensen, An algorithmic derivation of the Jordan canonical
form, Amer. Math. Monthly 90 (1983) 12–16. For a combinatorial approach, see R.
Brualdi, The Jordan canonical form: An old proof, Amer. Math. Monthly 94 (1987)
257–267.

3.2 Consequences of the Jordan canonical form

3.2.1 The structure of a Jordan matrix. The Jordan matrix

J =

⎡
⎢⎣ Jn1 (λ1)

. . .
Jnk (λk)

⎤
⎥⎦ , n1 + n2 + · · · + nk = n (3.2.1.1)

has a definite structure that makes apparent certain basic properties of any matrix that
is similar to it.

1. The number k of Jordan blocks (counting multiple occurrences of the same block)
is the maximum number of linearly independent eigenvectors of J .

2. The matrix J is diagonalizable if and only if k = n, that is, if and only if all the
Jordan blocks are 1-by-1.

3. The number of Jordan blocks corresponding to a given eigenvalue is the geometric
multiplicity of the eigenvalue, which is the dimension of the associated eigenspace.
The sum of the sizes of all the Jordan blocks corresponding to a given eigenvalue
is its algebraic multiplicity.

4. Let A ∈ Mn be a given nonzero matrix, and suppose that λ is an eigenvalue of A.
Using (3.1.14) and the notation of (3.1.15), we know that there is some positive
integer q such that

r1(A, λ) > r2(A, λ) > · · · > rq−1(A, λ) > rq (A, λ) = rq+1(A, λ)

This integer q is the index of λ as an eigenvalue of A; it is also the size of the
largest Jordan block of A with eigenvalue λ.

3.2.2 Linear systems of ordinary differential equations. One application of the
Jordan canonical form that is of considerable theoretical importance is the analysis
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of solutions of a system of first order linear ordinary differential equations with
constant coefficients. Let A ∈ Mn be given, and consider the first-order initial value
problem

x ′(t) = Ax(t)
x(0) = x0 is given

(3.2.2.1)

in which x(t) = [x1(t), x2(t), . . . , xn(t)]T , and the prime (′) denotes differentiation with
respect to t . If A is not a diagonal matrix, this system of equations is coupled; that is,
x ′

i (t) is related not only to xi (t) but to the other entries of the vector x(t) as well. This
coupling makes the problem hard to solve, but if A can be transformed to diagonal (or
almost diagonal) form, the amount of coupling can be reduced or even eliminated and
the problem may be easier to solve. If A = S J S−1 and J is the Jordan canonical form
of A, then (3.2.2.1) becomes

y′(t) = J y(t)
y(0) = y0 is given

(3.2.2.2)

in which x(t) = Sy(t) and y0 = S−1x0. If the problem (3.2.2.2) can be solved, then
each entry of the solution x(t) to (3.2.2.1) is just a linear combination of the entries of
the solution to (3.2.2.2), and the linear combinations are given by S.

If A is diagonalizable, then J is a diagonal matrix, and (3.2.2.2) is just an uncoupled
set of equations of the form y′k(t) = λk yk(t), which have the solutions yk(t) = yk(0)eλk t .
If the eigenvalue λk is real, this is a simple exponential, and if λk = ak + ibk is not real,
yk(t) = yk(0)eak t [cos(bkt) + i sin(bkt)] is an oscillatory term with a real exponential
factor if ak �= 0.

If J is not diagonal, the solution is more complicated but can be described explicitly.
The entries of y(t) that correspond to distinct Jordan blocks in J are not coupled, so it
suffices to consider the case in which J = Jm(λ) is a single Jordan block. The system
(3.2.2.2) is

y′1(t) = λy1(t) + y2(t)

...
...

...

y′m−1(t) = λym−1(t) + ym(t)

y′m(t) = λym(t)

which can be solved in a straightforward way from the bottom up. Starting with the
last equation, we obtain

ym(t) = ym(0)eλt

so that

y′m−1(t) = λym−1(t) + ym(0)eλt

This has the solution

ym−1(t) = eλt [ym(0)t + ym−1(0)]
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which can now be used in the next equation. It becomes

y′m−2(t) = λym−2(t) + ym(0)teλt + ym−1(0)eλt

which has the solution

ym−2(t) = eλt [ym(0)
t2

2
+ ym−1(0)t + ym−2(0)]

and so forth. Each entry of the solution has the form

yk(t) = eλt qk(t) = eλt
m∑

i=k

yi (0)
t i−k

(i − k)!

so qk(t) is an explicitly determined polynomial of degree at most m − k, k = 1, . . . , m.
From this analysis, we conclude that the entries of the solution x(t) of the problem

(3.2.2.1) have the form

x j (t) = eλ1t p1(t) + eλ2t p2(t) + · · · + eλk t pk(t)

in which λ1, λ2, . . . , λk are the distinct eigenvalues of A and each p j (t) is a polynomial
whose degree is strictly less than the size of the largest Jordan block corresponding
to the eigenvalue λ j (that is, strictly less than the index of λ j ). Real eigenvalues are
associated with terms that contain a real exponential factor, while non-real eigenvalues
are associated with terms that contain an oscillatory factor and possibly also a real
exponential factor.

3.2.3 Similarity of a matrix and its transpose. Let Km be the m-by-m reversal
matrix (0.9.5.1), which is symmetric and involutory: Km = K T

m = K−1
m .

Exercise. Verify that Km Jm(λ) = Jm(λ)T Km and Jm(λ)Km = Km Jm(λ)T .
Deduce that Km Jm(λ) and Jm(λ)Km are symmetric, and Jm(λ) =
K−1

m Jm(λ)T Km = Km Jm(λ)T Km . Hint: See (0.9.7).

The preceding exercise shows that each Jordan block is similar to its transpose via a
reversal matrix. Therefore, if J is a given Jordan matrix (3.2.1.1), then J T is similar to
J via the symmetric involutory matrix K = Kn1 ⊕ · · · ⊕ Knk : J T = K J K . If S ∈ Mn

is nonsingular (but not necessarily symmetric) and A = S J S−1, then J = S−1 AS,

AT = S−T J T ST = S−T K J K ST = S−T K (S−1 AS)K ST

= (S−T K S−1)A(SK ST ) = (SK ST )−1 A(SK ST )

and the similarity matrix SK ST between A and AT is symmetric. We have proved the
following theorem.

Theorem 3.2.3.1. Let A ∈ Mn. There is a nonsingular complex symmetric matrix S
such that AT = S AS−1.

If A is nonderogatory, we can say a little more: every similarity between A and AT

must be via a symmetric matrix; see (3.2.4.4).
Returning to the similarity between A and its Jordan canonical form, we can write

A = S J S−1 = (SK ST )(S−T K J S−1) = (S J K ST )(S−T K S−1)
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in which K J and J K are symmetric. This observation proves the following theorem.

Theorem 3.2.3.2. Each square complex matrix is a product of two complex symmetric
matrices, in which either factor may be chosen to be nonsingular.

For any field F, it is known that every matrix in Mn(F) is similar, via some symmetric
matrix in Mn(F), to its transpose. In particular, each real square matrix is similar, via
some real symmetric matrix, to its transpose.

3.2.4 Commutativity and nonderogatory matrices. For any polynomial p(t) and
any A ∈ Mn , p(A) always commutes with A. What about the converse? If A, B ∈ Mn

are given and if A commutes with B, is there some polynomial p(t) such that B = p(A)?
Not always, for if we take A = I , then A commutes with every matrix and p(I ) = p(1)I
is a scalar matrix; no nonscalar matrix can be a polynomial in I . The problem is that
the form of A permits it to commute with many matrices, but to generate only a limited
set of matrices of the form p(A).

What can we say if A = Jm(λ) is a single Jordan block of size 2 or greater?

Exercise. Let λ ∈ C and an integer m ≥ 2 be given. Show that B ∈ Mm commutes
with Jm(λ) if and only if it commutes with Jm(0). Hint: Jm(λ) = λIm + Jm(0).

Exercise. Show that B =
[

b11 b12
b21 b22

]
∈ M2 commutes with J2(0) if and only if

b21 = 0 and b11 = b22; this is the case if and only if B = b11 I2 + b12 J2(0), which
is a polynomial in J2(0).

Exercise. Show that B = [bi j ] ∈ M3 commutes with J3(0) if and only if B is
upper triangular, b11 = b22 = b33, and b12 = b23, that is, if and only if B is an
upper triangular Toeplitz matrix (0.9.7). This is the case if and only if B =
b11 I3 + b12 J3(0) + b13 J3(0)2, which is a polynomial in J3(0).

Exercise. What can you say about B = [bi j ] ∈ M4 if it commutes with J4(0)?

Definition 3.2.4.1. A square complex matrix is nonderogatory if each of its eigenvalues
has geometric multiplicity 1.

Since the geometric multiplicity of a given eigenvalue of a Jordan matrix is equal to
the number of Jordan blocks corresponding to that eigenvalue, a matrix is nonderogatory
if and only if each of its distinct eigenvalues corresponds to exactly one block in its
Jordan canonical form. Examples of nonderogatory matrices A ∈ Mn are any matrix
with n distinct eigenvalues or any matrix with only one eigenvalue, which has geometric
multiplicity 1 (that is, A is similar to a single Jordan block). A scalar matrix is the
antithesis of a nonderogatory matrix.

Exercise. If A ∈ Mn is nonderogatory, why is rank A ≥ n − 1?

Theorem 3.2.4.2. Suppose that A ∈ Mn is nonderogatory. If B ∈ Mn commutes with
A, then there is a polynomial p(t) of degree at most n − 1 such that B = p(A).

Proof. Let A = S JA S−1 be the Jordan canonical form of A. If B A = AB, then
BS JA S−1 = S JA S−1 B and hence (S−1 BS)JA = J (S−1 BS). If we can show that
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S−1 BS = p(JA), then B = Sp(JA)S−1 = p(S JA S−1) = p(A) is a polynomial in A.
Thus, it suffices to assume that A is itself a Jordan matrix.

Assume that (a) A = Jn1 (λ1) ⊕ · · · ⊕ Jnk (λk), in which λ1, λ2, . . . , λk are distinct,
and (b) A commutes with B. If we partition B = [Bi j ]k

i, j=1 conformally with J , then
(2.4.4.2) ensures that B = B11 ⊕ · · · ⊕ Bkk is block diagonal. Moreover, Bii Jni (0) =
Jni (0)Bii for each i = 1, 2, . . . , k. A computation reveals that each Bii must be an
upper triangular Toeplitz matrix (0.9.7), that is,

Bii =

⎡
⎢⎢⎢⎢⎣

b(i)
1 b(i)

2 · · · b(i)
ni

. . .
. . .

...
. . . b(i)

2

b(i)
1

⎤
⎥⎥⎥⎥⎦ (3.2.4.3)

which is a polynomial in Jni (0) and hence also a polynomial in Jni (λ):

Bii = b(i)
1 Ini + b(i)

2 Jni (0) + · · · + b(i)
ni

Jni (0)ni−1

= b(i)
1 (Jni (λ) − λi Ini )

0 + b(i)
2 (Jni (λ) − λi Ini )

1 + · · · + b(i)
ni

(Jni (λ) − λi Ini )
ni−1

If we can construct polynomials pi (t) of degree at most n − 1 with the property that
pi (Jn j (λ j )) = 0 for all i �= j , and pi (Jni (λi )) = Bii , then

p(t) = p1(t) + · · · + pk(t)

fulfills the assertions of the theorem. Define

qi (t) =
k∏

j=1
j �=i

(t − λ j )
n j , degree qi (t) = n − ni

and observe that qi (Jn j (λ j )) = 0 whenever i �= j because (Jn j (λ j ) − λ j I )n j = 0. The
upper triangular Toeplitz matrix qi (Jni (λi )) is nonsingular because its main diagonal
entries qi (λi ) are nonzero.

The key to our construction of the polynomials pi (t) is observing that the product
of two upper triangular Toeplitz matrices is upper triangular Toeplitz, and the inverse
of a nonsingular upper triangular Toeplitz matrix has the same form (0.9.7). Thus,
[qi (Jni (λi ))]−1 Bii is an upper triangular Toeplitz matrix, which is therefore a polynomial
in Jni (λi ):

[qi (Jni (λi ))]
−1 Bii = ri (Jni (λi ))

in which ri (t) is a polynomial of degree at most ni − 1. The polynomial pi (t) =
qi (t)ri (t) has degree at most n − 1,

pi (Jn j (λ j )) = qi (Jn j (λ j ))ri (Jn j (λ j )) = 0 whenever i �= j

and

pi (Jni (λi )) = qi (Jni (λi ))ri (Jni (λi ))

= qi (Jni (λi ))(qi (Jni (λi ))
−1 Bii ) = Bii

�
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There is a converse to the preceding theorem; see (3.2.P2).
An illustrative application of (3.2.4.2) is the following strengthening of (3.2.3.1) in

a special case.

Corollary 3.2.4.4. Let A, B, S ∈ Mn be given and suppose that A is nonderogatory.

(a) If AB = B AT , then B is symmetric.
(b) If S is nonsingular and AT = S−1 AS, then S is symmetric.

Proof. (a) There is a symmetric nonsingular R ∈ Mn such that AT = R AR−1 (3.2.3.1),
so AB = B AT = B R AR−1 and hence A(B R) = (B R)A. Then (3.2.4.2) ensures that
there is a polynomial p(t) such that B R = p(A). Compute RBT = (B R)T = p(A)T =
p(AT ) = p(R AR−1) = Rp(A)R−1 = R(B R)R−1 = RB. Since R is nonsingular, it
follows that BT = B.
(b) If AT = S−1 AS, then S AT = AS, so (a) ensures that S is symmetric. �

3.2.5 Convergent and power-bounded matrices. A matrix A ∈ Mn is convergent
if each entry of Am tends to zero as m → ∞; it is is power bounded if all of the entries
of the family {Am : m = 1, 2, . . .} are contained in a bounded subset of C. A convergent
matrix is power bounded; the identity matrix is an example of a power-bounded matrix
that is not convergent. Convergent matrices play an important role in the analysis of
algorithms in numerical linear algebra.

A diagonal matrix (and hence also a diagonalizable matrix) is convergent if and
only if all its eigenvalues have modulus strictly less than one. The same is true
of nondiagonalizable matrices, but a careful analysis is required to come to this
conclusion.

Let A = S JA S−1 be the Jordan canonical form of A, so Am = S J m
A S−1 and Am → 0

as m → ∞ if and only if J m
A → 0 as m → ∞. Since JA is a direct sum of Jordan blocks,

it suffices to consider the behavior of powers of a single Jordan block. For 1-by-1 blocks,
J1(λ)m = [λm] → 0 as m → ∞ if and only if |λ| < 1. For blocks of size 2 or greater,
Jk(λ)m = (λIk + Jk(0))m , which we can compute using the binomial theorem. We have
Jk(0)m = 0 for all m ≥ k, so

Jk(λ)m = (λI + Jk(0))m =
m∑

j=0

(
m

m − j

)
λm− j Jk(0) j

=
k−1∑
j=0

(
m

m − j

)
λm− j Jk(0) j

for all m ≥ k. The diagonal entries of Jk(λ)m are all equal to λm , so Jk(λ)m → 0 implies
that λm → 0, which means that |λ| < 1. Conversely, if |λ| < 1, it suffices to prove
that (

m

m − j

)
λm− j → 0 as m → ∞ for each j = 0, 1, 2, . . . , k − 1
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There is nothing to prove if λ = 0 or j = 0, so suppose that 0 < |λ| < 1 and j ≥ 1;
compute ∣∣∣∣

(
m

m − j

)
λm− j

∣∣∣∣ =
∣∣∣∣m(m − 1)(m − 2) · · · (m − j + 1)λm

j!λ j

∣∣∣∣
≤
∣∣∣∣m jλm

j!λ j

∣∣∣∣ (3.2.5.1)

It suffices to show that m j |λ|m → 0 as m → ∞. One way to see this is to take log-
arithms and observe that j log m + m log |λ| → −∞ as m → ∞ because log |λ| < 0
and l’Hôpital’s rule ensures that (log m)/m → 0 as m → ∞. For an alternative ap-
proach that is independent of the Jordan canonical form, see (5.6.12).

To analyze the power-bounded case, we need to examine what happens for eigenval-
ues with unit modulus. For 1-by-1 blocks and |λ| = 1, J1(λ)m = [λm] remains bounded
as m → ∞. The identity in (3.2.5.1) reveals that superdiagonal entries of Jk(λ)m do not
remain bounded if k ≥ 2 and |λ| = 1. We summarize our observations in the following
theorem.

Theorem 3.2.5.2. Let A ∈ Mn be given. Then A is convergent if and only if every
eigenvalue of A has modulus strictly less than one; A is power bounded if and only
if every eigenvalue of A has modulus at most one and every Jordan block associated
with an eigenvalue of modulus one is 1-by-1, that is, every eigenvalue of modulus one
is semisimple.

3.2.6 The geometric multiplicity–algebraic multiplicity inequality. The geo-
metric multiplicity of an eigenvalue λ of a given A ∈ Mn is the number of Jordan
blocks of A corresponding to λ. This number is less than or equal to the sum of the
sizes of all the Jordan blocks corresponding to λ; this sum is the algebraic multiplicity
of λ. Thus, the geometric multiplicity of an eigenvalue is less than or equal to its
algebraic multiplicity. The geometric and algebraic multiplicities of an eigenvalue λ

are equal (that is, λ is a semisimple eigenvalue) if and only if every Jordan block
corresponding to λ is 1-by-1. We have previously discussed the inequality between the
algebraic and geometric multiplicities of an eigenvalue from very different points of
view: see (1.2.18), (1.3.7), and (1.4.10).

3.2.7 Diagonalizable + nilpotent: the Jordan decomposition. For any Jordan
block, we have the identity Jk(λ) = λIk + Jk(0), and Jk(0)k = 0. Thus, any Jordan
block is the sum of a diagonal matrix and a nilpotent matrix.

More generally, a Jordan matrix (3.2.1.1) can be written as J = D + N , in which
D is a diagonal matrix whose main diagonal is the same as that of J , and N = J − D.
The matrix N is nilpotent, and N k = 0 if k is the size of the largest Jordan block in J ,
which is the index of 0 as an eigenvalue of N .

Finally, if A ∈ Mn and A = S JA S−1 is its Jordan canonical form, then A = S(D +
N )S−1 = SDS−1 + SN S−1 = AD + AN , in which AD is diagonalizable and AN is
nilpotent. Moreover, AD AN = AN AD because both D and N are conformal block
diagonal matrices, and the diagonal blocks in D are scalar matrices. Of course, AD and
AN also commute with A = AD + AN .
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The preceding discussion establishes the existence of a Jordan decomposition: Any
square complex matrix is a sum of two commuting matrices, one of which is diagonal-
izable and the other of which is nilpotent. For uniqueness of the Jordan decomposition,
see (3.2.P18).

3.2.8 The Jordan canonical form of a direct sum. Let Ai ∈ Mni be given for
i = 1, . . . , m and suppose that each Ai = Si Ji S−1

i , in which each Ji is a Jordan matrix.
Then the direct sum A = A1 ⊕ · · · ⊕ Am is similar to the direct sum J = J1 ⊕ · · · ⊕ Jm

via S = S1 ⊕ · · · ⊕ Sm . Moreover, J is a direct sum of direct sums of Jordan blocks,
so it is a Jordan matrix and hence uniqueness of the Jordan canonical form ensures that
it is the Jordan canonical form of A.

3.2.9 An optimality property of the Jordan canonical form. The Jordan canon-
ical form of a matrix is a direct sum of upper triangular matrices that have nonzero
off-diagonal entries only in the first superdiagonal, so it has many zero entries. How-
ever, among all the matrices that are similar to a given matrix, the Jordan canonical
form need not have the least number of nonzero entries. For example,

A =

⎡
⎢⎢⎣

0 0 0 −1
1 0 0 0
0 1 0 2
0 0 1 0

⎤
⎥⎥⎦ (3.2.9.1)

has five nonzero entries, but its Jordan canonical form J = J2(1) ⊕ J2(−1) has six
nonzero entries. However, A has five nonzero off-diagonal entries, while J has only
two nonzero off-diagonal entries. We now explain why no matrix similar to A can have
fewer than two nonzero off-diagonal entries.

Observation 3.2.9.2. Suppose that B = [bi j ] ∈ Mm has fewer than m − 1 nonzero off-
diagonal entries. Then there exists a permutation matrix P such that PT B P = B1 ⊕ B2

in which each Bi ∈ Mni and each ni ≥ 1.

Why is this? Here is an informal argument that can be made precise: Consider m
islands C1, . . . , Cm located near each other in the sea. There is a footbridge between two
different islands Ci and C j if and only if i �= j and either bi j �= 0 or b ji �= 0. Suppose
that C1, C j2, . . . , C jv are all the different islands that one can walk to starting from C1.
The minimum number of bridges required to link up all the islands is m − 1. We are
assuming that there are fewer than m − 1 bridges, so ν < m. Relabel all the islands
(1 through m again) in any way that gives the new labels 1, 2, . . . , ν to C1, C j2, . . . , C jv .
Let P ∈ Mm be the permutation matrix corresponding to the relabeling. Then PT B P =
B1 ⊕ B2, in which B1 ∈ Mν . The direct sum structure reflects the fact that no bridge
joins any of the first (relabeled) ν islands to any of the remaining n − ν islands.

We say that a given B ∈ Mm is indecomposable under permutation similarity if there
is no permutation matrix P such that PT B P = B1 ⊕ B2, in which each Bi ∈ Mni and
each ni ≥ 1. Then (3.2.9.2) says that if B ∈ Mm is indecomposable under permutation
similarity, it has at least m − 1 nonzero off-diagonal entries.

Observation 3.2.9.3. Any given B ∈ Mn is permutation similar to a direct sum of
matrices that are indecomposable under permutation similarity.
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Proof. Consider the finite set S = {PT B P : P ∈ Mn is a permutation matrix}. Some
of the elements of S are block diagonal (take P = In , for example). Let q be the largest
positive integer such that B is permutation similar to B1 ⊕ · · · ⊕ Bq , each Bi ∈ Mni ,
and each ni ≥ 1; maximality of q ensures that no direct summand Bi is decomposable
under permutation similarity. �

The number of nonzero off-diagonal entries in a square matrix is not changed by a
permutation similarity, so we can combine the two preceding observations to obtain a
lower bound on the number of Jordan blocks in the Jordan canonical form of a matrix.

Observation 3.2.9.4. Suppose that a given B ∈ Mn has p nonzero off-diagonal entries
and that its Jordan canonical form JB contains r Jordan blocks. Then r ≥ n − p.

Proof. Suppose that B is permutation similar to B1 ⊕ · · · ⊕ Bq , in which each Bi ∈ Mni

is indecomposable under permutation similarity, and each ni ≥ 1. The number of
nonzero off-diagonal entries in Bi is at least ni − 1, so the number of nonzero off-
diagonal entries in B is at least (n1 − 1) + · · · + (nq − 1) = n − q. That is, p ≥ n − q,
so q ≥ n − p. But (3.2.8) ensures that JB contains at least q Jordan blocks, so r ≥ q ≥
n − p. �

Our final observation is that the number of nonzero off-diagonal entries in an n-by-
n Jordan matrix J = Jn1 (λ1) ⊕ · · · ⊕ Jnr (λr ) is exactly (n1 − 1) + · · · + (nr − 1) =
n − r .

Theorem 3.2.9.5. Let A, B ∈ Mn be given. Suppose that B has exactly p nonzero
off-diagonal entries and is similar to A. Let JA be the Jordan canonical form of A and
suppose that JA consists of r Jordan blocks. Then p ≥ n − r , which is the number of
nonzero off-diagonal entries of JA.

Proof. Since B is similar to A, JA is also the Jordan canonical form of B, and (3.2.9.4)
ensures that r ≥ n − p, so p ≥ n − r . �

3.2.10 The index of an eigenvalue of a block upper triangular matrix. The
index of an eigenvalue λ of A ∈ Mn (the index of λ in A) is, equivalently, (a) the
size of the largest Jordan block of A with eigenvalue λ or (b) the smallest value of
m = 1, 2, . . . , n such that rank(A − λI )m = rank(A − λI )m+1 (and hence rank(A −
λI )m = rank(A − λI )m+k for all k = 1, 2, . . .). If the index of λ in A11 ∈ Mn1 is ν1

and the index of λ in A22 ∈ Mn2 is ν2, then the index of λ in the direct sum A11 ⊕ A22

is max{ν1, ν2}.
Exercise. Consider A =

[
J2(0) I2

0 J2(0)T

]
, so the index of the eigenvalue 0 in each

diagonal block is 2. Show that the index of 0 as an eigenvalue of A is 4.

If λ is an eigenvalue of A11 or A22 in the block upper triangular matrix A =[
A11 A12
0 A22

]
, and if A12 �= 0, what can we say about the index of λ as an eigenvalue of

A? For convenience, take λ = 0. Let the index of λ in A11 ∈ Mn1 be ν1, let the index
of λ in A22 ∈ Mn2 be ν2, and let m = ν1 + ν2. Then

Am =
[

Am
11

∑m
k=0 Ak

11 A12 Am−k
22

0 Am
22

]
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in which Am
11 = Aν1

11 Aν2
11 = 0 and Am

22 = Aν2
22 Aν1

22 = 0. Moreover, for each k =
0, 1, . . . , n either k ≥ ν1 or m − k ≥ ν2, so each Ak

11 A12 Am−k
22 = 0. We conclude that

Am = 0, so the index of λ in A is at most ν1 + ν2. An induction permits us to extend
this conclusion to any block upper triangular matrix.

Theorem 3.2.10.1. Let A = [Ai j ]
p
i, j=1 ∈ Mn be block upper triangular, so each Aii is

square and Ai j = 0 for all i > j . Suppose that the index of λ as an eigenvalue of each
diagonal block Aii is νi , i = 1, . . . , p. Then the index of λ as an eigenvalue of A is at
most ν1 + · · · + ν p.

Exercise. Provide details for the induction required to prove the preceding
theorem.

Corollary 3.2.10.2. Let λ ∈ C, let A =
[

A11 A12
0 λIn2

]
, and suppose that A11 ∈ Mn1 is

diagonalizable. Then every Jordan block of A with eigenvalue different from λ is
1-by-1, and every Jordan block of A with eigenvalue λ is either 1-by-1 or 2-by-2.

3.2.11 AB versus BA. If A ∈ Mm,n and B ∈ Mn,m , (1.3.22) ensures that the nonzero
eigenvalues of AB and B A are the same, including their multiplicities. In fact, we can
make a much stronger statement: the nonsingular parts of the Jordan canonical forms
of AB and B A are identical.

Theorem 3.2.11.1. Suppose that A ∈ Mm,n and B ∈ Mn,m. For each nonzero eigen-
value λ of AB and for each k = 1, 2, . . ., the respective Jordan canonical forms of AB
and B A contain the same number of Jordan blocks Jk(λ).

Proof. In the proof of (1.3.22), we found that C1 = [ AB
B

0
0n

]
and C2 = [ 0m

B
0

B A

]
are

similar. Let λ �= 0 be given and let k be any given positive integer. First observe that
the row rank of

(C1 − λIm+n)k =
[

(AB − λIm)k 0
� (−λIn)k

]
is n + rank((AB − λIm)k), then observe that the column rank of

(C2 − λIm+n)k =
[

(−λIm)k 0
� (B A − λIn)k

]
is m + rank((B A − λIn)k). But (C1 − λIm+n)k is similar to (C2 − λIm+n)k , so their
ranks are equal, that is,

rank((AB − λIm)k) = rank((B A − λIn)k) + m − n

for each k = 1, 2, . . . , which implies that

rank((AB − λIm)k−1) − rank((AB − λIm)k)

= rank((B A − λIn)k−1) − rank((B A − λIn)k)

for each k = 1, 2, . . . . Thus, the respective Weyr characteristics of AB and B A asso-
ciated with any given nonzero eigenvalue λ of AB are identical, so (3.1.18) ensures
that their respective Jordan canonical forms contain exactly the same number of blocks
Jk(λ) for each k = 1, 2, . . . . �
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3.2.12 The Drazin inverse. For a given A ∈ Mn , any X ∈ Mn such that AX A = A
is called a generalized inverse of A. Several types of generalized inverse are available,
each of which has some features of the ordinary inverse. The generalized inverse that
we consider in this section is the Drazin inverse.

Definition 3.2.12.1. Let A ∈ Mn and suppose that

A = S

[
B 0
0 N

]
S−1 (3.2.12.2)

in which S and B are square and nonsingular and N is nilpotent. The direct summand
B is absent if A is nilpotent; N is absent if A is nonsingular. The Drazin inverse of A
is

AD = S

[
B−1 0

0 0

]
S−1 (3.2.12.3)

Every A ∈ Mn has a representation of the form (3.2.12.2): Use the Jordan canonical
form (3.1.12), in which B is a direct sum of all the nonsingular Jordan blocks of A and
N is a direct sum of all the nilpotent blocks.

In addition to (3.2.12.2), suppose that A is represented as

A = T

[
C 0
0 N ′

]
T −1 (3.2.12.4)

in which T and C are square and nonsingular and N ′ is nilpotent. Then An =
S
[

Bn 0
0 0

]
S−1 = T

[
Cn 0
0 0

]
T −1, so rank An = rank Bn = rank B is the size of B since

it is nonsingular; for the same reason, it is also the size of C . We conclude that
B and C have the same size, and hence N and N ′ have the same size. Since
A = S

[
B 0
0 N

]
S−1 = T

[
C 0
0 N ′

]
T −1, it follows that R

[
B 0
0 N

]
=
[

C 0
0 N ′

]
R, in which

R = T −1S. Partition R = [Ri j ]2
i, j=1 conformally with

[
B 0
0 N

]
. Then (2.4.4.2) en-

sures that R12 = 0 and R21 = 0, so R = R11 ⊕ R22, R11 and R22 are nonsingular,
C = R11 B R−1

11 , N ′ = R22 N R−1
22 , and T = S R−1. Finally, compute the Drazin inverse

using (3.2.12.4):

T

[
C−1 0

0 0

]
T −1 = S R−1

[(
R11 B R−1

11

)−1
0

0 0

]
RS−1

= S

[
R−1

11 0
0 R−1

22

] [
R11 B−1 R−1

11 0
0 0

] [
R11 0
0 R22

]
S−1

= S

[
B−1 0

0 0

]
S−1 = AD

We conclude that the Drazin inverse is well-defined by (3.2.12.3).

Exercise. Explain why AD = A−1 if A is nonsingular.

Exercise. Explain why the Drazin inverse is a generalized inverse, that is,
AAD A = A for every A ∈ Mn .
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Let q be the index of the eigenvalue 0 of A and consider the three identities

AX = X A (3.2.12.5)

Aq+1 X = Aq (3.2.12.6)

X AX = X (3.2.12.7)

Exercise. Use (3.2.12.2) and (3.2.12.3) to explain why A and X = AD satisfy the

preceding three identities if and only if A =
[

B 0
0 N

]
and X =

[
B−1 0

0 0

]
satisfy

them. Verify that they do.

There is a converse to the result in the preceding exercise: If X satisfies (3.2.12.5–7),
then X = AD . To verify this assertion, proceed as in the preceding exercise to replace

A by
[

B 0
0 N

]
and partition the unknown matrix X = [Xi j ]2

i, j=1 conformally. We must

show that X11 = B−1 and that X12, X21, and X22 are zero blocks. Combining the
first identity (3.2.12.5) with (2.4.4.2) ensures that X12 = 0 and X21 = 0; in addition,

N X22 = X22 N . The second identity (3.2.12.6) says that
[

Bq+1 0
0 0

] [
X11 0
0 X22

]
=
[

Bq 0
0 0

]
,

so Bq+1 X11 = Bq , B X11 = I , and X11 = B−1. The third identity (3.2.12.7) ensures
that

X22 = X22 N X22 = N X2
22 (3.2.12.8)

which implies that N q−1 X22 = N q−1 N X2
22 = N q X2

22 = 0, so N q−1 X22 = 0. Us-
ing (3.2.12.8) again, we see that N q−2 X22 = N q−2 N X2

22 = (N q−1 X22)X22 = 0, so
N q−2 X22 = 0. Continuing this argument reveals that N q−3 X22 = 0, . . . , N X22 = 0,
and finally, X22 = 0.

Our final observation is that the Drazin inverse AD is a polynomial in A.

Exercise. Represent A as in (3.2.12.2). According to (2.4.3.4), there is a poly-
nomial p(t) such that p(Bq+1) = (Bq+1)−1. Let g(t) = tq p(tq+1). Verify that
g(A) = AD .

Exercise. Let A ∈ Mn and suppose that λ is a nonzero eigenvalue of A. If x �= 0
and Ax = λx , explain why ADx = λ−1x .

3.2.13 The Jordan canonical form of a rank-one perturbation. Brauer’s theo-
rem about eigenvalues of rank-one perturbations ((1.2.8) and (2.4.10.1)) has an analog
for Jordan blocks: Under certain conditions, one eigenvalue of a square complex matrix
can be shifted almost arbitrarily by a rank-one perturbation without disturbing the rest
of its Jordan structure.

Theorem 3.2.13.1. Let n ≥ 2 and let λ, λ2, . . . , λn be the eigenvalues of A ∈ Mn.
Suppose that there are nonzero vectors x, y ∈ Cn such that Ax = λx, y∗A = λy∗, and
y∗x �= 0. Then

(a) the Jordan canonical form of A is

[λ] ⊕ Jn1 (ν1) ⊕ · · · ⊕ Jnk (νk) (3.2.13.2)

for some positive integers k, n1, . . . , nk and some {ν1, . . . , νk} ⊂ {λ2, . . . , λn}.
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(b) for any v ∈ Cn such that λ + v∗x �= λ j , j = 2, . . . , n, the Jordan canonical form
of A + xv∗ is

[
λ + v∗x

]⊕ Jn1 (ν1) ⊕ · · · ⊕ Jnk (νk)

Proof. The assertions in (a) follow from (1.4.7), which ensures that there is a non-
singular S = [x S1] such that S−1 AS = [λ] ⊕ B for some B ∈ Mn−1. The direct sum
Jn1 (ν1) ⊕ · · · ⊕ Jnk (νk) is the Jordan canonical form of B. Compute S−1(xv∗)S =
(S−1x)(v∗S) = e1(v∗S) =

[
v∗x w∗

0 0

]
, in which w∗ = v∗S1. Combining the preceding

similarities of A and xv∗ gives S−1(A + xv∗)S =
[

λ + v∗x w∗
0 B

]
. It suffices to show

that this block matrix is similar to [λ + v∗x] ⊕ B. For any ξ ∈ Cn−1, we have[
1 ξ∗
0 I

]−1
=
[

1 −ξ∗
0 I

]
, so

[
1 ξ∗
0 I

]−1[
λ + v∗x w∗

0 B

] [
1 ξ∗
0 I

]
=
[

λ + v∗x w∗ + ξ∗((λ + v∗x)I − B)
0 B

]

We have assumed that λ + v∗x is not an eigenvalue of B, so we may take ξ ∗ =
−w∗((λ + v∗x)I − B)−1, which reveals that A + xv∗ is similar to [λ + v∗x] ⊕ B. �

Problems

3.2.P1 Let F = {Aα : α ∈ I} ⊂ Mn be a given family of matrices, indexed by the index
set I, and suppose that there is a nonderogatory matrix A0 ∈ F such that Aα A0 = A0 Aα

for all α ∈ I. Show that for every α ∈ I, there is a polynomial pα(t) of degree at most
n − 1 such that Aα = pα(A0), and hence F is a commuting family.

3.2.P2 Let A ∈ Mn . If every matrix that commutes with A is a polynomial in A, show that
A is nonderogatory.

3.2.P3 Let A = B + iC ∈ Mn , in which B and C are real (0.2.5), and let J be the Jordan

canonical form of A. Consider the real representation R1(A) =
[

B C
−C B

]
∈ M2n discussed

in (1.3.P20). Explain why J ⊕ J̄ is the Jordan canonical form of R1(A) and why it is a
direct sum of pairs of the form Jk(λ) ⊕ Jk(λ̄), even if λ is real.

3.2.P4 Suppose that A ∈ Mn is singular and let r = rank A. In (2.4.P28) we learned that
there is a polynomial of degree r + 1 that annihilates A. Provide details for the follow-
ing argument to show that h(t) = pA(t)/tn−r−1 is such a polynomial: Let the Jordan
canonical form of A be J ⊕ Jn1 (0) ⊕ · · · ⊕ Jnk (0), in which the Jordan matrix J is non-
singular. Let ν = n1 + · · · + nk and let nmax = maxi ni be the index of the eigenvalue
zero. (a) Explain why pA(t) = p1(t)tν , in which p1(t) is a polynomial and p1(0) �= 0.
(b) Show that p(t) = p1(t)tnmax annihilates A, so pA(t) = (p1(t)tnmax )tν−nmax . (c) Explain
why k = n − r , ν − nmax ≥ k − 1 = n − r − 1, and h(A) = 0.

3.2.P5 What is the Jordan canonical form of A =
[

i 1
1 −i

]
?
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3.2.P6 The linear transformation d/dt : p(t) → p′(t) acting on the vector space of all
polynomials with degree at most 3 has the basis representation

⎡
⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦

in the basis B = {1, t, t2, t3}. What is the Jordan canonical form of this matrix?

3.2.P7 What are the possible Jordan forms of a matrix A ∈ Mn such that A3 = I ?

3.2.P8 What are the possible Jordan canonical forms for a matrix A ∈ M6 with character-
istic polynomial pA(t) = (t + 3)4(t − 4)2?

3.2.P9 Suppose that k ≥ 2. Explain why the Jordan canonical form of adj Jk(λ) is Jk(λk−1)
if λ �= 0, and it is J2(0) ⊕ 0k−2 if λ = 0.

3.2.P10 Suppose that the Jordan canonical form of a given nonsingular A ∈ Mn is Jn1 (λ1) ⊕
· · · ⊕ Jnk (λk). Explain why the Jordan canonical form of adj A is Jn1 (μ1) ⊕ · · · ⊕ Jnk (μk),
in which each μi = λ

ni−1
i

∏
j �=iλ

n j

j , i = 1, . . . , k.

3.2.P11 Suppose that the Jordan canonical form of a given singular A ∈ Mn is Jn1 (λ1) ⊕
· · · ⊕ Jnk−1 (λk−1) ⊕ Jnk (0). Explain why the Jordan canonical form of adj A is J2(0) ⊕ 0n−2

if nk ≥ 2, and it is
∏k−1

i=1 λ
ni
i ⊕ 0n−1 if nk = 1; the former case is characterized by rank A <

n − 1 and the latter case is characterized by rank A = n − 1.

3.2.P12 Explain why adj A = 0 if the Jordan canonical form of A contains two or more
singular Jordan blocks.

3.2.P13 (Cancellation theorem for similarity) Let A ∈ Mn and B, C ∈ Mm be given. Show

that
[

A 0
0 B

]
∈ Mn+m is similar to

[
A 0
0 C

]
if and only if B is similar to C .

3.2.P14 Let B, C ∈ Mm and a positive integer k be given. Show that

B ⊕ · · · ⊕ B︸ ︷︷ ︸
k summands

and C ⊕ · · · ⊕ C︸ ︷︷ ︸
k summands

are similar if and only if B and C are similar.

3.2.P15 Let A ∈ Mn and B, C ∈ Mm be given. Show that

A ⊕ B ⊕ · · · ⊕ B︸ ︷︷ ︸
k summands

and A ⊕ C ⊕ · · · ⊕ C︸ ︷︷ ︸
k summands

are similar if and only if B and C are similar

3.2.P16 Let A ∈ Mn have Jordan canonical form Jn1 (λ1) ⊕ · · · ⊕ Jnk (λk). If A is nonsin-
gular, show that the Jordan canonical form of A2 is Jn1 (λ2

1) ⊕ · · · ⊕ Jnk (λ2
k); that is, the

Jordan canonical form of A2 is composed of precisely the same collection of Jordan blocks
as A, but the respective eigenvalues are squared. However, the Jordan canonical form of
Jm(0)2 is not Jm(02) if m ≥ 2; explain.

3.2.P17 Let A ∈ Mn be given. Show that rank A = rank A2 if and only if the geometric
and algebraic multiplicities of the eigenvalue λ = 0 are equal, that is, if and only if all
the Jordan blocks corresponding to λ = 0 (if any) in the Jordan canonical form of A are
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1-by-1. Explain why A is diagonalizable if and only if rank(A − λI ) = rank(A − λI )2 for
all λ ∈ σ (A).

3.2.P18 Let A ∈ Mn be given. In (3.2.7) we used the Jordan canonical form to write A
as a sum of two commuting matrices, one of which is diagonalizable and the other of
which is nilpotent: the Jordan decomposition A = AD + AN . The goal of this problem is
to show that the Jordan decomposition is unique. That is, suppose that (a) A = B + C ,
(b) B commutes with C , (c) B is diagonalizable, and (d) C is nilpotent; we claim that
B = AD and C = AN . It is helpful to use the fact that there are polynomials p(t) and
q(t) such that AD = p(A) and AN = q(A); see Problem 14(d) in section 6.1 of Horn and
Johnson (1991). Provide details for the following: (a) B and C commute with A; (b) B and
C commute with AD and AN ; (c) B and AD are simultaneously diagonalizable, so AD − B
is diagonalizable; (d) C and AN are simultaneously upper triangularizable, so C − AN

is nilpotent; (e) AD − B = C − AN is both diagonalizable and nilpotent, so it is a zero
matrix. The (uniquely determined) matrix AD is called the diagonalizable part of A; AN is
the nilpotent part of A.

3.2.P19 Let A ∈ Mn be given and let λ be an eigenvalue of A. (a) Prove that the following
two assertions are equivalent: (i) every Jordan block of A with eigenvalue λ has size two or
greater; (ii) every eigenvector of A associated with λ is in the range of A − λI . (b) Prove
that the following five assertions are equivalent: (i) some Jordan block of A is 1-by-1;
(ii) there is a nonzero vector x such that Ax = λx but x is not in the range of A − λI ;
(iii) there is a nonzero vector x such that Ax = λx but x is not orthogonal to the null space
of A∗ − λ̄I ; (iv) there are nonzero vectors x and y such that Ax = λx , y∗ A = λy∗, and
x∗y �= 0; (v) A is similar to [λ] ⊕ B for some B ∈ Mn−1.

3.2.P20 Let A, B ∈ Mn be given. (a) Show that AB is similar to B A if and only
rank(AB)k = rank(B A)k for each k = 1, 2, . . . , n. (b) If r = rank A = rank AB =
rank B A, show that AB is similar to B A. (b) Explain why we may replace A by S AT and
B by T−1 BS−1 for any nonsingular S, T ∈ Mn . Choose S and T so that S AT = Ir ⊕ 0n−r .
Consider A = Ir ⊕ 0n−r and B = [Bi j ]2

i, j=1. Compute AB and B A; explain why each
of X = [B11 B12] and Y T = [BT

11 BT
21] has full rank. Explain why rank C X = rank C =

rank Y C for any C ∈ Mr . Explain why rank((AB)k+1) = rank((B11)k X ) = rank((B11)k) =
rank(Y (B11)k) = rank((B A)k+1) for each k = 1, 2, . . . , n.

3.2.P21 Let A =
[

J2(0) 0
xT 0

]
∈ M3 with xT = [1 0], and let B = I2 ⊕ [0] ∈ M3. Show that

the Jordan canonical form of AB is J3(0), while that of B A is J2(0) ⊕ J1(0).

3.2.P22 Let A ∈ Mn . Show that both AAD and I − AAD are projections and that AAD(I −
AAD) = 0.

3.2.P23 Let A ∈ Mn , let q be the index of 0 as an eigenvalue of A, and let k ≥ q be a given
integer. Show that AD = limt→0(Ak+1 + t I )−1 Ak .

3.2.P24 This problem is an analog of (2.4.P12). Let A, B ∈ Mn , let λ1, . . . , λd be the
distinct eigenvalues of A, let D = AB − B AT , and suppose that AD = D AT . (a) Show
that D is singular. (b) If A is diagonalizable, show that D = 0, that is, AB = B AT .
(c) If D A = AT D as well as AD = D AT , show that D is nilpotent. (d) Suppose that
A is nonderogatory. Then (3.2.4.4) ensures that D is symmetric. In addition, show that
rank D ≤ n − d , so the geometric multiplicity of 0 as an eigenvalue of D is at least d.

3.2.P25 Let A ∈ Mn be given and suppose that A2 is nonderogatory. Explain why (a) A is
nonderogatory; (b) if λ is a nonzero eigenvalue of A, then −λ is not an eigenvalue of A;
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(c) if A is singular, then 0 has algebraic multiplicity 1 as an eigenvalue of A; (d)
rank A ≥ n − 1; (e) there is a polynomial p(t) such that A = p(A2).

3.2.P26 Let A, B ∈ Mn be given and suppose that A2 is nonderogatory. If AB = BT A and
B A = ABT , show that B is symmetric.

3.2.P27 (a) For each k = 1, 2, . . . show that adj Jk(0) is similar to J2(0) ⊕ 0k−2. (b) If
A ∈ Mn is nilpotent and rank A = n − 1, explain why A is similar to Jn(0). (c) If A ∈ Mn

is nilpotent, show that (adj A)2 = 0.

3.2.P28 Let A, x , y, and λ satisfy the hypotheses of (3.2.13.1) so that (3.2.13.2) is the Jordan
canonical form of A. Let v ∈ Cn be any vector such that v∗x = 1 and consider the Google
matrix A(c) = cA + (1 − c)λxv∗. If c is nonzero and cλ j �= λ for each j = 2, . . . , n, show
that the Jordan canonical form of A(c) is [λ] ⊕ Jn1 (cν1) ⊕ · · · ⊕ Jnk (cνk). Compare with
(1.2.P21).

3.2.P29 Let λ ∈ C, A = Jk(λ), and B = [bi j ] ∈ Mk , and let C = AB − B A. If we were to
assume that C = 0, then (3.2.4.2) ensures that B is upper triangular and Toeplitz, so all of
the eigenvalues of B are the same. Instead, make the weaker assumption that AC = C A.
(a) Explain why C is upper triangular, Toeplitz, and nilpotent, that is, C = [γ j−i ]

k
i, j=1 in

which γ−k+1 = · · · = γ 0 = 0 and γ 1, . . . , γ k−1 ∈ C. (b) Use the form of C to show that B is
upper triangular (but not Toeplitz) and its eigenvalues b11, b11 + γ 1, b11 + 2γ 1, . . . , b11 +
(k − 1)γ 1 are in arithmetic progression.

3.2.P30 Let A ∈ Mn and a subspace S ⊂ Cn be given. Provide details for the following
outline of a proof that S is an invariant subspace of A if and only if there is a B ∈ Mn

such that AB = B A and S is the null space of B. Only if : B(AS) = A(BS) = A{0} = {0},
so AS ⊂ S. If : (a) If S = {0} or Cn , take B = I or B = 0, so we may assume that
1 ≤ dimS ≤ n − 1. (b) It suffices to prove the implication for some matrix that is similar

to A (why?), so we may assume that A =
[

A11 A12
0 A22

]
with A11 ∈ Mk ; see (1.3.17(c)). There

is a nonsingular X ∈ Mn such that AX = X AT ; see (3.2.3.1). (d) There is a nonsingular
Y ∈ Mn−k such that Y A22 = AT

22Y . Let C = 0k ⊕ Y . (e) C A = AT C . (f) Let B = XC .
Then AB = AXC = X AT C = XC A = B A.

3.2.P31 Let A ∈ Mn and a subspace S ⊂ Cn be given. Show that S is an invariant sub-
space of A if and only if there is a B ∈ Mn such that AB = B A and S is the range
of B.

3.2.P32 Let A, B ∈ Mn , let C = AB − B A, and suppose that A commutes with C . If
n = 2, show that A and B are simultaneously upper triangularizable. Problem (2.4.P12(f))
shows that A and B need not be simultaneously triangularizable if n > 2.

3.2.P33 Let A ∈ Mn . Explain why A∗ is nonderogatory if and only if A is nonderogatory.

3.2.P34 Let A, B ∈ Mn . Suppose that A is nonderogatory and that B commutes with both
A and A∗. Show that B is normal.

3.2.P35 This problem considers a partial converse to (2.5.17). (a) Let A ∈ Mn be non-
derogatory. If AĀ = ĀA and AAT = AT A, show that AA∗ = A∗A, that is, A is normal.
(b) If A ∈ M2, AĀ = ĀA, and AAT = AT A, show that A is normal. (c) The implication
in (b) is correct for n = 3, but known proofs are technical and tedious. Can you find a

simple proof? (c) Let B =
[

1 1
−1 1

]
and C =

[
1 i
−i 1

]
and define A =

[
B C
0 B

]
∈ M4. Show

that AĀ = ĀA and AAT = AT A, but A is not normal.
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3.2.P36 Let A ∈ Mn be coninvolutory, so A is nonsingular and A = Ā−1. (a) Explain why
the Jordan canonical form of A is a direct sum of blocks of the form Jk(eiθ ) with θ ∈ [0, 2π ),
and blocks of the form Jk(λ) ⊕ Jk(1/λ̄) with 0 �= |λ| �= 1. (b) If A is diagonalizable,
explain why its Jordan canonical form is a direct sum of blocks of the form [eiθ ] with
θ1, . . . , θn ∈ [0, 2π ) and blocks of the form [λ] ⊕ [1/λ̄] with 0 �= |λ| �= 1.

3.2.P37 A matrix A ∈ Mn is said to be semiconvergent if limk→∞ Ak exists. (a) Explain
why A is semiconvergent if and only if ρ(A) ≤ 1 and, if λ is an eigenvalue of A and
|λ| = 1, then λ = 1 and λ is semisimple. (b) If A ∈ Mn is semiconvergent, show that
limk→∞ Ak = I − (I − A)(I − A)D .

Notes and Further Readings. For a detailed discussion of the optimality property
(3.2.9.4) and a characterization of the case of equality, see R. Brualdi, P. Pei, and X.
Zhan, An extremal sparsity property of the Jordan canonical form, Linear Algebra
Appl. 429 (2008) 2367–2372. Problem 3.2.P21 illustrates that the nilpotent Jordan
structures of AB and B A need not be the same, but in the following sense, they
cannot differ by much: If m1 ≥ m2 ≥ · · · are the sizes of the nilpotent Jordan blocks
of AB while n1 ≥ n2 ≥ · · · are the sizes of the nilpotent Jordan blocks of B A (append
zero sizes to one list or the other, if necessary. to achieve lists of equal length), then
|mi − ni | ≤ 1 for all i . For a discussion and proof, see C. R. Johnson and E. Schreiner,
The relationship between AB and B A, Amer. Math. Monthly 103 (1996) 578–582. For
a very different proof that uses the Weyr characteristic, see R. Lippert and G. Strang,
The Jordan forms of AB and B A, Electron. J. Linear Algebra 18 (2009) 281–288. The
argument involving similarity of a matrix and its transpose in (3.2.P31) and (3.2.P32)
is due to Ignat Domanov; the assertions of these two problems are theorem 3 in
P. Halmos, Eigenvectors and adjoints, Linear Algebra Appl. 4 (1971) 11–15. Problem
3.2.P34 is due to G. Goodson.

3.3 The minimal polynomial and the companion matrix

A polynomial p(t) is said to annihilate A ∈ Mn if p(A) = 0. The Cayley–Hamilton
theorem 2.4.2 guarantees that for each A ∈ Mn there is a monic polynomial pA(t) of
degree n (the characteristic polynomial) such that pA(A) = 0. Of course, there may be
a monic polynomial of degree n − 1 that annihilates A, or one of degree n − 2 or less.
Of special interest is a monic polynomial of minimum degree that annihilates A. It is
clear that such a polynomial exists; the following theorem says that it is unique.

Theorem 3.3.1. Let A ∈ Mn be given. There exists a unique monic polynomial qA(t)
of minimum degree that annihilates A. The degree of qA(t) is at most n. If p(t) is any
monic polynomial such that p(A) = 0, then qA(t) divides p(t), that is, p(t) = h(t)qA(t)
for some monic polynomial h(t).

Proof. The set of monic polynomials that annihilate A contains pA(t), which has
degree n. Let m = min{k : p(t) is a monic polynomial of degree k and p(A) = 0};
necessarily m ≤ n. If p(t) is any monic polynomial that annihilates A, and if q(t) is
a monic polynomial of degree m that annihilates A, then the degree of p(t) is m or
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greater. The Euclidean algorithm ensures that there is a monic polynomial h(t) and
a polynomial r (t) of degree strictly less than m such that p(t) = q(t)h(t) + r (t). But
0 = p(A) = q(A)h(A) + r (A) = 0h(A) + r (A), so r (A) = 0. If r (t) is not the zero
polynomial, we could normalize it and obtain a monic annihilating polynomial of
degree less than m, which would be a contradiction. We conclude that r (t) is the zero
polynomial, so q(t) divides p(t) with quotient h(t). If there are two monic polynomials
of minimum degree that annihilate A, this argument shows that each divides the other;
since the degrees are the same, one must be a scalar multiple of the other. But since
both are monic, the scalar factor must be +1 and they are identical. �

Definition 3.3.2. Let A ∈ Mn be given. The unique monic polynomial qA(t) of mini-
mum degree that annihilates A is called the minimal polynomial of A.

Corollary 3.3.3. Similar matrices have the same minimal polynomial.

Proof. If A, B, S ∈ Mn and if A = SBS−1, then qB(A) = qB(SBS−1) =
SqB(B)S−1 = 0, so qB(t) is a monic polynomial that annihilates A and hence the
degree of qA(t) is less than or equal to the degree of qB(t). But B = S−1 AS, so the
same argument shows that the degree of qB(t) is less than or equal to the degree of
qA(t). Thus, qA(t) and qB(t) are monic polynomials of minimum degree that annihilate
A, so (3.3.1) ensures that they are identical. �

Exercise. Consider A = J2(0) ⊕ J2(0) ∈ M4 and B = J2(0) ⊕ 02 ∈ M4. Explain
why A and B have the same minimal polynomial but are not similar.

Corollary 3.3.4. For each A ∈ Mn, the minimal polynomial qA(t) divides the charac-
teristic polynomial pA(t). Moreover, qA(λ) = 0 if and only if λ is an eigenvalue of A,
so every root of pA(t) = 0 is a root of qA(t) = 0.

Proof. Since pA(A) = 0, the fact that there is a polynomial h(t) such that pA(t) =
h(t)qA(t) follows from (3.2.1). This factorization makes it clear that every root of
qA(t) = 0 is a root of pA(t) = 0, and hence every root of qA(t) = 0 is an eigenvalue of
A. If λ is an eigenvalue of A, and if x is an associated eigenvector, then Ax = λx and
0 = qA(A)x = qA(λ)x, so qA(λ) = 0 since x �= 0. �

The preceding corollary shows that if the characteristic polynomial pA(t) has been
completely factored as

pA(t) =
d∏

i=1

(t − λi )
si , 1 ≤ si ≤ n, s1 + s2 + · · · + sd = n (3.3.5a)

with λ1, λ2, . . . , λd distinct, then the minimal polynomial qA(t) must have the form

qA(t) =
d∏

i=1

(t − λi )
ri , 1 ≤ ri ≤ si (3.3.5b)

In principle, this gives an algorithm for finding the minimal polynomial of a given
matrix A:
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1. First compute the eigenvalues of A, together with their algebraic multiplicities,
perhaps by finding the characteristic polynomial and factoring it completely. By
some means, determine the factorization (3.3.5a).

2. There are finitely many polynomials of the form (3.3.5b). Starting with the product
in which all ri = 1, determine by explicit calculation the product of minimal degree
that annihilates A; it is the minimal polynomial.

Numerically, this is not a good algorithm if it involves factoring the characteristic
polynomial of a large matrix, but it can be very effective for hand calculations involving
small matrices of simple form. Another approach to computing the minimal polynomial
that does not involve knowing either the characteristic polynomial or the eigenvalues
is outlined in (3.3.P5).

There is an intimate connection between the Jordan canonical form of A ∈ Mn

and the minimal polynomial of A. Suppose that A = S J S−1 is the Jordan canonical
form of A, and suppose first that J = Jn(λ) is a single Jordan block. The characteristic
polynomial of A is (t − λ)n , and since (J − λI )k �= 0 if k < n, the minimal polynomial
of J is also (t − λ)n . However, if J = Jn1 (λ) ⊕ Jn2 (λ) ∈ Mn with n1 ≥ n2, then the
characteristic polynomial of J is still (t − λ)n , but now (J − λI )n1 = 0 and no lower
power vanishes. The minimal polynomial of J is therefore (t − λ)n1 . If there are more
Jordan blocks with eigenvalue λ, the conclusion is the same: The minimal polynomial
of J is (t − λ)r , in which r is the size of the largest Jordan block corresponding to λ. If
J is a general Jordan matrix, the minimal polynomial must contain a factor (t − λi )ri

for each distinct eigenvalue λi , and ri must be the size of the largest Jordan block
corresponding to λi ; no smaller power annihilates all the Jordan blocks corresponding
to λi , and no greater power is needed. Since similar matrices have the same minimal
polynomial, we have proved the following theorem.

Theorem 3.3.6. Let A ∈ Mn be a given matrix whose distinct eigenvalues are
λ1, . . . , λd . The minimal polynomial of A is

qA(t) =
d∏

i=1

(t − λi )
ri (3.3.7)

in which ri is the size of the largest Jordan block of A corresponding to the eigen-
value λi .

In practice, this result is not very helpful in computing the minimal polynomial
since it is usually harder to determine the Jordan canonical form of a matrix than it
is to determine its minimal polynomial. Indeed, if only the eigenvalues of a matrix
are known, its minimal polynomial can be determined by simple trial and error. There
are important theoretical consequences, however. Since a matrix is diagonalizable if
and only if all its Jordan blocks have size 1, a necessary and sufficient condition for
diagonalizability is that all ri = 1 in (3.3.7).

Corollary 3.3.8. Let A ∈ Mn have distinct eigenvalues λ1, λ2, . . . , λd and let

q(t) = (t − λ1)(t − λ2) · · · (t − λd ) (3.3.9)

Then A is diagonalizable if and only if q(A) = 0.
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This criterion is actually useful for determining if a given matrix is diagonalizable,
provided that we know its distinct eigenvalues: Form the polynomial (3.3.9) and see
if it annihilates A. If it does, it must be the minimal polynomial of A, since no lower-
order polynomial could have as zeroes all the distinct eigenvalues of A. If it does not
annihilate A, then A is not diagonalizable. It can be useful to have this result formulated
in several equivalent ways:

Corollary 3.3.10. Let A ∈ Mn and let qA(t) be its minimal polynomial. The following
are equivalent:

(a) qA(t) is a product of distinct linear factors.
(b) Every eigenvalue of A has multiplicity 1 as a root of qA(t) = 0.
(c) q ′

A(λ) �= 0 for every eigenvalue λ of A.
(d) A is diagonalizable.

We have been considering the problem of finding, for a given A ∈ Mn , a monic
polynomial of minimum degree that annihilates A. But what about the converse? Given
a monic polynomial

p(t) = tn + an−1tn−1 + an−2tn−2 + · · · + a1t + a0 (3.3.11)

is there a matrix A for which p(t) is the minimal polynomial? If so, the size of A must
be at least n-by-n. Consider

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −a0

1 0 −a1

1
. . .

...
. . . 0 −an−2

0 1 −an−1

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ Mn (3.3.12)

and observe that

I e1 = e1 = A0e1

Ae1 = e2 = Ae1

Ae2 = e3 = A2e1

Ae3 = e4 = A3e1
...

...
...

Aen−1 = en = An−1e1

In addition,

Aen = −an−1en − an−2en−1 − · · · − a1e2 − a0e1

= −an−1 An−1e1 − an−2 An−2e1 − · · · − a1 Ae1 − a0e1 = Ane1

= (An − p(A))e1

Thus,

p(A)e1 = (a0e1 + a1 Ae1 + a2 A2e1 + · · · + an−1 An−1e1) + Ane1

= (p(A) − An)e1 + (An − p(A))e1 = 0
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Furthermore, p(A)ek = p(A)Ak−1e1 = Ak−1 p(A)e1 = Ak−10 = 0 for each k =
1, 2, . . . , n. Since p(A)ek = 0 for every basis vector ek , we conclude that p(A) = 0.
Thus p(t) is a monic polynomial of degree n that annihilates A. If there were a polyno-
mial q(t) = tm + bm−1tm−1 + · · · + b1t + b0 of lower degree m < n that annihilates
A, then

0 = q(A)e1 = Ame1 + bm−1 Am−1e1 + · · · + b1 Ae1 + b0e1

= em+1 + bm−1em + · · · + b1e2 + b0e1 = 0

which is impossible since e1, , . . . , em+1 are linearly independent. We conclude that
nth degree polynomial p(t) is a monic polynomial of minimum degree that annihilates
A, so it is the minimal polynomial of A. The characteristic polynomial pA(t) is also a
monic polynomial of degree n that annihilates A, so (3.3.1) ensures that p(t) is also
the characteristic polynomial of the matrix (3.3.12).

Definition 3.3.13. The matrix (3.3.12) is the companion matrix of the polynomial
(3.3.11).

We have proved the following.

Theorem 3.3.14. Every monic polynomial is both the minimal polynomial and the
characteristic polynomial of its companion matrix.

If the minimal polynomial of A ∈ Mn has degree n, then the exponents in (3.3.7)
satisfy r1 + · · · + rd = n; that is, the largest Jordan block corresponding to each eigen-
value is the only Jordan block corresponding to each eigenvalue. Such a matrix is non-
derogatory. In particular, every companion matrix is nonderogatory. A nonderogatory
matrix A ∈ Mn need not be a companion matrix, of course, but A and the companion
matrix C of the characteristic polynomial of A have the same Jordan canonical form
(one block Jri (λi ) corresponding to each distinct eigenvalue λi ), so A is similar to C .

Exercise. Provide details for a proof of the following theorem.

Theorem 3.3.15. Let A ∈ Mn have minimal polynomial qA(t) and characteristic poly-
nomial pA(t). The following are equivalent:

(a) qA(t) has degree n.
(b) pA(t) = qA(t).
(c) A is nonderogatory.
(d) A is similar to the companion matrix of pA(t).

Problems

3.3.P1 Let A, B ∈ M3 be nilpotent. Show that A and B are similar if and only if A and B
have the same minimal polynomial. Is this true in M4?

3.3.P2 Suppose that A ∈ Mn has distinct eigenvalues λ1, . . . , λd . Explain why the
minimal polynomial of A (3.3.7) is determined by the following algorithm: For each
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i = 1, . . . , d compute (A − λi I )k for k = 1, . . . , n. Let ri be the smallest value of k for
which rank(A − λi I )k = rank(A − λi I )k+1.

3.3.P3 Use (3.3.10) to show that every projection matrix (idempotent matrix) is diagonal-
izable. What is the minimal polynomial of A? What can you say if A is tripotent (A3 = A)?
What if Ak = A?

3.3.P4 If A ∈ Mn and Ak = 0 for some k > n, use properties of the minimal polynomial
to explain why Ar = 0 for some r ≤ n.

3.3.P5 Show that the following application of the Gram–Schmidt process permits the mini-
mal polynomial of a given A ∈ Mn to be computed without knowing either the characteristic
polynomial of A or any of its eigenvalues.

(a) Let the mapping T : Mn → Cn2
be defined as follows: For any A ∈ Mn partitioned

according to its columns as A = [a1 . . . an], let T (A) denote the unique vector in Cn2

whose first n entries are the entries of the first column a1, whose entries from n + 1 to
2n are the entries of the second column a2, and so forth. Show that this mapping T is
an isomorphism (linear, one-to-one, and onto) of the vector spaces Mn and Cn2

.
(b) Consider the vectors

v0 = T (I ), v1 = T (A), v2 = T (A2), . . . , vk = T (Ak), . . .

in Cn2
for k = 0, 1, 2, . . . , n. Use the Cayley–Hamilton theorem to show that the vectors

v0, v1, . . . , vn are linearly dependent.
(c) Apply the Gram–Schmidt process to the list v0, v1, . . . , vn until it stops by producing

a first zero vector. Why must a zero vector be produced?
(d) If the Gram–Schmidt process produces a first zero vector at the kth step, argue that

k − 1 is the degree of the minimal polynomial of A.
(e) If the kth step of the Gram–Schmidt process produces the vector α0v0 + α1v1 + · · · +

αk−1vk−1 = 0, show that

T −1(α0v0 + α1v1 + · · · + αk−1vk−1)

= α0 I + α1 A + α2 A2 + · · · + αk−1 Ak−1 = 0

and conclude that qA(t) = (αk−1t k−1 + · · · + α2t2 + α1t + α0)/αk−1 is the minimal
polynomial of A. Why is αk−1 �= 0?

3.3.P6 Carry out the computations required by the algorithm in (3.3.P5) to determine the

minimal polynomials of
[

1
0

1
2

]
,
[

1
0

1
1

]
, and

[
1
0

0
1

]
.

3.3.P7 Consider A =
[

0
0

1
0

]
and B =

[
0
0

0
1

]
to show that the minimal polynomials of

AB and B A need not be the same. However, if C, D ∈ Mn , why must the characteristic
polynomials of C D and DC be the same?

3.3.P8 Let Ai ∈ Mni , i = 1, . . . , k and let qAi (t) be the minimal polynomial of each Ai .
Show that the minimal polynomial of A = A1 ⊕ · · · ⊕ Ak is the least common multiple of
qA1 (t), . . . , qAk (t). This is the unique monic polynomial of minimum degree that is divisible
by each qi (t). Use this result to give a different proof for (1.3.10).

3.3.P9 If A ∈ M5 has characteristic polynomial pA(t) = (t − 4)3(t + 6)2 and minimal
polynomial qA(t) = (t − 4)2(t + 6), what is the Jordan canonical form of A?
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3.3.P10 Show by direct computation that the polynomial (3.3.11) is the characteristic
polynomial of the companion matrix (3.3.12).

3.3.P11 Let A ∈ Mn be the companion matrix (3.3.12) of the polynomial p(t) in (3.3.11).
Let Kn be the n-by-n reversal matrix. Let A2 = Kn AKn , A3 = AT , and A4 = Kn AT Kn .
(a) Write A2, A3, and A4 as explicit arrays like the one in (3.3.12). (b) Explain why p(t)
is both the minimal and characteristic polynomial of A2, A3, and A4, each of which is
encountered in the literature as an alternative definition of companion matrix.

3.3.P12 Let A, B ∈ Mn . Suppose that pA(t) = pB(t) = qA(t) = qB(t). Explain why A and
B are similar. Use this fact to show that the alternative forms for the companion matrix
noted in the preceding problem are all similar to (3.3.12).

3.3.P13 Explain why any n complex numbers can be the eigenvalues of an n-by-n
companion matrix. However, the singular values of a companion matrix are subject to
some very strong restrictions. Write the companion matrix (3.3.12) as a block matrix

A =
[

0
In−1

−a0

ξ

]
, in which ξ = [−a1 . . . − an−1]T ∈ Cn−1. Verify that A∗A =

[
In−1

ξ∗
ξ

s

]
, in

which s = |a0|2 + ‖ξ‖2
2. Let σ 1 ≥ · · · ≥ σ n denote the ordered singular values of A. (a)

Show that σ 2 = · · · = σ n−1 = 1 and

σ 2
1, σ

2
n = 1

2

(
s + 1 ±

√
(s + 1)2 − 4|a0|2

)
(3.3.16)

Another approach is to use interlacing (4.3.18) to show that the multiplicity of the eigen-
value 1 of A∗A is at least n − 2; determine the other two eigenvalues from the trace and
determinant of A∗A. (b) Verify that σ 1σ n = |a0|, σ 2

1 + σ 2
n = s + 1, and σ 1 ≥ 1 ≥ σ n , in

which both inequalities are strict if ξ �= 0. (c) The formulae (3.3.16) show that the singular
values of a companion matrix depend only on the absolute values of its entries. Show this in
a different way by applying a suitable diagonal unitary equivalence to A. Problems 5.6.P28
and 5.6.P31 use (3.3.16) to give bounds on the zeroes of a polynomial.

3.3.P14 Let A ∈ Mn be a companion matrix (3.3.12). Show that (a) if n = 2, then A is
normal if and only if |a0| = 1 and a1 = −a0ā1; it is unitary if and only if |a0| = 1 and
a1 = 0; (b) if n ≥ 3, then A is normal if and only if |a0| = 1 and a1 = · · · = an−1 = 0, that
is, if and only if pA(t) = tn − c and |c| = 1; (c) if n ≥ 3 and A is normal, then A is unitary
and there is a ϕ ∈ [0, 2π/n) such that the eigenvalues of A are eiϕe2π ik/n, k = 0, 1, . . . ,

n − 1.

3.3.P15 Let A ∈ Mn be given, and let P(A) = {p(A) : p(t) is a polynomial}. Show that
P(A) is a subalgebra of Mn: the subalgebra generated by A. Explain why the dimension
of P(A) is the degree of the minimal polynomial of A, and hence dim P(A) ≤ n.

3.3.P16 If A, B, C ∈ Mn and if there are polynomials p1(t) and p2(t) such that A = p1(C)
and B = p2(C), then A and B commute. Does every pair of commuting matrices arise in this
way? Provide details for the following construction of two commuting 3-by-3 matrices that
are not polynomials in a third matrix: (a) Let A = J2(0) ⊕ J1(0) and B = J3(0)2. Show that
AB = B A = A2 = B2 = 0; {I, A, B} is a basis for A(A, B), the algebra generated by A
and B; and dimA(A, B) = 3. (b) If there is a C ∈ M3 and polynomials p1(t) and p2(t) such
that A = p1(C) and B = p2(C), then A(A, B) ⊂ P(C) so dim P(C) ≥ 3; dim P(C) = 3;
and A(A, B) = P(C). (c) Let C = γ I + αA + β B. Then (C − γ I )2 = 0; the minimal
polynomial of C has degree at most 2; and dim P(C) ≤ 2. Contradiction.
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3.3.P17 Explain why any matrix that commutes with a companion matrix C must be a
polynomial in C .

3.3.P18 Newton’s identities (2.4.18–19) can be proved by applying standard matrix analytic
identities to the companion matrix. Adopt the notation of (2.4.P3) and (2.4.P9) and let A ∈
Mn be the companion matrix of p(t) = tn + an−1tn−1 + · · · + a1t + a0. Provide details for
the following: (a) Since p(t) = pA(t), we have p(A) = 0 and 0 = tr(Ak p(A)) = μn+k +
an−1μn+k−1 + · · · + a1μk+1 + a0μk for k = 0, 1, 2, . . . , which is (2.4.19). (b) Use (2.4.13)
to show that

tr(adj(t I − A)) = ntn−1 + tr An−2tn−2 + · · · + tr A1t + tr A0 (3.3.17)

and use (2.4.17) to show that tr An−k−1 = μk + an−1μk−1 + · · · + an−k+1μ1 + nan−k ,
which is the coefficient of tn−k−1 in the right-hand side of (3.3.17) for k = 1, . . . , n − 1.
Use (0.8.10.2) to show that tr(adj(t I − A)) = ntn−1 + (n − 1)an−1tn−2 + · · · + 2a2t + a1,
so (n − k)an−k is the coefficient of tn−k−1 in the left-hand side of (3.3.17) for k =
1, . . . , n − 1. Conclude that (n − k)an−k = μk + an−1μk−1 + · · · + an−k+1μ1 + nan−k for
k = 1, . . . , n − 1, which is equivalent to (2.4.17).

3.3.P19 Let A, B ∈ Mn and let C = AB − B A be their commutator. In (2.4.P12) we
learned that if C commutes with either A or B, then Cn = 0. If C commutes with both A
and B, show that Cn−1 = 0. What does this say if n = 2?

3.3.P20 Let A, B ∈ Mn be companion matrices (3.3.12) and let λ ∈ C. (a) Show that λ is
an eigenvalue of A if and only if xλ = [1 λ λ2 . . . λn−1]T is an eigenvector of AT . (b) If
λ is an eigenvalue of A, show that every eigenvector of AT associated with λ is a scalar
multiple of xλ. Deduce that every eigenvalue of A has geometric multiplicity 1. (c) Explain
why AT and BT have a common eigenvector if and only if they have a common eigenvalue.
(d) If A commutes with B, why must A and B have a common eigenvalue?

3.3.P21 Let n ≥ 2, let Cn be the companion matrix (3.3.12) of p(t) = tn + 1, let Ln ∈ Mn

be the strictly lower triangular matrix whose entries below the main diagonal are all equal to
+1, let En = Ln − LT

n , and let θ k = π
n (2k + 1), k = 0, 1, . . . , n − 1. Provide details for the

following proof that the spectral radius of En is cot π
2n . (a) The eigenvalues of Cn are λk =

eiθ k , k = 0, 1, . . . , n − 1 with respective associated eigenvectors xk = [1 λk . . . λn−1
k ]T .

(b) En = Cn + C2
n + · · · + Cn−1

n has eigenvectors xk, k = 0, 1, . . . , n − 1 with respective
associated eigenvalues

λk + λ2
k + · · · + λn−1

k = λk − λn
k

1 − λk
= 1 + λk

1 − λk

= e−iθ k/2 + eiθ k/2

e−iθ k/2 − eiθ k/2
= i cot

θ k

2

for k = 0, 1, . . . , n − 1. (c) ρ(En) = cot π
2n .

3.3.P22 Let A ∈ Mn . Explain why the degree of the minimal polynomial of A is at most
rank A + 1, and show by example that this upper bound on the degree is best possible for
singular matrices: For each r = 1, . . . , n − 1 there is some A ∈ Mn such that rank A = r
and the degree of qA(t) is r + 1.

3.3.P23 Show that a companion matrix is diagonalizable if and only if it has distinct
eigenvalues.
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3.3.P24 Use the example in the exercise preceding (3.3.4) to show that there are nonsimilar
A, B ∈ Mn such that for every polynomial p(t), p(A) = 0 if and only if p(B) = 0.

3.3.P25 If a0 �= 0, show that the inverse of the companion matrix A in (3.3.12) is

A−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a1
a0

1 0 · · · 0
−a2
a0

0 1 0
...

...
. . .

. . .

−an−1

a0
0

. . . 1
−1
a0

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.3.18)

and that its characteristic polynomial is

tn + a1

a0
tn−1 + · · · + an−1

a0
t + 1

a0
= tn

a0
pA(t−1) (3.3.19)

3.3.P26 This problem is a generalization of (2.4.P16). Let λ1, . . . , λd be the distinct eigen-
values of A ∈ Mn , and let qA(t) = (t − λ1)μ1 · · · (t − λd )μd be the minimal polynomial
of A. For i = 1, . . . , d , let qi (t) = qA(t)/(t − λi ) and let νi denote the number of blocks
Jμi

(λi ) in the Jordan canonical form of A. Show that (a) for each i = 1, . . . , d, qi (A) �= 0,
each of its nonzero columns is an eigenvector of A associated with λi , and each of its
nonzero rows is the complex conjugate of a left eigenvector of A associated with λi ; (b) for
each i = 1, . . . , d , qi (A) = Xi Y ∗

i , in which Xi , Yi ∈ Mn,νi each have rank νi , AXi = λi Xi ,
and Y ∗

i A = λi Y ∗
i ; (c) rank qi (A) = νi , i = 1, . . . , d; (d) if νi = 1 for some i = 1, . . . , d,

then there exists a polynomial p(t) such that rank p(A) = 1; (e) if A is nonderogatory, then
there is a polynomial p(t) such that rank p(A) = 1; (f) the converse of the assertion in (d)
is correct as well – can you prove it?

3.3.P27 The nth-order linear homogeneous ordinary differential equation

y(n) + an−1 y(n−1) + an−2 y(n−2) + · · · + a1 y′ + a0 y = 0

for a complex-valued function y(t) of a real parameter t can be transformed into a
first-order homogeneous system of ordinary differential equations x ′ = Ax, A ∈ Mn, x =
[x1 . . . xn]T by introducing auxiliary variables x1 = y, x2 = y′, . . . , xn = y(n−1). Perform
this transformation and show that AT is the companion matrix (3.3.12).

3.3.P28 Suppose that K ∈ Mn is an involution. Explain why K is diagonalizable, and why
K is similar to Im ⊕ (−In−m) for some m ∈ {0, 1, . . . , n}.
3.3.P29 Suppose that A, K ∈ Mn , K is an involution, and A = K AK . Show that (a) there
is some m ∈ {0, 1, . . . , n} and matrices A11 ∈ Mm , A22 ∈ Mn−m such that A is similar to
A11 ⊕ A22 and K A is similar to A11 ⊕ (−A22); (b) λ is an eigenvalue of A if and only if
either +λ or −λ is an eigenvalue of K A; (c) if A ∈ Mn is centrosymmetric (0.9.10) and
K = Kn is the reversal matrix (0.9.5.1), then λ is an eigenvalue of A if and only if either
+λ or −λ is an eigenvalue of Kn A, which presents the rows of A in reverse order.

3.3.P30 Suppose that A, K ∈ Mn , K is an involution, and A = −K AK . Show that (a)
there is some m ∈ {0, 1, . . . , n} and matrices A12 ∈ Mm,n−m , A21 ∈ Mn−m,m such that A

is similar to B =
[

0m

A21

A12

0n−m

]
and K A is similar to

[
0m

−A21

A12

0n−m

]
; (b) A is similar to i K A, so

λ is an eigenvalue of A if and only if iλ is an eigenvalue of K A; (c) if A ∈ Mn is skew
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centrosymmetric (0.9.10) and Kn is the reversal matrix (0.9.5.1), then A is similar to i Kn A
(thus, λ is an eigenvalue of A if and only if iλ is an eigenvalue of Kn A, which presents the
rows of A in reverse order).

3.3.P31 Show that there is no real 3-by-3 matrix whose minimal polynomial is x2 + 1,
but that there is a real 2-by-2 matrix as well as a complex 3-by-3 matrix with this
property.

3.3.P32 Let λ1, . . . , λd be the distinct eigenvalues of a given A ∈ Mn . Make a list of
the N = w1(A, λ1) + · · · + w1(A, λd ) blocks in the Jordan canonical form of A. For j =
1, 2, . . . until no blocks remain on the list (which must occur for some j = r ≤ N ), perform
the following two steps (i) for each k = 1, . . . , d, if there is a block with eigenvalue λk in the
list, remove one of largest size from the list; (ii) let Jj denote the direct sum of the (at most d)
blocks removed from the list in (i), let p j (t) be the characteristic polynomial of Jj , and let
C j be the companion matrix of p j (t). Explain why (a) each matrix Jj is nonderogatory;
(b) each Jj is similar to C j ; (c) A is similar to F = C1 ⊕ · · · ⊕ Cr ; (d) p1(t) is the minimal
polynomial of A and p1(t) · · · pr (t) is the characteristic polynomial of A; (e) F is real if A
is real; (f) p j+1(t) divides p j (t) for each j = 1, . . . , r − 1; (g) if F ′ = C ′

1 ⊕ · · · ⊕ C ′
s is a

direct sum of companion matrices, if F is similar to A, and if pC ′
j+1

(t) divides pC ′
j
(t) for

each j = 1, . . . , s, then F ′ = F . The polynomials p1(t), . . . , pr (t) are the invariant factors
of A. Although we have used the Jordan canonical form of A (and hence its eigenvalues) to
construct F , the eigenvalues of A do not appear explicitly in F . In fact, one can compute
the invariant factors of A (and hence the companion matrices C1, . . . , Cr ) solely by means
of finitely many rational operations on the entries of A, without knowing its eigenvalues.
If A is real, those rational operations involve only real numbers; if the entries of A are in a
field F, those rational operations involve only elements of F. The matrix F is the rational
canonical form of A.

3.3.P33 Let z1, . . . , zn be the zeroes of the polynomial p in (3.3.11). Show that

1

n

n∑
i=1

|zi |2 ≤ 1 − 1

n
+ 1

n

n−1∑
i=0

|ai |2 < 1 + max
0≤i≤n−1

|ai |2

3.3.P34 Let A, B ∈ Mn , let C = AB − B A, consider the minimal polynomial (3.3.5b) of
A, and let m = 2 max{r1, . . . , rd} − 1. If A commutes with C , it is known that Cm = 0.
Deduce the assertions in (2.4.P12 (a,c)) from this fact.

3.3.P35 Let A ∈ Mn and suppose that rank A = 1. Show that the minimal polyno-
mial of A is qA(t) = t(t − tr A) and conclude that A is diagonalizable if and only if
tr A �= 0.

Further Readings. The first proof of (3.3.16) is in F. Kittaneh, Singular values of
companion matrices and bounds on zeroes of polynomials, SIAM J. Matrix Anal. Appl.
16 (1995) 333–340. For a discussion of the rational canonical form of a matrix over
any field, see section 7.2 of Hoffman and Kunze (1971) or section V.4 of Turnbull and
Aitken (1945). The result mentioned in (3.3.P34) is proved in J. Bračič and B. Kuzma,
Localizations of the Kleinecke–Shirokov theorem, Oper. Matrices 1 (2007) 385–389.
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3.4 The real Jordan and Weyr canonical forms

In this section we discuss a real version of the Jordan canonical form for real matrices,
as well as an alternative to the Jordan canonical form for complex matrices that is
especially useful in problems involving commutativity.

3.4.1 The real Jordan canonical form. Suppose that A ∈ Mn(R), so any non-
real eigenvalues must occur in complex conjugate pairs. We have rank(A − λI )k =
rank (A − λI )k = rank(A − λI )k = rank(A − λ̄I )k for any λ ∈ C and all k = 1, 2,

. . . , so the Weyr characteristics of A associated with any complex conjugate pair of
eigenvalues are the same (that is, wk(A, λ) = wk(A, λ̄) for all k = 1, 2, . . .). Lemma
3.1.18 ensures that the Jordan structure of A corresponding to any eigenvalue λ is
the same as the Jordan structure of A corresponding to the eigenvalue λ̄ (that is,
sk(A, λ) = sk(A, λ̄) for all k = 1, 2, . . .). Thus, all the Jordan blocks of A of all sizes
with non-real eigenvalues occur in conjugate pairs of equal size.

For example, if λ is a non-real eigenvalue of A ∈ Mn(R), and if k blocks J2(λ) are
in the Jordan canonical form of A, then there are k blocks J2(λ̄) as well. The block
diagonal matrix

[
J2(λ)

J2(λ̄)

]
=

⎡
⎢⎢⎣

λ 1
0 λ

λ̄ 1
0 λ̄

⎤
⎥⎥⎦

is permutation similar (interchange rows and columns 2 and 3) to the block upper
triangular matrix ⎡

⎢⎢⎣
λ 0 1 0
0 λ̄ 0 1

λ 0
0 λ̄

⎤
⎥⎥⎦ =

[
D(λ) I2

D(λ)

]

in which D(λ) =
[

λ 0
0 λ̄

]
∈ M2.

In general, any Jordan matrix of the form[
Jk(λ)

Jk(λ̄)

]
∈ M2k (3.4.1.1)

is permutation similar to the block upper triangular (block bidiagonal) matrix⎡
⎢⎢⎢⎢⎢⎢⎣

D(λ) I2

D(λ) I2

. . .
. . .
. . . I2

D(λ)

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ M2k (3.4.1.2)

which has k 2-by-2 blocks D(λ) on the main block diagonal and k − 1 blocks I2 on
the block superdiagonal.
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Let λ = a + ib, a, b ∈ R. A computation reveals that D(λ) is similar to a real matrix

C(a, b) :=
[

a b
−b a

]
= SD(λ)S−1 (3.4.1.3)

in which S =
[
−i −i
1 −1

]
and S−1 = 1

2i

[
−1 i
−1 −i

]
. Moreover, every block matrix of the

form (3.4.1.2) with a non-real λ is similar to a real block matrix of the form

Ck(a, b) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

C(a, b) I2

C(a, b) I2

. . .
. . .
. . . I2

C(a, b)

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ M2k (3.4.1.4)

via the similarity matrix S ⊕ · · · ⊕ S (k direct summands). Thus, every block matrix
of the form (3.4.1.1) is similar to the matrix Ck(a, b) in (3.4.1.4). These observations
lead us to the real Jordan canonical form theorem.

Theorem 3.4.1.5. Each A ∈ Mn(R) is similar via a real similarity to a real block dia-
gonal matrix of the form

Cn1 (a1, b1) ⊕ · · · ⊕ Cn p (ap, bp) ⊕ Jm1 (μ1) ⊕ · · · ⊕ Jmr (μr ) (3.4.1.6)

in which λk = ak + ibk , k = 1, 2, . . . , p, are non-real eigenvalues of A, each ak and
bk is real and bk > 0, and μ1, . . . , μr are real eigenvalues of A. Each real block
triangular matrix Cnk (ak, bk) ∈ M2nk is of the form (3.4.1.4) and corresponds to a
pair of conjugate Jordan blocks Jnk (λk), Jnk (λ̄k) ∈ Mnk with non-real λk in the Jordan
canonical form (3.1.12) of A. The real Jordan blocks Jmk (μk) in (3.4.6) are the Jordan
blocks in (3.1.12) that have real eigenvalues.

Proof. We have shown that A is similar to (3.4.1.6) over C. Theorem 1.3.28 ensures
that A is similar to (3.4.6) over R. �

The block matrix (3.4.1.6) is the real Jordan canonical form of A. The following
corollary formulates several useful alternative criteria for similarity to a real matrix.

Corollary 3.4.1.7. Let A ∈ Mn be given. The following are equivalent:

(a) A is similar to a real matrix.
(b) For each nonzero eigenvalue λ of A and each k = 1, 2, . . . the respective numbers

of blocks Jk(λ) and Jk(λ̄) are equal.
(c) For each non-real eigenvalue λ of A and each k = 1, 2, . . . the respective numbers

of blocks Jk(λ) and Jk(λ̄) are equal.
(d) For each non-real eigenvalue λ of A and each k = 1, 2, . . . rank(A − λI )k =

rank(A − λ̄I )k .
(e) For each non-real eigenvalue λ of A and each k = 1, 2, . . . rank(A − λI )k =

rank( Ā − λI )k .
(f) For each non-real eigenvalue λ of A the Weyr characteristics of A associated

with λ and λ̄ are the same.
(g) A is similar to Ā.
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Corollary 3.4.1.8. If A =
[

B
0

C
0

]
∈ Mn and B ∈ Mm is similar to a real matrix, then

A is similar to a real matrix.

Proof. Suppose that S ∈ Mm is nonsingular and SBS−1 = R is real. Then A = (S ⊕
In−m)A(S ⊕ In−m)−1 =

[
R
0

�
0

]
is similar to A. If λ �= 0 then the column ranks of

(A− λI )k =
[

(R − λI )k �
(−λ)k In−m

]
and

(A− λI )k =
[

(R − λI )k �
(−λ)k In−m

]
are the same: n − m + rank(R − λI )k . We conclude that A is similar to A, so A (and
hence also A) is similar to a real matrix. �

Corollary 3.4.1.9. For each A ∈ Mn, AĀ is similar to ĀA as well as to a real matrix.

Proof. Theorem 3.2.11.1 ensures that the nonsingular Jordan structures of AĀ and
ĀA are the same. Since a matrix and its complex conjugate have the same rank,
rank(AĀ)k = rank (AĀ)k = rank(AĀ)k = rank( ĀA)k for each k = 1, 2, . . . . Thus, the
nilpotent Jordan structures of AĀ and ĀA are also the same, so AĀ and ĀA are similar.
Since ĀA = AĀ, (3.4.1.7) ensures that AĀ is similar to a real matrix. �

Each complex square matrix A is similar, via a complex similarity, to a complex
upper triangular matrix T (2.3.1). If A is diagonalizable, then it is similar, via a complex
similarity, to a diagonal matrix whose diagonal entries are the same as those of T ; these
entries are the eigenvalues of A. What is the real analog of this observation?

Each real square matrix A is similar, via a real similarity, to a real upper
quasitriangular matrix T of the form (2.3.5) in which any 2-by-2 diagonal blocks
have the special form (2.3.5a), which is the same as (3.4.1.3). If A is diagonaliz-
able, the following corollary of (3.4.1.5) ensures that A is similar, via a real simi-
larity, to a real quasidiagonal matrix whose diagonal blocks are the same as those
of T .

Corollary 3.4.1.10. Let A ∈ Mn(R) be given and suppose that it is diagonalizable. Let
μ1, . . . , μq be the real eigenvalues of A and let a1 ± ib1, . . . , a� ± ib� be the non-real
eigenvalues of A, in which each b j > 0. Then A is similar, via a real similarity, to

C1(a1, b1) ⊕ · · · ⊕ C1(a�, b�) ⊕ [μ1] ⊕ · · · ⊕ [μq ]

Proof. This is the case n1 = · · · = n p = m1 = · · · = mr = 1 in (3.4.1.6). �

3.4.2 The Weyr canonical form. The Weyr characteristic (3.1.16) played a key role
in our discussion of uniqueness of the Jordan canonical form. It can also be used to
define a canonical form for similarity that has certain advantages over the Jordan form.
We begin by defining a Weyr block.

Let λ ∈ C be given, let q ≥ 1 be a given positive integer, let w1 ≥ · · · ≥ wq ≥ 1 be
a given nonincreasing sequence of positive integers, and let w = (w1, . . . , wq ). The
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Weyr block W (w, λ) associated with λ and w is the upper triangular q-by-q block
bidiagonal matrix

W (w, λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

λIw1 Gw1,w2

λIw2 Gw2,w3

. . .
. . .
. . . Gwq−1,wq

λIwq

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4.2.1)

in which

Gwi ,w j =
[

Iw j

0

]
∈ Mwi ,w j , 1 ≤ i < j

Notice that rank Gwi ,w j = w j and that if wi = wi+1, then Gwi ,wi+1 = Iwi .
A Weyr block W (w, λ) may be thought of as a q-by-q block matrix analog of a

Jordan block. The diagonal blocks are scalar matrices λI with nonincreasingly ordered

sizes, and the superdiagonal blocks are full-column-rank blocks
[

I
0

]
whose sizes are

dictated by the sizes of the diagonal blocks.

Exercise. The size of the Weyr block W (w, λ) in (3.4.2.1) is w1 + · · · + wq .
Explain why rank(W (w, λ) − λI ) = w2 + · · · + wq .

Exercise. Verify that Gwk−1,wk Gwk ,wk+1 = Gwk−1,wk+1 , that is,[
Iwk

0wk−1−wk ,wk

] [
Iwk+1

0wk−wk+1,wk+1

]
=
[

Iwk+1

0wk−1−wk+1,wk+1

]
Using the preceding exercise, we find that (W (w, λ) − λI )2 =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0w1 0 Gw1,w3

0w2 0
. . .

0w3

. . . Gwq−2,wq

. . . 0
0wq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

so rank(W (w, λ) − λI )2 = w3 + · · · + wq . Moving from one power to the next,
each block Gw1,wp+1, . . . , Gwq−p,wq in the nonzero superdiagonal of (W (w, λ) − λI )p

moves up one block row into the next higher superdiagonal of (W (w, λ) − λI )p+1,
whose blocks are Gw1,wp+2, . . . , Gwq−p−1,wq . In particular, rank(W (w, λ) − λI )p =
wp+1 + · · · + wq for each p = 1, 2, . . . . Consequently,

rank(W (w, λ) − λI )p−1 − rank(W (w, λ) − λI )p = wp, p = 1, . . . , q

so the Weyr characteristic of W (w, λ) associated with the eigenvalue λ is w.

Exercise. Explain why the number of diagonal blocks in (3.4.2.1) (the para-
meter q) is the index of λ as an eigenvalue of W (w, λ).

A Weyr matrix is a direct sum of Weyr blocks with distinct eigenvalues.
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For any given A ∈ Mn , let q be the index of an eigenvalue λ of A, let wk = wk(A, λ),
k = 1, 2, . . . be the Weyr characteristic of A associated with λ, and define the Weyr
block of A associated with the eigenvalue λ to be

WA(λ) = W (w(A, λ), λ)

For example, the Weyr characteristic of the Jordan matrix J in (3.1.16a) associated
with the eigenvalue 0 is w1(J, 0) = 6, w2(J, 0) = 5, w3(J, 0) = 2, so

WJ (0) =
⎡
⎣06 G6,5

05 G5,2

02

⎤
⎦ (3.4.2.2)

Exercise. Let λ be an eigenvalue of A ∈ Mn . Explain why the size of the Weyr
block WA(λ) is the algebraic multiplicity of λ.

Exercise. For the Weyr block (3.4.2.2), show by explicit calculation that

WJ (0)2 =
⎡
⎣06 06,5 G6,2

05 05,2

02

⎤
⎦

and WJ (0)3 = 0. Explain why rank WJ (0) = 7 = w2 + w3 and rank WJ (0)2 =
2 = w3, and why the Weyr characteristic of WJ (0) associated with its (only)
eigenvalue 0 is 6, 5, 2. Deduce that WJ (0) is similar to J .

We can now state the Weyr canonical form theorem.

Theorem 3.4.2.3. Let A ∈ Mn be given and let λ1, . . . , λd be its distinct eigenvalues in
any given order. There is a nonsingular S ∈ Mn and there are Weyr blocks W1, . . . , Wd,
each of the form (3.4.2.1), such that (a) the (only) eigenvalue of W j is λ j for each
j = 1, . . . , d and (b) A = S(W1 ⊕ · · · ⊕ Wd )S−1. The Weyr matrix W1 ⊕ · · · ⊕ Wd to
which A is similar is uniquely determined by A and the given enumeration of its distinct
eigenvalues: W j = WA(λ j ) for each j = 1, . . . , d, so

A = S

⎡
⎢⎣WA(λ1)

. . .
WA(λd )

⎤
⎥⎦ S−1

If A is similar to a Weyr matrix, then that matrix is obtained from WA = WA(λ1) ⊕
· · · ⊕ WA(λd ) by a permutation of its direct summands. If A is real and has only real
eigenvalues, then S can be chosen to be real.

Proof. The preceding observations show that WA = WA(λ1) ⊕ · · · ⊕ WA(λd ) and A
have identical Weyr characteristics associated with each of their distinct eigenvalues.
Lemma 3.1.18 ensures that WA and A are similar since they are both similar to the
same Jordan canonical form. If two Weyr matrices are similar, then they must have
the same distinct eigenvalues and the same Weyr characteristics associated with each
eigenvalue; it follows that they contain the same Weyr blocks, perhaps permuted in the
respective direct sums. If A and all its eigenvalues are real, then WA is real and (1.3.29)
ensures that A is similar to WA via a real similarity. �
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The Weyr matrix WA = WA(λ1) ⊕ · · · ⊕ WA(λd ) in the preceding theorem is (up
to permutation of its direct summands) the Weyr canonical form of A. The Weyr
and Jordan canonical forms WA and JA contain the same information about A, but
each presents that information differently. The Weyr form explicitly displays the Weyr
characteristics of A, while the Jordan form explicitly displays its Segre characteristics.
A dot diagram (3.1.P11) can be used to construct one form from the other. Moreover,
WA and JA are permutation similar; see (3.4.P8).

Exercise. For a given λ ∈ C, consider the Jordan matrix J = J3(λ) ⊕ J2(λ).
Explain why w(J, λ) = 2, 2, 1,

J =

⎡
⎢⎢⎢⎢⎣

λ 1 0
0 λ 1
0 0 λ

λ 1
0 λ

⎤
⎥⎥⎥⎥⎦ , and WJ (λ) =

⎡
⎢⎢⎢⎢⎣

λ 0 1 0
0 λ 0 1

λ 0 1
0 λ 0

λ

⎤
⎥⎥⎥⎥⎦

Exercise. Observe that the matrices J and WJ in the preceding exercise have
the same number of off-diagonal nonzero entries as well as the same number of
nonzero entries.

Exercise. Let λ1, . . . , λd be the distinct eigenvalues of A ∈ Mn . (a) If A is
nonderogatory, explain why there are d positive integers p1, . . . , pd such that
(i) w1(A, λi ) = · · · = wpi (A, λi ) = 1 and wpi+1(A, λi ) = 0 for each i =
1, . . . , d; (ii) the Weyr canonical form of A is its Jordan canonical form. (b)
If w1(A, λi ) = 1 for each i = 1, . . . , d, why must A be nonderogatory?

Exercise. Let λ1, . . . , λd be the distinct eigenvalues of A ∈ Mn . (a) If A
is diagonalizable, explain why (i) w2(A, λi ) = 0 for each i = 1, . . . , d; (ii)
WA(λi ) = λi Iw1(A,λi ), i = 1, . . . , d; (iii) the Weyr canonical form of A is its
Jordan canonical form. (b) If w2(A, λi ) = 0 for some i , why is w1(A, λi ) equal to
the algebraic multiplicity of λi (it is always equal to the geometric multiplicity)?
(c) If w2(A, λi ) = 0 for all i = 1, . . . , d, why must A be diagonalizable?

Exercise. Let λ1, . . . , λd be the distinct eigenvalues of A ∈ Mn . Explain why for
each i = 1, . . . , d there are at most p Jordan blocks of A with eigenvalue λi if
and only if w1(A, λi ) ≤ p for each i = 1, . . . , d, which is equivalent to requiring
that every diagonal block of every Weyr block WA(λi ) (3.4.2.1) is at most p-by-p.

In (3.2.4) we investigated the set of matrices that commute with a single given
nonderogatory matrix. The key to understanding the structure of this set is knowing
that A ∈ Mk commutes with a single Jordan block Jk(λ) if and only if A is an upper
triangular Toeplitz matrix (3.2.4.3). Thus, a matrix commutes with a nonderogatory
Jordan matrix J if and only if it is a direct sum (conformal to J ) of upper triangular
Toeplitz matrices; in particular, it is upper triangular. The Jordan and Weyr canonical
forms of a nonderogatory matrix are identical. The Jordan and Weyr canonical forms of
a derogatory matrix need not be the same, and if they are not, there is a very important
difference in the structures of the matrices that commute with them.
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Exercise. Let J = J2(λ) ⊕ J2(λ) and A ∈ M4. Show that (a) WJ =
[

λI2 I2
02 λI2

]
;

(b) A commutes with J if and only if A =
[

B C
D E

]
in which each block

B, C, D, E ∈ M2 is upper triangular Toeplitz; (c) A commutes with WJ if and

only if A =
[

B C
0 B

]
, which is block upper triangular.

The following lemma identifies the feature of a Weyr block that forces any matrix
that commutes with it to be block upper triangular.

Lemma 3.4.2.4. Let λ ∈ C and positive integers n1 ≥ n2 ≥ · · · ≥ nk ≥ 1 be given.
Consider the upper triangular and identically partitioned matrices

F = [Fi j ]
k
i, j=1 =

⎡
⎢⎢⎢⎢⎣

λIn1 F12 �
λIn2

. . .

. . . Fk−1,k

λInk

⎤
⎥⎥⎥⎥⎦ ∈ Mn

and

F ′ = [F ′
i j ]

k
i, j=1 =

⎡
⎢⎢⎢⎢⎣

λIn1 F ′
12 �

λIn2

. . .

. . . F ′
k−1,k

λInk

⎤
⎥⎥⎥⎥⎦ ∈ Mn

Assume that all of the superdiagonal blocks F ′
i,i+1 have full column rank. If A ∈ Mn and

AF = F ′A, then A is block upper triangular conformal to F and F ′. If, in addition, A
is normal, then A is block diagonal conformal to F and F ′.

Proof. Partition A = [Ai j ]k
i, j=1 conformally to F and F ′. Our strategy is to inspect

corresponding blocks of the identity AF = F ′A in a particular order. In block
position k − 1, 1 we have λAk−1,1 = λAk−1,1 + F ′

k−1,k Ak1, so F ′
k−1,k Ak1 = 0 and

hence Ak1 = 0 since F ′
k−1,k has full column rank. In block position k − 2, 1 we

have λAk−2,1 = λAk−2,1 + F ′
k−2,k−1 Ak−1,1 (since Ak1 = 0), so F ′

k−2,k−1 Ak−1,1 = 0 and
Ak−1,1 = 0. Proceeding upward in the first block column of A and using at each step the
fact that the lower blocks in that block column have been shown to be zero blocks, we
find that Ai1 = 0 for each i = k, k − 1, . . . , 2. Now inspect block position k − 1, 2 and
proceed upward in the same fashion to show that Ai2 = 0 for each i = k, k − 1, . . . , 3.
Continuing this process left to right and bottom to top, we find that A is block upper
triangular conformal to F and F ′. If A is normal and block triangular, then (2.5.2)
ensures that it is block diagonal. �

Using the preceding lemma, we now show that if A, B ∈ Mn commute, then there is
a simultaneous similarity that takes A into its Weyr form WA and takes B into a block
upper triangular matrix whose block structure is determined by the block structure of
WA.

Theorem 3.4.2.5 (Belitskii). Let A ∈ Mn be given, let λ1, . . . , λd be its distinct
eigenvalues in any prescribed order, let wk(A, λ j ), k = 1, 2, . . . , be the Weyr
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characteristic of A associated with the eigenvalue λ j , j = 1, . . . , d, and let WA(λ j )
be a Weyr block for j = 1, 2, . . . , d. Let S ∈ Mn be nonsingular and such that
A = S(WA(λ1) ⊕ · · · ⊕ WA(λd ))S−1. Suppose that B ∈ Mn and AB = B A. Then (1)
S−1 BS = B(1) ⊕ · · · ⊕ B(k) is block diagonal conformal to WA(λ1) ⊕ · · · ⊕ WA(λd ),
and (2) each matrix B(�) is block upper triangular conformal to the partition (3.4.2.1)
of WA(λ�).

Proof. The assertion (1) follows from the basic result (2.4.4.2); the assertion (2) follows
from the preceding lemma. �

Any matrix that commutes with a Weyr matrix is block upper triangular, but we
can say a little more. Consider once again the Jordan matrix J in (3.1.16a), whose
Weyr canonical form WJ = WJ (0) is (3.4.2.2). To expose certain identities among
the blocks of a (necessarily block upper triangular) matrix that commutes with WJ ,
we impose a finer partition on WJ . Let mk = wk − wk+1, k = 1, 2, 3, so each mk is
the number of Jordan blocks of size k in J : m3 = 2, m2 = 3, and m1 = 1. We have
w1 = m3 + m2 + m1 = 6, w2 = m3 + m2 = 5, and w3 = m3 = 2. Now repartition WJ

(3.4.2.2) with diagonal block sizes m3, m2, m1; m2, m1; m1, that is, 2, 3, 1; 2, 3; 2 – this
is known as the standard partition: the coarsest partition of a Weyr block such that
every diagonal block is a scalar matrix (square) and every off-diagonal block is either
an identity matrix (square) or a zero matrix (not necessarily square). In the standard
partition, WJ has the form

WJ =

⎡
⎢⎢⎢⎢⎢⎢⎣

02 0 0 I2 0
03 0 0 I3

01 0 0
02 0 I2

03 0
02

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4.2.6)

Although the diagonal blocks in a Weyr block are arranged in nonincreasing order of
size, after imposing the standard partition, the new, smaller, diagonal blocks need not
occur in nonincreasing order of size. A computation reveals that N commutes with WJ

if and only if it has the following block structure, conformal to that of (3.4.2.6):

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

B C � D � �
F � E � �

G 0 � �
B C D

F E
B

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4.2.7)

There are no constraints on the entries of the � blocks. It may be easier to see how
the equalities among the blocks of (3.4.2.7) are structured if we collapse its standard
partition to the coarser partition of (3.4.2.2): N = [Ni j ]3

i, j=1 with N11 ∈ Mw1 = M6,
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N22 ∈ Mw2 = M5, and N33 ∈ Mw3 = M2. Then

N33 = [B] , N23 =
[

D
E

]
, N22 =

[
B C
0 F

]
,

N12 =
⎡
⎣ D �

E �
0 �

⎤
⎦ , N11 =

⎡
⎣ B C �

0 F �
0 0 G

⎤
⎦

that is,

N22 =
[

N33 �
0 �

]
, N11 =

[
N22 �
0 �

]
, N12 =

[
N23 �
0 �

]
The pattern

Ni−1, j−1 =
[

Ni j �
0 �

]
(3.4.2.8)

permits us to determine all the equalities among the blocks in the standard partition
(including the positions of the off-diagonal zero block(s)) starting with the blocks in
the last block column and working backward up their block diagonals.

Exercise. Consider a Jordan matrix J ∈ M4n1+2n2 that is a direct sum of n1

copies of J4(λ) and n2 copies of J2(λ). Explain why (a) w(J, λ) = n1 + n2, n1 +
n2, n1, n1; (b) the block sizes mk = wk − wk+1 in the standard partition of WJ (λ)
are n2, n1; n2, n1; n1; n1 (zero values of mk are removed); (c) WJ (λ) and its
presentation according to a standard partition are

WJ (λ) =

⎡
⎢⎢⎣

λIn1+n2 In1+n2

λIn1+n2 Gn1+n2,n1

λIn1 In1

λIn1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λIn1 0 In1 0
λIn2 0 In2

λIn1 0 In1

λIn2 0
λIn1 In1

λIn1

⎤
⎥⎥⎥⎥⎥⎥⎦

(d) N WJ = WJ N if and only if, partitioned conformally to the preceding matrix,
N has the form

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

B D E � F �
C 0 � G �

B D E F
C 0 G

B E
B

⎤
⎥⎥⎥⎥⎥⎥⎦

One final structural simplification of (3.4.2.7) is available to us. Let U3, 3 ∈ Mm3 ,
U2, 2 ∈ Mm2 , and U1, 1 ∈ Mm1 be unitary and upper triangular matrices (2.3.1)



210 Canonical forms for similarity and triangular factorizations

such that B = U33U ∗
3 , F = U22U ∗

2 , and G = U11U ∗
1 (a trivial factorization in

this case). Let

U = U3 ⊕ U2 ⊕ U1 ⊕ U3 ⊕ U2 ⊕ U3

Then

N ′ := U ∗NU =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 C ′ � D′ � �
2 � E ′ � �

1 0 � �
3 C ′ D′

2 E ′

3

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4.2.9)

is upper triangular; we have C ′ = U ∗
3 CU2, D′ = U ∗

3 DU3, and E ′ = U ∗
2 EU3. The

equalities among the blocks of N ′ on and above the block diagonal are the same as
those of N . Moreover, WJ is unchanged after a similarity via U : U ∗WJ U = WJ .

We can draw a remarkable conclusion from the preceding example. Suppose that
A ∈ M13 has the Jordan canonical form (3.1.16a);F = {A, B1, B2, . . .} is a commuting
family; and S ∈ M13 is nonsingular and S−1 AS = WA is the Weyr canonical form
(3.4.2.11). Then S−1FS = {WA, S−1 B1S, S−1 B2S, . . .} is a commuting family. Since
each matrix S−1 Bi S commutes with WA, it has the block upper triangular form (3.4.2.7)
in the standard partition. Thus, for each j = 1, . . . , 6 the diagonal blocks in position
j, j of all the matrices S−1 Bi S constitute a commuting family, which can be upper
triangularized by a single unitary matrix U j (2.3.3). For each i = 1, 2, . . . the diagonal
blocks of S−1 Bi S in positions (1, 1), (4, 4), and (6, 6) are constrained to be the same,
so we may (and do) insist that U1 = U4 = U6. For the same reason, we insist that
U2 = U5. Let U = U1 ⊕ · · · ⊕ U6. Then each U ∗(S−1 Bi S)U is upper triangular and
has the form (3.4.2.9), and U ∗S−1 ASU = U ∗WAU = WA. The conclusion is that there
is a simultaneous similarity of the commuting family {A, B1, B2, . . .} that reduces A to
Weyr canonical form and reduces every Bi to the upper triangular form (3.4.2.9).

All the essential features of the general case are captured in the preceding example,
and by following its development, one can prove the following theorem.

Theorem 3.4.2.10. Let λ1, . . . , λd be the distinct eigenvalues of a given A ∈ Mn in
any prescribed order, let their respective indices as eigenvalues of A be q1, . . . , qd,
and let their respective algebraic multiplicities be p1, . . . , pd. For each i = 1, . . . , d,
let w(A, λi ) = (w1(A, λi ), . . . , wqi (A, λi )) be the Weyr characteristic of A associated
with λi and let WA(λi ) be the Weyr block of A associated with λi . Let

WA = WA(λ1) ⊕ · · · ⊕ WA(λd ) (3.4.2.11)

be the Weyr canonical form of A, and let A = SWA S−1.

(a) (Belitskii) Suppose that B ∈ Mn commutes with A. Then S−1 BS = B(1) ⊕ · · · ⊕
B(d) is block diagonal conformal to WA. For each � = 1, . . . , d, partition B(�) =
[B(�)

i j ]q�

i, j=1 ∈ Mp�
, in which each B(�)

j j ∈ Mw j (A,λ�), j = 1, . . . , q�. In this partition,
B(�) is block upper triangular conformal to WA(λ�), and its blocks along the kth
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block superdiagonal are related by the identities

B(�)
j−k−1, j−1 =

[
B(�)

j−k, j �
0 �

]
,

k = 0, 1, . . . , q� − 1;
j = q�, q� − 1, . . . , k + 1

(3.4.2.12)

(b) (O’Meara and Vinsonhaler) Let F = {A, A1, A2, . . .} ⊂ Mn be a com-
muting family. There is a nonsingular T ∈ Mn such that T −1FT =
{WA, T −1 A1T, T −1 A2T, . . .} is an upper triangular family. Each matrix T −1 Ai T
is block diagonal conformal to (3.4.2.11). If the diagonal block of T −1 Ai T
corresponding to WA(λ�) is partitioned with diagonal block sizes w1(A, λ�),
w2(A, λ�), . . . , wq�

(A, λ�), then its blocks along its kth block superdiagonal are
related by identities of the form (3.4.2.12).

3.4.3 The unitary Weyr form. Theorem 3.4.2.3 and the Q R factorization imply a
refinement of (2.3.1) that incorporates the block structure of the Weyr canonical form.

Theorem 3.4.3.1 (Littlewood). Let λ1, . . . , λd be the distinct eigenvalues of a given
A ∈ Mn in any prescribed order, let q1, . . . , qd be their respective indices, and let
q = q1 + · · · + qd. Then A is unitarily similar to an upper triangular matrix of the
form

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1 In1 F12 F13 · · · F1p

μ2 In2 F23 · · · F2p

μ3 In3

. . .
...

. . . Fp−1,p

μp In p

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4.3.2)

in which

(a) μ1 = · · · = μq1
= λ1; μq1+1 = · · · = μq1+q2

= λ2; . . . ; μp−qd+1 = · · · = μp =
λd

(b) For each j = 1, . . . , d the q j integers ni , . . . , ni+q j−1 for which μi = · · · =
μi+q j−1 = λ j are the Weyr characteristic of λ j as an eigenvalue of A, that is,
ni = w1(A, λ j ) ≥ · · · ≥ ni+q j−1 = wq j (A, λ j )

(c) if μi = μi+1 then ni ≥ ni+1, Fi,i+1 ∈ Mni ,ni+1 is upper triangular, and its diagonal
entries are real and positive

If A ∈ Mn(R) and if λ1, . . . , λd ∈ R, then A is real orthogonally similar to a real
matrix F of the form (3.4.3.2) that satisfies conditions (a), (b), and (c).

The matrix F in (3.4.3.2) is determined by A up to the following equivalence: If A is
unitarily similar to a matrix F ′ of the form (3.4.3.2) that satisfies the conditions (a), (b),
and (c), then there is a block diagonal unitary matrix U = U1 ⊕ · · · ⊕ Up conformal
to F such that F ′ = U FU ∗, that is, F ′

i j = U ∗
i Fi jU j , i ≤ j , i, j = 1, . . . , p.

Proof. Let S ∈ Mn be nonsingular and such that

A = SWA S−1 = S(WA(λ1) ⊕ · · · ⊕ WA(λd ))S−1

Let S = Q R be a Q R factorization (2.1.14), so Q is unitary, R is upper triangular with
positive diagonal entries, and A = Q(RWA R−1)Q∗ is unitarily similar to the upper
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triangular matrix RWA R−1. Partition R = [Ri j ]d
i, j=1 conformally to WA and compute

RWA R−1 =

⎡
⎢⎣ R11W (A, λ1)R−1

11 �
. . .

Rdd W (A, λd )R−1
dd

⎤
⎥⎦

It suffices to consider only the diagonal blocks, that is, matrices of the form
T W (A, λ)T −1. The matrix T is upper triangular with positive diagonal en-
tries; we partition T = [Ti j ]

q
i, j=1 and T −1 = [T i j ]q

i, j=1 conformally to W (A, λ),
whose diagonal block sizes are w1 ≥ · · · ≥ wq ≥ 1. The diagonal blocks of
T W (A, λ)T −1 are TiiλIwi T

ii = λIwi since T ii = T −1
i i (0.9.10); the superdiagonal

blocks are Tii Gi,i+1T i+1,i+1 + λ(Tii T i,i+1 + Ti,i+1T i+1,i+1) = Tii Gi,i+1T i+1,i+1 (the
term in parentheses is the (i, i + 1) block entry of T T −1 = I ). If we partition

Tii =
[

C �
0 D

]
with C ∈ Mwi (C is upper triangular with positive diagonal entries),

then

Tii Gi,i+1T i+1,i+1 =
[

C �
0 D

] [
Iwi+1

0

]
T −1

i+1,i+1 =
[

CT −1
i+1,i+1
0

]

is upper triangular and has positive diagonal entries, as asserted.
If A is real and has real eigenvalues, (2.3.1), (3.4.2.3), and (2.1.14) ensure that the

reductions in the preceding argument (as well as the Q R factorization) can be achieved
with real matrices.

Finally, suppose that V1, V2 ∈ Mn are unitary, A = V1 FV ∗
1 = V2 F

′
V ∗

2 , and both F
and F ′ satisfy the conditions (a), (b), and (c). Then (V ∗

2 V1)F = F
′
(V ∗

2 V1), so (3.4.2.4)
ensures that V ∗

2 V1 = U1 ⊕ · · · ⊕ Up is block diagonal conformal with F and F ′, that
is, V1 = V2(U1 ⊕ · · · ⊕ Up) and F ′ = U FU ∗. �

The following corollary illustrates how (3.4.3.1) can be used.

Corollary 3.4.3.3. Let A ∈ Mn be a projection: A2 = A. Let

σ 1 ≥ · · · ≥ σ g > 1 ≥ σ g+1 ≥ · · · ≥ σ r > 0 = σ r+1 = · · ·

be the singular values of A, so r = rank A and g is the number of singular values of A
that are greater than 1. Then A is unitarily similar to[

1 (σ 2
1 − 1)1/2

0 0

]
⊕ · · · ⊕

[
1 (σ 2

g − 1)1/2

0 0

]
⊕ Ir−g ⊕ 0n−r−g

Proof. The minimal polynomial of A is qA(t) = t(t − 1), so A is diagonalizable; its dis-
tinct eigenvalues are λ1 = 1 and λ2 = 0; their respective indices are q1 = q2 = 1; and
their respective Weyr characteristics are w1(A, 1) = r = tr A and w1(A, 0) = n − r .

Theorem 3.4.3.1 ensures that A is unitarily similar to F =
[

Ir F12
0 0n−r

]
and that F12 is

determined up to unitary equivalence. Let h = rank F12 and let F12 = V �W ∗ be a
singular value decomposition: V ∈ Mr and W ∈ Mn−r are unitary, and � ∈ Mr,n−r is
diagonal with diagonal entries s1 ≥ · · · ≥ sh > 0 = sh+1 = · · · . Then F is unitarily



3.4 The real Jordan and Weyr canonical forms 213

similar (via V ⊕ W ) to
[

Ir �

0 0n−r

]
, which is permutation similar to

C =
[

1 s1

0 0

]
⊕ · · · ⊕

[
1 sh

0 0

]
⊕ Ir−h ⊕ 0n−r−h

The singular values of C (and hence also of A) are (s2
1 + 1)1/2, . . . , (s2

h + 1)1/2

together with r − h ones and n − r − h zeroes. It follows that h = g and si =
(σ 2

i − 1)1/2, i = 1, . . . , g. �

Exercise. Provide details for the preceding proof. Explain why two projections
of the same size are unitarily similar if and only if they are unitarily equivalent,
that is, if and only if they have the same singular values. Compare the preceding
proof with the approach in (2.6.P18).

Problems

3.4.P1 Suppose that A ∈ Mn(R) and A2 = −In . Show that n must be even and that there
is a nonsingular S ∈ Mn(R) such that

S−1 AS =
[

0 −In/2

In/2 0

]
In the following three problems, for a given A ∈ Mn , C(A) = {B ∈ Mn : AB = B A}
denotes the centralizer of A: the set of matrices that commute with A.

3.4.P2 Explain why C(A) is an algebra.

3.4.P3 Let J ∈ M13 be the matrix in (3.1.16a). (a) Use (3.4.2.7) to show that dim C(J ) = 65.
(b) Show that w1(J, 0)2 + w2(J, 0)2 + w3(J, 0)2 = 65.

3.4.P4 Let the distinct eigenvalues of A ∈ Mn be λ1, . . . , λd with respective indices
q1, . . . , qd . (a) Show that dim C(A) =∑d

j=1

∑q j

i=1 wi (A, λ j )2. (b) Show that dim C(A) ≥ n
with equality if and only if A is nonderogatory. (c) Let the Segre characteristic of
each eigenvalue λ j of A be si (A, λ j ), i = 1, . . . , w1(A, λ j ). It is known that dim C(A) =∑d

j=1

∑w1(A,λ)
i=1 (2i − 1)si (A, λ j ); see Problem 9 in section 4.4 of Horn and Johnson (1991).

Explain why

d∑
j=1

q∑
i=1

wi (A, λ)2 =
d∑

j=1

w1(A,λ j )∑
i=1

(2i − 1)si (A, λ j )

Verify this identity for the matrix in (3.1.16a).

3.4.P5 Let A ∈ Mn be given and suppose that A2 = 0. Let r = rank A and let σ 1 ≥ · · · ≥
σ r be the positive singular values of A. Show that A is unitarily similar to[

0 σ 1

0 0

]
⊕ · · · ⊕

[
0 σ r

0 0

]
⊕ 0n−2r

Explain why two self-annihilating matrices of the same size are unitarily similar if and only
if they have the same singular values, that is, if and only if they are unitarily equivalent.
For a different approach, see (2.6.P24).
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3.4.P6 Show that A ∈ M2(R) is similar to
[

1 1
−1 1

]
if and only if A =

[
1 + α (1 + α2)/β
−β 1 − α

]
for

some α, β ∈ R with β �= 0.

3.4.P7 Provide details for the following example, which shows that the simultaneous
similarity described in (3.4.2.10b) need not be possible if “Weyr” is replaced by “Jordan.”

Define J =
[

J2(0) 0
0 J2(0)

]
and A =

[
0 I2

J2(0) 0

]
, and refer to the exercise preceding (3.4.2.4).

(a) Notice that the blocks of A are upper triangular Toeplitz, and explain (no computations!)
why A must commute with J . (b) Suppose that there is a simultaneous similarity of
the commuting family {J, A} that puts J into Jordan canonical form and puts A into
upper triangular form, that is, suppose that there is a nonsingular S = [si j ] ∈ M4 such that
S−1 J S = J , and S−1 AS = T = [ti j ] is upper triangular. Verify that

S =

⎡
⎢⎢⎣

s11 s12 s13 s14

0 s11 0 s13

s31 s32 s33 s34

0 s31 0 s33

⎤
⎥⎥⎦ , AS =

⎡
⎢⎢⎣

s31 ∗ ∗ ∗
∗ s31 ∗ ∗
0 s11 ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎦

and

ST =

⎡
⎢⎢⎣

s11t11 ∗ ∗ ∗
∗ s11t22 ∗ ∗

s31t11 s31t12 + s32t22 ∗ ∗
∗ ∗ ∗ ∗

⎤
⎥⎥⎦

(the ∗ entries are not relevant to the argument). (c) Deduce that s31 = 0 and s11 = 0. Why
is this a contradiction? (d) Conclude that there is no simultaneous similarity of {J, A} that
has the properties asserted in (b).

3.4.P8 An algorithm to construct a permutation similarity between the Weyr and Jordan
forms of a matrix involves an interesting mathematical object known as a (standard)
Young tableau. For example, consider J = J3(0) ⊕ J2(0) ∈ M5, whose Weyr characteristic
is w1 = 2, w2 = 2, w3 = 1. (a) Verify that its associated dot diagram (3.1.P11) and Weyr
canonical form are

• •
• •
•

and W =
⎡
⎣02 I2

02 G2,1

0

⎤
⎦ ∈ M5

Label the dot diagram with consecutive integers 1, . . . , 5 left to right across the rows, top
to bottom (this labeled dot diagram is the Young tableau); then read the labeled diagram
top to bottom down the columns, left to right; use the sequence obtained to construct a
permutation σ :

The Young tableau
1 2
3 4
5

leads to the permutation σ =
(

1 2 3 4 5
1 3 5 2 4

)

Construct the permutation matrix P = [e1 e3 e5 e2 e4] ∈ M5 whose columns are the permu-
tation of the columns of In that is specified by σ . Verify that J = PT W P , so W = P J PT.
In general, to construct a permutation similarity between a given Weyr form W ∈ Mn and
its Jordan form J , first construct a Young tableau by labeling the dot diagram for the Weyr
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characteristic of J and W with consecutive integers 1, 2, . . . , n left to right across each
successive row, top to bottom. Then construct a matrix σ = [σ i j ] ∈ M2,n whose first row
entries are 1, 2, . . . , n; its second row entries are obtained by reading the Young tableau
top to bottom down each successive column, left to right. Construct the permutation matrix
P = [eσ 2,1 eσ 2,2 . . . eσ 2,n ] ∈ Mn by permuting the columns of In as specified by σ . Then J =
PT W P and W = P J PT . (b) Explain why. (c) Use this algorithm to construct a permutation
similarity between the Jordan matrix (3.1.16a) and its Weyr canonical form; verify that it
does so.

3.4.P9 Explain why the Weyr canonical form of a given square matrix A, like its Jordan
canonical form (3.2.9), contains the least number of nonzero off-diagonal entries among
all matrices in the similarity class of A.

3.4.P10 Show that the Weyr canonical form of a Jordan matrix J is J if and only if, for
each eigenvalue λ of J , either there is exactly one Jordan block in J with eigenvalue λ or
every Jordan block in J with eigenvalue λ is 1-by-1.

3.4.P11 Let A ∈ Mn be given. Show that the Weyr and Jordan canonical forms of A are the
same if and only if A is nonderogatory or diagonalizable, or if there are matrices B and C
such that (a) B is nonderogatory, (b) C is diagonalizable, (c) B and C have no eigenvalues
in common, and (d) A is similar to B ⊕ C .

Notes and Further Readings. Eduard Weyr announced his eponymous characteristic and
canonical form in E. Weyr, Répartition des matrices en espèces et formation de toutes
les espèces, C. R. Acad. Sci. Paris 100 (1885) 966–969; his paper was submitted to the
Paris Academy by Charles Hermite. Weyr later published a detailed exposition and sev-
eral applications in E. Weyr, Zur Theorie der bilinearen Formen, Monatsh. Math. und
Physik 1 (1890) 163–236. For modern expositions, including derivations of the Weyr
canonical form that do not rely on prior knowledge of the Jordan canonical form, see
H. Shapiro, The Weyr characteristic, Amer. Math. Monthly 196 (1999) 919–929, and
the monograph Clark, O’Meara, Vinsonhaler (2011), which contains numerous appli-
cations of the Weyr form. The Weyr form (in its standard partition) was rediscovered
by G. Belitskii, whose motivation was to find a canonical form for similarity with the
property that every matrix commuting with it is block upper triangular. For accounts
of Belitskii’s work in English, which also describe identities among the blocks of the
standard partition of a matrix that commutes with a Weyr block, see G. Belitskii, Nor-
mal forms in matrix spaces, Integral Equations Operator Theory 38 (2000) 251–283,
and V. V. Sergeichuk, Canonical matrices for linear matrix problems, Linear Algebra
Appl. 317 (2000) 53–102. Sergeichuk’s paper also discusses the permutation similarity
described in (3.4.P8). The remarkable Theorem 3.4.2.10b about commuting families
is in K. C. O’Meara and C. Vinsonhaler, On approximately simultaneously diagonal-
izable matrices, Linear Algebra Appl. 412 (2006) 39–74, which contains yet another
rediscovery of the Weyr canonical form as well as the efficient formulation (3.4.2.12)
of the identities among the blocks of matrices that commute with a Weyr block. Theo-
rem 3.4.3.1 has been rediscovered repeatedly; the original source is D. E. Littlewood,
On unitary equivalence, J. London Math. Soc. 28 (1953) 314–322. The illuminating
example in (3.4.P7) is taken from Clark, O’Meara, and Vinsonhaler (2011).
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3.5 Triangular factorizations and canonical forms

If a linear system Ax = b has a nonsingular triangular (0.9.3) coefficient matrix
A ∈ Mn , computation of the unique solution x is remarkably easy. If, for example,
A = [ai j ] is upper triangular and nonsingular, then all aii �= 0 and one can employ
back substitution: ann xn = bn determines xn; an−1,n−1xn−1 + an−1,n xn = bn−1 then de-
termines xn−1 since xn is known and an−1,n−1 �= 0; proceeding in the same fashion
upward through successive rows of A, one determines xn−2, xn−3, . . . , x2, x1.

Exercise. Describe forward substitution as a solution technique for Ax = b if
A ∈ Mn is nonsingular and lower triangular.

If A ∈ Mn is not triangular, one can still use forward and back substitution to solve
Ax = b provided that A is nonsingular and can be factored as A = LU , in which L
is lower triangular and U is upper triangular: First use forward substitution to solve
Ly = b, and then use back substitution to solve U x = y.

Definition 3.5.1. Let A ∈ Mn. A presentation A = LU, in which L ∈ Mn is lower
triangular and U ∈ Mn is upper triangular, is called an LU factorization of A.

Exercise. Explain why A ∈ Mn has an LU factorization in which L (respec-
tively, U ) is nonsingular if and only if it has an LU factorization in which L
(respectively, U ) is unit lower (respectively, unit upper) triangular. Hint: If L
is nonsingular, write L = L ′D, in which L ′ is unit lower triangular and D is
diagonal.

Lemma 3.5.2. Let A ∈ Mn and suppose that A = LU is an LU factorization. For any
block 2-by-2 partition

A =
[

A11 A12

A21 A22

]
, L =

[
L11 0
L21 L22

]
, U =

[
U11 U12

0 U22

]
with A11, L11, U11 ∈ Mk and k ≤ n, we have A11 = L11U11. Consequently, each lead-
ing principal submatrix of A has an LU factorization in which the factors are the
corresponding leading principal submatrices of L and U.

Theorem 3.5.3. Let A ∈ Mn be given. Then

(a) A has an LU factorization in which L is nonsingular if and only if A has the
row inclusion property: For each i = 1, ..., n − 1, A[{i + 1; 1, ..., i}] is a linear
combination of the rows of A[{1, ..., i}]

(b) A has an LU factorization in which U is nonsingular if and only if A has the
column inclusion property: For each j = 1, ..., n − 1, A[{1, ..., j ; j + 1}] is a
linear combination of the columns of A[{1, ..., j}]

Proof. If A = LU , then A[{1, ..., i + 1}] = L[{1, ..., i + 1}]U [{1, ..., i + 1}]. Thus,
to verify the necessity of the row inclusion property, it suffices to take i = k = n − 1 in
the partitioned presentation given in (3.5.2). Since L is nonsingular and triangular, L11

is also nonsingular, and we have A21 = L21U11 = L21L−1
11 L11U11 = (

L21L−1
11

)
A11,

which verifies the row inclusion property.
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Conversely, if A has the row inclusion property, we may construct inductively
an LU factorization with nonsingular L as follows (the cases n = 1, 2 are easily
verified): Suppose that A11 = L11U11, L11 is nonsingular, and the row vector A21 is
a linear combination of the rows of A11. Then there is a vector y such that A21 =
yT A11 = yT L11U11, and we may take U12 = L−1

11 A12, L21 = yT L11, L22 = 1, and
U22 = A22 − L21U12 to obtain an LU factorization of A in which L is nonsingular.

The assertions about the column inclusion property follow from considering an LU
factorization of AT . �

Exercise. Consider the matrix Jn ∈ Mn , all of whose entries are 1. Find an LU
factorization of Jn in which L is unit lower triangular. With this factorization in
hand, Jn = J T

n = U T LT is an LU factorization of Jn with a unit upper triangular
factor.

Exercise. Show that the row inclusion property is equivalent to the following
formally stronger property: For each i = 1, ..., n − 1, every row of A[{i +
1, ..., n}; {1, ..., i}] is a linear combination of the rows of A[{1, ..., i}]. What
is the corresponding statement for column inclusion?

If A ∈ Mn , rank A = k, and det A[{1, ..., j}] �= 0, j = 1, ..., k, then A has both the
row inclusion and column inclusion properties. The following result follows from
(3.5.3).

Corollary 3.5.4. Suppose that A ∈ Mn and rank A = k. If A[{1, . . . , j}] is nonsingu-
lar for all j = 1, . . . , k, then A has an LU factorization. Furthermore, either factor
may be chosen to be unit triangular; both L and U are nonsingular if and only if k = n,
that is, if and only if A and all of its leading principal submatrices are nonsingular.

Example 3.5.5. Not every matrix has an LU factorization. If A =
[

0 1
1 0

]
could

be written as A = LU =
[

�11 0
�21 �22

] [
u11 u12
0 u22

]
, then l11u11 = 0 implies that one of

L or U is singular; but LU = A is nonsingular.

Exercise. Explain why a nonsingular matrix that has a singular leading principal
submatrix cannot have an LU factorization.

Exercise. Verify that

A =
⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦ =

⎡
⎣0 0 0

1 0 0
0 1 1

⎤
⎦
⎡
⎣0 0 1

0 1 0
0 0 0

⎤
⎦

has an LU factorization even though A has neither the row nor column inclusion
property. However, A is a principal submatrix of a 4-by-4 matrix

Â =
[

A e1
0 0

]
=
[

0 Â12

Â21 0

]
, Â12 =

[
0 1
1 0

]
, Â21 =

[
0 1
0 0

]
that does not have an LU factorization. Verify this by considering the block
factorization in (3.5.2) with k = 2: Â12 = L11U12 implies that L11 is nonsingular,
and hence 0 = L11U11 implies that U11 = 0, which is inconsistent with L21U11 =
Â21 �= 0.
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Exercise. Consider A =
[

1 0
a 1

] [
0 1
0 2 − a

]
and explain why an LU factorization

need not be unique even if the L is required to be unit lower triangular.

It is now clear that an LU factorization of a given matrix may or may not exist, and
if it exists, it need not be unique. Much of the trouble arises from singularity, either
of A or of its leading principal submatrices. Using the tools of (3.5.2) and (3.5.3),
however, we can give a full description in the nonsingular case, and we can impose a
normalization that makes the factorization unique.

Corollary 3.5.6 (L DU factorization). Let A = [ai j ] ∈ Mn be given.

(a) Suppose that A is nonsingular. Then A has an LU factorization A = LU if and
only if A[{1, . . . , i}] is nonsingular for all i = 1, . . . , n.

(b) Suppose that A[{1, . . . , i}] is nonsingular for all i = 1, . . . , n. Then A = L DU,
in which L , D, U ∈ Mn, L is unit lower triangular, U is unit upper triangular,
D = diag(d1, . . . , dn) is diagonal, d1 = a11, and

di = det A [{1, . . . , i}]/ det A [{1, . . . , i − 1}], i = 2, . . . , n

The factors L, U, and D are uniquely determined.

Exercise. Use (3.5.2), (3.5.3), and prior exercises to provide details for a proof
of the preceding corollary.

Exercise. If A ∈ Mn has an LU factorization with L = [
�i j
]

and U = [
ui j
]
, show

that �11u11 = det[A{1}] and �i i uii det A[{1, . . . , i − 1}] = det A[{1, . . . , i}], i =
2, . . . , n.

Returning to the solution of the nonsingular linear system Ax = b, suppose that
A ∈ Mn cannot be factored as LU but can be factored as P LU , in which P ∈ Mn is
a permutation matrix and L and U are lower and upper triangular, respectively. This
amounts to a reordering of the equations in the linear system prior to factorization. In
this event, solution of Ax = b is still quite simple via Ly = PT b and U x = y. It is
worth knowing that any A ∈ Mn may be so factored and that L may be taken to be
nonsingular. The solutions of Ax = b are the same as those of U x = L−1 PT b.

Lemma 3.5.7. Let A ∈ Mk be nonsingular. Then there is a permutation matrix P ∈ Mk

such that det(PT A)[{1, . . . , j}] �= 0, j = 1, . . . , k.

Proof. The proof is by induction on k. If k = 1 or 2, the result is clear by inspection.
Suppose that it is valid up to and including k − 1. Consider a nonsingular A ∈ Mk

and delete its last column. The remaining k − 1 columns are linearly independent and
hence they contain k − 1 linearly independent rows. Permute these rows to the first
k − 1 positions and apply the induction hypothesis to the nonsingular upper (k − 1)-
by-(k − 1) submatrix. This determines a desired overall permutation P , and PT A is
nonsingular. �

The factorization in the following theorem is known as a P LU factorization; the
factors need not be unique.
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Theorem 3.5.8 (P LU factorization). For each A ∈ Mn there is a permutation matrix
P ∈ Mn, a unit lower triangular L ∈ Mn, and an upper triangular U ∈ Mn such that
A = P LU.

Proof. If we show that there is a permutation matrix Q such that Q A has the row
inclusion property, then (3.5.3) and the exercise following it ensure that Q A = LU
with a unit lower triangular factor L , so A = P LU for P = QT .

If A is nonsingular, the desired permutation matrix is guaranteed by (3.5.7).
If rank A = k < n, first permute the rows of A so that the first k rows are linearly

independent. It follows that A[{i + 1}; {1, ..., i}] is a linear combination of the rows
of A[{1, ..., i}], i = k, ..., n − 1. If A[{1, ..., k}] is nonsingular, apply (3.5.7) again to
further permute the rows so that A[{1, ..., k}], and thus A, has the row inclusion property.
If rank A[{1, ..., k}] = � < k, treat it in the same way that we have just treated A, and
obtain row inclusion for the indices i = �, ..., n − 1. Continue in this manner until
either the upper left block is 0, in which case we have row inclusion for all indices, or
it is nonsingular, in which case one further permutation completes the argument. �

Exercise. Show that each A ∈ Mn may be factored as A = LU P , in which L is
lower triangular, U is unit upper triangular, and P is a permutation matrix.

Exercise. For a given X ∈ Mn and k, � ∈ {1, . . . , n}, define

X [p,q] = X [{1, . . . , p}, {1, . . . , q}] (3.5.9)

Let A = L BU , in which L , B, U ∈ Mn , L is lower triangular, and U is upper
triangular. Explain why A[p,q] = L [p,p] B[p,q]U[q,q] for all p, q ∈ {1, . . . , n}. If L
and U are nonsingular, explain why

rank A[p,q] = rank B[p,q] for all p, q ∈ {1, . . . , n} (3.5.10)

The following theorem, like the preceding one, describes a particular triangular
factorization (the L PU factorization) that is valid for every square complex matrix.
Uniqueness of the P factor in the nonsingular case has important consequences.

Theorem 3.5.11 (L PU factorization). For each A ∈ Mn there is a permutation ma-
trix P ∈ Mn, a unit lower triangular L ∈ Mn, and an upper triangular U ∈ Mn such
that A = L PU. Moreover, the factor P is uniquely determined if A is nonsingular.

Proof. Construct inductively permutations π1, . . . , πn of the integers 1, . . . , n as fol-
lows: Let A(0) = [a(0)

i j ] = A and define the index set I1 = {i ∈ {1, . . . , n} : a(0)
i1 �= 0}.

If I1 is nonempty, let π1 be the smallest integer in I1; otherwise, let π1 be any
i ∈ {1, . . . , n} and proceed to the next step. If I1 is nonempty, use type 3 elementary
row operations based on row π1 of A(0) to eliminate all the nonzero entries a(0)

i,1 in col-

umn 1 of A(0) other than a(0)
π1,1

(for all such entries, i > π1); denote the resulting matrix
by A(1). Observe that A(1) = L1 A(0) for some unit lower triangular matrix L1 (0.3.3).

Suppose that 2 ≤ k ≤ n and that π1, . . . , π k−1 and A(k−1) = [a(k−1)
i j ] have been

constructed. Let Ik = {i ∈ {1, . . . , n} : i �= π1, . . . , π k−1 and a(k−1)
ik �= 0}. If Ik is

nonempty, let π k be the smallest integer in Ik ; otherwise, let π k be any i ∈ {1, . . . , n}
such that i �= π1, . . . , π k−1 and proceed to the next step. If Ik is nonempty, use type 3
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elementary row operations based on row π k of A(k−1) to eliminate every nonzero entry
a(k−1)

i,k in column k of A(k−1) below the entry a(k−1)
π k ,k

(for all such entries, i > π k); denote
the resulting matrix by A(k). Observe that these eliminations do not change any entries
in columns 1, . . . , k − 1 of A(k−1) (because a(k−1)

π k , j = 0 for j = 1, . . . , k − 1) and that
A(k) = Lk A(k−1) for some unit lower triangular matrix Lk .

After n steps, our construction produces a permutation π1, . . . , πn of the inte-
gers 1, . . . , n and a matrix A(n) = [a(n)

i j ] = LA, in which L = Ln · · · L1 is unit lower

triangular. Moreover, a(n)
i j = 0 whenever i > π j or i < π j and i /∈ {π1, . . . , π j−1}.

Let L = L−1 so that A = L A(n) and L is unit lower triangular. Let P = [pi j ] ∈ Mn in
which pπ j , j = 1 for j = 1, . . . , n and all other entries are zero. Then P is a permutation
matrix, PT A(n) = U is upper triangular, and A = L PU .

If A is nonsingular, then both L and U are nonsingular. The preceding exercise
ensures that rank A[p,q] = rank P[p,q] for all p, q ∈ {1, . . . , n}, and these ranks uniquely
determine the permutation matrix P (see (3.5.P11)). �

Exercise. Explain how the construction in the preceding proof ensures that
PT A(n) is upper triangular.

Definition 3.5.12. Matrices A, B ∈ Mn are said to be triangularly equivalent if there
are nonsingular matrices L , U ∈ Mn such that L is lower triangular, U is upper
triangular, and A = L BU.

Exercise. Verify that triangular equivalence is an equivalence relation on Mn .

Theorem 3.5.11 provides a canonical form for triangular equivalence of nonsingular
matrices. The canonical matrices are the permutation matrices; the set of ranks of
submatrices described in (3.5.10) is a complete set of invariants.

Theorem 3.5.13. Let A, B ∈ Mn be nonsingular. The following are equivalent:

(a) There is a unique permutation matrix P ∈ Mn such that both A and B are
triangularly equivalent to P.

(b) A and B are triangularly equivalent.
(c) The rank equalities (3.5.10) are satisfied.

Proof. The implication (a) ⇒ (b) is clear, and the implication (b) ⇒ (c) is the con-
tent of the exercise preceding (3.5.11). If A = L1 PU1 and B = L2 P ′U2 are L PU
factorizations and if the hypothesis (c) is assumed, then (using the notation in (3.5.9))
rank P[p,q] = rank A[p,q] = rank B[p,q] = rank P ′

[p,q] for all p, q ∈ {1, . . . , n}. Problem
3.5.P11 ensures that P = P ′, which implies (a). �

Exercise. Let A, P ∈ Mn . Suppose that P is a permutation matrix and that all the
main diagonal entries of A are ones. Explain why all the main diagonal entries
of PT AP are ones.

Our final theorem concerns triangular equivalence via unit triangular matrices. It
uses the facts that (a) the inverse of a unit lower triangular matrix is unit lower
triangular, and (b) a product of unit lower triangular matrices is unit lower triangular,
with corresponding assertions about unit upper triangular matrices.
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Theorem 3.5.14 (L P DU factorization). For each nonsingular A ∈ Mn there is a
unique permutation matrix P, a unique nonsingular diagonal matrix D, a unit lower
triangular matrix L, and a unit upper triangular matrix U such that A = L P DU.

Proof. Theorem 3.5.11 ensures that there is a unit lower triangular matrix L , a unique
permutation matrix P , and a nonsingular upper triangular matrix U ′ such that A =
L PU ′. Let D denote the diagonal matrix whose respective diagonal entries are the
same as those of U ′, that is, D = diag(diag(U ′)), and let U = D−1U ′. Then U is unit
upper triangular and A = L P DU . Suppose that D2 is a diagonal matrix such that
A = L2 P D2U2, in which L2 is unit lower triangular and U2 is unit triangular. Then

(PT (L−1
2 L)P)D = D2(U2U−1) (3.5.15)

The main diagonal entries of U2U−1 and L−1
2 L are, of course, all ones; the preceding

exercise ensures that the main diagonal entries of PT (L−1
2 L)P are also all ones. Thus,

the main diagonal of the left-hand side of (3.5.15) is the same as that of D, while the
main diagonal of the right-hand side of (3.5.15) is the same as that of D2. It follows
that D = D2. �

Problems

3.5.P1 We have discussed the factorization A = LU , in which L is lower triangular and
U is upper triangular. Discuss a parallel theory of A = U L factorization, noting that the
factors may be different.

3.5.P2 Describe how Ax = b may be solved if A is presented as A = Q R, in which Q is
unitary and R is upper triangular (2.1.14).

3.5.P3 Matrices A, B ∈ Mn are said to be unit triangularly equivalent if A = L BU for
some unit lower triangular matrix L and some unit upper triangular matrix U . Explain
why (a) unit triangular equivalence is an equivalence relation on both Mn and GL(n, C);
(b) if P, D, P ′, D′ ∈ Mn , P and P ′ are permutation matrices, and D and D′ are nonsingular
diagonal matrices, then P D = P ′D′ if and only if P = P ′ and D = D′; (c) each nonsingu-
lar matrix in Mn is unit triangularly equivalent to a unique generalized permutation matrix
(0.9.5); (d) two generalized permutation matrices in Mn are unit triangularly equivalent if
and only if they are identical; (e) the n-by-n generalized permutation matrices are a set of
canonical matrices for the equivalence relation of unit triangular equivalence on GL(n, C).

3.5.P4 If the leading principal minors of A ∈ Mn are all nonzero, describe how an LU
factorization of A may be obtained by using type 3 elementary row operations to zero out
entries below the diagonal.

3.5.P5 (Lanczos tridiagonalization algorithm) Let A ∈ Mn and x ∈ Cn be given. Define
X = [x Ax A2x . . . An−1x]. The columns of X are said to form a Krylov sequence.
Assume that X is nonsingular. (a) Show that X−1 AX is a companion matrix (3.3.12)
for the characteristic polynomial of A. (b) If R ∈ Mn is any given nonsingular upper
triangular matrix and S = X R, show that S−1 AS is in upper Hessenberg form. (c) Let
y ∈ Cn and define Y = [y A∗y (A∗)2 y . . . (A∗)n−1 y]. Suppose that Y is nonsingular and
that Y ∗X can be written as L DU , in which L is lower triangular and U is upper triangular
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and nonsingular, and D is diagonal and nonsingular. Show that there exist nonsingular
upper triangular matrices R and T such that (X R)−1 = T ∗Y ∗ and such that T ∗Y ∗AX R is
tridiagonal and similar to A. (d) If A ∈ Mn is Hermitian, use these ideas to describe an
algorithm that produces a tridiagonal Hermitian matrix that is similar to A.

3.5.P6 Explain why the n, n entry of a given matrix in Mn has no influence on whether it
has an LU factorization, or has one with L nonsingular, or has one with U nonsingular.

3.5.P7 Show that Cn = [1/ max {i, j}] ∈ Mn(R) has an LU decomposition of the form
Cn = Ln LT

n , in which the entries of the lower triangular matrix Ln are �i j = 1/ max {i, j}
for i ≥ j . Conclude that det Ln = (1/n!)2.

3.5.P8 Show that the condition “A[{1, . . . , j}] is nonsingular for all j = 1, . . . , n”
in (3.5.6) may be replaced with the condition “A[{ j, . . . , n}] is nonsingular for all
j = 1, . . . , n.”

3.5.P9 Let A ∈ Mn(R) be the symmetric tridiagonal matrix (0.9.10) with all main diagonal
entries equal to +2 and all entries in the first superdiagonal and subdiagonal equal to −1.
Consider

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
− 1

2 1

− 2
3

. . .

. . . 1
− n−1

n 1

⎤
⎥⎥⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
3
2 −1

. . .
. . .
n

n−1 −1
n+1

n

⎤
⎥⎥⎥⎥⎥⎥⎦

Show that A = LU and det A = n + 1. The eigenvalues of A are λk = 4 sin2 kπ
2(n+1) , k =

1, . . . , n (see (1.4.P17)). Notice that λ1(A) → 0 and λn(A) → 4 as n → ∞, and det A =
λ1 · · · λn → ∞.

3.5.P10 Suppose that A ∈ Mn is symmetric and that all its leading principal submatrices
are nonsingular. Show that there is a nonsingular lower triangular L such that A = L LT ,
that is, A has an LU factorization in which U = LT .

3.5.P11 Consider a permutation matrix P = [pi j ] ∈ Mn corresponding to a permutation
π1, . . . , πn of 1, . . . , n, that is, pπ j , j = 1 for j = 1, . . . , n and all other entries are zero. Use
the notation in (3.5.9) and define rank P[�,0] = 0, � = 1, . . . , n. Show that π j = min{k ∈
{1, . . . , n} : rank P[k, j] = rank P[k, j−1] + 1}, j = 1, . . . , n. Conclude that the n2 numbers
rank P[k, j], k, j ∈ {1, . . . , n}, uniquely determine P .

3.5.P12 Let P ∈ Mn be a permutation matrix, partitioned as P =
[

P11 P12
P21 P22

]
, so

P−1 =
[

PT
11 PT

12

PT
21 PT

22

]
. Provide details for the following argument to prove the law of com-

plementary nullities (0.7.5) for P: nullity P11 = number of zero columns in P11 = number
of ones in P21 = number of zero rows in P22 = nullity PT

22.

3.5.P13 Provide details for the following approach to the law of complementary nulli-
ties (0.7.5), which deduces the general case from the (easy) permutation matrix case via
an L PU factorization. (a) Let A ∈ Mn be nonsingular. Partition A and A−1 conformally

as A =
[

A11 A12
A21 A22

]
and A−1 =

[
B11 B12
B21 B22

]
. The law of complementary nullities asserts that

nullity A11 = nullity B22; this is what we seek to prove. (b) Let A = L PU be an L PU fac-
torization, so A−1 = U−1 PT L−1 is an L PU factorization. The permutation matrix factors
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in both factorizations are uniquely determined. Partition P as in the preceding problem,
conformal to the partition of A. (c) nullity A11 = nullity P11 = nullity PT

22 = nullity B22.

Further Readings. Problem 3.5.P5 is adapted from [Ste], where additional information
about numerical applications of LU factorizations may be found. Our discussion of
L PU and L P DU factorizations and triangular equivalence is adapted from L. Elsner,
On some algebraic problems in connection with general eigenvalue algorithms, Linear
Algebra Appl. 26 (1979) 123–138, which also discusses lower triangular congruence
(A = L BLT , in which L is lower triangular and nonsingular) of symmetric or skew-
symmetric matrices.





CHAPTER 4

Hermitian Matrices, Symmetric
Matrices, and Congruences

4.0 Introduction

Example 4.0.1. If f : D → R is a twice continuously differentiable function on
some domain D ⊂ Rn , the real matrix

H (x) = [hi j (x)] =
[
∂2 f (x)

∂xi∂x j

]
∈ Mn

is the Hessian of f. It is a function of x and plays an important role in the theory
of optimization because it can be used to determine if a critical point is a relative
maximum or minimum; see (7.0). The only property of H = H (x) that interests
us here follows from the fact that the mixed partials are equal; that is,

∂2 f

∂xi ∂x j
= ∂2 f

∂x j ∂xi
for all i, j = 1, . . . , n

Thus, the Hessian matrix of a real-valued twice continuously differentiable func-
tion is always a real symmetric matrix.

Example 4.0.2. Let A = [ai j ] ∈ Mn have real or complex entries, and consider
the quadratic form on Rn or Cn generated by A:

Q(x) = xT Ax =
n∑

i, j=1

ai j xi x j =
n∑

i, j=1

1

2
(ai j + a ji )xi x j = xT

[
1

2
(A + AT )

]
x

Thus, A and 1
2 (A + AT ) both generate the same quadratic form, and the latter

matrix is symmetric. To study real or complex quadratic forms, therefore, it suf-
fices to study only those forms generated by symmetric matrices. Real quadratic
forms arise naturally in physics, for example, as an expression for the inertia of
a physical body.

225
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Example 4.0.3. Consider a second-order linear partial differential operator
L defined by

L f (x) =
n∑

i, j=1

ai j (x)
∂2 f (x)

∂xi ∂x j
(4.0.4)

The coefficient functions ai j and the function f are assumed to be defined on
the same domain D ⊂ Rn , and f should be twice continuously differentiable on
D. The operator L is associated in a natural way with a matrix A(x) = [ai j (x)],
which need not be symmetric, but since the mixed partial derivatives of f are
equal, we have

L f =
n∑

i, j=1

ai j (x)
∂2 f

∂xi ∂x j
=

n∑
i, j=1

1

2

[
ai j (x)

∂2 f

∂xi ∂x j
+ a ji (x)

∂2 f

∂x j ∂xi

]

=
n∑

i, j=1

1

2
[ai j (x) + ai j (x)]

∂2 f

∂xi ∂x j

Thus, the symmetric matrix 1
2 (A(x) + A(x)T ) yields the same operator L as the

matrix A(x). For the study of real or complex linear partial differential operators
of the form (4.0.4), it suffices to consider only symmetric coefficient matrices.

Example 4.0.5. Consider an undirected graph �: a collection N of nodes
{P1, P2, . . . , Pn} and a collection E of unordered pairs of nodes called edges,
E = {{Pi1, Pj1}, {Pi2, Pj2}, . . .}. Associated with the graph � is its adjacency

matrix A = [ai j ], in which

ai j =
{

1 if {Pi , Pj } ∈ E
0 otherwise

Since � is undirected, its adjacency matrix is symmetric.

Example 4.0.6. Let A = [ai j ] ∈ Mn(R) and consider the real bilinear form

Q(x, y) = yT Ax =
n∑

i, j=1

ai j yi x j , x, y ∈ Rn (4.0.7)

which reduces to the ordinary inner product when A = I . If we want to have
Q(x, y) = Q(y, x) for all x, y, then it is necessary and sufficient that ai j = a ji

for all i, j = 1, . . . , n. To show this, it suffices to observe that if x = e j and
y = ei , then Q(e j , ei ) = ai j and Q(ei , e j ) = a ji . Thus, symmetric real bilinear
forms are naturally associated with symmetric real matrices.

Now let A = [ai j ] ∈ Mn be a real or complex matrix, and consider the complex
form

H (x, y) = y∗Ax =
n∑

i, j=1

ai j ȳi x j , x, y ∈ Cn (4.0.8)

which, like (4.0.7), reduces to the ordinary inner product when A = I . This form
is no longer bilinear but is linear in the first variable and conjugate linear in the
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second variable: H (ax, by) = ab̄H (x, y). Such forms are called sesquilinear. If
we want to have H (x, y) = H (y, x), then the same argument as in the previous
case shows that it is necessary and sufficient to have ai j = ā j i ; that is, A = ĀT =
A∗, so A must be Hermitian.

The class of n-by-n complex Hermitian matrices is in many respects the natural gen-
eralization of the class of n-by-n real symmetric matrices. Of course, a real Hermitian
matrix is a real symmetric matrix. The class of complex non-real symmetric matrices –
although interesting in its own right – fails to have many important properties of the
class of real symmetric matrices. In this chapter we study complex Hermitian and
symmetric matrices; we indicate by specialization what happens in the real symmetric
case.

4.1 Properties and characterizations of Hermitian matrices

Definition 4.1.1. A matrix A = [ai j ] ∈ Mn is Hermitian if A = A∗; it is skew Hermi-
tian if A = −A∗.

Some observations for A, B ∈ Mn follow:

1. A + A∗, AA∗, and A∗A are Hermitian.
2. If A is Hermitian, then Ak is Hermitian for all k = 1, 2, 3, . . . . If A is nonsingular

as well, then A−1 is Hermitian.
3. If A and B are Hermitian, then a A + bB is Hermitian for all real scalars a, b.
4. A − A∗ is skew Hermitian.
5. If A and B are skew Hermitian, then a A + bB is skew Hermitian for all real

scalars a, b.
6. If A is Hermitian, then i A is skew Hermitian.
7. If A is skew Hermitian, then i A is Hermitian.
8. A = 1

2 (A + A∗) + 1
2 (A − A∗) = H (A) + S(A) = H (A) + i K (A), in which

H (A) = 1
2 (A + A∗) is the Hermitian part of A, S(A) = 1

2 (A − A∗) is the skew-
Hermitian part of A, and K (A) = 1

2i (A − A∗).
9. If A is Hermitian, the main diagonal entries of A are all real. To specify the n2

elements of A, one may choose freely any n real numbers (for the main diagonal
entries) and any 1

2 n(n − 1) complex numbers (for the off-diagonal entries).
10. If we write A = C + i D with C, D ∈ Mn(R) (real and imaginary parts of A),

then A is Hermitian if and only if C is symmetric and D is skew symmetric.
11. A real symmetric matrix is a complex Hermitian matrix.

Theorem 4.1.2 (Toeplitz decomposition). Each A ∈ Mn can be written uniquely as
A = H + i K , in which both H and K are Hermitian. It can also be written uniquely
as A = H + S, in which H is Hermitian and S is skew Hermitian.

Proof. Write A = 1
2 (A + A∗) + i[ 1

2i (A − A∗)] and observe that both H = 1
2 (A + A∗)

and K = 1
2i (A − A∗) are Hermitian. For the uniqueness assertion, observe that if
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A = E + i F with both E and F Hermitian, then

2H = A + A∗ = (E + i F) + (E + i F)∗ = E + i F + E∗ − i F∗ = 2E

so E = H . Similarly, one shows that F = K . The assertions about the representation
A = H + S are proved in the same way. �

The foregoing observations suggest that if one thinks of Mn as being analogous to
the complex numbers, then the Hermitian matrices are analogous to the real numbers.
The analog of the operation of complex conjugation in C is the ∗operation (conjugate
transpose) on Mn . A real number is a complex number z such that z = z̄; a Hermitian
matrix is a matrix A ∈ Mn such that A = A∗. Just as every complex number z can be
written uniquely as z = s + i t with s, t ∈ R, every complex matrix A can be written
uniquely as A = H + i K with H and K Hermitian. There are some further properties
that strengthen this analogy.

Theorem 4.1.3. Let A ∈ Mn be Hermitian. Then

(a) x∗ Ax is real for all x ∈ Cn

(b) the eigenvalues of A are real
(c) S∗ AS is Hermitian for all S ∈ Mn

Proof. Compute (x∗Ax) = (x∗Ax)∗ = x∗A∗x = x∗Ax , so x∗Ax equals its complex
conjugate and hence is real. If Ax = λx and x∗x = 1, then λ = λx∗x = x∗λx = x∗Ax
is real by (a). Finally, (S∗AS)∗ = S∗A∗S = S∗AS, so S∗AS is always Hermitian. �

Exercise. What does each of the properties of a Hermitian matrix A ∈ Mn in the
preceding theorem say when n = 1?

Each of the properties in (4.1.3) is actually (almost) a characterization of Hermitian
matrices.

Theorem 4.1.4. Let A = [ai j ] ∈ Mn be given. Then A is Hermitian if and only if at
least one of the following conditions is satisfied:

(a) x∗ Ax is real for all x ∈ Cn

(b) A is normal and has only real eigenvalues
(c) S∗ AS is Hermitian for all S ∈ Mn

Proof. It suffices to prove only the sufficiency of each condition. If x∗Ax is real
for all x ∈ Cn , then (x + y)∗A(x + y) = (x∗Ax + y∗Ay) + (x∗Ay + y∗Ax) is real
for all x, y ∈ Cn . Since x∗Ax and y∗Ay are real by assumption, we conclude that
x∗Ay + y∗Ax is real for all x, y ∈ Cn . If we choose x = ek and y = e j , then x∗Ay +
y∗Ax = akj + a jk is real, so Im akj = − Im a jk . If we choose x = iek and y = e j , then
x∗Ay + y∗Ax = −iak j + ia jk is real, so Re akj = Re a jk . Combining the identities for
the real and imaginary parts of akj and a jk leads to the identity akj = ā jk , and since
j, k are arbitrary, we conclude that A = A∗.

If A is normal, it is unitarily diagonalizable, so A = U�U ∗ with � =
diag(λ1, λ2, . . . , λn). In general, we have A∗ = U�̄U ∗, but if � is real, we have
A∗ = U�U ∗ = A.

Condition (c) implies that A is Hermitian by choosing S = I . �
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Since a Hermitian matrix is normal (AA∗ = A2 = A∗A), all the results about normal
matrices in Chapter 2 apply to Hermitian matrices. For example, eigenvectors associated
with distinct eigenvalues are orthogonal, there is an orthonormal basis of eigenvectors,
and Hermitian matrices are unitarily diagonalizable.

For convenient reference, we restate the spectral theorem for Hermitian matrices
(2.5.6).

Theorem 4.1.5. A matrix A ∈ Mn is Hermitian if and only if there is a unitary U ∈ Mn

and a real diagonal � ∈ Mn such that A = U�U ∗. Moreover, A is real and Hermitian
(that is, real symmetric) if and only if there is a real orthogonal P ∈ Mn and a real
diagonal � ∈ Mn such that A = P�PT .

Although a real linear combination of Hermitian matrices is always Hermitian, a
complex linear combination of Hermitian matrices need not be Hermitian. For example,
if A is Hermitian, i A is Hermitian only if A = 0. Furthermore, if A and B are Hermitian,
then (AB)∗ = B∗A∗ = B A, so AB is Hermitian if and only if A and B commute.

One of the most famous results about commuting Hermitian matrices (there is an
important generalization to operators in quantum mechanics) is the following special
case of (2.5.5).

Theorem 4.1.6. Let F be a given nonempty family of Hermitian matrices. There exists
a unitary U such that U AU ∗ is diagonal for all A ∈ F if and only if AB = B A for all
A, B ∈ F .

A Hermitian matrix A has the property that A is equal to A∗. One way to generalize
the notion of a Hermitian matrix is to consider the class of matrices such that A is
similar to A∗. The following theorem extends (3.4.1.7) and characterizes this class
in several ways, the first of which says that such matrices must be similar, but not
necessarily unitarily similar, to a real, but not necessarily diagonal, matrix.

Theorem 4.1.7. Let A ∈ Mn be given. The following statements are equivalent:

(a) A is similar to a real matrix.
(b) A is similar to A∗.
(c) A is similar to A∗ via a Hermitian similarity transformation.
(d) A = H K , in which H, K ∈ Mn are Hermitian and at least one factor is nonsin-

gular.
(e) A = H K , in which H, K ∈ Mn are Hermitian.

Proof. First note that (a) and (b) are equivalent: Every complex matrix is similar to its
transpose (3.2.3.1), so A is similar to A∗ = ĀT if and only if A is similar to Ā if and
only if A is similar to a real matrix (3.4.1.7).

To verify that (b) implies (c), suppose that there is a nonsingular S ∈ Mn such
that S−1 AS = A∗. Let θ ∈ R and let T = eiθ S. Observe that T −1 AT = A∗. Thus,
AT = T A∗ or, equivalently, AT ∗ = T ∗A∗. Adding these two identities produces the
identity A(T + T ∗) = (T + T ∗)A∗. If T + T ∗ were nonsingular, we could conclude
that A is similar to A∗ via the Hermitian matrix T + T ∗, so it suffices to show that
there is some θ such that T + T ∗ is nonsingular. The matrix T + T ∗ is nonsingular if
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and only if T −1(T + T ∗) = I + T −1T ∗ is nonsingular, if and only if −1 /∈ σ (T −1T ∗).
However, T −1T ∗ = e−2iθ S−1S∗, so we may choose any θ such that −e2iθ /∈ σ (S−1S∗).

Now assume (c) and write R−1 AR = A∗ with R ∈ Mn nonsingular and Hermitian.
Then R−1 A = A∗R−1 and A = R(A∗R−1). But (A∗R−1)∗ = R−1 A = A∗R−1, so A is
the product of the two Hermitian matrices R and A∗R−1, and R is nonsingular.

If A = H K with H and K Hermitian and H nonsingular, then H−1 AH = K H =
(H K )∗ = A∗. The argument is similar if K is nonsingular. Thus, (d) is equivalent
to (b).

Certainly (d) implies (e); we now show that (e) implies (a). If A = H K with H
and K Hermitian and both singular, consider U ∗AU = (U ∗HU )(U ∗KU ), in which

U ∈ Mn is unitary, U ∗HU =
[

D 0
0 0

]
, and D ∈ Mk is nonsingular, real, and diagonal.

Partition U ∗KU =
[

K ′ �
� �

]
conformally to U ∗HU and compute

U ∗AU = (U ∗HU )(U ∗KU ) =
[

D 0
0 0

] [
K ′ �
� �

]
=
[

DK ′ �
0 0

]

The block DK ′ ∈ Mk is the product of two Hermitian matrices, one of which is
nonsingular, so the equivalence of (d), (b), and (a) ensures that it is similar to a real
matrix. Corollary 3.4.1.8 now tells us that U ∗AU (and hence also A) is similar to a
real matrix. �

The characterization (4.1.4(a)) can be refined by considering Hermitian forms that
take only positive (or nonnegative) values.

Theorem 4.1.8. Let A ∈ Mn be given. Then x∗Ax is real and positive (respectively,
x∗Ax is real and nonnegative) for all nonzero x ∈ Cn if and only if A is Hermitian and
all of its eigenvalues are positive (respectively, nonnegative).

Proof. If x∗Ax is real and positive (respectively, real and nonnegative) whenever x �= 0,
then x∗Ax is real for all x ∈ Cn , so (4.1.4(a)) ensures that A is Hermitian. Moreover,
λ = u∗(λu) = u∗Au if u ∈ Cn is a unit eigenvector of A associated with an eigenvalue
λ, so the hypothesis ensures that λ > 0 (respectively, λ ≥ 0). Conversely, if A is Hermi-
tian and has only positive (respectively, nonnegative) eigenvalues, then (4.2.5) ensures
that A = U�U ∗, in which the columns of the unitary matrix U = [u1 . . . un] are eigen-
vectors of A associated with the positive (respectively, nonnegative) diagonal entries of
� = diag(λ1, . . . , λn). Then x∗Ax = x∗U�U ∗x = (U ∗x)∗�(U ∗x) =∑n

k=1 λk |u∗
k x |2

is always nonnegative; it is positive if all λk > 0 and some u∗
k x �= 0, which is certainly

the case if x �= 0. �

Definition 4.1.9. A matrix A ∈ Mn is positive definite if x∗Ax is real and positive for
all nonzero x ∈ Cn; it is positive semidefinite if x∗Ax is real and nonnegative for all
nonzero x ∈ Cn; it is indefinite if x∗Ax is real for all x ∈ Cn and there are vectors
y, z ∈ Cn such that y∗Ay < 0 < z∗Az.

Exercise. Let A ∈ Mn and let B = A∗A. Show that B is positive semidefinite in
two ways: (a) replace A by its singular value decomposition; and (b) observe that
x∗Bx = ‖Ax‖2

2.
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The preceding theorem says that a complex matrix is positive definite (respectively,
semidefinite) if and only if it is Hermitian and all its eigenvalues are positive (respec-
tively, nonnegative). Some authors include in the definition of positive definiteness
or semidefiniteness an assumption that the matrix is Hermitian. The preceding the-
orem shows that this assumption is unnecessary for complex matrices and vectors,
but it is harmless. However, the situation is different if one considers real matri-
ces and the real quadratic forms that they generate. If A ∈ Mn(R) and x ∈ Rn , then
xT Ax = 1

2 xT (A + AT )x , so assuming that xT Ax > 0 or xT Ax ≥ 0 for all nonzero
x ∈ Rn imposes a condition only on the symmetric part of A; its skew-symmetric part
is unrestricted. The real analog of the preceding theorem must incorporate a symmetry
assumption.

Theorem 4.1.10. Let A ∈ Mn(R) be symmetric. Then xT Ax > 0 (respectively,
xT Ax ≥ 0) for all nonzero x ∈ Rn if and only if every eigenvalue of A is positive
(respectively, nonnegative).

Proof. Since A is Hermitian, it suffices to show that z∗Az > 0 (respectively, z∗Az ≥
0) whenever z = x + iy ∈ Cn with x, y ∈ Rn and at least one is nonzero. Since =
(yT Ax)T = xT Ay, we have

z∗Az = (x + iy)∗A(x + iy) = xT Ax + yT Ay + i(x T Ay − yT Ax)

= xT Ax + yT Ay

which is positive (respectively, nonnegative) if at least one of x and y is nonzero. �

Definition 4.1.11. A symmetric matrix A ∈ Mn(R) is positive definite if xT Ax > 0 for
all nonzero x ∈ Rn; it is positive semidefinite if xT Ax ≥ 0 for all nonzero x ∈ Rn; it
is indefinite if there are vectors y, z ∈ Rn such that yT Ay < 0 < zT Az.

Exercise. Explain why a positive semidefinite matrix is positive definite if and
only if it is nonsingular.

Our final general observation about Hermitian matrices is that A ∈ Mn is Hermitian
if and only if it can be written as A = B − C , in which B, C ∈ Mn are positive
semidefinite. Half of this assertion is evident; the other half relies on the following
definition.

Definition 4.1.12. Let A ∈ Mn be Hermitian and let λ1 ≥ · · · ≥ λn be its nonin-
creasingly ordered eigenvalues. Let � = diag(λ1, . . . , λn), and let U ∈ Mn be uni-
tary and such that A = U�U ∗. Let λ+

i = max{λi , 0} and let λ−
i = min{λi , 0}, both

for i = 1, . . . , n. Let �+ = diag(λ+
1 , . . . , λ+

n ) and let A+ = U�+U ∗; let �− =
diag(λ−

1 , . . . , λ−
n ) and let A− = −U�−U ∗. The matrix A+ is called the positive

semidefinite part of A.

Proposition 4.1.13. Let A ∈ Mn be Hermitian. Then A = A+ − A−; each of A+
and A− is positive semidefinite; A+ and A− commute; rank A = rank A+ + rank A−;
A+A− = A−A+ = 0; and A− is the positive semidefinite part of −A.

Exercise. Verify the statements in the preceding proposition.
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Problems

4.1.P1 Show that every principal submatrix of a Hermitian matrix is Hermitian. Is this true
for skew-Hermitian matrices? For normal matrices? Prove or give a counterexample.

4.1.P2 If A ∈ Mn is Hermitian and S ∈ Mn , show that S AS∗ is Hermitian. What about
S AS−1 (if S is nonsingular)?

4.1.P3 Let A, B ∈ Mn be Hermitian. Show that A and B are similar if and only if they are
unitarily similar.

4.1.P4 Verify the statements 1–9 following (4.1.1).

4.1.P5 Sometimes one can show that a matrix has only real eigenvalues by showing that
it is similar to a Hermitian matrix. Let A = [ai j ] ∈ Mn(R) be tridiagonal. Suppose that
ai,i+1ai+1,i > 0 for all i = 1, 2, . . . , n − 1. Show that there is a real diagonal matrix D
with positive diagonal entries such that D AD−1 is symmetric, and conclude that A has

only real eigenvalues. Consider
[

0 1
−1 0

]
and explain why the assumption on the signs of

the off-diagonal entries is necessary. Use a limit argument to show that the conclusion that
the eigenvalues are real continues to hold if ai,i+1ai+1,i ≥ 0 for all i = 1, 2, . . . , n − 1.

4.1.P6 Let A = [ai j ], B = [bi j ] ∈ Mn be given. (a) Show that x∗ Ax = x∗Bx for all x ∈ Cn

if and only if A = B, that is, a complex matrix is determined by the sesquilinear form that
it generates.

4.1.P7 Let A, B ∈ Mn(F) be given, with n ≥ 2 and F = R or C. Show that xT Ax = 0 for
all x ∈ Fn if and only if AT = −A. Give an example to show that A and B need not be
equal if xT Ax = xT Bx for all x ∈ Fn , so a real or complex matrix is not determined by
the quadratic form that it generates.

4.1.P8 Let A =
[

1 1
0 1

]
and show that |x∗Ax | = |x∗ AT x | for all x ∈ C2. Conclude that

A ∈ Mn is not determined by the absolute value of the Hermitian form that it generates.

4.1.P9 Show that A ∈ Mn is almost determined by the absolute value of the sesquilinear
form that it generates, in the following sense: If A, B ∈ Mn are given, show that |x∗ Ay| =
|x∗By| for all x, y ∈ Cn if and only if A = eiθ B for some θ ∈ R.

4.1.P10 Show that A ∈ Mn is Hermitian if and only if i A is skew Hermitian. Let B ∈ Mn be
skew Hermitian. Show that (a) the eigenvalues of B are pure imaginary; (b) the eigenvalues
of B2 are real and nonpositive and are all zero if and only if B = 0.

4.1.P11 Let A, B ∈ Mn be Hermitian. Explain why AB − B A is skew Hermitian and
deduce from (4.1.P10) that tr(AB)2 ≤ tr( A2 B2) with equality if and only if AB = B A.

4.1.P12 Let A ∈ Mn be given. If A is Hermitian, explain why the rank of A is equal to
the number of its nonzero eigenvalues, but that this need not be true for non-Hermitian
matrices. If A is normal, show that rank A ≥ rank H (A) with equality if and only if A has
no nonzero imaginary eigenvalues. Can the normality hypothesis be dropped?

4.1.P13 Suppose that A ∈ Mn is nonzero. (a) Show that rank A ≥ | tr A|2/(tr A∗A) with
equality if and only if A = aH for some nonzero a ∈ C and some Hermitian projection H .
(b) If A is normal, explain why rank A ≥ | tr H (A)|2/(tr H (A)2), so rank A ≥ | tr A|2/(tr A2)
if A is Hermitian.

4.1.P14 Show that A = eiθ A∗ for some θ ∈ R if and only if e−iθ/2 A is Hermitian. What
does this say for θ = π? For θ = 0? Explain why the class of skew-Hermitian matrices may
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be thought of as one of infinitely many classes of essentially Hermitian matrices (0.2.5),
and describe the structure of each such class.

4.1.P15 Explain why A ∈ Mn is similar to a Hermitian matrix if and only if it is diagonal-
izable and has real eigenvalues. See (7.6.P1) for additional equivalent conditions.

4.1.P16 For any s, t ∈ R, show that max{|s|, |t |} = 1
2 (|s + t | + |s − t |). For any Hermitian

A ∈ M2, deduce that ρ(A) = 1
2 | tr A| + 1

2 (tr A2 − 2 det A)1/2.

4.1.P17 Let A = [ai j ] ∈ M2 be Hermitian and have eigenvalues λ1 and λ2. Show that
(λ1 − λ2)2 = (a11 − a22)2 + 4|a12|2 and deduce that spread A ≥ 2|a12| with equality if and
only if a11 = a22.

4.1.P18 Let A ∈ Mn be given. Show that A is Hermitian if and only if A2 = A∗A.

4.1.P19 Let A ∈ Mn be a projection (A2 = A). One says that A is a Hermitian projection
if A is Hermitian; A is an orthogonal projection if the range of A is orthogonal to its null
space. Use (4.1.5) and (4.1.4) to show that A is a Hermitian projection if and only if it is
an orthogonal projection.

4.1.P20 Let A ∈ Mn be a projection. Show that A is Hermitian if and only if AA∗A = A.

4.1.P21 Let n ≥ 2, and let x, y ∈ Cn and z1, . . . , zn ∈ C be given. Consider the Hermitian
matrix A = xy∗ + yx∗ = [x y][y x]∗ and the skew-Hermitian matrix B = xy∗ − yx∗ =
[x − y][y x]∗. (a) Show that the eigenvalues of A are Re y∗x ± (‖x‖2 ‖y‖2 − (Im y∗x)2)1/2

(one positive and one negative if x and y are linearly independent) together with
n − 2 zero eigenvalues. (b) Show that the eigenvalues of B are i(Im y∗x ± (‖x‖2 ‖y‖2 −
(Re y∗x)2)1/2). (c) What are the eigenvalues of A and B if x and y are real? (d) Show that the
eigenvalues of C = [zi + z̄ j ] ∈ Mn are Re

∑n
i=1 zi ± (n2 ∑n

i=1 |zi |2 − (Im
∑n

i=1 zi )2)1/2

(one positive and one negative if not all zi are equal) together with n − 2 zero eigenval-
ues. (e) What are the eigenvalues of D = [zi − z̄ j ] ∈ Mn? (f) What are the eigenvalues of
C and D if all zi are real? Check your answers using the special cases (1.3.25) and (1.3.26).

4.1.P22 In the definition (4.1.12) of the positive semidefinite part A+ of a Hermitian matrix
A, the diagonal factor �+ is uniquely determined, but the unitary factor U is not. Why? Use
the uniqueness portion of (2.5.4) to explain why A+ (and hence also A−) is nevertheless
well-defined.

4.1.P23 Let A, B ∈ Mn be Hermitian. Show that (a) AB is Hermitian if and only if A
commutes with B; (b) tr AB is real.

4.1.P24 Let A ∈ Mn be Hermitian. Explain why (a) adj A is Hermitian; (b) adj A is positive
semidefinite if A is positive semidefinite; (c) adj A is positive definite if A is positive definite.

4.1.P25 Let A ∈ Mn be Hermitian and let r ∈ {1, . . . , n}. Explain why the compound
matrix Cr (A) is Hermitian. If A is positive definite (respectively, positive semidefinite),
explain why Cr (A) is positive definite (respectively, positive semidefinite).

4.1.P26 Show that a Hermitian P ∈ Mn is a projection if and only if there is a unitary
U ∈ Mn such that P = U (Ik ⊕ 0n−k)U ∗, in which 0 ≤ k ≤ n.

4.1.P27 Let A, P ∈ Mn and suppose that P is a Hermitian projection that is neither 0 nor
I . Show that A commutes with P if and only if A is unitarily similar to B ⊕ C , in which
B ∈ Mk , C ∈ Mn−k , and 1 ≤ k ≤ n − 1.

4.1.P28 If A ∈ Mn is unitarily similar to B ⊕ C , in which B ∈ Mk , C ∈ Mn−k , and 1 ≤
k ≤ n − 1, then A is said to be unitarily reducible; otherwise, A is unitarily irreducible.
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Explain why A is unitarily irreducible if and only if the only Hermitian projections that
commute with A are the zero and identity matrices.

4.1.P29 Let A ∈ Mn be either Hermitian or real symmetric. Explain why A is indefinite if
and only if it has at least one positive eigenvalue and at least one negative eigenvalue.

4.1.P30 Let A ∈ Mn be Hermitian and suppose that rank A = r > 0. We know that A
is rank principal, so it has a nonzero principal minor of size r ; see (0.7.6). But we can
say more: Use (4.1.5) to write A = U�U ∗, in which U ∈ Mn is unitary and � = �r ⊕
0n−r is real diagonal. (a) Explain why det �r is real and nonzero. (b) Partition U =
[V U2], in which V ∈ Mn,r . Explain why A = V �r V ∗; this is a full-rank factorization
of A. (c) Let α, β ⊆ {1, . . . , n} be index sets of cardinality r , and let V [α, ∅c] = Vα .
Explain why A[α, β] = Vα�r V ∗

β ; det A[α] = | det Vα|2 det �r ; and det A[α] det A[β] =
det A[α, β] det A[β, α]. (d) Why does the factorization A[α] = Vα�r V ∗

α ensure that A has
at least one nonzero principal minor of size r , and why does every such minor have the
same sign? See (2.5.P48) for a version of this result if A is normal.

Notes. Perhaps the earliest version of (4.1.5) is due to A. Cauchy in 1829. He showed
that the eigenvalues of a real symmetric matrix A are real and that the real quadratic form
Q(x1, . . . , xn) = xT Ax can be transformed by a real orthogonal change of variables
into a sum of real multiples of squares of real linear forms.

4.2 Variational characterizations and subspace intersections

Since the eigenvalues of a Hermitian matrix A ∈ Mn are real, we may (and do) adopt
the convention that they are always arranged in algebraically nondecreasing order:

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax (4.2.1)

When several Hermitian matrices are under discussion, it is convenient to de-
note their respective eigenvalues (always algebraically ordered as in (4.2.1)) by
{λi (A)}n

i=1, {λi (B)}n
i=1, and so on.

The smallest and largest eigenvalues of a Hermitian matrix A can be characterized
as the solutions to minimum and maximum problems involving the Rayleigh quotient
x∗Ax/x∗x . The basic facts supporting the following Rayleigh quotient theorem are as
follows: for a Hermitian A ∈ Mn , eigenvectors of A associated with distinct eigenvalues
are automatically orthogonal, the span of any nonempty list of eigenvectors of A
associated with a single eigenvalue λ contains an orthonormal basis of eigenvectors
associated with λ, and there is an orthonormal basis of Cn consisting of eigenvectors
of A.

Theorem 4.2.2 (Rayleigh). Let A ∈ Mn be Hermitian, let the eigenvalues of A be
ordered as in (4.2.1), let i1, . . . , ik be given integers with 1 ≤ i1 < · · · < ik ≤ n, let
xi1, . . . , xik be orthonormal and such that Axi p = λi p xi p for each p = 1, . . . , k, and let
S = span{xi1, . . . , xik }. Then
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(a)

λi1 = min
{x :0�=x∈S}

x∗Ax

x∗x
= min

{x :x∈S and ‖x‖2=1}
x∗ Ax

≤ max
{x :x∈S and ‖x‖2=1}

x∗ Ax = max
{x :0�=x∈S}

x∗ Ax

x∗x
= λik

(b) λi1 ≤ x∗ Ax ≤ λik for any unit vector x ∈ S, with equality in the right-hand
(respectively, left-hand) inequality if and only if Ax = λik x (respectively,
Ax = λi1 x)

(c) λmin ≤ x∗ Ax ≤ λmax for any unit vector x ∈ Cn, with equality in the right-hand
(respectively, left-hand) inequality if and only if Ax = λmaxx (respectively, Ax =
λminx); moreover,

λmax = max
x �=0

x∗ Ax

x∗x
and λmin = min

x �=0

x∗ Ax

x∗x

Proof. If x ∈ S is nonzero, then ξ = x/ ‖x‖2 is a unit vector and x∗Ax/x∗x = x∗Ax/

‖x‖2
2 = ξ ∗Aξ . For any given unit vector x ∈ S, there are scalars α1, . . . , αk

such that x = α1xi1 + · · · + αk xik ; orthonormality ensures that 1 = x∗x =∑k
p,q=1 ᾱ pαq x∗

i p
xiq = |α1|2 + · · · + |αk |2. Then

x∗Ax = (α1xi1 + · · · + αk xik )∗(α1λi1 xi1 + · · · + αkλik xik )

= |α1|2λi1 + · · · + |αk |2λik

is a convex combination of the real numbers λi1, . . . , λik , so it lies between the smallest
of these numbers (λi1 ) and the largest (λik ); see Appendix B. Moreover, x∗Ax =
|α1|2λi1 + · · · + |αk |2λik = λik if and only if α p = 0 whenever λi p �= λik , if and only
if x =∑

{p:λi p=λik } α pxi p , if and only if x ∈ S is an eigenvector of A associated with
the eigenvalue λik . A similar argument establishes the case of equality for x∗Ax = λi1 .
The assertions in (c) follow from those in (b) since S = Cn if k = n. �

The geometrical interpretation of (4.2.2(c)) is that λmax is the maximum (and λmin is
the minimum) of the continuous real-valued function f (x) = x∗Ax on the unit sphere
in Cn , a compact set.

Exercise. Let A ∈ Mn be Hermitian, let x ∈ Cn be nonzero, and let α =
x∗Ax/x∗x . Explain why there is at least one eigenvalue of A in the interval
(−∞, α] and at least one eigenvalue of A in the interval [α,∞).

In our discussion of eigenvalues of Hermitian matrices, we have several opportunities
to invoke the following basic observation about subspace intersections.

Lemma 4.2.3 (Subspace intersection). Let S1, . . . , Sk be given subspaces of Cn. If
δ = dim S1 + · · · + dim Sk − (k − 1)n ≥ 1, there are orthonormal vectors x1, . . . , xδ

such that x1, . . . , xδ ∈ Si for every i = 1, . . . , k. In particular, S1 ∩ · · · ∩ Sk contains
a unit vector.

Proof. See (0.1.7). The set S1 ∩ · · · ∩ Sk is a subspace, and the stated inequality ensures
that dim(S1 ∩ · · · ∩ Sk) ≥ δ ≥ 1. Let x1, . . . , xδ be any δ elements of an orthonormal
basis of S1 ∩ · · · ∩ Sk . �
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Exercise. Prove (0.1.7.3) by induction, starting with (0.1.7.2).

Exercise. Let S1, S2, and S3 be given subspaces of Cn . If dim S1 + dim S2 ≥
n + 1, explain why S1 ∩ S2 contains a unit vector. If dim S1 + dim S2 + dim S3 ≥
2n + 2, explain why there are two unit vectors x, y ∈ S1 ∩ S2 ∩ S3 such that
x∗y = 0.

Inequalities resulting from variational characterizations are often the result of the
simple observation that, for a suitable real-valued function f and a nonempty set S,
sup{ f (x) : x ∈ S} does not decrease (and inf{ f (x) : x ∈ S} does not increase) if S is
replaced by a larger set S′ ⊃ S.

Lemma 4.2.4. Let f be a bounded real-valued function on a set S, and suppose that
S1 and S2 are sets such that S1 is nonempty and S1 ⊂ S2 ⊂ S. Then

sup
x∈S2

f (x) ≥ sup
x∈S1

f (x) ≥ inf
x∈S1

f (x) ≥ inf
x∈S2

f (x)

In many eigenvalue inequalities for a Hermitian matrix A, lower bounds on the
eigenvalues of A follow from applying upper bounds to the eigenvalues of −A. The
following observation is useful in this regard.

Observation 4.2.5. Let A ∈ Mn be Hermitian and have eigenvalues λ1(A) ≤ · · · ≤
λn(A), ordered as in (4.2.1). Then the ordered eigenvalues of −A are −λn(A) ≤ · · · ≤
−λ1(A), that is, λk(−A) = −λn−k+1(A), k = 1, . . . , n.

Our proof of the celebrated Courant–Fischer min-max theorem uses the preceding
two lemmas in concert with the Rayleigh quotient theorem.

Theorem 4.2.6 (Courant–Fischer). Let A ∈ Mn be Hermitian and let λ1 ≤ · · · ≤ λn

be its algebraically ordered eigenvalues. Let k ∈ {1, . . . , n} and let S denote a subspace
of Cn. Then

λk = min
{S:dim S=k}

max
{x :0�=x∈S}

x∗Ax

x∗x
(4.2.7)

and

λk = max
{S:dim S=n−k+1}

min
{x :0�=x∈S}

x∗Ax

x∗x
(4.2.8)

Proof. Let x1, . . . , xn ∈ Cn be orthonormal and such that Axi = λi xi for each i =
1, . . . , n. Let S be any k-dimensional subspace of Cn and let S′ = span{xk, . . . , xn}.
Then

dim S + dim S′ = k + (n − k + 1) = n + 1

so (4.2.3) ensures that {x : 0 �= x ∈ S ∩ S′} is nonempty. Invoking (4.2.4) and (4.2.2),
we see that

sup
{x :0�=x∈S}

x∗Ax

x∗x
≥ sup

{x :0�=x∈S∩S′}

x∗Ax

x∗x
≥ inf

{x :0�=x∈S∩S′}
x∗Ax

x∗x

≥ inf
{x :0�=x∈S′}

x∗Ax

x∗x
= min

{x :0�=x∈S′}
x∗Ax

x∗x
= λk



4.2 Variational characterizations and subspace intersections 237

which implies that

inf
{S:dim S=k}

sup
{x :0�=x∈S}

x∗Ax

x∗x
≥ λk (4.2.9)

However, span{x1, . . . , xk} contains the eigenvector xk , span{x1, . . . , xk} is one of the
choices for the subspace S, and x∗

k Axk/x∗
k xk = λk , so the inequality (4.2.9) is actually

an equality in which the infimum and supremum are attained:

inf
{S:dim S=k}

sup
{x :0�=x∈S}

x∗Ax

x∗x
= min

{S:dim S=k}
max

{x :0�=x∈S}
x∗Ax

x∗x
= λk

The assertion (4.2.8) follows from applying (4.2.7) and (4.2.5) to −A:

−λk = min
{S:dim S=n−k+1}

max
{x :0�=x∈S}

x∗(−A)x

x∗x

= min
{S:dim S=n−k+1}

max
{x :0�=x∈S}

(
− x∗Ax

x∗x

)

= min
{S:dim S=n−k+1}

(
− min

{x :0�=x∈S}
x∗Ax

x∗x

)

= −
(

max
{S:dim S=n−k+1}

min
{x :0�=x∈S}

x∗Ax

x∗x

)
from which (4.2.8) follows. �

If k = n in (4.2.7) or k = 1 in (4.2.8), we may omit the outer optimization and set
S = Cn since this is the only n-dimensional subspace. In these two cases, the assertions
reduce to (4.2.2(c)).

If one has a Hermitian A ∈ Mn and bounds on its Hermitian form x∗Ax on a
subspace, something can be said about its eigenvalues.

Theorem 4.2.10. Let A ∈ Mn be Hermitian, let the eigenvalues of A be arranged in
increasing order (4.2.1), let S be a given k-dimensional subspace of Cn, and let c ∈ R
be given.

(a) If x∗Ax ≥ c (respectively, x∗ Ax > c) for every unit vector x ∈ S, then
λn−k+1(A) ≥ c (respectively, λn−k+1(A) > c).

(b) If x∗Ax ≤ c (respectively, x∗ Ax < c) for every unit vector x ∈ S, then λk ≤ c
(respectively, λk(A) < c).

Proof. Let x1, . . . , xn ∈ Cn be orthonormal and such that Axi = λi (A)xi for each
i = 1, . . . , n and let S1 = span{x1, . . . , xn−k+1}. Then dim S + dim S1 = k + (n − k +
1) = n + 1, so (4.2.3) ensures that there is a unit vector x ∈ S ∩ S1. Our assumption
in (a) that x∗Ax ≥ c (x ∈ S), together with (4.2.2) (x ∈ S1), ensures that

c ≤ x∗Ax ≤ λn−k+1(A) (4.2.11)

so λn−k+1(A) ≥ c, with strict inequality if x∗Ax > c. The assertions in (b) about upper
bounds on eigenvalues of A follow from applying (a) to −A. �
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Corollary 4.2.12. Let A ∈ Mn be Hermitian. If x∗Ax ≥ 0 for all x in a k-dimensional
subspace, then A has at least k nonnegative eigenvalues. If x∗Ax > 0 for all nonzero
x in a k-dimensional subspace, then A has at least k positive eigenvalues.

Proof. The preceding theorem ensures that λn−k+1(A) ≥ 0 (respectively, λn−k+1(A) >

0), and λn(A) ≥ · · · ≥ λn−k+1(A). �

Problems

4.2.P1 Explain why the assertions (4.2.7-8) are equivalent to

λk = min
{S:dim S=k}

max
{x :x∈S and ‖x‖2=1}

x∗ Ax

and

λk = max
{S:dim S=n−k+1}

min
{x :x∈S and ‖x‖2=1}

x∗ Ax

4.2.P2 Let A ∈ Mn be Hermitian and suppose that at least one eigenvalue of A is positive.
Show that λmax(A) = max{1/x∗x : x∗ Ax = 1}.
4.2.P3 If A = [ai j ] ∈ Mn is Hermitian, use (4.2.2(c)) to show that λmax(A) ≥ aii ≥ λmin(A)
for all i = 1, . . . , n, with equality in one of the inequalities for some i only if ai j = a ji = 0
for all j = 1, . . . , n, j �= i . Consider A = diag(1, 2, 3) and explain why the condition
ai j = a ji = 0 for all j = 1, . . . , n, j �= i does not imply that aii is equal to either λmax(A)
or λmin(A).

4.2.P4 Let A = [ai j ] = [a1 . . . an] ∈ Mn and let σ 1 be the largest singular value of A.
Apply the preceding problem to the Hermitian matrix A∗A and show that σ 1 ≥ ∥∥a j

∥∥
2 ≥

|ai j | for all i, j = 1, . . . , n.

4.2.P5 Let A =
[

1 2
0 1

]
. What are the eigenvalues of A? What is max{xT Ax/xT x : 0 �=

x ∈ R2}? What is max Re{x∗ Ax/x∗x : 0 �= x ∈ C2}? Does this contradict (4.2.2)?

4.2.P6 Let λ1, . . . , λn be the eigenvalues of A ∈ Mn , which we do not assume to be
Hermitian. Show that

min
x �=0

∣∣∣∣ x∗ Ax

x∗x

∣∣∣∣ ≤ |λi | ≤ max
x �=0

∣∣∣∣ x∗ Ax

x∗x

∣∣∣∣ , i = 1, 2, . . . , n

and that strict inequality is possible in either inequality.

4.2.P7 Show that the rank-nullity theorem 0.2.3.1 implies the subspace intersection lemma
0.1.7.1 and (4.2.3).

4.2.P8 Suppose that A, B ∈ Mn are Hermitian, B is positive semidefinite, and the eigen-
values {λi (A)}n

i=1 and {λi (B)}n
i=1 are ordered as in (4.2.1). Use (4.2.6) to show that

λk(A + B) ≥ λk(A) for all k = 1, . . . , n.

4.2.P9 Provide details for an alternative proof of (4.2.10) that first derives (b) from (4.2.7)
and then deduces (a) from (b) applied to −A.

Notes and Further Readings. The variational characterization (4.2.2) was discovered
by John William Strutt, 3rd Baron Rayleigh and 1904 Nobel laureate for his discovery
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of the element argon; see section 89 of Rayleigh (1945). The min-max characteriza-
tion (4.2.6) for eigenvalues of real symmetric matrices appeared in E. Fischer, Über
quadratische Formen mit reelen Koeffizienten, Monatsh. Math. und Physik 16 (1905)
234–249; it was extended to infinite dimensional operators by Richard Courant and
incorporated into his classic text Courant and Hilbert (1937).

4.3 Eigenvalue inequalities for Hermitian matrices

The following theorem of Hermann Weyl is the source of a great many inequalities
involving either a sum of two Hermitian matrices or bordered Hermitian matrices.

Theorem 4.3.1 (Weyl). Let A, B ∈ Mn be Hermitian and let the respective eigen-
values of A, B, and A + B be {λi (A)}n

i=1, {λi (B)}n
i=1, and {λi (A + B)}n

i=1, each
algebraically ordered as in (4.2.1). Then

λi (A + B) ≤ λi+ j (A) + λn− j (B), j = 0, 1, . . . , n − i (4.3.2a)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero
vector x such that Ax = λi+ j (A)x, Bx = λn− j (B)x, and (A + B)x = λi (A + B)x.
Also,

λi− j+1(A) + λ j (B) ≤ λi (A + B), j = 1, . . . , i (4.3.2b)

for each i = 1, . . . , n, with equality for some pair i, j if and only if there is a nonzero
vector x such that Ax = λi− j+1(A)x, Bx = λ j (B)x, and (A + B)x = λi (A + B)x. If
A and B have no common eigenvector, then every inequality in (4.3.2a,b) is a strict
inequality.

Proof. Let x1, . . . , xn , y1, . . . , yn , and z1, . . . , zn be orthonormal lists of eigenvec-
tors of A, B, and A + B, respectively, such that Axi = λi (A)xi , Byi = λi (B)yi ,
and (A + B)zi = λi (A + B)zi for each i = 1, . . . , n. For a given i ∈ {1, . . . , n} and
any j ∈ {0, . . . , n − i}, let S1 = span{x1, . . . , xi+ j }, S2 = span{y1, . . . , yn− j }, and
S3 = span{zi , . . . , zn}. Then

dim S1 + dim S2 + dim S3 = (i + j) + (n − j) + (n − i + 1) = 2n + 1

so (4.2.3) ensures that there is a unit vector x ∈ S1 ∩ S2 ∩ S3. Now invoke (4.2.2) three
times to obtain the two inequalities

λi (A + B) ≤ x∗(A + B)x = x∗Ax + x∗Bx ≤ λi+ j (A) + λn− j (B)

The first inequality follows from x ∈ S3 and the second inequality follows from x ∈ S1

and x ∈ S2, respectively. The statements about the cases of equality in (4.3.2a) follow
from the cases of equality in (4.2.2) for the unit vector x and the inequalities x∗Ax ≤
λi+ j (A), x ∈ S1; x∗Bx ≤ λn− j (B), x ∈ S2; and λi (A + B) ≤ x∗(A + B)x, x ∈ S3.

The inequalities (4.3.2b) and their cases of equality follow from applying (4.3.2a)
to −A, −B, and −(A + B) and using (4.2.5):

−λn−i+1(A + B) = λi (−A − B) ≤ λi+ j (−A) + λn− j (−B)

= −λn−i− j+1(A) − λ j+1(B)
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If we set i ′ = n − i + 1 and j ′ = j + 1, the preceding inequality becomes

λi ′(A + B) ≥ λi ′− j ′+1(A) + λ j ′(B), j ′ = 1, . . . , i ′

which is (4.3.2b).
If A and B have no common eigenvector, then the necessary conditions for equality

in (4.3.2a,b) cannot be met. �
Weyl’s theorem describes what can happen to the eigenvalues of a Hermitian matrix

A if it is additively perturbed by a Hermitian matrix B. Various assumptions about the
perturbing matrix B lead to inequalities that are special cases of (4.3.2a,b). In each of
the following corollaries, we continue to use the same notation as in (4.3.1), and we
continue to insist on the algebraic ordering (4.2.1) for all lists of eigenvalues.

Exercise. Let B ∈ Mn be Hermitian. If B has exactly π positive eigenvalues and
exactly ν negative eigenvalues, explain why λn−π (B) ≤ 0 and λν+1(B) ≥ 0 with
equality if and only if n > π + ν, that is, if and only if B is singular.

Corollary 4.3.3. Let A, B ∈ Mn be Hermitian. Suppose that B has exactly π positive
eigenvalues and exactly ν negative eigenvalues. Then

λi (A + B) ≤ λi+π (A), i = 1, . . . , n − π (4.3.4a)

with equality for some i if and only if B is singular and there is a nonzero vector x
such that Ax = λi+π (A)x, Bx = 0, and (A + B)x = λi (A + B)x. Also,

λi−ν(A) ≤ λi (A + B), i = ν + 1, . . . , n (4.3.4b)

with equality for some i if and only if B is singular and there is a nonzero vector
x such that Ax = λi−ν(A)x, Bx = 0, and (A + B)x = λi (A + B)x. Every inequality
in (4.3.4a,b) is a strict inequality if either (a) B is nonsingular or (b) Bx �= 0 for every
eigenvector x of A.

Proof. Take j = n − π in (4.3.2a) and use the preceding exercise to obtain λi (A +
B) ≤ λi+π (A) + λn−π (B) ≤ λi+π (A) with equality if and only if B is singular and there
is a nonzero vector x such that Ax = λi+π (A)x , Bx = 0, and (A + B)x = λi (A + B)x .
A similar argument shows that (4.3.4b) follows from (4.3.2b) with j = ν + 1. �

Exercise. Let B ∈ Mn be Hermitian. If B is singular and rank B = r , explain
why λn−r (B) ≤ 0 and λr+1(B) ≥ 0.

Corollary 4.3.5. Let A, B ∈ Mn be Hermitian. Suppose that B is singular and
rank B = r . Then

λi (A + B) ≤ λi+r (A), i = 1, . . . , n − r (4.3.6a)

with equality for some i if and only if λn−r (B) = 0 and there is a nonzero vector x such
that Ax = λi+r (A)x, Bx = 0, and (A + B)x = λi (A + B)x. Also,

λi−r (A) ≤ λi (A + B), i = r + 1, . . . , n (4.3.6b)

with equality for some i if and only if λr+1(B) = 0 and there is a nonzero vector x
such that Ax = λi−r (A)x, Bx = 0, and (A + B)x = λi (A + B)x. If Bx �= 0 for every
eigenvector x of A, then every inequality in (4.3.6a,b) is a strict inequality.
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Proof. To verify (4.3.6a), take j = r in (4.3.2a) and use the preceding exercise to obtain
λi (A + B) ≤ λi+r (A) + λn−r (B) ≤ λi+r (A) with equality if and only if λn−r (B) = 0
and there is equality in (4.3.2a) with j = r . A similar argument shows that (4.3.6b)
follows from (4.3.4b) with j = r + 1. �

Exercise. Let B ∈ Mn be Hermitian. If B has exactly one positive eigenvalue and
exactly one negative eigenvalue, explain why λ2(B) ≥ 0 and λn−1(B) ≤ 0 with
equality if and only if n > 2.

Corollary 4.3.7. Let A, B ∈ Mn be Hermitian. Suppose that B has exactly one positive
eigenvalue and exactly one negative eigenvalue. Then

λ1(A + B) ≤ λ2(A)

λi−1(A) ≤ λi (A + B) ≤ λi+1(A), i = 2, . . . , n − 1 (4.3.8)

λn−1(A) ≤ λn(A + B)

The cases of equality are as described in (4.3.3) with π = ν = 1, for example, λi (A +
B) = λi+1(A) if and only if n > 2 and there is a nonzero vector x such that Ax =
λi+1(A)x, Bx = 0, and (A + B)x = λi (A + B)x. Every inequality in (4.3.8) is a strict
inequality if either (a) n = 2 or (b) Bx �= 0 for every eigenvector x of A.

Proof. Take π = ν = 1 in (4.3.4a,b) and use the preceding exercise. �

Exercise. Suppose that z ∈ Cn is nonzero and n ≥ 2. Explain why λn−1(zz∗) =
0 = λ2(zz∗).

The following corollary is the interlacing theorem for a rank-one Hermitian pertur-
bation of a Hermitian matrix.

Corollary 4.3.9. Let n ≥ 2, let A ∈ Mn be Hermitian, and let z ∈ Cn be nonzero. Then

λi (A) ≤ λi (A + zz∗) ≤ λi+1(A), i = 1, . . . , n − 1 (4.3.10)

λn(A) ≤ λn(A + zz∗)

The cases of equality in (4.3.10) are as described in (4.3.3) with π = 1 and ν = 0, for
example, λi (A + zz∗) = λi+1(A) if and only if there is a nonzero vector x such that
Ax = λi+1(A)x, z∗x = 0, and (A + zz∗)x = λi (A + zz∗)x. Also,

λ1(A − zz∗) ≤ λ1(A) (4.3.11)

λi−1(A) ≤ λi (A − zz∗) ≤ λi (A), i = 2, . . . , n

The cases of equality in (4.3.11) are as described in (4.3.3) with π = 0 and ν = 1. If
no eigenvector of A is orthogonal to z, then every inequality in (4.3.10,11) is a strict
inequality.

Proof. In (4.3.4a), take π = 1 and ν = 0; in (4.3.4b), take π = 0 and ν = 1. Use the
preceding exercise. �

Exercise. Let B ∈ Mn be positive semidefinite. Explain why λ1(B) = 0 if and
only if B is singular.

The following corollary is known as the monotonicity theorem.



242 Hermitian matrices, symmetric matrices, and congruences

Corollary 4.3.12. Let A, B ∈ Mn be Hermitian and suppose that B is positive semi-
definite. Then

λi (A) ≤ λi (A + B), i = 1, . . . , n (4.3.13)

with equality for some i if and only if B is singular and there is a nonzero vector x such
that Ax = λi (A)x, Bx = 0, and (A + B)x = λi (A + B)x. If B is positive definite, then

λi (A) < λi (A + B), i = 1, . . . , n (4.3.14)

Proof. Use (4.3.4b) with ν = 0 and use the preceding exercise. If B is nonsingular,
equality cannot occur in (4.3.13). �
Corollary 4.3.15. Let A, B ∈ Mn be Hermitian. Then

λi (A) + λ1(B) ≤ λi (A + B) ≤ λi (A) + λn(B), i = 1, . . . , n (4.3.16)

with equality in the upper bound if and only if there is nonzero vector x such that Ax =
λi (A)x, Bx = λn(B)x, and (A + B)x = λi (A + B)x; equality in the lower bound
occurs if and only if there is nonzero vector x such that Ax = λi (A)x, Bx = λ1(B)x,
and (A + B)x = λi (A + B)x. If A and B have no common eigenvector, then every
inequality in (4.3.16) is a strict inequality.

Proof. Take j = 0 in (4.3.2a) and j = 1 in (4.3.2b). �

Exercise. Let y ∈ Cn and a ∈ R be given, and let K =
[

0n y
y∗ a

]
∈ Mn+1. Show

that the eigenvalues of K are (a ±
√

a2 + 4y∗y)/2 together with n − 1 zero
eigenvalues. If y �= 0, conclude that K has exactly one positive eigenvalue and
exactly one negative eigenvalue. Hint: (1.2.P13(b)).

Weyl’s inequalities and their corollaries are concerned with additive Hermitian
perturbations of a Hermitian matrix. Additional eigenvalue inequalities arise from
extracting a principal submatrix from a Hermitian matrix, or from bordering it to form
a larger Hermitian matrix. The following result is Cauchy’s interlacing theorem for a
bordered Hermitian matrix, sometimes called the separation theorem.

Theorem 4.3.17 (Cauchy). Let B ∈ Mn be Hermitian, let y ∈ Cn and a ∈ R be a

given, and let A =
[

B y
y∗ a

]
∈ Mn+1. Then

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ · · · ≤ λn(A) ≤ λn(B) ≤ λn+1(A) (4.3.18)

in which λi (A) = λi (B) if and only if there is a nonzero z ∈ Cn such that Bz = λi (B)z,
y∗z = 0, and Bz = λi (A)z; λi (B) = λi+1(A) if and only if there is a nonzero z ∈
Cn such that Bz = λi (B)z, y∗z = 0, and Bz = λi+1(A)z. If no eigenvector of B is
orthogonal to y, then every inequality in (4.3.18) is a strict inequality.

Proof. The asserted interlacing of ordered eigenvalues is unchanged if we replace A
with A + μIn+1, which replaces B with B + μIn . Thus, there is no loss of generality to

assume that B and A are positive definite. Consider the Hermitian matricesH =
[

B 0
0 01

]
and K =

[
0n y
y∗ a

]
, for which A = H+K. The ordered eigenvalues of H = B ⊕ [0]

are λ1(H) = 0 < λ1(B) = λ2(H) ≤ λ2(B) = λ3(H) ≤ · · · , that is, λi+1(H) = λi (B)
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for all i = 1, . . . , n. The preceding exercise shows that K has exactly one positive
eigenvalue and one negative eigenvalue, so the inequalities (4.3.8) ensure that

λi (A) = λi (H+K) ≤ λi+1(H) = λi (B), i = 1, . . . , n (4.3.19)

Necessary and sufficient conditions for equality in (4.3.19) for a given i are described
in (4.3.7): there is a nonzero x ∈ Cn+1 such that Hx = λi+1(H)x , Kx = 0, and Ax =
λi (A)x . If we partition x =

[
z
ζ

]
with z ∈ Cn and use the identity λi+1(H) = λi (B), a

computation reveals that these conditions are equivalent to the existence of a nonzero
z ∈ Cn such that Bz = λi (B)z, y∗z = 0, and Bz = λi (A)z. In particular, if no eigen-
vector of B is orthogonal to y, then there is no i for which the necessary conditions
z �= 0, Bz = λi (B)z, and y∗z = 0 can be met.

The inequalities λi (B) ≤ λi+1(A) for i = 1, . . . , n follow from applying (4.3.19) to
−A and using (4.2.5):

− λ(n+1)−i+1(A) = λi (−A) ≤ λi (−B) = −λn−i+1(B) (4.3.20)

If we set i ′ = n − i + 1, we obtain the equivalent inequalities λi ′+1(A) ≥ λi ′(B) for
i ′ = 1, . . . , n. The case of equality for (4.3.20) follows again from (4.3.7). �

We have discussed two examples of interlacing theorems for eigenvalues: If a given
Hermitian matrix is modified either by adding a rank-one Hermitian matrix or by
bordering, then the new and old eigenvalues must interlace. In fact, each of (4.3.9) and
(4.3.17) implies the other; see (7.2.P15). What about converses of these theorems? If
two interlacing sets of real numbers are given, are they the eigenvalues of a Hermitian
matrix and a bordering of it? Are they the eigenvalues of a Hermitian matrix and a
rank-one additive perturbation of it? The following two theorems provide affirmative
answers to both questions.

Theorem 4.3.21. Let λ1, . . . , λn and μ1, . . . , μn+1 be real numbers that satisfy the
interlacing inequalities

μ1 ≤ λ1 ≤ μ2 ≤ λ2 ≤ · · · ≤ λn−1 ≤ μn ≤ λn ≤ μn+1 (4.3.22)

Let � = diag(λ1, λ2, . . . , λn). A real number a and a real vector y = [yi ] ∈ Rn may
be chosen such that the eigenvalues of

A =
[

� y
yT a

]
∈ Mn+1(R) (4.3.23)

are μ1, . . . , μn+1.

Proof. We want the eigenvalues of A to be μ1, . . . , μn+1, so a is determined by the
identity

μ1 + · · · + μn+1 = tr A = tr � + a = λ1 + · · · + λn + a

The characteristic polynomial of A is pA(t) = (t − μ1) · · · (t − μn+1); it is also
the determinant of the bordered matrix t I − A, which we can evaluate with
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Cauchy’s expansion (0.8.5.10):

pA(t) = det(t I − A) = (t − a) det(t I − �) − yT adj(t I − �)y

= (t − a)
n∏

i=1

(t − λi ) −
n∑

i=1

⎛
⎝y2

i

∏
j �=i

(
t − λ j

)⎞⎠
If we combine these two representations for pA(t) and introduce the variables ηi =
y2

i , i = 1, . . . , n, we obtain the identity

n∑
i=1

⎛
⎝ηi

∏
j �=i

(
t − λ j

)⎞⎠ = (t − a)
n∏

i=1

(t − λi ) −
n+1∏
i=1

(t − μi ) (4.3.24)

We must show that there are nonnegative η1, . . . , ηn that satisfy (4.3.24).
Choose any λ ∈ {λ1, . . . , λn}; suppose that λ has multiplicity (exactly) m ≥ 1 as

an eigenvalue of � and that λ = λk = · · · = λk+m−1, so λk−1 < λ < λk+m . To focus
the exposition on the generic case, we assume that 1 < k < n + 1 − m and leave it to
the reader to modify the following argument in the special (and easier) cases k = 1 or
k + m − 1 = n.

The interlacing inequalities (4.3.22) require that μk+1 = · · · = μk+m−1 = λ; they
permit μk = λ and/or λ = μk+m . Let

fλ+(t) =
k−1∏
i=1

(t − λi ) , fλ−(t) =
n∏

i=k+m

(t − λi )

and

gλ+(t) =
k∏

i=1

(
t − μi

)
, gλ−(t) =

n+1∏
i=k+m

(
t − μi

)
Observe that fλ+(λ) > 0, fλ−(λ) �= 0, and sign ( fλ−(λ)) = (−1)n−(k+m)+1. Also,
gλ+(λ) ≥ 0, gλ−(λ) ≤ 0, gλ+(λ) = 0 if and only if μk = λ, and gλ−(λ) = 0 if and
only if λ = μk+m . If λ < μk+m , then sign(gλ−(λ)) = (−1)n+1−(k+m)+1.

Now examine (4.3.24) carefully: If i ≤ k − 1 or if i ≥ k + m, the coefficient of
ηi contains a factor (t − λ)m since λ = λk = · · · = λk+m−1. However, for each i =
k, . . . , k + m − 1 the coefficient of ηi is fλ+(t)(t − λ)m−1 fλ−(t). On the right-hand
side of (4.3.24), the first term contains a factor (t − λ)m and the second term is equal to
gλ+(t)(t − λ)m−1gλ−(t). These observations permit us to divide both sides of (4.3.24)
by (t − λ)m−1, set t = λ, and obtain the identity(

ηk + · · · + ηk+m−1

)
fλ+(λ) fλ−(λ) = −gλ+(λ)gλ−(λ)

that is,

(
ηk + · · · + ηk+m−1

) = (
gλ+(λ)

fλ+(λ)

)(−gλ−(λ)

fλ−(λ)

)
(4.3.25)

If the right-hand side of (4.3.25) is zero (that is, if μk = λ or λ = μk+m), we
take ηk = · · · = ηk+m−1 = 0. Otherwise (that is, if μk < λ < μk+m), we know that
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(gλ+(λ)/ fλ+(λ)) > 0, so it suffices to check that

sign

(−gλ−(λ)

fλ−(λ)

)
= −(−1)n−k−m+2

(−1)n−k−m+1
= +1

and then choose any nonnegative ηk, . . . , ηk+m−1 whose sum is the positive value in
(4.3.25). �

Exercise. Give details for a proof of the preceding theorem if (a) m = n, or
(b) k = 1 and m < n.

Theorem 4.3.26. Let λ1, . . . , λn and μ1, . . . , μn be real numbers that satisfy the
interlacing inequalities

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ λn ≤ μn (4.3.27)

Let � = diag(λ1, . . . , λn). Then there is a real vector z ∈ Rn such that the eigenvalues
of � + zz∗ are μ1, . . . , μn.

Proof. There is no loss of generality to assume that λ1 > 0, for if λ1 ≤ 0 let c > −λ1

and replace each λi by λi + c and each μi by μi + c. This shift does not disturb
the interlacing inequalities (4.3.27). If there is a vector z such that the eigenvalues of
� + cI + zz∗ are μ1 + c, . . . , μn + c, then the eigenvalues of � + zz∗ are μ1, . . . , μn .

Let μ0 = 0 and suppose that

0 = μ0 < λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ λn ≤ μn

Theorem 4.3.21 ensures that there is a real number a and a real vector y such that

μ0, μ1, . . . , μn are the eigenvalues of the singular matrix A =
[

� y
yT a

]
(its smallest

eigenvalue is zero). Let R = �1/2 = diag(λ1/2
1 , . . . , λ1/2

n ). The first n columns of A are
linearly independent (� is nonsingular), so the last column of A must be a linear com-

bination of its first n columns, that is, there is a real vector w such that
[

y
a

]
=
[

�

yT

]
w =[

R2w

yT w

]
. We conclude that y = R2w, w = R−2 y, and a = yT w = wT R2w =

(Rw)T (Rw). Let z = Rw = R−1 y. Since the eigenvalues of

A =
[

R2 R(Rw)
(Rw)T R (Rw)T (Rw)

]
=
[

R
zT

] [
R z

]
are 0, μ1, . . . , μn , (1.3.22) ensures that μ1, . . . , μn are the eigenvalues of

[
R z

] [ R
zT

]
= R2 + zzT = � + zzT

�

Theorem 4.3.17 can be appreciated from two points of view: On the one hand, it
considers the eigenvalues of a matrix that is obtained by bordering a given Hermitian
matrix by appending to it a new last row and column; on the other hand, it considers
the behavior of the eigenvalues of a matrix that is obtained by deleting the last row and
column of a given Hermitian matrix. With regard to eigenvalue interlacing, there is,
of course, nothing special about deleting the last row and column: The eigenvalues of
a matrix obtained by deleting any row and the corresponding column of a Hermitian
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matrix A are the same as the eigenvalues of a matrix obtained by deleting the last row
and column of a matrix that is a certain permutation similarity of A.

One may wish to delete several rows and the corresponding columns from a Her-
mitian matrix. The remaining matrix is a principal submatrix of the original matrix.
The following result – sometimes called the inclusion principle – can be obtained
by repeated application of the interlacing inequalities (4.3.18); we prove it using the
Rayleigh quotient theorem and the subspace intersection lemma, which permit us to
clarify the cases of equality and multiple eigenvalues.

Theorem 4.3.28. Let A ∈ Mn be Hermitian, partitioned as

A =
[

B C
C∗ D

]
, B ∈ Mm, D ∈ Mn−m, C ∈ Mm,n−m (4.3.29)

Let the eigenvalues of A and B be ordered as in (4.2.1). Then

λi (A) ≤ λi (B) ≤ λi+n−m(A), i = 1, . . . , m (4.3.30)

with equality in the lower bound for some i if and only if there is a nonzero ξ ∈ Mm

such that Bξ = λi (B)ξ and C∗ξ = 0; equality in the upper bound occurs for some i if
and only if there is a nonzero ξ ∈ Mm such that Bξ = λi+n−m(A)ξ and C∗ξ = 0.

If i ∈ {1, . . . , m}, 1 ≤ r ≤ i , and

λi−r+1(A) = · · · = λi (A) = λi (B) (4.3.31)

then λi−r+1(B) = · · · = λi (B) and there are orthonormal vectors ξ 1, . . . , ξ r ∈ Cm

such that Bξ j = λi (B)ξ j and C∗ξ j = 0 for each j = 1, . . . , r .
If i ∈ {1, . . . , m}, 1 ≤ r ≤ m − i + 1, and

λi (B) = λi+n−m(A) = · · · = λi+n−m+r−1(A) (4.3.32)

then λi (B) = · · · = λi+n−m+r−1(B) and there are orthonormal vectors ξ 1, . . . , ξ r ∈
Cm such that Bξ j = λi (B)ξ j and C∗ξ j = 0 for each j = 1, . . . , r .

Proof. Let x1, . . . , xn ∈ Cn and y1, . . . , yn ∈ Cm be orthonormal lists of eigenvectors
of A and B, respectively, such that Axi = λi (A)xi for each i = 1, . . . , n and Byi =
λi (B)yi for each i = 1, . . . , m. Let ŷi =

[
yi

0

]
∈ Cn for each i = 1, . . . , m. For a given

i ∈ {1, . . . , m}, let S1 = span{x1, . . . , xi+n−m} and S2 = span{ŷi , . . . , ŷm}. Then

dim S1 + dim S2 = (i + n − m) + (m − i + 1) = n + 1

so (4.2.3) ensures that there is a unit vector x ∈ S1 ∩ S2. Since x ∈ S2, it has the form

x =
[

ξ

0

]
for some unit vector ξ ∈ span{yi , . . . , ym} ⊂ Cm . Observe that

x∗Ax = [
ξ ∗ 0

] [ B C
C∗ D

] [
ξ

0

]
= [

ξ∗ 0
] [ Bξ

C∗ξ

]
= ξ ∗Bξ

Now invoke (4.2.2) twice to obtain the two inequalities

λi (B) ≤ ξ ∗Bξ = x∗Ax ≤ λi+n−m(A) (4.3.33)

The first inequality follows from ξ ∈ span{yi , . . . , ym} and the second inequality fol-
lows from x ∈ S1. The statements about the cases of equality in (4.3.33) follow
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from the cases of equality in (4.2.2) for the unit vector x , and the inequalities

λi (B) ≤ ξ∗Bξ, ξ ∈ span{yi , . . . , ym} and x∗Ax ≤ λi+n−m(A), x =
[

ξ

0

]
∈ S1 ∩ S2.

If the eigenvalues of A and B satisfy (4.3.31), then (4.3.30) ensures that λi−r+1(A) ≤
λi−r+1(B) ≤ · · · ≤ λi−1(B) ≤ λi (B) = λi−r+1(A), so λi−r+1(B) = · · · = λi (B). Let
S1 = span{x1, . . . , xi+n−m} and S2 = span{ŷi−r+1, . . . , ŷm}. Then dim S1 + dim S2 =
(i + n − m) + (m − i + r ) = n + r , so (4.2.3) tells us that dim(S1 ∩ S2) ≥ r . It fol-
lows that there are orthonormal vectors x1, . . . , xr ∈ S1 ∩ S2 such that (just as in the

preceding cases of equality) each x j =
[

ξ j
0

]
, ξ 1, . . . , ξ r are orthonormal vectors in

span{yi−r+1, . . . , ym}, Bξ j = λi (B)ξ j , and C∗ξ j = 0 for each = 1, . . . , r . The asser-
tions (4.3.31) are verified in a similar fashion. �

Exercise. For r = 1, explain why the assertions following (4.3.31,32) reduce to
the assertions following (4.3.30).

Exercise. For m = 1 and i = 1, explain why the assertions following (4.3.30)
are equivalent to the assertions in (4.2.P3).

Exercise. Explain why the inequalities (4.3.30) are all strict inequalities if either
(a) C has full row rank or (b) C∗x �= 0 for every eigenvector x of B.

Corollary 4.3.34. Let A = [ai j ] ∈ Mn be Hermitian, partitioned as in (4.3.29), and
let the eigenvalues of A be ordered as in (4.2.1). Then

a11 + a22 + · · · + amm ≥ λ1(A) + · · · + λm(A) (4.3.35a)

and

a11 + a22 + · · · + amm ≤ λn−m+1(A) + · · · + λn(A) (4.3.35b)

If either inequality (4.3.35a,b) is an equality, then C = 0 and A = B ⊕ D. More
generally, suppose that k ≥ 2 and partition A = [Ai j ]k

i, j=1 so that each Aii ∈ Mni . If

tr A11 + · · · + tr App =
n1+···+n p∑

i=1

λi (A) (4.3.36a)

for each p = 1, . . . , k − 1, then A = A11 ⊕ · · · ⊕ Akk; the eigenvalues of A11 are
λ1(A), . . . , λn1 (A), the eigenvalues of A22 are λn1+1(A), . . . , λn1+n2 (A), and so on.
If

tr A11 + · · · + tr App =
n∑

i=n−n1−···−n p+1

λi (A) (4.3.36b)

for each p = 1, . . . , k − 1, then A = A11 ⊕ · · · ⊕ Akk; the eigenvalues of A11 are
λn−n1+1(A), . . . , λn(A), the eigenvalues of A22 are λn−n1−n2+1(A), . . . , λn−n1 (A), and
so on.

Proof. The left-hand inequalities in (4.3.30) ensure that λi (B) ≥ λi (A) for each
i = 1, . . . , m, so tr B = λ1(B) + · · · + λm(B) ≥ λ1(A) + · · · + λm(A) = tr B implies
that λi (A) = λi (B) for each i = 1, . . . , m. Similarly, the right-hand inequalities in
(4.3.30) imply that λi (B) = λi+n−m(A) for each i = 1, . . . , m. The equality cases
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of (4.3.30,31,32) ensure that there is are orthonormal eigenvectors ξ 1, . . . , ξm of
B for which C∗ξ j = 0 for each j = 1, . . . , m. Since rank C = rank C∗ ≤ m −
dim(nullspace C∗) ≤ m − m = 0), we conclude that C = 0.

The assertion that the equalities (4.3.36a) imply that A = A11 ⊕ · · · ⊕ Akk follows

from the case of equality in (4.3.35a) by induction. Write A =
[

A11 C2
C∗

2 D2

]
in which

D2 = [Ai j ]k
i, j=2. Since tr A11 =∑n1

i=1 λi (A), we know that C2 = 0, A = A11 ⊕ D2,

and the ordered eigenvalues of D2 are λn1+1(A) ≤ · · · ≤ λn(A). Write D2 =
[

A22 C3
C∗

3 D3

]
in which D3 = [Ai j ]k

i, j=3. The hypothesis (4.3.36a) for p = 2 ensures that tr A22 =
λn1+1(A) + · · · + λn1+n2 (A) is the sum of the n2 smallest eigenvalues of D2, so C3 = 0
and so forth. The assertion about (4.3.36b) follows in a similar fashion from (4.3.35b)
by induction. �

The following consequence of (4.3.28) is known as the Poincaré separation theorem.

Corollary 4.3.37. Let A ∈ Mn be Hermitian, suppose that 1 ≤ m ≤ n, and let
u1, . . . , um ∈ Cn be orthonormal. Let Bm = [u∗

i Au j ]m
i, j=1 ∈ Mm and let the eigen-

values of A and Bm be arranged as in (4.2.1). Then

λi (A) ≤ λi (Bm) ≤ λi+n−m(A), i = 1, . . . , m (4.3.38)

Proof. If m < n, choose n − m additional vectors um+1, . . . , un so that U =
[u1 . . . un] ∈ Mn is unitary. Then U ∗AU has the same eigenvalues as A, and Bm is a
principal submatrix of U ∗AU obtained by deleting its last n − m rows and columns.
The assertion now follows from (4.3.28). �

The matrix Bm in the preceding corollary can be written as Bm = V ∗AV , in
which V ∈ Mn,m has orthonormal columns. Since tr Bm = λ1(Bm) + · · · + λm(Bm),
the following two variational characterizations follow from summing the inequal-
ities (4.3.38) and making suitable choices of V . They are generalizations of
(4.2.2).

Corollary 4.3.39. Let A ∈ Mn be Hermitian and suppose that 1 ≤ m ≤ n. Then

λ1(A) + · · · + λm(A) = min
V∈Mn,m
V ∗V=Im

tr V ∗AV

λn−m+1(A) + · · · + λn(A) = max
V∈Mn,m
V ∗V=Im

tr V ∗AV
(4.3.40)

For each m = 1, . . . , n − 1 the minimum or maximum in (4.3.40) is achieved for a
matrix V whose columns are orthonormal eigenvectors associated with the m smallest
or largest eigenvalues of A; for m = n we have tr V ∗AV = tr AV V ∗ = tr A for any
unitary V.

The eigenvalues and main diagonal elements of a Hermitian matrix are real numbers
whose respective sums are equal. The precise relationship between the main diagonal
entries and the eigenvalues of a Hermitian matrix involves the notion of majorization,
which is motivated by the variational identities (4.4.40).
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Definition 4.3.41. Let x = [xi ] ∈ Rn and y = [yi ] ∈ Rn be given. We say that x
majorizes y if

max
1≤i1<···<ik≤n

k∑
j=1

xi j ≥ max
1≤i1<···<ik≤n

k∑
j=1

yi j (4.3.42)

for each k = 1, . . . , n, with equality for k = n.

Definition 4.3.43. Let z = [zi ] ∈ Rn be given. The nonincreasing rearrangement of
z is the vector z↓ = [z↓i ] ∈ Rn whose list of entries is the same as that of z (including
multiplicities) but rearranged in nonincreasing order zi1 = z↓1 ≥ · · · ≥ zin = z↓n . The
nondecreasing rearrangement of z is the vector z↑ = [z↑i ] ∈ Rn whose list of entries is
the same as that of z (including multiplicities) but rearranged in nondecreasing order
z j1 = z↑1 ≤ · · · ≤ z jn = z↑n .

Exercise. Explain why the majorization inequalities (4.3.42) are equivalent to
the “top-down” inequalities

k∑
i=1

x↓
i ≥

k∑
i=1

y↓i (4.3.44a)

for each k = 1, 2, . . . , n, with equality for k = n, as well as to the “bottom-up”
inequalities

k∑
i=1

y↑i ≥
k∑

i=1

x↑
i (4.3.44b)

for each k = 1, 2, . . . , n, with equality for k = n. Hint: Let s =∑n
i=1 yi =∑n

i=1 xi . Then
∑k

i=1 y↑i = s −∑n−k+1
i=1 y↓i and

∑k
i=1 x↑

i = s −∑n−k+1
i=1 x↓

i .

Exercise. Let x, y ∈ Rn and let P, Q ∈ Mn be permutation matrices. Explain
why x majorizes y if and only if Px majorizes Qy.

Exercise. Let x = [xi ], y = [yi ] ∈ Rn and suppose that x majorizes y. Explain
why x↓

1 ≥ y↓1 ≥ y↓n ≥ x↓
n .

The following two theorems demonstrate how the notion of majorization arises in
matrix analysis.

Theorem 4.3.45 (Schur). Let A = [ai j ] ∈ Mn be Hermitian. Its vector of eigenvalues
λ(A) = [λi (A)]n

i=1 majorizes its vector of main diagonal entries d(A) = [aii ]n
i=1, that

is,

k∑
i=1

λi (A)↓ ≥
k∑

i=1

di (A)↓ (4.3.46)

for each k = 1, 2, . . . , n, with equality for k = n. If the inequality (4.3.46) is an equality
for some k ∈ {1, . . . , n − 1}, then A is permutation similar to B ⊕ D with B ∈ Mk.

Proof. Let P ∈ Mn be a permutation matrix such that the i, i entry of P APT is
di (A)↓ for each i = 1, . . . , n (0.9.5). The vector of eigenvalues P APT (as well
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as of A) is λ(A)of A. Partition P APT as in (4.3.29). Let k ∈ {1, . . . , n − 1} be
given. Then (4.3.36) ensures that λ1(A)↓ + · · · + λk(A)↓ ≥ d1(A)↓ + · · · + dk(A)↓;
of course, λn(A)↓ + · · · + λ1(A)↓ = tr A = d1(A)↓ + · · · + dn(A)↓. If (4.3.46) is an
equality for some k ∈ {1, . . . , n − 1}, then (4.3.34) ensures that P APT = B ⊕ D with
B ∈ Mk . �

Exercise. Let x, y ∈ Rn . Explain why (x↓ + y↓)↓ = x↓ + y↓.

Exercise. Let x ∈ Rn . Explain why (−x)↓ = −(x↑).

Theorem 4.3.47. Let A, B ∈ Mn be Hermitian. Let λ(A), λ(B), and λ(A + B),
respectively, denote the real n-vectors of eigenvalues of A, B, and A + B, respec-
tively. Then

(a) (Fan) λ(A)↓ + λ(B)↓ majorizes λ(A + B)
(b) (Lidskii) λ(A + B) majorizes λ(A)↓ + λ(B)↑

Proof. (a) For any k ∈ {1, . . . , n − 1}, use (4.3.40) to write the sum of the k largest
eigenvalues of A + B as

k∑
i=1

λi (A + B)↓ = max
V∈Mn,k
V ∗V=Ik

tr V ∗(A + B)V

= max
V∈Mn,k
V ∗V=Ik

(
tr V ∗AV + V ∗BV

)
≤ max

V∈Mn,k
V ∗V=Ik

tr V ∗AV + max
V∈Mn,k
V ∗V=Ik

tr V ∗BV

=
k∑

i=1

λi (A)↓ +
k∑

i=1

λi (B)↓ =
k∑

i=1

(λi (A)↓ + λi (B)↓)

Since tr(A + B) = tr A + tr B, we have equality for k = n.
(b) It is convenient to restate Lidskii’s inequalities in an equivalent form. If we replace
A by A′ + B ′ and B by −A′, then we obtain the equivalent assertion “λ(A + B) =
λ(B ′) majorizes λ(A)↓ + λ(B)↑ = λ(A′ + B ′)↓ + λ(−A′)↑ = λ(A′ + B ′)↓ − λ(A′)↓.”
Thus, it suffices to show that λ(B) majorizes λ(A + B)↓ − λ(A)↓ for any Hermitian
A, B ∈ Mn . The case k = n in the majorization inequalities follows as in (a): tr B =
tr(A + B) − tr A. Let k ∈ {1, . . . , n − 1} be given. We must show that

k∑
i=1

(λi (A + B)↓ − λi (A)↓)↓ ≤
k∑

i=1

λi (B)↓

We may assume that λk(B)↓ = 0; otherwise, replace B by B − λk(B)↓ I , which dimin-
ishes both sides of the preceding inequality by kλk(B). Express B as a difference of two
positive semidefinite matrices as in (4.1.13): B = B+ − B−. Then λi (B)↓ = λi (B+)↓

for each i = 1, . . . , k and so
∑k

i=1 λi (B)↓ =∑k
i=1 λi (B+)↓ =∑n

i=1 λi (B+) = tr B+
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since λi (B)↓ ≤ 0 for all i ≥ k. Thus, we must prove that

k∑
i=1

(λi (A + B+ − B−)↓ − λi (A)↓)↓ ≤ tr B+

Since −B− is positive semidefinite, (4.3.12) ensures that λi (A + B+ − B−)↓ −
λi (A)↓ ≤ λi (A + B+) − λi (A)↓ for each i = 1, . . . , n and also that λi (A + B+)↓ ≥
λi (A)↓ for each i = 1, . . . , n. Therefore,

k∑
i=1

(λi (A + B+ − B−)↓ − λi (A)↓)↓ ≤
k∑

i=1

(λi (A + B+)↓ − λi (A)↓)↓

≤
n∑

i=1

(λi (A + B+)↓ − λi (A)↓)↓ =
n∑

i=1

(λi (A + B+)↓ − λi (A)↓)

= tr(A + B+) − tr A = tr A + tr B+ − tr A = tr B+

�

Exercise. Under the assumptions of the preceding theorem, explain why λ(A)↑ +
λ(B)↑ majorizes λ(A + B) and why λ(B) majorizes λ(A + B)↑ − λ(A)↑.

The following converse of (4.3.45) shows that majorization is the precise relationship
between the diagonal entries and eigenvalues of a Hermitian matrix.

Theorem 4.3.48. Let n ≥ 1, let x = [xi ] ∈ Rn and y = [yi ] ∈ Rn be given, and sup-
pose that x majorizes y. Let � = diag x ∈ Mn(R). There exists a real orthogonal
matrix Q such that diag(QT �Q) = y, that is, there is a real symmetric matrix whose
eigenvalues are x1, . . . , xn and whose main diagonal entries are y1, . . . , yn.

Proof. There is no loss of generality if we assume that the entries of the vectors x and
y are in nonincreasing order: x1 ≥ x2 ≥ · · · and y1 ≥ y2 ≥ · · · .

The assertion is trivial for n = 1: x1 = y1, Q = [1], and A = [x1], so we may assume
that n ≥ 2.

The inequalities (4.3.44a,b) ensure that x1 ≥ y1 ≥ yn ≥ xn , so if x1 = xn it follows
that all the entries of x and y are equal, Q = I , and A = x1 I . We may therefore assume
that x1 > xn .

For n = 2, we have x1 > x2 and x1 ≥ y1 ≥ y2 = (x1 − y1) + x2 ≥ x2. Consider the
real matrix

P = 1√
x1 − x2

[√
x1 − y2 −√

y2 − x2√
y2 − x2

√
x1 − y2

]
A computation reveals that P PT = I , so P is real orthogonal. A further computation
reveals that the 1, 1 entry of PT �P is x1 + x2 − y2 = y1, and the 2, 2 entry is y2, that
is, diag(PT �P) = [y1 y2]T .

We now proceed by induction. Suppose that n ≥ 3 and assume that the theorem is
true if the vectors x and y have size at most n − 1.

Let k ∈ {1, . . . , n} be the largest integer such that xk ≥ y1. Since x1 ≥ y1, we know
that k ≥ 1, and we may assume that k ≤ n − 1 and hence that xk ≥ y1 > xk+1 ≥ xn .
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Why? If k = n, then xn ≥ y1 ≥ yn ≥ xn , so xn = y1 and yi = y1 for each i = 1, . . . , n.
Moreover, the condition

∑n
i=1 xi =

∑n
i=1 yi implies that

0 =
n∑

i=1

(xi − yi ) =
n∑

i=1

(xi − y1) ≥
n∑

i=1

(xn − y1) =
n∑

i=1

0 = 0

Since each xi − y1 ≥ xn − y1 ≥ 0, we conclude that each xi = y1, which violates our
general assumption that x1 > xn .

Let η = xk + xk+1 − y1 and observe that η = (xk − y1) + xk+1 ≥ xk+1. Then xk ≥
y1 > xk+1, and xk + xk+1 = y1 + η, so the vector [xk xk+1]T majorizes the vector

[y1 η]T and xk > xk+1. Let D1 =
[

xk 0
0 xk+1

]
. Our construction in the case n = 2 shows

how to obtain a real orthogonal matrix P1 such that diag(PT
1 D1 P1) = [y1 η]T . Since

xk = η + (y1 − xk+1) > η, we have x1 > η ≥ x2 ≥ · · · ≥ xn if k = 1 and we have
x1 ≥ · · · ≥ xk−1 ≥ xk > η ≥ xk+1 ≥ · · · ≥ xn if k > 1. Let D2 = diag(x3, . . . , xn) if
k = 1 and let D2 = diag(x1, . . . , xk−1, xk+2, . . . , xn) if k > 1. Then

[
P1 0
0 In−2

]T [
D1 0
0 D2

] [
P1 0
0 In−2

]
=
[

y1 zT

z [η] ⊕ D2

]

for some z ∈ Rn−1. It suffices to show that there is a real orthogonal P2 ∈ Mn−1 such that
diag(PT

2 ([η] ⊕ D2)P2) = [y2 . . . yn]T . According to the induction hypothesis, such a
P2 exists if the vector x̂ = diag([η] ⊕ D2) majorizes the vector ŷ = [y2 . . . yn]T .

Observe that ŷ = ŷ↓. If k = 1, then x̂ = x̂↓ = [η x3 . . . xn]T ; if k > 1, then x̂↓ =
[x1 . . . xk−1 η xk+2 . . . xn]T because xk−1 ≥ xk > η ≥ xk+1 ≥ xk+2.

Suppose that k = 1. Then

m∑
i=1

x̂↓
i = η +

m∑
i=2

xi+1 = x1 + x2 − y1 +
m+1∑
i=3

xi

=
m+1∑
i=1

xi − y1 ≥
m+1∑
i=1

yi − y1 =
m+1∑
i=2

yi =
m∑

i=1

ŷ↓i

for each m = 1, . . . , n − 1, with equality for m = n − 1.
Now suppose that k > 1. For each m ∈ {1, . . . , k − 1} we have

m∑
i=1

x̂↓
i =

m∑
i=1

xi ≥
m∑

i=1

yi ≥
m∑

i=1

yi+1 =
m+1∑
i=2

yi =
m∑

i=1

ŷ↓i

For m = k we have

k∑
i=1

x̂↓
i =

k−1∑
i=1

xi + η =
k−1∑
i=1

xi + xk + xk+1 − y1 =
k+1∑
i=1

xi − y1

≥
k+1∑
i=1

yi − y1 =
k+1∑
i=2

yi =
k∑

i=1

ŷ↓i
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with equality if k = n − 1. Finally, if k ≤ n − 2 and m ∈ {k + 1, . . . , n − 1}, we have

m∑
i=1

x̂↓
i =

k∑
i=1

x̂↓
i +

m∑
i=k+1

x̂↓
i =

k+1∑
i=1

xi − y1 +
m∑

i=k+1

xi+1

=
k+1∑
i=1

xi − y1 +
m+1∑

i=k+2

xi =
m+1∑
i=1

xi − y1

≥
m+1∑
i=1

yi − y1 =
m+1∑
i=2

yi =
m∑

i=1

ŷ↓i

with equality for m = n − 1. �

The preceding theorem permits us to give a geometric characterization of the ma-
jorization relation. A matrix A = [ai j ] ∈ Mn is doubly stochastic if it has nonnegative
entries and the sum of the entries in every row and every column is equal to +1.
Theorem 8.7.2 (Birkhoff’s theorem) says that an n-by-n matrix is doubly stochastic if
and only if it is a convex combination of (at most n!) permutation matrices.

Exercise. If S, P1, P2 ∈ Mn , S is doubly stochastic, and P1 and P2 are permuta-
tion matrices, explain why P1S P2 is doubly stochastic.

Exercise. Let A ∈ Mn and let e ∈ Rn be the vector whose entries are all +1.
Explain why the sum of the entries in every row and column of A is equal to +1
if and only if Ae = AT e = e.

Theorem 4.3.49. Let n ≥ 2, let x = [xi ] ∈ Rn, and let y = [yi ] ∈ Rn be given. The
following are equivalent:

(a) x majorizes y.
(b) There is a doubly stochastic S = [si j ] ∈ Mn such that y = Sx.
(c) y ∈ {∑n!

i=1 αi Pi x : αi ≥ 0,
∑n!

i=1 αi = 1, and each Pi is a permutation matrix}.

Proof. If x majorizes y, then the preceding theorem ensures that there is a real orthog-
onal matrix Q = [qi j ] ∈ Mn such that y = diag(Q diag(x)QT ). A computation reveals
that yi =

∑n
j=1 q2

i j x j for each i = 1, . . . , n, that is, y = Sx with S = [q2
i j ] ∈ Mn . The

entries of S are nonnegative, and its row and column sums are all equal to +1 since
every row and column of Q is a unit vector.

Theorem 8.7.2 asserts the equivalence of (b) and (c), so it suffices to show that (b)
implies (a).

Suppose that y = Sx and that S is doubly stochastic. Let P1 and P2 be permutation
matrices such that x = P1x↓ and y = P2 y↓. Then y↓ = (PT

2 S P1)x↓. Invoking the
preceding exercise, we see that there is no loss of generality to assume that x1 ≥
· · · ≥ xn , y1 ≥ · · · ≥ yn , y = Sx , and S is doubly stochastic. Let w

(k)
j =∑k

i=1 si j and

observe that 0 ≤ w
(k)
j ≤ 1, w

(n)
j = 1, and

∑n
j=1 w

(k)
j = k. Since yi =

∑n
j=1 si j x j , we

have
∑k

i=1 yi =
∑k

i=1

∑n
j=1 si j x j =

∑n
j=1 w

(k)
j x j for each k = 1, . . . , n. In particular,
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∑n
i=1 yi =

∑n
j=1 w

(n)
j x j =

∑n
j=1 x j . For k ∈ {1, . . . , n − 1} compute

k∑
i=1

xi −
k∑

i=1

yi =
k∑

i=1

xi −
n∑

i=1

w
(k)
i xi

=
k∑

i=1

(xi − xk) + kxk −
n∑

i=1

w
(k)
i (xi − xk) − kxk

=
k∑

i=1

(xi − xk) −
k∑

i=1

w
(k)
i (xi − xk) −

n∑
i=k+1

w
(k)
i (xi − xk)

=
k∑

i=1

(xi − xk)(1 − w
(k)
i ) +

n∑
i=k+1

w
(k)
i (xk − xi ) ≥ 0

We conclude that
∑k

i=1 xi ≥
∑k

i=1 yi for each k = 1, . . . , n with equality for
k = n. �

Thus, the set of all vectors that are majorized by a given vector x is the convex hull
of the (at most n! distinct) vectors obtained by permuting the entries of x .

The following characterization of the majorization relationship tells us that the
eigenvalues of the Hermitian part of a matrix A majorize the Hermitian parts of the
eigenvalues of A.

Theorem 4.3.50. Let x = [xi ] ∈ Rn and z = [zi ] ∈ Cn be given. Then x majorizes
Re z = [Re zi ]n

i=1 if and only if there is an A ∈ Mn such that z1, . . . , zn are the eigen-
values of A and x1, . . . , xn are the eigenvalues of H (A) = (A + A∗)/2.

Proof. Let λ1, . . . , λn be the eigenvalues of A ∈ Mn , and use (2.3.1) to write A =
U T U ∗, in which T = [ti j ] ∈ Mn is upper triangular and tii = λi for i = 1, . . . , n. A
computation reveals that H (A) = U H (T )U ∗ and diag H (T ) = [Re λ1 . . . Re λn]T ,
which is majorized by the eigenvalues of H (T ), which are the same as the eigenvalues
of H (A) (4.3.45).

Conversely, if x majorizes Re z, there is a Hermitian B = [bi j ] ∈ Mn such that the
entries of x are the eigenvalues of B and diag B = Re z (4.3.48). Let T = [ti j ] ∈ Mn

be the upper triangular matrix such that diag T = z and ti j = 2bi j for 1 ≤ i < j ≤ n.
Then z1, . . . , zn are the eigenvalues of T , and H (T ) = B, whose eigenvalues are
x1, . . . , xn . �

Our final result involving majorization concerns bounds on tr AB, in which each of
A and B (but not necessarily their product) is Hermitian.

Exercise. Let x = [xi ], y = [yi ] ∈ Rn and suppose that x majorizes y. Explain
why

∑k
i=1 x↓

i ≥∑k
i=1 yi for each k = 1, . . . , n, with equality for k = n.

Exercise. Let x = [xi ], y = [yi ] ∈ Rn . Explain why x majorizes y if and only if
−x majorizes −y.
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Lemma 4.3.51. Let x = [xi ], y = [yi ], w = [wi ] ∈ Rn. Suppose that x majorizes y.
Then

n∑
i=1

w
↓
i x↑

i ≤
n∑

i=1

w
↓
i yi ≤

n∑
i=1

w
↓
i x↓

i (4.3.52)

Let X̂k =∑k
i=1 x↓

i , X̌k =∑k
i=1 x↑

i , and Yk =∑k
i=1 yi for each k = 1, . . . , n. The

right-hand inequality in (4.3.52) is an equality if and only if

(w↓
i − w

↓
i+1)(X̂i − Yi ) = 0 for each i = 1, . . . , n − 1 (4.3.52a)

The left-hand inequality in (4.3.52) is an equality if and only if

(w↓
i − w

↓
i+1)(X̌i − Yi ) = 0 for each i = 1, . . . , n − 1 (4.3.52b)

Proof. Since x majorizes y, we have X̂k ≥ Yk for each k = 1, . . . , n − 1 and X̂n = Yn .
Use partial summation (twice) and the assumption that each w

↓
i − w

↓
i+1 is nonnegative

to compute

k∑
i=1

w
↓
i yi =

n−1∑
i=1

(w↓
i − w

↓
i+1)Yi + w↓

n Yn ≤
n−1∑
i=1

(w↓
i − w

↓
i+1)X̂i + w↓

n Yn

=
n−1∑
i=1

(w↓
i − w

↓
i+1)X̂i + w↓

n X̂n =
k∑

i=1

w
↓
i x↓

i

This proves the asserted upper bound, which is an equality if and only if (w↓
i −

w
↓
i+1)Yi = (w↓

i − w
↓
i+1)X̂i for each i = 1, . . . , n − 1, that is, if and only if (w↓

i −
w

↓
i+1)(X̂i − Yi ) = 0 for each i = 1, . . . , n − 1. Since −x majorizes −y, we may apply

the upper bound to the vectors −x , −y, and w:

n∑
i=1

w
↓
i (−yi ) ≤

n∑
i=1

w
↓
i (−x)↓i =

n∑
i=1

w
↓
i (−(x)↑i ) = −

n∑
i=1

w
↓
i x↑

i

that is,
∑n

i=1 w
↓
i x↑

i ≤∑n
i=1 w

↓
i yi , which is the asserted lower bound. The case of

equality follows in the same way, using the inequality −Yk ≤ −X̌k . �

Theorem 4.3.53. Let A, B ∈ Mn be Hermitian and have respective vectors of eigen-
values λ(A) = [λi (A)]n

i=1 and λ(B) = [λi (B)]n
i=1. Then

n∑
i=1

λi (A)↓λi (B)↑ ≤ tr AB ≤
n∑

i=1

λi (A)↓λi (B)↓ (4.3.54)

If either inequality in (4.3.54) is an equality, then A and B commute. If the right-hand
inequality in (4.3.54) is an equality, then there is a unitary U ∈ Mn such that A =
U diag(λ(A)↓)U ∗ and B = U diag(λ(B)↓)U ∗. If the left-hand inequality in (4.3.54)
is an equality, then there is a unitary U ∈ Mn such that A = U diag(λ(A)↓)U ∗ and
B = U diag(λ(B)↑)U ∗.

Proof. Let A = U�U ∗, in which U ∈ Mn is unitary and � = diag λ(A)↓. Let B̃ =
[β i j ] = U ∗BU . Then tr AB = tr U�U ∗B = tr �U ∗BU = tr �B̃ =∑n

i=1 λi (A)↓β i i .
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Since the vector of eigenvalues of B̃ (which is the vector of eigenvalues of B) majorizes
the vector of main diagonal entries of B̃ (4.3.48), the asserted inequalities follow from
the preceding lemma applied to x = λ(B), y = diag B̃, and w = λ(A).

Suppose that the right-hand inequality in (4.3.54) is an equality. Suppose that A has
k distinct eigenvalues α1 > α2 > · · · > αk with respective multiplicities n1,

n2, . . . , nk , and partition B̃ = [B̃i j ]k
i, j=1 so that each B̃ii ∈ Mni . The case of equality

in (4.3.52) ensures that each (λi (A)↓ − λi+1(A)↓)(X̂i − Yi ) = 0, which is interesting
only for i = n1, n1 + n2, ..., in which cases λni (A)↓ − λni+1(A)↓ = αi − αi+1 > 0 and
necessarily X̌n1+···+ni − Yn1+···+ni = 0. Thus, equality in the right-hand inequality in
(4.3.54) implies that

Yn1+···+n p = tr B̃11 + · · · + tr B̃pp = X̌n1+···+n p =
n1+···+n p∑

i=1

λi (B̃)↓

for each p = 1, . . . , k − 1. It now follows from Corollary 4.3.34 (the equalities
(4.3.36b)) that B̃ = B̃11 ⊕+ · · · + B̃kk ; the eigenvalues of B̃11 are λ1(B)↓, . . . ,
λn1 (B)↓, the eigenvalues of B̃22 are λn1+1(B)↓, . . . , λn1+n2 (B)↓, and so forth. Since
� = α1 In1 ⊕ · · · ⊕ αk Ink is conformal to the block diagonal matrix B̃, we have �B̃ =
B̃�, which is �U ∗BU = U ∗BU� or AB = U�U ∗B = BU�U ∗ = B A. Finally,
each B̃ii = Ũi�̃i Ũ ∗

i , in which Ũi ∈ Mni is unitary and �̃i is a diagonal matrix whose
main diagonal entries are the nonincreasingly ordered eigenvalues of B̃ii . Let Ũ = Ũ1 ⊕
· · · ⊕ Ũk and observe that �̃ = �̃1 ⊕ · · · ⊕ �̃k = diag(λ(B)↓). Moreover, B̃ = Ũ�̃Ũ ∗

and Ũ�Ũ ∗ = �. Then A = U�U ∗ = (UŨ )�(UŨ )∗ = (UŨ ) diag(λ(A)↓)(UŨ )∗ and
B = U B̃U ∗ = (U Ũ )�̃(UŨ )∗ = (U Ũ ) diag(λ(B)↓)(UŨ )∗.

The case of equality in the left-hand inequality in (4.3.54) follows from replacing
B by −B in the right-hand inequality. �

Problems

4.3.P1 Let A, B ∈ Mn be Hermitian. Use (4.3.1) to show that λ1(B) ≤ λi (A + B) −
λi (A) ≤ λn(B) and conclude that |λi (A + B) − λi (A)| ≤ ρ(B) for all i = 1, . . . , n. This is
a simple example of a perturbation theorem for the eigenvalues of a Hermitian matrix; see
(6.3) for more perturbation theorems.

4.3.P2 Consider A =
[

0 1
0 0

]
and B =

[
0 0
1 0

]
and show that Weyl’s inequalities (4.3.2a,b)

need not hold if A and B are not Hermitian.

4.3.P3 If A, B ∈ Mn are Hermitian and their eigenvalues are arranged as in (4.2.1), explain
why λi (A + B) ≤ min{λ j (A) + λk(B) : j + k = i + n}, i ∈ {1, . . . , n}.
4.3.P4 If A, B ∈ Mn are Hermitian and A − B has only nonnegative eigenvalues, explain
why λi (A) ≥ λi (B) for all i = 1, 2, . . . , n.

4.3.P5 Let A ∈ Mn be Hermitian, let ak = det A[{1, . . . , k}] be the leading principal minor
of A of size k, k = 1, . . . , n, and suppose that all ak �= 0. Show that the number of negative
eigenvalues of A is equal to the number of sign changes in the sequence +1, a1, a2, . . . , an .
Explain why A is positive definite if and only if every principal minor of A is positive.
What happens if some ai = 0?



4.3 Eigenvalue inequalities for Hermitian matrices 257

4.3.P6 Suppose that A = [ai j ] ∈ Mn is Hermitian, has smallest and largest eigenvalues λ1

and λn , and for some i ∈ {1, . . . , n}, either aii = λ1 or aii = λn . Use (4.3.34) to show that
aik = aki = 0 for all k = 1, . . . , n, k �= i . Does anything special happen if a main diagonal
entry of A is an eigenvalue of A different from λ1 and λn?

4.3.P7 Provide details for the following sketch of a proof of (4.3.45) that proceeds by
induction on the dimension and uses Cauchy’s interlacing theorem. For n = 1, there is
nothing to show; suppose that the asserted majorization is valid for Hermitian matrices
of size n − 1. Let Â ∈ Mn−1 be the principal submatrix obtained by deleting the row and
column of A corresponding to its algebraically smallest diagonal entry d↓

n . Let λ̂
↓

be the
vector of nonincreasingly ordered eigenvalues of Â. The induction hypothesis ensures
that

∑k
i=1 λ̂

↓
i ≥∑k

i=1 d↓
i , and (4.3.17) ensures that

∑k
i=1 λ

↓
i ≥∑k

i=1 λ̂
↓
i , both for k =

1, . . . , n − 1. Thus,
∑k

i=1 λ
↓
i ≥∑k

i=1 d↓
i for k = 1, . . . , n − 1. Why is there equality for

k = n?

4.3.P8 Let e ∈ Rn be the vector all of whose entries are one, let ei ∈ Rn be one of the
standard Euclidean basis vectors, and let y ∈ Rn . (a) If e majorizes y, show that y = e.
(b) If ei majorizes y, show that all the entries of y lie between zero and one.

4.3.P9 Let A ∈ Mn(R) and suppose that x majorizes Ax for every x ∈ Rn . Show that A is
doubly stochastic.

4.3.P10 If A = [ai j ] ∈ Mn is normal, then A = U�U ∗, in which U = [ui j ] ∈ Mn is unitary
and � = diag(λ1, . . . , λn) ∈ Mn , which need not be real. Show that S = [|ui j |2] is doubly
stochastic and that diag A = S(diag �). A doubly stochastic matrix S that arises from a
unitary matrix U in this way is called unistochastic; if U is real (as in the proof of (4.3.52)),
S is called orthostochastic.

4.3.P11 Let A = [ai j ] ∈ Mn . Provide details for the following argument to show that if A
has some “small” columns or rows, then it must also have some “small” singular values.
Let σ 2

1 ≥ · · · ≥ σ 2
n be the ordered squares of the singular values of A (the nonincreasingly

ordered eigenvalues of AA∗). Let R2
1 ≥ · · · ≥ R2

n be the ordered squared Euclidean lengths
of the rows of A (the nonincreasingly ordered main diagonal entries of AA∗). Explain why∑n

i=n−k+1 R2
i ≥∑n

i=n−k+1 σ 2
i for k = 1, . . . , n, with a similar set of inequalities involving

the Euclidean lengths of the columns. If A is normal, what can you conclude about the
eigenvalues of A?

4.3.P12 Let A ∈ Mn be partitioned as in (4.3.29) with B = [bi j ] ∈ Mm and C = [ci j ] ∈
Mm,n−m . Continue to use the notation of the preceding problem. If the m largest singular
values of A are the singular values of B, show that C = 0 and A = B ⊕ D.

4.3.P13 Provide details for the following sketch of a proof that Cauchy’s interlacing the-
orem for a bordered Hermitian matrix (4.3.17) implies the interlacing theorem for a rank-
one perturbation of a Hermitian matrix (4.3.9): Let z ∈ Cn and let A ∈ Mn be Hermitian.
We wish to prove (4.3.10). As in the proof of (4.3.26), we may assume that A = � =
diag(λ1, . . . , λn) is diagonal and positive definite. Why? Let R = diag(λ1/2

1 , . . . , λ1/2
n ).

Then � + zz∗ = [ R z ]
[

R
z∗

]
has the same eigenvalues (except for one extra zero) as[

R
z∗

]
[ R z ] =

[
� Rz

z∗ R z∗z

]
, which are 0 ≤ λ1(� + zz∗) ≤ · · · ≤ λn(� + zz∗). Cauchy’s the-

orem says that these eigenvalues are interlaced by those of �.

4.3.P14 Let r ∈ {1, . . . , n} and let Hn denote the real vector space of n-by-n Hermitian
matrices. For a given A ∈ Hn , order its eigenvalues as in (4.2.1). Let fr (A) = λ1(A) +
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· · · + λr (A) and let gr (A) = λn−r+1(A) + · · · + λn(A). Show that fr is a concave function
on Hn and that gr is a convex function on Hn .

4.3.P15 Let A ∈ Mn be positive semidefinite and let m ∈ {1, . . . , n}. (a) Let V ∈ Mn,m

have orthonormal columns. Use (4.3.37) to show that

λ1(A) · · · λm(A) ≤ det V ∗AV ≤ λn−m+1(A) · · · λn(A)

(b) If X ∈ Mn,m , show that

λ1(A) · · · λm(A) det X∗X ≤ det X∗AX ≤ λn−m+1(A) · · · λn(A) det X∗X

4.3.P16 (a) If A ∈ M2 is normal, show that spread A ≥ 2|a12| and give an example to show
that this bound is sharp. Why is spread A ≥ 2|a21| as well? (b) If A ∈ Mn is Hermitian and
Â is a principal submatrix of A, show that spread A ≥ spread Â and use (a) to conclude
that spread A ≥ 2 max{|ai j | : i, j = 1, . . . , n, i �= j}. For an upper bound on spread A, see
(2.5.P61).

4.3.P17 Let A = [ai j ] ∈ Mn be Hermitian and tridiagonal, and assume that ai,i+1 �= 0 for
each i = 1, . . . , n − 1 (A is unreduced (0.9.9); it is also irreducible (6.2.22) since it is
Hermitian). This problem presents two proofs that the interlacing inequalities (4.3.18) are
strict inequalities and three proofs that A has distinct eigenvalues. (a) Let x = [xi ] be an
eigenvector of A. Show that xn �= 0. (b) Let Â be any principal submatrix of A of size
n − 1. Use the conditions in (4.3.17) for equality to show that the interlacing inequalities
(4.3.18) between the ordered eigenvalues of A and Â are all strict inequalities. (c) Deduce
from (b) that A has distinct eigenvalues. (d) Use (1.4.P11) to show in a different way that
A has distinct eigenvalues. (e) Let pk(t) be the characteristic polynomial of the leading
k-by-k principal submatrix of A, and let p0(t) = 1. Show that p1(t) = t − a11 and that
pk(t) = (t − akk)pk−1(t) − |ak−1,k |2 pk−2(t) for k = 2, . . . , n. (f ) Use (e) to prove that the
interlacing inequalities (4.3.18) between the ordered eigenvalues of A and Â are all strict
inequalities, and deduce that A has distinct eigenvalues.

4.3.P18 Let � = diag(λ1, . . . , λn) ∈ Mn(R) and suppose that that λ1 < · · · < λn (dis-
tinct eigenvalues). If no entry of z ∈ Cn is zero, explain why λ1 < λ1(� + zz∗) < · · · <

λn−1(� + zz∗) < λn < λn(� + zz∗) (interlacing with all inequalities strict).

4.3.P19 Let A ∈ Mn be Hermitian and let z ∈ Cn . Using the notation of (4.3.9), explain why
λi (A + zz∗) = λi (A) + μi for each i = 1, . . . , n, and each μi ≥ 0. Show that

∑n
i=1 μi =

z∗z = ‖z‖2
2.

4.3.P20 Let λ ∈ C, a ∈ R, y ∈ Cn , and A =
[

λIn y
y∗ a

]
∈ Mn+1. Use (4.3.17) to show that

λ is an eigenvalue of A with multiplicity at least n − 1. What are the other two eigenvalues?

4.3.P21 Let A ∈ Mn be Hermitian, let a ∈ R, and let y ∈ Cn . (a) Let Â =
[

A y
y∗ a

]
∈ Mn+1.

Explain why rank Â − rank A can take only the values 0, 1, or 2. (b) Let Â = A ± yy∗.
Explain why rank Â − rank A can take only the values −1, 0, or +1. See (4.3.P27) for a
generalization and refinement.

4.3.P22 Let a1, . . . , an be n given positive real numbers that are not all equal. Let A =
[ai + a j ]n

i, j=1 ∈ Mn(R). Explain from general principles why A has exactly one positive
and one negative eigenvalue.
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4.3.P23 Let x, y ∈ Rn be given. Use (4.3.47a,b) to give one-line proofs that (a) x + y
is majorized by x↓ + y↓ and (b) x + y majorizes x↓ + y↑. Can you prove these two
majorizations without invoking (4.3.47)?

4.3.P24 Let A, B ∈ Mn be Hermitian. In (4.3.47) we encounter two equivalent versions
of the Lidskii inequalities: “λ(A + B) majorizes λ(A)↓ + λ(B)↑” and “λ(B) majorizes
λ(A + B)↓ − λ(A)↓.” Show that they are equivalent to a third version: “λ(A − B) majorizes
λ(A)↓ − λ(B)↓.”

4.3.P25 Let A ∈ Mn be upper bidiagonal (0.9.10). (a) Show that its singular values depend
only on the absolute values of its entries. (b) Assume that aii �= 0 for each i = 1, . . . , n
and ai,i+1 �= 0 for each i = 1, . . . , n − 1. Show that A has n distinct singular values.

4.3.P26 Let A, B ∈ Mn be tridiagonal. (a) If A and B∗ are unreduced (0.9.9) and λ ∈ C,
explain why the first n − 2 columns of AB∗ − λI are linearly independent, so rank(AB −
λI ) ≥ n − 2 for every λ ∈ C. Why does every eigenvalue of AB have geometric multiplicity
at most 2? (b) If every superdiagonal and subdiagonal entry of A is nonzero (that is, if A is
irreducible), explain why every singular value of A has multiplicity at most 2. (c) What are

the eigenvalues and singular values of the irreducible tridiagonal matrix A =
[

0 1
1 0

]
?

4.3.P27 Let A ∈ Mn , y, z ∈ Cn , and a ∈ C be given. Suppose that 1 ≤ rank A = r < n, let

Â =
[

A y
zT a

]
, and let δ = rank Â − rank A. (a) Explain why rank

[
0n y
zT a

]
≤ 2 and conclude

that 1 ≤ δ ≤ 2. (b) Provide details for the following sketch of a proof that δ = 2 if and only
if y is not in the column space of A and zT is not in the row space of A: Use (0.4.6(f)) to

write A = S
[

Ir 0
0 0n−r

]
R, in which S, R ∈ Mn are nonsingular. Partition S−1 y =

[
y1
y2

]
and

R−T z =
[

z1
z2

]
, in which y1, z1 ∈ Cr . Then y is in the column space of A if and only if

y2 = 0, and z is in the column space of AT if and only if z2 = 0. Moreover,

rank Â = rank

⎡
⎣ Ir 0 y1

0 0n−r y2

zT
1 zT

2 a

⎤
⎦ = r + 2

if and only if y2 �= 0 �= z2. (c) If A is Hermitian and z = ȳ, explain why δ = 2 if and only
if y is not in the column space of A. Compare with (4.3.P21(a)).

4.3.P28 Under the hypotheses of (4.3.47), show that the assertion “λ(A + B)↓ + λ(A −
B)↓ majorizes 2λ(A)” is equivalent to Fan’s inequality (4.3.47a).

4.3.P29 Let A = [Ai j ]m
i, j=1 ∈ Mn be Hermitian and partitioned so that Aii ∈ Mni for each

i = 1, . . . , m and n1 + · · · + nm = n. Show that the vector of eigenvalues of A majorizes
the vector of eigenvalues of A11 ⊕ · · · ⊕ Amm . Explain why this assertion is a generalization
of (4.3.45).

4.3.P30 Schur’s majorization theorem (4.3.45) has a block matrix generalization that puts
an intermediate term in the inequalities (4.3.46). Let A = [Ai j ]k

i, j=1 be a partitioned Hermi-
tian matrix and let d(A) = [aii ]n

i=1 be its vector of main diagonal entries. Prove that d(A)
is majorized by λ(A11 ⊕ · · · ⊕ Akk), which in turn is majorized by λ(A).

Notes and Further Readings. For more information about majorization, see Marshall
and Olkin (1979). The Lidskii inequalities (4.3.47b) are the basis for many important
perturbation bounds; see (6.3) and (7.4). Many proofs of these famous inequalities
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are in the literature; the proof in the text is from C. K. Li and R. Mathias, The Lidskii–
Mirsky–Wielandt theorem – additive and multiplicative versions, Numer. Math. 81
(1999) 377–413. For a comprehensive discussion of a general set of eigenvalue in-
equalities that includes as special cases the Weyl inequalities (4.3.1), the Fan inequal-
ities (4.3.47a), and the Lidskii inequalities (4.3.47b), see R. Bhatia, Linear algebra to
quantum cohomology: The story of Alfred Horn’s inequalities, Amer. Math. Monthly
108 (2001) 289–318. Problem (4.3.P17) provides two proofs that the interlacing in-
equalities (4.3.18) are strict for a class of matrices that includes the (real) Jacobi
matrices. Conversely, it is known that if 2n − 1 real numbers satisfy the inequalities
λ1 < μ1 < λ2 < μ2 < · · · < λn−1 < μn−1 < λn , then there is a unique Jacobi matrix
A such that λ1, . . . , λn are its eigenvalues and μ1, . . . , μn−1 are the eigenvalues of its
leading principal submatrix of size n − 1; see O. H. Hald, Inverse eigenvalue problems
for Jacobi matrices, Linear Algebra Appl. 14 (1976) 63–85.

4.4 Unitary congruence and complex symmetric matrices

Complex Hermitian and symmetric matrices both arise in the study of analytic mappings
of the unit disc in the complex plane. If f is a complex analytic function on the unit disc
that is normalized so that f (0) = 0 and f ′(0) = 1, then f (z) is one-to-one (sometimes
called univalent or schlicht) if and only if it satisfies Grunsky’s inequalities

n∑
i, j=1

xi x̄ j log
1

1 − zi z̄ j
≥
∣∣∣∣∣∣

n∑
i, j=1

xi x j log

(
zi z j

f (zi ) f (z j )

f (zi ) − f (z j )

zi − z j

)∣∣∣∣∣∣
for all z1, . . . , zn ∈ C with |zi | < 1, all x1, . . . , xn ∈ C, and all n = 1, 2, . . . If zi = z j ,
then the difference quotient on the right-hand side of Grunsky’s inequalities is to be
interpreted as f ′(zi ); if zi = 0, then we interpret zi/ f (zi ) as 1/ f ′(0). These formidable
inequalities have the very simple algebraic form

x∗Ax ≥ |xT Bx | (4.4.1)

in which x = [xi ] ∈ Cn , A = [ai j ] ∈ Mn , B = [bi j ] ∈ Mn ,

ai j = log
1

1 − zi z̄ j
, bi j = log

(
zi z j

f (zi ) f (z j )

f (zi ) − f (z j )

zi − z j

)

The matrix A is Hermitian, while B is complex symmetric. See (7.7.P19) for a simpler
equivalent form of Grunsky’s inequalities.

If we make a unitary change of variables x → U x in (4.4.1), then A → U ∗AU is
transformed by unitary similarity and B → U T BU is transformed by unitary congru-
ence.

Complex symmetric matrices appear in moment problems of various kinds. For
example, let a0, a1, a2, . . . be a given sequence of complex numbers, let n ≥ 1 be a
given positive integer, and define An+1 = [ai+ j ]n

i, j=0 ∈ Mn+1, a complex symmetric
Hankel matrix (0.9.8). We consider the quadratic form xT An+1x for x ∈ Cn+1 and ask
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whether there is some fixed constant c > 0 such that

|xT An+1x | ≤ cx∗x for all x ∈ Cn+1 and each n = 0, 1, 2, . . .

According to a theorem of Nehari, this condition is satisfied if and only if there is
a Lebesgue measurable and almost everywhere bounded function f : R → C whose
Fourier coefficients are the given numbers a0, a1, a2, . . . ; the constant c in the preceding
inequalities is the essential supremum of | f |.

Complex symmetric matrices arise in the study of damped vibrations of linear
systems, in classical theories of wave propagation in continuous media, and in general
relativity.

Unitary similarity is a natural equivalence relation in the study of normal or Her-
mitian matrices: U ∗AU is normal (respectively, Hermitian) if U is unitary and A is
normal (respectively, Hermitian). Unitary congruence is a natural equivalence relation
in the study of complex symmetric or skew-symmetric matrices: U T AU is symmetric
(respectively, skew symmetric) if U is unitary and A is symmetric (respectively, skew
symmetric). In our study of unitary congruence, we make frequent use of the fact that
if A, B ∈ Mn are unitarily congruent, then AĀ and B B̄ are unitarily similar and hence
have the same eigenvalues.

Exercise. Suppose that A, B ∈ Mn are unitarily congruent, that is, A = U BU T

for some unitary U ∈ Mn . Explain why AĀ and B B̄ are unitarily similar; AA∗

and B B∗ are unitarily similar; and AT Ā and BT B̄ are unitarily similar. Moreover,
all three unitary similarities can be accomplished via the same unitary matrix.

Exercise. Let A =
[

0 1
0 0

]
and B = 02. Show that AĀ = B B̄ and explain why

A and B are not unitarily congruent.

Exercise. Suppose that  ∈ Mn is upper triangular. Explain why all the eigen-
values of ̄ are real and nonnegative. Hint: What are the main diagonal entries
of ̄?

Exercise. Consider A = [a] ∈ M1, in which a = |a|eiθ and θ ∈ R. Show that A
is unitarily congruent to the real matrix B = [|a|]. Hint: Consider U = [e−iθ/2].

We already know (see (2.6.6a)) that a complex symmetric matrix A is unitarily
congruent to a nonnegative diagonal matrix whose diagonal entries are the singular
values of A. In this section, we show that this basic result is a consequence of a
factorization involving unitary congruence that is an analog of (2.3.1): Every complex
matrix is unitarily congruent to a block upper triangular matrix in which the diagonal
blocks are 1-by-1 or 2-by-2. Our first step is to show how the nonnegative eigenvalues
of AĀ can be used to achieve a partial triangularization by unitary congruence.

Lemma 4.4.2. Let A ∈ Mn be given, let λ be an eigenvalue of AĀ, and let x ∈ Cn be a
unit eigenvector of AĀ associated with λ. Let S = span{Ax̄, x}, which has dimension
one or two.

(a) If dimS = 1, then λ is real and nonnegative, and there is a unit vector z ∈ S
such that Az̄ = σ z, in which σ ≥ 0 and σ 2 = λ.
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(b) Suppose that dimS = 2. If λ is real and nonnegative, then there is a unit vector
z ∈ S such that Az̄ = σ z, in which σ ≥ 0 and σ 2 = λ. If λ is not real or is real
and negative, then Aȳ ∈ S for every y ∈ S.

Proof. (a) If dimS = 1, then {Ax̄, x} is linearly dependent and Ax̄ = μx for some
μ ∈ C. Compute λx = AĀx = A(Ax̄) = Aμ̄x̄ = μ̄Ax̄ = μ̄μx = |μ|2x , so |μ|2 = λ.
Choose θ ∈ R so that e−2iθμ = |μ|, and let σ = |λ|. Then

A(eiθ x) = e−iθ Ax̄ = e−iθμx = (e−2iθμ)(eiθ x) = |μ|(eiθ x) = σ (eiθ x)

so z = eiθ x is a unit vector in S such that Az̄ = σ z, in which σ ≥ 0 and σ 2 = λ.
(b) If dimS = 2, then {Ax̄, x} is linearly independent and hence is a basis for S. Any
y ∈ S can be expressed as y = αAx̄ + βx for some α, β ∈ C, and Aȳ = A(ᾱ Āx +
β̄ x̄) = ᾱAĀx + β̄ Ax̄ = ᾱλx + β̄ Ax̄ ∈ S. If λ is real and nonnegative, let σ = √

λ ≥ 0
and let y = Ax̄ + σ x , which is nonzero since it is a nontrivial linear combination of
basis vectors. Then

Aȳ = A( Āx + σ x̄) = AĀx + σ Ax̄ = λx + σ Ax̄

= σ 2x + σ Ax̄ = σ (Ax̄ + σ x̄) = σ y

so z = y/ ‖y‖2 is a unit vector in S such that Az̄ = σ z, σ ≥ 0, and σ 2 = λ. �

A subspace S ⊂ Cn is said to be A-coninvariant if A ∈ Mn and Ax̄ ∈ S for every
x ∈ S. The concept of A-coninvariance is a natural analog of A-invariance (1.3.16).
For each A ∈ Mn there is always a one-dimensional A-invariant subspace: the span of
any eigenvector. The preceding lemma ensures that for each A ∈ Mn there is always
an A-coninvariant subspace of dimension one or two: If AĀ has a nonnegative eigen-
value, there is an A-coninvariant subspace of dimension one (the span of the vector z
constructed in (4.4.2a,b); otherwise, there is an A-coninvariant subspace of dimension
two (the subspace S constructed in (4.4.2)).

Theorem 4.4.3. Let A ∈ Mn and p ∈ {0, 1, . . . , n} be given. Suppose that AĀ has at
least p real nonnegative eigenvalues, including λ1, . . . , λp. Then there is a unitary
U ∈ Mn such that

A = U

[
 �
0 C

]
U T

in which  = [di j ] ∈ Mp is upper triangular, dii =
√

λi ≥ 0 for i = 1, . . . , p, and
C ∈ Mn−p. If A Ā has exactly p real nonnegative eigenvalues, then CC̄ has no real
nonnegative eigenvalues.

Proof. The case n = 1 is trivial (see the preceding exercise), as is the case p = 0, so
we assume that n ≥ 2 and p ≥ 1.

Consider the following reduction: Let x be a unit eigenvector of AĀ associated
with a real nonnegative eigenvalue λ and let σ = √

λ ≥ 0. The preceding lemma
ensures that there is a unit vector z such that Az̄ = σ z. Let V = [z v2 . . . vn] ∈ Mn be
unitary and consider the unitary congruence V̄ T AV̄ . Its 1, 1 entry is z∗Az̄ = σ z∗z = σ .
Orthogonality of the columns of V ensures that the other entries in the first column of
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V̄ T AV̄ are zero: v∗
i Az̄ = σv∗

i z = 0 for i = 2, . . . , n. Thus,

A = V

[
σ �
0 A2

]
V T , A2 ∈ Mn−1, σ =

√
λ ≥ 0

and

AĀ = V

[
σ 2 �
0 A2 Ā2

]
V ∗ = V

[
λ �
0 A2 Ā2

]
V ∗

If A2 ∈ Mn−p or if A2 Ā2 has no real nonnegative eigenvalues, we stop.
If A2 Ā2 has a real nonnegative eigenvalue, apply the preceding reduction to A2,

as in the proof of (2.3.1). In at most p reduction steps, we obtain the asserted block
form. �

Exercise. Explain why an upper triangular matrix is symmetric if and only if it
is diagonal.

Corollary 4.4.4. Let A ∈ Mn be given.

(a) If there is a unitary U ∈ Mn such that A = UU T and  is upper triangular,
then every eigenvalue of AĀ is nonnegative.

(b) If A Ā has at least n − 1 real nonnegative eigenvalues, there is a unitary U ∈ Mn

such that A = UU T , in which  = [di j ] is upper triangular, each dii ≥ 0, and
d2

11, . . . , d2
nn are the eigenvalues of AĀ, all of which are real and nonnegative.

(c) (Autonne) If A is symmetric, there is a unitary U ∈ Mn such that A = U�U T ,
in which � is a nonnegative diagonal matrix whose diagonal entries are the
singular values of A, in any desired order.

(d) (Uniqueness) Suppose that A is symmetric and rank A = r . Let s1, . . . , sd be
the distinct positive singular values of A, in any given order, with respective
multiplicities n1, . . . , nd . Let � = s1 In1 ⊕ · · · ⊕ sd Ind ⊕ 0n−r ; the zero block is
missing if A is nonsingular. Let U, V ∈ Mn be unitary. Then A = U�U T =
V �V T if and only if V = U Z, Z = Q1 ⊕ · · · ⊕ Qd ⊕ Z̃ , Z̃ ∈ Mn−r is unitary,
and each Q j ∈ Mn j is real orthogonal. If the singular values of A are distinct
(that is, if d ≥ n − 1), then V = U D, in which D = diag(d1, . . . , dn), di = ±1
for each i = 1, . . . , n − 1, dn = ±1 if A is nonsingular, and dn ∈ C with |dn| = 1
if A is singular.

Proof. (a) If A = UU T and  is upper triangular, then the eigenvalues of AĀ =
UU T Ū̄U ∗ = ŪU ∗ are the main diagonal entries of ̄, which are nonnega-
tive.
(b) If AĀ has at least n − 1 real nonnegative eigenvalues, we have the case p ≥ n − 1
in (4.4.3), so A is unitarily congruent to an upper triangular matrix. Part (a) ensures
that every eigenvalue of AĀ is nonnegative, and the asserted factorization now follows
from a final invocation of (4.4.3) with p = n.
(c) If A is symmetric, the eigenvalues of AĀ = AĀT = AA∗ are the squares of the
singular values of A (2.6.3b), so (a) ensures that A = UU T , in which  = [di j ] is
upper triangular and d11, . . . , dnn are the singular values of A. Since  is unitarily
congruent to the symmetric matrix A, it is itself symmetric and hence is diagonal. For
any permutation matrix P , we have A = (U P)(PT P)(U P)T , so the singular values
can be presented in any desired order.



264 Hermitian matrices, symmetric matrices, and congruences

(d) The two factorizations A = U�Ū ∗ = V �V̄ ∗ are singular value decomposition,
so (2.6.5) ensures that U = V X and Ū = V̄ Y , in which X = Z1 ⊕ · · · ⊕ Zd ⊕ Z̃ and
Y = Z1 ⊕ · · · ⊕ Zd ⊕ Ỹ are unitary and each Z j ∈ Mn j . Then X = V ∗U = V T Ū =
Ȳ , so each Z j = Z j is real and unitary, that is, real orthogonal. The assertions in the
case of distinct singular values follow by specialization. �

Theorem 4.4.3 stimulates us to consider a form to which A ∈ Mn can be reduced
via unitary congruence if AĀ has no real nonnegative eigenvalues. Corollary 3.4.1.9
ensures that AĀ is always similar to a real matrix, so tr AĀ is always real and any
non-real eigenvalues of AĀ must occur in conjugate pairs.

Suppose that A ∈ M2. If neither eigenvalue of AĀ is real and nonnegative, then
because AĀ is similar to a real matrix, there are only two possibilities for its eigen-
values: They are either a non-real conjugate pair or they are both real and negative;
in the latter case, the following proposition says something remarkable: they must
be equal. The characteristic polynomial of AĀ is pAĀ(t) = t2 − (tr AĀ)t + det AĀ =
t2 − (tr AĀ)t + | det A|2, which has real zeroes if and only if its discriminant is non-
negative, that is, if and only if (tr AĀ)2 − 4| det A|2 ≥ 0. If AĀ has two negative
eigenvalues, then tr AĀ, their sum, must be negative.

Exercise. If A ∈ Mn is skew symmetric, explain why every eigenvalue of AĀ is
real and nonpositive. Hint: AĀ = −AA∗.

Exercise. Let A ∈ Mn . Explain why f (A) = tr(AĀ) and g(A) = det(AĀ) =
| det A|2 are unitary congruence invariant functions of A, that is, f (U AU T ) =
f (A) and g(U AU T ) = g(A) for every unitary U ∈ Mn . If n = 2, why is the dis-
criminant of the characteristic polynomial of AĀ a unitary congruence invariant
function of A?

Proposition 4.4.5. Let A ∈ M2 be given and let σ 1 ≥ σ 2 ≥ 0 be the singular values
of S(A) = 1

2 (A + AT ), the symmetric part of A. If σ 1 = σ 2, let σ = σ 1.

(a) A is unitarily congruent to [
σ 1 ζ

−ζ σ 2

]
, ζ ∈ C (4.4.6)

(b) AĀ has a non-real pair of conjugate eigenvalues if and only if A is unitarily
congruent to [

σ 1 ζ

−ζ σ 2

]
, ζ ∈ C, 2|σ 1ζ̄ + σ 2ζ | > σ 2

1 − σ 2
2 (4.4.7)

If σ 1 = σ 2, the conditions on σ 1, σ 2, and ζ in (4.4.7) are equivalent to the
conditions σ > 0 and Re ζ �= 0.

(c) A Ā has two real negative eigenvalues if and only if σ 1 = σ 2 and A is unitarily
congruent to [

σ iξ
−iξ σ

]
, ξ ∈ R, ξ > σ ≥ 0 (4.4.8a)



4.4 Unitary congruence and complex symmetric matrices 265

in which case σ 2 − ξ 2 is a double negative eigenvalue of AĀ. If σ = 0 in (4.4.8a),
then A is unitarily congruent to[

0 ξ

−ξ 0

]
, ξ ∈ R, ξ > 0 (4.4.8b)

in which case −ξ 2 is a double negative eigenvalue of AĀ and ξ is a double
singular value of A.

(d) Let λ1, λ2 be the eigenvalues of AĀ. If λ1 is not real, then λ2 = λ̄1. If λ1 is real
and nonnegative, then so is λ2. If λ1 is real and negative, then λ2 = λ1.

Proof. (a) Write A = S(A) + C(A) as the sum of its symmetric and skew-symmetric
parts (0.2.5). The preceding corollary ensures that there is a unitary U ∈ M2 such that

S(A) = U
[

σ 1 0
0 σ 2

]
U T , so A = U (

[
σ 1 0
0 σ 2

]
+ U ∗C(A)Ū )U T . The matrix U ∗C(A)Ū is

skew symmetric, so it has the form
[

0 ζ

−ζ 0

]
for some ζ ∈ C.

(b) If we wish to compute the trace or determinant of AĀ, the preceding exercise
permits us to assume that A has the form (4.4.6). In this case, a calculation reveals that

tr AĀ = σ 2
1 + σ 2

2 − 2|ζ |2 and | det A|2 = σ 2
1σ

2
2 + 2σ 1σ 2 Re ζ 2 + |ζ |4

and the discriminant of pAĀ(t) is

r (A) = (tr AĀ)2 − 4| det A|2 = (σ 2
1 − σ 2

2)2 − 4|σ 1ζ̄ + σ 2ζ |2

Then AĀ has a pair of non-real conjugate eigenvalues if and only if r (A) < 0 if and
only if 2|σ 1ζ̄ + σ 2ζ | > σ 2

1 − σ 2
2.

(c) Now suppose that AĀ has two real negative eigenvalues, so r (A) ≥ 0 and tr AĀ < 0,
that is, 2|ζ |2 > σ 2

1 + σ 2
2. Let ζ = |ζ |eiθ with θ ∈ R and compute

0 ≤ r (A) = (σ 2
1 − σ 2

2)2 − 4|σ 1ζ̄ + σ 2ζ |2
= (σ 2

1 − σ 2
2)2 − 4|ζ |2|σ 1e−iθ + σ 2eiθ |2

= (σ 2
1 − σ 2

2)2 − 4|ζ |2(σ 2
1 + 2σ 1σ 2 cos 2θ + σ 2

2)

≤ (σ 2
1 − σ 2

2)2 − 2(σ 2
1 + σ 2

2)(σ 2
1 − 2σ 1σ 2 + σ 2

2)

= (σ 1 − σ 2)2(σ 1 + σ 2)2 − 2(σ 2
1 + σ 2

2)(σ 1 − σ 2)2

= (σ 1 − σ 2)2(σ 2
1 + 2σ 1σ 2 + σ 2

2 − 2σ 2
1 − 2σ 2

2)

= −(σ 1 − σ 2)4

which implies that σ 1 = σ 2. In this case, r (A) = −4σ 2|ζ̄ + ζ |2 = −8σ 2|Re ζ | ≥ 0,
so either Re ζ = 0 or σ = 0. If Re ζ = 0, let ζ = iξ , in which ξ is real and nonzero.
Since tr AĀ = σ 2

1 + σ 2
2 − 2|ζ |2 = 2(σ 2 − ξ 2) < 0, it follows that |ξ | > σ . Thus, A

has the form (4.4.8a) if ξ > 0; it has the form of the transpose of (4.4.8a) if ξ < 0. In

the latter case, perform a unitary congruence via the reversal matrix
[

0 1
1 0

]
to obtain

the form (4.4.8a). If σ = 0 then S(A) = 0, so A = C(A) has the form
[

0 ζ

−ζ 0

]
for some

nonzero ζ ∈ C. Let ζ = |ζ |eiθ for some θ ∈ R and compute the unitary congruence

(e−iθ/2 I )A(e−iθ/2 I ) =
[

0 |ζ |
−|ζ | 0

]
, which has the form (4.4.8b). For the assertions about

the double negative eigenvalues, see the following exercise.
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(d) Since AĀ is similar to a real matrix, it has a non-real eigenvalue if and only if it
has a pair of conjugate non-real eigenvalues. Therefore, λ2 = λ̄1 if λ1 is not real; if λ1

is real, then λ2 must also be real. If λ1 is real and nonnegative, (4.4.4b) ensures that
λ2 is real and nonnegative. Finally, if λ1 is real and negative, the previous two cases
ensure that λ2 is real and cannot be nonnegative, that is, λ1 and λ2 are both negative;
(c) ensures that they are equal. �

Exercise. If A is unitarily congruent to a matrix of the form (4.4.8a), show that
σ 2 − ξ 2 is a double negative eigenvalue of AĀ. If A is unitarily congruent to a
matrix of the form (4.4.8b), show that −ξ 2 is a double negative eigenvalue of AĀ
and ξ is a double singular value of A.

Exercise. Let A ∈ M2 be given, so it is unitarily congruent to a matrix of the
form (4.4.6). Explain why σ 1 = σ 2 if and only if the symmetric part of A is a
scalar multiple of a unitary matrix.

We now have all the tools necessary to show that each square complex matrix A is
unitarily congruent to a block upper triangular matrix in which every diagonal block is
either 1-by-1 or 2-by-2 and has a special form.
Theorem 4.4.9 (Youla). Let A ∈ Mn be given. Let p ∈ {0, 1, . . . , n} and suppose that
AĀ has exactly p real nonnegative eigenvalues. Then there is a unitary U ∈ Mn such
that

A = U

[
 �
0 �

]
U T (4.4.10)

in which either  is missing (if p = 0), or  = [di j ] ∈ Mp is upper triangular, dii ≥ 0
for i = 1, . . . , p, and d2

11, . . . , d2
pp are the nonnegative eigenvalues of AĀ. Either

� is missing (if p = n), or q = n − p ≥ 2 is even, � = [�i j ]
q/2
i, j=1 ∈ Mq is block 2-by-2

upper triangular, and for each j = 1, . . . , q/2 the eigenvalues of � j j �̄ j j are either a
non-real conjugate pair or a real negative equal pair.

(a) If � j j �̄ j j has a non-real conjugate pair of eigenvalues, then � j j may be chosen
to have either the form

� j j =
[

σ 1 ζ

−ζ σ 2

]
,

{
σ 1, σ 2 ∈ R, ζ ∈ C, σ 1 > σ 2 ≥ 0,
2|σ 1ζ̄ + σ 2ζ | > σ 2

1 − σ 2
2

(4.4.11a)

or the form

� j j =
[

σ ζ

−ζ σ

]
, σ ∈ R, ζ ∈ C, σ > 0, Re ζ �= 0 (4.4.11b)

(b) If � j j �̄ j j has a real negative equal pair of eigenvalues, then � j j may be chosen
to have either the form

� j j =
[

σ iξ
−iξ σ

]
, σ , ξ ∈ R, ξ > σ > 0 (4.4.12a)

or the form

� j j =
[

0 ξ

−ξ 0

]
, ξ ∈ R, ξ > 0 (4.4.12b)
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Proof. Theorem 4.4.3 ensures that A is unitarily congruent to a block upper triangular

matrix of the form
[

 �
0 C

]
, in which  ∈ Mp has the stated properties. It suffices

to consider a matrix C ∈ Mq such that q = n − p > 0 and CC̄ has no nonnegative
eigenvalues. If q = 1 and C = [c], then CC̄ = [|c|2] has a nonnegative eigenvalue, so
q ≥ 2.

Consider the following reduction: Let λ be an eigenvalue of CC̄ , so λ is either not
real or it is real and negative. Let x be a unit eigenvector of CC̄ associated with λ, and
consider the subspace S = span{Cx̄, x} ⊂ Cq . Lemma 4.2.2 ensures that dimS = 2
and that S is C-coninvariant, that is, CS̄ ⊂ S. Let {u, v} be an orthonormal basis for
S and let V = [u v v3 . . . vn] ∈ Mn be unitary, so each of v3, . . . , vn is orthogonal to
S. The first two columns of CV̄ = [Cū C v̄ C v̄3 . . . C v̄n] are vectors in S, so they are
orthogonal to each of v3, . . . , vn . This means that

V ∗CV̄ =
[

C11 �
0 D

]

in which C11 ∈ M2, D ∈ Mq−2, and each of C11C̄11 and DD̄ has no real nonnegative
eigenvalues. Indeed, (4.4.5d) ensures that if λ is not real, then C11C̄11 has eigenvalues
λ and λ̄; if λ is real, it is a double negative eigenvalue of C11C̄11.

If q − 2 = 0, we stop; otherwise, q − 2 ≥ 2 (q − 2 = 1 is forbidden since DD̄ has
no real nonnegative eigenvalues). Thus, we may apply the reduction algorithm to D.
In finitely many reduction steps, we find that C is unitarily congruent to a 2-by-2 block
upper triangular matrix Ĉ = [Ci j ]

q/2
i, j=1.

Each 2-by-2 matrix C j j C̄ j j has either a non-real conjugate pair of eigenvalues or
a negative equal pair of eigenvalues, so (4.4.5) ensures that there are unitary matrices
U j ∈ M2 such that each matrix U ∗

j C j j Ū j has the form (4.4.7), (4.4.8a), or (4.4.8b).

Let U = U1 ⊕ · · · ⊕ Uq/2. Then � = U ∗ĈŪ is unitarily congruent to C and has the
asserted block upper triangular structure. �

Corollary 4.4.13. Let A ∈ Mn be given. The non-real eigenvalues of AĀ occur in
conjugate pairs. The real negative eigenvalues of AĀ occur in equal pairs.

Proof. Factor A as in (4.4.10). The eigenvalues of AĀ are the eigenvalues of ̄ ⊕ ��̄,
which are the squares of the absolute values of the main diagonal entries of  together
with the eigenvalues of all the 2-by-2 diagonal blocks of ��̄. The latter eigenvalues
occur as non-real conjugate pairs or as equal negative real pairs. �

The assertion in the preceding corollary can be significantly strengthened: If λ is a
real negative eigenvalue of AĀ, then for each k = 1, 2, . . . there are an even number
of blocks Jk(λ) in the Jordan canonical form of AĀ; see (4.6.16).

Youla’s factorization (4.4.10) is useful in the context of unitary congruence, just as
Schur’s factorization described in (2.3.1) is useful in the context of unitary similarity.
But neither factorization provides a canonical form for the respective equivalence
relation. The eigenvalues of AĀ determine the main diagonal entries of  in (4.4.10),
but not its off-diagonal entries; they determine the eigenvalues of the diagonal blocks
of �, but not the specific form of those blocks, let alone the off-diagonal blocks.
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We next study a set of square complex matrices for which (4.4.10) does provide a
canonical form under unitary congruence. For matrices A in this set (which includes
all complex symmetric, complex skew-symmetric, unitary, and real normal matrices)
the eigenvalues of AĀ completely determine the unitary congruence equivalence class
of A.

Definition 4.4.14. A matrix A ∈ Mn is conjugate normal if AA∗ = A∗A.

Exercise. Verify that complex symmetric, complex skew-symmetric, unitary, and
real normal matrices are conjugate normal.

The following analog of (2.5.2) plays a key role in the study of conjugate-normal
matrices.

Lemma 4.4.15. Suppose that A ∈ Mn is partitioned as

A =
[

A11 A12

0 A22

]
in which A11 and A22 are square. Then A is conjugate normal if and only if A11 and
A22 are conjugate normal and A12 = 0. A block upper triangular matrix is conjugate
normal if and only if each of its off-diagonal blocks is zero and each of its diagonal
blocks is conjugate normal. In particular, an upper triangular matrix is conjugate
normal if and only if it is diagonal.

Proof. Proceed as in the proof of (2.5.2) by equating the 1, 1 blocks of the iden-
tity A∗A = AA∗: A∗

11 A11 = A11 A∗
11 + A12 A∗

12. However, tr A∗
11 A11 = tr A∗

11 A11 =
tr A∗

11 A11 since the trace of a Hermitian matrix is real. The rest of the proof is identical
to that of (2.5.2). �

Exercise. If A ∈ Mn and U ∈ Mn is unitary, show that A is conjugate normal if
and only if U AU T is conjugate normal, that is, conjugate normality is a unitary
congruence invariant.

Exercise. If A ∈ Mn is conjugate normal and c ∈ C, show that cA is conjugate
normal.

Exercise. If A ∈ Mn and B ∈ Mm , show that A and B are conjugate normal if
and only if A ⊕ B is conjugate normal.

Exercise. If A = [a] ∈ M1 or A =
[

a b
−b a

]
∈ M2(R), show that A is conjugate

normal.

The following canonical form for conjugate normal matrices is an analog of the
spectral theorem for normal matrices that has much in common with the canonical
form (2.5.8) for real normal matrices.

Theorem 4.4.16. A matrix A ∈ Mn is conjugate normal if and only if it is unitarily
congruent to a direct sum of the form

� ⊕ τ 1

[
a1 b1

−b1 a1

]
⊕ · · · ⊕ τ q

[
aq bq

−bq aq

]
(4.4.17)
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in which 2q ≤ n, � ∈ Mn−2q is a nonnegative diagonal matrix, and a j , b j , τ j are real
scalars such that a j ≥ 0, 0 < b j ≤ 1, a2

j + b2
j = 1, and τ j > 0 for each j = 1, . . . , q.

The parameters in (4.4.17) are uniquely determined by the eigenvalues of A Ā: The
diagonal entries of �2 are the real nonnegative eigenvalues of AĀ; if the eigenvalues of
AĀ that are not real and nonnegative are expressed as r j e±2iθ j , j = 1, . . . , m, r j > 0,
0 < θ j ≤ π/2, then τ j = √

r j > 0, a j = cos θ j , and b j = sin θ j , j = 1, . . . , q.

Proof. Suppose that A is conjugate normal and factor it as in (4.4.10). Unitary congru-

ence invariance of conjugate normality ensures that
[

 �
0 �

]
is conjugate normal, and

(4.4.15) tells us that it is block diagonal,  is diagonal, � = �11 ⊕ · · · ⊕ �qq is 2-by-2
block diagonal, and each � j j is conjugate normal. Then � =  and the blocks � j j are
specializations of the block types described in (4.4.9).

If a block � j j has the form (4.4.11a) and is conjugate normal, a calculation
reveals that σ 1ζ̄ = σ 2ζ , which implies that σ 1|ζ | = σ 2|ζ |. Since σ 1 > 0 and ζ �= 0 are
required by the conditions on the parameters in (4.4.11a), it follows that σ 1 = σ 2 > 0
and ζ = ζ̄ is real. Thus, � j j has the form (4.4.11b) in which ζ is real and positive,

that is, a block of the form
[

α β

−β α

]
with α, β > 0. Let τ = (α2 + β2)1/2, a = α/τ ,

and b = β/τ . We have shown that a conjugate-normal block of the form (4.4.11a) is

unitarily congruent to τ
[

a b
−b a

]
, in which τ , a > 0, 0 < b < 1, and a2 + b2 = 1.

One verifies that no block of the form (4.4.12a) is conjugate normal (2iσξ �= 0);
however, any block of the form (4.4.12b) is real normal, so it is conjugate normal. If

we let τ = ξ , we have a block of the form τ
[

a b
−b a

]
in which τ > 0, a = 0, and b = 1.

We have now established a factorization of A that has the asserted form. Each
direct summand of (4.4.17) is conjugate normal, so their direct sum and any unitary
congruence of it are conjugate normal.

The block diagonal matrix (4.4.17) is real, so its square has the same eigenval-
ues as AĀ. Each 2-by-2 block in (4.4.17) is a positive scalar multiple of a real or-
thogonal matrix and has a pair of eigenvalues of the form τ j (a j ± ib j ) = τ j e±iθ j =
τ j (cos θ j ± i sin θ j ) in which θ j ∈ (0, π/2] (because a j ≥ 0 and b j > 0); the eigen-
values of its square are τ 2

j e
±2iθ j , θ j ∈ (0, π/2]. The eigenvalues of AĀ are either real

and nonnegative (the nonnegative square roots of these eigenvalues determine � in
(4.4.17)) or are pairs of the form τ 2

j e
±2iθ j , τ j > 0, θ j ∈ (0, π/2] (these determine the

parameters in the 2-by-2 blocks in (4.4.17)). �

Corollary 4.4.18. A square complex matrix is conjugate normal if and only if it is
unitarily congruent to a direct sum of nonnegative scalar multiples of real orthogonal
matrices.

Proof. The previous theorem states that a conjugate-normal matrix is unitarily
congruent to a direct sum of nonnegative scalar multiples of 1-by-1 and 2-
by-2 real orthogonal matrices. Conversely, if A = U ZU T , in which U is uni-
tary, Z = σ 1 Q1 ⊕ · · · ⊕ σ m Qm , each σ j ≥ 0, and each Q j ∈ Mn j is real ortho-
gonal, then AA∗ = U Z Z T U ∗ = U (σ 2

1 Q1 QT
1 ⊕ · · · ⊕ σ 2

m Qm QT
m)U ∗ = U (σ 2

1 In1 ⊕
· · · ⊕ σ 2

m Inm )U ∗ and A∗A = U (Z T Z )U ∗ = U (σ 2
1 QT

1 Q1 ⊕ · · · ⊕ σ 2
m QT

m Qm)U ∗ =
U (σ 2

1 In1 ⊕ · · · ⊕ σ 2
m Inm )U ∗. �
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Canonical forms for skew-symmetric and unitary matrices under unitary congruence
are consequences of the canonical form for conjugate-normal matrices.

Corollary 4.4.19. Let A ∈ Mn be skew symmetric. Then r = rank A is even, the
nonzero singular values of A occur in pairs σ 1 = σ 2 = s1 ≥ σ 3 = σ 4 = s2 ≥ · · · ≥
σ r−1 = σ r = sr/2 ≥ 0, and A is unitarily congruent to

0n−r ⊕
[

0 s1

−s1 0

]
⊕ · · · ⊕

[
0 sr/2

−sr/2 0

]
(4.4.20)

Proof. Since A is skew symmetric, it is conjugate normal and its canonical form
(4.4.17) must be skew symmetric. This implies that � = 0 and every a j = 0. �

Corollary 4.4.21. Let V ∈ Mn be unitary. Then V is unitarily congruent to

In−2q ⊕
[

a1 b1

−b1 a1

]
⊕ · · · ⊕

[
aq bq

−bq aq

]
(4.4.22)

in which 2q ≤ n; a j , b j are real scalars such that a j ≥ 0, 0 < b j ≤ 1; and a2
j + b2

j = 1
for each j = 1, . . . , q. The parameters in (4.4.22) are uniquely determined by the
eigenvalues of V V̄ : n − 2q is the multiplicity of +1 as an eigenvalue of V V̄ ; if
e±2iθ j , j = 1, . . . , q, 0 < θ j ≤ π/2, are the eigenvalues of V V̄ that are not real and
nonnegative, then a j = cos θ j and b j = sin θ j , j = 1, . . . , q.

Proof. Since V is unitary, it is conjugate normal and its canonical form (4.4.17) must be
unitary. This implies that � is unitary, so � = I . It also implies that each 2-by-2 direct

summand in (4.4.17) is unitary. The blocks
[

a j b j

−b j a j

]
in (4.4.17) are real orthogonal,

so each τ j = 1.
The parameters in (4.4.22) are determined in the same way as in (4.4.17). �

Is there anything special about the Jordan canonical form of a complex symmetric
matrix? As a first step in answering this question, consider the symmetric matrix

Sm = 1√
2

(Im + i Km) (4.4.23)

in which Km ∈ Mm is a reversal matrix (0.9.5.1). Note that Km is symmetric and
K 2

m = Im .

Exercise. Verify that the matrix Sm defined in (4.4.23) is unitary.

Exercise. Let Jm(0) be the nilpotent Jordan block of size m. Verify
that (a) Km Jm(0) = [hi j ] is symmetric; (b) Jm(0)Km = [hi j ] is symmetric;
(c) Km Jm(0)Km = Jm(0)T . Hint: See (3.2.3).
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Exercise. Let Jm(λ) be the Jordan block of size m with eigenvalue λ. Verify that
Sm Jm(λ)S−1

m =
= Sm Jm(λ)S∗

m = Sm(λIm + Jm(0))S∗
m

= λIm + Sm Jm(0)S∗
m = λIm + 1

2
(I + i Km)Jm(0)(I − i Km)

= λIm + 1

2
(Jm(0) + Km Jm(0)Km) + i

2
Km Jm(0) − i

2
Jm(0)Km

and explain why Sm Jm(λ)S−1
m is symmetric.

Theorem 4.4.24. Each A ∈ Mn is similar to a complex symmetric matrix.

Proof. Each A ∈ Mn is similar to a direct sum of Jordan blocks, and the preceding
exercises show that each Jordan block is similar to a symmetric matrix. Thus, each
A ∈ Mn is similar to a direct sum of symmetric matrices. �

The preceding theorem shows that there is nothing special about the Jordan canonical
form of a symmetric complex matrix: Each Jordan matrix is similar to a complex
symmetric matrix.

Theorem 4.4.24 also implies that every complex matrix is similar to its transpose
and can be written as a product of two complex symmetric matrices; for a different
approach to this result, see (3.2.3.2).

Corollary 4.4.25. Let A ∈ Mn be given. There are symmetric matrices B, C ∈ Mn

such that A = BC. Either B or C may be chosen to be nonsingular.

Proof. Use the preceding theorem to write A = SE S−1, in which E = E T and S is
nonsingular. Then A = (SE ST )S−T S−1 = (SE ST )(SST )−1 = (SST )(S−T E S−1). �

The following lemma is useful in discussing diagonalization of a complex symmetric
matrix.

Lemma 4.4.26. Let X ∈ Mn,k with k ≤ n. Then X T X is nonsingular if and only if
X = Y B, in which Y ∈ Mn,k , Y T Y = Ik , and B ∈ Mk is nonsingular.

Proof. If X = Y B and Y T Y = Ik , then X T X = BT Y T Y B = BT B is nonsingular if
and only if B is nonsingular. Conversely, use (4.4.4c) to factor X T X = U�U T , in
which U ∈ Mk is unitary and U ∗X T XŪ = (XŪ )T (XŪ ) = � = diag(σ 1, . . . , σ k) is
nonnegative diagonal. If X T X is nonsingular, then so is U ∗X T XŪ = �. Let R =
diag(σ 1/2

1 , . . . , σ
1/2
k ) and observe that R−1(XŪ )T (XŪ )R−1 = (XŪ R−1)T (XŪ R−1) =

R−1�R−1 = Ik . Thus, with Y = (XŪ R−1) and B = RU T , we have Y T Y = Ik , X =
Y B, and B nonsingular. �

Example. For X ∈ Mn,k and k < n, explain why rank X = k if X T X is nonsingular,
but X T X can be singular even if rank X = k. Hint: Consider X = [1 i]T .

Example. Let λ be an eigenvalue of a symmetric matrix A ∈ Mn. Explain why x is
a right eigenvector of A associated with λ if and only if x̄ is a left eigenvector of A
associated with λ.
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If A ∈ Mn is symmetric and if A = S�S−1 for a diagonal � ∈ Mn and a nonsingular
S ∈ Mn , then � is symmetric, but it is not evident from this factorization that A is
symmetric. If S is a complex orthogonal matrix, however, then S−1 = ST and the
complex orthogonal diagonalization A = S�S−1 = S�ST is evidently symmetric.

Theorem 4.4.27. Let A ∈ Mn be symmetric. Then A is diagonalizable if and only if it
is complex orthogonally diagonalizable.

Proof. If there is a complex orthogonal Q such that QT AQ is diagonal, then of
course A is diagonalizable; only the converse assertion is interesting. Suppose that
A is diagonalizable and let x, y ∈ Cn be eigenvectors of A with Ax = λx and
Ay = μy, so ȳ∗A = (Ay)T = μyT = μȳ∗. If λ �= μ, then the biorthogonality prin-
ciple (1.4.7) ensures that x is orthogonal to ȳ, that is, ȳ∗x = yT x = 0. Let λ1, . . . , λd

be the distinct eigenvalues of A with respective multiplicities n1, . . . , nd and let
A = S�S−1, in which S is nonsingular and � = λ1 In1 ⊕ · · · ⊕ λd Ind . Partition the
columns of S = [S1 S2 . . . Sd ] conformally to � and observe that ASi = λi Si

for i = 1, 2, . . . , d. Biorthogonality ensures that ST
i S j = 0 if i �= j . It follows

that ST S = ST
1 S1 ⊕ · · · ⊕ ST

d Sd is block diagonal. Since ST S is nonsingular, each
diagonal block ST

i Si is nonsingular, i = 1, 2, . . . , d. Therefore, (4.4.26) ensures that
each Si = Yi Bi in which Y T

i Yi = Ini and Bi is nonsingular. Moreover, 0 = ST
i S j =

BT
i Y T

i Y j B j for i �= j implies that Y T
i Y j = 0 for i �= j . Let Y = [Y1 . . . Yd ] and

B = B1 ⊕ · · · ⊕ Bd . Then Y is complex orthogonal, B is nonsingular, S = Y B, and
A = S�S−1 = Y B�B−1Y T = Y (λ1 B1 B−1

1 ⊕ · · · ⊕ λd Bd B−1
d )Y T = Y�Y T . �

Theorem 4.4.27 has an important generalization: If A, B ∈ Mn and there is a single
polynomial p(t) such that AT = p(A) and BT = p(B) (in particular, if A and B are
symmetric), then A and B are similar if and only if they are similar via a complex
orthogonal similarity; see corollary 6.4.18 in Horn and Johnson (1991).

The exercise preceding (4.4.24) shows how to construct symmetric canonical blocks
that can be pieced together to obtain a symmetric canonical form under similarity for
any square complex matrix.

Problems

4.4.P1 Let A ∈ Mn . Show that (a) A is symmetric if and only if there exists an S ∈ Mn

such that rank S = rank A and A = SST ; (b) A is symmetric and unitary if and only if there
exists a unitary V ∈ Mn such that A = V V T .

4.4.P2 Provide details for the following approach to (4.4.4c) that uses real representa-
tions. Let A ∈ Mn be symmetric. If A is singular and rank A = r , it is unitarily congruent
to A′ ⊕ 0n−r , in which A′ ∈ Mr is nonsingular and symmetric; see (2.6.P20(b)). Sup-
pose that A is symmetric and nonsingular. Let A = A1 + i A2 with A1, A2 real and let

x, y ∈ Rn . Consider the real representation R2(A) =
[

A1 A2
A2 −A1

]
(see (1.3.P21)), in which

A1, A2, and R2(A) are real symmetric. (a) R2(A) is nonsingular. (b) R2(A)
[

x
−y

]
= λ

[
x

−y

]
if and only if R2(A)

[
y
x

]
= −λ

[
y
x

]
, so the eigenvalues of R2(A) occur in ± pairs.

(c) Let
[

x1
−y1

]
, . . . ,

[
xn

−yn

]
be orthonormal eigenvectors of R2(A) associated with its posi-

tive eigenvalues λ1, . . . , λn , let X = [x1 . . . xn], Y = [y1 . . . yn], � = diag(λ1, . . . , λn),
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V =
[

X Y
−Y X

]
, and � = � ⊕ (−�). Then V is real orthogonal and R2(A) = V �V T . Let

U = X − iY , so V = R1(Ū ) (see (1.3.P20)). Explain why U is unitary and show that
U�U T = A.

4.4.P3 Provide details for the following approach to (4.4.4c). Let A ∈ Mn be symmetric.
(a) AĀ is Hermitian, so AĀ = V �1V ∗ in which V is unitary and �1 is real diagonal.
(b) V ∗AV̄ = B is symmetric and normal, so (2.5.P57) ensures that B = Q�QT in
which � is diagonal and Q is real orthogonal. (c) A = (V Q)�(V Q)T . Let � = E�ET

with diagonal E and �, E unitary, and � nonnegative to get A = U�U T with
U = V QE .

4.4.P4 What does (4.4.4c) say when A is real symmetric? How is it related to the spectral
decomposition (2.5.11a) of a real symmetric matrix?

4.4.P5 Let A ∈ Mn . (a) Use (2.5.20(a)) to show that A is unitarily similar to a complex
symmetric matrix if and only if A is similar to AT via a symmetric unitary matrix. (b) If A
is unitarily similar to AT and n ∈ {2, . . . , 7}, then A must be unitarily similar to a complex
symmetric matrix, but not if n = 8! See S. R. Garcia and J. E. Tener, Unitary equivalence
of a matrix to its transpose, J . Operator Theory 68 (2012) 179–203. (c) However, A ⊕ AT

is always unitarily similar to its transpose; prove this using
[

0 I
I 0

]
.

4.4.P6 Let A ∈ M2 be given and adopt the notation in (4.4.5). Show that (a) AĀ has two
non-real conjugate eigenvalues if and only if −2| det A| < tr AĀ < 2| det A|; (b) AĀ has
two real negative eigenvalues if and only if tr AĀ ≤ −2| det A| < 0.

4.4.P7 Apply the reduction algorithm in the proof of (4.4.3) to A =
[

1 i
−i 1

]
. Show that

A = UU T with  =
[

0 2
0 0

]
and U = 1√

2

[
1 1
−i i

]
.

4.4.P8 Apply the reduction algorithm in the proof of (4.4.3) to A =
[

1 i
i 1

]
. Show that it is

unitarily congruent to diag(
√

2,
√

2).

4.4.P9 Let A ∈ Mn . (a) Show that there is a unitary U ∈ Mn such that U AU ∗ is real if and
only if there is a symmetric unitary W ∈ Mn such that Ā = W AW ∗ = W AW̄ . (b) Show
that there is a unitary U ∈ Mn such that U AU T is real if and only if there is a symmetric
unitary W ∈ Mn such that Ā = W AW T = W AW .

4.4.P10 If n > 1 and v ∈ Cn is a nonzero isotropic vector, why is the symmetric matrix
A = vvT not diagonalizable? What is its Jordan canonical form?

4.4.P11 If A ∈ Mn is symmetric and nonsingular, show that A−1 is symmetric.

4.4.P12 Deduce from (4.4.24) that every square complex matrix is similar to its transpose.

4.4.P13 Is every real square matrix similar to a real symmetric matrix? to a complex
symmetric matrix? Via a real similarity matrix? Why?

4.4.P14 Let z = [z1 z2 . . . zn]T be a vector of n complex variables and let f (z) be a complex
analytic function on some domain D ⊂ Cn . Then H = [∂2 f/∂zi ∂z j ] ∈ Mn is symmetric at
every point z ∈ D. The discussion in (4.0.3) shows that one may assume that the coefficient
matrix A = [ai j ] in the general linear partial differential operator L f =∑n

i, j=1 ai j (z) ∂2 f
∂zi ∂z j

is symmetric. At each point z0 ∈ D, explain why there is a unitary change of variables
z → Uζ such that L is diagonal at z0 in the new coordinates, that is, L f =∑n

i=1 σ i
∂2 f
∂ζ 2

i
,

σ 1 ≥ σ 2 ≥ · · · ≥ σ n ≥ 0 at z = z0.
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4.4.P15 Let A, B ∈ Mn be conjugate normal. Explain why A and B are unitarily congruent
if and only if AĀ and B B̄ have the same eigenvalues.

4.4.P16 The 2-by-2 real orthogonal blocks in (4.4.17) are determined (a j = cos θ j , b j =
sin θ j ) by angles obtained from the pairs of eigenvalues τ 2

j e
±2iθ j , θ j ∈ (0, π/2], of AĀ that

are not real and nonnegative. Use the preceding problem to show that each such block is

unitarily congruent to a unitary (and hence congruence normal) block
[

0 1
e2iθ j 0

]
and explain

how this observation leads to an alternative to (4.4.17) as a canonical form for congruence
normal matrices: A ∈ Mn is conjugate normal if and only if it is unitarily congruent to a
direct sum of blocks, each of which is

[σ ] or τ

[
0 1

eiθ 0

]
, σ , τ , θ ∈ R, σ ≥ 0, τ > 0, 0 < θ ≤ π (4.4.28)

Explain why the parameters in the blocks of this direct sum are uniquely determined by the
eigenvalues of AĀ.

4.4.P17 Let σ 1 be the largest singular value of a symmetric matrix A ∈ Mn . Show that
{xT Ax : ‖x‖2 = 1} = {z ∈ C : |z| ≤ σ 1}. Compare this result with (4.2.2). What can you
say if A is not symmetric?

4.4.P18 Explain why A ∈ Mn is conjugate normal if and only if it is unitarily congruent to
a real normal matrix.

4.4.P19 Let A ∈ Mn . Explain why tr AĀ is real (but not necessarily nonnegative), and
show that tr AA∗ ≥ tr AĀ.

4.4.P20 Let Jm(λ) be a Jordan block (3.1.2) and let Km be a reversal matrix (0.9.5.1).
Explain why Ĵ m(λ) = Km Jm(λ) is symmetric and is real symmetric if λ is real. Suppose that
A ∈ Mn has the Jordan canonical form (3.1.12), let Ĵ = Kn1 Jn1 (λ1) ⊕ · · · ⊕ Knq Jnq (λq ),
and let K̂ = Kn1 ⊕ · · · ⊕ Knq . Explain why A = (SK̂ ST )(S−T Ĵ S−1) is a product of two
complex symmetric matrices. This is a proof of (4.4.25) that does not rely on (4.4.24).

4.4.P21 Let Cm(a, b) be a real Jordan block (3.4.1.4) and let K2m be a rever-
sal matrix (0.9.5.1). Explain why Ĉm(a, b) = K2mCm(a, b) is real symmetric. Let
A ∈ Mn(R), suppose that S ∈ Mn(R) is nonsingular and S−1 AS equals the real Jor-
dan matrix (3.4.1.6), let Ĵ = K2n1 Cn1 (a1, b1) ⊕ · · · ⊕ K2n p Cn p (ap, bp) ⊕ Km1 Jm1 (μ1) ⊕
· · · ⊕ Kmr Jmr (μr ), and let K̂ = K2n1 ⊕ · · · ⊕ K2n p ⊕ Km1 ⊕ · · · ⊕ Kmr . Explain why A =
(SK̂ ST )(S−T Ĵ S−1) is a product of two real symmetric matrices.

4.4.P22 Let A ∈ Mn be symmetric and suppose that A2 = I . Explain why there is a complex
orthogonal Q ∈ Mn and k ∈ {0, 1, . . . , n} such that A = Q(−Ik ⊕ In−k)QT .

4.4.P23 Let A ∈ Mn be a Toeplitz matrix and let Kn ∈ Mn be a reversal matrix. Explain
why A has a singular value decomposition of the form A = (KnU )�U T for some unitary
U ∈ Mn .

4.4.P24 Let λ be an eigenvalue of A ∈ Mn . Suppose that x is a (right) λ-eigenvector of
A and x̄ is a left λ-eigenvector of A. (a) If x is isotropic (0.2.5), show that λ cannot be
a simple eigenvalue. (b) If λ has geometric multiplicity 1 and is not a simple eigenvalue,
show that x is isotropic.

4.4.P25 Let λ, x be an eigenpair of a symmetric matrix A ∈ Mn . (a) Explain why x̄ is a
left λ-eigenvector of A. (b) If x is isotropic, use the preceding problem to show that λ is
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not a simple eigenvalue of A; in particular, A cannot have n distinct eigenvalues. (c) If λ

has geometric multiplicity one and is not a simple eigenvalue, explain why x is isotropic.
(d) Explain why the symmetric block Sm Jm(λ)S−1

m constructed in the exercise preceding
(4.4.24) has an isotropic eigenvector if m > 1.

4.4.P26 Show that real matrices A, B ∈ Mn(R) are complex orthogonally similar if and
only if they are real orthogonally similar.

4.4.P27 Let A = [ai j ] ∈ Mn be symmetric, and let A = U�U T with a unitary U = [ui j ]
and a nonnegative diagonal � = diag(σ 1, . . . , σ n) ∈ Mn in which σ 1 ≥ · · · ≥ σ n ≥ 0. (a)
Explain why diag A = S diag � =∑n

j=1 σ j s j , in which every absolute row and column
sum of the complex matrix S = [u2

i j ] = [s1 . . . sn] ∈ Mn is equal to 1. Compare with
(4.3.P10). (b) Choose real θ1, . . . , θn such that e−iθ j u2

j1 = |u2
j1| for j = 1, . . . , n and let

z = [eiθ1 . . . eiθn ]T . Explain why σ 1 = σ 1z∗s1 = z∗ diag A − σ 2z∗s2 − · · · − σ nz∗sn ≤
|a11| + · · · + |ann| + σ 2 + · · · + σ n . (c) If A has zero main diagonal entries, explain why
its singular values must satisfy the inequality σ 1 ≤ σ 2 + · · · + σ n .

4.4.P28 Let A ∈ Mn be given. Show that det(I + AĀ) is real and nonnegative.

4.4.P29 Let Ai j ∈ Mn , i, j = 1, 2, and let A =
[

A11 A12
A21 A22

]
∈ M2n . We say that A is a matrix

of quaternion type if A21 = − Ā12 and A22 = Ā11. A matrix A = [Ai j ]2
i, j=1 (with each

Ai j ∈ Mn) of quaternion type is also called a complex representation (of the quaternion
matrix A11 + A12 j). (a) Explain why a real matrix A = [Ai j ]2

i, j=1 of quaternion type
is the real representation R1(A11 + i A12) discussed in (1.3.P20). (b) If A ∈ M2n is a

matrix of quaternion type, show that det A is real and nonnegative. (c) Let S2n =
[

0n In

−In 0n

]
.

Show that A = [Ai j ]2
i, j=1 (with each Ai j ∈ Mn) is a matrix of quaternion type if and only

if S2n A = ĀS2n . (d) Let A, B ∈ M2n be matrices of quaternion type, let α, β ∈ R, and
let p(s, t) be a polynomial in two noncommuting variables with real coefficients. Use
the identity in (c) to show that Ā, AT , A∗, AB, αA + β B, and p(A, B) are matrices
of quaternion type. (e) Use (c) to show that a matrix A ∈ M2n of quaternion type is
similar to Ā via S2n , so the non-real blocks in the Jordan canonical form of A occur
in conjugate pairs. Why is A similar to a real matrix? (f) If A = [Ai j ]2

i, j=1 ∈ M2n is a
real matrix of quaternion type, explain why its Jordan canonical form consists only of
pairs of blocks of the form Jk(λ) ⊕ Jk(λ̄) (λ can be either real or non real), and why A
is similar to F ⊕ F̄ , in which F = A11 + i A12. (g) It is known that the assertion in (f)
remains true even if A is complex: The Jordan canonical form of a matrix A ∈ Mn of
quaternion type consists only of pairs of blocks of the form Jk(λ) ⊕ Jk(λ̄), that is, A is
similar to F ⊕ F̄ for some F ∈ Mn . Why does this confirm that det A is real and non-
negative?

4.4.P30 Explain why the following property of A ∈ Mn is a similarity invariant (that is,
if one matrix in a similarity equivalence class has the property, then every matrix in that
similarity equivalence class has it): A can be written as A = BC , in which one factor
is symmetric and the other factor is skew symmetric (respectively, both factors are skew
symmetric, or both factors are symmetric). Why should one expect that there are three sets
of explicit properties of the Jordan canonical form of A that are, respectively, necessary
and sufficient for A to be factorable in each of these three ways?

4.4.P31 What property of the Jordan canonical form of A ∈ Mn is necessary and sufficient
for it to be written as A = BC , in which both factors are symmetric?
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4.4.P32 It is known that A ∈ Mn can be written as a product of a symmetric matrix and
a skew-symmetric matrix if and only if A is similar to −A, that is, if and only if the
nonsingular part of the Jordan canonical form of A consists only of pairs of the form
Jk(λ) ⊕ Jk(−λ). Prove the “only if” part of this assertion.

4.4.P33 It is known that A ∈ Mn is a product of two skew-symmetric matrices if and only
if the nonsingular part of the Jordan canonical form of A consists only of pairs of the form
Jk(λ) ⊕ Jk(λ) and the Segre characteristic of A (3.1.19) associated with the eigenvalue zero
satisfies the inequalities s2k−1(A, 0) − s2k(A, 0) ≤ 1 for k = 1, 2, . . . . (a) Prove a special
case of half of this assertion: If A ∈ Mn is nonsingular and its Jordan canonical form consists
only of pairs of the form Jk(λ) ⊕ Jk(λ), then n is even and A is similar to a block matrix of

the form
[

F 0
0 F

]
, which is similar to

[
F 0
0 F T

]
=
[

0 I
−I 0

] [
0 −F T

F 0

]
=
[

0 −F
F T 0

] [
0 I
−I 0

]
.

(b) Let wp(A, 0), p = 1, 2, . . . be the Weyr characteristic of A (3.1.17) associated with
the eigenvalue zero. Show that s2k−1(A, 0) − s2k(A, 0) ≤ 1 for k = 1, 2, . . . if and only if
wp−1(A, 0) > wp(A, 0) for each p = 2, 3, . . . such that wp(A, 0) is odd (that is, the Jordan
canonical form of A contains at least one nilpotent block of size p − 1 whenever p ≥ 2
and wp(A, 0) is odd).

4.4.P34 Although a symmetric complex matrix can have any given Jordan canonical form
(4.4.24), the Jordan canonical form of a skew-symmetric complex matrix has a special
form. It consists of only the following three types of direct summands: (a) pairs of the form
Jk(λ) ⊕ Jk(−λ), in which λ �= 0; (b) pairs of the form Jk(0) ⊕ Jk(0), in which k is even;
and (c) Jk(0), in which k is odd. Explain why the Jordan canonical form of a complex
skew-symmetric matrix A ensures that A is similar to −A; also deduce this fact from
(3.2.3.1).

4.4.P35 Why is a real orthogonal matrix diagonalizable? What is its Jordan canonical
form? What is its real Jordan form?

4.4.P36 Let a nonsingular A ∈ Mn be given, and suppose that there is a nonsingular
complex symmetric S ∈ Mn such that AT = S A−1S−1. Show that A is similar to a complex
orthogonal matrix as follows: Choose a Y ∈ Mn such that S = Y T Y (4.4.P1) and explain
why Y AY−1 is complex orthogonal.

4.4.P37 Let a nonzero λ ∈ C and an integer m ≥ 2 be given. Let B ∈ Mn be a complex
symmetric matrix to which the Jordan block Jm(λ) is similar (4.4.24), and let A = B ⊕ B−1.

(a) Explain why A−1 is similar to AT via the reversal matrix K2m =
[

0 Im

Im 0

]
. (b) Use

the preceding problem to explain why A is similar to a complex orthogonal matrix. (c)
Explain why there is a complex orthogonal matrix Q ∈ M4 whose Jordan canonical form is
J2(2) ⊕ J2( 1

2 ); in particular, and in contrast to (4.4.P35) Q is not diagonalizable. It is known
that the Jordan canonical form of a complex orthogonal matrix is a direct sum of only the
following five types of summands: Jk(λ) ⊕ Jk(λ−1), in which 0 �= λ �= ±1; Jk(1) ⊕ Jk(1),
in which k is even; Jk(−1) ⊕ Jk(−1), in which k is even; Jk(1), in which k is odd; and
Jk(−1), in which k is odd.

4.4.P38 Let A ∈ Mn and letA =
[

0 A
AT 0

]
∈ M2n . One says that A has a QS factorization if

there is a complex orthogonal Q ∈ Mn and a complex symmetric S ∈ Mn such that A = QS.
It is known that A has a QS factorization if and only if rank(AAT )k = rank(AT A)k for each
k = 1, . . . , n. (a) Use this rank condition to show that A has a QS factorization if and only
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if AAT is similar to AT A. (b) Does
[

1 i
0 0

]
have a QS factorization? (c) Suppose that A is

nonsingular. Why does it have a QS factorization? In this case it is known that there is a
polynomial p(t) such that S = p(AT A), and if A is real, then both Q and S may be chosen
to be real; see theorem 6.4.16 in Horn and Johnson (1991). (d) If A has a QS factorization,

show that A is similar to
[

0 S
S 0

]
via the similarity matrix Q ⊕ I . Explain why the Jordan

canonical form of A consists only of direct summands of the form Jk(λ) ⊕ Jk(−λ). See
(2.5.20(b)) for a special QS factorization of a unitary matrix.

4.4.P39 Use the QS factorization in the preceding problem to prove a slightly stronger
version of (4.4.27): Suppose that A ∈ Mn is symmetric and A = B�B−1 for some non-
singular B and diagonal �. Write B = QS, in which Q is complex orthogonal and S is
symmetric. Then A = B�B−1 = Q�QT .

4.4.P40 Let A ∈ Mn and let A =
[

0 A
Ā 0

]
∈ M2n . Show that (a) A is normal if and only if

A is conjugate normal; (b) A is conjugate normal if and only if A is normal.

4.4.P41 Let A ∈ Mn . It is known that AĀ is normal (that is, A is congruence normal) if
and only if A is unitarily congruent to a direct sum of blocks, each of which is

[σ ] or τ

[
0 1
μ 0

]
, in which σ , τ ∈ R, σ ≥ 0, τ > 0, μ ∈ C, and μ �= 1 (4.4.29)

This direct sum is uniquely determined by A, up to permutation of its blocks and replacement
of any nonzero parameter μ by μ−1 with a corresponding replacement of τ by τ |μ|. (a) Use
the canonical forms (4.4.28) and (4.4.29) to show that every conjugate-normal matrix is
congruence normal. (b) Use the definition of conjugate normality and the characterization
of congruence normal matrices in (2.5.P27) to give a different proof that every conjugate-
normal matrix is congruence normal.

4.4.P42 Let A ∈ Mn and suppose that AĀ is Hermitian. Deduce from the canonical form
(4.4.29) that A is unitarily congruent to a direct sum of blocks, each of which is

[σ ] or τ

[
0 1
μ 0

]
, in which σ , τ , μ ∈ R, σ ≥ 0, τ > 0, and μ ∈ [−1, 1) (4.4.30)

Explain why this direct sum is uniquely determined by A, up to permutation of its blocks.

4.4.P43 Let A ∈ Mn and suppose that AĀ is positive semidefinite. Deduce from the
canonical form (4.4.30) that A is unitarily congruent to a direct sum of blocks, each of
which is

[σ ] or τ

[
0 1
μ 0

]
, in which σ , τ , μ ∈ R, σ ≥ 0, τ > 0, and μ ∈ [0, 1) (4.4.31)

Explain why this direct sum is uniquely determined by A, up to permutation of its blocks.

4.4.P44 Let A ∈ Mn . (a) Show that AĀ = AA∗ if and only if A is symmetric. (b) Show
that AĀ = −AA∗ if and only if A is skew symmetric.

4.4.P45 If U, V ∈ Mn are unitary and symmetric, show that they are unitarily congruent.

4.4.P46 This problem builds on (2.5.P69) and (2.5.P70). (a) If A, B ∈ Mn are unitarily
congruent, show that the three pairs (AA∗, B B∗), (AĀ, B B̄), and (AT Ā, BT B̄) are simul-
taneously unitarily similar. It is known that this necessary condition is also sufficient for A
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and B to be unitarily congruent. (b) Define the 4n-by-4n block upper triangular matrices

K A =

⎡
⎢⎢⎣

0 I AA∗ AĀ
0 I AT Ā

0 I
0

⎤
⎥⎥⎦ and K B =

⎡
⎢⎢⎣

0 I B B∗ B B̄
0 I BT B̄

0 I
0

⎤
⎥⎥⎦ (4.4.32)

Explain why A and B are unitarily congruent if and only if K A and K B are unitarily similar.

4.4.P47 Use the definitions and notation of (2.5.P69). (a) If MAW̄ = W MB , show that
W is block upper triangular, Wii = W11 if i is odd, and Wii = W11 if i is even.
(b) Suppose that W is unitary and MAW̄ = W MB (that is, MA = W MB W T , so MA is uni-
tarily congruent to MB via W ). Show that W11 = U is unitary, Wii = U if i is odd, Wii = Ū
if i is even, and W = U ⊕ Ū ⊕ U ⊕ · · · is block diagonal. Moreover, Ai j = U Bi jU ∗ if
i is odd and j is even (simultaneous unitary similarity via U ); Ai j = U Bi jU T if i and j
are both odd (simultaneous unitary congruence via U ); Ai j = Ū Bi jU ∗ if i and j are both
even (simultaneous unitary congruence via Ū ); and Ai j = Ū Bi jU T if i is even and j is
odd (simultaneous unitary similarity via Ū ). (c) Describe how the ideas in (a) and (b) can
be used in an algorithm to decide if given pairs of matrices are simultaneously unitarily
similar/congruent.

4.4.P48 Suppose that A ∈ Mn has distinct singular values. Use (4.4.16) to show that A is
conjugate normal if and only if it is symmetric.

4.4.P49 Let � ∈ Mn be a nonnegative quasidiagonal matrix that is a direct sum of an

identity matrix and blocks of the form
[

0 σ−1

σ 0

]
, in which σ > 1. If U ∈ Mn is unitary,

show that A = U�U T is coninvolutory. It is known that every coninvolutory matrix has a
special singular value decomposition of this form, which is an analog of the special singular
value decomposition (4.4.4c) for a complex symmetric matrix.

Notes and Further Readings. A block upper triangular form that can be achieved for
any square complex matrix under unitary congruence is in D. C. Youla, A normal form
for a matrix under the unitary congruence group, Canad. J. Math. 13 (1961) 694–704;
Youla’s 2-by-2 diagonal blocks are different from (but of course are unitarily congruent
to) those in (4.4.9). For more information about unitary congruence, conjugate-normal
matrices, congruence-normal matrices, and a proof of the canonical form in (4.4.P41),
see R. A. Horn and V. V. Sergeichuk, Canonical forms for unitary congruence and
∗congruence, Linear Multilinear Algebra 57 (2009) 777–815. For an exposition of
analogies between normal and conjugate-normal matrices, and a list of 45 criteria for
conjugate normality, see H. Faßbender and Kh. Ikramov, Conjugate-normal matrices:
A survey, Linear Algebra Appl. 429 (2008) 1425–1441. Leon Autonne (1915) seems
to have discovered the canonical form (4.4.4c) for a complex symmetric matrix (the
Autonne–Takagi factorization; see the Notes and Further Readings in (2.6)); there have
been many subsequent independent rediscoveries and different proofs, for example,
Takagi (1925), Jacobson (1939), Siegel (1943; see (4.4.P3)), Hua (1944), Schur (1945;
see (4.4.P2)) and Benedetti and Cragnolini (1984). For a canonical form for complex
symmetric matrices under complex orthogonal similarity, see N. H. Scott, A new
canonical form for complex symmetric matrices, Proc. R. Soc. Lond. Ser. A 440 (1993)
431–442; it makes use of the information in (4.4.P24) and (4.4.P25). For a proof of
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the assertion in (4.4.P29(g)) about the Jordan canonical form of a matrix of quaternion
type, see F. Zhang and Y. Wei, Jordan canonical form of a partitioned complex matrix
and its application to real quaternion matrices, Comm. Algebra 29 (2001) 2363–2375.
Characterizations of the matrix products considered in (4.4.P31 to P33) were known
as early as 1922 (H. Stenzel); modern proofs may be found in L. Rodman, Products
of symmetric and skew-symmetric matrices, Linear Multilinear Algebra 43 (1997)
19–34. The equivalence asserted in (4.4.P33(b)) is due to Ross Lippert. The assertions
about Jordan canonical forms in (4.4.P34) and (4.4.P38) are proved in chapter XI of
Gantmacher (1959) and in R. A. Horn and D. I. Merino, The Jordan canonical forms
of complex orthogonal and skew-symmetric matrices, Linear Algebra Appl. 302–
303 (1999) 411–421. For more about the QS factorization in (4.4.P36), see theorem
6.4.16 in Horn and Johnson (1991); a proof of the rank condition is in I. Kaplansky,
Algebraic polar decomposition, SIAM J. Matrix Analysis Appl. 11 (1990) 213–217;
also see theorem 13 in R. A. Horn and D. I. Merino, Contragredient equivalence: A
canonical form and some applications, Linear Algebra Appl. 214 (1995) 43–92, where
two additional equivalent conditions may be found: A = P AT Q or A = Q AT Q for
some complex orthogonal matrices P and Q. For a derivation of the canonical form in
(4.4.P41), see theorem 7.1 in R. A. Horn and V. V. Sergeichuk, Canonical forms for
unitary congruence and ∗congruence, Linear Multilinear Algebra 57 (2009) 777–815.
The necessary and sufficient condition for unitary congruence mentioned in (4.4.P46)
is proved in R. A. Horn and Y. P. Hong, A characterization of unitary congruence,
Linear Multilinear Algebra 25 (1989) 105–119. For more information about unitary
congruence, simultaneous unitary congruences, simultaneous unitary similarities and
the block matrix MA in (2.5.P69), see T. G. Gerasimova, R. A. Horn, and V. V.
Sergeichuk, Simultaneous unitary equivalences, Linear Algebra Appl. (in press). The
special singular value decomposition in (4.4.P49) was discovered by L. Autonne; for a
proof, see theorem 1.5 in R. A. Horn and D. I. Merino, A real-coninvolutory analog of
the polar decomposition, Linear Algebra Appl. 190 (1993) 209–227.

4.5 Congruences and diagonalizations

A real second-order linear partial differential operator has the form

L f =
n∑

i, j=1

ai j (x)
∂2 f (x)

∂xi ∂x j
+ lower order terms (4.5.1)

in which the coefficients ai j (x) are defined on a domain D ⊂ Rn and f is twice con-
tinuously differentiable on D. As in (4.0.3), we may assume without loss of generality
that the matrix of coefficients A(x) = [ai j (x)] is real symmetric for all x ∈ D. By
lower-order terms we mean terms involving f and its first partial derivatives only.

If we make a nonsingular change of independent variables to new variables s =
[si ] ∈ D ⊂ Rn , then each si = si [x] = si (x1, . . . , xn), and non-singularity means that
the Jacobian matrix

S(x) =
[
∂si (x)

∂x j

]
∈ Mn
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is nonsingular at each point of D. This assumption guarantees that the inverse change
of variables x = x(s) exists locally. In these new coordinates, the operator L has the
form

L f =
n∑

i, j=1

⎡
⎣ n∑

p,q=1

∂si

∂x p
apq

∂s j

∂xq

⎤
⎦ ∂2 f

∂si ∂s j
+ lower order terms

=
n∑

i, j=1

bi j
∂2 f

∂si ∂s j
+ lower order terms (4.5.2)

Thus, the new matrix of coefficients B (in the coordinates s = [si ]) is related to the old
matrix of coefficients A (in the coordinates x = [xi ]) by the relation

B = S AST (4.5.3T )

in which S is a real nonsingular matrix.
If the differential operator L is associated with some physical law (e.g., the Laplacian

L = ∇2 and electrostatic potentials), the choice of coordinates for the independent
variable should not affect the law, even though it affects the form of L. What are the
invariants of the set of all matrices B that are related to a given matrix A by the relation
(4.5.3T )?

Another example comes from probability and statistics. Suppose that X1, X2, . . . ,

Xn are complex random variables with finite second moments on some probability
space with expectation operator E , and let μi = E(Xi ) denote the respective means. The
Hermitian matrix A = [ai j ] = (E[(Xi − μi )(X j − μ j )]) = Cov(X ) is the covariance
matrix of the random vector X = [X1 . . . Xn]T . If S = [si j ] ∈ Mn , then SX is a
random vector whose entries are linear combinations of the entries of X . The means of
the entries of SX are

E((SX )i ) = E

(
n∑

k=1

sik Xk

)
=

n∑
k=1

sik E(Xk) =
n∑

k=1

sikμk

and the covariance matrix of SX is

Cov(SX ) = (E[((SX )i − E((SX )i ))((SX ) j − E((SX ) j ))])

=
⎛
⎝E

⎡
⎣
⎛
⎝ n∑

p=1

sip(X p − μp)

⎞
⎠
⎛
⎝ n∑

q=1

s̄ jq (X̄q − μ̄q )

⎞
⎠
⎤
⎦
⎞
⎠

=
⎛
⎝ n∑

p,q=1

sip E[(X p − μp)(X̄q − μ̄q )]s̄ jq

⎞
⎠ =

⎛
⎝ n∑

p,q=1

sipapq s̄ jq

⎞
⎠

= S AS∗

This shows that

Cov(SX ) = S Cov(X )S∗ (4.5.3∗)
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As a final example, consider the general quadratic form

Q A(x) =
n∑

i, j=1

ai j xi x j = xT Ax, x = [xi ] ∈ Cn

and the Hermitian form

HB(x) =
n∑

i, j=1

bi j x̄i x j = x∗ Bx, x = [xi ] ∈ Cn

in which A = [ai j ] and B = [bi j ]. If S ∈ Mn , then

Q A(Sx) = (Sx)T A(Sx) = xT (ST AS)x = QST AS(x)

HB(Sx) = (Sx)∗B(Sx) = x∗(S∗BS)x = HS∗BS(x)

Definition 4.5.4. Let A, B ∈ Mn be given. If there exists a nonsingular matrix S such
that

(a) B = S AS∗, then B is said to be ∗congruent (“star-congruent”) or conjunctive
to A

(b) B = S AST , then B is said to be congruent or T congruent (“tee-congruent”) to
A.

Exercise. Explain why congruent (respectively, ∗congruent) matrices have the
same rank.

If A is Hermitian, then so is S AS∗, even if S is singular; if A is symmetric, then so is
S AST , even if S is singular. Usually, one is interested in congruences that preserve the
type of the matrix: ∗congruence for Hermitian matrices and T congruence for symmetric
matrices.

Both types of congruence share an important property with similarity.

Theorem 4.5.5. Both ∗congruence and congruence are equivalence relations.

Proof. Reflexivity: A = I AI ∗. Symmetry: If A = SBS∗ and S is nonsingular,
then B = S−1 A(S−1)∗. Transitivity: If A = S1 BS∗

1 and B = S2C S∗
2 , then A =

(S1S2)C(S1S2)∗. Verification of reflexivity, symmetry, and transitivity for T congruence
can be verified in the same fashion. �

What canonical forms are available for ∗congruence and T congruence? That is, if
we partition Mn into ∗congruence (respectively, into T congruence) equivalence classes,
what choice can we make for a canonical representative from each equivalence class?
We begin by considering the simplest cases first: Canonical forms for Hermitian ma-
trices under ∗congruence and complex symmetric matrices under T congruence.

Definition 4.5.6. Let A ∈ Mn be Hermitian. The inertia of A is the ordered triple

i(A) = (i+(A), i−(A), i0(A))
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in which i+(A) is the number of positive eigenvalues of A, i−(A) is the number of
negative eigenvalues of A, and i0(A) is the number of zero eigenvalues of A. The
signature of A is the quantity i+(A) − i−(A).

Exercise. Explain why rank A = i+(A) + i−(A).

Exercise. Explain why the inertia of a Hermitian matrix is uniquely determined
by its rank and signature.

Let A ∈ Mn be Hermitian, and write A = U�U ∗, in which � = diag(λ1, . . . , λn)
and U is unitary. It is convenient to assume that the positive eigenvalues occur first
among the diagonal entries of �, then the negative eigenvalues, and then the zero
eigenvalues (if any). Thus λ1, λ2, . . . , λi+(A) > 0, λi+(A)+1, . . . , λi+(A)+i−(A) < 0, and
λi+(A)+i−(A)+1 = · · · = λn = 0. Define the real diagonal nonsingular matrix

D = diag(λ1/2
1 , . . . , λ

1/2
i+(A)︸ ︷︷ ︸

i+(A) entries

, (−λi+(A)+1)1/2, . . . , (−λi+(A)+i−(A))
1/2︸ ︷︷ ︸

i−(A) entries

, 1, . . . , 1︸ ︷︷ ︸
i0(A) entries

)

Then � = DI (A)D, in which the real matrix

I (A) = Ii+(A) ⊕ (−Ii−(A)) ⊕ 0i0(A)

is the inertia matrix of A. Finally, A = U�U ∗ = U DI (A)DU ∗ = SI (A)S∗, in which
S = U D is nonsingular. We have proved the following theorem.

Theorem 4.5.7. Each Hermitian matrix is ∗congruent to its inertia matrix.

Exercise. If A ∈ Mn(R) is symmetric, modify the preceding argument to show
that A is congruent via a real matrix to its inertia matrix.

The inertia matrix would be a very pleasant canonical representative of the equiva-
lence class of matrices that are ∗congruent to A if we knew that ∗congruent Hermitian
matrices have the same inertia. This is the content of the following theorem, Sylvester’s
law of inertia.

Theorem 4.5.8 (Sylvester). Hermitian matrices A, B ∈ Mn are ∗congruent if and only
if they have the same inertia, that is, if and only if they have the same number of positive
eigenvalues and the same number of negative eigenvalues.

Proof. Since each of A and B is ∗congruent to its inertia matrix, if they have the same
inertia, they must be ∗congruent. The converse assertion is more interesting.

Suppose that S ∈ Mn is nonsingular and that A = SBS∗. Congruent matrices have
the same rank, so it follows that i0(A) = i0(B) and hence it suffices to show that i+(A) =
i+(B). Let v1, v2, . . . , vi+(A) be orthonormal eigenvectors of A associated with the pos-
itive eigenvalues λ1(A), . . . , λi+(A)(A), and let S+(A) = span{v1, . . . , vi+(A)}. If x =
α1v1 + · · · + αi+(A)vi+(A) �= 0 then x∗Ax = λ1(A)|α1|2 + · · · + λi+(A)(A)|αi+(A)|2 >

0; that is, x∗Ax > 0 for all nonzero x in the subspaceS+(A), whose dimension is i+(A).
The subspace S∗S+(A) = {y : y = S∗x and x ∈ S+(A)} also has dimension i+(A).
If y = S∗x �= 0 and x ∈ S+(A), then y∗By = x∗(SBS∗)x = x∗Ax > 0, so (4.2.12)
ensures that i+(B) ≥ i+(A). If we reverse the roles of A and B in the preceding
argument, it shows that i+(A) ≥ i+(B). We conclude that i+(B) = i+(A). �
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Exercise. Explain why a Hermitian A ∈ Mn is ∗congruent to the identity matrix
if and only if it is positive definite.

Exercise. Let A, B ∈ Mn(R) be symmetric. Explain why A and B are ∗congruent
via a complex matrix if and only if they are congruent via a real matrix.

Exercise. Let A, S ∈ Mn with A Hermitian and S nonsingular. Let λ1 ≤ · · · ≤
λn be the nondecreasingly ordered eigenvalues of A and let μ1 ≤ · · · ≤ μn be
the nondecreasingly ordered eigenvalues of S AS∗. Explain why, for each j =
1, . . . , n, λ j and μ j are both negative, both zero, or both positive.

Although the respective signs of the nonincreasingly ordered eigenvalues of a Her-
mitian matrix do not change under ∗congruence, their magnitudes can change. Bounds
on the change in magnitude are given in the following quantitative form of Sylvester’s
theorem.

Theorem 4.5.9 (Ostrowski). Let A, S ∈ Mn with A Hermitian and S nonsingular. Let
the eigenvalues of A, S AS∗, and SS∗ be arranged in nondecreasing order (4.2.1).
Let σ 1 ≥ · · · ≥ σ n > 0 be the singular values of S. For each k = 1, . . . , n there is a
positive real number θ k ∈ [σ 2

n, σ
2
1] such that

λk(S AS∗) = θ kλk(A) (4.5.10)

Proof. First observe that σ 2
n = λ1(SS∗) ≤ · · · ≤ σ 2

1 = λn(SS∗). Let 1 ≤ k ≤ n and
consider the Hermitian matrix A − λk(A)I , whose kth nondecreasingly ordered
eigenvalue is zero. According to the preceding exercise and theorem, for each
j = 1, . . . , n, the respective j th nondecreasingly ordered eigenvalues of A − λk(A)I
and S(A − λk(A)I )S∗ = S AS∗ − λk(A)SS∗ have the same sign: negative, zero, or
positive. Since the kth eigenvalue of A − λk(A)I is zero, (4.3.2a,b) ensure that

0 = λk(S AS∗ − λk(A)SS∗) ≤ λk(S AS∗) + λn(−λk(A)SS∗)

= λk(S AS∗) − λ1(λk(A)SS∗)

and that

0 = λk(S AS∗ − λk(A)SS∗) ≥ λk(S AS∗) + λ1(−λk(A)SS∗)

= λk(S AS∗) − λn(λk(A)SS∗)

Combining these two inequalities gives the bounds

λ1(λk(A)SS∗) ≤ λk(S AS∗) ≤ λn(λk(A)SS∗)

If λk(A) < 0, then λ1(λk(A)SS∗) = λk(A)λn(SS∗) = λk(A)σ 2
1, λn(λk(A)SS∗) =

λk(A)λ1(SS∗) = λk(A)σ 2
n , and

σ 2
1λk(A) ≤ λk(S AS∗) ≤ σ 2

nλk(A)

If λk(A) > 0, it follows in the same way that

σ 2
nλk(A) ≤ λk(S AS∗) ≤ σ 2

1λk(A)

In either case (or in the trivial case λk(A) = λk(S AS∗) = 0), we have λk(S AS∗) =
θ kλk(A) for some θ k ∈ [σ n, σ 1]. �
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If A = I ∈ Mn in Ostrowski’s theorem, then all λk(A) = 1 and θ k = λk(SS∗) =
σ n−k+1. If S ∈ Mn is unitary, then σ 1 = σ n = 1 and all θ k = 1; this expresses the
invariance of the eigenvalues under a unitary similarity.

A continuity argument can be used to extend the preceding theorem to the case in
which S is singular. In this case, let δ > 0 be such that S + ε I is nonsingular for all
ε ∈ (0, δ). Apply the theorem to A and S + ε I , and conclude that λk((S + ε I )A(S +
ε I )∗) = θ kλk(A) with λ1((S + ε I )(S + ε I )∗) ≤ θ k ≤ λn((S + ε I )(S + ε I )∗). Now let
ε → 0 to obtain the bound 0 ≤ θ k ≤ λn(SS∗) = σ 2

1. This result may be thought of as
an extension of Sylvester’s law of inertia to singular ∗congruences.

Corollary 4.5.11. Let A, S ∈ Mn and let A be Hermitian. Let the eigenvalues of A
be arranged in nonincreasing order (4.2.1); let σ n and σ 1 be the smallest and largest
singular values of S. For each k = 1, 2, . . . , n there is a nonnegative real number
θ k such that σ 2

n ≤ θ k ≤ σ 2
1 and λk(S AS∗) = θ kλk(A). In particular, the number of

positive (respectively, negative) eigenvalues of S AS∗ is at most the number of positive
(respectively, negative) eigenvalues of A.

The problem of finding a canonical representative for each equivalence class of com-
plex symmetric matrices under T congruence has a very simple solution: Just compute
the rank.

Theorem 4.5.12. Let A, B ∈ Mn be symmetric. There is a nonsingular S ∈ Mn such
that A = SBST if and only if rank A = rank B.

Proof. If A = SBST and S is nonsingular, then rank A = rank B (0.4.6b). Conversely,
use (4.4.4c) to write

A = U1�1U T
1 = U1 I (�1)D2

1U T
1 = (U1 D1)I (�1)(U1 D1)T

in which the inertia matrix I (�1) is determined solely by the rank of A, U1 is unitary,
�1 = diag(σ 1, σ 2, . . . , σ n) with all σ i ≥ 0, and D1 = diag(d1, d2, . . . , dn), in which

di =
{√

σ i if σ i > 0
1 if σ i = 0

Notice that D1 is nonsingular. In the same way, we can also write B =
(U2 D2)I (�2)(U2 D2)T with similar definitions. If rank A = rank B, then I (�1) =
I (�2) and

I (�1) = (U1 D1)−1 A(U1 D1)−T = I (�2) = (U2 D2)−1 B(U2 D2)−T

and hence A = SBST , in which S = (U1 D1)(U2 D2)−1. �

Exercise. Let A, B ∈ Mn be symmetric. Show that there are nonsingular matrices
X, Y ∈ Mn such that A = X BY if and only if there is a nonsingular S ∈ Mn such
that A = SBST . Hint: (0.4.6c).

The preceding theorem is an analog of Sylvester’s law of inertia (4.5.8) for
T congruence of complex matrices. The following result is an analog of (4.5.9) and
(4.5.11).
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Theorem 4.5.13. Let A, S ∈ Mn and suppose that A is symmetric. Let A = U�U T

and S AST = V MV T be factorizations (4.4.4c) of A and S AST in which U and V are
unitary, � = diag(σ 1, σ 2, . . . , σ n), and M = diag(μ1, μ2, . . . , μn) with all σ i , μi ≥
0. Let λi (SS∗) denote the eigenvalues of SS∗. Suppose that σ i , μi , and λi (SS∗) are
all arranged in nondecreasing order (4.2.1). For each k = 1, 2, . . . , n there exists
a nonnegative real θ k with λ1(SS∗) ≤ θ k ≤ λn(SS∗) such that μk = θ kσ k . If S is
nonsingular, all θ k > 0.

Proof. We have μ2
k = λk(S AST S̄ ĀS∗) = λk(S(AST S̄ Ā)S∗) = θ̂ kλk(AST S̄ Ā) in

which (4.5.11) ensures that λ1(SS∗) ≤ θ̂ k ≤ λn(SS∗). Invoking (1.3.22), we also
have μ2

k = θ̂ kλk(AST S̄ Ā) = θ̂ kλk(S̄ ĀAST ) = θ̂ kλk(S AĀS∗) because S AĀS∗ has real
eigenvalues (it is Hermitian). Applying (4.5.11) again, we obtain μ2

k = θ̂ k θ̃ kλk(AĀ) =
θ̂ k θ̃ kσ

2
k for some θ̃ k with λ1(SS∗) ≤ θ̃ k ≤ λn(SS∗). Thus, μk = (θ̂ k θ̃ k)1/2σ k = θ kσ k ,

in which θ k = (θ̂ k θ̃ k)1/2 satisfies the asserted bounds. �

We know from (1.3.19) that two diagonalizable (by similarity) matrices can be
simultaneously diagonalized by the same similarity if and only if they commute. What
is the corresponding result for simultaneous diagonalization by congruence?

Perhaps the earliest motivation for results about simultaneous diagonalization by
congruence came from mechanics in the study of small oscillations about a stable
equilibrium. If the configuration of a dynamical system is specified by generalized
(Lagrangian) coordinates q1, q2, . . . , qn in which the origin is a point of stable equi-
librium, then near the origin the potential energy function V and the kinetic energy T
can be approximated by real quadratic forms

V =
n∑

i, j=1

ai j qi q j and T =
n∑

i, j=1

bi j q̇i q̇ j

in the generalized coordinates qi and generalized velocities q̇i . The behavior of the
system is governed by Lagrange’s equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= 0

a system of second-order linear ordinary differential equations with constant coeffi-
cients that is coupled (and hence is difficult to solve) if the two quadratic forms T and
V are not diagonal. The real matrices A = [ai j ] and B = [bi j ] are symmetric.

If a real nonsingular transformation S = [si j ] ∈ Mn can be found such that S AST

and SBST are both diagonal, then with respect to new generalized coordinates pi with

qi =
n∑

j=1

si j p j (4.5.14)

the kinetic and potential energy quadratic forms are both diagonal. In this event,
Lagrange’s equations are an uncoupled set of n separate second-order linear ordinary
differential equations with constant coefficients. These equations have standard solu-
tions involving exponentials and trigonometric functions; the solution to the original
problem can be obtained by using (4.5.14).
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Thus, a substantial simplification in an important class of mechanics problems
can be achieved if we can simultaneously diagonalize two real symmetric matrices by
congruence. On physical grounds, the kinetic energy quadratic form is positive definite,
and it turns out that this is a sufficient (but not necessary) condition for simultaneous
diagonalization by congruence.

We are interested in several types of simultaneous diagonalizations of matrices
A, B ∈ Mn . If A and B are Hermitian, we might wish to have U AU ∗ and U BU ∗ be
diagonal for some unitary matrix U , or we might be satisfied with having S AS∗ and
SBS∗ be diagonal for some nonsingular matrix S. If A and B are symmetric, we might
want U AU T and U BU T (or S AST and SBST ) to be diagonal. We might have a mixed
problem (for example, the Grunsky inequalities (4.4.1)) in which A is Hermitian and
B is symmetric, and we want U AU ∗ and U BU T (or S AS∗ and SBST ) to be diagonal.
The following theorem addresses the unitary cases.

Theorem 4.5.15. Let A, B ∈ Mn be given.

(a) Suppose that A and B are Hermitian. There is a unitary U ∈ Mn and real
diagonal �, M ∈ Mn(R) such that A = U�U ∗ and B = U MU ∗ if and only if
AB is Hermitian, that is, AB = B A.

(b) Suppose that A and B are symmetric. There is a unitary U ∈ Mn and diagonal
�, M ∈ Mn such that A = U�U T and B = U MU T if and only if AB̄ is normal.
There is a unitary U ∈ Mn and real diagonal �, M ∈ Mn(R) such that A =
U�U T and B = U MU T if and only if AB̄ is Hermitian, that is, AB̄ = B Ā.

(c) Suppose that A is Hermitian and B is symmetric. There is a unitary U ∈ Mn and
diagonal �, M ∈ Mn such that A = U�U ∗ and B = U MU T if and only if AB
is symmetric, that is, AB = B Ā.

Proof. (a) See (4.1.6).
(b) See (2.6.P21) and (2.6.P22).
(c) If A = U�U ∗ and B = U MU T , then AB = U�U ∗U MU T = U�MU T is sym-
metric. Moreover, AB = (AB)T = BT AT = B Ā. Conversely, suppose that AB = B Ā
and A has d distinct eigenvalues λ1, . . . , λd . Let A = U�U ∗, in which U is
unitary and � = λ1 In1 ⊕ · · · ⊕ λd Ind . Then AB = U�U ∗B = BŪ�U T = B Ā, so
�U ∗BŪ = U ∗BŪ�, which means that U ∗BŪ = B1 ⊕ · · · ⊕ Bd is block diagonal
conformal to � (2.4.4.2). Moreover, each block B j ∈ Mn j is symmetric, so (4.4.4c)
ensures that there are unitary matrices Vj ∈ Mn j and nonnegative diagonal matrices
� j ∈ Mn j such that B j = Vj� j V T

j , j = 1, . . . , d. Let V = V1 ⊕ · · · ⊕ Vd , � = �1 ⊕
· · · ⊕ �d , and W = U V ; observe that V commutes with �. Then B = U (B1 ⊕ · · · ⊕
Bd )U T = U V �V T U T = W�W T and W�W ∗ = U V �V ∗U ∗ = U�V V ∗U ∗ =
U�U ∗ = A. �

We now enlarge the class of congruences considered from unitary congruences to
nonsingular congruences, but we add an assumption that one of A or B is nonsingular.
Part (c) in the following theorem requires the following new concept, which we explore
in more detail in the next section.

Definition 4.5.16. A matrix A ∈ Mn is said to be condiagonalizable if there is a non-
singular S ∈ Mn and a diagonal � ∈ Mn such that A = S�S̄−1.
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Three facts about a condiagonalizable matrix are used in the proof of the next
theorem. The first is that the scalars in the diagonal matrix � in the preceding definition
may be assumed to appear in any desired order: If P is a permutation matrix, then A =
S�S̄−1 = S PT P�PT P S̄−1 = (S PT )(P�PT )(S PT )−1. The second is that we may
assume that � is real and nonnegative diagonal: If � = diag(|λ1|eiθ1, . . . , |λn|eiθn ), let
|�| = diag(|λ1|, . . . , |λn|) and let D = diag(|λ1|eiθ1/2, . . . , |λn|eiθn/2), which is equal
to D̄−1. Then � = D|�|D and A = S�S̄−1 = SD|�|DS̄−1 = (SD)|�|(SD)−1. The
third is that if A is nonsingular, then it is condiagonalizable if and only if A−1 is
condiagonalizable: A = S�S̄−1 if and only if A−1 = S̄�−1S−1.

Theorem 4.5.17. Let A, B ∈ Mn be given.

(a) Suppose that A and B are Hermitian and A is nonsingular. Let C = A−1 B.
There is a nonsingular S ∈ Mn and real diagonal matrices � and M such that
A = S�S∗ and B = SM S∗ if and only if C is diagonalizable and has real
eigenvalues.

(b) Suppose that A and B are symmetric and A is nonsingular. Let C = A−1 B.
There is a nonsingular S ∈ Mn and complex diagonal matrices � and M such
that A = S�ST and B = SM ST if and only if C is diagonalizable.

(c) Suppose that A is Hermitian, B is symmetric, and at least one of A or B is
nonsingular. If A is nonsingular, let C = A−1 B; if B is nonsingular, let C =
B−1 A. There is a nonsingular S ∈ Mn and real diagonal matrices � and M such
that A = S�S∗ and B = SM ST if and only if C is condiagonalizable.

Proof. In each case, a computation verifies necessity of the stated conditions for simul-
taneous diagonalization by congruence, so we discuss only their sufficiency. The first
two cases can be proved with parallel arguments, but the third case is a bit different.

(a) Assume that A and B are Hermitian, A is nonsingular, and there is a nonsingu-
lar S such that C = A−1 B = S�S−1, � = λ1 In1 ⊕ · · · ⊕ λd Ind is real diagonal, and
λ1 < · · · < λd . Then BS = AS� and hence S∗BS = S∗AS�. If we partition S∗BS =
[Bi j ]d

i, j=1 and S∗AS = [Ai j ]d
i, j=1 conformally to �, we have the identities Bi j = λ j Ai j

(equivalent to B∗
i j = λ j A∗

i j since λ j is real) and B ji = λi A ji for all i, j = 1, . . . , d.
Both S∗BS and S∗AS are Hermitian, so B ji = B∗

i j , A ji = A∗
i j , and B∗

i j = λi A∗
i j .

Combining these identities, we conclude that (λi − λ j )A∗
i j = 0. Thus, Ai j = 0 for

all i �= j , so S∗AS = A11 ⊕ · · · ⊕ Add and S∗BS = S∗AS�. For each i = 1, . . . , d
let Vi ∈ Mni be unitary and such that Aii = V ∗

i Di Vi , in which Di is diagonal and real
(4.1.5). Let V = V1 ⊕ · · · ⊕ Vd and D = D1 ⊕ · · · ⊕ Dd ; observe that V commutes
with �. Then S∗AS = V ∗DV and S∗BS = S∗AS� = V ∗DV � = V ∗D�V . We con-
clude that A = S−∗V ∗DV S−1 = RDR∗ and B = S−∗V ∗D�V S−1 = R(D�)R∗, in
which R = S−∗V ∗.

(b) Assume that A and B are symmetric, A is nonsingular, and there is a non-
singular S such that C = A−1 B = S�S−1, � = λ1 In1 ⊕ · · · ⊕ λd Ind is complex
diagonal, and λi �= λ j for all i �= j . Then BS = AS� and hence ST BS = ST AS�.
If we partition ST BS = [Bi j ]d

i, j=1 and ST AS = [Ai j ]d
i, j=1 conformally to �, we

have the identities Bi j = λ j Ai j (equivalent to BT
i j = λ j AT

i j ) and B ji = λi A ji for all
i, j = 1, . . . , d. Both ST BS and ST AS are symmetric, so B ji = BT

i j , A ji = AT
i j , and
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BT
i j = λi AT

i j . Combining these identities, we conclude that (λi − λ j )AT
i j = 0. Thus,

Ai j = 0 for all i �= j , so ST AS = A11 ⊕ · · · ⊕ Add and ST BS = ST AS�. For each
i = 1, . . . , d let Vi ∈ Mni be unitary and such that Aii = V T

i Di Vi , in which Di is
diagonal and nonnegative (4.4.4c). Let V = V1 ⊕ · · · ⊕ Vd and D = D1 ⊕ · · · ⊕ Dd ;
observe that V commutes with �. Then ST AS = V T DV and ST BS = ST AS� =
V T DV � = V T D�V . We conclude that A = S−T V T DV S−1 = RDRT and B =
S−T V T D�V S−1 = R(D�)RT , in which R = S−T V T .

(c) Assume that A is Hermitian, B is symmetric, and at least one of them is non-
singular. If A is nonsingular, let C = A−1 B; if B is nonsingular, let C = B−1 A.
We also assume that there is a nonsingular S such that C = S�S̄−1, in which
� = λ1 In1 ⊕ · · · ⊕ λd Ind ∈ Mn is real and nonnegative diagonal, 0 ≤ λ1 < · · · < λd .
If both A and B are nonsingular, it does not matter which choice is made for C since
it is condiagonalizable if and only if its inverse is condiagonalizable.

First suppose that A is nonsingular. Then A−1 B = S�S̄−1, so BS̄ = AS� and hence
S∗BS̄ = S∗AS�. If we partition the symmetric matrix S∗BS̄ = S̄T B S̄ = [Bi j ]d

i, j=1

and the Hermitian matrix S∗AS = [Ai j ]d
i, j=1 conformally to �, we have the identities

Bi j = λ j Ai j and B ji = λi A ji (equivalent to BT
i j = λi A∗

i j and to Bi j = λi Āi j ) for all
i, j = 1, . . . , d. Combining these identities, we obtain λ j Ai j = λi Āi j , which implies
that Ai j = 0 if i �= j (look at the entries of Ai j : λ j a = λi ā ⇒ λ j |a| = λi |a| ⇒ a = 0 if
i �= j). Thus, S∗AS = A11 ⊕ · · · ⊕ Add is block diagonal and Hermitian. In addition,
each block Bii = λi Aii is both symmetric and Hermitian, so Aii is real symmetric
if λi �= 0. If λi �= 0, let Vi ∈ Mni be real orthogonal and such that Aii = V T

i Di Vi ,
in which Di is diagonal and real (4.1.5). If λ1 = 0, let V1 be unitary and such that
A11 = V ∗

1 D1V1, in which D1 is diagonal and real. Let V = V1 ⊕ · · · ⊕ Vd and D =
D1 ⊕ · · · ⊕ Dd . Observe that D is real, V commutes with �, � is real, and �V is
real (Vi is real for all i > 1 and λ1V1 = 0 if V1 is not real). Then S∗AS = V ∗DV
and S∗BS̄ = S∗AS� = V ∗DV � = V ∗D�V = V ∗D�V = V ∗D�V̄ . We conclude
that A = S−∗V ∗DV S−1 = RDR∗ and B = S−∗V ∗�DV̄ S̄−1 = R(�D)RT , in which
R = S−∗V ∗.

Finally, if B is nonsingular, then B−1 A = S�S̄−1 and ST AS̄ = ST BS�. From this
point, the argument proceeds just as in the case in which A is nonsingular: One finds
that the symmetric matrix ST BS = B11 ⊕ · · · ⊕ Bdd is block diagonal, and Bii is real
symmetric if λi �= 0. If λ1 = 0, use (4.4.4c) to diagonalize B11 by unitary congruence
and assemble the respective congruences that diagonalize A and B. �

Exercise. Provide details for the second part of the proof of part (c) of the
preceding theorem.

Exercise. Revisit (4.4.25) and explain why the criterion in (4.5.17b) significantly
restricts A and B.

In parts (a) and (b) of the preceding theorem, there is a familiar condition on the
matrix C = A−1 B that is equivalent to simultaneous diagonalizability by the respective
congruence: C is diagonalizable (perhaps with real eigenvalues). In part (c), we require
that C be condiagonalizable, which is equivalent to requiring that rank C = rank CC̄ ,
every eigenvalue of CC̄ is real and nonnegative, and CC̄ is diagonalizable; see (4.6.11).
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To study the problem of diagonalizing a pair of nonzero singular Hermitian matrices
by simultaneous ∗congruence, we step back and take a new path. Any A ∈ Mn can be
represented uniquely as A = H + i K (its Toeplitz decomposition; see (4.1.2)), in
which H and K are Hermitian. The matrix H = 1

2 (A + A∗) is the Hermitian part of
A, and K = 1

2i (A − A∗) is the skew-Hermitian part of A.

Lemma 4.5.18. Let A ∈ Mn be given, and let A = H + i K , in which H and K are
Hermitian. Then A is diagonalizable by ∗congruence if and only if H and K are
simultaneously diagonalizable by ∗congruence.

Proof. If there is a nonsingular S ∈ Mn such that SH S∗ = � and SK S∗ = M are both
diagonal, then S AS∗ = SH S∗ + i SK S∗ = � + i M is diagonal. To prove the converse,
it suffices to show that if B = [b jk] and C = [c jk] are n-by-n Hermitian matrices and
B + iC = [b jk + ic jk] is diagonal, then both B and C are diagonal. For any j �= k we

have b jk + ic jk = 0 and bkj + ick j = b̄ jk + i c̄k j = 0, so b̄ jk + i c̄k j = b jk − ic jk = 0.
The pair of equations b jk + ic jk = 0 and b jk − ic jk = 0 has only the trivial solution
b jk = c jk = 0. �

The preceding lemma shows that the problem of simultaneously diagonalizing a pair
of Hermitian matrices of the same size by ∗congruence is equivalent to the problem
of diagonalizing a square complex matrix by ∗congruence. One way to approach the
latter problem is via a canonical form for ∗congruence, which involves three types
of canonical blocks. The first type is the family of singular Jordan blocks Jk(0),
k = 1, 2, . . . ; the smallest such block is J1(0) = [0]. The second type is a family of
nonsingular Hankel matrices

k =

⎡
⎢⎢⎣

1

· · · i
1 · · ·

1 i

⎤
⎥⎥⎦ ∈ Mk , k = 1, 2, . . . (4.5.19)

The blocks of this type with sizes one and two are 1 = [1] and 2 =
[

0 1
1 i

]
. The

third type is a family of nonsingular complex blocks of even size that incorporate
nonsingular Jordan blocks

H2k(μ) =
[

0 Ik

Jk(μ) 0

]
∈ M2k , μ �= 0, k = 1, 2, . . . (4.5.20)

The smallest block of this type is H2 =
[

0 1
μ 0

]
.

We can now state the ∗congruence canonical form theorem.

Theorem 4.5.21. Each square complex matrix is ∗congruent to a direct sum, uniquely
determined up to permutation of direct summands, of matrices of the following three
types:

Type 0: Jk(0), k = 1, 2, . . . ;
Type I: λk, k = 1, 2, . . . , in which λ = eiθ , 0 ≤ θ < 2π ;
Type II: H2k(μ), k = 1, 2, . . . , in which |μ| > 1.

Alternatively, instead of the symmetric Type I matrices k , one may use the real
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matrices �k defined in (4.5.24) or any other nonsingular matrices Fk ∈ Mk for which
there exists a real φk such that F−∗

k Fk is similar to the Jordan block Jk(eiφk ).

Just as with the Jordan canonical form, the uniqueness assertion of the ∗congruence
canonical form theorem is perhaps its most useful feature for applications.

Exercise. Let A, B, S ∈ Mn be nonsingular and suppose that A = SBS∗. Explain
why A−∗A = S−∗(B−∗B)S∗ and why A−∗A has the same Jordan canonical form
as B−∗B.

Exercise. Let A = [i] ∈ M1 and B = [−i] ∈ M1. Explain why A−∗A = B−∗B,
but A is not ∗congruent to B. Hint: If S = [s], S AS∗ =?.

The matrices of Type 0, Type I, and Type II in (4.5.21) are canonical blocks
for ∗congruence. A direct sum of canonical blocks that is ∗congruent to a given
A ∈ Mn is its ∗congruence canonical form. Two ∗congruence canonical forms
are the same if one can be obtained from the other by permuting its canonical
blocks.

If, for a given θ ∈ [0, 2π), the ∗congruence canonical form of a given A ∈ Mn

contains exactly m blocks of the form eiθk , one says that θ is a canonical angle of A
of order k and multiplicity m; alternatively, one says that the ray {reiθ : 0 < r < ∞}
in the complex plane is a canonical ray of A with order k and multiplicity m. If all the
Type I blocks of A are known to be 1-by-1 (for example, if A is normal; see (4.5.P11)),
it is customary to speak only of the canonical angle (ray) θ and its multiplicity without
mentioning the order.

A direct sum of all of the Type 0 blocks of a given A ∈ Mn is its singular part
(with respect to ∗congruence); any matrix that is ∗congruent to the direct sum of
all of the Type I and Type II blocks of A is a regular part (again, with respect to
∗congruence). The singular part of A is uniquely determined (up to permutation of its
direct summands, of course); the ∗congruence equivalence class of a regular part of A
is uniquely determined.

If A ∈ Mn is nonsingular, the matrix A−∗A is the ∗cosquare of A. The preceding
exercises show that nonsingular ∗congruent matrices have similar ∗cosquares, but
matrices with similar ∗cosquares need not be ∗congruent. Although many different
matrices can be regular parts of A, they must all be in the same ∗congruence equivalence
class.

The Jordan canonical form of a ∗cosquare is subject to a constraint that is revealed
by a computation: (A−∗A)−∗ = AA−∗, which is similar to A−∗A (1.3.22). Therefore,
if μ is an eigenvalue of A−∗A (necessarily nonzero) and Jk(μ) is a block in the Jordan
canonical form of AA−∗, then a Jordan block similar to Jk(μ)−∗ (namely, Jk(μ̄−1))
must also be present. If |μ| = 1, this observation does not yield any useful information
since μ̄−1 = μ in this case. However, it tells us that if |μ| �= 1, then any block Jk(μ)
in the Jordan canonical form of A−∗A is paired with a block Jk(μ̄−1). Thus, the Jordan
canonical form of a ∗cosquare contains only blocks of the form Jk(eiθ ) for some real θ

and pairs of the form Jk(μ) ⊕ Jk(μ̄−1) with 0 �= |μ| �= 1.
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The blocks λk and H2k(μ) in the ∗congruence canonical form (4.5.21) of a nonsin-
gular A ∈ Mn arise from the special Jordan canonical form of a ∗cosquare. If μ �= 0,
then

H2k(μ)−∗H2k(μ) =
[

0 Jk(μ)−1

Ik 0

]∗ [
0 Ik

Jk(μ) 0

]

=
[

0 Ik

Jk(μ)−∗ 0

] [
0 Ik

Jk(μ) 0

]

=
[

Jk(μ) 0
0 Jk(μ)−∗

]
which is similar to Jk(μ) ⊕ Jk(μ̄−1). There is a one-to-one correspondence between
blocks H2k(μ) and pairs of the form Jk(μ) ⊕ Jk(μ̄−1) with |μ| �= 1 in the Jordan
canonical form of the ∗cosquare of A.

If |λ| = 1, a computation reveals that (λk)−∗(λk) is similar to Jk(λ2); see
(4.5.P15). If the Jordan canonical form of the ∗cosquare of a nonsingular A ∈ Mn

is Jk1 (eiθ ) ⊕ · · · ⊕ Jkp (eiθ ) ⊕ J , in which θ ∈ [0, 2π) and eiθ is not an eigenvalue of
J , then the ∗congruence canonical form of A is ±eiθ/2k1 ⊕ · · · ⊕ ±eiθ/2kp ⊕ C ,
in which a particular choice of ± signs is made and no block of the form ±eiθ/2k

appears in C . The ± signs cannot be determined from the ∗cosquare of A, but they can
be determined by using other information about A.

Exercise. Explain why the Jordan canonical form of the ∗cosquare of a nonsin-
gular A ∈ Mn determines only the lines in the complex plane that contain its
canonical rays; it determines the orders of the canonical rays (angles), but not
their multiplicities.

Our first application of the ∗congruence canonical form is to obtain the following
cancellation theorem:

Theorem 4.5.22. Let A, B ∈ Mp and C ∈ Mq be given. Then A ⊕ C and B ⊕ C are
∗congruent if and only if A and B are ∗congruent.

Proof. If there is a nonsingular S ∈ Mp such that A = SBS∗, then S ⊕ Iq is nonsingular
and (S ⊕ Iq )(B ⊕ C)(S ⊕ Iq )∗ = SBS∗ ⊕ C = A ⊕ C . Conversely, suppose that A ⊕
C and B ⊕ C are ∗congruent. Let L A, L B , and LC denote the respective ∗congruence
canonical forms of A, B, and C ; each is a direct sum of certain blocks of types 0, I, and
II. Let SA, SB , and SC be nonsingular matrices such that A = SA L A S∗

A, B = SB L B S∗
B ,

and C = SC LC S∗
C . Then L A ⊕ LC is ∗congruent to A ⊕ C (via SA ⊕ SC ), which by

assumption is ∗congruent to B ⊕ C , which is ∗congruent to L B ⊕ LC (via SB ⊕ SC ).
Therefore, L A ⊕ LC and L B ⊕ LC are ∗congruent and each is a direct sum of canonical
blocks, so uniqueness of the ∗congruence canonical form ensures that one can be
obtained from the other by permuting its direct summands; this statement remains
true after the direct summands of LC are removed. The direct sum of the remaining
canonical blocks is the ∗congruence canonical form of A; it is also the ∗congruence
canonical form of B. Since A and B have the same ∗congruence canonical forms, they
are ∗congruent. �
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Determination of the ∗congruence canonical form of a given A ∈ Mn typically
proceeds in three steps:

Step 1. Construct a nonsingular S ∈ Mn such that A = S(B ⊕ N )S∗, in which
N = Jr1 (0) ⊕ · · · ⊕ Jrp (0) is a direct sum of nilpotent Jordan blocks and B is
nonsingular. Such a construction is called a regularization of A. A regularization
can be performed in an ad hoc fashion (perhaps some special information about
the matrix facilitates the construction), or one can employ a known regularization
algorithm. Since the direct sum B ⊕ N produced by a regularization of A is
∗congruent to the ∗congruence canonical form of A, the uniqueness assertion in
(4.5.21) ensures that N is the singular part of A; the cancellation theorem then
ensures that B is a regular part of A for ∗congruence.

Step 2. Compute the Jordan canonical form of the ∗cosquare of a regular part of A.
It determines completely the Type II blocks of A, and it determines the Type I
blocks up to sign.

Step 3. Determine the signs of the Type I blocks of A using a known algorithm or an
ad hoc method.

Exercise. Let A, B, S ∈ Mn be given. Suppose that S is nonsingular and A =
SBS∗. Let ν = dim nullspace A, δ = dim((nullspace A) ∩ (nullspace A∗)), ν ′ =
dim nullspace B, and δ′ = dim((nullspace B) ∩ (nullspace B∗)). Explain why
ν = ν ′ and δ = δ′, that is, dim nullspace A and dim((nullspace A) ∩
(nullspace A∗)) are ∗congruence invariants. Explain why ν = δ if and only if
the null spaces of A and A∗ are the same.

The regularization algorithm for a given A ∈ Mn begins by computing the two
invariants ν and δ described in the preceding exercise. The number of 1-by-1 blocks
J1(0) in the ∗congruence canonical form of A is δ. If ν = δ (that is, if the null spaces
of A and A∗ are the same), the algorithm terminates and 0d is the singular part of A.
If ν > d, the algorithm determines a ∗congruence that reduces A to a special block
form, and the algorithm is then repeated on a specific block of the reduced matrix. The
output of the algorithm is a sequence of integer invariants that determine the number
of blocks Jk(0) in the singular part of A, for each k = 1, . . . , n.

A given A ∈ Mn is diagonalizable by ∗congruence if and only if (a) its ∗congruence
canonical form contains no Type II blocks (the smallest Type II blocks are 2-by-2),
(b) its Type 0 blocks are J1(0) = [0], and (c) its Type I blocks are λ1 = [λ] for
some λ with |λ| = 1. Thus, A is diagonalizable by ∗congruence and rank A = r if
and only if there is a nonsingular S ∈ Mn such that A = S(� ⊕ 0n−r )S∗, in which
� = diag(λ1, . . . , λr ) and |λ j | = 1 for all j = 1, . . . , r . If we partition S = [S1 S2]
with S1 ∈ Mr , then A = [S1 S2](� ⊕ 0n−r )[S1 S2]∗ = S1�S∗

1 . Let S1 = U1 R be a
Q R factorization (2.1.14) and let U = [U1 U2] ∈ Mn be unitary. Then A = S1�S∗

1 =
U1 R�R∗U ∗

1 , so

U ∗AU =
[

U ∗
1

U ∗
2

]
U1 R�R∗U ∗

1 [U1 U2] =
[

R�R∗ 0
0 0n−r

]
Thus, A is (unitarily) ∗congruent to R�R∗ ⊕ 0n−r , and hence R�R∗ is a regular part
of A.
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Suppose that a nonsingular B ∈ Mr is diagonalizable by ∗congruence. Since there
are no Type II blocks in the ∗congruence canonical form of B, the Jordan canonical
form of the ∗cosquare B−∗B contains only blocks of the form J1(λ) with |λ| = 1, that
is, B−∗B is diagonalizable and all its eigenvalues have modulus one. Let S ∈ Mn be
nonsingular and such that B−∗B = S�S−1, in which � = diag(eiθ1 In1 ⊕ · · · ⊕ eiθd Ind )
with each θ j ∈ [0, 2π) and θ j �= θ k if j �= k. Then B = B∗S�S−1, BS = B∗S�, and
S∗BS = S∗B∗S�. Let B = S∗BS, and observe that B = B∗� ⇒ B = (B∗�)∗� =
�∗B� ⇒ �B = B� since � is unitary. If we partition [Bjk]d

j,k=1 conformally to �,
commutativity of B and � implies (2.4.4.2) that B is block diagonal conformal to �:
B = B1 ⊕ · · · ⊕ Bd . Moreover, the identity B = B∗� implies that B j = eiθ j B∗

j and
e−iθ j /2 B j = eiθ j /2 B∗

j = (e−iθ j /2 B j )∗, so e−iθ j /2 B j is Hermitian for each j = 1, . . . , d.
Every Hermitian matrix is ∗congruent to its inertia matrix (4.5.7), so for each j =
1, . . . , d there is a nonsingular Sj ∈ Mn j and nonnegative integers n+

j and n−
j such

that n+
j + n−

j = n j and e−iθ j /2 B j = Sj (In+
j
⊕ (−In−

j
))S∗

j , that is, B j = eiθ j /2Sj (In+
j
⊕

(−In−
j
))S∗

j = eiθ j /2Sj (eiθ j /2 In+
j
⊕ ei(π+θ j /2) In−

j
)S∗

j . We conclude that B is ∗congruent
to

eiθ1/2 In+
1
⊕ ei(π+θ1/2) In−

j
⊕ · · · ⊕ eiθd/2 In+

d
⊕ ei(π+θd/2) In−

d
(4.5.23)

which is a direct sum of Type I blocks and is therefore the ∗congruence canonical form
of B. The canonical angles (rays) of B are 1

2θ1, . . . ,
1
2θd with respective multiplic-

ities n+
1 , . . . , n+

d , together with π + 1
2θ1, . . . , π + 1

2θd , with respective multiplicities
n−

1 , . . . , n−
d .

The preceding analysis leads to an algorithm to decide whether a given A ∈ Mn

is diagonalizable by ∗congruence and, if it is, to determine its ∗congruence canonical
form:

Step 1. Check whether A and A∗ have the same null space. If they do not, stop; A is
not diagonalizable by ∗congruence. If they do, let U2 ∈ Mn,n−r have orthonormal
columns that comprise a basis of the null space of A, and let U = [U1 U2] ∈ Mn

be unitary. Then AU2 and U ∗
2 A are both zero matrices, so

U ∗AU =
[

U ∗
1

U ∗
2

]
A[U1 U2] =

[
U ∗

1 AU1 U ∗
1 AU2

U ∗
2 AU1 U ∗

2 AU2

]

=
[

U ∗
1 AU1 0

0 0n−r

]

and B = U ∗
1 AU1 is a regular part of A.

Step 2. Check whether (a) B−∗B is diagonalizable, and (b) every eigenvalue of
B−∗B has modulus one. If either of these conditions is not satisfied, stop; A
is not diagonalizable by ∗congruence. Otherwise, A is diagonalizable by ∗con-
gruence.

Step 3. Diagonalize B−∗B, that is, construct a nonsingular S ∈ Mn such that
B−∗B = S�S−1, in which � = eiθ1 In1 ⊕ · · · ⊕ eiθd Ind with each θ j ∈ [0, 2π )
and θ j �= θ k if j �= k. Then S∗BS = B1 ⊕ · · · ⊕ Bd is block diagonal conformal
to � and e−iθ j /2 B j is Hermitian, j = 1, . . . , d. Determine the number n+

j of
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positive eigenvalues of e−iθ j /2 B j and let n−
j = n − n+

j , j = 1, . . . , d. The
∗congruence canonical form of A is

eiθ1/2 In+
1
⊕ ei(π+θ j /2) In−

j
⊕ · · · ⊕ eiθd/2 In+

d
⊕ ei(π+θd/2) In−

d
⊕ 0n−r

We summarize part of the foregoing discussion in the following theorem.

Theorem 4.5.24. Let A ∈ Mn be given and let A = H + i K , in which H and K
are Hermitian. Let B be a regular part of A and let B = B−∗B. The following are
equivalent:

(a) H and K are simultaneously diagonalizable by ∗congruence.
(b) A is diagonalizable by ∗congruence.
(c) A and A∗ have the same null space, B is diagonalizable, and every eigenvalue of

B has modulus one.

Exercise. Let A ∈ Mn be given, let r = rank A, and suppose that A and A∗ have
the same null space. Let A = V �W ∗ be a singular value decomposition (2.6.3),
in which V = [V1 V2] and V1 ∈ Mn,r . Explain why V ∗

1 AV1 is a regular part of A
with respect to ∗congruence.

There is also a simple canonical form for congruence (T congruence) of matrices. It
involves a new family of nonsingular canonical blocks

�k =

⎡
⎢⎢⎢⎢⎢⎢⎣

(−1)k+1

· · · (−1)k

−1 · · ·
1 1

−1 −1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ Mk, k = 1, 2, . . . (4.5.24)

The blocks in this family with sizes one and two are �1 = [1] and �2 =
[

0 −1
1 1

]
. The

congruence canonical form theorem is as follows:

Theorem 4.5.25. Each square complex matrix is congruent to a direct sum, uniquely
determined up to permutation of direct summands, of matrices of the following three
types:

Type 0: Jk(0), k = 1, 2, . . . ;
Type I: �k , k = 1, 2, . . . ;
Type II: H2k(μ), k = 1, 2, . . . , in which 0 �= μ �= (−1)k+1 and μ is determined up

to replacement by μ−1.

Exercise. Let A, B, S ∈ Mn be nonsingular and suppose that A = SBST . Explain
why A−T A = S−T (B−T B)ST and why A−T A has the same Jordan canonical
form as B−T B.

Exercise. Let A ∈ Mn be nonsingular. Explain why A−T A is similar to
(A−T A)−T , which is similar to (A−T A)−1. Why must any block Jk(μ) in the
Jordan canonical form of A−T A be paired with a block Jk(μ−1) if μ �= ±1?

The cosquare of a nonsingular A ∈ Mn is the matrix A−T A, whose Jordan canonical
form has a very special form: It contains only blocks of the form Jk((−1)k+1) and



4.5 Congruences and diagonalizations 295

pairs of blocks of the form Jk(μ) ⊕ Jk(μ−1), in which 0 �= μ �= (−1)k+1. The matrix
�k appears in the canonical form for congruence because its cosquare is similar to
Jk((−1)k+1); see (4.5.P25).

Exercise. If μ �= 0, explain why the cosquare of H2k(μ) is similar to Jk(μ) ⊕
Jk(μ−1).

The canonical form theorem for congruence implies a cancellation theorem, which
is proved in the same way as (4.5.22) and again relies heavily on the uniqueness
assertion in (4.5.25).

Theorem 4.5.26. Let A, B ∈ Mp and C ∈ Mq be given. Then A ⊕ C and B ⊕ C are
congruent if and only if A and B are congruent.

Determination of the congruence canonical form of a given A ∈ Mn has only two
steps:

Step 1. Regularize A by constructing a nonsingular S ∈ Mn such that A = S(B ⊕
N )ST , in which N = Jr1 (0) ⊕ · · · ⊕ Jrp (0) (the uniquely determined singular part
of A for congruence) and the regular part B is nonsingular. One can proceed in
an ad hoc fashion to determine N , or one can employ a known regularization
algorithm. The congruence equivalence class of the nonsingular summand B (but
not B itself) is uniquely determined by A; B is a regular part of A for congruence.

Step 2. Compute the Jordan canonical form of the cosquare B−T B. It determines the
Type I and Type II blocks of A, as follows: Each block Jk((−1)k+1) corresponds
to a Type I block �k ; each pair Jk(μ) ⊕ Jk(μ−1) corresponds to a Type II block
H2k(μ), in which μ may be replaced by μ−1 (the two variants are congruent).

The vexing issue of signs of the Type I blocks that required resolution in the
algorithm to determine the ∗congruence canonical form of a matrix does not arise in
the congruence canonical form.

Theorem 4.5.27. Let A, B ∈ Mn be nonsingular. Then A is congruent to B if and only
if A−T A is similar to B−T B.

As a consequence of the canonical form theorems for ∗congruence and congruence,
one can derive canonical pairs for an arbitrary pair of Hermitian matrices of the
same size, as well as for a pair of matrices of the same size, one of which is an
arbitrary complex symmetric matrix and the other of which is an arbitrary complex
skew-symmetric matrix; see Appendix F.

Problems

4.5.P1 Let A, B ∈ Mn and suppose that B is nonsingular. Show that there is a C ∈ Mn

such that A = BC . Moreover, for any nonsingular S ∈ Mn , we have S AS∗ = (SBS∗)C ′,
in which C ′ is similar to C .

4.5.P2 Let A, B ∈ Mn be skew symmetric. Show that there is a nonsingular S ∈ Mn such
that A = SBST if and only if rank A = rank B.

4.5.P3 Let A, B ∈ Mn be Hermitian. (a) If A is ∗congruent to B, show that Ak is ∗congruent
to Bk for all k = 2, 3, . . . . (b) If A2 is ∗congruent to B2, is A ∗congruent to B? Why?
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(c) Show that C =
[

0 1
0 0

]
and D =

[
0 1
0 1

]
are ∗congruent, but C2 is not ∗congruent to D2.

Does this contradict (a)?

4.5.P4 Prove the following generalization of (4.5.17(a)): Let A1, A2, . . . , Ak ∈ Mn be
Hermitian and suppose that A1 is nonsingular. There is a nonsingular T ∈ Mn such that
T ∗Ai T is diagonal for all i = 1, . . . , k if and only if {A−1

1 Ai : i = 2, . . . , n} is a com-
muting family of diagonalizable matrices with real eigenvalues. What is the corresponding
generalization of (4.5.17(b))?

4.5.P5 A differential operator L (4.0.4) with a real symmetric coefficient matrix A(x) =
[ai j (x)] is elliptic at a point x ∈ D ⊂ Rn if A(x) is nonsingular and all its eigenvalues have
the same sign; L is hyperbolic at x if A(x) is nonsingular, n − 1 of its eigenvalues have the
same sign, and one eigenvalue has the opposite sign. Explain why a differential operator
that is elliptic (or hyperbolic) at a point with respect to one coordinate system is elliptic (or
hyperbolic) at that point with respect to every other coordinate system. Laplace’s equation
∂2 f
∂x2 + ∂2 f

∂y2 + ∂2 f
∂z2 = 0 gives an example of an elliptic differential operator; the wave equation

∂2 f
∂x2 + ∂2 f

∂y2 + ∂2 f
∂z2 − ∂2 f

∂t2 = 0 gives an example of a hyperbolic one. Both are presented in
Cartesian coordinates. Even though both look very different in spherical polar or cylindrical
coordinates, they remain, respectively, elliptic and hyperbolic.

4.5.P6 Show that
[

0 1
1 0

]
and

[
1 0
0 −1

]
can be reduced simultaneously to diagonal form by a

unitary congruence but cannot be reduced simultaneously to diagonal form by ∗congruence.
Follow the proof of (4.5.17b) to find a unitary matrix that achieves a simultaneous diago-
nalization by congruence.

4.5.P7 Show that
[

1 1
1 0

]
and

[
0 1
1 0

]
cannot be reduced simultaneously to diagonal form by

either ∗congruence or congruence.

4.5.P8 Let A, S ∈ Mn with A Hermitian and S nonsingular. Let the eigenvalues of A and
S AS∗ be arranged in nondecreasing order, as in (4.2.1). Let λk(A) be a nonzero eigenvalue.
Deduce the relative eigenvalue perturbation bound |λk(S AS∗) − λk(A)|/|λk(A)| ≤ ρ(I −
SS∗) from (4.5.9). What does this say if S is unitary? If S is “close to unitary”?

4.5.P9 Let A ∈ Mn and suppose that rank A = r . Explain why the following are equivalent:
(a) the ∗congruence regularization algorithm terminates after the first step; (b) nullspace A =
nullspace A∗; (c) range A = range A∗; (d) there is a nonsingular B ∈ Mr and a unitary
U ∈ Mn such that A = U (B ⊕ 0n−r )U ∗; (e) A is an EP matrix (2.6.P28).

4.5.P10 Let A ∈ Mn . Suppose that rank A = r and nullspace A = nullspace A∗. Show that
A is rank principal (0.7.6.2), that is, A has a nonsingular r -by-r principal submatrix.

4.5.P11 Let A ∈ Mn be nonzero and normal, let λ1 = |λ1|eiθ1 , . . . , λr = |λr |eiθ r be its
nonzero eigenvalues, in which each θ j ∈ [0, 2π ); let � = diag(λ1, . . . , λr ). Explain care-
fully why (a) A satisfies each of the three stated conditions in (4.5.23). (Justify each one;
don’t just prove one and invoke their equivalence.) (b) The ∗congruence canonical form
of A is [eiθ1 ] ⊕ · · · ⊕ [eiθ r ] ⊕ 0n−r . (c) If among the angles θ1, . . . , θ r there are d distinct
angles φ1, . . . , φd with respective multiplicities n1, . . . , nd and n1 + · · · + nd = r , then
each φ j is a canonical angle of A with multiplicity n j . (d) On each ray {reiφ j : 0 < r < ∞}
there are exactly n j eigenvalues of A, j = 1, . . . , d. (e) If B ∈ Mn is normal, then B is
∗congruent to A if and only if rank B = rank A and B has exactly n j eigenvalues on each
ray {reiφ j : 0 < r < ∞}, j = 1, . . . , d .
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4.5.P12 Reconsider the preceding problem under the assumption that A is Hermitian. Why
are 1 and 2 the only possible values of d? Why are θ1 = 0 or θ2 = π the only possible
canonical angles? How are the multiplicities n1 and n2 related to the inertia of A? Explain
why the ∗congruence canonical form theorem may be thought of as a generalization to
arbitrary square complex matrices of Sylvester’s inertia theorem about Hermitian matrices.

4.5.P13 Let U, V ∈ Mn be unitary. Show that U and V are ∗congruent if and only if they
are similar if and only if they have the same eigenvalues.

4.5.P14 Let A ∈ Mn and let A = H + i K , in which H and K are Hermitian and H is
nonsingular. (a) Use the statements of (4.5.17), (4.5.18), and (4.5.24) to explain why H−1 K
is diagonalizable and has real eigenvalues if and only if A is nonsingular and diagonalizable
by ∗congruence . No computations! (b) Now do the computations: Suppose that S ∈ Mn is
nonsingular and H−1 K = S�S−1, in which � = diag(λ1, . . . , λn) is real. Show that A is
nonsingular and A−∗A = SM S∗, M = diag(μ1, . . . , μn), and each μ j = (1 + iλ j )/(1 −
iλ j ) has modulus one. Conclude that H and K are simultaneously diagonalizable by
∗congruence. (c) Suppose that A is nonsingular and A−∗ A = S�S∗, in which S ∈ Mn is
nonsingular and � is diagonal and unitary. Write � = diag(eiθ1 , . . . , eiθn ) with all θ j ∈
[0, 2π ). Explain why H = S diag(cos θ1, . . . , cos θn)S∗, K = S diag(sin θ1, . . . , sin θn)S∗,
and 3

2π �= θ j �= 1
2π for all j = 1, . . . , n.

4.5.P15 (a) Explain why a Hankel matrix with zero entries in every position below its
counterdiagonal is completely determined by the entries in its first row. (b) The inverse
of the canonical block k (4.5.19) is a Hankel matrix with zero entries in every position
below its counterdiagonal, whose first row is constructed from right to left by entering
successive elements of the sequence 1,−i,−1, i, 1,−i,−1, i, 1, . . . until the row is filled.
For example, the first row of −1

3 is [−1 − i 1], the first row of −1
4 is [i − 1 − i 1], and

the first row of −1
5 is [1 i − 1 − i 1]. Verify this assertion by using the stated form of

−1
k to compute −1

k k . (c) Show that −∗
k k is an upper triangular matrix (it is actually

a Toeplitz matrix) whose main diagonal entries are all +1 and whose first superdiagonal
entries are all 2i . (d) Explain why the Jordan canonical form of −∗

k k is Jk(1).

4.5.P16 How many disjoint equivalence classes under ∗congruence are there in the set of
n-by-n complex Hermitian matrices? In the set of n-by-n real symmetric matrices?

4.5.P17 How many disjoint equivalence classes under congruence are there in the set of
n-by-n complex symmetric matrices? In the set of n-by-n real symmetric matrices?

4.5.P18 Let A, B ∈ Mn with A and B symmetric and A nonsingular. Show that if the
generalized characteristic polynomial pA,B(t) = det(t A − B) has n distinct zeroes, then A
and B are simultaneously diagonalizable by congruence.

4.5.P19 Provide details for the following outline of an alternative proof of Sylvester’s
law of inertia (4.5.8). Let A, S ∈ Mn be nonsingular and suppose that A is Hermitian.
Let S = Q R be a Q R factorization (2.1.14) in which Q ∈ Mn is unitary and R ∈ Mn is
upper triangular with positive main diagonal entries. Show that S(t) = t Q + (1 − t)Q R
is nonsingular if 0 ≤ t ≤ 1 and let A(t) = S(t)AS(t)∗. What is A(0)? A(1)? Explain why
A(0) has the same number of positive (negative) eigenvalues as A(1). Treat the general case
by considering A ± ε I for small ε > 0.

4.5.P20 Let A ∈ Mn and let pA(t) = tn + an−1(A)tn−1 + · · · + a1(A)t + a0(A) be its char-
acteristic polynomial. (a) Recall that the coefficients ai (A), i = 0, 1, . . . , n − 1, are
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elementary symmetric functions of the eigenvalues of A (1.2.15). Why are these coef-
ficients continuous functions of A? (a) If A is normal, explain why rank A = r implies
that A has exactly r nonzero eigenvalues (denote them by λ1, . . . , λr ), which implies that
an−r+1(A) = an−r+2(A) = · · · = a0(A) = 0 and an−r (A) = λ1 · · · λr . (c) Let S ⊂ Mn be a
connected set of Hermitian matrices, all of which have the same rank r . Show that every
matrix in S has the same inertia. (d) Show by example that the assertion in (c) need not be
correct if S is not connected.

4.5.P21 Let A ∈ Mn be Hermitian and partitioned as A =
[

B C
C∗ D

]
, in which B is nonsin-

gular. Let S = D − C∗B−1C denote the Schur complement of B in A. (a) Explain why the
identity (0.8.5.3) exhibits a ∗congruence between A and B ⊕ S. (b) Prove Haynsworth’s
theorem: The inertias of A, B, and S (4.5.6) are related by the identities

i+(A) = I+(B) + i+(S)

i−(A) = i−(B) + i−(S) (4.5.28)

i0(A) = i0(S)

that is, I (A) = I (B) + I (S). See (7.1.P28) for a related result.

4.5.P22 Let B ∈ Mn be Hermitian, let y ∈ Cn and a ∈ R be given, and let A =
[

B y
y∗ a

]
∈

Mn+1. Use Haynsworth’s theorem in the preceding problem to prove Cauchy’s interlacing
inequalities (4.3.18).

4.5.P23 Let {A1, . . . , Ak} ⊂ Mn be a given family of complex symmetric matrices and let
G = {Ai Ā j : i, j = 1, . . . , k}. If there is a unitary U ∈ Mn such that U AiU T is diagonal
for all i = 1, . . . , k, explain why G is a commuting family. What does this reduce to when
k = 2, and what is the connection with (4.5.15b)? In fact, commutativity of G is also
sufficient to ensure the simultaneous diagonalizability of F by unitary congruence.

4.5.P24 Let F = {A1, . . . , Ak} ⊂ Mn be a family of complex symmetric matrices, let
H = {B1, . . . , Bm} ⊂ Mn be a family of Hermitian matrices, and let G = {Ai Ā j : i, j =
1, . . . , k}. If there is a unitary U ∈ Mn such that every U AiU T and every U B jU ∗ is
diagonal, show that each of G and H is a commuting family and B j Ai symmetric for all
i = 1, . . . , k and all j = 1, . . . , m. What does this reduce to when k = m = l, and what is
the connection with (4.5.15(c))? In fact, these conditions are also sufficient to ensure the
simultaneous diagonalizability of F and H by the respective congruences.

4.5.P25 Show that the cosquare of the canonical block �k (4.5.24) is similar to Jk((−1)k+1)
by verifying that

�−T
k �k =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...
... · · ·

−1 −1 −1 −1
1 1 1
−1 −1
1

⎤
⎥⎥⎥⎥⎥⎦�k = (−1)k+1

⎡
⎢⎢⎢⎢⎣

1 2 �

1
. . .
. . . 2

1

⎤
⎥⎥⎥⎥⎦

4.5.P26 Suppose that μ ∈ C is nonzero. Show that H2k(μ) is congruent to H2k(μ̄) = H2k(μ)
if and only if either μ is real or |μ| = 1.

4.5.P27 Let B ∈ Mn , let C = B ⊕ B̄, and define S = eiπ/4√
2

[
0n i In

−i In 0n

]
. (a) Explain why S is

unitary, symmetric, and coninvolutory. (b) Show that SC ST and SC S∗ are both real, that is,
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C is both congruent and ∗congruent to a real matrix. (c) Explain why C is both congruent
and ∗congruent to C̄ .

4.5.P28 Let A ∈ Mn and suppose that A is congruent to Ā. (a) Use (4.5.25) and (4.5.P26)
to show that A is congruent to a direct sum of (i) real blocks of the form Jk(0), �k , or
H2k(r ) in which r is real and either r = (−1)k or |r | > 1; (ii) blocks of the form H2k(μ)
in which |μ| = 1, μ �= ±1, and μ is determined up to replacement by μ̄ (that is, H2k(μ) is
congruent to H2k(μ̄)); and (iii) pairs of blocks of the form H2k(μ) ⊕ H2k(μ̄) in which μ is
not real and |μ| > 1. (b) Use the preceding problem to show that A is congruent to a real
matrix.

4.5.P29 Let A ∈ Mn and suppose that A is ∗congruent to Ā. (a) Use (4.5.21) to show that
A is ∗congruent to a direct sum of (i) real blocks of the form Jk(0), ±�k , or H2k(r ) in
which r is real and |r | > 1, and (ii) pairs of blocks of the form λ�k ⊕ λ̄�k in which |λ| = 1
and λ �= ±1, or of the form H2k(μ) ⊕ H2k(μ̄) in which μ is not real and |μ| > 1. (b) Use
(4.5.P27) to show that A is ∗congruent to a real matrix.

4.5.P30 Let A ∈ Mn . Explain why A is congruent (respectively, ∗congruent) to Ā if and
only if A is congruent (respectively, ∗congruent) to a real matrix.

4.5.P31 Explain why (a)
[

0 1
i 0

]
is congruent to a real matrix but

[
0 1
2i 0

]
is not; (b) neither

matrix in (a) is ∗congruent to a real matrix.

4.5.P32 Suppose that A ∈ M2n is a matrix of quaternion type (see (4.4.P29)). Explain why

(a) A is congruent to Ā via S2n =
[

0n In

−In 0n

]
; (b) any matrix of quaternion type is congruent

to a real matrix.

4.5.P33 Let A ∈ Mn . Use (4.5.25) to show that A is congruent to AT .

4.5.P34 Let A ∈ Mn . Use (4.5.21) to show that A is ∗congruent to AT .

4.5.P35 Let A =
[

1 −1
−1 1

]
and B =

[
1 0
0 −1

]
. (a) Use both (4.5.17) and (4.5.24) to show

that A and B are not simultaneously diagonalizable by ∗congruence. (b) Use (4.5.17) to
show that A and B are not simultaneously diagonalizable by congruence. (c) Show that
x∗Bx = 0 whenever x ∈ C2 and x∗ Ax = 0.

4.5.P36 Let A, B ∈ Mn be Hermitian. Suppose that A is indefinite, and x∗Bx = 0 whenever
x ∈ Cn and x∗ Ax = 0. (a) Show that there is a real scalar κ such that B = κ A; in particular,
A and B are simultaneously diagonalizable by ∗congruence. (b) Show that the assertion
(a) is still correct if we assume that A, B ∈ Mn(R) are symmetric, A is indefinite, and
xT Bx = 0 whenever x ∈ Rn and xT Ax = 0. (c) Use the preceding problem to explain why
we cannot omit the hypothesis that A is indefinite.

4.5.P37 Let A ∈ Mn be nonsingular. Show that the following statements are equivalent
(equivalence of (a) and (b) is in (4.5.24)):

(a) A is diagonalizable by ∗congruence, that is, there is a nonsingular S ∈ Mn and a diagonal
unitary D = diag(eiθ1 , . . . , eiθn ) such that A = SDS∗.

(b) A−∗A is diagonalizable and each of its eigenvalues has modulus one.
(c) There is a nonsingular S ∈ Mn and a nonsingular diagonal matrix � such that A =

S�S∗.
(d) There are two bases of Cn , given by the columns of X = [x1 . . . xn] and Y =

[y1 . . . yn], and a nonsingular diagonal matrix � = diag(λ1, . . . , λn) such that X∗Y = I
and Ax j = λ j y j for each j = 1, . . . , n.
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(e) There is a positive definite B ∈ Mn such that A∗B A = AB A∗.
(f ) There is a positive definite B ∈ Mn and a nonsingular normal C ∈ Mn such that A =

BCB.

Explain how each of these six statements expresses a property of normal matrices. For this
reason, matrices that are diagonalizable by ∗congruence are said to be normalizable.

Notes and Further Readings. For results about simultaneous diagonalization of more
than two matrices (and proofs of the assertion in (4.5.P23 and P24)), see Y. P. Hong
and R. A. Horn, On simultaneous reduction of families of matrices to triangular or
diagonal form by unitary congruence, Linear Multilinear Algebra 17 (1985), 271–288.
For proofs of the ∗congruence and congruence canonical form theorems, details for the
algorithms following (4.5.22) and (4.5.26), two algorithms to determine the signs of the
Type I blocks for ∗congruence, and extensions to matrices over fields other than C, see
R. A. Horn and V. V. Sergeichuk, (a) A regularization algorithm for matrices of bilinear
and sesquilinear forms, Linear Algebra Appl. 412 (2006) 380–395, (b) Canonical forms
for complex matrix congruence and ∗congruence, Linear Algebra Appl. 416 (2006)
1010–1032, and (c) Canonical matrices of bilinear and sesquilinear forms, Linear
Algebra Appl. 428 (2008) 193–223. Problem (4.5.P36) arises in the theory of special
relativity, with A = diag(1, 1, 1,−c), in which c is the speed of light. It implies that
Lorentz transformations are the only linear changes of coordinates in four-dimensional
space-time that are consistent with Einstein’s postulate of the universality of the speed
of light. For an exposition, see J. H. Elton, Indefinite quadratic forms and the invariance
of the interval in special relativity, Amer. Math. Monthly 117 (2010) 540–547. The term
normalizable matrix (see (4.5.P37)) seems to have been coined in K. Fan, Normalizable
operators, Linear Algebra Appl. 52/53 (1983) 253–263.

4.6 Consimilarity and condiagonalization

In this section, we study and broaden the notion of condiagonalization, which arose
naturally in (4.5.17(c)).

Definition 4.6.1. Matrices A, B ∈ Mn are consimilar if there exists a nonsingular
S ∈ Mn such that A = SBS̄−1.

If U is unitary, then Ū−1 = Ū ∗ = U T , so unitary congruence (A = U BU T ) and
unitary consimilarity (A = U BŪ−1) are the same; if Q is complex orthogonal, then
Q̄−1 = Q̄T = Q∗, so complex orthogonal ∗congruence (A = Q B Q∗) and complex
orthogonal consimilarity (A = Q B Q̄−1) are the same; if R is real and nonsingular,
then R̄−1 = R−1, so real similarity (A = RB R−1) and real consimilarity (A = RB R̄−1)
are the same.

For matrices of size one, similarity is trivial (sas−1 = a), but consimilarity is a
rotation: sas̄−1 = |s|eiθa|s|−1eiθ = e2iθa if s = |s|eiθ .

Exercise. Explain why each 1-by-1 complex matrix [a] is consimilar to [ā], to
[−a], and to the real matrix [|a|].
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Exercise. How are A, B ∈ Mn related if they are consimilar via a coninvolutory
matrix?

Consimilarity is an equivalence relation on Mn (0.11), and we may ask which
equivalence classes contain block triangular, triangular, or diagonal representatives.

Definition 4.6.2. A matrix A ∈ Mn is contriangularizable (respectively, block contrian-
gularizable) if there exists a nonsingular S ∈ Mn such that S−1 AS̄ is upper triangular
(respectively, block upper triangular); it is condiagonalizable if S can be chosen so that
S−1 AS̄ is diagonal. It is unitarily contriangularizable or unitarily condiagonalizable if
it is unitarily congruent to a matrix of the required form.

We encountered unitary contriangularization (triangularization by unitary con-
gruence) and unitary condiagonalization (diagonalization by unitary congruence) in
(4.4.4). If A ∈ Mn is contriangularizable, and if S−1 AS̄ =  is upper triangular, a
computation reveals that the main diagonal entries of ̄ = S−1(AĀ)S are nonneg-
ative. Conversely, if every eigenvalue of AĀ is nonnegative, (4.4.4) ensures that A
is unitarily contriangularizable. If some eigenvalue of AĀ is not real or is real and
negative, then A is not contriangularizable, but (4.4.9) ensures that it is block con-
triangularizable with diagonal blocks of sizes one and two; the diagonal blocks are
associated with pairs of eigenvalues of AĀ that are either non-real and conjugate, or
are real, negative, and equal.

Theorem 4.6.3. Let A ∈ Mn be given. The following are equivalent:

(a) A is contriangularizable.
(b) A is unitarily contriangularizable.
(c) Every eigenvalue of AĀ is real and nonnegative.

If A ∈ Mn is unitarily condiagonalizable, then there is a unitary U such that
A = U�Ū−1 = U�U T , in which � = diag(λ1, . . . , λn); consequently, A is symmet-
ric. Conversely, if A is symmetric, then (4.4.4c) ensures that A is unitarily condia-
gonalizable.

Theorem 4.6.4. A matrix A ∈ Mn is unitarily condiagonalizable if and only if it is
symmetric.

How can we decide whether a given square nonsymmetric matrix can be condiago-
nalized by a (necessarily nonunitary) consimilarity? If S = [s1 . . . sn] is nonsingular
and partitioned according to its columns, and if S−1 AS̄ = � = diag(λ1, . . . , λn), then
AS̄ = S�, so As̄i = λi si for i = 1, . . . , n.

Definition 4.6.5. Let A ∈ Mn be given. A nonzero vector x ∈ Cn such that Ax̄ = λx
for some λ ∈ C is a coneigenvector of A; the scalar λ is a coneigenvalue of A. We say
that the coneigenvector x is associated with the coneigenvalue λ. The pair λ, x is a
coneigenpair for A.

Exercise. Let A ∈ Mn be singular and let N denote its null space. Explain why
the coneigenvectors of A associated with the coneigenvalue 0 are the nonzero
vectors in the complex subspace N (not very interesting).



302 Hermitian matrices, symmetric matrices, and congruences

The span of a coneigenvector of A ∈ Mn is a one-dimensional coninvariant subspace.
Lemma 4.4.2 ensures that every A ∈ Mn has a coninvariant subspace of dimension one
or two.

If S−1 AS̄ = � is diagonal, the identity AS̄ = S� ensures that every column of
S is a coneigenvector of A, so there is a basis of Cn consisting of coneigenvectors
of A. Conversely, if there is a basis {s1, . . . , sn} of Cn consisting of coneigenvectors
of A, then S = [s1 . . . sn] is nonsingular, AS̄ = S� for some diagonal matrix �, and
S−1 AS̄ = �. Just as in the case of ordinary diagonalization, we conclude that A ∈ Mn

is condiagonalizable if and only if it has n linearly independent coneigenvectors.
If Ax̄ = λx , then A(eiθ x) = e−iθ Ax̄ = e−iθλx = (e−2iθλ)(eiθ x) for any θ ∈ R.

Thus, if λ is a coneigenvalue of A, then so is e−2iθλ for all θ ∈ R; eiθ x is an associ-
ated coneigenvector. It is often convenient to select from the coneigenvalues e−2iθλ of
equal modulus the unique nonnegative representative |λ|, and to use a coneigenvector
associated with it.

Exercise. Let A ∈ Mn be given, suppose that λ, x is a coneigenpair for A, and let
S = {x : Ax̄ = λx}. If λ �= 0, explain why S is not a vector space over C (and
hence it is not a subspace of Cn), but it is a vector space over R. The vector space
S (only a real vector space if λ > 0, but a complex vector space if λ = 0) is the
coneigenspace of A associated with the coneigenvalue λ.

Moreover, if Ax̄ = λx , then AĀx = A(Ax̄) = A(λx) = λ̄Ax̄ = λ̄λx = |λ|2x , so λ

is a coneigenvalue of A only if |λ|2 is an eigenvalue (necessarily nonnegative) of AĀ.

Exercise. For A =
[

0 −1
1 0

]
, show that AĀ has no nonnegative eigenvalues and

explain why A has no coneigenvectors (and hence no coneigenvalues).

The necessary condition that we have just observed for existence of a coneigenvalue
is also sufficient.

Proposition 4.6.6. Let A ∈ Mn, let λ ≥ 0 be given, let σ = √
λ ≥ 0, and suppose that

there is a nonzero vector x such that AĀx = λx. There is a nonzero vector y such that
Aȳ = σ y.

(a) If λ = 0, then Ā is singular and one may take y = z̄ for any nonzero vector z in
the null space of Ā.

(b) If λ > 0, one may take y = e−iθ Ax̄ + eiθσ x for any θ ∈ [0, π ) such that Ax̄ �=
−e2iθσ x; at most one value of θ ∈ [0, π ) is excluded.

(c) If λ has geometric multiplicity 1 as an eigenvalue of AĀ, then x is a coneigenvec-
tor of A associated with a coneigenvalue e2iθσ for some θ ∈ [0, π ) and y = eiθ x
satisfies Aȳ = σ y.

Proof. (a) If AĀx = 0, then AĀ is singular, so 0 = det AĀ = | det Ā|2, Ā is singular,
there is a nonzero vector z such that Āz = 0 and Āz = Az̄ = 0.
(b) Suppose that σ > 0, so σ x �= 0. If the vectors Ax̄, σ x are linearly dependent, then
Ax̄ = cσ x for a unique complex scalar c; if they are linearly independent, then Ax̄ �=
cσ x for every complex scalar c. In particular, Ax̄ = −e2iθσ x for at most one θ ∈ [0, π).
If θ ∈ [0, π) is such that Ax̄ �= −e2iθσ x , then y �= 0 and Aȳ = eiθ AĀx + e−iθσ Ax̄ =
eiθλx + e−iθσ Ax̄ = σ (e−iθ Ax̄ + eiθσ x) = σ y.
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(c) AĀ(Ax̄) = A(AĀx) = A(λx) = λ(Ax̄), so Ax̄ = cx for some scalar c (c = 0 is
possible) since λ has geometric multiplicity 1 as an eigenvalue of AĀ Then λx =
AĀx = A(Ax̄) = A(cx) = c̄Ax̄ = c̄cx = |c|2x , which ensures that |c| = σ . Let c =
e2iθσ . Then Ax̄ = cx = e2iθσ x and A(eiθ x) = σ (eiθσ x). �

Exercise. Let σ be real and nonnegative, let A =
[

σ i
0 σ

]
, and let x = [1 i]T .

Explain why x is an eigenvector of AĀ associated with the eigenvalue σ 2, but it
is not a coneigenvector of A. If σ = 0, verify that the standard basis vector e1 is
a coneigenvector of A associated with the coneigenvalue zero. If σ > 0, verify
that y = Ax̄ + σ x is a coneigenvector of A associated with the coneigenvalue σ .

Although an eigenvector of AĀ associated with a nonnegative eigenvalue λ need
not be a coneigenvector of A, the proof of (4.6.6) shows how such a vector can be
used to construct a coneigenvector of A associated with the nonnegative coneigenvalue√

λ. If λ is positive and has geometric multiplicity g as an eigenvalue of AĀ, then
the coneigenspace of A associated with the positive coneigenvalue

√
λ is a g-

dimensional real vector space, and there is a generalization of (4.6.6) that shows
how to construct a basis for it from any given basis for the eigenspace of AĀ associated
with the eigenvalue λ; see (4.6.P16 to P18).

The following result is an analog of (1.3.8).

Proposition 4.6.7. Let A ∈ Mn be given, and let x1, x2, . . . , xk be coneigenvectors
of A with corresponding coneigenvalues λ1, λ2, . . . , λk . If |λi | �= |λ j | whenever 1 ≤
i, j ≤ k and i �= j , then the vectors x1, . . . , xk are linearly independent.

Proof. Each xi is an eigenvector of AĀ with associated eigenvalue |λi |2. Lemma 1.3.8
ensures that the vectors x1, . . . , xk are linearly independent. �

This result, together with (4.6.6), gives a lower bound on the number of linearly
independent coneigenvectors of a given matrix and yields a sufficient condition for
condiagonalizability that is an analog of (1.3.9). Perhaps surprisingly, if AĀ has dis-
tinct eigenvalues, any nonsingular matrix that diagonalizes AĀ (by similarity) also
condiagonalizes A.

Corollary 4.6.8. Let A ∈ Mn be given and suppose that AĀ has k distinct nonnegative
eigenvalues.

(a) The matrix A has at least k linearly independent coneigenvectors.
(b) If k = 0, then A has no coneigenvectors.
(c) Suppose that k = n. Then A is condiagonalizable. Moreover, if S ∈ Mn is non-

singular, A Ā = S�S−1, and � is nonnegative diagonal, then S−1 AS̄ = D is
diagonal and there is a diagonal unitary matrix � such that A = Y�Ȳ−1, in
which Y = S�, � is nonnegative diagonal, and �2 = �.

Proof. Only the second assertion in (d) requires justification. Let � = diag (λ1, . . . ,

λn), let σ 2
j = λ j and σ j ≥ 0 for each j = 1, . . . , n, let � = diag(σ 1, . . . , σ n), and

let S = [s1 . . . sn] be partitioned according to its columns. Each column s j is an
eigenvector of AĀ associated with a nonnegative eigenvalue λ j that has algebraic (and



304 Hermitian matrices, symmetric matrices, and congruences

hence geometric) multiplicity 1. Thus, (4.4.6(d)) ensures that each s j is a coneigenvector
of A, that As j = e2iθ j σ j s j for some θ j ∈ [0, π), and that Ay j = σ j y j , in which y j =
eiθ s j . Let Y = [y1 . . . yn] and � = diag(eiθ1, . . . , eiθn ). Then Y = S�, D = ��2,
and A = (S�)�(S�)−1 = Y�Ȳ−1. �

Our objective is to give a simple condition for a given matrix to be condiagonalizable,
and as a first step, we prove that a coninvolutory matrix (0.9.13) is consimilar to the
identity matrix.

Lemma 4.6.9. Let A ∈ Mn be given. Then AĀ = I if and only if there is a nonsingular
S ∈ Mn such that A = SS̄−1.

Proof. If A = SS̄−1, then AĀ = SS̄−1 S̄S−1 = I . Conversely, suppose that AĀ = I ,
let Sθ = eiθ A + e−iθ I , θ ∈ R, and compute

AS̄θ = A(e−iθ Ā + eiθ I ) = e−iθ AĀ + eiθ A = eiθ A + e−iθ I = Sθ (4.6.10)

There is some θ0 ∈ [0, π) such that −e2iθ0 is not an eigenvalue of A (at most n values
are excluded), and Sθ0 is nonsingular; (4.6.10) ensures that A = Sθ0 S̄−1

θ0
. �

We can now state and prove a necessary and sufficient condition for condiago-
nalizability; for an algorithm to compute a condiagonalization, see (4.6.P21), which
generalizes the construction in (4.6.8(c)).

Theorem 4.6.11. A given A ∈ Mn is condiagonalizable if and only if A Ā is diago-
nalizable (by similarity), every eigenvalue of AĀ is real and nonnegative, and rank A =
rank AĀ.

Proof. If A = SDS̄−1 and D ∈ Mn is diagonal, then AĀ = SDS̄−1 S̄ D̄S−1 =
SDD̄S−1 and the rank of both AĀ and A is the number of nonzero diagonal entries
in D.

Conversely, suppose that rank A = rank AĀ and there is a nonsingular S such that
AĀ = S�S−1, in which � = λ1 In1 ⊕ · · · ⊕ λd Ind is real diagonal, 0 ≤ λ1 < · · · < λd ,
and λi �= λ j whenever i �= j . Then

S−1 AĀS = S−1 AS̄S̄−1 ĀS = (S−1 AS̄)(S−1 AS̄) = �

Let S−1 AS̄ = B = [Bi j ]d
i, j=1, partitioned conformally to �. We have B B̄ = � = �̄ =

B B̄ = B̄ B, so B and B̄ commute. Moreover, B� = B(B B̄) = B(B̄ B) = (B B̄)B =
�B, so B and � commute and (2.4.4.2) ensures that B = B11 ⊕ · · · ⊕ Bdd is block
diagonal and conformal to �. The identity B B̄ = � tells us that Bii B̄ii = λi Ini for
each i = 1, . . . , k. Suppose that σ i ≥ 0 and σ 2

i = λi for each i = 1, . . . , d. If λi > 0,

then Bii is nonsingular and (σ−1
i Bii )(σ

−1
i Bii ) = Ini . The preceding lemma ensures that

there is a nonsingular Ri ∈ Mni such that σ−1
i Bii = Ri R̄−1

i , that is, Bii = σ i Ri R̄−1
i . On

one hand, we have rank A = rank B =∑d
i=1 rank Bii = rank B11 +

∑d
i=2 ni . On the

other hand, we have rank A = rank AĀ = rank � = β1 +
∑d

i=2 ni , in which β1 = 0 if
λ1 = 0 and β1 = n1 if λ1 > 0. We conclude that rank B11 = β1, so B11 = 0 if λ1 = 0.
Thus, B11 = σ 1 In1 in either case, λ1 = 0 or λ1 > 0, so we may take R1 = In1 if
λ1 = 0. If we let R = R1 ⊕ · · · ⊕ Rd and � = σ 1 In1 ⊕ · · · ⊕ σ d Ind we conclude that
B = R(σ 1 In1 ⊕ · · · ⊕ σ d Ind )R̄−1 = R� R̄−1 and A = SBS̄−1 = (S R)�(S R)−1. �



4.6 Consimilarity and condiagonalization 305

See (4.6.P26 and P27) for versions of the preceding lemma and theorem in the
context of unitary congruence.

The theory of ordinary similarity arises from studying linear transformations referred
to different bases. In its general context, consimilarity arises from studying antilinear
transformations referred to different bases. A semilinear transformation (sometimes
called an antilinear transformation) is a mapping T : V → W from one complex
vector space into another that is additive (T (x + y) = T x + T y for all x, y ∈ V ) and
conjugate homogeneous (T (ax) = āT x for all a ∈ C and all x ∈ V , sometimes called
antihomogeneous). Time reversal in quantum mechanics is an example of a semilinear
transformation.

Of course, not every matrix is condiagonalizable, but there is a standard form to
which each square complex matrix is consimilar. The consimilarity canonical form
theorem is as follows:

Theorem 4.6.12. Each square complex matrix is consimilar to a direct sum, uniquely
determined up to permutation of direct summands, of matrices of the following three
types:

Type 0: Jk(0), k = 1, 2, . . . ;
Type I: Jk(σ ), k = 1, 2, . . . , in which σ is real and positive;
Type II: H2k(μ), k = 1, 2, . . . , in which H2k(μ) has the form (4.5.20) and μ is either

not real or is real and negative.

Exercise. If μ ∈ C, explain why H2k(μ)H2k(μ̄) is similar to Jk(μ) ⊕ Jk(μ̄).

A cancellation theorem for consimilarity follows from (4.6.12), as in the proof of
(4.5.22).

Theorem 4.6.13. Let A, B ∈ Mp and C ∈ Mq be given. Then A ⊕ C is consimilar to
B ⊕ C if and only if A is consimilar to B.

The Jordan canonical form of AĀ has a special form: its nonsingular part contains
only blocks of the form Jk(λ) with λ real and positive, and pairs of blocks of the form
Jk(μ) ⊕ Jk(μ̄), in which μ is not both real and positive (μ is either real and negative,
or it is not real); its singular part is similar to the square of a nilpotent matrix (see
4.6.P22).

The concanonical form of a given A ∈ Mn is a direct sum of Type 0, Type I, and
Type II blocks to which it is consimilar, as described in (4.6.12). It can be determined
in two steps:

Step 1. Let r0 = n, r1 = rank A, r2k = rank(AĀ)k , and r2k+1 = rank((AĀ)k A), for
k = 1, 2, . . . . The integers w j = r j−1 − r j , j = 1, . . . , n + 1, determine the Type
0 blocks in the concanonical form of A as follows: There are wk − wk+1 blocks of
the form Jk(0), k = 1, . . . , n.

Step 2. Compute the nonsingular part of the Jordan canonical form of AĀ. It deter-
mines the Type I and Type II blocks in the concanonical form of A as follows:
Each block Jk(λ) with λ > 0 corresponds to a Type I block Jk(σ ) with σ > 0 and
σ 2 = λ; each pair Jk(μ) ⊕ Jk(μ̄) with a non-real or a real negative μ corresponds
to a Type II block H2k(μ).
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Corollary 4.6.14. Let A, B ∈ Mn. Then A is consimilar to B if and only if A Ā is similar
to B B̄, rank A = rank B, and rank(AĀ)k A = rank(B B̄)k B for k = 1, . . . , [n/2]. If
A and B are nonsingular, then A is consimilar to B if and only if A Ā is similar
to B B̄.

Proof. Necessity of the stated conditions is clear, so we consider only their sufficiency.
The Type I and Type II blocks of the concanonical forms of A and B are determined
by the Jordan canonical form of AĀ, since it is the same as the Jordan canonical
form of B B̄. The stated rank conditions (together with the conditions rank(AĀ)k =
rank(B B̄)k, k = 1, 2, . . . , [n/2], which are a consequence of similarity of AĀ and
B B̄) ensure that the Type 0 blocks of the concanonical forms of A and B are the
same. �

Exercise. Use the preceding corollary to show that each square complex matrix is
consimilar to its negative, its conjugate, its transpose, and its conjugate transpose.

One can show that each of the three types of concanonical blocks is consimilar to
a Hermitian matrix, as well as to a real matrix; it then follows from (4.6.12) that each
square complex matrix is consimilar to a Hermitian matrix, as well as to a real matrix.

Corollary 4.6.15. Let A ∈ Mn be given. Then A is consimilar to −A, to Ā, to AT , to
A∗, to a Hermitian matrix, and to a real matrix.

Corollary 4.6.16. Let A ∈ Mn be given. Then AĀ is similar to the square of a real
matrix.

Proof. Corollary 4.6.15 ensures that there is a nonsingular S ∈ Mn and a real matrix
R ∈ Mn(R) such that A = S RS̄−1. Then AĀ = S RS̄−1S RS̄−1 = S R2S−1. �

The preceding corollary and its proof provide a complete explanation for the phe-
nomenon identified in (4.4.13): Suppose that λ is a real negative eigenvalue of AĀ.
Let μ be the pure imaginary scalar such that μ2 = λ and Im μ > 0. A block Jk(λ) is
present in the Jordan canonical form of AĀ if and only if it is present in the Jordan
canonical form of R2 if and only if either Jk(μ) or Jk(−μ) is present in the Jordan
canonical form of R. Because R is real and μ̄ = −μ, however, both blocks must be
present in the Jordan canonical form of R, and indeed, there must be the same number
of each. Thus, the number of blocks Jk(λ) in the Jordan canonical form of R2 (and
hence also of AĀ) is even.

Corollary 4.6.17. Let A ∈ Mn be given.

(a) A = H S (as well as A = SH), in which H is Hermitian, S is symmetric, and
either factor may be chosen to be nonsingular.

(b) A = B E (as well as A = E B), in which B is similar to a real matrix and E is
coninvolutory.

Proof. (a) Use (4.6.15) to write A = SH S̄−1, in which S is nonsingular and H is Her-
mitian. Then A = (SH S∗)(S−∗ S̄−1) = (SH S∗)(S̄−T S̄−1) is a product of a Hermitian
matrix and a nonsingular symmetric matrix. Now write A = SBS̄−1, in which B is
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symmetric. Then A = (SS∗)(S−∗BS̄−1) = (SS∗)(S̄−T B S̄−1) is a product of a nonsin-
gular Hermitian matrix and a symmetric matrix. To reverse the order of the factors,
write A = (SST )(S−T H S̄−1) or A = (SBST )(S−T S̄−1).
(b) Use (4.6.15) to write A = S RS̄−1, in which S is nonsingular and R is real. Then
A = (S RS−1)(SS̄−1) = (SS̄−1)(S̄ RS̄−1) is a product of a coninvolutory matrix and a
matrix similar to a real matrix, in both orders. �

Our final result about consimilarity is a criterion that can be a useful alternative to
(4.6.14); see (4.6.P17) for another criterion.

Theorem 4.6.18. Let A, B ∈ Mn be given. The following are equivalent:

(a) A and B are consimilar.

(b)
[

0 A
Ā 0

]
is similar to

[
0 B
B̄ 0

]
.

(c)
[

0 A
− Ā 0

]
is similar to

[
0 B

−B̄ 0

]
.

Exercise. If A = SBS̄−1, use the similarity matrix
[

S 0
0 S̄

]
to show that (a) implies

(b) and (c) in the preceding theorem.

Problems

4.6.P1 Explain why consimilarity is an equivalence relation on Mn .

4.6.P2 Show that (a)
[

i 1
0 i

]
is not diagonalizable (by similarity) but is condiagonalizable.

(b)
[

1 −1
1 1

]
is diagonalizable but not condiagonalizable. (c)

[
0 1
0 0

]
is neither diagonalizable

nor condiagonalizable.

4.6.P3 Let A ∈ Mn be given, suppose that λ is a positive coneigenvalue of A, and let
x1, . . . , xk be coneigenvectors of A associated with λ. Show that the vectors x1, . . . , xk are
linearly independent over C if and only if they are linearly independent over R.

4.6.P4 Theorem 4.6.11 gives necessary and sufficient conditions for a single matrix to
be condiagonalizable, but what if one has several matrices that are to be condiagonalized
simultaneously? Let {A1, A2, . . . , Ak} ⊂ Mn be given and suppose that there is a nonsin-
gular S ∈ Mn such that Ai = S�i S̄−1 for i = 1, . . . , k and each �i is diagonal. Show that
(a) each Ai is condiagonalizable; (b) each Ai Ā j is diagonalizable; (c) the family of products
{Ai Ā j : i, j = 1, . . . , k} commutes; and (d) every eigenvalue of Ai Ā j + A j Āi is real, and
every eigenvalue of Ai Ā j − A j Āi is imaginary for all i, j = 1, . . . , k. What does this say
when k = 1?

4.6.P5 If A ∈ Mn is such that AĀ = � = λ1 In1 ⊕ · · · ⊕ λk Ink with λi �= λ j if i �= j , and all
λi ≥ 0, show that there is a unitary U ∈ Mn such that A = UU T and  = 1 ⊕ · · · ⊕ k ,
in which each i ∈ Mni is upper triangular.

4.6.P6 Lemma 4.6.9 says that A ∈ Mn has a factorization A = SS̄−1 for some nonsingular
S ∈ Mn if and only if AĀ = I . Show that A = UŪ−1 = UU T for some unitary U ∈ Mn

if and only if A−1 = Ā and A is symmetric.
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4.6.P7 Let A ∈ Mn be coninvolutory. Show that there is a single nonsingular S ∈ Mn such
that SX S−1 is real for any X ∈ Mn such that AX̄ = X A.

4.6.P8 If A ∈ Mn is diagonal or upper triangular, show that the eigenvalues and coneigen-
values of A are related in the following way: If λ is an eigenvalue of A, then eiθλ is
a coneigenvalue of A for all θ ∈ R and if μ is a coneigenvalue of A, then eiθμ is an
eigenvalue of A for some θ ∈ R.

4.6.P9 Let A ∈ Mn be given and suppose that n is odd. Explain why A has a coneigenpair.

4.6.P10 Let A ∈ Mn be symmetric. Deduce from the statement of (4.6.11) that A is condi-
agonalizable (not necessarily unitarily). Modify the proof of (4.6.11) in the following three
steps to show that the condiagonalization can be achieved via a unitary matrix: (a) Explain
why S may be taken to be unitary. (b) Why is each block Bii symmetric? Use (2.5.18) to
show that σ−1

j B j j = R2
j = R j R̄−1

j with R j = Q j D j QT
j , in which Q j is real orthogonal

and D j is diagonal and unitary. (c) Explain why R may be taken to be unitary. Put all this
together to obtain yet another proof of (4.4.4c).

4.6.P11 If A ∈ Mn(R), explain why the singular part of its concanonical form is the same
as the singular part of its Jordan canonical form.

4.6.P12 Let A =
[

1 i
i −1

]
. Explain why the Jordan canonical form of A is J2(0). (a) Use

the algorithm following (4.6.13) to verify that the concanonical form of A is J1(2) ⊕ J1(0).
(b) Use (4.4.4c) to arrive at the same conclusion.

4.6.P13 How does the factorization in (4.6.17b) generalize the fact that each complex
number z can be written as z = reiθ with r and θ real? If A ∈ Mm,n can be factored
as A = RE , in which R ∈ Mm,n(R) is real and E ∈ Mn is coninvolutory, explain why
range A = range Ā. This necessary condition for a factorization A = RE is sufficient as
well; see theorem 6.4.23 in Horn and Johnson (1991).

4.6.P14 If μ ∈ C, show that H2k(μ) is consimilar to H2k(μ̄). Now use (4.6.12) to show that
each A ∈ Mn is consimilar to Ā.

4.6.P15 Use (4.6.14) to show that each A ∈ Mn is consimilar to eiθ A for any θ ∈ R.

4.6.P16 Let A ∈ Mn be given, suppose that λ is a positive eigenvalue of AĀ with geo-
metric multiplicity g ≥ 1, and let σ = √

λ > 0. (a) If z1, . . . , zk are linearly independent
(over C) vectors such that Az j = σ z j for each j = 1, . . . , k, explain why k ≤ g. (b) Use
(4.6.12) to show that there exist g linearly independent (over C) vectors z1, . . . , zg such that
Az j = σ z j for each j = 1, . . . , g. (c) Explain why (b) ensures that the dimension of the
coneigenspace of A associated with the coneigenvalue σ (a real vector space) is at least g.
(d) Explain why (a) and (4.6.P3) ensure that the dimension of the coneigenspace of A
associated with the coneigenvalue σ (a real vector space) is at most g. (e) Conclude that the
coneigenspace of A associated with the coneigenvalue σ is a g-dimensional real vector
space.

The following two problems present four algorithms to determine a basis for the
coneigenspace of A ∈ Mn associated with a given positive coneigenvalue σ , given a basis
for the eigenspace of AĀ associated with the eigenvalue σ 2.

4.6.P17 Let A ∈ Mn be given, suppose that λ is a positive eigenvalue of AĀ with
geometric multiplicity g ≥ 1, and let σ = √

λ > 0. Let x1, . . . , xg be linearly indepen-
dent eigenvectors of AĀ associated with the eigenvalue λ and let X = [x1 . . . xg] ∈ Mn,g ,
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so rank X = g and AĀ = λX . The problem is to construct a matrix Y = [y1 . . . yg] ∈ Mn,g

such that rank Y = g and AȲ = σY , which ensure that the columns of Y are a basis for the
coneigenspace of A (a g-dimensional real vector space) associated with the coneigenvalue
σ . Explain why the identity AĀX = λX implies that rank AX̄ = g. Why is the column
space of X equal to the eigenspace of AĀ associated with its eigenvalue λ? Explain why
AĀ(AX̄ ) = λ(AX̄ ) and why this identity implies that there is a some matrix B ∈ Mg such
that AX̄ = X B. Why is B unique? Why is B nonsingular?
Algorithm I. Determine the matrix B by solving the linear system AX̄ = X B. Why is it
possible to do so? Since rank(B + e2iθσ I ) < g if and only if −e2iθσ is an eigenvalue of B,
there are at most g values of θ ∈ [0, π ) such that B + e2iθσ I does not have full column rank.
Choose any θ ∈ [0, π ) such that rank(B + e2iθσ I ) = g, and let Y = e−iθ X (B + e2iθσ I ).
Verify that rank Y = g and AȲ = σY . Notice that each column of Y (that is, each coneigen-
vector produced by the algorithm) is a rotation of a linear combination of all the eigenvectors
x1, . . . , xg .
Algorithm II. Use the identity X B = AX̄ to write e−iθ X (B + e2iθσ I ) = e−iθ AX̄ +
eiθσ X , which fails to have full column rank for at most g values of θ ∈ [0, π ). Choose any
θ ∈ [0, π ) such that rank(e−iθ AX̄ + eiθσ X ) = g, and let Y = e−iθ AX̄ + eiθσ X . Verify
that AȲ = σY . Explain how a suitable θ can be identified by trial and error (guess and
check). Notice that each column of Y has the form y j = e−iθ Ax j + eiθ x j , j = 1, . . . , g;
each y j depends only on x j , just as in (4.6.6).

Algorithm III. Verify that λX = AĀX = A(AX̄ ) = A(X B) = X B B̄, and explain why
B B̄ = λI , that is, σ−1 B is coninvolutory. If C is a coninvolutory matrix, it is known
that there is a coninvolutory matrix E such that C = E2; see (6.4.22) in Horn and John-
son (1991). Let σ−1 B = E2, in which E is coninvolutory, and let Y = X E . Verify that
rank Y = g and AȲ = σY . Notice that each column of Y is a linear combination of all
the eigenvectors x1, . . . , xg via coefficients whose matrix comprises a sort of rotation
(E Ē = I ).
What do these three algorithms produce when g = 1? Compare with (4.6.6).

4.6.P18 Write A ∈ Mn as A = A1 + i A2 with A1, A2 ∈ Mn(R) and consider its
real representation R2(A) = [ A1

A2

A2

−A1

] ∈ M2n(R); see (1.3.P21). Let x = u + iv �= 0,

u, v ∈ Rn , w = [ u
v

]
, T = [ 0

In

−In

0

]
, and z = T w. (a) Show that Ax̄ = σ x, σ ∈ R ⇔[Re Ax̄

Im Ax̄

] = σ
[Re x

Im x

]
, σ ∈ R ⇔ R2(A)w = σw, σ ∈ R, which is an ordinary real eigenpair

problem. (b) Show that Ax̄ = σ x, σ ∈ R ⇔ A(i x) = −σ (i x), σ ∈ R ⇔ R2(A)z =
−σ z, σ ∈ R. (c) Use (1.3.P21(f)) to show that the nonzero eigenvalues of R2(A) occur
in ± pairs, and the non-real eigenvalues occur in conjugate pairs. (d) Explain why A
has a coneigenvalue if and only if R2(A) has a real eigenvalue if and only if AĀ has
a real nonnegative eigenvalue. (e) Suppose that σ is a positive eigenvalue of R2(A)
with geometric multiplicity g ≥ 1; let w1, . . . , wg be linearly independent (over R)
eigenvectors of R2(A) associated with σ ; and let w j =

[ u j

v j

]
, z j = T w j , y j = u j + iv j ,

α j , β j ∈ R, and c j = α j + iβ j for j = 1, . . . , g. Explain why z1, . . . , zg are linearly
independent (over R) eigenvectors of R2(A) associated with the eigenvalue −σ . Show
that

∑g
j=1 c j y j = 0 ⇒∑g

j=1 α j u j =
∑g

j=1 β jv j and
∑g

j=1 α jv j = −∑g
j=1 β j u j ⇒∑g

j=1 α jw j = −∑g
j=1 β j z j ⇒

∑g
j=1 α jσw j =

∑g
j=1 β jσ z j ⇒

∑g
j=1 α jw j = 0 and∑g

j=1 β j z j = 0 ⇒ α1 = · · · = αg = 0 and β1 = · · · = βg = 0 ⇒ c1 = · · · = cg = 0.
Conclude that y1, . . . , yg are linearly independent (over C) coneigenvectors of A associated
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with the positive coneigenvalue σ . (f ) Use (1.3.P21(c)) to show that g is equal to the
geometric multiplicity of σ 2 as an eigenvalue of AĀ.

4.6.P19 Let A, B ∈ Mn . Show that the real representations R2(A) and R2(B) are similar if
and only if A and B are consimilar.

4.6.P20 Let A ∈ Mn be singular. Explain why N = {x ∈ Cn : Ax̄ = 0}, the coneigenspace
of A associated with its zero coneigenvalue is a subspace of S = {x ∈ Cn : AĀx = 0}, the
null space of AĀ. If rank A = rank AĀ, explain why N = S.

4.6.P21 Suppose that A ∈ Mn is condiagonalizable. Provide details to justify the following
algorithm for constructing a condiagonalization of A, given an ordinary diagonalization
of AĀ. Let AĀ = S�S−1, in which � = λ1 In1 ⊕ · · · ⊕ λd Ind , λ1 > · · · > λd ≥ 0 are the
distinct eigenvalues of AĀ, and the nonsingular matrix S is partitioned conformally to �

as S = [S1 . . . Sd ]. For each j = 1, . . . , d such that λ j > 0, let σ j =
√

λ > 0; if λd = 0,
let σ d = 1. Let � = σ 1 In1 ⊕ · · · ⊕ σ d Ind . For each j = 1, . . . , d let Y j = e−iθ j AS̄ j +
eiθ j σ j S j , in which θ j is any value in the real interval [0, π ) such that rank Y j = n j (at most
n j values are excluded); if λd = 0, let θd = 0. Let Y = [Y1 . . . Yd ]. Then AȲ = Y� and
Y is nonsingular, so A = Y�Ȳ−1 is a condiagonalization of A. Let � = eiθ1 In1 ⊕ · · · ⊕
eiθd Ind and observe that Y = AS̄�̄ + S��. What happens if each n j = 1? Compare with
(4.6.8).

4.6.P22 Consider the nilpotent Jordan matrix J = Jn1 (0) ⊕ · · · ⊕ Jnk (0), let q =
max{n1, . . . , nk}, and let w1, . . . , wq be the Weyr characteristic of J , so w1 = k. It is
known that J is the Jordan canonical form of the square of a nilpotent matrix if and only if
the sequence w1, . . . , wq does not contain two successive occurrences of the same odd inte-
ger and, if k is odd, then w1 − w2 > 0 (that is, if the number of blocks in J is odd, then there
is at least one block of size one); see corollary 6.4.13 in Horn and Johnson (1991). Which
of the following Jordan matrices is the Jordan canonical form of the square of a nilpotent
matrix? If so, what is that matrix? J = J2(0); J = J2(0) ⊕ J2(0); J = J2(0) ⊕ J2(0) ⊕
J2(0); J = J3(0) ⊕ J1(0); J = J5(0) ⊕ J2(0) ⊕ J1(0).

4.6.P23 Let A ∈ Mn . Let J = B ⊕ N be the Jordan canonical form of AĀ, in which B
is nonsingular and N is nilpotent. Deduce from (4.6.16) that: (a) B is a direct sum of
blocks of only two types: Jk(λ) with λ real and positive, and pairs of blocks of the form
Jk(μ) ⊕ Jk(μ̄), in which μ is not real and positive; and (b) N is similar to the square of a
nilpotent matrix. Can J1(1) ⊕ J2(0) be the Jordan canonical form of AĀ for some A ∈ M3?

4.6.P24 Let A ∈ Mn , and let A =
[

0 A
Ā 0

]
∈ M2n . Corollary 4.6.15 ensures that there is

a nonsingular S ∈ Mn and a real R ∈ Mn(R) such that A = S RS̄−1. (a) Show that A is

similar to
[

0 R
R 0

]
via the similarity matrix S ⊕ S̄. (b) Explain why the Jordan canonical

form of A consists only of the following two types of direct summands: Jk(λ) ⊕ Jk(−λ)
with λ real and nonnegative, and Jk(λ) ⊕ Jk(−λ) ⊕ Jk(λ̄) ⊕ Jk(−λ̄) with λ not real.

4.6.P25 Revisit (4.5.P35). Use (4.5.17) to show that there is no nonsingular S ∈ M2 such
that S∗ AS and ST BS are both diagonal.

4.6.P26 Let  = [di j ] ∈ Mn be upper triangular. Suppose that  and D = d1 In1 ⊕ · · · ⊕
dk Ink have the same main diagonals and that d1, . . . , dk are real, nonnegative, and distinct. If
̄ is normal, show that  = 1 ⊕ · · · ⊕ k , in which each  j ∈ Mn j is upper triangular
and has the same main diagonal as d j In j .
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4.6.P27 There is a unitary consimilarity analog of (4.6.9): If B ∈ Mm and B B̄ = I , then
there is a unitary U ∈ Mm such that

B = U
(

In−2q ⊕
[

0 σ−1
1

σ 1 0

]
⊕ · · · ⊕

[
0 σ−1

q
σ q 0

])
U T (4.6.19)

in which σ 1, σ
−1
1 , . . . , σ q , σ

−1
q are the singular values of B that are different from 1.

(a) Use this fact and (3.4.P5) to prove a unitary consimilarity analog of (4.6.11): A given
A ∈ Mn is unitarily congruent to a direct sum of blocks of the form

[σ ],
[

0 s
0 0

]
, and τ

[
0 t

t−1 0

]
= τ t

[
0 1

t−2 0

]
, (4.6.20)

σ , τ , s, t ∈ R, σ ≥ 0, τ > 0, s > 0, 0 < t < 1

if and only if AĀ is positive semidefinite (that is, AĀ is unitarily diagonalizable and has
real nonnegative eigenvalues). (b) Explain why two coninvolutions are unitarily congruent
if and only if they have the same singular values. The factorization (4.6.19) may be thought
of as a special singular value decomposition of a coninvolutory matrix that is analogous to
the special singular value decomposition (2.6.6.1) for a skew-symmetric matrix. (c) Explain
why the factorization in (a) is uniquely determined by A, up to permutation of its blocks.
(d) Compare the canonical form (a) with the one in (4.4.P43).

4.6.P28 Let A =
[

0 −1
1 0

]
, regarded as a real, complex, or quaternion matrix. Verify the

following statements: (a) A has no real eigenvectors, and hence no real eigenvalues. That
is, there is no nonzero real vector x and real scalar λ such that Ax = λx . However,
it has complex eigenvectors x± = [±i

1

]
and associated complex eigenvalues λ± = ±i .

(b) A has no complex coneigenvectors, and hence no complex coneigenvalues. That is, there
is no nonzero complex vector x and complex scalar λ such that Ax̄ = λx (equivalently,
Ax̄ = xλ). However, it has quaternion coneigenvectors x± = [± j

k

]
associated with quater-

nion right coneigenvalues λ± = ±i : Ax̄± = x±λ±. But it has no quaternion coneigenvector
associated with a quaternion left coneigenvalue: there is no nonzero quaternion vector x
and quaternion scalar λ such that Ax̄ = λx . In your verifications, be sure to observe the
reversing rule for quaternion conjugation of products: ab = b̄ā.

Notes and Further Readings. For more information about consimilarity and a proof of
the assertion in the last sentence of (4.6.P4), see the paper of Hong and Horn cited at
the end of (4.5). For proofs of (4.6.12) and the assertions in (4.6.15) about consimilarity
to a Hermitian or real matrix, see Y. P. Hong and R. A. Horn, A canonical form for
matrices under consimilarity, Linear Algebra Appl. 102 (1988) 143–168. The assertion
in (4.6.16) can be proved without invoking the concanonical form (4.6.12); see Satz
20 in K. Asano and T. Nakayama, Über halblineare Transformationen, Math. Ann.
115 (1938) 87–114. For a proof of (4.6.17) and another proof of (4.6.16), see P. L.
Hsu, On a kind of transformations of matrices, Acta Math. Sinica 5 (1955) 333–346.
A different approach to (4.6.17) is in Theorem 30 of R. A. Horn and D. I. Merino,
Contragredient equivalence: A canonical form and some applications, Linear Algebra
Appl. 214 (1995) 43–92. For a proof of the canonical form (4.6.19), see corollary
8.4 in R. A. Horn and V. V. Sergeichuk, Canonical forms for unitary congruence and
∗congruence, Linear Multilinear Algebra 57 (2009) 777–815. For more information
about the ideas in (4.6.P28), see Huang Liping, Consimilarity of quaternion matrices
and complex matrices, Linear Algebra Appl. 331 (2001) 21–30.





CHAPTER 5

Norms for Vectors and Matrices

5.0 Introduction

Euclidean length (0.6.1) is the most familiar measure of “size” and “proximity” in R2

or R3. A real vector x is thought of as “small” if ‖x‖2 = (xT x)1/2 is small. Two real
vectors x and y are “close” if ‖x − y‖2 is small.

Are there useful ways other than Euclidean length to measure the “size” of real
or complex vectors? What may be said about the “size” of matrices that reflects the
algebraic structure of Mn?

We address these questions by studying norms of vectors and matrices. Norms may
be thought of as generalizations of Euclidean length, but the study of norms is more
than an exercise in mathematical generalization. Norms arise naturally in the study of
power series of matrices and in the analysis and assessment of algorithms for numerical
computations.

Example 5.0.1 (Convergence). If x is a complex number such that |x | < 1, we
know that

(1 − x)−1 = 1 + x + x2 + x3 + · · ·

This suggests the formula

(I − A)−1 = I + A + A2 + A3 + · · ·

for calculating the inverse of the square matrix I − A, but when is it valid? It
turns out that it is sufficient that any matrix norm of A be less than 1. Many
other power series that are plausible ways to define matrix-valued functions of a
matrix, such as

eA =
∞∑

k=0

1

k!
Ak

313
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can be shown to be convergent using norms. Norms may also be useful in
determining the number of terms required in a truncated power series that must
calculate a particular function value to a desired degree of accuracy.

Example 5.0.2 (Accuracy). Suppose that we wish to compute A−1 (or eA or
some other function of A), but the entries of A are not known exactly. Perhaps they
have been obtained from an experiment, by analysis of other data, or from prior
calculations that have introduced roundoff errors. We may think of A = A0 + E
as being composed of the “true” A0 plus an error E , and we would like to assess
the potential error in computing A−1 = (A0 + E)−1 instead of the true A−1

0 .
Bounds for (A0 + E)−1 − A−1

0 may be as important to know as the exact value
of the inverse, and norms provide a systematic way to deal with such questions.

Example 5.0.3 (Bounds). Bounds for eigenvalues and singular values often
involve norms, as do bounds for changes in these quantities resulting from per-
turbation of the matrix.

Example 5.0.4 (Continuity). The standard definition of continuity of a real- or
complex-valued function f on Fn (F = R or C) at a point x0 in the domain D
of f is that for each given ε > 0 there is a δ > 0 such that | f (x) − f (x0)| < ε

whenever x ∈ D and ‖x − x0‖2 < δ. A natural generalization is to consider
continuity of functions defined on vector spaces endowed with norms other than
the Euclidean norm.

5.1 Definitions of norms and inner products

The four axioms for a norm on a real or complex vector space are as follows:

Definition 5.1.1. Let V be a vector space over the field F (F = R or C). A function
‖ · ‖ : V → R is a norm (sometimes one says vector norm) if, for all x, y ∈ V and all
c ∈ F,

(1) ‖x‖ ≥ 0 Nonnegativity
(1a) ‖x‖ = 0 if and only if x = 0 Positivity
(2) ‖cx‖ = |c|‖x‖ Homogeneity
(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ Triangle Inequality

These four axioms express some of the familiar properties of Euclidean length in
the plane. Euclidean length possesses additional properties that cannot be deduced
from these four axioms; an example is the parallelogram identity (5.1.9). The triangle
inequality expresses the subadditivity of a norm.

If ‖ · ‖ is a norm on a real or complex vector space V , the positivity and homogeneity
axioms (1a) and (2) ensure that any nonzero vector x can be normalized to produce a
unit vector u = ‖x‖−1x : ‖u‖ = ‖‖x‖−1x‖ = ‖x‖−1‖x‖ = 1. A real or complex vector
space V , together with a given norm ‖ · ‖, is called a normed linear space (normed
vector space).

A function ‖ · ‖ : V → R that satisfies axioms (1), (2), and (3) of (5.1.1) is called a
seminorm. The seminorm of a nonzero vector can be zero.
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Lemma 5.1.2. If ‖ · ‖ is a vector seminorm on a real or complex vector space V , then
| ‖x‖ − ‖y‖ | ≤ ‖x − y‖ for all x, y ∈ V .

Proof. Since y = x + (y − x), the inequality

‖y‖ ≤ ‖x‖ + ‖y − x‖ = ‖x‖ + ‖x − y‖
follows from the triangle inequality (3) and the homogeneity axiom (2). It follows that

‖y‖ − ‖x‖ ≤ ‖x − y‖
But x = y + (x − y) as well, so invoking the triangle inequality (3) again ensures that
‖x‖ ≤ ‖y‖ + ‖x − y‖, and hence

‖x‖ − ‖y‖ ≤ ‖x − y‖
Thus, we have shown that ±(‖x‖ − ‖y‖) ≤ ‖x − y‖, which is equivalent to the asser-
tion of the lemma. �

Associated with Euclidean length on Rn or Cn is the usual Euclidean inner product
y∗x of vectors y and x (0.6.1), which has something to do with the “angle” between
two vectors: x and y are orthogonal if y∗x = 0. We formulate the axioms for an inner
product by selecting the most basic properties of the Euclidean inner product.

Definition 5.1.3. Let V be a vector space over the field F (F = R or C). A function
〈·, ·〉 : V × V → F is an inner product if for all x, y, z ∈ V and all c ∈ F,

(1) 〈x, x〉 ≥ 0 Nonnegativity
(1a) 〈x, x〉 = 0 if and only if x = 0 Positivity
(2) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 Additivity
(3) 〈cx, y〉 = c〈x, y〉 Homogeneity
(4) 〈x, y〉 = 〈y, x〉 Hermitian Property

The axioms (2), (3), and (4) say that 〈·, ·〉 is a sesquilinear function; the axioms (1a)
and (1) require that 〈x, x〉 > 0 if x �= 0.

Exercise. Show that the Euclidean inner product 〈x, y〉 = y∗x on Cn satisfies the
five axioms for an inner product.

Exercise. Let D = diag(d1, . . . , dn) ∈ Mn(F) and consider the function (·, ·) :
V × V → F defined by (x, y) = y∗Dx . Which of the five axioms for an inner
product does (·, ·) satisfy? Under what conditions on D is (·, ·) an inner product?

Exercise. Let a, b, c, d ∈ F and let x, y, w, z ∈ Fn . Deduce the following prop-
erties of an inner product from the five axioms in (5.1.3):

(a) 〈x, cy〉 = c̄〈x, y〉
(b) 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉
(c) 〈ax + by, cw + dz〉 = ac̄〈x, w〉 + bc̄〈y, w〉 + ad̄〈x, z〉 + bd̄〈y, z〉
(d) 〈x, 〈x, y〉y〉 = |〈x, y〉|2
(e) 〈x, y〉 = 0 for all y ∈ V if and only if x = 0

Properties (a)–(d) are shared by all sesquilinear functions; only property (e) relies on
axioms (1) and (1a).

The Cauchy–Schwarz inequality is an important property of all inner products.
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Theorem 5.1.4 (Cauchy–Schwarz inequality). Let 〈·, ·〉 be an inner product on a
vector space V over the field F (F = R or C). Then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ V (5.1.5)

with equality if and only if x and y are linearly dependent, that is, if and only if x = αy
or y = αx for some α ∈ F.

Proof. Let x, y ∈ V be given. If x = y = 0, there is nothing to prove, so we may
assume that y �= 0. Let v = 〈y, y〉x − 〈x, y〉y and compute

0 ≤ 〈v, v〉 = 〈〈y, y〉x − 〈x, y〉y, 〈y, y〉x − 〈x, y〉y〉
= 〈y, y〉2〈x, x〉 − 〈y, y〉〈x, y〉〈x, y〉 − 〈x, y〉〈y, x〉〈y, y〉 + 〈y, y〉〈x, y〉〈x, y〉
= 〈y, y〉2〈x, x〉 − 〈y, y〉|〈x, y〉|2
= 〈y, y〉 (〈x, x〉〈y, y〉 − |〈x, y〉|2) (5.1.6)

Since 〈y, y〉 > 0, we conclude that 〈x, x〉〈y, y〉 ≥ |〈x, y〉|2, with equality if and only
if 〈v, v〉 = 0 if and only if v = 〈y, y〉x − 〈x, y〉y = 0, which is a nontrivial linear
combination of x and y. This confirms the inequality (5.1.5), with equality if and only
if x and y are linearly dependent. �

Corollary 5.1.7. If 〈·, ·〉 is an inner product on a real or complex vector space V , then
the function ‖·‖ : V → [0,∞) defined by ‖x‖ = 〈x, x〉1/2 is a norm on V .

Exercise. Prove (5.1.7). Hint: To verify the triangle inequality, compute ‖x + y‖2

= 〈x + y, x + y〉 and use the Cauchy–Schwarz inequality.

If 〈·, ·〉 is an inner product on a real or complex vector space V , the function
‖x‖ = 〈x, x〉1/2 on V is said to be derived from an inner product (namely, from 〈·, ·〉);
(5.1.7) ensures that ‖·‖ is a norm on V . A real or complex vector space V , together
with a given inner product 〈·, ·〉, is called an inner product space; endowed with its
derived norm, any inner product space is also a normed linear space.

A function 〈·, ·〉 : V × V → F that satisfies the inner product axioms (1), (2), (3),
and (4) in (5.1.3), but not necessarily axiom (1a), is called a semi-inner product;
it is a sesquilinear function such that 〈x, x〉 ≥ 0 for all x ∈ V . An important fact
about semi-inner products is that they, like inner products, satisfy the Cauchy–Schwarz
inequality.

Theorem 5.1.8. Let 〈·, ·〉 be a semi-inner product on a vector space V over the field
F (F = R or C). Then |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 for all x, y ∈ V and the function ‖·‖ :
V → [0,∞) defined by ‖x‖ = 〈x, x〉1/2 is a seminorm on V .

Proof. Let x, y ∈ V be given. Consider the polynomial p(t) = 〈t x − eiθ y, t x − eiθ y〉.
Then p(t) = t2‖x‖2 − 2t Re(e−iθ 〈x, y〉) + ‖y‖2 ≥ 0 for all t, θ ∈ R. Choose any
θ such that Re(e−iθ 〈x, y〉) = |〈x, y〉|. If ‖x‖ = 0 and 〈x, y〉 �= 0, then p(t) =
2t |〈x, y〉| + ‖y‖2 would be negative for sufficiently large negative values of t .
We conclude that 〈x, y〉 = 0 if ‖x‖ = 0, so the inequality |〈x, y〉|2 ≤ ‖x‖2‖y‖2 is



5.1 Definitions of norms and inner products 317

valid in this case. Now suppose that ‖x‖ �= 0 and define t0 = |〈x, y〉|/‖x‖2. Then
p(t0) = −|〈x, y〉|2/‖x‖2 + ‖y‖2 ≥ 0, so |〈x, y〉|2 ≤ ‖x‖2‖y‖2. The assertion that ‖·‖
is a seminorm follows as in the proof of (5.1.7), since the Cauchy–Schwarz inequality
for 〈·, ·〉 implies the triangle inequality for ‖·‖. �

Exercise. Let A = diag(1, 0) ∈ M2. Show that 〈x, y〉 = y∗Ax defines a semi-
inner product on C2. Consider the independent vectors x = [1 0]T and y = [1 1]T .
Show that |〈x, y〉|2 = 〈x, x〉〈y, y〉 �= 0, so the very useful characterization of the
case of equality in the Cauchy–Schwarz inequality for inner products is lost when
we generalize to semi-inner products.

Problems

In each of the following problems, V is a given vector space over F = R or C.

5.1.P1 Let ei denote the ith standard basis vector in Fn and suppose that ‖ · ‖ is a seminorm
on Fn . Show that ‖x‖ ≤∑n

i=1 |xi | ‖ei‖.

5.1.P2 If ‖ · ‖ is a seminorm on V , show that V0 = {v ∈ V : ‖v‖ = 0} is a subspace of V
(called the null space of ‖ · ‖). (a) If S is any subspace of V such that V0 ∩ S = {0}, show
that ‖ · ‖ is a norm on S. (b) Consider the relation x ∼ y defined by x ∼ y if and only if
‖x − y‖ = 0. Show that: ∼ is an equivalence relation on V ; the equivalence classes of this
equivalence relation are of the form x̂ = {x + y ∈ V : y ∈ V0}; the set of these equivalence
classes forms a vector space in a natural way. Show that the function ‖x̂‖ = {‖x‖ : x ∈ x̂}
is well-defined and is a norm on the vector space of equivalence classes. (c) Explain why
there is a natural norm associated with every vector seminorm. (d) Is the zero function
( f (x) = 0 for all x) a seminorm? (e) Let n ≥ 1 and let z ∈ Cn be a given nonzero vector.
Explain why the function ‖x‖ = |z∗x | is a seminorm on Cn that is not a norm. What is the
null space of ‖·‖? Describe the equivalence relation ∼ geometrically.

5.1.P3 Let x and y be given nonzero vectors in V . Define the angle θ between the subspaces
span{x} and span{y} by

cos θ = |〈x, y〉|
〈x, x〉1/2〈y, y〉1/2

, 0 ≤ θ ≤ π

2

Why is θ is well-defined, that is, why is the stated fraction between 0 and 1? The terminology
is justified by observing that θ is unchanged if x and y are replaced, respectively, by cx and
dy, for any nonzero c, d ∈ C; explain why.

5.1.P4 Let ‖·‖ be a norm on V that is derived from an inner product. (a) Show that it
satisfies the parallelogram identity

1

2
(‖x + y‖2 + ‖x − y‖2) = ‖x‖2 + ‖y‖2 (5.1.9)

for all x, y ∈ V . Why is this identity so named? Validity of the parallelogram identity
is necessary and sufficient for a given norm to be derived from an inner product; see
(5.1.P12). (b) For any m ∈ {2, 3, . . .} and any given vectors x1, . . . , xm ∈ V , show that∑

1≤i< j≤m

∥∥xi − x j

∥∥2 + ∥∥∑m
i=1 xi

∥∥2 = m
∑m

i=1 ‖xi‖2 and explain why this identity re-
duces to (5.1.9) for m = 2.
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5.1.P5 Consider the function ‖x‖∞ = max1≤i≤n |xi | on Cn . Show that ‖ · ‖∞ is a norm that
is not derived from an inner product.

5.1.P6 If ‖ · ‖ is a norm on V that is derived from an inner product, show that

Re〈x, y〉 = 1

4
(‖x + y‖2 − ‖x − y‖2) (5.1.10)

for all x, y ∈ V . This is known as the polarization identity. Show also that

Re〈x, y〉 = 1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2)

5.1.P7 Show that the function ‖x‖1 = |x1| + · · · + |xn| is a norm on Cn that does not satisfy
the polarization identity (5.1.10). It is not, therefore, derived from any inner product.

5.1.P8 If ‖ · ‖ is a norm on V that is derived from an inner product 〈·, ·〉, show that

‖x + y‖ ‖x − y‖ ≤ ‖x‖2 + ‖y‖2 (5.1.11)

for all x, y ∈ V , with equality if and only if Re〈x, y〉 = 0. What is the geometrical meaning
of this inequality in R2 with the Euclidean inner product? Using the norm defined in the
preceding problem, show that there are vectors x, y ∈ R2 such that (5.1.11) is not satisfied.

5.1.P9 Let ‖ · ‖ be a norm on V that is derived from an inner product, let x, y ∈ V , and
suppose that y �= 0. Show that: (a) the scalar α0 that minimizes the value of ‖x − αy‖ is
α0 = 〈x, y〉/‖y‖2, and (b) x − α0 y and y are orthogonal.

5.1.P10 Show that the nonnegativity axiom (1) in (5.1.1) is implied by axioms (2) and (3).

5.1.P11 Let ‖ · ‖ be a norm on V that is derived from an inner product 〈·, ·〉, and let
x, y ∈ V . Show that ‖x + y‖2 = ‖x‖2 + ‖y‖2 if and only if Re〈x, y〉 = 0. What does this
say if V = R2?

5.1.P12 Provide details for the following sketch of a proof that the parallelogram identity
(5.1.9) is a sufficient condition for a given norm on a real or complex vector space to be
derived from an inner product. First consider the case of a vector space V over R with a
given norm ‖ · ‖. (a) Define

〈x, y〉 = 1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2) (5.1.12)

Show that 〈·, ·〉 defined in this way satisfies axioms (1), (1a), and (4) in (5.1.3) and that
〈x, x〉 = ‖x‖2. (b) Use (5.1.9) to show that

4〈x, y〉 + 4〈z, y〉 = 2‖x + y‖2 + 2‖z + y‖2 − 2‖x‖2 − 2‖z‖2 − 4‖y‖2

= ‖x + 2y + z‖2 − ‖x + z‖2 − 4‖y‖2 = 4〈x + z, y〉

and conclude that the additivity axiom (2) in (5.1.3) is satisfied. (c) Use the additivity
axiom to show that 〈nx, y〉 = n〈x, y〉 and m〈m−1nx, y〉 = 〈nx, y〉 = n〈x, y〉 whenever
m and n are nonnegative integers. Use (5.1.9) and (5.1.12) to show that 〈−x, y〉 = −〈x, y〉
and conclude that 〈ax, y〉 = a〈x, y〉 whenever a ∈ R is rational. (d) Let p(t) = t2‖x‖2 +
2t〈x, y〉 + ‖y‖2, t ∈ R, and show that p(t) = ‖t x + y‖2 if t is rational. Conclude from
the continuity of p(t) that p(t) ≥ 0 for all t ∈ R. Deduce the Cauchy–Schwarz inequality
|〈x, y〉|2 ≤ ‖x‖2‖y‖2 from the fact that the discriminant of p(t) must be nonpositive.
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(e) Now let a ∈ R and show that

|〈ax, y〉 − a〈x, y〉| = |〈(a − b)x, y〉 + (b − a)〈x, y〉|
≤ |〈(a − b)x, y〉| + |(b − a)〈x, y〉| ≤ 2|a − b| ‖x‖ ‖y‖

for any rational b; observe that the upper bound can be made arbitrarily small. Conclude
that the homogeneity axiom (3) in (5.1.3) is satisfied. This shows that 〈·, ·〉 is an inner
product on V .

The triangle inequality for the function ‖ · ‖ on V , that is, axiom (3) in (5.1.1), was not
used in the preceding argument. Thus, the axioms (1), (1a), and (2) in (5.1.1) for a function
‖ · ‖ on V , together with (5.1.9), imply that it is derived from an inner product, is therefore
a norm, and hence must satisfy the triangle inequality. (f ) Now suppose that V is a complex
vector space. Define

〈x, y〉 = 1

2
(‖x + y‖2 − ‖x‖2 − ‖y‖2) + i

2
(‖x + iy‖2 − ‖x‖2 − ‖y‖2)

Why is Re〈x, y〉 an inner product on V considered as a vector space over R? Use this fact
and (5.1.9) to show that 〈·, ·〉 is an inner product on V as a vector space over C.

5.1.P13 Let ‖ · ‖ be a norm on V that is derived from an inner product. Provide details for
the following sketch of a proof of Hlawka’s inequality:

‖x + y‖ + ‖x + z‖ + ‖y + z‖ ≤ ‖x + y + z‖ + ‖x‖ + ‖y‖ + ‖z‖ (5.1.13)

for all x, y, z ∈ V . (a) Let s denote the left-hand side of (5.1.13) and let h denote its
right-hand side. To show that s ≤ h it suffices to show that h2 − hs ≥ 0. (b) Compute
h2 − hs =

‖x + y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 − ‖x + y‖2 − ‖x + z‖2 − ‖y + z‖2

+ (‖x‖ + ‖y‖ − ‖x + y‖)(‖z‖ − ‖x + y‖ + ‖x + y + z‖)

+ (‖y‖ + ‖z‖ − ‖y + z‖)(‖x‖ − ‖y + z‖ + ‖x + y + z‖)

+ (‖z‖ + ‖x‖ − ‖z + x‖)(‖y‖ − ‖z + x‖ + ‖x + y + z‖)

(c) Use the hypothesis that the norm is derived from an inner product to show that the first
line of the preceding display is zero. (d) Use the triangle inequality to show that both factors
in each of the last three lines of the preceding display are nonnegative.

5.1.P14 Let x1, . . . , xn be n given real numbers with mean μ = n−1 ∑n
i=1 xi and variance

σ = (n−1 ∑n
i=1(xi − μ)2)1/2. Use the Cauchy–Schwarz inequality to show that (x j − μ)2 ≤

(n − 1)σ 2 for any j ∈ {1, . . . , n}, with equality for some j if and only if x p = xq for all
p, q �= j . The resulting sharp bounds

μ − σ
√

n − 1 ≤ x j ≤ μ + σ
√

n − 1 (5.1.14)

for the elements of a list of real numbers are associated with the names of E. N. Laguerre
(1880) and P. N. Samuelson (1968).

5.1.P15 Let ‖ · ‖ be a norm on V that is derived from an inner product. Let m be a positive
integer, let x1, . . . , xm, z ∈ V , and let y = m−1(x1 + · · · + xm). Show that ‖z − y‖2 =
m−1 ∑m

i=1(‖z − xi‖2 − ‖y − xi‖2).
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Further Readings. The first proof that the parallelogram identity is both necessary and
sufficient for a given norm to be derived from an inner product seems to be due to P.
Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2)
36 (1935), 719–723. The proof outline in (5.1.P10) follows D. Fearnley-Sander and J. S.
V. Symons, Apollonius and inner products, Amer. Math. Monthly 81 (1974), 990–993.

5.2 Examples of norms and inner products

The Euclidean norm (l2-norm) of a vector x = [x1 . . . xn]T ∈ Cn ,

‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 (5.2.1)

is perhaps the most familiar norm, since ‖x − y‖2 measures the standard Euclidean
distance between two points x, y ∈ Cn . It is derived from the Euclidean inner product
(that is, ‖x‖2 = 〈x, x〉1/2 = (x∗x)1/2) and it is unitarily invariant: ‖U x‖2 = ‖x‖2 for
all x ∈ Cn and every unitary U ∈ Mn (2.1.4). In fact, positive scalar multiples of the
Euclidean norm are the only unitarily invariant norms on Cn; see (5.2.P6).

The sum norm (l1-norm) on Cn is

‖x‖1 = |x1| + · · · + |xn| (5.2.2)

This norm is also called the Manhattan norm (or taxicab norm) because it models the
distance traveled by a taxi on a network of perpendicular streets and avenues.

Exercise. Verify that ‖·‖1 is a norm on Cn . Problem 5.2.P7 shows that ‖·‖1 does
not satisfy the polarization identity, so it is not derived from an inner product.
Show by example that it does not satisfy the parallelogram identity.

The max norm (l∞-norm) on Cn is

‖x‖∞ = max{|x1|, . . . , |xn|} (5.2.3)

Problem 5.2.P5 shows that ‖·‖∞ is not derived from an inner product.
The l p-norm on Cn is

‖x‖p = (|x1|p + · · · + |xn|p)1/p, p ≥ 1 (5.2.4)

Exercise. Verify that ‖ · ‖p is a norm on Cn for p ≥ 1. Hint: The triangle
inequality for the l p-norms is Minkowski’s sum inequality; see (B9).

An important discrete family of norms on Cn bridges the gap between the sum
norm and the max norm. For each k = 1, . . . , n the k-norm of a vector x is obtained
by nonincreasingly ordering the absolute values of the entries of x and adding the k
largest values, that is,

‖x‖[k] =
∣∣xi1

∣∣+ · · · + ∣∣xik

∣∣ , in which
∣∣xi1

∣∣ ≥ · · · ≥ ∣∣xin

∣∣ (5.2.5)

The k-norms play an important role in the theory of unitarily invariant matrix norms;
see (7.4.7).

Exercise. Verify that ‖ · ‖[k] is a norm on Cn for each k = 1, 2, . . ., and that
‖·‖∞ = ‖ · ‖[1] ≤ ‖ · ‖[2] ≤ · · · ≤ ‖ · ‖[n] = ‖·‖1.
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Any norm on Cn can be used to define a norm on an n-dimensional real or complex
vector space V via a basis. If B = {b(1), . . . , b(n)} is a basis for V and if we express
x =∑n

i=1 xi b(i) as a (unique) linear combination of basis vectors, then the mapping
x → [x]B = [x1 . . . xn]T ∈ Cn is an isomorphism of V onto Cn . If ‖ · ‖ is any given
norm on Cn , then ‖x‖B = ‖[x]B‖ is a norm on V .

Exercise. Verify the preceding assertion.

Exercise. Verify that the l p-norms and the k-norms are absolute norms that are
permutation invariant, that is, the norms of x and Px are equal for all x ∈
Cn and every permutation matrix P ∈ Mn . Which of these norms are unitarily
invariant?

Let S ∈ Mm,n have full column rank, so m ≥ n. Let ‖·‖ be a given norm on Cm and
define

‖x‖S = ‖Sx‖ (5.2.6)

for x ∈ Cn . Then ‖·‖S is a norm on Cn .

Exercise. Verify the preceding assertion. What happens if S does not have full
column rank?

Exercise. For what nonsingular S ∈ M2 and norm ‖·‖ on C2 is the function
(|2x1 − 3x2|2 + |x2|2)1/2 a norm of the form ‖Sx‖?

Consider the complex vector space V = Mm,n with the Frobenius inner product:

〈A, B〉F = tr B∗A (5.2.7)

The norm derived from the Frobenius inner product is the l2-norm (Frobenius norm)
on Mm,n: ‖A‖2 = (tr A∗A)1/2; it played a role in the proof of (2.5.2).

Exercise. Verify that the Frobenius inner product on Mm,n satisfies the axioms
for an inner product.

Exercise. What does the Frobenius inner product on Mm,1 look like?

The definitions of a norm and inner product do not require that the underlying vector
space be finite dimensional. Here are four examples of norms on the vector space
C[a, b] of all continuous real- or complex-valued functions on the real interval [a, b]:

‖ f ‖2 =
[∫ b

a | f (t)|2dt
]1/2

L2-norm

‖ f ‖1 = ∫ b
a | f (t)|dt L1-norm

‖ f ‖p =
[∫ b

a | f (t)|pdt
]1/p

, p ≥ 1 L p-norm

‖ f ‖∞ = max{| f (x)| : x ∈ [a, b]} L∞-norm

Exercise. Verify that

〈 f , g〉 =
∫ b

a
f (t)g(t)dt (5.2.8)

is an inner product on C[a, b] and that the L2-norm is derived from it.
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Problems

5.2.P1 If 0 < p < 1, then ‖x‖p = (|x1|p + · · · + |xn|p)1/p defines a function on Cn that
satisfies all but one of the axioms for a norm. Which one fails? Give an example.

5.2.P2 Show that ‖x‖∞ = limp→∞ ‖x‖p for each x ∈ Cn .

5.2.P3 Show that any seminorm on Cn is of the form ‖ · ‖S for some norm ‖ · ‖ and some
S ∈ Mn .

5.2.P4 Let w1, . . . , wn be given positive real numbers and let p ≥ 1. For what S ∈ Mn is
the weighted lp-norm ‖x‖ = (w1|x1|p + · · · + wn|xn|p)1/p a norm of the form ‖Sx‖p?

5.2.P5 Let x0 ∈ [a, b] ∈ R be a given point. Show that the function ‖ f ‖x0 = | f (x0)| is
a seminorm on C[a, b] that is not a norm if a < b. What is its null space? What is an
analogous seminorm on Cn?

5.2.P6 If ‖ · ‖ is a unitarily invariant norm on Cn , show that ‖x‖ = ‖x‖2‖e1‖ for every
x ∈ Cn . Explain why the Euclidean norm is the only unitarily invariant norm on Cn for
which ‖e1‖ = 1.

5.2.P7 Suppose that ‖ · ‖ is a norm on a real or complex vector space V . (a) Show that, for
all nonzero x, y ∈ V ∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥ ≤ c ‖x − y‖

‖x‖ + ‖y‖ (5.2.9)

in which c = 4. (b) Consider the sum norm ‖x‖1 on R2 and the vectors x = [1 ε]T and
y = [1 0]T , in which ε > 0. Show that the inequality (5.2.9) in this case is 2ε(1 + ε)−1 ≤
cε(2 + ε)−1 and explain why (5.2.9) is correct for every norm on every real or complex
vector space if and only if c ≥ 4. (c) If the norm ‖ · ‖ is derived from an inner product,
show that the assertion in (a) is correct with c = 2.

5.2.P8 Let V be a real or complex inner product space and let u ∈ V be a unit vector (with
respect to the derived norm). For any x ∈ V , define x⊥u = x − 〈x, u〉u. Show that: (a) x⊥u

is orthogonal to u and ‖x⊥u‖2 = ‖x‖2 − |〈x, u〉|2 ≤ ‖x‖2; (b) ‖x⊥u‖ = ‖(x − λu)⊥u‖ for
any scalar λ; and (c) 〈x, y〉 − 〈x, u〉〈u, y〉 = 〈x⊥u, y⊥u〉. Conclude that

|〈x, y〉 − 〈x, u〉〈u, y〉| ≤ ‖x − λu‖‖y − μu‖ (5.2.10)

for any x, y, u ∈ V such that u is a unit vector, and any scalars λ,μ. Explain why the
optimal choice of λ and μ in (5.2.10) is λ = 〈x, u〉, μ = 〈y, u〉; these may not be the most
illuminating or convenient choices in particular cases.

5.2.P9 Suppose that −∞ < a < b < ∞ and let V be the real inner product space of
continuous real-valued functions on [a, b] with the inner product (5.2.8). For given f, g ∈
V , suppose that −∞ < α ≤ f (t) ≤ β < ∞ and −∞ < γ ≤ g(t) ≤ δ < ∞ for all t ∈
[a, b]. Deduce the Grüss inequality∣∣∣∣ 1

b − a

∫ b

a
f (t)g(t)dt − 1

(b − a)2

∫ b

a
f (t)dt

∫ b

a
g(t)dt

∣∣∣∣ ≤ (β − α)(δ − γ )

4
(5.2.11)

from the inequality (5.2.10).
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5.2.P10 Let λ1, . . . , λn be the eigenvalues of A ∈ Mn . Explain why Schur’s inequality
(2.3.2a) can be written as

n∑
i=1

|λi |2 ≤ ‖A‖2
2 (5.2.12)

Explain why the better inequality (2.6.9) can be written as

n∑
i=1

|λi |2 ≤
√
‖A‖4

2 − ‖AA∗ − A∗A‖2
2 (5.2.13)

and the even better inequality (2.6.10) can be written as

n∑
i=1

|λi |2 ≤
√(

‖A‖2
2 −

1

n
|〈A, I 〉F |2

)2

− ‖AA∗ − A∗ A‖2
2 +

1

n
|〈A, I 〉F |2 (5.2.14)

5.2.P11 Suppose that ‖ · ‖ is a norm on a real or complex vector space V , and let x and y
be given nonzero vectors in V . Prove that

‖x + y‖ ≤ ‖x‖ + ‖y‖ −
(

2 −
∥∥∥∥ x

‖x‖ + y

‖y‖
∥∥∥∥
)

min{‖x‖ , ‖y‖} (5.2.15)

and

‖x + y‖ ≥ ‖x‖ + ‖y‖ −
(

2 −
∥∥∥∥ x

‖x‖ + y

‖y‖
∥∥∥∥
)

max{‖x‖ , ‖y‖} (5.2.16)

with equality if either ‖x‖ = ‖y‖ or x = cy with c real and positive.

5.2.P12 Using the notation of the preceding problem, deduce from (5.2.15) and (5.2.16)
that

‖x − y‖ − | ‖x‖ − ‖y‖ |
min{‖x‖ , ‖y‖} ≤

∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥

≤ ‖x − y‖ + | ‖x‖ − ‖y‖ |
max{‖x‖ , ‖y‖} (5.2.17)

5.2.P13 Using the notation of the preceding problem, show that the upper bound in (5.2.17)
is less than or equal to the upper bound in (5.2.9) with the optimal value c = 4:∥∥∥∥ x

‖x‖ − y

‖y‖
∥∥∥∥ ≤ ‖x − y‖ + | ‖x‖ − ‖y‖ |

max{‖x‖ , ‖y‖}
≤ 2 ‖x − y‖

max{‖x‖ , ‖y‖} ≤ 4 ‖x − y‖
‖x‖ + ‖y‖ (5.2.18)

5.2.P14 Let A ∈ Mn and write A = H + i K , in which H and K are Hermitian; see (0.2.5).
What is the best Hermitian approximation to A in the Frobenius norm, that is, for what
Hermitian X0 is ‖A − X0‖2

2 ≤ ‖A − X‖2
2 for every Hermitian X ∈ Mn? What is the best

positive semidefinite approximation? (a) Show that ‖A‖2
2 = ‖H‖2

2 + ‖K‖2
2. (b) If X ∈

Mn is Hermitian, show that ‖A − X‖2
2 = ‖H − X‖2

2 + ‖K‖2
2 ≥ ‖K‖2

2 with equality for
X = X0 = H . (c) If H = U�U ∗, in which U is unitary and � = diag(λ1, . . . , λn), X
is positive semidefinite, and U ∗XU = Y = [yi j ], show that ‖H − X‖2

2 = ‖� − Y‖2
2 =∑n

i=1(λi − yii )2 +∑
i �= j |yi j |2. Why is this minimized for X = X0 = H+, the positive

semidefinite part of H ; see (4.1.12).
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Further Readings. For a detailed discussion of Minkowski’s inequality and other clas-
sical inequalities, see Beckenbach and Bellman (1965). For a proof that (a) equality
occurs in (5.2.1) with c = 4 if and only if x = y, and (b) validity of (5.2.1) with c = 2
for all nonzero x and y is necessary and sufficient for the norm to be derived from
an inner product, see W. A. Kirk and M. F. Smiley, Another characterization of inner
product spaces, Amer. Math. Monthly 71 (1964) 890–891.

5.3 Algebraic properties of norms

New norms may be constructed from given norms in several ways. For example, the
sum of two norms is a norm and any positive multiple of a norm is a norm. Also, if
‖ · ‖α and ‖ · ‖β are norms, then the function ‖ · ‖ defined by ‖x‖ ≡ max{‖x‖α, ‖x‖β}
is a norm. These observations are all special cases of the following result.

Theorem 5.3.1. Let ‖ · ‖α1, . . . , ‖ · ‖αm be given norms on a vector space V over the
field F (F = R or C), and let ‖ · ‖ be a norm on Rm such that ‖y‖ ≤ ‖y + z‖ for all
vectors y, z ∈ Rm that have nonnegative entries. Then the function f : V → R defined
by f (x) = ‖[‖x‖α1, . . . , ‖x‖αm ]T ‖ is a norm on V .

The monotonicity assumption on the norm ‖ · ‖ in the preceding theorem is needed
to ensure that the constructed function f satisfies the triangle inequality. Every l p-norm
has this monotonicity property, as does any norm ‖x‖β on Rm that is a function only
of the absolute values of the entries of x ; see (5.4.19(c)) and (5.6.P42). Some norms
do not have this property, however.

Exercise. Prove (5.3.1).

Problems

5.3.P1 Deduce from (5.3.1) that the sum or max of two norms is a norm. What about the
min?

5.3.P2 Let m = 2. Show that ‖x‖ = |x1 − x2| + |x2| is a norm on R2 that does not
satisfy the monotonicity condition in (5.3.1). Show that f (x) = ‖[‖x‖∞, ‖x‖1]T ‖ =
min{|x1|, |x2|} + |x1| + |x2| satisfies the nonnegativity, positivity, and homogeneity axiom
for a norm on R2 but not the triangle inequality.

5.4 Analytic properties of norms

The examples in the preceding two sections show that many different real-valued
functions on a real or complex vector space can satisfy the axioms for a norm. This
is a good thing, because one norm may be more convenient or more appropriate
than another for a given purpose. For example, the l2-norm is convenient for op-
timization problems because it is continuously differentiable, except at the origin.
On the other hand, the l1-norm, while differentiable on a smaller set, is popular in
statistics because it leads to estimators that can be more robust than classical regres-
sion estimators. The l∞-norm is often the most natural one to use, since it directly
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monitors entrywise convergence, but it can be analytically and algebraically awkward
to use.

In actual applications, the norm on which a theory is most naturally based and
the norm that is most easily calculated in a given situation may not coincide. It is
important, therefore, to know what relationships there may be between two different
norms. Fortunately, in the finite-dimensional case all norms are “equivalent” in a certain
strong sense.

A basic notion in analysis is that of convergence of a sequence. In a normed linear
space we have the following definition of convergence:

Definition 5.4.1. Let V be a real or complex vector space with a given norm ‖ · ‖. We
say that a sequence {x (k)} of vectors in V converges to a vector x ∈ V with respect to
‖ · ‖ if and only if limk→∞‖x (k) − x‖ = 0. If {x (k)} converges to x with respect to ‖ · ‖,
we write limk→∞x (k) = x with respect to ‖·‖.

Can a sequence of vectors converge to two different limits with respect to a given
norm?

Exercise. If limk→∞ x (k) = x and limk→∞ x (k) = y with respect to ‖·‖, consider
‖x − y‖ = ‖x − xk + xk − y‖ and the triangle inequality to show that x = y.
Thus, the limit of a sequence (with respect to a given norm) is unique if it exists.

Can a sequence of vectors converge with respect to one norm but not with respect
to another?

Example 5.4.2. Consider the sequence { fk} of functions in C[0, 1] (the vector
space of all real-valued or complex-valued continuous functions on [0, 1]) defined
by

fk(x) = 0, 0 ≤ x ≤ 1
k

fk(x) = 2(k3/2x − k1/2), 1
k ≤ x ≤ 3

2k

fk(x) = 2(−k3/2x + 2k1/2), 3
2k ≤ x ≤ 2

k

fk(x) = 0, 2
k ≤ x ≤ 1

for k = 2, 3, 4, . . . . A calculation reveals that

‖ fk‖1 = 1

2
k−1/2 → 0 as k → ∞

‖ fk‖2 = 1√
3

for all k = 1, 2, . . .

‖ fk‖∞ = k1/2 → ∞ as k → ∞
Thus, limk→∞ fk = 0 with respect to the L1-norm, but not with respect to the
L2-norm or the L∞-norm. The sequence { fk} is bounded in the L2-norm but is
unbounded in the L∞-norm.

Exercise. Sketch the functions described in the preceding example and verify the
assertions made about the L1-, L2-, and L∞-norms.
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Fortunately, the strange phenomena in (5.4.2) cannot occur in a finite-dimensional
normed linear space. Underlying this fact are some basic results about continuous
functions on a normed linear space; see Appendix E.

Lemma 5.4.3. Let ‖ · ‖ be a norm on a vector space V over the field F (F = R or
C), let m ≥ 1 be a given positive integer, let x (1), x (2), . . . , x (m) ∈ V be given vectors,
and define x(z) = z1x (1) + z2x (2) + · · · + zm x (m) for any z = [z1 . . . zm]T ∈ Fm. The
function g: Fm → R defined by

g(z) = ‖x(z)‖ = ‖z1x (1) + z2x (2) + · · · + zm x (m)‖
is a uniformly continuous function on Fm with respect to the Euclidean norm.

Proof. Let u = [u1 . . . um]T and v = [v1 . . . vm]T . Use (5.2.1) and the Cauchy–
Schwarz inequality to calculate

|g(x(u)) − g(x(v))| = |‖x(u)‖ − ‖x(v)‖| ≤ ‖x(u) − x(v)‖

=
∥∥∥∥∥

m∑
i=1

(ui − vi )x
(i)

∥∥∥∥∥ ≤
m∑

i=1

|ui − vi |‖x (i)‖

≤
(

m∑
i=1

|ui − vi |2
)1/2 ( m∑

i=1

‖x (i)‖2

)1/2

= C ‖u − v‖2

in which the finite constant C = (
∑m

i=1 ‖x (i)‖2)1/2 depends only on the norm ‖ · ‖
and the m vectors x (1), . . . , x (m). If every x (i) = 0, then g(z) = 0 for every z so g is
certainly uniformly continuous. If some x (i) �= 0, then C > 0 and |g(x(u)) − g(x(v))| <

ε whenever ‖u − v‖2 < ε/C . �
The normed linear space V need not be finite dimensional in the preceding lemma.

However, finite dimensionality of V is essential for the following fundamental result.

Theorem 5.4.4. Let f1 and f2 be real-valued functions on a finite-dimensional vector
space V over the field F (F = R or C), let B = {x (1), . . . , x (n)} be a basis for V , and
let x(z) = z1x (1) + · · · + znx (n) for all z = [z1 . . . zn]T ∈ Fn. Assume that f1 and f2

are

(a) Positive: fi (x) ≥ 0 for all x ∈ V , and fi (x) = 0 if and only if x = 0
(b) Homogeneous: fi (αx) = |α| fi (x) for all α ∈ F and all x ∈ V
(c) Continuous: fi (x(z)) is continuous on Fn with respect to the Euclidean norm

Then there exist finite positive constants Cm and CM such that

Cm f1(x) ≤ f2(x) ≤ CM f1(x) for all x ∈ V

Proof. Define h(z) = f2(x(z))/ f1(x(z)) on the Euclidean unit sphere S = {z ∈ Fn :
‖z‖2 = 1}, a compact set in Fn with respect to the Euclidean norm. The positivity
hypothesis (a) ensures that each fi (x(z)) > 0 for all z ∈ S, and therefore h(z), a prod-
uct of continuous functions (invoke the continuity hypothesis (c) here) is continuous
on S. The Weierstrass theorem on Fn with the Euclidean norm (see Appendix E)
ensures that h achieves a finite positive maximum CM and a positive minimum
Cm on S, so Cm ≤ f2(x(z))/ f1(x(z)) ≤ CM and Cm f1(x(z)) ≤ f2(x(z)) ≤ CM f1(x(z))
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for all z ∈ S. Because z/‖z‖2 ∈ S for every nonzero z ∈ Fn , the homogeneity
hypothesis (b) ensures that each fi (x( z

‖z‖2
)) = fi (‖z‖−1

2 x(z)) = ‖z‖−1
2 fi (x(z)), so

Cm f1(x(z)) ≤ f2(x(z)) ≤ CM f1(x(z)) for all nonzero z ∈ Fn; these inequalities are
also valid for z = 0 since f1(0) = f2(0) = 0. But every x ∈ V can be expressed as
x = x(z) for some z ∈ Fn because B is a basis, so the asserted inequalities hold for
all x ∈ V . �

If a real-valued function on a finite-dimensional real or complex vector space satisfies
the three hypotheses of positivity, homogeneity, and continuity stated in (5.4.4), it is
called a pre-norm.

The most important example of a pre-norm is, of course, a norm; (5.4.3) says that
every norm satisfies the continuity assumption (c) of (5.4.4). A pre-norm that satisfies
the triangle inequality is a norm.

Corollary 5.4.5. Let ‖ · ‖α and ‖ · ‖β be given norms on a finite-dimensional real or
complex vector space V . Then there exist finite positive constants Cm and CM such
that Cm‖x‖α ≤ ‖x‖β ≤ CM‖x‖α for all x ∈ V .

Exercise. Let x = [x1 x2]T ∈ R2 and consider the following norms on R2:
‖x‖α ≡ ‖[10x1 x2]T ‖∞ and ‖x‖β ≡ ‖[x1 10x2]T ‖∞. Show that f (x) =
(‖x‖α‖x‖β)1/2 is a pre-norm on R2 that is not a norm; see (5.4.P15). Hint:
Consider f ([1 1]T ), f ([0 1]T ), and f ([1 0]T ).

Exercise. If ‖ · ‖α1, . . . , ‖ · ‖αk
are norms on V , show that f (x) = (‖x‖α1

· · ·
‖x‖αk

)1/k and h(x) = min{‖x‖α1
, . . . , ‖x‖αk

} are pre-norms on V that are not
necessarily norms.

An important consequence of (5.4.5) is the fact that convergence of a sequence
of vectors in a finite-dimensional complex vector space is independent of the norm
used.

Corollary 5.4.6. If ‖ · ‖α and ‖ · ‖β are norms on a finite-dimensional real or complex
vector space V , and if {x (k)} is a given sequence of vectors in V, then limk→∞ x (k) = x
with respect to ‖ · ‖α if and only if limk→∞ x (k) = x with respect to ‖ · ‖β .

Proof. Since Cm‖x (k) − x‖α ≤ ‖x (k) − x‖β ≤ CM‖x (k) − x‖α for all k, it follows that
‖x (k) − x‖α → 0 as k → ∞ if and only if ‖x (k) − x‖β → 0 as k → ∞. �

Definition 5.4.7. Two given norms on a real or complex vector space are equivalent if
whenever a sequence {x (k)} of vectors converges to a vector x with respect to the one
of the norms, then it converges to x with respect to the other norm.

Corollary 5.4.6 ensures that for finite-dimensional real or complex vector spaces,
all norms are equivalent. Example 5.4.2 illustrates that the situation is very different
for an infinite-dimensional space.

Since all norms on Rn or Cn are equivalent to ‖ · ‖∞, for a given sequence of
vectors x (k) = [x (k)

i ]n
i=1 we have limk→∞ x (k) = x with respect to any norm if and only

if limk→∞ xi
(k) = xi for each i = 1, . . . , n.
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Another important fact is that the unit ball and unit sphere with respect to any pre-
norm or norm on Rn or Cn are always compact. Consequently, a continuous real- or
complex-valued function on such a unit ball or unit sphere is bounded; it achieves its
maximum and minimum if it is real-valued.

Corollary 5.4.8. Let V = Fn (F = R or C) and let f (·) be a pre-norm or norm on V .
The sets {x : f (x) ≤ 1} and {x : f (x) = 1} are compact.

Proof. It suffices to show that the respective sets are closed and bounded with respect
to the Euclidean norm. Theorem 5.4.4 ensures that there is some finite C > 0 such that
‖x‖2 ≤ C f (x) for all x ∈ V , so both of the sets {x : f (x) ≤ 1} and {x : f (x) = 1} are
contained in a Euclidean ball with radius C centered at the origin. Both of the sets
{x : f (x) = 1} and {x : f (x) ≤ 1} are closed because f (·) is continuous. �

We are sometimes confronted with the problem of determining whether a given
sequence {x (k)} converges to anything at all. For this reason, it is important to have a
convergence criterion that does not explicitly involve the limit of the sequence (if any).
If there were such a limit x , then

‖x (k) − x ( j)‖ = ‖x (k) − x + x − x ( j)‖ ≤ ‖x (k) − x‖ + ‖x − x ( j)‖ → 0

as k, j → ∞. This is the motivation for the following.

Definition 5.4.9. A sequence {x (k)} in a vector space V is a Cauchy sequence with
respect to a norm ‖ · ‖ if for each ε > 0 there is a positive integer N (ε) such that
‖x (k1) − x (k2)‖ ≤ ε whenever k1, k2 ≥ N (ε).

Theorem 5.4.10. Let ‖ · ‖ be a given norm on a finite-dimensional real or complex
vector space V , and let {x (k)} be a given sequence of vectors in V . The sequence {x (k)}
converges to a vector in V if and only if it is a Cauchy sequence with respect to the
norm ‖ · ‖.

Proof. By choosing a basis B of V and considering the equivalent norm ‖[x]B‖∞,
we see that there is no loss of generality if we assume that V = Rn or Cn for some
integer n and if we assume that the norm is ‖ · ‖∞. If {x (k)} is a Cauchy sequence,
then so is each real or complex sequence {x (k)

i } of entries for each i = 1, . . . , n. Since
a Cauchy sequence of real or complex numbers must have a limit, this means that
for each i = 1, . . . , n there is a scalar xi such that limk→∞ x (k)

i = xi ; one checks
that limk→∞ x (k) = x = [x1 . . . xn]T . Conversely, if there is a vector x such that
limk→∞ x (k) = x , then ‖x (k1) − x (k2)‖ ≤ ‖x (k1) − x‖ + ‖x − x (k2)‖ and the given se-
quence is a Cauchy sequence. �

It is a fundamental property of the real and complex fields (used in the proof of the
preceding theorem) that a sequence is a Cauchy sequence if and only if it converges
to some (real or complex, respectively) scalar. This is known as the completeness
property of the real and complex fields. We have just shown that the completeness
property extends to finite-dimensional real and complex vector spaces with respect to
any norm. Unfortunately, an infinite-dimensional normed linear space might not have
the completeness property.
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Definition 5.4.11. A normed linear space V is said to be complete with respect to
its norm ‖ · ‖ if every sequence in V that is a Cauchy sequence with respect to ‖ · ‖
converges to a point of V .

Exercise. Consider the vector space C[0, 1] with the L1-norm, and consider the
sequence of functions { fk} defined by

fk(t) = 0, 0 ≤ t ≤ 1
2 − 1

k

fk(t) = k
2 (t − 1

2 + 1
k ), 1

2 − 1
k ≤ t ≤ 1

2 + 1
k

fk(t) = 1, 1
2 + 1

k ≤ t ≤ 1

Sketch the functions fk . Show that { fk} is a Cauchy sequence but there is no
function f ∈ C[0, 1] for which limk→∞ fk = f with respect to the L1-norm.

Using the fact that the unit ball of any norm or prenorm on Rn or Cn is compact, we
can introduce another useful method to generate new norms from old ones using the
Euclidean inner product.

Definition 5.4.12. Let f (·) be a pre-norm on V = Fn (F = R or C). The function

f D(y) = max
f (x)=1

Re 〈x, y〉 = max
f (x)=1

Re y∗x

is the dual norm of f .

Observe first that the dual norm is a well-defined function on V because Re y∗x is a
continuous function of x for each fixed y ∈ V , and the set {x : f (x) = 1} is compact.
The Weierstrass theorem ensures that the maximum value of Re y∗x is attained at some
point in this set. If c is a scalar such that |c| = 1, then the homogeneity of f permits
us to compute

max
f (x)=1

|y∗x | = max
f (x)=1

max
|c|=1

Re(cy∗x) = max
f (x)=1

max
|c|=1

Re y∗(cx)

= max
|c|=1

max
f (x/c)=1

Re y∗x = max
f (x)=1

Re y∗x

Moreover,

max
f (x)=1

|y∗x | = max
x �=0

|y∗ x

f (x)
| = max

x �=0

|y∗x |
f (x)

so equivalent and sometimes convenient alternative expressions for the dual norm are

f D(y) = max
f (x)=1

|y∗x | = max
x �=0

|y∗x |
f (x)

(5.4.12a)

Finally, we observe that the name dual norm for the function f D is well deserved.
The function f D(·) is evidently homogeneous. It is positive, for if y �= 0, homogeneity
of f (·) ensures that

f D(y) = max
f (x)=1

|y∗x | ≥
∣∣∣∣y∗ y

f (y)

∣∣∣∣ = ‖y‖2
2

f (y)
> 0
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It is noteworthy that even if f (·) does not obey the triangle inequality, f D(·) always
does:

f D(y + z) = max
f (x)=1

|(y + z)∗x | ≤ max
f (x)=1

(|y∗x | + |z∗x |)

≤ max
f (x)=1

|y∗x | + max
f (x)=1

|z∗x | = f D(y) + f D(z)

The dual norm of a pre-norm is positive, homogeneous, and satisfies the triangle
inequality, so it is a norm. In particular, the dual norm of a norm is always a norm.

A simple inequality for the dual norm is given in the following lemma, which is a
natural generalization of the Cauchy–Schwarz inequality.

Lemma 5.4.13. Let f (·) be a pre-norm on V = Fn (F = R or C). Then for all x, y ∈ V
we have

|y∗x | ≤ f (x) f D(y)

and

|y∗x | ≤ f D(x) f (y)

Proof. If x �= 0, then ∣∣∣∣y∗ x

f (x)

∣∣∣∣ ≤ max
f (z)=1

|y∗z| = f D(y)

and hence |y∗x | ≤ f (x) f D(y). Of course, this inequality is also valid for x = 0. The
second inequality follows from the first since |y∗x | = |x∗y|. �

It is instructive to identify the duals of some familiar norms. For example, if ‖·‖ is
a norm on Cn and S ∈ Mn is nonsingular, what is the dual of the norm ‖·‖S defined by
(5.2.6)? We compute

‖y‖D
S = max

x �=0

|y∗x |
‖x‖s

= max
x �=0

|y∗x |
‖Sx‖ = max

z �=0

|y∗S−1z|
‖z‖

= max
z �=0

|(S−∗y)∗z|
‖z‖ = ∥∥S−∗y

∥∥D
(5.4.14)

and conclude that (‖·‖S)D = (‖·‖D)S−∗ .
If x, y ∈ Cn , then

|y∗x | =
∣∣∣∣∣

n∑
i=1

ȳi xi

∣∣∣∣∣ ≤
n∑

i=1

|ȳi xi |

≤
{

(max1≤i≤n |yi |)
∑n

j=1 |x j | = ‖y‖∞‖x‖1

(max1≤i≤n |xi |)
∑n

j=1 |y j | = ‖x‖∞‖y‖1
(5.4.15)

Let y ∈ Cn be a given nonzero vector. The top inequality in (5.4.15) is an equality for a
vector x such that xi = 1 for a single i such that |yi | = ‖y‖∞, and x j = 0 for all j �= i .
The bottom inequality in (5.4.15) is an equality for a vector x such that xi = yi/|yi |



5.4 Analytic properties of norms 331

for all i such that yi �= 0, and x j = 0 otherwise. Thus,

‖y‖D
1 = max

‖x‖1=1
|y∗x | = max

‖x‖1=1
‖y‖∞‖x‖1 = ‖y‖∞

‖y‖D
∞ = max

‖x‖∞=1
|y∗x | = max

‖x‖∞=1
‖y‖1‖x‖∞ = ‖y‖1

We conclude that

‖ · ‖D
1 = ‖ · ‖∞ and ‖ · ‖D

∞ = ‖ · ‖1 (5.4.15a)

Now consider the Euclidean norm, a given nonzero vector y, and an arbitrary vector
x . The Cauchy–Schwarz inequality says that

|y∗x | =
∣∣∣∣∣

n∑
i=1

ȳi xi

∣∣∣∣∣ ≤ ‖y‖2‖x‖2

with equality if x = y/‖y‖2. Using the preceding argument for the l1- and l∞-norms,
we find that ‖y‖D

2 = ‖y‖2, so the Euclidean norm is its own dual.

Exercise. Explain why the inequalities in (5.4.13) are a generalization of the
Cauchy–Schwarz inequality (5.1.4).

For any p ≥ 1, consider the l p- and lq -norms, with q defined by the relation
1/p + 1/q = 1. Note that 1 < p < ∞ if and only if 1 < q < ∞. Hölder’s inequality
(see Appendix B) permits us to replace (5.4.15) with the inequality |y∗x | ≤ ‖x‖p ‖y‖q .
Thus, for a given vector y = [yi ], ‖y‖D

p = max‖x‖p=1 |y∗x | ≤ ‖y‖q , which is an equal-
ity for all x if y = 0; if y �= 0, it is an equality for x = [xi ] defined by

xi =
{

0 if yi = 0
|yi |q

ȳi‖y‖q−1
q

if yi �= 0

It follows that ‖y‖D
p = ‖y‖q , and hence ‖·‖D

q = ‖·‖p.
For all of the l p-norms, therefore, the dual of the dual norm is the original norm.

This is no accident; see (5.5.9). Moreover, the only l p-norm that is its own dual is
the Euclidean norm. This is also no accident, as we explain after noting two useful
properties of dual norms.

Lemma 5.4.16. Let f (·) and g(·) be pre-norms on V = Fn (F = R or C) and let c > 0
be given. Then

(a) c f (·) is a pre-norm on V , and its dual norm is c−1 f D(·)
(b) if f (x) ≤ g(x) for all x ∈ V , then f D(y) ≥ gD(y) for all y ∈ V

Proof. The function c f (·) is positive, homogeneous, and continuous, so it is a pre-norm.
The remaining assertions follow from (5.4.12a). �

Exercise. Provide details for the proof of the preceding lemma.

Theorem 5.4.17. Let ‖ · ‖ be a norm on V = Fn (F = R or C) and let c > 0 be
given. Then ‖x‖ = c‖x‖D for all x ∈ V if and only if ‖ · ‖ = √

c‖ · ‖2. In particular,
‖ · ‖ = ‖ · ‖D if and only if ‖ · ‖ = ‖ · ‖2.
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Proof. If ‖ · ‖ = √
c‖ · ‖2 and x ∈ V , then (5.4.16(a)) ensures that ‖ · ‖D = 1√

c
‖ · ‖D

2 =
1√
c
‖ · ‖2 = c−1‖ · ‖. For the converse assertion, consider the norm N (x) = c−1/2‖x‖.

The hypothesis ‖ · ‖ = c‖ · ‖D ensures that N D(·) = c1/2‖·‖D = c1/2c−1‖ · ‖ =
c−1/2‖ · ‖ = N (·), so N (·) is self-dual. It now follows from (5.4.13) that ‖x‖2

2 = |x∗x | ≤
N (x)N D(x) for every x ∈ V , that is, ‖x‖2 ≤ N (x) for all x ∈ V . But (5.4.16(b)) ensures
that ‖x‖2 ≥ N (x) for all x ∈ V , so ‖·‖2 = N (·). �

Every k-norm and every l p-norm on Rn or Cn has the property that the norm of
a vector depends only on the absolute values of its entries and it is a nondecreasing
function of the absolute values of those entries of x . These two properties are not
unrelated.

Definition 5.4.18. If x = [xi ] ∈ V = Fn (F = R or C), let |x | = [|xi |] denote the en-
trywise absolute value of x. We say that |x | ≤ |y| if |xi | ≤ |yi | for all i = 1, . . . , n. A
norm ‖ · ‖ on V is

(a) monotone if |x | ≤ |y| implies ‖x‖ ≤ ‖y‖ for all x, y ∈ V
(b) absolute if ‖x‖ = ‖ |x | ‖ for all x ∈ V

Theorem 5.4.19. Let ‖ · ‖ be a norm on V = Fn (F = R or C).

(a) If ‖ · ‖ is absolute, then

‖y‖D = max
x �=0

|y|T |x |
‖x‖ (5.4.20)

for all y ∈ V .
(b) If ‖ · ‖ is absolute, then ‖ · ‖D is absolute and monotone.
(c) The norm ‖ · ‖ is absolute if and only if it is monotone.

Proof. Suppose that F = C.
(a) Suppose that ‖ · ‖ is absolute. For a given y = [yk] ∈ Cn , any x = [xk] ∈ Cn , and
any z = [zk] ∈ Cn such that |z| = |x |we have |y∗z| = |∑n

k=1 ȳk zk | ≤
∑n

k=1 |yk ||zk | =
|y|T |z| = |y|T |x |, with equality for zk = eiθ k xk if we choose the real parameters
θ1, . . . , θn so that eiθ k ȳk xk is real and nonnegative. Thus,

‖y‖D = max
x �=0

|y∗x |
‖x‖ = max

x �=0
max
|z|=|x |

|y∗z|
‖z‖ = max

x �=0

|y|T |x |
‖x‖

(b) Suppose that ‖ · ‖ is absolute. The representation (5.4.20) shows that ‖y‖D =
‖ |y| ‖D for all y ∈ Cn . Moreover, if |z| ≤ |y|, then

‖z‖D = max
x �=0

|z|T |x |
‖x‖ ≤ max

x �=0

|y|T |x |
‖x‖ = ‖y‖D

so ‖ · ‖D is monotone.
(c) If ‖ · ‖ is monotone and |y| = |x |, then |y| ≤ |x | and |y| ≥ |x |, so ‖y‖ ≤ ‖x‖, ‖y‖ ≥
‖x‖, and ‖y‖ = ‖x‖. Conversely, suppose that ‖·‖ is absolute. Let k ∈ {1, . . . , n} and
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α ∈ [0, 1]. Then

‖[x1 . . . xk−1 αxk xk+1 . . . xn]T ‖
= ‖1

2
(1 − α)[x1 . . . xk−1 − xk xk+1 . . . xn]T + 1

2
(1 − α)x + αx‖

≤ 1

2
(1 − α)‖[x1 . . . xk−1 − xk xk+1 . . . xn]T ‖ + 1

2
(1 − α)‖x‖ + α‖x‖

= 1

2
(1 − α)‖x‖ + 1

2
(1 − α)‖x‖ + α‖x‖ = ‖x‖

It follows that ‖[α1x1 . . . αnxn]T ‖ ≤ ‖x‖ for every x ∈ Cn and all choices of αk ∈
[0, 1], k = 1, . . . , n. If |y| ≤ |x | then there are αk ∈ [0, 1] such that |yk | = αk |xk|,
k = 1, . . . , n, so ‖y‖ ≤ ‖x‖. �

Exercise. Prove the preceding theorem for F = R.

For a conceptual proof that an absolute norm is monotone, see (5.5.11).

Problems

5.4.P1 Explain why (5.4.5) may be stated equivalently as

Cm
(‖ · ‖α, ‖ · ‖β

) ≤ ‖x‖β

‖x‖α

≤ CM (‖ · ‖α, ‖ · ‖β), for all x �= 0

in which Cm(·, ·) and CM (·, ·) denote the best possible constants relating the respective
norms in (5.4.5). Show that Cm(‖ · ‖β, ‖ · ‖α) = CM (‖ · ‖α, ‖ · ‖β)−1.

5.4.P2 Give a bound for Cm(‖ · ‖α, ‖ · ‖γ ) that involves Cm(‖ · ‖α, ‖ · ‖β) and Cm(‖ · ‖β,

‖ · ‖γ ). Do likewise for CM .

5.4.P3 If 1 ≤ p1 < p2 < ∞, show that the best bounds between the corresponding
l p-norms on Cn or Rn are

‖x‖p2 ≤ ‖x‖p1 ≤ n
(

1
p1
− 1

p2

)
‖x‖p2 (5.4.21)

Verify the entries in the following table of bounds ‖x‖α ≤ Cαβ‖x‖β .

[Cαβ] =

α \ β 1 2 ∞
1 1

√
n n

2 1 1
√

n
∞ 1 1 1

For each entry, exhibit a nonzero vector x for which the asserted bound is attained.

5.4.P4 Show that two norms on a real or complex vector space are equivalent if and only
if they are related by two constants and an inequality as in (5.4.5).

5.4.P5 Show that the functions fk in (5.4.2) have the property that f (x) → 0 for each
x , ‖ fk − f j‖1 → 0 as k, j → ∞, and for each k ≤ 2 there is some J > k for which
‖ fk − f j‖∞ > k1/2 for all j > J . Thus, a sequence in an infinite dimensional normed
linear space can be convergent in one sense (pointwise), Cauchy in a norm, and not Cauchy
in another norm.
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5.4.P6 Let V be a complete real or complex vector space, let {x (k)} be a given sequence in
V , and let ‖ · ‖ be a given norm on V. If there is an M ≥ 0 such that

∑n
k=1 ‖x (k)‖ ≤ M for

all n = 1, 2, . . . , show that the sequence of partial sums {y(n)} defined by y(n) =∑n
k=1 x (k)

converges to a point of V . What theorem about convergence of infinite series of real numbers
does this generalize?

5.4.P7 Show that ‖x‖∞ = limp→∞ ‖x‖p for every x ∈ Cn . If |x | > 0, what is
limp→−∞ ‖x‖p?

5.4.P8 Show that the dual norm of the k-norm on Rn or Cn is

‖y‖D
[k] = max

{
1

k
‖y‖1 , ‖y‖∞

}
(5.4.22)

What does this say if k = 1 or k = n?

5.4.P9 Let ‖·‖ be a norm on Rn or Cn and let ei be a standard basis vector (0.1.7). Explain
why ‖ei‖ ‖ei‖D ≥ 1. Can you find a norm for which ‖e1‖ ‖e1‖D > 1?

5.4.P10 Let ‖ · ‖α and ‖ · ‖β be two given norms on Cn , and suppose that there is some
C > 0 such that ‖x‖α ≤ C‖x‖β for all x ∈ Cn . Explain why ‖x‖D

β ≤ C‖x‖D
α for all x ∈ Cn .

5.4.P11 Let ‖ · ‖ be a norm on Fn (F = R or C). A matrix A ∈ Mn(F) is an isometry for
‖·‖ if ‖Ax‖ = ‖x‖ for all x ∈ Fn . For example, any unitary matrix is an isometry for the
Euclidean norm, and the identity matrix is an isometry for every norm. Show the following:
(a) Every isometry for ‖ · ‖ is nonsingular. (b) If A, B ∈ Mn(F) are isometries for ‖·‖, then
so are A−1 and AB. Consequently, the set of isometries for ‖ · ‖ is a subgroup of the general
linear group. This subgroup is known as the isometry group of ‖ · ‖. (c) If A ∈ Mn is an
isometry for ‖·‖, then every eigenvalue of A has modulus one. It is known that the isometry
group of ‖ · ‖ is similar to a group of unitary matrices in Mn(F) (Auerbach’s theorem), so
A is similar to a unitary matrix; see (7.6.P21 to P23). (d) If A ∈ Mn(F) is an isometry for
‖·‖, then | det A| = 1. (e) Any unitary generalized permutation matrix is an isometry for
every k-norm and every l p-norm with 1 ≤ p ≤ ∞. Describe a typical unitary generalized
permutation matrix.

5.4.P12 Let ‖ · ‖ be a norm on Fn (F = R or C). If A ∈ Mn is an isometry for ‖ · ‖, show
that A∗ is an isometry for ‖ · ‖D . Now explain why the group of isometries of ‖ · ‖D is
exactly the set of conjugate transposes of the elements of the group of isometries of ‖ · ‖.
When do ‖ · ‖ and ‖ · ‖D have the same isometry groups?

5.4.P13 Let A ∈ Mn(F) (F = R or C) and suppose that 1 ≤ p ≤ ∞ but p �= 2. Prove that
A is an isometry for the l p-norm on Fn if and only if it is a unitary generalized permutation
matrix.

5.4.P14 Consider the function f : R2 → R given by f (x) = |x1x2|1/2. Show that the set
{x : f (x) = 1} is not compact. Does this contradict (5.4.8)?

5.4.P15 Consider the example of a pre-norm f (x) = (‖x‖α‖x‖β )1/2 on R2 given in the
text, with ‖x‖α = ‖[10x1 x2]T ‖∞ and ‖x‖β = ‖[x1 10x2]T ‖∞. Show that the portion of
the unit ball {x ∈ R2 : f (x) ≤ 1} in the first quadrant is bounded by segments of the lines
x2 = 1/

√
10 and x1 = 1/

√
10 and an arc of the hyperbola x1x2 = 1/100. Sketch this set

and show that it is not convex. Why is the rest of the unit ball in the three remaining
quadrants obtained by successive reflections of this set across the axes? Show that the unit
ball of the dual norm {x ∈ R2 : f D(x) ≤ 1} is bounded in the first quadrant by segments
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of the lines x1/10 + x2 = √
10 and x1 + x2/10 = √

10, that the whole unit ball of f D is
obtained by successive reflections of the portion in the first quadrant, and that it is convex.
Show that the portion of the unit ball of f DD in the first quadrant is bounded by segments
of the lines x2 = 1/

√
10, x1 = 1/

√
10, and x1 + x2 = 11/(10

√
10); that the rest of the unit

ball is obtained by successive reflections of this set across the axes; and that it is convex.
Finally, compare the unit ball of f DD with that of f and show that the former is exactly
the closed convex hull of the latter.

5.4.P16 Let ‖ · ‖ be a norm on V = Rn or Cn . Show that max‖x‖�=0(‖x‖D / ‖x‖) =
max‖x‖=1 max‖y‖=1( x

‖x‖2
)∗( y

‖y‖2
)‖x‖2‖y‖2 ≤ max‖x‖=1 ‖x‖2

2 (call this constant CM ) and

that minx �=0(‖x‖D / ‖x‖) ≥ min‖x‖=1 ‖x‖2
2 (call this constant Cm). Deduce that Cm |x | ≤

‖x‖D ≤ CM‖x‖ for all x ∈ V , so geometrical constants give bounds between every norm
and its dual.

5.4.P17 Let f (·) be a pre-norm on Rn or Cn . Show that f D(y) = max f (x)≤1 Re y∗x =
max f (x)≤1 |y∗x | = maxx �=0

Rey∗x
f (x) .

5.4.P18 Let ‖ · ‖ be a norm on V = Rn or Cn , and let x1, . . . , xn ∈ V be linearly indepen-
dent. Explain why there is some ε > 0 such that y1, . . . , yn ∈ V are linearly independent
whenever ‖xi − yi‖ < ε for all i = 1, . . . , n.

Further Readings. See Householder (1964) for more information about dual norms.
The idea that the dual of a pre-norm is a norm seems to be due to J. von Neumann,
who discussed gauge functions (what we now call symmetric absolute norms) in Some
matrix-inequalities and metrization of matric-space, Tomsk Univ. Rev. 1 (1937) 205–
218. A more readily available source for this paper may be vol. 4 of von Neumann’s
Collected Works, ed. A. H. Taub, Macmillan, New York, 1962.

5.5 Duality and geometric properties of norms

The primary geometric feature of a norm is its unit ball, through which considerable
insight into properties of the norm may be gained.

Definition 5.5.1. Let ‖ · ‖ be a norm on a real or complex vector space V , let x be a
point of V , and let r > 0 be given. The ball of radius r around x is the set

B‖·‖(r ; x) = {y ∈ V : ‖y − x‖ ≤ r}
The unit ball of ‖·‖ is the set

B‖·‖ = B‖·‖(1; 0) = {y ∈ V : ‖y‖ ≤ 1}
Exercise. Show that for every r > 0 and for every x ∈ V , B(r ; x) = {y + x : y ∈
B(r ; 0)} = x + B(r ; 0).

A ball of given radius around any point x looks the same as a ball of the same radius
around zero; it is just translated to the point x . The unit ball is a geometric summary of
a norm, which, because of the homogeneity property, characterizes the norm (actually
only the boundary of B‖·‖ is needed). Our goal is to determine exactly which subsets
of Cn can be the unit ball of some norm.
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Exercise. Sketch the unit balls for the l1, l2, and l∞ norms on R2 and identify
their extreme points. Are there any containment relationships among these unit
balls? Which points must be on the boundary of the unit ball of every l p-norm on
R2? Sketch the unit ball of some other l p-norms.

Exercise. If ‖ · ‖α and ‖ · ‖β are norms on V , explain why ‖x‖α ≤ ‖x‖β for all
x ∈ V if and only if B‖·‖β

⊂ B‖·‖α
. The natural partial order on norms is reflected

in geometric containment of their unit balls. What happens to the unit ball when
a norm is multiplied by a positive constant?

Exercise. If ‖ · ‖ is a norm on V , if x ∈ V , and if α is a scalar such that ‖αx‖ =
‖x‖, show that either x = 0 or |α| = 1. If x �= 0, conclude that each ray {αx :
α > 0} intersects the boundary of the unit ball of ‖·‖ exactly once.

Definition 5.5.2. A norm is polyhedral if its unit ball is a polyhedron.

Exercise. Which of the l p-norms are polyhedral?

Exercise. If ‖ · ‖ is a polyhedral norm and if S ∈ Mn is nonsingular, is ‖ · ‖S

polyhedral?

In a vector space that has a norm, the basic topological notions of open and closed
sets are defined in the same way as in the Euclidean space Rn .

Definition 5.5.3. Let ‖ · ‖ be a norm on a real or complex vector space V , and let S
be a subset of V . A point x ∈ S is an interior point of S if there is some ε > 0 such that
B(ε; x) ⊂ S. The set S is open if every point of S is an interior point; S is closed if its
complement is open. A limit point of S is a point x ∈ V such that limk→∞ x (k) = x with
respect to ‖ · ‖ for some sequence {x (k)} ⊂ S. The closure of S is the union of S with the
set of its limit points. The boundary of S is the intersection of the closure of S with the
closure of the complement of S. The set S is bounded if there exists some M > 0 such
that S ⊂ B‖·‖(M ; 0). The set S is compact if from every covering ∪α Sα ⊃ S by open
sets Sα one can extract finitely many open sets Sα1, . . . , SαN such that ∪N

i=1Sαi ⊃ S.

Observation 5.5.4. If ‖ · ‖ is a norm on a real or complex vector space V with positive
dimension, then 0 is an interior point of the unit ball B‖·‖. This follows from homogeneity
and positivity of the norm ‖ · ‖: B‖·‖( 1

2 ; 0) ⊂ B‖·‖(1; 0), with the boundary of the former
in the interior of the latter.

Observation 5.5.5. The unit ball of a norm is equilibrated; that is, if x is in the unit
ball, then so is αx for all scalars α such that |α| = 1. This follows from the homogeneity
property of the norm.

Observation 5.5.6. The unit ball of a norm on a finite-dimensional vector space is
compact: It is bounded, and it is closed because the norm is always a continuous
function. In the finite-dimensional case, a closed bounded set is compact, although
this need not be true in the infinite-dimensional case. A basic property of compact sets
is the Weierstrass theorem (see Appendix E): A continuous real-valued function on a
compact set is bounded and achieves both its supremum and infimum on the set. For
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this reason, we usually refer to the “max” or “min” of such a function on a compact
set.

Exercise. Consider the complex vector space l2 of vectors x = [xi ] with count-
ably many entries, endowed with the norm ‖x‖2 = (

∑∞
k=1 |xk |2)1/2. Show

that ‖ek − e j‖2 = √
2 for every pair of distinct unit basis vectors ek and e j ,

k, j = 1, 2, . . . . Thus, no infinite subsequence of e1, e2, e3, . . . can be a Cauchy
sequence, so there can be no convergent subsequence. Conclude that the unit ball
of l2 cannot be compact.

Observation 5.5.7. The unit ball of a norm is convex: If ‖x‖ ≤ 1, ‖y‖ ≤ 1, and α ∈
[0, 1], then

‖αx + (1 − α)y‖ ≤ ‖αx‖ + ‖(1 − α)y‖
= α‖x‖ + (1 − α)‖y‖ ≤ α + (1 − α) ≤ 1

and hence the convex combination αx + (1 − α)y is in the unit ball.

The foregoing necessary conditions on the unit ball of a norm are also sufficient to
characterize a norm.

Theorem 5.5.8. A set B in a finite-dimensional real or complex vector space V with
positive dimension is the unit ball of a norm if and only if B (i) is compact, (ii) is
convex, (iii) is equilibrated, and (iv) has 0 as an interior point.

Proof. The necessity of conditions (i)–(iv) has already been observed. To establish
their sufficiency, consider any nonzero point x ∈ V . Construct a ray segment {αx :
0 ≤ α ≤ 1} from the origin through x and define the “length” of x by the proportional
distance along this ray from the origin to x , with the length of the interval of the ray
from the origin to the unique point on the boundary of the unit ball serving as one unit.
That is, we define ‖x‖ by

‖x‖ =
{

0 if x = 0
min

{
1
t : t > 0 and t x ∈ B

}
if x �= 0

This function is well-defined, finite, and positive for each nonzero vector x because B
is compact and has 0 as an interior point. Using the equilibration assumption, it follows
that ‖ · ‖ is a homogeneous function, so it remains only to check that it satisfies the
triangle inequality. If x and y are given nonzero vectors, then x/‖x‖ and y/‖y‖ are
unit vectors that are in B. By convexity, the vector

z = ‖x‖
‖x‖ + ‖y‖

x

‖x‖ + ‖y‖
‖x‖ + ‖y‖

y

‖y‖
is also in B. Therefore, ‖z‖ ≤ 1, and hence ‖x + y‖ ≤ ‖x‖ + ‖y‖. �

Exercise. Provide details for the proof of (5.5.8), noting carefully where each of
the four hypotheses is used.

Convexity of the unit ball of a norm is a fact with many deep and sometimes
startling implications. One of these is the following duality theorem, which we state in
the context of pre-norms. The key ideas involved are very natural (see Appendix B):
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(a) Co(S), the convex hull of a given set S in Rn or Cn , is the smallest convex set
containing S, namely, the intersection of all convex sets that contain S; (b) Co(S), the
closure of the convex hull of S, is the intersection of all closed half-spaces (everything
on one side of a hyperplane) that contain S, and (c) if x is a point that is in every closed
half-space that contains S, then x ∈ Co(S). These geometric notions lead directly to
the important fact that any norm is the dual of its dual norm.

Theorem 5.5.9 (Duality theorem). Let f be a pre-norm on V = Rn or Cn, let f D

denote the dual norm of f , let f DD denote the dual norm of f D, let B = {x ∈ V :
f (x) ≤ 1}, and let B ′′ = {x ∈ V : f DD(x) ≤ 1}. Then

(a) f DD(x) ≤ f (x) for all x ∈ V , so B ⊂ B ′′

(b) B ′′ = Co(S), the closure of the convex hull of B
(c) If f is a norm, then B = B ′′ and f DD = f
(d) If f is a norm and x0 ∈ V is given, then there is some z ∈ V (not necessarily

unique) such that f D(z) = 1 and f (x0) = z∗x0, that is, |z∗x | ≤ f (x) for all
x ∈ V and f (x0) = z∗x0

Proof. (a) If x ∈ V is a given vector, then (5.4.13) ensures that |y∗x | ≤ f (x) f D(y) for
any y ∈ V , and hence

f DD(x) = max
f D(y)=1

|y∗x | ≤ max
f D(y)=1

f (x) f D(y) = f (x)

Thus, f DD(x) ≤ f (x) for all x ∈ V , an inequality that is equivalent to the geometric
statement B ⊂ B ′′.
(b) The set {t ∈ V : Re t∗v ≤ 1} is a closed half-space that contains the origin, and any
such half-space can be represented in this way. Using the definition of the dual norm,
let u ∈ B ′′ be a given point and observe that

u ∈ {t : Re t∗v ≤ 1 for every v such that f D(v) ≤ 1}
= {t : Re t∗v ≤ 1 for every v such that v∗w ≤ 1

for every w such that f (w) ≤ 1}
= {t : Re t∗v ≤ 1 for every v such that w∗v ≤ 1 for all w ∈ B}

Thus, u lies in every closed half-space that contains B. Since the intersection of all
such closed half-spaces is Co(S), we conclude that u ∈ Co(S). But the point u ∈ B ′′ is
arbitrary, so B ′′ ⊂ Co(S). Since Co(B) is the intersection of all convex sets containing
B and B ′′ is a convex set that contains B, we have Co(B) ⊂ B ′′. The set B ′′ is the unit
ball of a norm, so it is compact and hence is closed. We conclude that Co(S) ⊂ B ′′ = B ′′

and hence B ′′ = Co(S).
(c) If f is a norm, then its unit ball B is convex and closed, so B = Co(B) = B ′′. Since
their unit balls are identical, the norms f and f DD are the same.
(d) For each given x0 ∈ V , (c) ensures that f (x0) = max f D(y)=1 Re y∗x0, and com-
pactness of the unit sphere of the norm f D ensures that there is some z such that
f D(z) = 1 and max f D(y)=1 Re y∗x0 = Re z∗x0. If z∗x0 were not real and nonnegative,
there would be a real number θ such that Re(e−iθ z∗x0) > 0 > Re z∗x0 (of course,
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f D(eiθ z) = f D(z) = 1), which would contradict maximality: Re z∗x0 ≥ Re y∗x0 for
all y in the unit sphere of f D . �

The assertion (c) in the preceding theorem – f DD = f for any norm f – is arguably
the most important and widely useful part of the duality theorem. For example, it
permits us to represent any norm f as

f (x) = max
f D(y)=1

Re y∗x (5.5.10)

This representation is an example of a quasilinearization.
The following corollary illustrates how duality can be used to give a very short

conceptual proof of (5.4.19(c)).

Corollary 5.5.11. An absolute norm on Rn or Cn is monotone.

Proof. Suppose that ‖·‖ is an absolute norm on Fn . Theorem 5.4.19(b) ensures that its
dual ‖·‖D is absolute. The duality theorem tells us that ‖·‖ is the dual of the absolute
norm ‖·‖D , so it follows from (5.4.19(b)) that ‖·‖ is monotone. �

Problems

5.5.P1 Show that a set in a normed linear space is closed if and only if it contains all its
limit points.

5.5.P2 Show that every point of a set S in a normed linear space is a limit point of S, so
that the closure of S is just the set of limit points of S.

5.5.P3 Give an example of a set in a normed linear space that is both open and closed. Give
an example of a set that is neither open nor closed.

5.5.P4 Let S be a compact set in a real or complex vector space V with norm ‖ · ‖. Show
that S is closed and bounded. If {xα} ⊂ S is a given infinite sequence, show that there is
a countable subsequence {xαi } ⊂ {xα} and a point x ∈ S such that limi→∞ xαi = x with
respect to ‖ · ‖. Show that any closed subset of a compact set is compact.

5.5.P5 What happens in (5.5.8) if dim V = 0?

5.5.P6 For x = [xi ] ∈ R2 define f (x) = |x2|. Show that f is a seminorm on R2 and
describe the set B = {x ∈ R2 : f (x) ≤ 1}. Which of the properties (i)-(iv) in (5.5.8) does
B not have?

5.5.P7 If ‖ · ‖α and ‖ · ‖β are norms on a vector space and if ‖ · ‖ is the norm defined by
‖x‖ = max{‖x‖α, ‖x‖β}, show that B‖·‖ = B‖·‖α

∩ B‖·‖β
.

5.5.P8 Let f (·) be a pre-norm on Rn or Cn . Show that f DD(·) is the greatest norm that is
uniformly less than or equal to f (·), that is, if ‖·‖ is a norm such that ‖x‖ ≤ f (x) for all x ,
show that ‖x‖ ≤ f DD(x) for all x .

5.5.P9 Let ‖·‖ be an absolute norm on Fn (Rn or Cn), let z = [zi ] ∈ Fn be a given nonzero
vector, and let ei be a standard basis vector in Fn (0.1.7) for some i ∈ {1, . . . , n}. (a)
Why is ‖ei‖ ‖ei‖D ≥ 1? (b) Explain why |zi | ‖ei‖ = ‖ |zi |ei‖ ≤ ‖ |z| ‖ = ‖z‖ and why
‖ei‖D = max‖y‖=1 |yi | ≤ 1/ ‖ei‖. (c) Conclude that ‖ei‖ ‖ei‖D = 1 for each i = 1, . . . , n
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and revisit (5.4.P9). (d) A norm ν(·) on Fn is said to be standardized if ν(ei ) = 1 for
each i = 1, . . . , n. Explain why the dual of an absolute standardized norm is an absolute
standardized norm.

5.5.P10 Let V be Rn or Cn and let k ∈ {1, . . . , n}. Explain why ‖·‖(k) = max{ 1
k ‖·‖1 , ‖·‖∞}

is a norm on V and why its dual is the k-norm, that is, ‖·‖D
(k) = ‖·‖[k]. What does (5.5.P7)

tell us about the unit ball of the norm ‖·‖(k)? Draw a picture to illustrate the intersection
property for the two k-norms on R2.

5.5.P11 Suppose that a norm ‖ · ‖ on Fn(Rn or Cn) is weakly monotone:

‖[x1 . . . xk−1 0 xk+1 . . . xn]T ‖ ≤ ‖[x1 . . . xk−1 xk xk+1 . . . xn]T ‖
for all x ∈ Fn and all k = 1, . . . , n. (a) Explain why it satisfies the apparently stronger
condition that arose in the proof of (5.4.19(c)): ‖[α1x1 . . . αn xn]T ‖ ≤ ‖x‖ for every x ∈ Cn

and all choices of αk ∈ [0, 1], k = 1, . . . , n. Thus, if a point on the unit sphere of a weakly
monotone norm is given, and if one of its coordinates is shrunk to zero, the entire line
segment thus produced must be in the unit ball. Explain why a monotone norm is weakly
monotone.
(b) Show that the parallelogram with vertices at ±[2 2]T and ±[1 − 1]T is the unit ball of a
norm on R2 that is not weakly monotone. (c) Is the function f (x) = |x1 − x2| + |x2| a norm
on R2? Is it monotone? Is it weakly monotone? Sketch its unit ball. (d) If x = [x1 x2]T

is a point on the boundary of the unit ball of an absolute norm, then so are the points
[±x1 ± x2]T (all four possible choices). Illustrate this geometric property with a sketch
and exhibit a unit ball of a norm on R2 that is not absolute. What happens in Rn? (e) Sketch
the polygon in R2 with vertices at ±[0 1]T ,±[1 0]T , and ±[1 1]T . Explain why it is the unit
ball of a norm on Rn that is weakly monotone but not monotone (and hence not absolute).

Further Readings. See Householder (1964) for more discussion of geometrical aspects
of norms. The key idea in our proof of the duality theorem (identification of the unit
ball of the second dual of a norm or pre-norm with the intersection of all the half-spaces
containing its the unit ball) is used by von Neumann in the paper cited at the end of
(5.4). See Valentine (1964) for a detailed discussion of convex sets, convex hulls, and
half-spaces.

5.6 Matrix norms

Since Mn is itself a vector space of dimension n2, one can measure the “size” of a matrix
by using any norm on Cn2

. However, Mn is not just a high-dimensional vector space;
it has a natural multiplication operation, and it is often useful in making estimates to
relate the “size” of a product AB to the “sizes” of A and B.

A function ‖| · ‖| : Mn → R is a matrix norm if, for all A, B ∈ Mn , it satisfies the
following five axioms:

(1) ‖|A‖| ≥ 0 Nonnegative
(1a) ‖|A‖| = 0 if and only if A = 0 Positive
(2) ‖|cA‖| = |c| ‖|A‖| for all c ∈ C Homogeneous
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(3) ‖|A + B‖| ≤ ‖|A‖| + ‖|B‖| Triangle Inequality
(4) ‖|AB‖| ≤ ‖|A‖| ‖|B‖| Submultiplicativity

A matrix norm is sometimes called a ring norm. The first four properties of a matrix
norm are identical to the axioms for a norm (5.1.1). A norm on matrices that does not
satisfy property (4) for all A and B is a vector norm on matrices, sometimes called a
generalized matrix norm. The notions of a matrix seminorm and a generalized matrix
seminorm may also be defined via omission of axiom (1a).

Since ‖|A2‖| = ‖|AA‖| ≤ ‖|A‖| ‖|A‖| = ‖|A‖|2 for any matrix norm, it follows that
‖|A‖| ≥ 1 for any nonzero matrix A for which A2 = A. In particular, ‖|I‖| ≥ 1
for any matrix norm. If A is nonsingular, then I = AA−1, so ‖|I‖| = ‖|AA−1‖| ≤
‖|A‖| ‖|A−1‖|, and we have the lower bound

‖|A−1‖| ≥ ‖|I‖|
‖|A‖|

valid for any matrix norm ‖| · ‖|.
Exercise. If ‖| · ‖| is a matrix norm, show that ‖|Ak‖| ≤ ‖|A‖|k for every k =
1, 2, . . . , and all A ∈ Mn . Give an example of a norm on matrices for which this
inequality is not valid.

Some of the norms introduced in (5.2) are matrix norms when applied to the vector
space Mn and some are not. The most familiar examples are the l p-norms for p =
1, 2,∞. They are already known to be norms, so only axiom (4) requires verification.

Example. The l1-norm defined for A ∈ Mn by

‖A‖1 =
n∑

i, j=1

|ai j | (5.6.0.1)

is a matrix norm because

‖AB‖1 =
n∑

i, j=1

∣∣∣∣∣
n∑

k=1

aikbk j

∣∣∣∣∣ ≤
n∑

i, j,k=1

|aikbk j |

≤
n∑

i, j,k,m=1

|aikbmj | =
(

n∑
i,k=1

|aik |
)⎛⎝ n∑

j,m=1

|bmj |
⎞
⎠

= ‖A‖1‖B‖1

The first inequality comes from the triangle inequality, while the second comes
from adding additional terms to the sum.

Example. The l2-norm (Frobenius norm, Schur norm, or Hilbert–Schmidt norm)
defined for A ∈ Mn by

‖A‖2 = | tr AA∗|1/2 =
⎛
⎝ n∑

i, j=1

|ai j |2
⎞
⎠1/2

(5.6.0.2)
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is a matrix norm because

‖AB‖2 =
⎛
⎝ n∑

i, j=1

∣∣∣∣∣
n∑

k=1

aikbk j

∣∣∣∣∣
2
⎞
⎠1/2

≤
⎛
⎝ n∑

i, j=1

(
n∑

k=1

|aik |2
)(

n∑
m=1

|bmj |2
)⎞⎠1/2

=
(

n∑
i,k=1

|aik |2
)1/2

⎛
⎝ n∑

m, j=1

|bmj |2
⎞
⎠1/2

= ‖A‖2‖B‖2

Notice that the Frobenius norm is an absolute norm; it is just the Euclidean norm
of A thought of as a vector in Cn2

. Since tr AA∗ is the sum of the eigenvalues of
AA∗, and these eigenvalues are just the squares of the singular values of A, we
have an alternative characterization of the Frobenius norm (2.6.3.3):

‖A‖2 =
√

σ 1(A)2 + · · · + σ n(A)2

The singular values of A are the same as those of A∗, and they are invariant under
unitary equivalence transformations of A (2.6), so

‖A‖2 = ‖A∗‖2 and ‖A‖2 = ‖U AV ‖2

for all unitary U, V ∈ Mn .

Exercise. Prove the two identities in the preceding display from the definition
‖A‖2 = | tr AA∗|1/2, without using properties of singular values.

Example. The l∞-norm defined for A ∈ Mn by

‖A‖∞ = max
1≤i, j≤n

|ai j | (5.6.0.3)

is a norm on the vector space Mn but is not a matrix norm. Consider the matrix
J = [

1
1

1
1

] ∈ M2 and compute J 2 = 2J, ‖J‖∞ = 1, ‖J 2‖∞ = ‖2J‖∞ =
2‖J‖∞ = 2. Since ‖J 2‖∞ > ‖J‖2

∞, ‖ · ‖∞ is not submultiplicative. However, if
we define

N (A) = n‖A‖∞, A ∈ Mn (5.6.0.4)

then we have

N (AB) = n max
1≤i, j≤n

∣∣∣∣∣
n∑

k=1

aikbk j

∣∣∣∣∣ ≤ n max
1≤i, j≤n

n∑
k=1

|aikbk j |

≤ n max
1≤i, j≤n

n∑
k=1

‖A‖∞‖B‖∞ = n‖A‖∞n‖B‖∞

= N (A)N (B)

Thus, a scalar multiple of the l∞-norm on matrices is a matrix norm. This is not
an accident; see (5.7.11).

The following example exhibits a matrix norm that lies between ‖A‖∞ and n‖A‖∞.
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Example. Let A = [a1 . . . an] ∈ Mn be partitioned according to its columns
and define

N∞(A) =
n∑

j=1

‖a j‖∞ (5.6.0.5)

One checks that N∞(·) is a norm, and if we let B = [bi j ] = [b1 . . . bn] ∈ Mn ,
the following computation demonstrates that N∞(·) is a matrix norm:

N∞(AB) =
n∑

j=1

‖Ab j‖∞ =
n∑

j=1

∥∥∥∥∥
n∑

k=1

akbk j

∥∥∥∥∥
∞

≤
n∑

j=1

n∑
k=1

∥∥akbk j

∥∥
∞

=
n∑

j=1

n∑
k=1

‖ak‖∞ |bkj | ≤
n∑

j=1

n∑
k=1

‖ak‖∞
∥∥b j

∥∥
∞

=
(

n∑
k=1

‖ak‖∞
)⎛⎝ n∑

j=1

∥∥b j

∥∥
∞

⎞
⎠ = N∞(A)N∞(B)

For a structural proof that N∞(·) is a matrix norm, see (5.6.40) and the exercise
that follows it.

Associated with each norm ‖ · ‖ on Cn is a matrix norm ‖| · ‖| that is “induced” by
‖ · ‖ on Mn according to the following definition.

Definition 5.6.1. Let ‖ · ‖ be a norm on Cn. Define ‖| · ‖| on Mn by

‖|A‖| = max
‖x‖=1

‖Ax‖

Exercise. Show that the function defined in (5.6.1) may be computed in the
following alternative ways:

‖|A‖| = max
‖x‖≤1

‖Ax‖ = max
x �=0

‖Ax‖
‖x‖

= max
‖x‖α=1

‖Ax‖
‖x‖ , in which ‖ · ‖α is any given norm on Cn

Theorem 5.6.2. The function ‖| · ‖| defined in (5.6.1) has the following properties:

(a) ‖|I‖| = 1
(b) ‖Ay‖ ≤ ‖|A‖| ‖y‖ for any A ∈ Mn and any y ∈ Cn

(c) ‖| · ‖| is a matrix norm on Mn

(d) ‖|A‖| = max‖x‖=‖y‖D=1 |y∗Ax |
Proof. (a) ‖|I‖| = max‖x‖=1 ‖I x‖ = max‖x‖=1 ‖x‖ = 1.
(b) The asserted inequality is correct for y = 0, so let y �= 0 be given and consider
the unit vector y/‖y‖. We have ‖|A‖| = max‖x‖=1 ‖Ax‖ ≥ ‖A y

‖y‖‖ = ‖Ay‖/‖y‖, so
‖|A‖|‖y‖ ≥ ‖Ay‖.
(c) We verify the five axioms:

Axiom (1): ‖|A‖| is the maximum of a nonnegative-valued function, so it is nonnegative.
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Axiom (1a): If A �= 0, there is a unit vector y such that Ay �= 0, so ‖|A‖| ≥ ‖Ay‖ > 0.
If A = 0, then Ax = 0 for all x and hence ‖|A‖| = 0.
Axiom (2):

‖|cA‖| = max
‖x‖=1

‖cAx‖ = max
‖x‖=1

(|c| ‖Ax‖)

= |c| max
‖x‖=1

‖Ax‖ = |c| ‖|A‖|

Axiom (3): For any unit vector x we have

‖(A + B)x‖ = ‖Ax + Bx‖ ≤ ‖Ax‖ + ‖Bx‖
≤ ‖|A‖| + ‖|B‖|

so ‖|A + B‖| = max‖x‖=1 ‖(A + B)x‖ ≤ ‖|A‖| + ‖|B‖|.
Axiom (4): For any unit vector x we have

‖ABx‖ = ‖A(Bx)‖ ≤ ‖|A‖|‖Bx‖
≤ ‖|A‖| ‖|B‖|

so ‖|AB‖| = max‖x‖=1 ‖ABx‖ ≤ ‖|A‖| ‖|B‖|.
(d) Use the duality theorem (5.5.9(c)) to compute

max
‖x‖=‖y‖D=1

|y∗Ax | = max
‖x‖=1

(
max

‖y‖D=1
|y∗Ax |

)
= max

‖x‖=1
‖Ax‖DD

= max
‖x‖=1

‖Ax‖ = ‖|A‖|
�

Definition 5.6.3. The function ‖| · ‖| defined in (5.6.1) is the matrix norm induced by
the norm ‖ · ‖. It is sometimes called the operator norm or lub norm (least upper bound
norm) associated with the vector norm ‖ · ‖.

The inequality in (5.6.2(b)) says that the vector norm ‖ · ‖ is compatible with
the matrix norm ‖| · ‖|. Theorem 5.6.2 shows that given any norm on Cn, there is a
compatible matrix norm on Mn .

A norm ‖| · ‖| on matrices such that ‖|I‖| = 1 is said to be unital. The preceding
theorem says that every induced matrix norm is unital. The l∞ norm on matrices is unital
but is not a matrix norm; (5.6.33.1) exhibits a unital matrix norm that is not induced.

An induced norm on matrices is always a matrix norm. Therefore, one way to prove
that a nonnegative-valued function on Mn is a matrix norm is to show that it arises from
some vector norm according to the prescription in (5.6.1). In each of the following
examples of this principle, we take A = [ai j ] ∈ Mn .

Example 5.6.4. The maximum column sum matrix norm ‖| · ‖|1 is defined on Mn

by

‖|A‖|1 = max
1≤ j≤n

n∑
i=1

|ai j |

We claim that ‖| · ‖|1 is induced by the l1-norm on Cn and hence is a matrix
norm. To show this, partition A according to its columns as A = [a1 . . . an].
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Then ‖|A‖|1 = max1≤i≤n ‖ai‖1. If x = [xi ], then

‖Ax‖1 = ‖x1a1 + · · · + xnan‖1 ≤
n∑

i=1

‖xi ai‖1 =
n∑

i=1

|xi | ‖ai‖1

≤
n∑

i=1

|xi |
(

max
1≤k≤n

‖ak‖1

)
=

n∑
i=1

|xi |‖|A‖|1 = ‖x‖1‖|A‖|1

Thus, max‖x‖1=1 ‖Ax‖1 ≤ ‖|A‖|1. If we now choose x = ek (the kth unit basis
vector), then for any k = 1, . . . , n we have

max
‖x‖1=1

‖Ax‖1 ≥ ‖1ak‖1 = ‖ak‖1

and hence

max
‖x‖1=1

‖Ax‖1 ≥ max
1≤k≤n

‖ak‖1 = ‖|A‖|1

Exercise. Prove directly from the definition that ‖| · ‖|1 is a matrix norm.

Example 5.6.5. The maximum row sum matrix norm ‖| · ‖|∞ is defined on Mn

by

‖|A‖|∞ = max
1≤i≤n

n∑
j=1

|ai j |

We claim that ‖| · ‖|∞ is induced by the l∞-norm on Cn and hence is a matrix
norm. Compute

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

ai j x j

∣∣∣∣∣∣ ≤ max
1≤i≤n

n∑
j=1

|ai j x j |

≤ max
1≤i≤n

n∑
j=1

|ai j |‖x‖∞ = ‖|A‖|∞‖x‖∞

and hence max‖x‖∞=1‖Ax‖∞ ≤ ‖|A‖|∞. If A = 0, there is nothing to prove, so
we may assume that A �= 0. Suppose that the kth row of A is nonzero and define
the vector z = [zi ] ∈ Cn by

zi = āki

|aki | if aki �= 0

zi = 1 if aki = 0

Then ‖z‖∞ = 1, akj z j = |akj | for all j = 1, 2, . . . , n, and

max
‖x‖∞=1

‖Ax‖∞ ≥ ‖Az‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

ai j z j

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

n∑
j=1

akj z j

∣∣∣∣∣∣ =
n∑

j=1

|akj |

Thus,

max
‖x‖∞=1

‖Ax‖∞ ≥ max
1≤k≤n

n∑
j=1

|akj | = ‖|A‖|∞

Exercise. Verify directly from the definition that ‖| · ‖|∞ is a matrix norm on Mn .
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Example 5.6.6. The spectral norm ‖| · ‖|2 is defined on Mn by

‖|A‖|2 = σ 1(A), the largest singular value of A

We claim that ‖| · ‖|2 is induced by the l2-norm on Cn and hence is a matrix norm.
Let A = V �W ∗ be a singular value decomposition of A, in which V and W are
unitary, � = diag(σ 1, . . . , σ n), and σ 1 ≥ · · · ≥ σ n ≥ 0; see (2.6.3). Use unitary
invariance and monotonicity of the Euclidean norm (5.4.19) to compute

max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

‖V �W ∗x‖2 = max
‖x‖2=1

‖�W ∗x‖2

= max
‖W y‖2=1

‖�y‖2 = max
‖y‖2=1

‖�y‖2

≤ max
‖y‖2=1

‖σ 1 y‖2 = σ 1 max
‖y‖2=1

‖y‖2 = σ 1

However, ‖�y‖2 = σ 1 for y = e1, so we conclude that max‖x‖2=1 ‖Ax‖2 =
σ 1(A).

Exercise. Use (4.2.2) to give an alternative proof that the spectral norm is in-
duced by the Euclidean vector norm: max‖x‖2=1 ‖Ax‖2

2 = max‖x‖2=1 x∗A∗Ax =
λmax(A∗A) = σ 1(A)2.

Exercise. Give details for the following proof that the representation (5.6.2(d))
is correct for the spectral norm:

max
‖x‖2=‖y‖2=1

|y∗V �W ∗x | = max
‖W ξ‖2=‖V η‖2=1

|η∗�ξ |

= max
‖ξ‖2=‖η‖2=1

|η∗�ξ | = σ 1(A)

Exercise. Explain why ‖|U AV ‖|2 = ‖|A‖|2 for any A ∈ Mn and any unitary
U, V ∈ Mn .

We next show that new matrix norms may be created by inserting a fixed similarity
into any matrix norm.

Theorem 5.6.7. Suppose that ‖| · ‖| is a matrix norm on Mn and S ∈ Mn is nonsingular.
Then the function

‖|A‖|S = ‖|S AS−1‖| for all A ∈ Mn

is a matrix norm. Moreover, if ‖| · ‖| is induced by the norm ‖·‖ on Cn, then the matrix
norm ‖| · ‖|S is induced by the norm ‖·‖S on Cn defined in (5.2.6).

Proof. The axioms (1), (1a), (2), and (3) are verified in a straightforward manner for
‖| · ‖|S . Submultiplicativity of ‖| · ‖|S follows from a calculation:

‖|AB‖|S = ‖|S ABS−1‖| = ‖|(S AS−1)(SBS−1)‖|
≤ ‖|S AS−1‖| ‖|SBS−1‖| = ‖|A‖|S ‖|B‖|S

The final assertion follows from the computation

max
‖x‖S=1

‖Ax‖S = max
‖Sx‖=1

‖S Ax‖ = max
‖y‖=1

∥∥S AS−1 y
∥∥ = ‖|S AS−1‖|

�
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See (5.6.10) for an example of how (5.6.7) can be used to tailor a matrix norm for a
specific purpose.

One important application of matrix norms is to provide bounds for the spectral
radius of a matrix (1.2.9). If λ is any eigenvalue of A, Ax = λx , and x �= 0, consider
the rank-one matrix X = xeT = [x . . . x] ∈ Mn and observe that AX = λX . If ‖| · ‖|
is any matrix norm, then

|λ| ‖|X‖| = ‖|λX‖| = ‖|AX‖| ≤ ‖|A‖| ‖|X‖| (5.6.8)

and therefore |λ| ≤ ‖|A‖|. Since there is some eigenvalue λ for which |λ| = ρ(A),
it follows that ρ(A) ≤ ‖|A‖|. Now suppose that A is nonsingular and let λ be any
eigenvalue of A. We know that λ−1 is an eigenvalue of A−1 and hence |λ−1| ≤ ‖|A−1‖|.
We have proved the following theorem.

Theorem 5.6.9. Let ‖| · ‖| be a matrix norm on Mn, let A ∈ Mn, and let λ be an
eigenvalue of A. Then

(a) |λ| ≤ ρ(A) ≤ ‖|A‖|

If A is nonsingular, then

(b) ρ(A) ≥ |λ| ≥ 1/‖|A−1‖|

Exercise. If A, B ∈ Mn are normal, explain why ρ(A) = ‖|A‖|2 and ρ(AB) ≤
‖|AB‖|2 ≤ ‖|A‖|2 ‖|B‖|2 = ρ(A)ρ(B). Give an example of C, D ∈ Mn such that
ρ(C D) > ρ(C)ρ(D).

Exercise. Let A ∈ Mn have singular values σ 1 ≥ · · · ≥ σ n ≥ 0 and absolute
eigenvalues |λ1| ≥ · · · ≥ |λn|. Using the spectral norm and the bounds in the
preceding theorem, show that |λ1| ≤ σ 1 and, if A is nonsingular, |λn| ≥ σ n > 0.
Hint: What is the largest singular value of A−1?

Exercise. Let ‖| · ‖| be a matrix norm on Mn . Show that (a) the function ‖ · ‖
defined on Cn by ‖x‖ = ‖|xeT ‖| = ‖|[x . . . x]‖| is a norm on Cn; and (b)
‖Ax‖ ≤ ‖|A‖|‖x‖ for all x ∈ Cn and all A ∈ Mn , that is, the norm ‖ · ‖ on Cn

is compatible with the matrix norm ‖| · ‖|. Thus, given any matrix norm on Mn,
there is a compatible vector norm on Cn .

Exercise. Let N (·) be a norm on Mn , not necessarily a matrix norm, and
suppose that there is a norm ‖ · ‖ on Cn that is compatible with it, that is,
‖Ax‖ ≤ N (A) ‖x‖ for all A ∈ Mn and all x ∈ Cn . Deduce that N (A) ≥ ρ(A)
for all A ∈ Mn . Hint: Consider a nonzero x such that Ax = λx and |λ|
= ρ(A).

Although the spectral radius function is not itself a norm on Mn (see (5.6.P19)), for
each A ∈ Mn , it is the greatest lower bound for the values of all matrix norms of A.

Lemma 5.6.10. Let A ∈ Mn and ε > 0 be given. There is a matrix norm ‖| · ‖| such
that ρ(A) ≤ ‖|A‖| ≤ ρ(A) + ε.
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Proof. Theorem 2.3.1 ensures that there is a unitary U ∈ Mn and an upper triangular
 ∈ Mn such that A = UU ∗. Set Dt = diag(t, t2, t3, . . . , tn) and compute

DtD−1
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 t−1d12 t−2d13 . . . t−n+1d1n

0 λ2 t−1d23 . . . t−n+2d2n

0 0 λ3 . . . t−n+3d3n

· · · . . . ·
0 0 0 . . . t−1dn−1,n

0 0 0 0 λn

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, for t > 0 large enough, the sum of all the absolute values of the off-diagonal
entries of DtD−1

t is less than ε. In particular, ‖|DtD−1
t ‖|1 ≤ ρ(A) + ε for all large

enough t . Thus, if we define the matrix norm ‖| · ‖| by

‖|B‖| = ‖|DtU
∗BU D−1

t ‖|1 = ‖|(DtU
∗)B(DtU

∗)−1‖|1
for any B ∈ Mn , and if we choose t large enough, then (5.6.7) ensures that we have
constructed a matrix norm such that ‖|A‖| ≤ ρ(A) + ε. Of course, the lower bound
‖|A‖| ≥ ρ(A) is valid for any matrix norm. �

Exercise. Let A ∈ Mn be given. Use the preceding results to show that ρ(A) =
inf{‖|A‖| : ‖| · ‖| is an induced matrix norm}. Hint: (5.6.10) and (5.6.7). See
(5.6.P38 and P39) for a characterization of the matrices A for which ρ(A) = ‖|A‖|
for some matrix norm ‖| · ‖|.
We are interested in characterizing matrices A such that Ak → 0 as k → ∞. The

following result is the final tool we need to attack this problem.

Lemma 5.6.11. Let A ∈ Mn be given. If there is a matrix norm ‖| · ‖| such that ‖|A‖|
< 1, then limk→∞Ak = 0, that is, each entry of Ak tends to zero as k → ∞.

Proof. If ‖|A‖| < 1, then ‖|Ak‖| ≤ ‖|A‖|k → 0 as k → ∞. This says that Ak → 0 with
respect to the norm ‖| · ‖|, but since all norms on the n2 dimensional normed linear
space Mn are equivalent, it follows that Ak → 0 with respect to the vector norm ‖ · ‖∞
on Mn . �

Exercise. Compare the proof of the preceding theorem with the approach in
(3.2.5).

Exercise. Give an example of a matrix A ∈ Mn and two matrix norms ‖|A‖|α and
‖| · ‖|β such that ‖|A‖|α < 1 and ‖|A‖|β > 1. Conclusion? Is limk→∞ Ak = 0 or
not?

Matrices A ∈ Mn such that limk→∞ Ak = 0 are called convergent; they are important
in the analysis of iterative processes and many other applications. We are fortunate that
they can be characterized by a spectral radius inequality.

Theorem 5.6.12. Let A ∈ Mn. Then limk→∞ Ak = 0 if and only if ρ(A) < 1.

Proof. If Ak → 0 and if x �= 0 is a vector such that Ax = λx , then Ak x = λk x → 0
only if |λ| < 1. Since this inequality must hold for every eigenvalue of A, we conclude
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that ρ(A) < 1. Conversely, if ρ(A) < 1, then (5.6.10) ensures that there is some matrix
norm ‖| · ‖| such that ‖|A‖| < 1. Thus, (5.6.11) ensures that Ak → 0 as k → ∞. �

Exercise. Consider the matrix A =
[

.5 1
0 .5

]
∈ M2. Compute Ak and ρ(Ak) explic-

itly for k = 2, 3, . . . . Show that ρ(Ak) = ρ(A)k . How do the following behave
as k → ∞? The entries of Ak ; ‖|Ak‖|1; ‖|Ak‖|∞; ‖|Ak‖|2.

Exercise. Let A =
[

.5 1
−.125 .5

]
, and define a sequence of vectors x (0), x (1), x (2), . . .

by the recursion x (k+1) = Ax (k), k = 0, 1, . . . . Show that, regardless of the initial
vector x (0) chosen, x (k) → 0 as k → ∞. Hint: x (k) = Ak x (0); select suitable norms
and use the bound

∥∥x (k)
∥∥ ≤ ‖|Ak‖| ∥∥x (0)

∥∥.

Sometimes one needs bounds on the size of the entries of Ak as k → ∞. One useful
bound is an immediate consequence of the previous theorem.

Corollary 5.6.13. Let A ∈ Mn and ε > 0 be given. There is a constant C = C(A, ε)
such that |(Ak)i j | ≤ C(ρ(A) + ε)k for all k = 1, 2, . . . and all i, j = 1, . . . , n.

Proof. Consider the matrix Ã = [ρ(A) + ε]−1 A, whose spectral radius is strictly less
than 1. We know that Ãk → 0 as k → ∞. In particular, the sequence { Ãk} is bounded,
so there is some finite C > 0 such that |( Ãk)i j | ≤ C for all k = 1, 2, . . . and all i, j =
1, . . . , n. This is the asserted bound. �

Exercise. Let A =
[

a 1
0 a

]
, compute Ak explicitly, and show that one may not

always take ε = 0 in (5.6.13).

Even though it is not accurate to say that individual entries of Ak behave like ρ(A)k

as k → ∞, the sequence {‖|Ak‖|} does have this asymptotic behavior for any matrix
norm ‖| · ‖|.
Corollary 5.6.14 (Gelfand formula). Let ‖| · ‖| be a matrix norm on Mn and let A ∈
Mn. Then ρ(A) = limk→∞ ‖|Ak‖|1/k .

Proof. Since ρ(A)k = ρ(Ak) ≤ ‖|Ak‖|, we have ρ(A) ≤ ‖|Ak‖|1/k for all k = 1, 2, . . . .
If ε > 0 is given, the matrix Ã = [ρ(A) + ε]−1 A has spectral radius strictly less than 1
and hence is convergent. Thus, ‖| Ãk‖| → 0 as k → ∞ and there is some N = N (ε, A)
such that ‖| Ãk‖| ≤ 1 for all k ≥ N . This is just the statement that ‖| Ãk‖| ≤ (ρ(A) + ε)k

for all k ≥ N , or that ‖|Ak‖|1/k ≤ ρ(A) + ε for all k ≥ N . Since ε > 0 is arbitrary
and ρ(A) ≤ ‖|Ak‖|1/k for all k, we conclude that limk→∞ ‖|Ak‖|1/k exists and equals
ρ(A). �

Many questions about the convergence of infinite sequences or series of matrices
can be answered using norms.

Exercise. Let {Ak} ⊂ Mn be a given infinite sequence of matrices. Show that the
series

∑∞
k=0 Ak converges to some matrix in Mn if there is a norm ‖ · ‖ on Mn

such that the numerical series
∑∞

k=0 ‖Ak‖ is convergent (or even if its partial
sums are bounded). Hint: Show that the partial sums form a Cauchy sequence.
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Matrix norms are ideally suited to dealing with power series of matrices. The key
fact from analysis is that a complex scalar power series

∑∞
k=0 ak zk has a radius of

convergence R ≥ 0: the power series is absolutely convergent if |z| < R and it is
divergent if |z| > R; R = ∞ and R = 0 are both possible, and either convergence
or divergence may occur if |z| = R. The radius of convergence can be computed as
R = (lim supk→∞

k
√|ak |)−1, which is equal to limk→∞ | ak

ak+1
| if the limit exists (the ratio

test). For a given A ∈ Mn and any matrix norm ‖| · ‖|, the computation

‖|
∑

ak Ak‖| ≤
∑

‖|ak Ak‖| =
∑

|ak |‖|Ak‖|
≤
∑

|ak |‖|A‖|k

reveals that a matrix power series
∑∞

k=0 ak Ak is convergent if ‖|A‖| < R, the radius of
convergence of the corresponding scalar power series. However, ‖| · ‖| can be any matrix
norm, and (5.6.10) ensures that such a matrix norm exists if and only if ρ(A) < R. We
summarize these observations in the following theorem.

Theorem 5.6.15. Let R be the radius of convergence of a scalar power series∑∞
k=0 ak zk, and let A ∈ Mn be given. The matrix power series

∑∞
k=0 ak Ak converges

if ρ(A) < R. This condition is satisfied if there is a matrix norm ‖| · ‖| on Mn such that
‖|A‖| < R.

Exercise. Suppose that an analytic function f (z) is defined in a neighborhood of
zero by a power series f (z) =∑∞

k=0 ak zk that has radius of convergence R > 0,
and let ‖| · ‖| be a matrix norm on Mn . Explain why f (A) =∑∞

k=0 ak Ak is well-
defined for all A ∈ Mn such that ‖|A‖| < R. More generally, explain why f (A)
is well-defined for all A ∈ Mn such that ρ(A) < R.

Exercise. What is the radius of convergence of the power series for the expo-
nential function ez =∑∞

k=0
1
k! zk? Explain why the matrix exponential function

given by the power series eA =∑∞
k=0

1
k! Ak is well-defined for every A ∈ Mn .

Exercise. How would you define cos A? sin A? log(I − A)? For what matrices
are they defined?

If A ∈ Mn is diagonalizable, A = S�S−1, � = diag(λ1, . . . , λn), and the do-
main of a given complex-valued function f includes the set {λ1, . . . , λn}, the pri-
mary matrix function f (A) is defined by f (A) = S f (�)S−1, in which f (�) =
diag( f (λ1), . . . , f (λn)). This definition seems to depend on the choice of the (al-
ways nonunique) diagonalizing matrix S, but it actually doesn’t. To see why, it is
convenient to assume that any equal eigenvalues are grouped together in �, as in
(1.3.13). If A = T �T −1, then (1.3.27) ensures that T = S R, in which R is a block
diagonal matrix conformal to �; its essential feature is that R� = �R and hence
also R f (�) = f (�)R, since f (�) is a block diagonal direct sum of scalar matrices
that is conformal with R. Then f (A) = f (T �T−1) = T f (�)T −1 = S R f (�)R−1S =
S f (�)R R−1S = S f (�)S, which shows that a primary matrix function of a diagonal-
izable matrix is well-defined.

In the preceding definition of f (A) as a primary matrix function, rather than as
a power series, we demand less of the function f (it need not be analytic), but we
demand more of the matrix (it must be diagonalizable). Primary matrix functions of
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nondiagonalizable matrices can be defined, but one must require something about their
differentiability; see chapter 6 of Horn and Johnson (1991).

Exercise. If A ∈ Mn is diagonalizable, and if an analytic function f (z) =∑∞
k=0 ak zk is defined by a power series with radius of convergence greater than

ρ(A), show that the primary matrix function definition of f (A) agrees with its
power series definition. Hint: Consider

∑∞
k=0 ak(S�S−1)k = S(

∑∞
k=0 ak�

k)S
−1

.

Corollary 5.6.16. A matrix A ∈ Mn is nonsingular if there is a matrix norm ‖| · ‖| such
that ‖|I − A‖| < 1. If this condition is satisfied,

A−1 =
∞∑

k=0

(I − A)k

Proof. If ‖|I − A‖| < 1, then the series
∑∞

k=0(I − A)k converges to some matrix C
because the radius of convergence of the series

∑
zk is 1. But since

A
N∑

k=0

(I − A)k = (I − (I − A))
N∑

k=0

(I − A)k = I − (I − A)N+1 → I

as N → ∞, we conclude that C = A−1. �

Exercise. Explain why the statement in the preceding corollary is equivalent to
the following statement: If ‖| · ‖| is a matrix norm, and if ‖|A‖| < 1, then I − A
is nonsingular and (I − A)−1 =∑∞

k=0 Ak .

Exercise. Let ‖| · ‖| be a matrix norm on Mn . Suppose that A, B ∈ Mn satisfy the
inequality ‖|B A − I‖| < 1. Show that A and B are both nonsingular. One may
think of B as an approximate inverse of A.

Exercise. If a matrix norm ‖| · ‖| has the property that ‖|I‖| = 1 (which would be
the case if it were an induced norm), and if A ∈ Mn is such that ‖|A‖| < 1, show
that

1

1 + ‖|A‖| ≤ ‖|(I − A)−1‖| ≤ 1

1 − ‖|A‖|
Hint: Use the inequality ‖|(I − A)−1‖| ≤∑∞

k=0 ‖|A‖|k for the upper bound. Use
the general inequality ‖|B−1‖| ≥ 1/‖|B‖| and the triangle inequality for the lower
bound.

Exercise. Let ‖| · ‖| be a matrix norm, so that ‖|I‖| ≥ 1. Show that

‖|I‖|
‖|I‖| + ‖|A‖| ≤ ‖|(I − A)−1‖| ≤ ‖|I‖| − (‖|I‖| − 1)‖|A‖|

1 − ‖|A‖|
whenever ‖|A‖| < 1.

Exercise. If A, B ∈ Mn , if A is nonsingular, and if A + B is singular, show that
‖|B‖| ≥ 1/‖|A−1‖| for any matrix norm ‖| · ‖|. Thus, there is an intrinsic limit
to how well a nonsingular matrix can be approximated by a singular one. Hint:
A + B = A(I + A−1 B). If ‖|A−1 B‖| < 1, then I + A−1 B would be nonsingular.
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One useful and easily computed criterion for nonsingularity is a consequence of the
preceding corollary.

Corollary 5.6.17. Let A = [ai j ] ∈ Mn. If |aii | >
∑

j �=i |ai j | for all i = 1, . . . , n, then
A is nonsingular.

Proof. The hypothesis ensures that every main diagonal entry of A is nonzero.
Set D = diag(a11, . . . , ann) and check that D−1 A has all 1s on the main diagonal,
B = [bi j ] = I − D−1 A has all 0s on the main diagonal, and bi j = −ai j/aii if i �= j .
Consider the maximum row sum matrix norm ‖| · ‖|∞. The hypothesis guarantees that
‖|B‖|∞ < 1, so (5.6.16) ensures that I − B = D−1 A is nonsingular, and hence A is
nonsingular. �

A matrix that satisfies the hypothesis of (5.6.17) is said to be strictly diagonally dom-
inant. This sufficient condition for nonsingularity is known as the Levy–Desplanques
theorem, and it can be improved somewhat; see (6.1), (6.2), and (6.4).

We now focus on the induced matrix norms defined in (5.6.1), which have an
important minimality property. Because one often wishes to establish that a given
matrix A is convergent by using the test ‖|A‖| < 1, it is natural to prefer matrix norms
that are uniformly as small as possible. All induced matrix norms have this desirable
property, which actually characterizes them.

Any two norms on a finite-dimensional space are equivalent, so for any given pair
of matrix norms ‖| · ‖|α and ‖| · ‖|β there is a least finite positive constant Cαβ such that
‖|A‖|α ≤ Cαβ‖|A‖|β for all A ∈ Mn . This constant can be computed as

Cαβ = max
A �=0

‖|A‖|α
‖|A‖|β

If the roles of α and β are reversed, there must be a similarly defined least finite
positive constant Cβα such that ‖|A‖|β ≤ Cβα‖|A‖|α for all A ∈ Mn . In general, there
is no obvious relation between Cαβ and Cβα , but if we examine the table in (5.6.P23),
we see that its upper left 3 × 3 corner is symmetric; that is, Cαβ = Cβα for each pair of
the three matrix norms ‖| · ‖|1, ‖| · ‖|2, and ‖| · ‖|∞. All three of these matrix norms are
induced norms, and the following theorem shows that this symmetry reflects a property
of all induced norms: If ‖|A‖|α ≤ C‖|A‖|β for all A ∈ Mn , then ‖|A‖|β ≤ C‖|A‖|α for
all A ∈ Mn , that is,

1

C
‖|A‖|β ≤ ‖|A‖|α ≤ C‖|A‖|β for all A ∈ Mn

Theorem 5.6.18. Let ‖ · ‖α and ‖ · ‖β be given norms on Cn. Let ‖| · ‖|α and ‖| · ‖|β
denote their respective induced matrix norms on Mn, that is,

‖|A‖|α = max
x �=0

‖Ax‖α

‖x‖α

and ‖|A‖|β = max
x �=0

‖Ax‖β

‖x‖β

Define

Rαβ = max
x �=0

‖x‖α

‖x‖β

and Rβα = max
x �=0

‖x‖β

‖x‖α

(5.6.19)
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Then

max
A �=0

‖|A‖|α
‖|A‖|β = Rαβ Rβα (5.6.20)

and

max
A �=0

‖|A‖|α
‖|A‖|β = max

A �=0

‖|A‖|β
‖|A‖|α = Rαβ Rβα (5.6.21)

Proof. The inequalities (5.6.10) say that ‖x‖α ≤ Rαβ‖x‖β and ‖y‖β ≤ Rβα‖y‖α for all
x, y ∈ Cn , with equality possible in both cases for some nonzero vectors. Let a nonzero
A ∈ Mn be given, and let ξ ∈ Cn be a nonzero vector such that ‖Aξ‖α = ‖|A‖|α‖ξ‖α .
Then

‖|A‖|α = ‖Aξ‖α

‖ξ‖α

= ‖ξ‖β‖Aξ‖α

‖ξ‖α‖ξ‖β

≤ ‖ξ‖β

‖ξ‖α

Rαβ‖Aξ‖β

‖ξ‖β

≤ Rβα Rαβ

‖Aξ‖β

‖ξ‖β

≤ Rβα Rαβ‖|A‖|β (5.6.22)

for all nonzero A. Thus,

max
A �=0

‖|A‖|α
‖|A‖|β ≤ Rαβ Rβα

We claim that there is some nonzero B ∈ Mn for which the inequality (5.6.22) can
be reversed, in which case we would have

Rαβ Rβα ≤ ‖|B‖|α
‖|B‖|β ≤ max

A �=0

‖|A‖|α
‖|A‖|β ≤ Rαβ Rβα

and (5.6.20) would be proved.
To verify our claim, let y0 and z0 be nonzero vectors such that ‖y0‖α = Rαβ‖y0‖β

and ‖z0‖β = Rβα‖z0‖α . Theorem 5.5.9(d) ensures that there is a w ∈ Cn such that
(a) |w∗x | ≤ ‖x‖β for all x ∈ Cn

(b) w∗z0 = ‖z0‖β

Consider the matrix B = y0w
∗. Using (b), we have

‖Bz0‖α

‖z0‖α

= ‖y0w
∗z0‖α

‖z0‖α

= |w∗z0| ‖y0‖α

‖z0‖α

= ‖z0‖β

‖z0‖α

‖y0‖α

‖y0‖β

so we have the lower bound

‖|B‖|α ≥ ‖z0‖β‖y0‖α

‖z0‖α

= ‖z0‖β

‖z0‖α

‖y0‖α

‖y0‖β

‖y0‖β = Rβα Rαβ‖y0‖β

On the other hand, we can use (a) to obtain

‖By0‖β

‖y0‖β

= ‖y0w
∗y0‖β

‖y0‖β

= |w∗y0| ‖y0‖β

‖y0‖β

= |w∗y0| ≤ ‖y0‖β

and hence we have the upper bound ‖|B‖|β ≤ ‖y0‖β . Combining these two bounds, we
have

‖|B‖|α ≥ Rβα Rαβ‖y0‖β ≥ Rαβ Rβα‖|B‖|β
as desired.
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The assertion (5.6.21) follows from symmetry in α and β of the right-hand side of
the identity (5.6.20). �

When do two given norms on Cn induce the same matrix norm on Mn? The answer
is that one of the norms must be a scalar multiple of the other.

Lemma 5.6.23. Let ‖ · ‖α and ‖ · ‖β be norms on Cn, and let ‖| · ‖|α and ‖| · ‖|β denote
their respective induced matrix norms on Mn. Then

Rαβ Rβα ≥ 1 (5.6.24)

Moreover, the following are equivalent:

(a) Rαβ Rβα = 1.
(b) There is some c > 0 such that ‖x‖α = c‖x‖β for all x ∈ Cn.
(c) ‖| · ‖|α = ‖| · ‖|β .

Proof. Observe that

Rβα = max
x �=0

‖x‖β

‖x‖α

=
(

min
x �=0

‖x‖α

‖x‖β

)−1

≥
(

max
x �=0

‖x‖α

‖x‖β

)−1

= 1

Rαβ

with equality if and only if

min
x �=0

‖x‖α

‖x‖β

= max
x �=0

‖x‖α

‖x‖β

which occurs if and only if the function ‖x‖α/‖x‖β is constant for all x �= 0. Thus, (a)
and (b) are equivalent. If ‖·‖α = c‖·‖β , then for any A ∈ Mn , we have

‖|A‖|α = max
x �=0

‖Ax‖α

‖x‖α

= max
x �=0

c‖Ax‖β

c‖x‖β

= max
x �=0

‖Ax‖β

‖x‖β

= ‖|A‖|β

so (b) ⇒ (c). Finally, if ‖| · ‖|α = ‖| · ‖|β , then (5.6.20) shows that Rαβ Rβα = 1, and
hence (c) ⇒ (a). �

Corollary 5.6.25. Let ‖| · ‖|α and ‖| · ‖|β be induced matrix norms on Mn. Then
‖|A‖|α ≤ ‖|A‖|β for all A ∈ Mn if and only if ‖|A‖|α = ‖|A‖|β for all A ∈ Mn.

Proof. If ‖|A‖|α ≤ ‖|A‖|β for all A ∈ Mn , then (5.6.21) ensures that ‖|A‖|β ≤ ‖|A‖|α
for all A ∈ Mn . �

The preceding corollary says that no induced matrix norm is uniformly less than an
induced matrix norm that is different from it. The following theorem says more: No
matrix norm is uniformly less than an induced matrix norm that is different from it.

Theorem 5.6.26. Let ‖| · ‖| be a given matrix norm on Mn, let ‖| · ‖|α be a given induced
matrix norm on Mn, let a nonzero z ∈ Cn be given, and define

‖x‖z = ‖|xz∗‖| for any x ∈ Cn (5.6.27)
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Then

(a) ‖·‖z is a norm on Cn

(b) The induced matrix norm

Nz(A) = max
x �=0

‖Ax‖z

‖x‖z
= max

x �=0

‖|Axz∗‖|
‖|xz∗‖| (5.6.28)

satisfies the inequality Nz(A) ≤ ‖|A‖| for every A ∈ Mn

(c) ‖|A‖| ≤ ‖|A‖|α for every A ∈ Mn if and only if Nz(A) = ‖|A‖| = ‖|A‖|α for every
A ∈ Mn

Proof. (a) One verifies that ‖·‖z satisfies the four axioms in (5.1.1); submultiplicativity
of ‖| · ‖| is not necessary for this purpose.
(b) Use submultiplicativity of ‖| · ‖| to compute

Nz(A) = max
x �=0

‖Ax‖z

‖x‖z
= max

x �=0

‖|Axz∗‖|
‖|xz∗‖| ≤ max

x �=0

‖|A‖| ‖|xz∗‖|
‖|xz∗‖|

= ‖|A‖|
for all A ∈ Mn .
(c) Suppose that ‖|A‖| ≤ ‖|A‖|α for all A ∈ Mn . Then (b) ensures that Nz(A) ≤ ‖|A‖| ≤
‖|A‖|α for all A ∈ Mn . But Nz(·) and ‖| · ‖|α are both induced norms, so (5.6.25) ensures
that Nz(A) = ‖|A‖|α for all A ∈ Mn . �

Exercise. Let ‖| · ‖| be a given induced matrix norm on Mn and let Nz(·) be the
induced matrix norm defined in (5.6.28). Deduce from the preceding theorem
that Nz(·) = ‖| · ‖| for each nonzero z ∈ Cn .

The result in the preceding exercise can be approached in an instructively different
fashion. For a given induced matrix norm ‖| · ‖| we use (5.6.2(d)) and (5.5.9(d)) to
compute

‖|Axz∗‖| = max
‖ξ‖=‖η‖D=1

|η∗Axz∗ξ | = max
‖η‖D=1

|η∗Ax | max
‖ξ‖=1

|ξ ∗z|

= ‖Ax‖DD ‖z‖D = ‖Ax‖ ‖z‖D (5.6.29)

The special case A = I gives the identity

‖|xz∗‖| = ‖x‖z = ‖x‖ ‖z‖D (5.6.30)

If z �= 0 we then have

Nz(·) = max
x �=0

‖|Axz∗‖|
‖|xz∗‖| = max

x �=0

‖Ax‖ ‖z‖D

‖x‖ ‖z‖D

= max
x �=0

‖Ax‖
‖x‖ = ‖|A‖|

The preceding results motivate the following definition and a further property of
induced/minimal matrix norms.

Definition 5.6.31. A matrix norm ‖| · ‖| on Mn is a minimal matrix norm (or just
minimal) if the only matrix norm N (·) on Mn such that N (A) ≤ ‖|A‖| for all A ∈ Mn

is N (·) = ‖| · ‖|.
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Theorem 5.6.32. Let ‖| · ‖| be a matrix norm on Mn. For a nonzero z ∈ Cn let Nz(·)
be the induced matrix norm defined by (5.6.27) and (5.6.28). The following are
equivalent:

(a) ‖| · ‖| is an induced matrix norm.
(b) ‖| · ‖| is a minimal matrix norm.
(c) ‖| · ‖| = Nz(·) for all nonzero z ∈ Cn.
(d) ‖| · ‖| = Nz(·) for some nonzero z ∈ Cn.

Proof. The implication (a) ⇒ (b) follows from (5.6.26(c)). The implication (b) ⇒ (c)
is (5.6.26(b)). The implications (c) ⇒ (d) ⇒ (a) are straightforward. �

Somewhat more can be gleaned from these observations. If ‖| · ‖| is a matrix norm
and Ny(·) = Nz(·) for all nonzero y, z ∈ Cn , then the implication (c) ⇒ (b) in (5.6.23)
ensures that there is a positive constant cyz such that ‖x‖y = cyz‖x‖z for all x ∈ Cn . For
example, if ‖| · ‖| is induced, the preceding theorem ensures that Nz(·) is independent
of z and the following exercise identifies the constant cyz .

Exercise. If ‖| · ‖| is induced by a norm ‖ · ‖ on Cn , show that cyz = ‖y‖D/‖z‖D .
Hint: (5.6.30).

Theorem 5.6.33. Let ‖| · ‖| be a matrix norm on Mn and let ‖ · ‖z be the norm on Cn

defined by (5.6.27). The following two statements are equivalent:

(a) For each pair of nonzero vectors y, z ∈ Cn there is a positive constant cyz such
that ‖x‖y = cyz‖x‖z for all x ∈ Cn.

(b) ‖|xy∗‖| ‖|zz∗‖| = ‖|xz∗‖| ‖|zy∗‖| for all x, y, z ∈ Cn.

Suppose that ‖| · ‖| is induced by a norm ‖ · ‖ on Cn. Then

(c) ‖| · ‖| satisfies (a) and (b) with cyz = ‖y‖D / ‖z‖D, and for any nonzero z ∈ Cn

we have

‖x‖y = ‖|xy∗‖| = ‖|xz∗‖| ‖|zy∗‖|
‖|zz∗‖| = ‖x‖z ‖z‖y

‖z‖z

Proof. Assume (a). Since (b) is correct if either y = 0 or z = 0, we may assume that
y �= 0 �= z. Then

‖|xz∗‖| ‖|zy∗‖| = ‖x‖z‖z‖y = c−1
yz ‖x‖y cyz‖z‖z

= ‖x‖y‖z‖z = ‖|xy∗‖| ‖|zz∗‖|
Conversely, if we assume (b) and if y �= 0 �= z, then (a) follows with cyz =
‖|zy∗‖|/‖|zz∗‖|.

If ‖| · ‖| is induced, then (5.6.30) identifies ‖x‖y = ‖x‖ ‖y‖D and ‖x‖z = ‖x‖ ‖z‖D .
A calculation reveals that (a) is satisfied with ‖x‖y = ‖y‖D ‖x‖z/ ‖z‖D and hence (b)
is also satisfied. �

Exercise. Any positive scalar multiple of an induced norm satisfies the identity in
(5.6.33(b)). Show that the matrix norms ‖ · ‖1 and ‖ · ‖2 both satisfy this identity,
but that neither norm is a scalar multiple of an induced norm.



5.6 Matrix norms 357

Exercise. Explain why the function

‖|A‖| = max{‖|A‖|1, ‖|A‖|∞} (5.6.33.1)

is a unital matrix norm on Mn .

We saw in (5.6.2) that every induced matrix norm is unital, but (5.6.33.1) is a unital
matrix norm that is not induced: ‖|A‖|1 ≤ ‖|A‖| for all A ∈ Mn and ‖|A0‖|1 < ‖|A0‖|
for A0 =

[
1 0
1 3

]
, so ‖| · ‖| is not minimal and hence cannot be induced. See (5.6.P7)

for a generalization of the construction in (5.6.33.1).
A norm ‖·‖ on Mn (not necessarily a matrix norm) is unitarily invariant if ‖A‖ =

‖U AV ‖ for all A ∈ Mn and all unitary U, V ∈ Mn; a unitarily invariant matrix norm
is a unitarily invariant norm on Mn that is submultiplicative. We have seen that the
Frobenius and spectral norms are unitarily invariant matrix norms, but the Frobenius
norm is not an induced norm.

Theorem 5.6.34. Let ‖| · ‖| be a unitarily invariant matrix norm on Mn, and suppose
that z ∈ Cn is nonzero. Then

(a) the vector norm ‖·‖z defined by (5.6.27) is unitarily invariant
(b) ‖·‖z is a scalar multiple of the Euclidean vector norm, that is, there is a positive

scalar cz such that ‖·‖z = cz ‖·‖2

(c) the induced matrix norm Nz(·) defined by (5.6.28) is the spectral norm
(d) ‖|A‖|2 ≤ ‖|A‖| for all A ∈ Mn

(e) if ‖| · ‖| is induced (as well as unitarily invariant) then it is the spectral norm

Proof. (a) If U ∈ Mn is unitary, then ‖U x‖z = ‖|U xz∗‖| = ‖|xz∗‖| = ‖x‖z .
(b) For each x ∈ Cn there is a unitary U ∈ Mn such that U x = ‖x‖2 e1 (2.1.13), so
‖x‖z = ‖U x‖z = ‖|U xz∗‖| = ‖| ‖x‖2 e1z∗‖| = ‖x‖2 ‖|e1z∗‖| for all x ∈ Cn .
(c) Nz(A) = maxx �=0 ‖Ax‖z /‖x‖z = maxx �=0(cz ‖Ax‖2 /(cz ‖x‖2)) = maxx �=0 ‖Ax‖2/

‖x‖2 = ‖|A‖|2.
(d) This assertion is (5.6.26(b)).
(e) This assertion is (5.6.26(c)). �

If ‖·‖ is a norm on Mn , a calculation reveals that the function ‖·‖′ defined by

‖A‖′ = ∥∥A∗∥∥
is a norm on Mn and (‖A‖′)′ = ‖A‖. The norm ‖·‖′ is the adjoint of ‖·‖.

Exercise. If ‖| · ‖| is a matrix norm on Mn , show that its adjoint is also a matrix
norm.

A calculation also shows that ‖A‖′2 = ‖A∗‖2 = ‖A‖2 and ‖A‖′1 = ‖A∗‖1 = ‖A‖1

for all A ∈ Mn , but not every norm or matrix norm has this property: ‖| · ‖|′1 = ‖| · ‖|∞.
A norm ‖·‖ on Mn such that ‖A‖ = ‖A‖′ for all A ∈ Mn is said to be self-adjoint. The
l1 matrix norm is self-adjoint, as are the Frobenius norm and the spectral norm.

Exercise. Explain why every unitarily invariant norm on Mn is self-adjoint, and
give an example of a self-adjoint norm on Mn that is not unitarily invariant.
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Hint: If A = V �W ∗ is a singular value decomposition and if ‖·‖ is unitarily
invariant, then ‖A‖ = ‖�‖.

The spectral norm is distinguished as the only induced matrix norm that is self-
adjoint:

Theorem 5.6.35. Let ‖| · ‖| be the matrix norm on Mn that is induced by a norm ‖·‖
on Cn. Then

(a) ‖| · ‖|′ is induced by the norm ‖·‖D

(b) if ‖| · ‖| is self-adjoint (as well as induced) then it is the spectral norm

Proof. (a) Use (5.6.2(d)) to compute

‖|A‖|′ = ‖|A∗‖| = max
‖x‖=‖y‖D=1

|y∗A∗x | = max
‖x‖=‖y‖D=1

|x∗Ay|

= max
‖y‖D=1

max
‖x‖=1

|x∗Ay| = max
‖y‖D=1

‖Ay‖D

(b) If ‖| · ‖| = ‖| · ‖|′, then (a) ensures that ‖| · ‖| is induced by both ‖·‖ and ‖·‖D .
Lemma 5.6.23 tells us that ‖·‖ is a scalar multiple of ‖·‖D , and (5.4.17) ensures that
‖·‖ = ‖·‖2. Since ‖| · ‖| is induced by the Euclidean vector norm, it is the spectral
norm. �

Absolute and monotone norms were introduced in (5.4.18); there is a useful char-
acterization of the matrix norms that they induce.

Theorem 5.6.36. Let ‖| · ‖| be the matrix norm on Mn induced by a norm ‖·‖ on Cn.
The following are equivalent:

(a) ‖ · ‖ is an absolute norm.
(b) ‖ · ‖ is a monotone norm.
(c) If � = diag(λ1, . . . , λn) ∈ Mn then ‖|�‖| = max1≤i≤n |λi |.

Proof. The equivalence of (a) and (b) is the assertion in (5.4.19(c)). To prove that
(b) implies (c), suppose that ‖ · ‖ is monotone, let � = diag(λ1, . . . , λn), and let L =
max{|λ1|, . . . , |λn|} = |λk |. Then |�x | ≤ |Lx | and hence ‖�x‖ ≤ ‖Lx‖ = L‖x‖ with
equality for x = ek . Thus,

‖|�‖| = max
x �=0

‖�x‖
‖x‖ ≤ max

x �=0

L‖x‖
‖x‖ = L (5.6.37)

with equality for x = ek . To show that (c) implies (b), let x, y ∈ Cn be given with
|x | ≤ |y|. Choose complex numbers λk such that xk = λk yk and |λk | ≤ 1, k = 1, . . . , n,
and let � = diag(λ1, . . . , λn). Then ‖x‖ = ‖�y‖ ≤ ‖|�‖| ‖y‖ = max1≤i≤n |λi |‖y‖ ≤
‖y‖, so ‖ · ‖ is monotone. �

Because the vector space Mn is an inner product space with the Frobenius inner
product (5.2.7), we can define a dual norm (5.4.12) for any norm on Mn .

Definition 5.6.38. Let ‖·‖ be a norm on Mn. Its dual norm is

‖A‖D = max
‖B‖=1

Re 〈A, B〉F = max
‖B‖=1

Re tr B∗A for each A ∈ Mn
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Exercise. Explain why analogs of (5.4.12a) are available as alternative repre-
sentations for the dual of a norm ‖·‖ on Mn , for example, ‖A‖D =
max‖B‖=1 | tr B∗A| = max‖B‖≤1 | tr B∗A| = maxB �=0

| tr B∗ A|
‖B‖ .

Exercise. Show that ‖·‖D
F = ‖·‖F , that is, the Frobenius norm on Mn is self-dual.

Hint: | 〈A, B〉F | ≤ ‖A‖F ‖B‖F with equality for A = B.

Theorem 5.6.39. Let ‖·‖ be a norm on Mn. Then

(a) ‖·‖ is self-adjoint if and only if ‖·‖D is self-adjoint
(b) ‖·‖ is unitarily invariant if and only if ‖·‖D is unitarily invariant

Proof. In each case, the “only if” implication follows from a computation; the “if”
implication follows from the duality theorem (5.5.9(c)).
(a) Suppose that ‖·‖ is self-adjoint. Then

∥∥A∗∥∥D = max
B �=0

| tr B∗A∗|
‖B‖ = max

B �=0

| tr B A∗|
‖B∗‖ = max

B �=0

| tr B A∗|
‖B‖

= max
B �=0

| tr(B A∗)∗|
‖B‖ = max

B �=0

| tr AB∗|
‖B‖

= max
B �=0

| tr B∗A|
‖B‖ = ‖A‖

(b) Suppose that ‖·‖ is unitarily invariant. Then for any unitary U, V ∈ Mn we have

‖U AV ‖D = max
B �=0

| tr B∗U AV |
‖B‖ = max

B �=0

| tr(U ∗BV ∗)∗A|
‖B‖

= max
C �=0

| tr C∗A|
‖UCV ‖ = max

C �=0

| tr C∗A|
‖C‖ = ‖A‖

�

Exercise. Show that the dual of the (noninduced) matrix norm ‖·‖1 on Mn

(5.6.0.1) is the norm ‖·‖∞ on Mn (5.6.0.3), that the inequality ‖A∗‖1 ≤ ‖A‖D
1

is not valid for all A ∈ Mn , that ‖·‖D
1 is not a matrix norm, and that ‖AB‖D

1 ≤
‖A∗‖1 ‖B‖D

1 for all A, B ∈ Mn . Hint: Review the computation of the dual of the
vector norm ‖·‖1 on Cn (5.4.15a).

Exercise. Let ‖·‖ be a norm on Mn and let A ∈ Mn be given. Explain why there
is some X ∈ Mn such that ‖X‖ = 1 and | tr X∗A| = ‖A‖D . For any Y ∈ Mn with
‖Y‖ = 1, why is | tr Y ∗A| ≤ ‖A‖D?

Theorem 5.6.40. Let ‖| · ‖| be a matrix norm on Mn. Then

‖|AB‖|D ≤
{‖|A∗‖| ‖|B‖|D
‖|A‖|D ‖|B∗‖|

for all A, B ∈ Mn. If ‖|A∗‖| ≤ ‖|A‖|D for all A ∈ Mn, then ‖| · ‖|D is a matrix norm
on Mn.
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Proof. We prove only the second upper bound. Let X ∈ Mn be such that ‖|X‖| = 1
and | tr X∗AB| = ‖|AB‖|D . Use submultiplicativity of ‖| · ‖| to compute

‖|AB‖|D = | tr X∗AB| = | tr(X B∗)∗A| ≤ ‖|X B∗‖| ‖|A‖|D

≤ ‖|X‖| ‖|B∗‖| ‖|A‖|D = ‖|A‖|D ‖|B∗‖|

If ‖|B∗‖| ≤ ‖|B‖|D for all B ∈ Mn , then ‖|AB‖|D ≤ ‖|A‖|D ‖|B∗‖| ≤ ‖|A‖|D ‖|B‖|D
for all A, B ∈ Mn . �

Exercise. Show that the dual of the induced matrix norm ‖| · ‖|1 on Mn (5.6.4)
is the norm N∞(A) =∑n

j=1

∥∥a j

∥∥
∞, in which A = [a1 . . . an] is partitioned ac-

cording to its columns. Show that ‖|A∗‖|1 ≤ N∞(A) for all A ∈ Mn , with equality
if rank A ≤ 1. Explain why, on the basis of this inequality and the preceding the-
orem, N∞(A) must be a matrix norm; see (5.6.0.5) for a computational proof of
this fact. Why is N∞(·) not an induced matrix norm? If � = diag(λ1, . . . , λn)
is diagonal, verify that ‖|�‖|1 = maxi |λi | and ‖|�‖|D1 = N∞(�) = |λ1| +
· · · + |λn|; note that ‖| · ‖|1 is induced by an absolute vector norm.
Hint:

‖|A‖|D1 = max
‖|B‖|1=1

| tr B∗A| ≤ max
‖|B‖|1=1

n∑
j=1

|b∗
j a j |

≤ max
‖|B‖|1=1

n∑
j=1

∥∥a j

∥∥
∞
∥∥b j

∥∥
1 ≤

n∑
j=1

∥∥a j

∥∥
∞ max

‖|B‖|1=1
‖|B‖|1

Describe a linear combination of 0–1 matrices Ei j for which equality is achieved,
and conclude that ‖| · ‖|D1 = N∞(·).

We have seen that the dual of a matrix norm need not be a matrix norm, and that the
dual of an induced matrix norm can be a matrix norm that is not induced. The following
theorem says that the dual of an induced matrix norm is always a matrix norm, which
provides a new way to construct matrix norms: Take the dual of any induced matrix
norm.

Theorem 5.6.41. Let ‖| · ‖| be a matrix norm on Mn that is induced by the norm ‖·‖
on Cn. Then

(a) ‖|A∗‖| = max{| tr B∗A| : ‖|B‖| = 1 and rank B = 1}
(b) ‖|A∗‖| ≤ ‖|A‖|D for all A ∈ Mn

(c) ‖|A‖|D is a matrix norm
(d) ‖|A∗‖| = ‖|A‖|D if rank A ≤ 1
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Proof. (a) If B = xy∗ for some nonzero x, y ∈ Cn , then (5.6.30) ensures that ‖|B‖| =
‖|xy∗‖| = ‖x‖ ‖y‖D . Compute

max
rank B=1

| tr B∗A|
‖|B‖| = max

x �=0�=y

| tr(yx∗A)|
‖x‖ ‖y‖D = max

x �=0�=y

|x∗Ay|
‖x‖ ‖y‖D

= max
x �=0�=y

|y∗A∗x |
‖x‖ ‖y‖D = max

x �=0�=y
| y∗

‖y‖D A∗ x

‖x‖|

= max
‖η‖D=‖ξ‖=1

|η∗A∗ξ | = max
‖ξ‖=1

∥∥A∗ξ
∥∥DD

= max
‖ξ‖=1

∥∥A∗ξ
∥∥ = ‖|A∗‖|

(b) Observe that

‖|A∗‖| = max
rank B=1

| tr B∗A|
‖|B‖| ≤ max

B �=0

| tr B∗A|
‖|B‖| = ‖|A‖|D

(c) This assertion follows from (b) and (5.6.40).
(d) Suppose that A = uv∗ for some nonzero u, v ∈ Cn . According to (5.6.30), ‖|A∗‖| =
‖v‖ ‖u‖D , so we must show that ‖|A‖|D = ‖v‖ ‖u‖D . Compute

‖|uv∗‖|D = max
B �=0

| tr B∗uv∗|
‖|B‖| = max

B �=0

|v∗B∗u|
‖|B‖|

= max
B �=0

|u∗Bv|
‖|B‖| ≤ max

B �=0

‖u‖D ‖Bv‖
‖|B‖|

≤ max
B �=0

‖u‖D ‖|B‖| ‖v‖
‖|B‖| = ‖u‖D ‖v‖

To conclude the proof, we must show that B = xy∗ can be chosen such that ‖|B‖| = 1
and |u∗Bv| = ‖u‖D ‖v‖. Invoke (5.5.9(d)) to choose vectors x and y such that (i) ‖x‖ =
1 and x∗u = ‖u‖D ( f (·) = ‖·‖D here) and (ii) ‖y‖D = 1 and y∗v = ‖v‖ ( f (·) = ‖·‖
here). Then ‖|B‖| = ‖x‖ ‖y‖D = 1 and |u∗Bv| = |u∗x | |y∗v| = ‖u‖D ‖v‖. �

Exercise. Let ‖·‖ be a norm on Mn and consider its adjoint ‖·‖′. Explain why
the dual of the norm ‖·‖′ is the function ν(A) = ‖A∗‖D for each A ∈ Mn . If
‖| · ‖| is an induced matrix norm on Mn , explain why ν(A) = ‖|A∗‖|D is a matrix
norm. What is ν(A) if ‖| · ‖| is the matrix norm ‖| · ‖|1? This construction gives
yet another way to create new matrix norms: For any induced matrix norm ‖| · ‖|,
take the dual of its adjoint.

Our final theorem is a dual of (5.6.36).

Theorem 5.6.42. Suppose that an absolute norm ‖·‖ on Cn induces the matrix norm
‖| · ‖| on Mn, and let ‖| · ‖|D be its dual. Then ‖| · ‖|D is a matrix norm, and for each
diagonal matrix � = diag(λ1, . . . , λn) ∈ Mn, we have ‖|�‖|D = |λ1| + · · · + |λn|.
Proof. The preceding theorem ensures that ‖| · ‖|D is a matrix norm. Write � =
diag(eiθ1 |λ1|, . . . , eiθn |λn|) and let U = diag(eiθ1, . . . , eiθn ); (5.6.36) ensures that
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‖|U‖| = 1. Then

‖|�‖|D = max
‖|B‖|=1

| tr B∗�| ≥ | tr U ∗�| = |λ1| + · · · + |λn|

Conversely, write � = λ1 E11 + · · · + λn Enn , in which each Eii = ei e∗i (0.1.7). Then

‖|�‖|D ≤ ‖|λ1 E11‖|D + · · · + ‖|λn Enn‖|D
= |λ1| ‖|E11‖|D + · · · + |λn| ‖|Enn‖|D

so it is sufficient to show that each ‖|Eii‖|D = 1. Since each Eii has rank one, (5.6.30)
and (5.4.13) ensure that ‖|Eii‖|D = ‖ei‖ ‖ei‖D ≥ 1. For any vector x = [xi ] ∈ Cn

and any i ∈ {1, . . . , n}, we have |x | ≥ |xi ei |, so monotonicity of ‖·‖ ensures that
‖x‖ = ‖ |x | ‖ ≥ ‖ |xi ei | ‖ = |xi | ‖ei‖. Therefore,

‖ei‖D = max
x �=0

|x∗ei |
‖x‖ = max

x �=0

|xi |
‖x‖ ≤ max

x �=0

‖x‖
‖x‖ ‖ei‖ = 1

‖ei‖
so ‖ei‖ ‖ei‖D ≤ 1. We conclude that each ‖ei‖ ‖ei‖D = 1, as required. �

Example. The spectral norm on Mn is unitarily invariant and is induced by the
Euclidean norm, an absolute norm. Theorem 5.6.39 ensures that ‖| · ‖|D2 is unitar-
ily invariant, so if A ∈ Mn and A = V �W ∗ is a singular value decomposition,
the preceding theorem permits us to compute

‖|A‖|D2 = ‖|V �W ∗‖|D2 = ‖|�‖|D2
= tr � = σ 1(A) + · · · + σ n(A) = ‖|A‖|tr

Theorem 5.6.42 ensures that this new norm, the trace norm, is a unitarily invariant
matrix norm. This result is more than a little astonishing, as it is far from obvious
that the sum of all the singular values is either a subadditive or a submultiplicative
function on Mn; see (7.4.7) and (7.4.10).

Problems

5.6.P1 Explain why the l1-norm on Mn is a matrix norm that is not an induced norm.

5.6.P2 Give an example of a 2-by-2 projection other than I and 0. Show that 0 and 1 are
the only possible eigenvalues of a projection. Explain why a projection A is diagonalizable
and why ‖|A‖| ≥ 1 for any matrix norm ‖| · ‖| if A �= 0.

5.6.P3 If ‖| · ‖| is a matrix norm on Mn , show that c‖| · ‖| is a matrix norm for all c ≥ 1.
Show, however, that neither c‖| · ‖|1 nor c ‖·‖2 is a matrix norm for any c < 1.

5.6.P4 In (5.6.1) the same norm is involved in two different ways: Measuring the size of
x and measuring the size of Ax . More generally, we might define ‖| · ‖|α,β by ‖|A‖|α,β =
max‖x‖α=1 ‖Ax‖β , in which ‖ · ‖α and ‖ · ‖β are two (possibly different) vector norms. Is
such a function ‖| · ‖|α,β a matrix norm? This notion might be used to define a norm on
m-by-n matrices, since ‖ · ‖α may be taken to be a norm on Cn and ‖ · ‖β may be taken to
be a norm on Cn . What properties like those of an induced matrix norm does ‖| · ‖|α,β have
in this regard?
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5.6.P5 Let ‖| · ‖|p denote the matrix norm on Mn induced by the l p-norm on Cn , p ≥ 1.
Use (5.4.21) and (5.6.21) to show that

max
A �=0

‖|A‖|p1

‖|A‖|p2

= n(min{p1,p2})−1−(max{p1,p2}−1

Deduce that, for all A ∈ Mn and all p ≥ 1,

n
1
p −1‖|A‖|1 ≤ ‖|A‖|p ≤ n1− 1

p ‖|A‖|1

n
−
∣∣∣ 1

p − 1
2

∣∣∣‖|A‖|2 ≤ ‖|A‖|p ≤ n
∣∣∣ 1

p − 1
2

∣∣∣‖|A‖|2
and

n− 1
p ‖|A‖|∞ ≤ ‖|A‖|p ≤ n

1
p ‖|A‖|∞

5.6.P6 Verify that axioms (1)–(3) for ‖| · ‖| imply that the same axioms hold for ‖| · ‖|S in
(5.6.7). Thus, (5.6.7) remains valid if “matrix norm” in the hypothesis and conclusion is
replaced by “norm on matrices.”

5.6.P7 This problem generalizes the construction in (5.6.33.1). Let N1(·), . . . , Nm(·) be
matrix norms on Mn , let ‖·‖ be an absolute norm on Cn such that ‖x‖ ≥ ‖x‖∞ for all x ∈
Cm , and define ‖|A‖| = ∥∥[N1(A) . . . Nm(A)]T

∥∥. (a) Show that ‖ek‖ ≥ 1 for any standard
basis vector ek . (b) Show that ‖| · ‖| is a matrix norm on Mn .

5.6.P8 Show that the nonsingular matrices of Mn are dense in Mn; that is, show that
every matrix in Mn is the limit of nonsingular matrices. Are the singular matrices dense
in Mn?

5.6.P9 Show that the set of norms on Cn is convex for every n ≥ 1, but the set of matrix
norms on Mn is not convex for any n ≥ 2. If N1(·) and N2(·) are matrix norms on Mn , show
that N (·) = 1

2 (N1(·) + N2(·)) is a matrix norm if and only if

(N 1(A) − N 2(A))(N 1(B) − N 2(B)) ≤ 2(N 1(A)N 1(B) − N 1(AB))
+ 2(N 2(A)N 2(B) − N 2(AB))

for all A, B ∈ Mn . See (7.4.10.2) for a proof that the set of unitarily invariant matrix norms
is convex.

5.6.P10 Let ‖·‖ be a given norm on Cn . Partition any A = [a1 . . . an] ∈ Mn according to
its columns and define N‖·‖(A) = max1≤i≤n ‖ai‖. (a) Show that N‖·‖(·) is a norm on Mn .
(b) Show that N‖·‖(·) is a matrix norm on Mn if and only if ‖x‖ ≥ ‖x‖1 for all x ∈ Cn . (c)
For each i = 1, . . . , n let di (A) = ‖ai‖ if ai �= 0 and di (A) = 1 if ai = 0, and define DA =
diag(d1(A), . . . , dn(A)). Explain why N‖·‖(AD−1

A ) ≤ 1. (d) If N‖·‖(·) is a matrix norm,
explain why ρ(AD−1

A ) ≤ 1, | det(AD−1
A )| ≤ 1, and | det A| ≤ det DA = d1(A) · · · dn(A).

Conclude that | det A| ≤ ‖a1‖ · · · ‖an‖ if N‖·‖(·) is a matrix norm. (Be careful: What if
some ai = 0?) (e) Consider ‖·‖ = ‖·‖1. Explain why N‖·‖1

(A) = ‖|A‖|1 and conclude
that

| det A| ≤ ‖a1‖1 · · · ‖an‖1 (5.6.43)

(f) Consider ‖·‖ = n ‖·‖∞. Explain why Nn‖·‖∞(A) = n ‖A‖∞ and conclude that
| det A| ≤ nn ‖A‖n

∞. Compare this bound with the one in (2.3.P10). Which is better?
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(g) Consider ‖·‖ = ‖·‖2. Explain why N‖·‖2
(A) is not a matrix norm, so we cannot use

the method in (d) to conclude that

| det A| ≤ ‖a1‖2 · · · ‖an‖2 (5.6.44)

Nevertheless, this inequality (Hadamard’s inequality) is correct; see (2.1.P23) or (7.8.3).
What is going on here? (h) Explain why (5.6.44) is a better bound than (5.6.43); it’s the
same reason that the method in (d) fails for the Euclidean norm.

5.6.P11 Explain why ‖|AA∗‖|2 = ‖|A∗ A‖|2 = ‖|A‖|22.

5.6.P12 Let A, B ∈ Mn be given and let ‖| · ‖| be a matrix norm on Mn . Why is
‖|AB ± B A‖| ≤ 2‖|A‖| ‖|B‖|? These upper bounds are not very satisfying, since one has
a feeling that AB − B A ought to be smaller than AB + B A. One can prove a more sat-
isfying upper bound if A and B are positive semidefinite and we use the spectral norm:
(a) If A is positive semidefinite, show that ‖|A − 1

2‖|A‖|2 I‖|2 = 1
2‖|A‖|2. (b) Let α, β ∈ C

and explain why ‖|AB − B A‖| = ‖|(A − α I )(B − β I ) − (B − β I )(A − α I )‖| ≤ 2‖|A −
α I‖| ‖|B − β I‖|. (c) Let α = 1

2‖|A‖|2 and β = 1
2‖|B‖|2. Conclude that ‖|AB − B A‖|2 ≤

1
2‖|A‖|2 ‖|B‖|2 if A and B are positive semidefinite.

5.6.P13 If A ∈ Mn is singular, explain why ‖|I − A‖| ≥ 1 for every matrix norm ‖| · ‖|.
5.6.P14 Let ‖| · ‖|α and ‖| · ‖|β be given matrix norms on Mn . Under what conditions is the
matrix norm ‖| · ‖| = max{‖| · ‖|α, ‖| · ‖|β} an induced norm?

5.6.P15 Give an example of a matrix A such that ρ(A) < ‖|A‖| for every matrix norm
‖| · ‖|.
5.6.P16 Let A = [ai j ] ∈ Mn with n ≥ 2. Explain why the function ‖| · ‖| defined on Mn by
‖|A‖| = n max1≤i, j≤n |ai j | is a matrix norm that is not induced.

5.6.P17 Use the idea in (5.6.16) to compute the inverse of the matrix⎡
⎣1 −2 1

0 1 3
0 0 1

⎤
⎦

5.6.P18 Explain how to generalize the method in (5.6.P17) to invert any nonsingular upper
triangular matrix A ∈ Mn .

5.6.P19 The spectral radius ρ(·) is a nonnegative, continuous, homogeneous function on
Mn that is not a matrix norm, norm, seminorm, or pre-norm on Mn . Give examples to show
that (a) ρ(A) = 0 is possible for some A �= 0; (b) ρ(A + B) > ρ(A) + ρ(B) is possible;
and (c) ρ(AB) > ρ(A)ρ(B) > 0 is possible.

5.6.P20 Show that ‖AB‖2 ≤ ‖|A‖|2‖B‖2 and ‖AB‖2 ≤ ‖A‖2‖|B‖|2 for all A, B ∈ Mn .
Deduce that ‖A‖2 ≤ √

n‖|A‖|2.

5.6.P21 Show that ‖|A‖|2 ≤ ‖|A‖|1/2‖|A∗‖|1/2 for any matrix norm ‖| · ‖| on Mn and all
A ∈ Mn . Deduce that ‖|A‖|2 ≤ ‖|A‖|1/2

1 ‖|A‖|1/2
∞ .

5.6.P22 Show that a matrix norm ‖| · ‖| is unital if and only if ‖|A‖|D ≥ | tr A| for all
A ∈ Mn .

5.6.P23 Verify that the entries in the following 6-by-6 table give the best constants Cαβ

such that ‖|A‖|α ≤ Cαβ‖|A‖|β for all A ∈ Mn . For example, we claim that the Frobenius
norm (row 5, omitting the top label row) and the spectral norm (column 2, omitting the left
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label column) satisfy the inequality ‖A‖2 ≤ √
n‖|A‖|2 for all A ∈ Mn; the constant

√
n is

in position 5,2 in the table. Every norm in the table is a matrix norm.

‖| · ‖|α\‖| · ‖|β ‖| · ‖|1 ‖| · ‖|2 ‖| · ‖|∞ ‖ · ‖1 ‖ · ‖2 n‖ · ‖∞
‖| · ‖|1 1

√
n n 1

√
n 1

‖| · ‖|2 √
n 1

√
n 1 1 1

‖| · ‖|∞ n
√

n 1 1
√

n 1
‖ · ‖1 n n3/2 n 1 n n
‖ · ‖2

√
n

√
n

√
n 1 1 1

n‖ · ‖∞ n n n n n 1

5.6.P24 Show that the bound (5, 2) in (5.6.P23) can be improved to ‖A‖2 ≤
(rank A)1/2‖|A‖|2.

5.6.P25 Let A ∈ Mn be the circulant matrix (0.9.6.1) whose first row is [a1 . . . an], and
let ω = e2π i/n . Show that

|a1 + · · · + an| ≤ max
�=1,...,n

∣∣∣∣∣
n−1∑
k=0

ak+1ω
k(�−1)

∣∣∣∣∣ ≤ ‖|A‖|2 ≤ |a1| + · · · + |an|

5.6.P26 If A ∈ Mn and ρ(A) < 1, show that the Neumann series I + A + A2 + · · ·
converges to (I − A)−1.

5.6.P27 Any polynomial f (z) of degree at least 1 can be written in the form f (z) =
γ zk p(z), in which γ is a nonzero constant and

p(z) = zn + an−1zn−1 + an−2zn−2 + · · · + a1z + a0 (5.6.45)

is a monic polynomial such that p(0) = a0 �= 0. The roots of p(z) = 0 are the nonzero roots
of f (z) = 0, and it is these roots for which we can give various bounds. Let C(p) ∈ Mn

denote the companion matrix (3.3.12) of the polynomial p(z) in (5.6.45). The eigenvalues
of C(p) are the zeroes of the polynomial p, including multiplicities (3.3.14). (a) Use
(5.6.9) to show that if z̃ is a root of p(z) = 0 and if ‖| · ‖| is any matrix norm on Mn , then
|z̃| ≤ ‖|C(p)‖|. In the following, z̃ represents any root of p(z) = 0. (b) Use ‖ · ‖2 to show
that

|z̃| ≤
√

n + |a0|2 + |a1|2 + · · · + |an−1|2 (5.6.46)

(c) Use ‖| · ‖|∞ to show that

|z̃| ≤ max{|a0|, 1 + |a1|, . . . , 1 + |an−1|}
≤ 1 + max{|a0|, |a1|, . . . , |an−1|} (5.6.47)

This bound on the roots is known as Cauchy’s bound. (d) Use ‖| · ‖|1 to show that

|z̃| ≤ max{1, |a0| + |a1| + · · · + |an−1|}
≤ 1 + |a0| + |a1| + · · · + |an−1| (5.6.48)

which is known as Montel’s bound. Why is it is poorer than Cauchy’s bound? (e) Use ‖ · ‖1

to show that

|z̃| ≤ (n − 1) + |a0| + |a1| + · · · + |an−1|
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which is a poorer bound than Montel’s bound for all n > 2. (f) Use n ‖·‖∞ to show that

|z̃| ≤ n max{1, |a0|, |a1|, . . . , |an−1|}
which is a poorer bound than (5.6.48).

5.6.P28 Continuing with the notation of the preceding problem, we seek to improve the
bound in (5.6.46). Let s = |a0|2 + |a1|2 + · · · + |an−1|2. Write the companion matrix as
C(p) = S + R, in which S = Jn(0)T is the transpose of the n-by-n nilpotent Jordan block
and R = C(p) − Jn(0) is a rank-one matrix whose last column is the only nonzero column.
(a) Show that S R∗ = RS∗ = 0, ‖|SS∗‖|2 = 1, and ‖|R R∗‖|2 = ‖|R∗R‖|2 = s. (b) Show that

‖|C(p)‖|22 = ‖|C(p)C(p)∗‖|2 = ‖|(S + R)(S + R)∗‖|2
= ‖|SS∗ + R R∗‖|2 ≤ ‖|SS∗‖|2 + ‖|R R∗‖|2

and deduce Carmichael and Mason’s bound

|z̃| ≤
√

1 + |a0|2 + |a1|2 + · · · + |an−1|2 = √
s + 1 (5.6.49)

which is a better bound than (5.6.46) for all n ≥ 2. (c) Finally, use the exact value of the
largest singular value of C(p) (3.3.16) to obtain the even better bound

|z̃| ≤
√

1

2

(
s + 1 +

√
(s + 1)2 − 4|a0|2

)
= σ 1(C(p)) (5.6.50)

Show that 1 ≤ σ 1(C(p)) <
√

s + 1 (and σ 1(C(p)) = 1 if and only if a1 = · · · = an−1 = 0),
so the bound (5.6.50) is always better than the bound (5.6.49).

5.6.P29 Apply Montel’s bound (5.6.48) to the polynomial

q(z) = (z − 1)p(z)

= zn+1 + (an−1 − 1)zn + (an−2 − an−1)zn−1 + · · · + (a0 − a1)z + a0

and show that

|z̃| ≤ max{1, |a0| + |a0 − a1| + · · · + |an−2 − an−1| + |an−1 − 1|}
Show that the second term in this expression is not less than 1 and deduce another bound
of Montel

|z̃| ≤ |a0| + |a0 − a1| + · · · + |an−2 − an−1| + |an−1 − 1|
5.6.P30 Use the preceding bound of Montel to prove Kakeya’s theorem: If f (z) = anzn +
an−1zn−1 + · · · + a1z + a0 is a given polynomial with real nonnegative coefficients ai that
are monotone in the sense that an ≥ an−1 ≥ · · · ≥ a1 ≥ a0, then all the roots of f (z) = 0
lie in the unit disc; that is, all |z̃| ≤ 1.

5.6.P31 The preceding four problems all concern upper bounds on the absolute values of
the roots of p(z) = 0, but they can be used to obtain lower bounds as well. Show that if
p(z) is given by (5.6.45) with a0 �= 0, then

q(z) = 1

a0
zn p

(
1

z

)
= zn + a1

a0
zn−1 + a2

a0
zn−2 + · · · + an−1

a0
z + 1

a0

is a polynomial of degree n whose zeroes are the reciprocals of the roots of p(z) = 0. Use
the respective upper bounds on the roots of q(z) = 0 to obtain the following lower bounds
on the roots z̃ of p(z) = 0.
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Cauchy:

|z̃| ≥ |a0|
max{1, |a0| + |an−1|, |a0| + |an−2|, . . . , |a0| + |a1|}

≥ |a0|
|a0| + max{1, |an−1|, |an−2|, . . . , |a1|}

Montel:

|z̃| ≥ |a0|
max{|a0|, 1 + |a1| + |a2| + · · · + |an−1|}

≥ |a0|
1 + |a0| + |a1| + · · · + |an−1|

Carmichael and Mason:

|z̃| ≥ |a0|√
1 + |a0|2 + |a1|2 + · · · + |an−1|2

= |a0|√
s + 1

in which s = |a0|2 + |a1|2 + · · · + |an−1|2. Finally, use (5.6.9(b)) and the exact value of
the smallest singular value of C(p) (3.3.16) to obtain the lower bound

|z̃| ≥
√

1

2

(
s + 1 −

√
(s + 1)2 − 4|a0|2

)
=

√
2|a0|√

s + 1 +
√

(s + 1)2 − 4|a0|2
= |a0|

σ 1(C(p))
(5.6.51)

Explain why it is better than the preceding lower bound derived from Carmichael and
Mason’s bound. Use the two bounds (5.6.50) and (5.6.51) to describe an annulus that
contains all of the zeroes of p(z). What is that annulus if p(z) = z5 + 1?

5.6.P32 Consider the polynomial p(z) = 1
n! zn + 1

(n−1)! zn−1 + · · · + 1
2 z2 + z + 1, which is

the nth partial sum of the power series for the exponential function ez . Show that all roots z̃
of p(z) = 0 satisfy the inequality 1

2 ≤ |z̃| ≤ 1 + n!. Apply Kakeya’s theorem to zn p(1/z)
to show that all the roots actually satisfy |z̃| ≥ 1.

5.6.P33 Since ρ(A) = ρ(D−1 AD) for any nonsingular matrix D, the methods used in
(5.6.P27) can be applied to D−1C(p)D to obtain other bounds on the zeroes of the polyno-
mial p(z) in (5.6.45). Make the computationally convenient choice D = diag(p1, . . . , pn)
with all pi > 0 and generalize Cauchy’s bound (5.6.47) to

|z̃| ≤ max

{
|a0| pn

p1
, |a1| pn−1

p1
+ pn−1

pn
, |a2| pn−2

p1
+ pn−2

pn−1
, . . .

. . . , |an−2| p2

p1
+ p2

p3
, |an−1| + p1

p2

}
, (5.6.52)

which is valid for any positive parameters p1, p2, . . . , pn .

5.6.P34 If all the coefficients ak in (5.6.45) are nonzero, choose the parameters in the
preceding problem to be pk = p1/|an−k+1|, k = 2, 3, . . . , n and deduce Kojima’s bound
on the zeroes z̃ of p(z) from (5.6.52):

|z̃| ≤ max

{∣∣∣∣a0

a1

∣∣∣∣ , 2

∣∣∣∣a1

a2

∣∣∣∣ , 2

∣∣∣∣a2

a3

∣∣∣∣ , . . . , 2

∣∣∣∣an−2

an−1

∣∣∣∣ , 2 |an−1|
}

(5.6.53)
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5.6.P35 Now choose the parameters in (5.6.P33) to be pk = rk , k = 1, . . . , n for some
r > 0 and show that (5.6.52) implies the bound

|z̃| ≤ max{|a0|rn−1, |a1|rn−2 + r−1, |a2|rn−3 + r−1, . . . ,

. . . , |an−2|r + r−1, |an−1| + r−1} (5.6.54)

≤ 1

r
+ max

0≤k≤n−1
{|ak |rn−k−1} for any r > 0

5.6.P36 If A ∈ Mn , show that the Hermitian matrix Â = [
0
A∗

A
0

] ∈ M2n has the same spec-
tral norm as A.

5.6.P37 Show that the spectral norm, unlike the Frobenius norm, is not derived from an
inner product on Mn .

5.6.P38 Let A ∈ Mn be given. Show that there is a matrix norm ‖| · ‖| such that ‖|A‖| =
ρ(A) if and only if every eigenvalue of A of maximum modulus is semisimple, that is, if
and only if whenever Jk(λ) is a Jordan block of A and |λ| = ρ(A), then k = 1.

5.6.P39 The result in the preceding problem can be improved if the matrix norm is the
spectral norm. A spectral matrix is one whose spectral norm and spectral radius are equal.
(a) If U ∈ Mn is unitary and α ∈ C, explain why αU is spectral. (b) Use (2.3.1) to show
that if A ∈ Mn is not a scalar multiple of a unitary matrix, then A is spectral if and only if
there is a unitary U ∈ Mn such that U ∗AU = ‖|A‖|2(B ⊕ C), in which B = [bi j ] is upper
triangular, ‖|B‖|2 < 1, all |bii | < 1, and C is a diagonal unitary matrix. Explain why every
maximum-modulus eigenvalue of a spectral matrix is not only a semisimple eigenvalue but
also a normal eigenvalue. (c) If A, B ∈ Mn are spectral, show that ρ(AB) ≤ ρ(A)ρ(B).

5.6.P40 (a) Compute the spectral norms of
[

1 1
1 1

]
and

[
1 1
1 −1

]
. Conclude that the spectral

norm on Mn , although it is induced by an absolute norm on Cn , is not an absolute norm on
Mn; for a fundamental reason why it is not, see (7.4.11.1). (b) Compute the spectral norms

of
[

1 1
−1 1

]
and

[
1 1
0 1

]
. Conclude that setting an entry of a matrix to zero can increase its

spectral norm. (c) For A ∈ Mn , show that ‖|A‖|2 ≤ ‖| |A| ‖|2. (d) If A, B ∈ Mn have real
nonnegative entries and A ≤ B, show that ‖|A‖|2 ≤ ‖|B‖|2.

5.6.P41 Let ‖·‖ be an absolute norm on Cn and let ‖| · ‖| be the matrix norm on Mn that
it induces. Define N (A) = ‖| |A| ‖|. (a) Show that ‖|A‖| ≤ N (A) for all A ∈ Mn and there
is a vector z with nonnegative entries such that ‖z‖ = 1 and N (A) = ‖ |A|z ‖. (b) Show
that N (·) is an absolute matrix norm on Mn . (c) If A, B ∈ Mn have real nonnegative entries
and A ≤ B, show that ‖|A‖| ≤ ‖|B‖|. (d) If ‖| · ‖| is the spectral norm ‖| · ‖|2, show that
‖|A‖|2 ≤ ‖| |A| ‖|2 ≤ √

rank A‖|A‖|2 for all A ∈ Mn , and ‖|A‖|2 ≤ ‖|B‖|2 if A and B have
real nonnegative entries and A ≤ B.

5.6.P42 Although the spectral norm is not absolute, it and every matrix norm that is induced
by an absolute vector norm enjoys the weaker monotonicity property established in part
(c) of the preceding problem. A norm ‖·‖ on Mn is monotone on the positive orthant
if ‖A‖ ≥ ‖B‖ whenever A, B ∈ Mn(R) and A ≥ B ≥ 0 (entrywise inequality). Provide
details for the following proof that any matrix norm that is induced by a monotone vector
norm is monotone on the positive orthant: Let A, B ∈ Mn(R) and suppose that A ≥ B ≥ 0.
Let the matrix norm ‖| · ‖| be induced by a monotone vector norm ‖·‖. Then ‖|B‖| =
maxx �=0

‖Bx‖
‖x‖ = maxx �=0

‖ |Bx | ‖
‖x‖ ≤ maxx �=0

‖B|x | ‖
‖x‖ ≤ maxx �=0

‖A|x | ‖
‖x‖ ≤ maxx �=0

‖Ax‖
‖x‖ = ‖|A‖|.
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5.6.P43 Let A ∈ Mn and let U ∗AU = T be a unitary upper triangularization (2.3.1). Use
the power series definition of eA to show that eT = U ∗eAU . Deduce that det eA = etr A, so
eA is always nonsingular.

5.6.P44 Suppose that A = [ai j ] ∈ Mn(R) has only integer entries (positive, negative, or
zero) and that K = max |ai j | = ‖A‖∞. Let λ1, . . . , λm be the nonzero eigenvalues of A,
including multiplicities. Explain why (a) |λi | ≤ nK (an integer) for each i = 1, . . . , m;
(b) every nonzero coefficient of the characteristic polynomial pA(t) is an integer, and
therefore has modulus at least one; (c) pA(t) = tn−m gA(t), in which gA(t) is a polyno-
mial of degree m such that |gA(0)| = |λ1 · · · λm | ≥ 1; (d) mini=1,...,m |λi | ≥ 1/(nK )m−1 ≥
1/(nK )n−1; (e) if A is a nonsingular symmetric 4-by-4 matrix whose entries are ±1 and 0,
no entry of A−1 has absolute value greater than 64; indeed, no column of A−1 has Euclidean
norm greater than 64.

5.6.P45 Let ‖| · ‖| be a matrix norm on Mn that is induced by a norm ‖·‖ on Cn , and suppose
that A = XY ∗, in which X = [x1 . . . xk] ∈ Mn,k and Y = [y1 . . . yk] ∈ Mn,k . Show that
‖|A‖| ≤∑k

i=1 ‖xi‖ ‖yi‖D , with equality if k = 1.

5.6.P46 Let A ∈ Mn be nonsingular and suppose that a matrix norm ‖| · ‖| on Mn is induced
by the vector norm ‖·‖ on Cn . Show that ‖|A−1‖| = 1/ min‖x‖=1 ‖|Ax‖|.

In the following five problems, ‖| · ‖| is a matrix norm on M , Sn = {X : X ∈ Mn and
X is singular}, and for a given A ∈ Mn , dist‖|·‖|(A,Sn) = inf{‖|A − B‖| : B ∈ Sn} is the
distance from A to the set of singular matrices in Mn . We want to show that dist‖|·‖|(A,Sn)
and ‖|A−1‖| are intimately related.

5.6.P47 If A, B ∈ Mn , A is nonsingular, and B is singular, show that

‖|A − B‖| ≥ 1/‖|A−1‖| (5.6.55)

Can a nonsingular matrix be closely approximated by a singular matrix?

5.6.P48 (a) Explain why Sn is a closed set, that is, if Xi ∈ Sn for all i = 1, 2, . . . , B ∈ Mn ,
and ‖|Xi − B‖| → 0 as i → ∞, then B ∈ Sn . (b) Explain why dist‖·‖(A,Sn) > 0 if A is
nonsingular and why there is some B0 ∈ Sn such that dist‖|·‖|(A,Sn) = ‖|A − B0‖|. (c) If A
is nonsingular, explain why dist‖|·‖|(A,Sn) ≥ ‖|A−1‖|−1.

5.6.P49 Suppose that ‖| · ‖| is induced by the norm ‖·‖ on Cn and suppose that A ∈ Mn

is nonsingular. Let x0, y0 ∈ Cn be vectors such that ‖x0‖ = ‖y0‖D = 1 and y∗0 A−1x0 =
‖|A−1‖|; see (5.6.P54). Let E = −x0 y∗0/‖|A−1‖|. (a) Show that ‖|E‖| = ‖|A−1‖|−1. (b) Show
that (A + E)A−1x0 = 0, so A + E ∈ Sn . (c) Conclude that dist‖|·‖|(A,Sn) = ‖|A−1‖|−1 for
every nonsingular A if ‖| · ‖| is an induced matrix norm.

5.6.P50 Suppose that ‖| · ‖| is a matrix norm on Mn that is not induced. Then (5.6.26)
ensures that there is an induced matrix norm N (·) on Mn such that N (A) ≤ ‖|A‖| for all
A ∈ Mn . (a) Explain why there is a Ĉ ∈ Mn such that N (Ĉ) < ‖|Ĉ‖|. (b) Show that there
is a nonsingular C ∈ Mn such that N (C−1) < ‖|C−1‖|. (c) Explain why dist‖|·‖|(C,Sn) ≥
distN (·)(C,Sn) = N (C−1)−1 > ‖|C−1‖|−1.

5.6.P51 Explain why a matrix norm ‖| · ‖| on Mn is induced if and only if dist‖|·‖|(A,Sn) =
‖|A−1‖|−1 for every nonsingular A ∈ Mn .

5.6.P52 Work out the construction in (5.6.P49) for the spectral norm. If A ∈ Mn is non-
singular and A = V �W ∗ is a singular value decomposition (2.6.3.1), show that one may
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take x0 to be the last column of V and y0 to be the last column of W . Why is σ n the
distance from A (in the norm ‖| · ‖|2) to a nearest singular matrix? Show that A + E =
V �̂W ∗, in which �̂ = diag(σ 1, . . . , σ n−1, 0).

5.6.P53 Work out the construction in (5.6.P49) for the maximum row sum norm and

A =
[

1
1

0
1/2

]
. Show that one may take x0 = [−1 1]T and y0 = [0 1]T . Why is 1/4 the distance

from A (in the norm ‖| · ‖|∞) to a nearest singular matrix? Show that A + E =
[

1
1

1/4
1/4

]
.

5.6.P54 The general principle being invoked to ensure existence of the vectors x0 and y0

in (5.6.P49) is that the Cartesian product of compact sets is compact. The compact sets
involved in this case are the unit balls of the norm ‖·‖ and its dual. (a) Show that the Cartesian
product Cn × Cn = {(x, y) : x, y ∈ Cn} is a complex normed linear space if we define
(x, y) + (ξ, η) = (x + ξ, y + η), α(x, y) = (αx, αy), and N ((x, y)) = max{‖x‖ , ‖y‖D}.
(b) Show that B‖·‖ × B‖·‖D is a closed subset of Cn × Cn with respect to the norm N (·).
(c) Show that B‖·‖ × B‖·‖D is a bounded subset of Cn × Cn with respect to the norm N (·).
(d) Conclude that B‖·‖ × B‖·‖D is a compact subset of Cn × Cn with respect to the norm
N (·). (e) Assume that A ∈ Mn is nonsingular. The real-valued function f (x, y) = |y∗ A−1x |
is continuous on B‖·‖ × B‖·‖D , so it achieves its maximum value at some point (x̂, y0) ∈
B‖·‖ × B‖·‖D . There is some real θ such that y∗0 A−1(eiθ x̂) = |y∗0 A−1 x̂ |. Take x0 = eiθ x̂ .
Why is (x0, y0) ∈ B‖·‖ × B‖·‖D ? Why is ‖x0‖ = ‖y0‖D = 1?

5.6.P55 Let ‖| · ‖| be a given matrix norm on Mm , and define a function N (·) : Mmn → R
as follows: Partition each A ∈ Mmn as A = [Ai j ]n

i, j=1, in which each block Ai j ∈ Mm .
Define N (A) = max1≤i≤n

∑n
j=1 ‖|Ai j‖|. (a) Show that N (·) is a matrix norm on Mmn .

(b) What is N (·) if m = 1? For an application of matrix norms of this type, see
(6.1.P17).

5.6.P56 Let ‖| · ‖| be a self-adjoint matrix norm on Mn; for example, it could be a unitarily
invariant matrix norm. Show that ‖|A‖|2 ≤ ‖|A‖| for every A ∈ Mn .

5.6.P57 Let the eigenvalues of A ∈ Mn be arranged so that |λ1| ≥ · · · ≥ |λn| and let σ 1 ≥
· · · ≥ σ n be its ordered singular values. Show that |λ1 · · · λr | ≤ σ 1 · · · σ r for each r =
1, . . . , n by applying the bound in (5.6.9) to the spectral norm and the compound matrix
Cr (A). See (2.6.P33) and (2.3.P12).

5.6.P58 (a) Give an example of matrices A, B ∈ M2 such that ‖AB‖2 �= ‖B A‖2 (the
Frobenius norm). (b) If A, B ∈ Mn , A is normal, and B is Hermitian, show that ‖AB‖2 =
‖B A‖2. See (7.3.P43) for a generalization.

Further Readings. Further discussion of the problem of determining bounds between
induced norms (5.6.18) is in H. Schneider and G. Strang, Comparison theorems for
supremum norms, Numer. Math. 4 (1962) 15–20. The bounds in the table in (5.6.P23)
are taken from B. J. Stone, Best possible ratios of certain matrix norms, Numer.
Math. 4 (1962) 114–116, which contains additional bounds and references. For further
discussion of the use of matrix norms to locate zeroes of polynomials (5.6.P27 to P35),
see M. Fujii and F. Kubo, Operator norms as bounds for roots of algebraic equations,
Proc. Japan Acad. 49 (1973) 805–808. The entire book Belitskii and Lyubich (1988)
is devoted to matrix norms.
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5.7 Vector norms on matrices

Although all the axioms for a norm are necessary for a useful notion of “size” for
matrices, for some important applications the submultiplicativity axiom for a matrix
norm is not necessary. For example, the Gelfand formula (5.6.14) does not require
submultiplicativity and is valid for vector norms and even pre-norms. In this section,
we discuss vector norms on matrices, that is, norms on the vector space Mn that are
not necessarily submultiplicative. We use G(·) to denote a generic vector norm on Mn

and begin with some examples of norms on Mn that may or may not be matrix norms.

Example 1. If G(·) is a norm on Mn , and if S, T ∈ Mn are nonsingular, then

GS,T (A) = G(S AT ), A ∈ Mn (5.7.1)

is a norm on Mn . Even if G(·) is a matrix norm, GS,T (·) need not be submulti-
plicative unless T = S−1 (5.6.7).

Exercise. Show that GS,T (·) in (5.7.1) is always a norm on Mn .

Exercise. Let S = T = 1
2 I , let G(·) = n‖ · ‖∞, and show that GS,T (·) is not a

matrix norm.

Example 2. The Hadamard product of two matrices A = [ai j ] and B = [bi j ] of
the same size is their entrywise product A ◦ B = [ai j bi j ]. If H ∈ Mn has no zero
entries and if G(·) is any norm on Mn , then

G H (A) = G(H◦A), H ∈ Mn , |H | > 0 (5.7.2)

is a norm on Mn . Even if G(·) is a matrix norm, G H (·) need not be submultiplica-
tive.

Exercise. Show that G H (·) in (5.7.2) is always a norm.

Exercise. Show that G H (·) in (5.7.2) may or may not be a matrix norm, depending
on the choice of H . Consider the matrix norm G(·) = ‖| · ‖|1, the matrices

H1 = [
1
1

1
1

]
or H2 = [

2
1

1
2

]
(5.7.3)

and

A = [0
0

1
0

]
, B = [

0
1

0
0

]
, and AB (5.7.4)

Notice that G H1 (C) ≤ G H2 (C) for all C ∈ M2.

Example 3. The function Gc(·) defined by

Gc
([

a
c

b
d

]) = 1

2
[|a + d| + |a − d| + |b| + |c|] (5.7.5)

is a norm on M2.

Exercise. Show that Gc(·) in (5.7.5) is a norm but not a matrix norm. Hint:
Consider the matrices (5.7.4).



372 Norms for vectors and matrices

Example 4. If A ∈ Mn , the set F(A) = {x∗Ax : x ∈ Cn and x∗x = 1} is the field
of values or numerical range of A, and the function

r (A) = max
‖x‖2=1

|x∗Ax | = max{|z| : z ∈ F(A)}

is the numerical radius of A.

Exercise. Show that r (·) is a norm on Mn . Hint: For the positivity axiom (1a),
see (4.1.P6). The numerical radius is not a matrix norm, however; see (5.7.P10).

Example 5. The l∞ norm on Mn is

‖A‖∞ = max
1≤i, j≤n

|ai j | (5.7.7)

We saw in (5.6.0.3–4) that ‖ · ‖∞ is a norm on Mn but not a matrix norm. However,
n‖ · ‖∞ is a matrix norm.

The preceding examples demonstrate that there are many norms on Mn that are not
matrix norms. Some of these norms share some of the properties of matrix norms that
follow from submultiplicativity, and some do not. But each norm on Mn is equivalent
to any matrix norm (in the sense that they have the same convergent sequences); in
fact, a somewhat more general result follows immediately from (5.4.4).

Theorem 5.7.8. Let f be a pre-norm on Mn, that is, a real-valued function on Mn that
is positive, homogeneous, and continuous (5.4.4), and let ‖| · ‖| be a matrix norm on
Mn. Then there exist finite positive constants Cm and CM such that

Cm‖|A‖| ≤ f (A) ≤ CM‖|A‖| (5.7.9)

for all A ∈ Mn. In particular, these inequalities are valid if f (·) is a vector norm on
Mn.

The bounds (5.7.9) are often useful in extending facts about matrix norms to vector
norms on matrices, or, more generally, to pre-norms on matrices. For example, the
Gelfand formula (5.6.14) extends in this manner.

Theorem 5.7.10. If f is a pre-norm on Mn, in particular, if it is a vector norm, then
limk→∞[ f (Ak)]1/k = ρ(A) for all A ∈ Mn.

Proof. Let ‖| · ‖| be a matrix norm on Mn and consider the inequality (5.7.9), which
implies that

C1/k
m ‖|Ak‖|1/k ≤ [ f (Ak)]1/k ≤ C1/k

M ‖|Ak‖|1/k

for all k = 1, 2, 3, . . . . But C1/k
m → 1, C1/k

M → 1, and ‖|Ak‖|1/k → ρ(A) as k → ∞
(5.6.14) so we conclude that limk→∞[ f (Ak)]1/k exists and has the asserted value. �

Example 5 illustrates a second sense in which any norm on Mn is equivalent to a
matrix norm. A positive scalar multiple of the norm ‖ · ‖∞ is a matrix norm. This is no
accident: Every norm on Mn becomes a matrix norm after multiplication by a suitable
positive constant. This fundamental result is a consequence of continuity of a norm
function and compactness of its unit sphere.
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Theorem 5.7.11. Let G(·) be a vector norm on Mn and let

c(G) = max
G(A)=1=G(B)

G(AB)

For a real positive scalar γ , γ G(·) is a matrix norm on Mn if and only if γ ≥ c(G). If
‖| · ‖| is a matrix norm on Mn, if Cm and CM are positive constants such that

Cm‖|A‖| ≤ G(A) ≤ CM‖|A‖| for all A ∈ Mn (5.7.11a)

and if we set γ 0 = CM/C2
m, then γ 0G(·) is a matrix norm and hence γ 0 ≥ c(G).

Proof. The value c(G) is the maximum of a positive continuous function over a compact
set, so it is finite and positive. For any nonzero A, B ∈ Mn we have

c(G) ≥ G

(
A

G(A)

B

G(B)

)
= G(AB)

G(A)G(B)

that is, G(AB) ≤ c(G)G(A)G(B), and hence

c(G)G(AB) ≤ (c(G)G(A)) (c(G)G(B))

for all A, B ∈ Mn . Consequently, c(G)G(·) is a matrix norm. If γ > c(G), then

γ G(AB) ≤ γ

c(G)
(c(G)G(A)) (c(G)G(B)) = (γ G(A)) (c(G)G(B))

≤ (γ G(A)) (γ G(B))

so γ G(·) is a matrix norm. If γ > 0, γ < c(G), and γ G(·) is a matrix norm, then
for all A and B such that G(A) = G(B) = 1, we have γ G(AB) ≤ γ G(A)γ G(B) =
γ 2, so maxG(A)=1=G(B) G(AB) ≤ γ < c(G), which is a contradiction. Finally,
compute

γ 0G(AB) ≤ γ 0CM‖|AB‖| ≤ γ 0CM‖|A‖| ‖|A‖|
≤ γ 0

CM

C2
m

G(A)G(B) = (
γ 0G(A)

) (
γ 0G(B)

)
so γ 0G(·) is a matrix norm. �

Exercise. Deduce the Gelfand formula for vector norms on Mn from (5.7.11)
and (5.6.14).

An important property of any matrix norm ‖| · ‖| is that it is spectrally dominant,
that is, ‖|A‖| ≥ ρ(A) for every A ∈ Mn . It is noteworthy that a vector norm on Mn

can be spectrally dominant even if it is not submultiplicative; we now investigate
circumstances under which this can occur.

Definition 5.7.12. A norm ‖ · ‖ on Cn and a vector norm G(·) on Mn are compatible
if ‖Ax‖ ≤ G(A)‖x‖ for all x ∈ Cn and all A ∈ Mn. The term consistent is sometimes
used, and the norm ‖ · ‖ is sometimes said to be subordinate to the norm G(·).
Theorem 5.7.13. If ‖| · ‖| is a matrix norm on Mn, then there is a norm on Cn that is
compatible with it. If ‖·‖ is a norm on Cn, then there is a matrix norm on Mn that is
compatible with it.
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Proof. For any nonzero vector z, the norm ‖·‖z defined in (5.6.27) is compatible with a
given matrix norm ‖| · ‖|: ‖Ax‖z = ‖|Axz∗‖| ≤ ‖|A‖| ‖|xz∗‖| = ‖|A‖| ‖x‖z . Any given
norm on Cn is compatible with the matrix norm on Mn that it induces (5.6.2(b)). �
Theorem 5.7.14. Let G(·) be a norm on Mn that is compatible with a norm ‖ · ‖ on
Cn. Then

G(A1) · · ·G(Ak) ≥ ρ(A1 · · · Ak) for all A1, . . . , Ak ∈ Mn, k = 1, 2, . . . (5.7.15)

In particular, G(A) is spectrally dominant.

Proof. Consider the case k = 2 and let x ∈ Cn be a nonzero vector such that A1 A2x =
λx with |λ| = ρ(A1 A2). Then

ρ(A1 A2)‖x‖ = ‖λx‖ = ‖A1 A2x‖ = ‖A1(A2x)‖
≤ G(A1)‖A2x‖ ≤ G(A1)G(A2)‖x‖

Since ‖x‖ �= 0, we conclude that ρ(A1 A2) ≤ G(A1)G(A2). The general case follows
by induction. �

Exercise. Verify the cases k = 1 and k = 3 in the preceding theorem.

Which vector norms on Mn are compatible with some norm on Cn? The condition
(5.7.15) is necessary; to show that it is also sufficient, we need a technical lemma.

Lemma 5.7.16. Let G(·) be a vector norm on Mn that satisfies (5.7.15). There is a
finite positive constant γ (G) such that

G(A1) · · ·G(Ak) ≥ γ (G)‖|A1 · · · Ak‖|2
for all A1, A2, . . . , Ak ∈ Mn and all k = 1, 2, . . .

Proof. Let k be a given positive integer, let A1, . . . , Ak ∈ Mn be given, and let
A1 · · · Ak = V �W ∗ be a singular value decomposition (2.6.3). The hypothesis per-
mits us to use (5.7.15) to compute

G(V ∗)G(A1) · · ·G(Ak)G(W ) ≥ ρ(V ∗A1 · · · Ak W ) = ρ(�) = ‖|�‖|2
= ‖|V ∗A1 · · · Ak W‖|2 = ‖|A1 · · · Ak‖|2

The final equality follows from unitary invariance of the spectral norm. Since G(·) is a
continuous function on the compact set of unitary matrices, μ(G) = max{G(U ) : U ∈
Mn is unitary} is finite and positive. We conclude that

G(A1) · · ·G(Ak) ≥ 1

G(V ∗)G(W )
‖|A1 · · · Ak‖|2

≥ μ(G)−2‖|A1 · · · Ak‖|2
�

Theorem 5.7.17. A vector norm G(·) on Mn is compatible with some norm on Cn if
and only it satisfies the inequality (5.7.15).

Proof. One implication has already been proved in (5.7.14). To prove the other, we
claim it is sufficient to show that there is a matrix norm ‖| · ‖| on Mn such that
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G(A) ≥ ‖|A‖| for all A ∈ Mn . If such a matrix norm exists, let ‖ · ‖ be a norm on
Cn that is compatible with it (5.7.13), and let x ∈ Cn and A ∈ Mn be given. Then
‖Ax‖ ≤ ‖|A‖|‖x‖ ≤ G(A)‖x‖, so the norm ‖ · ‖ is also compatible with G(·).

For a given A ∈ Mn , there are myriad ways to represent it as a product of matrices
or as a sum of products of matrices. Define

‖|A‖| = inf
{∑

i
G(Ai1) · · ·G(Aiki ) :

∑
i

Ai1 · · · Aiki = A, each Ai j ∈ Mn

}
The function ‖| · ‖| is nonnegative and homogeneous. Is it positive? If

∑
i Ai1 · · · Aiki =

A �= 0, then (5.7.16) and the triangle inequality for the spectral norm ensure that∑
i
G(Ai1) · · ·G(Aiki ) ≥

∑
i
γ (G)‖|Ai1 · · · Aiki‖|2

≥ γ (G)
∥∥∥∣∣∣∑

i
Ai1 · · · Aiki

∣∣∣∥∥∥
2
= γ (G)‖|A‖|2 > 0

so ‖| · ‖| is positive. The triangle inequality and submultiplicativity for ‖| · ‖| follow
from its definition as an infimum of sums of products. �

Exercise. Explain carefully why the function ‖| · ‖| constructed in the preceding
theorem is subadditive and submultiplicative. Hint: If C = A + B or C = AB,
then every representation of A and B (separately) as sums of products yields a
representation of C as a sum of products; of course, not all representations of
C as sums of products arise in this way.

Exercise. Let G(·) be a vector norm on M2 and let J2(0) be the nilpotent
Jordan block of size 2. If G(·) were compatible with a norm ‖ · ‖ on
C2, explain why ‖e1‖ = ‖J2(0)e2‖ ≤ G(J2(0))‖e2‖ and ‖e2‖ = ‖J2(0)T e1‖ ≤
G(J2(0)T )‖e1‖, which implies that ‖e1‖ ≤ G(J2(0))G(J2(0)T )‖e1‖. Conclude
that the inequality G(J2(0))G(J2(0)T ) ≥ 1 is a necessary condition for G(·) to be
compatible with some vector norm on C2. Explain why the norm Gc(·) defined
in (5.7.5) is not compatible with any norm on C2.

Exercise. Even though the norm Gc(·) defined in (5.7.5) is not compatible with
any norm on C2, show that it is spectrally dominant. Discuss in light of (5.7.17).
Hint: Use (1.2.4b) to show that

ρ(
[

a
c

b
d

]
) ≤ 1

2
{|a − d| +

√
|a + d|2 + 4|bc|} ≤ Gc(

[
a
c

b
d

]
)

We have seen that some vector norms on Mn have compatible norms on Cn and
some do not. Those that do are spectrally dominant; those that do not can be either
spectrally dominant or not. We have necessary and sufficient conditions for a vector
norm on Mn to be compatible with some norm on Cn , and we know that any norm
on Cn is compatible with the submultiplicative norm on Mn that it induces. When is a
norm on Cn compatible with a norm on Mn that is not submultiplicative? Always.

Theorem 5.7.18. Every norm on Cn is compatible with a vector norm on Mn that is
not a matrix norm.

Proof. Let ‖·‖ be a norm on Cn and let P ∈ Mn be any permutation matrix with a zero
main diagonal, for example, the circulant matrix (0.9.6.2). Let ‖| · ‖| denote the matrix
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norm on Mn that is induced by ‖ · ‖. For any A = [ai j ] ∈ Mn define

G(A) = ‖|A‖| + ‖|P‖| ‖|PT ‖| max
1≤i≤n

|aii |

Then G(·) is a norm on Mn . Moreover, G(A) ≥ ‖|A‖| and ‖Ax‖ ≤ ‖|A‖| ‖x‖ ≤
G(A)‖x‖for all A ∈ Mn and all x ∈ Cn , so G(·) is compatible with ‖ · ‖. However,
G(P) = ‖|P‖| and G(PT ) = ‖|PT ‖|, so

G(P PT ) = G(I ) = ‖|I‖| + ‖|P‖| ‖|PT ‖|
= 1 + ‖|P‖| ‖|PT ‖| > G(P)G(PT )

Thus, G(·) is not submultiplicative. �

Exercise. Let A = [ai j ] ∈ Mn and consider the norm G(A) = ‖|A + diag(a11,

. . . , ann)‖|∞. Show that G(·) has the form (5.7.2) (what is H?) and hence is a norm

on Mn . Show that G(·) is compatible with the norm ‖ · ‖∞ on Cn . Let A =
[

0 1
1 0

]
and compute G(A) and G(A2). Explain why G(·) is not submultiplicative.

Our final goal in this section is to present a necessary and sufficient condition
for spectral dominance of a norm G(·) on Mn , and we focus on a weak ver-
sion of submultiplicativity: If for each A ∈ Mn there is a positive constant γA

such that G(Ak) ≤ γ AG(A)k for all k = 1, 2, . . . , then G(Ak)1/k ≤ γ
1/k
A G(A) for all

k = 1, 2, . . . and hence (5.7.10) ensures that ρ(A) ≤ G(A), that is, G(·) is spectrally
dominant. In showing that this sufficient condition is also necessary, subadditivity of
G(·) turns out to be crucial.

Exercise. Let G(·) be a norm on Mn . Explain why the following are equivalent:

(a) For each A ∈ Mn there is a positive constant γ A (depending only on A and
G(·)) such that G(Ak) ≤ γ AG(A)k for all k = 1, 2, . . . .

(b) For each A ∈ Mn such that G(A) = 1, the sequence G(A), G(A2),
G(A3), . . . is bounded.

(c) For each A ∈ Mn such that G(A) = 1, the entries of all the matrices
A, A2, A3, . . . lie in a bounded set.

Exercise. Let G(·) be a norm on Mn , let S ∈ Mn be nonsingular, and let GS(A) =
G(S AS−1) for any A ∈ Mn . Explain why G(·) is spectrally dominant if and only
if GS(·) is spectrally dominant.

Lemma 5.7.19. Let G(·) be a spectrally dominant norm on Mn, let A ∈ Mn be given,
and let λ be an eigenvalue of A such that |λ| = ρ(A). If λ is not semisimple, then
G(A) > ρ(A).

Proof. If ρ(A) = 0, then 0 is not a semisimple eigenvalue of A if and only if A �= 0,
in which case G(A) > 0. We may therefore assume that ρ(A) �= 0. Since we may
normalize any maximum-modulus eigenvalue by considering eiθρ(A)−1 A, we may
also assume that λ = 1 is an eigenvalue of A and G(A) ≥ ρ(A) = 1. Suppose that
1 is not a semisimple eigenvalue of A, that is, the Jordan canonical form of A is
Jm(1) ⊕ B, in which m ≥ 2, B ∈ Mn−m , and ρ(B) ≤ 1. We must show that G(A) > 1.
The preceding exercise permits us to assume that A = Jm(1) ⊕ B; we must show
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that G(A) > 1. Let Em ∈ Mm be the matrix with m, 1 entry equal to 1 and all other
entries equal to 0. Let F = Em ⊕ 0n−m and write A = Im ⊕ B + Jm(0) ⊕ 0n−m . For any
ε > 0, let Aε = A + εF = (Im + Jm(0) + εEm) ⊕ B. Then ρ(Im + Jm(0) + εEm) =
1 + ε1/m > ρ(B); see (1.2.P22). Consequently,

1 + ε1/m = ρ(Aε) ≤ G(Aε) = G(A + εF)

≤ G(A) + G(εF) = G(A) + εG(F)

If G(A) = 1, then ε1/m ≤ εG(F), or 1 ≤ ε
m−1

m G(F), which is not possible for all ε > 0
since ε

m−1
m → 0 as ε → 0. We conclude that G(A) > 1. �

Theorem 5.7.20. A norm G(·) on Mn is spectrally dominant if and only if for each
A ∈ Mn there is a positive constant γ A (depending only on A and G(·)) such that

G(Ak) ≤ γ AG(A)k for all k = 1, 2, . . . (5.7.20a)

Proof. We need to show only that the stated condition is necessary. Suppose that
A ∈ Mn and G(A) = 1 ≥ ρ(A). The preceding lemma ensures that each Jordan block
of A has the form Jm(λ), in which |λ| ≤ 1, and m = 1 if |λ| = 1. Consequently, either
|λ| < 1 and Jm(λ)k → 0 (5.6.12), or |λ| = 1, m = 1, and Jm(λ)k = λk , k = 1, 2, . . . is
a bounded sequence. We conclude that the entries of all the matrices A, A2, A3, . . . lie
in a bounded set. �

Problems

5.7.P1 Let G(·) be a vector norm on Mn and let z ∈ Cn be nonzero. Show that the function
‖x‖ = G(xz∗) is a norm on Cn . What is this function if z = e or if z = e1?

5.7.P2 Let G(·) be a vector norm on Mn , let A ∈ Mn , and let ε > 0. Show that there
is a positive constant K (ε, A) such that (ρ(A) − ε)k ≤ G(Ak) ≤ (ρ(A) + ε)k for all k >

K (ε, A).

5.7.P3 Let G(·) be a vector norm on Mn and let A ∈ Mn . (a) Use the preceding problem
to show that if ρ(A) < 1. then G(Ak) → 0 as k → ∞. At what rate? (b) Conversely, if
G(Ak) → 0 as k → ∞, show that ρ(A) < 1. (c) What can you say about convergence of
power series of matrices using vector norms?

5.7.P4 Let G(·) be a vector norm on Mn and define the function G ′ : Mn → R by G ′(A) =
maxG(B)=1 G(AB). Show that G ′(·) is a unital matrix norm on Mn . If G(I ) = 1, show that
G ′(A) ≥ G(A) for all A ∈ Mn .

The next four problems continue the notation and assumptions of (5.7.P4).

5.7.P5 Let G(·) be a matrix norm. Show that G ′(A) ≤ G(A) for all A ∈ Mn and if G(I ) = 1,
then G ′(·) = G(·).
5.7.P6 Define G ′′(A) = maxG ′(B)=1 G ′(AB). Show that G ′′(·) = G ′(·).
5.7.P7 If G(I ) = 1, show that G(·) is a matrix norm if and only if G ′(A) ≤ G(A) for all
A ∈ Mn .
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5.7.P8 Show that one can reverse the order in which A and B appear in the definition of
G ′(·) in (5.7.P4) and thereby obtain another matrix norm; show with an example that it can
be different from G ′(·).
5.7.P9 Show that the set of all vector seminorms on Cn that are compatible with a given
norm on Mn is a convex set; in fact, it is a convex cone.

5.7.P10 Show that the numerical radius is not a matrix norm on Mn by considering the
matrices (5.7.4) and comparing r (AB) with r (A)r (B).

5.7.P11 (a) Show that r (J2(0)) = 1
2 . (b) Explain why the numerical radius is not compatible

with any norm on Cn . (c) Show that the spectrum of A ∈ Mn is contained in its field of
values. (d) Explain why the numerical radius is spectrally dominant.

5.7.P12 Explain why no norm on Cn is compatible with the norm ‖ · ‖∞ on Mn , but that
some norm on Cn is compatible with the norm n‖ · ‖∞ on Mn .

5.7.P13 For A = [ai j ] ∈ Mm,n , let ri (A) = [ai1 . . . ain]T and c j (A) = [a1 j . . . amj ]T , and
suppose that ‖ · ‖α and ‖ · ‖β are norms on Cn and Cm , respectively. Define Gβ,α : Mm,n →
R by

Gβ,α(A) = ‖[‖r1(A)‖α . . . ‖rm(A)‖α]T ‖β

and define Gα,β : Mm,n → R by

Gα,β(A) = ‖[‖c1(A)‖β . . . ‖cn(A)‖β]T ‖α

Show that Gβ,α(·) and Gα,β(·) are each norms on Mm,n but that Gα,β(·) is not necessarily
the same as Gα,β(·).
5.7.P14 Compare Gβ,α(·) in the preceding problem with the norms ‖| · ‖|α,β defined in
(5.6.P4), and show by example that even when m = n (and even when ‖ · ‖α = ‖ · ‖β),
Gβ,α(·) need not be a matrix norm on Mn .

5.7.P15 Consider the norms in (5.7.P13). (a) If ‖ · ‖α = ‖ · ‖2 = ‖ · ‖β , what norm is
Gβ,α(·)? How about Gα,β (·)? (b) If ‖ · ‖α = ‖ · ‖1 and ‖ · ‖β = ‖ · ‖∞, what norm is Gβ,α(·)?
How about Gβ,α(·)? What about Gα,β(·) and Gα,β(·)?
5.7.P16 Let n ≥ 2 and let G(·) be a seminorm on Mn that is similarity invariant, that is,
G(S AS−1) = G(A) for all A, S ∈ Mn such that S is nonsingular. (a) Show that G(N ) = 0
for every nilpotent N ∈ Mn and conclude that G(·) cannot be a norm. (b) Show that
G(A) = n−1G(In)| tr A| for all A ∈ Mn .

5.7.P17 If G(·) is a norm on Mn , the spectral characteristic of G(·) is m(G) =
maxG(A)≤1 ρ(A). Show that G(·) is spectrally dominant if and only if m(G) ≤ 1, and show
that any norm on Mn may be converted into a spectrally dominant norm via multiplication
by a constant; the least such constant is m(G). A norm G(·) on Mn is minimally spectrally
dominant if m(G) = 1.

5.7.P18 If G(·) is a unital norm on Mn , explain why m(G) ≥ 1. Explain why a spectrally
dominant unital norm in Mn must be minimally spectrally dominant. Why is every in-
duced matrix norm minimally spectrally dominant? Why is the numerical radius minimally
spectrally dominant?

5.7.P19 Show that the spectral characteristic is a convex function on the cone of norms on
Mn and deduce that the set of all spectrally dominant norms on Mn is convex.
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5.7.P20 Prove the following assertions about the numerical radius function r (·) on Mn:
(a) r (·) is not unitarily invariant, but it is unitary similarity invariant: r (U ∗AU ) = r (A)
whenever U ∈ Mn is unitary. (b) r (A) = max‖x‖2=1 |x∗Ax | ≤ max‖x‖2=1 ‖Ax‖2‖x‖2 =
‖|A‖|2 for all A ∈ Mn , and r (A) = ρ(A) = ‖|A‖|2 whenever A is normal. Give an example
of an A ∈ Mn such that r (A) < ‖|A‖|2. (c) r (A) = r (A∗) for all A ∈ Mn . (d) ‖|A‖|2 ≤ 2r (A)
for all A ∈ Mn . (e) The bounds

1

2
‖|A‖|2 ≤ r (A) ≤ ‖|A‖|2 (5.7.21)

are sharp.

5.7.P21 Use the inequalities (5.7.21) and (5.7.11) to show that 4r (·) is a matrix norm on
Mn . Consider A = J2(0), A∗, and AA∗ to show that γ r (·) is not a matrix norm for any
γ ∈ (0, 4).

5.7.P22 Deduce from (5.7.21) and the inequality

1√
n
‖A‖2 ≤ ‖|A‖|2 ≤ ‖A‖2 (5.7.22)

in (5.6.P23) that

1

2
√

n
‖A‖2 ≤ r (A) ≤ ‖A‖2 (5.7.23)

for all A ∈ Mn . Show that the upper bound is sharp. Verify that A = J2(0) and A = I are
examples of equality in the lower bounds of (5.7.21) and (5.7.22), respectively, and that
A = E11 is an example of equality in the upper bounds of (5.7.21) and (5.7.22). Explain
why the upper bound in (5.7.23) must, therefore, be sharp, and give an example of a case of
equality. However, the lower bound in (5.7.23) is not sharp. Why is there a finite maximal
positive constant cn such that cn‖A|2 ≤ r (A) for all A ∈ Mn? It is known that cn = (2n)−1/2

for even n and cn = (2n − 1)−1/2 for odd n. For even n, the cases of equality are matrices
that are unitarily similar to a direct sum of matrices of the form α J2(0) in which |α| = r (A);
an additional single 1-by-1 direct summand [α], |α| = r (A), must be included when n is
odd.

5.7.P23 If x ∈ Cn and X = xx∗ (a Hermitian rank-one matrix), show that ‖X‖2 = ‖x‖2
2.

Show that the field of values of A ∈ Mn is the set of projections (using the Frobenius
inner product) of A onto the set of unit norm rank-one Hermitian matrices. Explain why
r (A) = max{| 〈A, X〉F | : X is a rank-one Hermitian matrix and ‖X‖2 = 1} and show that
r (A) ≤ ‖A‖2.

5.7.P24 The numerical radius is related to a natural approximation problem. For a given
A ∈ Mn , suppose that we wish to approximate A as well as possible in the Frobenius norm
(a least squares approximation) by a scalar multiple of a Hermitian matrix of rank one. Let
c ∈ C, x ∈ Cn , and ‖x‖2 = 1. Show that ‖A − cxx∗‖2

2 ≥ ‖A‖2
2 − 2|c 〈A, xx∗〉

F | + |c|2,
which is minimized for c = 〈A, x̃ x̃∗〉F , in which x̃ is a unit vector for which r (A) = |x̃∗Ax̃ |.
Conclude that ‖A − r (A)x̃ x̃‖2 ≤ ‖A − cxx∗‖2 for all c ∈ C and all unit vectors x .

5.7.P25 The numerical radius r (·) is spectrally dominant, so it satisfies the weak power
inequality (5.7.20a). The purpose of this problem is to show that it actually satisfies the
stronger power inequality r (Am) ≤ r (A)m for all m = 1, 2, . . . and all A ∈ Mn .
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(a) Why is it sufficient to prove that if r (A) ≤ 1, then r (Am) ≤ 1 for all m = 1, 2, . . . ?
(b) Let m ≥ 2 be a given positive integer, fixed for the rest of the argument, and let

{wk} = {e2π ik/m}m
k=1 denote the set of mth roots of unity. Notice that {wk} is a finite

multiplicative group and that {w jwk}m
k=1 = {wk}m

k=1 for each j = 1, 2, . . . , m. Observe
that 1 − zm =∏m

k=1(1 − wk z) and show that

p(z) = 1

m

m∑
j=1

m∏
k=1
k �= j

(1 − wk z) = 1 for all z ∈ C

(c) Show that

I − Am =
m∏

k=1

(I − wk A) and I = 1

m

m∑
j=1

m∏
k=1
k �= j

(I − wk A)

(d) Let x ∈ Cn be any unit vector, ‖x‖2 = 1, and let A ∈ Mn . Verify that

1 − x∗ Am x = x∗(I − Am)x = (I x)∗(I − Am)x

=

⎛
⎜⎝ 1

m

m∑
j=1

m∏
k=1
k �= j

(I − wk A)x

⎞
⎟⎠

∗ (
m∏

k=1

(I − wk A)x

)

= 1

m

m∑
j=1

z∗j [(I − w j A)z j ], in which z j =
m∏

k=1
k �= j

(I − wk A)x

= 1

m

m∑
j=1

z j �=0

‖z j‖2
2

(
1 − w j

(
z j

‖z j‖2

)∗
A

(
z j

‖z j‖2

))

(e) Replace A by eiθ A in the preceding identity to obtain

1 − eimθ x∗ Am x = 1

m

m∑
j=1

z j �=0

‖z j‖2
2

(
1 − eiθw j

(
z j

‖z j‖2

)∗
A

(
z j

‖z j‖2

))

for any real θ . Now suppose that r (A) ≤ 1, show that the real part of the right-hand
side of this identity is nonnegative for any θ ∈ R, and deduce that the real part of the
left-hand side must also be nonnegative for all θ ∈ R. Since θ is arbitrary, argue that
|x∗ Am x | ≤ 1 and hence that r (Am) ≤ 1.

5.7.P26 Even though the numerical radius satisfies the power inequality r (Am) ≤ r (A)m for
all A ∈ Mn and all m = 1, 2, . . . it does not satisfy the inequalities r (Ak+m) ≤ r (Ak)r (Am)
for all A ∈ Mn and all m, k = 1, 2, . . . . Verify this by considering A = J4(0), k = 1, and
m = 2. Show that r (A2) = r (A3) = 1

2 and r (A) < 1.

5.7.P27 Let P ∈ Mn be a projection, so P2 = P . Assume that 0 �= P �= I . Why is I − P
a projection? Why is ‖|P‖| ≥ 1 for every matrix norm ‖| · ‖|? Use the unitary similarity
canonical form of P (3.4.3.3) to show that (a) not only is ‖|P‖|2 ≥ 1, but also every nonzero
singular value of P is greater than or equal to 1; (b) P and I − P have the same singular
values that are greater than 1; (c) The fields of values of P and I − P are the same. (d) The
numerical radii of P and I − P are the same.
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Further Readings. For more discussion of inequalities involving the numerical radius,
see M. Goldberg and E. Tadmor, On the numerical radius and its applications, Linear
Algebra Appl. 42 (1982) 263–284. The proof of the power inequality in (5.7.P25) is
taken from C. Pearcy, An elementary proof of the power inequality for the numerical
radius, Michigan Math. J. 13 (1966) 289–291. See Chapter 1 of Horn and Johnson
(1991) for more information about the field of values and numerical radius. Some of
the material of this section is from C. R. Johnson, Multiplicativity and compatibility of
generalized matrix norms, Linear Algebra Appl. 16 (1977) 25–37; Locally compatible
generalized matrix norms, Numer. Math. 27 (1977) 391–394; and Power inequalities
and spectral dominance of generalized matrix norms, Linear Algebra Appl. 28 (1979)
117–130, where further results may be found.

5.8 Condition numbers: inverses and linear systems

As an application of matrix and vector norms, we consider the problem of bounding
the errors in a computed inverse of a matrix and in a computed solution to a system of
linear equations.

If the computations to invert a given nonsingular matrix A ∈ Mn are performed in
floating point arithmetic on a digital computer, there are inevitable and unavoidable
errors of rounding and truncation. Furthermore, the entries of A might be the result of
an experiment or measurement that is subject to errors; there could be some uncertainty
about their values. How do errors in computation and errors in the data affect the entries
of a computed matrix inverse?

For many common algorithms, roundoff errors during computation and errors in the
data can be modeled in the same way. Let ‖| · ‖| be a given matrix norm and suppose
that A ∈ Mn is nonsingular. We wish to compute the inverse of A, but instead, the
matrix we have to work with is B = A + A, in which we assume that

‖|A−1A‖| < 1 (5.8.0)

to ensure that B is nonsingular. Since B = A(I + A−1A) and ρ(A−1A) ≤
‖|A−1A‖| < 1, the assumption (5.8.0) ensures that −1 /∈ σ (A−1A), and hence B is
nonsingular.

We have A−1(A)B−1 = A−1(B − A)B−1 = A−1 − B−1, so

‖|A−1 − B−1‖| = ‖|A−1AB−1‖| ≤ ‖|A−1A‖| ‖|B−1‖| (5.8.1)

Since B−1 = A−1 − A−1(A)B−1, we also have

‖|B−1‖| ≤ ‖|A−1‖| + ‖|A−1AB−1‖| ≤ ‖|A−1‖| + ‖|A−1A‖| ‖|B−1‖|
which is equivalent to the inequality

‖|B−1‖| = ‖|(A + A)−1‖| ≤ ‖|A−1‖|
1 − ‖|A−1A‖| (5.8.2)

Combining (5.8.1) and (5.8.2) produces the bound

‖|A−1 − B−1‖| ≤ ‖|A−1‖| ‖|A−1A‖|
1 − ‖|A−1A‖| ≤ ‖|A−1‖| ‖|A−1‖| ‖|A‖|

1 − ‖|A−1A‖|
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Thus, an upper bound on the relative error in the computed inverse is

‖|A−1 − (A + A)−1‖|
‖|A−1‖| ≤ ‖|A−1‖| ‖|A‖|

1 − ‖|A−1A‖|
‖|A‖|
‖|A‖|

The quantity

κ(A) =
{‖|A−1‖| ‖|A‖| if A is nonsingular
∞ if A is singular

(5.8.3)

is the condition number for matrix inversion with respect to the matrix norm ‖| · ‖|.
Notice that κ(A) = ‖|A−1‖| ‖|A‖| ≥ ‖|A−1 A‖| = ‖|I‖| ≥ 1 for any matrix norm. We
have proved the bound

‖|A−1 − (A + A)−1‖|
‖|A−1‖| ≤ κ(A)

1 − ‖|A−1A‖|
‖|A‖|
‖|A‖| (5.8.4)

If we strengthen the assumption (5.8.0) to

‖|A−1‖| ‖|A‖| < 1 (5.8.5)

and observe that

‖|A−1‖| ‖|A‖| = ‖|A−1‖| ‖|A‖|‖|A‖|
‖|A‖| = κ(A)

‖|A‖|
‖|A‖|

then it follows from (5.8.4) that

‖|A−1 − (A + A)−1‖|
‖|A−1‖| ≤ κ(A)

1 − κ(A) ‖|A‖|
‖|A‖|

‖|A‖|
‖|A‖| (5.8.6)

This is an upper bound for the relative error in a computed inverse of A as a function
of the relative error in the data and the condition number of A. Such a bound is called
an a priori bound, since it involves only data that are known before any computations
are done.

If ‖|A−1‖| ‖|A‖| is not only less than 1, but also very much less than 1, the right-
hand side (5.8.6) is of the order of κ(A)‖|A‖|/‖|A‖|, so we have good reason to
believe that the relative error in the inverse is of the same order as the relative error in
the data, provided that κ(A) is not large.

For purposes of inversion, we say that A is ill conditioned or poorly conditioned if
κ(A) is large; if κ(A) is small (near 1), we say that A is well conditioned; if κ(A) = 1,
we say that A is perfectly conditioned. Of course, all of these statements about the
quality of the conditioning are with respect to a specific matrix norm ‖| · ‖|.

Exercise. If A ∈ Mn is nonsingular and the spectral norm is used, explain why
κ(A) = σ 1(A)/σ n(A), the ratio of largest and smallest singular values.

Exercise. If U, V ∈ Mn are unitary and if a unitarily invariant matrix norm is
used in (5.8.3), explain why κ(A) = κ(U AV ): Unitary transformations of a given
matrix do not make its conditioning worse. This observation underlies many stable
algorithms in numerical linear algebra.

Exercise. Explain why a nonsingular A ∈ Mn is a scalar multiple of a unitary
matrix if and only if, with respect to the spectral norm, κ(A) = 1.
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Exercise. Show that κ(AB) ≤ κ(A)κ(B) for any A, B ∈ Mn with respect to any
matrix norm, so we have an upper bound on the growth of the condition number
of a matrix that is subjected to a sequence of transformations. What can you say
if each of those transformations is unitary?

Similar considerations can be used to give a priori bounds on the accuracy of a
solution to a system of linear equations. Suppose that we want to solve a linear system

Ax = b, A ∈ Mn is nonsingular and b ∈ Cn is nonzero (5.8.7)

but because of computational errors or uncertainty in the data, we actually solve
(exactly) a perturbed system

(A + A)x̃ = b + b, A, A ∈ Mn , b, b ∈ Cn , x̃ = x + x

How close is x̃ to x , that is, how large could x be? We can use matrix norms and
compatible vector norms to obtain a bound on the relative error of the solution as a
function of the relative errors in the data and the condition number of A.

Let a matrix norm ‖| · ‖| on Mn and a consistent vector norm ‖·‖ on Cn be given,
and assume again that the inequality (5.8.0) is satisfied. Since Ax = b, our system is

(A + A)x̃ = (A + A)(x + Dx) = Ax + (A)x + (A + A)x

= b + (A)x + (A + A)x = b + b

or

(A)x + (A + A)x = b

Therefore, x = (A + A)−1(b − (A)x) and

‖x‖ = ∥∥(A + A)−1(b−Ax)
∥∥

≤ ‖|(A + A)−1‖|(‖b‖+‖(A)x‖)

Invoking (5.8.2) and compatibility, we have

‖x‖ ≤ ‖|A−1‖|
1 − ‖|A−1A‖| (‖b‖+‖|A‖| ‖x‖)

and hence

‖x‖
‖x‖ ≤ ‖|A−1‖| ‖|A‖|

1 − ‖|A−1A‖|
( ‖b‖
‖|A‖| ‖x‖ + ‖|A‖|

‖|A‖|
)

Using the definition of κ(A) and the bound ‖b‖ = ‖Ax‖ ≤ ‖|A‖| ‖x‖, we obtain

‖x‖
‖x‖ ≤ κ(A)

1 − ‖|A−1A‖|
(‖b‖

‖b‖ + ‖|A‖|
‖|A‖|

)
(5.8.8)

If we make the stronger assumption (5.8.6) again, we obtain the weaker but more
transparent bound

‖x‖
‖x‖ ≤ κ(A)

1 − κ(A) ‖|A‖|
‖|A‖|

(‖b‖
‖b‖ + ‖|A‖|

‖|A‖|
)

(5.8.9)



384 Norms for vectors and matrices

This bound has the same character and consequence as (5.8.6): If the coefficient
matrix in the linear system (5.8.7) is well conditioned, then the relative error in the
solution is of the same order as the relative errors in the data.

If a computed solution x̂ to (5.8.7) is in hand, it can be used in an a posteriori bound.
Once again, let ‖| · ‖| be a matrix norm that is compatible with a vector norm ‖ · ‖,
let x be the exact solution to (5.6.7), and consider the residual vector r = b − Ax̂ .
Since A−1r = A−1(b − Ax̂) = A−1b − x̂ = x − x̂ , we have the bounds ‖x − x̂‖ =
‖A−1r‖ ≤ ‖|A−1‖| ‖r‖ and ‖b‖ = ‖Ax‖ ≤ ‖|A‖|‖x‖, or 1 ≤ ‖|A‖|‖x‖/‖b‖. Then

‖x − x̂‖ ≤ ‖|A−1‖| ‖r‖ ≤ ‖|A‖| ‖x‖
‖b‖ ‖|A−1‖| ‖r‖

= ‖|A‖| ‖|A−1‖| ‖r‖
‖b‖‖x‖

so the relative error between the computed solution and the exact solution has the
bound

‖x − x̂‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖ (5.8.10)

in which the matrix norm used to compute the condition number κ(A) is compatible
with the vector norm ‖ · ‖. For a well-conditioned problem, the relative error in the
solution is of the same order as the relative size of the residual. For an ill-conditioned
problem, however, a computed solution that yields a small residual may still be very
far from the exact solution.

A common characteristic of matrix norm error bounds is their conservatism: An
upper bound may be large even though the actual error is small. However, if a matrix A
of moderate size with moderate-size elements has a large condition number, then A−1

must have some large entries, and it is well to exercise great caution for the following
reason.

If Ax = b and if we set C = [ci j ] = A−1, then differentiating the identity x = Cb
with respect to the entry b j gives the identities

∂xi

∂b j
= ci j , i, j = 1, . . . , n (5.8.11)

Furthermore, if we consider C = A−1 as a function of A, then its entries are just rational
functions of the entries of A and hence are differentiable. The identity C A = I means
that

∑n
p=1 cipapq = δiq for all i, q = 1, . . . , n, and hence

n∑
p=1

(
∂cip

∂a jk
apq + δ pq, jkcip

)
=

n∑
p=1

∂cip

∂a jk
apq + δqkci j = 0

or

n∑
p=1

∂cip

∂a jk
apk = −δqkci j , i, j, k = 1, . . . , n
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Now differentiate the identity x = Cb with respect to a jk to obtain

∂xi

∂a jk
=

n∑
p=1

∂cip

∂a jk
bp =

n∑
p=1

n∑
q=1

∂cip

∂a jk
apq xq

=
n∑

q=1

⎛
⎝ n∑

p=1

∂cip

∂a jk
apq

⎞
⎠ xq =

n∑
q=1

(−δqkci j
)

xq = −ci j xk

which is the identity

∂xi

∂a jk
= −ci j

n∑
p=1

ckpbp (5.8.12)

Thus, (5.8.11) and (5.8.12) warn us that if C = A−1 has any relatively large entries,
then some entry of the solution x may have a large and unavoidable sensitivity to
perturbations in some of the entries of b and A.

Problems

5.8.P1 Let A ∈ Mn be nonsingular and normal. Explain why the condition number for
inversion of A with respect to the spectral norm is κ(A) = ρ(A)ρ(A−1).

5.8.P2 Compute the eigenvalues and the inverse of the normal matrix Aε =
[

1 −1
−1 1+ε

]
,

ε > 0. Show that the ratio of the largest to smallest absolute eigenvalues of Aε is O(ε−1) as
ε → 0. Use (5.8.P1) to conclude that the condition number of A with respect to the spectral
norm is κ(Aε) = O(ε−1). Use the exact form of A−1

ε to confirm that κ(Aε) = O(ε−1) with
respect to any norm.

5.8.P3 Compute the eigenvalues and the inverse of the matrix Bε =
[

1 −1
1 −1−ε

]
, ε > 0.

Explain why Bε is not normal. Use the exact form of B−1
ε to show that the condition

number of Bε is κ(Bε) = O(ε−1) with respect to any matrix norm, and hence for small
ε, Bε . However, show that the ratio of the largest to smallest absolute eigenvalues of B is
bounded as ε → 0. What about the ratio of the largest and smallest singular values of Bε?

5.8.P4 Show that κ(A) ≥ ρ(A)ρ(A−1) for any nonsingular A ∈ Mn and any matrix norm.
Thus, if the ratio of its absolute largest and smallest eigenvalues is large, A must be ill
conditioned for inversion, whether or not it is normal. However, the preceding problem
shows that nonnormal matrices can be ill conditioned for inversion even if this ratio is not
large.

5.8.P5 The condition number κ(A) for inversion depends on the matrix norm used. Show
that all condition numbers for inversion are equivalent in the sense that if κα(A) =
‖|A−1‖|α‖|A‖|α and κβ = ‖|A−1‖|β‖|A‖|β , then there exist finite positive constants Cα,β

and Cβ,α such that

Cα,βκα(A) ≤ κβ(A) ≤ Cβ,ακα(A) for all A ∈ Mn

5.8.P6 Let ‖| · ‖| be a matrix norm on Mn that is induced by a vector norm ‖·‖ on Cn ,
and let A ∈ Mn be nonsingular. (a) Show that the condition number (5.8.3) of A can be
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computed without using ‖| · ‖|, as follows:

κ(A) = max{‖Ax‖ : ‖x‖ = 1}
min{‖Ax‖ : ‖x‖ = 1}

(b) Show that κ(A) = 1 if and only if A is a nonzero scalar multiple of an isometry for the
norm ‖·‖.

5.8.P7 If det A is small (or large), must κ(A) be large?

5.8.P8 Let Bε be the matrix in (5.8.P3) (ε > 0) and consider the linear system Bεx =
[1 1]T with exact solution x = [1 0]T and an approximate solution x̂ = [1 + ε−1/2 ε−1/2]T .
Show that ‖r‖/‖b‖ = O(ε1/2) as ε → 0 but that the relative error in the solution is ‖x −
x̂‖/‖x‖ = O(ε−1/2) as ε → 0. Thus, relatively small residuals can be observed even if the
corresponding approximate solution has large errors. Explain how (5.8.10) converts the
(small) relative residual into a correct (large) upper bound on the relative error.

5.8.P9 A commonly cited example of an ill-conditioned matrix is the Hilbert matrix
(0.9.12). Since Hn is normal, its condition number for inversion with respect to the spectral
norm is κ(Hn) = ρ(Hn)ρ(Hn). It is a fact that the condition number of Hn is asymptoti-
cally equal to ecn , in which the constant c is approximately 3.5, and it is also a fact that
ρ(Hn) = π + O(1/ log n) as n → ∞. We have κ(H3) ∼ 5 × 102, κ(H6) ∼ 1.5 × 107, and
κ(H8) ∼ 1.5 × 1010. Explain why Hn is so poorly conditioned even though the entries of
Hn are uniformly bounded and ρ(Hn) is not large.

5.8.P10 If the spectral norm is used, show that κ(A∗A) = κ(AA∗) = κ(A)2. Explain why
the problem of solving A∗Ax = y may be intrinsically less tractable numerically than the
problem of solving Ax = z.

5.8.P11 Let A ∈ Mn be nonsingular. Use (5.6.55) to show that κ(A) ≥ ‖|A‖|/‖|A − B‖| for
any singular B ∈ Mn . Here, ‖| · ‖| is any matrix norm and κ(·) is the associated condition
number. This lower bound can be useful in showing that a given matrix A is ill conditioned.

5.8.P12 Let A = [ai j ] ∈ Mn be an upper triangular matrix with all aii �= 0. Use the pre-
ceding problem to show that the condition number of A with respect to the maximum row
sum norm has the lower bound κ(A) ≥ ‖|A‖|∞/ min1≤i≤n |aii |.
5.8.P13 See (5.6.P47 to P51). If A ∈ Mn is nonsingular and ‖| · ‖| is a matrix norm
on Mn , explain why κ(A) = ‖|A‖|/ dist‖|·‖|(A,Sn) if ‖| · ‖| is induced and κ(A) ≥
‖|A‖|/ dist‖|·‖|(A,Sn) if ‖| · ‖| is not induced, with strict inequality for some A.

5.8.P14 Show that the condition number of the companion matrix (3.3.12) with respect to
the spectral norm is

κ(C(p)) = s + 1 +
√

(s + 1)2 − 4|a0|2
2|a0| (5.8.13)

in which s = |a0|2 + |a1|2 + · · · + |an−1|2.

Further Reading. Finding a priori bounds for errors in solutions of linear systems of
equations has been a central problem in numerical linear algebra; see Stewart (1973).



CHAPTER 6

Location and Perturbation
of Eigenvalues

6.0 Introduction

The eigenvalues of a diagonal matrix are very easy to locate, and the eigenvalues of
a matrix are continuous functions of the entries, so it is natural to ask whether one
can say anything useful about the eigenvalues of a matrix that is “nearly diagonal”
in the sense that its off-diagonal elements are dominated in some way by the main
diagonal entries. Such matrices arise in practice: Large systems of linear equations
resulting from numerical discretization of boundary value problems for elliptic partial
differential equations are typically of this form.

In differential equations problems involving the long-term stability of an oscillating
system, it can be important to know that all of the eigenvalues of a given matrix are in
the left half-plane. In statistics or numerical analysis, one may want to show that all
the eigenvalues of a given Hermitian matrix are positive. In this chapter, we describe
simple criteria that are sufficient to ensure that the eigenvalues of a given matrix are
included in sets such as a given half plane, disc, or ray.

All the eigenvalues of a matrix A are located in a disc in the complex plane centered
at the origin that has radius ‖|A‖|, in which ‖| · ‖| is any matrix norm. Are there other,
smaller, sets that are readily determined and either include or exclude the eigenvalues?
We identify several such sets in this chapter.

If a matrix A is subjected to a perturbation A → A + E , then continuity of the
eigenvalues ensures that if the perturbation matrix E is small in some sense, then the
eigenvalues should not change too drastically. In this chapter, we explore the behavior
of the eigenvalues when the matrix is perturbed, and present some explicit bounds that
limit how far the eigenvalues can move after a perturbation of the matrix.

6.1 Geršgorin discs

For any A ∈ Mn , we can always write A = D + B, in which D = diag(a11, . . . , ann)
captures the main diagonal of A, and B = A − D has a zero main diagonal. If we

387
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set Aε = D + εB, then A0 = D and A1 = A. The eigenvalues of A0 = D are easy to
locate: They are just the points a11, . . . , ann in the complex plane, together with their
multiplicities. We know that if ε is small enough, then the eigenvalues of Aε are located
in some small neighborhoods of the points a11, . . . , ann . The following Geršgorin disc
theorem makes this observation precise: Some easily computed discs that are centered
at the points aii are guaranteed to contain the eigenvalues of A.

Theorem 6.1.1 (Geršgorin). Let A = [ai j ] ∈ Mn, let

R′
i (A) =

∑
j �=i

|ai j |, i = 1, . . . , n (6.1.1a)

denote the deleted absolute row sums of A, and consider the n Geršgorin discs

{z ∈ C : |z − aii | ≤ R′
i (A)}, i = 1, . . . , n

The eigenvalues of A are in the union of Geršgorin discs

G(A) =
n⋃

i=1

{z ∈ C : |z − aii | ≤ R′
i (A)} (6.1.2)

Furthermore, if the union of k of the n discs that comprise G(A) forms a set Gk(A) that
is disjoint from the remaining n − k discs, then Gk(A) contains exactly k eigenvalues
of A, counted according to their algebraic multiplicities.

Proof. Let λ, x be an eigenpair for A, so Ax = λx and x = [xi ] �= 0. Let p ∈ {1, . . . , n}
be an index such that |x p| = ‖x‖∞ = max1≤i≤n |xi |. Then |xi | ≤ |x p| for all i =
1, 2, . . . , n, and of course x p �= 0 since x �= 0. Equating the pth entries of both sides
of the identity Ax = λx reveals that λx p =∑n

j=1 apj x j , which we write as

x p(λ − app) =
∑
j �=p

apj x j

The triangle inequality and our assumption about x p ensure that

|x p| |λ − app| =
∣∣∣∣∣∣
∑
j �=p

apj x j

∣∣∣∣∣∣ ≤
∑
j �=p

|apj x j | =
∑
j �=p

|apj | |x j |

≤ |x p|
∑
j �=p

|apj | = |x p|R′
p

Since x p �= 0, we conclude that |λ − app| ≤ R′
p; that is, λ is in the disc {z ∈ C :

|z − app| ≤ R′
p(A)}. In particular, λ is in the larger set G(A) defined in (6.1.2).

Now suppose that k of the n discs that comprise G(A) are disjoint from all of the
remaining n − k discs. After a suitable permutation similarity of A, we may assume
that Gk(A) =⋃k

i=1{z ∈ C : |z − aii | ≤ R′
i } is disjoint from Gk(A)c =⋃n

i=k+1{z ∈ C :
|z − aii | ≤ R′

i }. Write A = D + B, in which D = diag(a11, . . . , ann) and B = A − D.
Define Aε = D + εB, and assume throughout the rest of the argument that ε ∈ [0, 1].
Observe that A0 = D, A1 = A, and R′

i (Aε) = R′
i (εB) = εR′

i (A) for each i = 1, . . . , n.
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Consequently, each of the n Geršgorin discs of Aε is contained in the corresponding
Geršgorin disc of A. In particular,

Gk(Aε) =
k⋃

i=1

{z ∈ C : |z − aii | ≤ εR′
i (A)}

is contained in Gk(A) and is disjoint from Gk(A)c. We know that all the eigenvalues
of Aε are contained in G(Aε), which is contained in Gk(A) ∪ Gk(A)c.

Let � be a simple closed rectifiable curve in the complex plane that surrounds Gk(A)
and is disjoint from Gk(A)c; � does not pass through any eigenvalue of any Aε . Let pε(z)
denote the characteristic polynomial of Aε , so pε(z) �= 0 for all z ∈ � and all ε ∈ [0, 1].
The zeroes of pε(z) are the eigenvalues of Aε , counted according to their algebraic
multiplicities, and the coefficients of pε(z) = det(z I − Aε) = det(z I − D − εB) are
polynomials in ε. The argument principle ensures that the number of zeroes of pε(z)
inside � (that is, in the bounded region whose boundary is �) is

N (ε) = 1

2π i

∮
�

p′
ε(z)

pε(z)
dz

The integrand is a rational function of both z and ε that is an analytic function of z in a
neighborhood of � for each ε ∈ [0, 1]. Consequently, the integer-valued function N (ε)
is continuous on the interval [0, 1], so it is a constant function there. Since p0(t) =
(t − a11) · · · (t − ann) has exactly k zeroes inside � (namely, the points a11, . . . , akk),
we know that N (0) = k. Thus, N (1) = N (0) = k is the number of eigenvalues of A
inside �. Finally, the first assertion of the theorem ensures that any eigenvalues of A
inside � are contained in Gk(A), which proves the assertion that exactly k eigenvalues
of A lie in Gk(A). �

The hypothesis for the second assertion in (6.1.1) does not require that the set Gk(A)
be connected. If Gk(A) is not connected, it is a union of two or more disjoint unions
of discs, to each of which the theorem can be applied again; one obtains in this way a
more refined description of the location of the eigenvalues of A. If Gk(A) is connected,
no further refinement via (6.1.1) is possible; the best statement we can make is that it
contains exactly k eigenvalues of A.

The set G(A) in (6.1.2) is the Geršgorin set (for rows) of A; the boundaries of the
Geršgorin discs are Geršgorin circles. Since A and AT have the same eigenvalues,
one can obtain a Geršgorin disc theorem for columns of A by applying the Geršgorin
theorem to AT . The resulting set contains the eigenvalues of A and is determined by
the diagonal entries of A and its deleted absolute column sums

C ′
j (A) =

∑
i �= j

|ai j |, j = 1, . . . , n (6.1.2a)

Corollary 6.1.3. The eigenvalues of A = [ai j ] ∈ Mn are in the union of n discs

n⋃
j=1

{z ∈ C : |z − a j j | ≤ C ′
j } = G(AT ) (6.1.4)



390 Location and perturbation of eigenvalues

Furthermore, if the union of k of these discs forms a set Gk(A) that is disjoint from
the remaining n − k discs, then Gk(A) contains exactly k eigenvalues of A, counted
according to their algebraic multiplicities.

Exercise. Explain why the eigenvalues of A are in G(A) ∩ G(AT ). Illustrate with
the 3-by-3 matrix A = [ai j ] with ai j = i/j .

The eigenvalues of A are in the two Geršgorin sets (6.1.2) and (6.1.4); in particular,
they contain the largest modulus eigenvalue of A. The point in the ith disc in G(A) that
is farthest from the origin has modulus |aii | + R′

i =
∑n

j=1 |ai j |, so the largest of these
values is an upper bound for the spectral radius of A. Of course, a similar argument
can be made for the absolute column sums.

Corollary 6.1.5. If A = [ai j ] ∈ Mn, then

ρ(A) ≤ min

⎧⎨
⎩max

i

n∑
j=1

|ai j |, max
j

n∑
i=1

|ai j |
⎫⎬
⎭

This result is no surprise, since it says that ρ(A) ≤ ‖|A‖|∞ and ρ(A) ≤ ‖|A‖|1;
see (5.6.9). But it is interesting to have an essentially geometric derivation of this
fact.

Since S−1 AS has the same eigenvalues as A whenever S is nonsingular, we can apply
the Geršgorin theorem to S−1 AS and thereby obtain additional eigenvalue inclusion
sets for A. A particularly convenient choice is S = D = diag(p1, p2, . . . , pn) with
all pi > 0. Applying the Geršgorin disc theorem to D−1 AD = [p j ai j/pi ] and to its
transpose yields the following result.

Corollary 6.1.6. Let A = [ai j ] ∈ Mn and let p1, p2, . . . , pn be positive real numbers.
The eigenvalues of A are in the union of n discs

n⋃
i=1

⎧⎨
⎩z ∈ C : |z − aii | ≤ 1

pi

∑
j �=i

p j |ai j |
⎫⎬
⎭ = G(D−1 AD)

Furthermore, if the union of k of these discs forms a set Gk(D−1 AD) that is disjoint
from each of the n − k remaining discs, then there are exactly k eigenvalues of A
(counting algebraic multiplicities) in Gk(D−1 AD). The same is true of the set

n⋃
j=1

⎧⎨
⎩z ∈ C : |z − a j j | ≤ p j

∑
i �= j

1

pi
|ai j |

⎫⎬
⎭ = G(D AT D−1)

The matrix A =
[

1 1
0 2

]
has eigenvalues 1 and 2. A straightforward application of

the Geršgorin theorem gives a rather gross estimate for the eigenvalues (Figure 6.1.7a),
but the extra parameters in the preceding corollary give enough flexibility to obtain an
arbitrarily good estimate of the eigenvalues (Figure 6.1.7b).
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1

1 2

(a) (b)

r

r = > 0

1 2

p2
p1

Figure 6.1.7. Geršgorin discs per (6.1.1) and (6.1.6).

Exercise. Consider the matrix

A =
⎡
⎣ 7 −16 8
−16 7 −8

8 −8 −5

⎤
⎦

Use the Geršgorin theorem to say as much as you can about the location of
the eigenvalues of A and the spectral radius of A. Then consider D−1 AD, with
D = diag(p1, p2, p3). Can you obtain any improvement in your location of the
eigenvalues? Finally, compute the actual eigenvalues and comment on how well
you did with the estimates.

Exercise. Explain why every eigenvalue of A is in the set ∩DG(D−1 AD), in
which the intersection is over all diagonal matrices with positive main diagonal
entries.

The idea of introducing free parameters can also be used to obtain a more general
form of the estimates (6.1.5) for the spectral radius.

Corollary 6.1.8. Let A = [ai j ] ∈ Mn. Then

ρ(A) ≤ min
p1,...,pn>0

max
1≤i≤n

1

pi

n∑
j=1

p j |ai j |

and

ρ(A) ≤ min
p1,...,pn>0

max
1≤ j≤n

p j

n∑
i=1

1

pi
|ai j |

Exercise. Prove the preceding corollary.

Exercise. Let A =
[

a b
c d

]
have real positive entries. (a) Compute an explicit

diagonal matrix D̃ such that ‖|D̃−1 AD̃‖|∞ = minD ‖|D−1 AD‖|∞, in which the
minimum is taken over all 2-by-2 diagonal matrices D with positive main diagonal
entries. (b) Calculate ‖|D̃−1 AD̃‖|∞ and ρ(A). Observe that they are equal.

It follows from (8.1.31) that if A is an n-by-n real matrix with positive entries (or,
more generally, is nonnegative and irreducible), then the minimum over all D of the
maximum row sum of D−1 AD is equal to the spectral radius of A. This need not be
the case if A has some negative entries.
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Exercise. Consider A =
[

1 1
−1.5 2

]
. Show that

ρ(A) < min{‖|D−1 AD‖|∞ : D = diag(p1, p2) and p1, p2 > 0}
If one has some additional information about a matrix that forces its eigen-

values to lie in (or not in) certain sets, then this information can be used along
with the Geršgorin disc theorem to give an even more precise location for the
eigenvalues. For example, if A is Hermitian, then its eigenvalues are all real, so
they are in the set R ∩ G(A), which is a finite union of closed real intervals.

Exercise. What can you deduce from (6.1.1) about the location of the eigenvalues
of a skew-Hermitian matrix? A unitary matrix? A real orthogonal matrix?

Since a square matrix is nonsingular if and only if zero is not in its spectrum, it
is of interest to develop conditions that exclude zero from a set known to contain the
eigenvalues.

Definition 6.1.9. A matrix A = [ai j ] ∈ Mn is diagonally dominant if

|aii | ≥
∑
j �=i

|ai j | = R′
i for all i = 1, . . . , n

It is strictly diagonally dominant if

|aii | >
∑
j �=i

|ai j | = R′
i for all i = 1, . . . , n

From the geometry of the situation it is apparent that zero cannot lie in any closed
Geršgorin disc if A is strictly diagonally dominant. Furthermore, if all the main diagonal
entries aii are real and positive, then each of these discs lies in the open right half-plane;
if A is Hermitian as well, then its eigenvalues are real, so they must all be real and
positive. We summarize these observations in the following theorem, of which part (a)
is known as the Levy–Desplanques theorem; see (5.6.17).

Theorem 6.1.10. Let A = [ai j ] ∈ Mn be strictly diagonally dominant. Then

(a) A is nonsingular
(b) if aii > 0 for all i = 1, . . . , n, then every eigenvalue of A has positive real part
(c) if A is Hermitian and aii > 0 for all i = 1, . . . , n, then A is positive definite

Exercise. Consider
[

1 1
1 1

]
and

[
1 1

1 − ε 1

]
. Show that diagonal dominance is not

sufficient to guarantee nonsingularity and that strict diagonal dominance is not
necessary for nonsingularity.

If we use the extra parameters in (6.1.6) carefully, we can relax slightly the assump-
tion of strict diagonal dominance as a sufficient condition for nonsingularity.

Theorem 6.1.11. Suppose that A = [ai j ] ∈ Mn has nonzero diagonal entries. If A is
diagonally dominant and |aii | > R′

i for at least n − 1 values of i ∈ {1, . . . , n}, then it
is nonsingular.
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Proof. For some k we have |aii | > R′
i for all i �= k, and |akk | ≥ R′

k . If |akk | > R′
k ,

nonsingularity of A follows from (6.1.10), so we suppose that |akk | = R′
k > 0. In

(6.1.6), let pi = 1 for all i �= k and let pk = 1 + ε, ε > 0. Then

1

pk

∑
j �=k

p j |akj | = 1

1 + ε
R′

k < |akk | for any ε > 0

and

1

pi

∑
j �=i

p j |ai j | = R′
i + ε|aik | for all i �= k

Since R′
i < |aii | for all i �= k, we can choose ε > 0 small enough so that R′

i + ε|aik |
< |aii | for all i �= k. Then (6.1.6) ensures that the point z = 0 is excluded from
G(D−1 AD). It follows that A is nonsingular. �

The Geršgorin theorem and its variations give inclusion sets for the eigenvalues of
A that depend only on the main diagonal entries of A and the absolute values of its
off-diagonal entries. Using the fact that S−1 AS has the same eigenvalues as A led us
to (6.1.6) and to the fact that the closed set⋂

D

G(D−1 AD), D = diag(p1, . . . , pn), all pi > 0 (6.1.12)

contains the eigenvalues of A ∈ Mn . We might be able to get even smaller inclusion sets
for the eigenvalues if we were to admit similarities that are not necessarily diagonal,
but if we restrict ourselves just to diagonal similarities and use just the main diagonal
entries and the absolute values of the off-diagonal entries, can we somehow do better
than (6.1.12)? The answer is no, for the following reason: Let z be any given point on
the boundary of the set (6.1.12). Then R. Varga has shown that there exists a matrix
B = [bi j ] ∈ Mn such that z is an eigenvalue of B, bii = aii for all i = 1, . . . , n, and
|bi j | = |ai j | for all i, j = 1, . . . , n.

Problems

6.1.P1 Consider the following iterative algorithm to solve the n-by-n system of linear
equations Ax = y, in which A and y are given:

(i) Let B = I − A and rewrite the system as x = Bx + y.
(ii) Choose an initial vector x (0).

(iii) For m = 0, 1, 2, . . . , calculate x (m+1) = Bx (m) + y and hope that x (m) → x as
m → ∞.

(a) Let ε(m) = x (m) − x and show that ε(m) = Bm(x (0) − x). (b) Conclude that if ρ(I − A)
< 1, then x (m) → x as m → ∞ regardless of the choice of the initial approximation x (0).
(c) Use the Geršgorin theorem to give a simple explicit condition on A that is sufficient for
this algorithm to work.

6.1.P2 Show that
⋂

S G(S−1 AS) = σ (A); the intersection is taken over all nonsingular S.
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6.1.P3 Let A = [ai j ] = [a1 . . . an] ∈ Mn . Use (6.1.5) to show that

| det A| ≤
n∏

j=1

(
n∑

i=1

|ai j |
)
=

n∏
j=1

∥∥a j

∥∥
1

with a similar inequality for the rows. Compare with the approach in (5.6.P10).

6.1.P4 Let A ∈ Mn and consider the set G(A) defined in (6.1.2). In the text we showed that
the assertion in (6.1.1) that all the eigenvalues of A are in G(A) implies (6.1.10a). Prove
the converse implication.

6.1.P5 Suppose that the n Geršgorin discs of A ∈ Mn are mutually disjoint. (a) If A is real,
show that every eigenvalue of A is real. (b) If A ∈ Mn has real main diagonal entries and
its characteristic polynomial has only real coefficients, show that every eigenvalue of A is
real.

6.1.P6 If A = [ai j ] ∈ Mn and if |aii | > R′
i for k different values of i , use properties of

principal submatrices of A to show that rank A ≥ k.

6.1.P7 Suppose that A ∈ Mn is idempotent but A �= I . Show that A cannot be
strictly diagonally dominant (or irreducibly diagonally dominant; see (6.2.25) and
(6.2.27)).

6.1.P8 Suppose that A ∈ Mn is strictly diagonally dominant, that is, |aii | > R′
i for all

i = 1, . . . , n. Show that |akk | > C ′
k for at least one value of k = 1, . . . , n.

6.1.P9 Suppose that A = [ai j ] ∈ Mn is strictly diagonally dominant, and let D =
diag(a11, . . . , ann). Explain why D is nonsingular and show that ρ(I − D−1 A) < 1.

6.1.P10 If A = [ai j ] = [a1 . . . an] ∈ Mn , show that rank A ≥∑
i :ai �=0(|aii |/ ‖ai‖1).

6.1.P11 If A = [ai j ] = [a1 . . . an] ∈ Mn , show that rank A ≥∑
i :ai �=0(|aii |2/ ‖ai‖2

2).

6.1.P12 Let A ∈ Mn . Show that G(A) = G(AT ) if A is a Toeplitz matrix or, more generally,
if A is persymmetric and all of its main diagonal entries are equal.

6.1.P13 Suppose that A = [ai j ] ∈ Mn(R) is strictly diagonally dominant. Show that det A
has the same sign as the product a11 · · · ann .

6.1.P14 Let A = [ai j ] ∈ Mn . (a) If |aii − a j j | > R′
i + R′

j for some i, j ∈ {1, . . . , n},
explain why the Geršgorin discs of A corresponding to its rows i and j are disjoint.
(b) Suppose that |aii − a j j | > R′

i + R′
j for all distinct i, j ∈ {1, . . . , n}. Explain why A has

n distinct eigenvalues. (c) Suppose that A is real and |aii − a j j | > R′
i + R′

j for all distinct
i, j ∈ {1, . . . , n}. Explain why A has n distinct real eigenvalues.

6.1.P15 Suppose that A = [ai j ] ∈ Mn is diagonally dominant. (a) Show that ρ(A) ≤ 2
maxi |aii |. (b) If A is strictly diagonally dominant, explain why ρ(A) < 2 maxi |aii |.
6.1.P16 This problem explores the maxim: Gaussian elimination preserves strict diagonal
dominance. Let n ≥ 2 and suppose that A ∈ Mn is strictly diagonally dominant. (a) Explain
why each of the leading principal submatrices of A is nonsingular. (b) Partition A =[

a yT

x B

]
, in which x, y ∈ Cn−1. Explain why Gaussian elimination on the first column of

A produces the matrix A′ =
[

a yT

0 C

]
, in which C = B − a−1xyT . Show that C (and hence

A′) is strictly diagonally dominant. (c) Partition A =
[

A11 A12
A21 A22

]
, in which A11 ∈ Mk . Let
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C = A22 − A21 A−1
11 A12 be the Schur complement of A11 in A. Use part (a) and induction to

explain why
[

A11 A12
0 C

]
(the result of block Gaussian elimination on the first block column

of A) is strictly diagonally dominant.

6.1.P17 This problem explores block matrix generalizations of Geršgorin’s theorem.
Let ‖| · ‖| be a given matrix norm on Mm , and consider the matrix norm N (·) on
Mmn defined in (5.6.P55), whose notation we adopt. For any A = [Ai j ]n

i, j=1 ∈ Mmn ,
define

R′
i =

∑
j �=i

‖|Ai j‖|, i = 1, . . . , n

Let D = A11 ⊕ · · · ⊕ Ann . (a) Suppose that z ∈ C is not an eigenvalue of D. Explain why
z I − A = (z I − D)(I − (z I − D)−1(A − D)) and then use the exercise following (5.6.16)
to conclude that if N ((z I − D)−1(A − D)) < 1, then z is not an eigenvalue of A. Show that
N ((z I − D)−1(A − D)) ≤ max1≤i≤n(‖|(z I − Aii )−1‖|R′

i ). (b) If z ∈ C is not an eigenvalue
of any of the matrices A11, . . . , Ann and if ‖|(z I − Aii )−1‖|−1 > R′

i for each i = 1, . . . , n,
explain why z is not an eigenvalue of A. (c) Explain why every eigenvalue of A is contained
in the set

n⋃
i=1

σ (Aii ) ∪
n⋃

i=1

{z ∈ C : z /∈ σ (Aii ) and ‖|(z I − Aii )
−1‖|−1 ≤ R′

i } (6.1.13)

(d) We say that A ∈ Mmn is block strictly diagonally dominant with respect to a matrix
norm ‖| · ‖| on Mm if each diagonal block Aii is nonsingular and ‖|A−1

i i ‖|−1 > R′
i for each

i = 1, . . . , n. Use (6.1.13) to show that A is nonsingular if there is a matrix norm on
Mm such that A is block strictly diagonally dominant with respect to it. (e) Suppose that
m = 1. What is block strict diagonal dominance in this case? Show that the sets (6.1.13)
and (6.1.2) are the same in this case. Write out the preceding derivation of (6.1.13) in this
case and obtain a proof of Geršgorin’s theorem that is different from the one in the text.
(f ) Now suppose that ‖| · ‖| is the spectral norm on Mm , each diagonal block Aii is normal,
and σ (Aii ) = {λ(i)

1 , . . . , λ(i)
m } for each i = 1, . . . , m. Show that the eigenvalue inclusion set

(6.1.13) is a union of discs

n⋃
i=1

m⋃
j=1

{z ∈ C : |z − λ
(i)
j | ≤

∑
k �=i

‖|Aik‖|2} (6.1.14)

in this case. What is this set when m = 1? (g) Let m = n = 2, A11 = A22 =
[

0 1
1 0

]
, and

A12 = AT
21 =

[
0 0
.5 0

]
. Explain why A = [Ai j ]2

i, j=1 is not diagonally dominant but is never-

theless nonsingular because it is block diagonally dominant with respect to the maximum
column sum matrix norm on M2. Use (6.1.2) to show that the eigenvalues of A are in
[−1.5, 1.5]; use (6.1.14) to show that they are in the smaller set [−1.5,−.5] ∪ [.5, 1.5].
The eigenvalues of A are approximately ±1.2808 and ±.7808.

6.1.P18 Let X = [x1 . . . xk] ∈ Mn,k have full column rank. Show that there is a nonsingular
R ∈ Mk such that the matrix Y = [yi j ] = [y1 . . . yk] = X R has the following property:
There are k distinct indices i1, . . . , ik ∈ {1, . . . , n} such that yi j j =

∥∥y j

∥∥
∞ for each j =

1, . . . , k.
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6.1.P19 Let λ be an eigenvalue of A = [ai j ] ∈ Mn with geometric multiplicity k ≥ 1.
We claim that there are k distinct indices i1, . . . , ik ∈ {1, . . . , n} such that λ ∈ {z ∈ C :
|z − ai j i j | ≤ R′

i j
} for each j = 1, . . . , k. Provide details: (a) Let the columns of X ∈ Mn,k

be a basis of the λ-eigenspace of A, and let Y = [y1 . . . yk] = X R have the property
described in the preceding problem. (b) AY = λY . (c) Revisit the proof of (6.1.1) and use
each eigenpair λ, yi in the argument. (d) What happens if k = n? (e) Why is λ ∈ ∩k

j=1{z ∈
C : |z − ai j i j | ≤ R′

i j
}?

6.1.P20 Let λ be an eigenvalue of A ∈ Mn with geometric multiplicity at least k ≥ 1.
(a) Show that λ is contained in each union of n − k + 1 different Geršgorin discs of A,
that is,

λ ∈
n−k+1⋃

j=1

{z ∈ C : |z − ai j i j | ≤ R′
i j

(A)} (6.1.15)

for any choice of indices 1 ≤ i1 < · · · < in−k+1 ≤ n. (b) There are
( n

k−1

)
different possibil-

ities for the union of disks described in (6.1.15). Why is λ in their intersection? (c) Discuss
the cases k = 1 and k = n.

6.1.P21 If a matrix has special structure, hypotheses weaker than those in (6.1.10–11) may
be sufficient to ensure nonsingularity. Revisit (2.2.P10) and explain why a circulant matrix
A = [ai j ] ∈ Mn is nonsingular if any one row is diagonally dominant, that is, if there is
some i ∈ {1, . . . , n} such that |aii | > R′

i .

Notes and Further Readings. The original reference for (6.1.1) is S. Geršgorin, Über
die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. S.S.S.R. 7 (1931) 749–
754; 6.1.P14 is taken from Geršgorin’s paper. For a historical perspective on the ideas
involved in Geršgorin’s theorem, see O. Taussky, A recurring theorem on determi-
nants, Amer. Math. Monthly 61 (1949) 672–676. An exposition of a generalization of
Geršgorin’s theorem is in R. A. Brualdi and S. Mellendorf, Sets in the complex plane
containing the eigenvalues of a matrix, Amer. Math. Monthly 101 (1994) 975–985. The
qualitative assertion in (6.1.10a) has a quantitative version: The smallest singular value
of A is bounded from below by min1≤i≤n{|aii | − 1

2 (R′
i + C ′

i )}; see (3.7.17) in Horn
and Johnson (1991). R. Varga’s book Varga (2004) contains an in-depth discussion
of Geršgorin discs, their history, and generalizations. For a proof that the set (6.1.12)
has the optimality property stated in the last paragraph of the section, see R. Varga,
Minimal Gerschgorin sets, Pacific J. Math. 15 (1965) 719–729. The results in (6.1.P18
and P19) about Geršgorin discs and geometric multiplicities are due to F. J. Hall and
R. Marsli.

6.2 Geršgorin discs – a closer look

We have seen that strict diagonal dominance is sufficient for nonsingularity but that
diagonal dominance is not. Consideration of some 2-by-2 examples suggests the con-
jecture that diagonal dominance together with strict inequality

|aii | > R′
i =

∑
j �=i

|ai j | for at least one value of i = 1, . . . , n (6.2.1)



6.2 Geršgorin discs – a closer look 397

may be sufficient for nonsingularity. Unfortunately, this is not the case, as is shown by
the example ⎡

⎣4 2 1
0 1 1
0 1 1

⎤
⎦ (6.2.1a)

However, there are useful conditions on a diagonally dominant matrix under which the
condition (6.2.1) is sufficient to guarantee nonsingularity, and they lead to some very
interesting ideas in graph theory. The fundamental observation is that if A is diagonally
dominant, then zero cannot be in the interior of any Geršgorin disc.

Lemma 6.2.2. Let A = [ai j ] ∈ Mn and λ ∈ C be given. Then

(a) λ is not in the interior of any Geršgorin disc of A if and only if

|λ − aii | ≥ R′
i =

∑
j �=i

|ai j | for all i = 1, . . . , n (6.2.2a)

(b) if λ is on the boundary of the Geršgorin set G(A) in (6.1.2), then it satisfies the
inequalities (6.2.2a)

(c) A is diagonally dominant if and only if λ = 0 satisfies the inequalities (6.2.2a)

Exercise. Prove the preceding lemma.

Exercise. Consider the point λ = 0 and the matrix A =
[

1 1
1 i

]
⊕
[
−1 1
1 −i

]
.

Explain why a point in the interior of G(A) can satisfy the inequalities (6.2.2a).

A careful analysis of the proof of (6.1.1) clarifies what happens if an eigenvalue of
A satisfies the inequalities (6.2.2a), in particular, if it is a boundary point of G(A).

Lemma 6.2.3. Let λ, x be an eigenpair for A = [ai j ] ∈ Mn and suppose that λ satisfies
the inequalities (6.2.2a). Then

(a) if p ∈ {1, . . . , n} and |x p| = ‖x‖∞, then |λ − app| = R′
p; that is, the pth

Geršgorin circle of A passes through λ

(b) if p, q ∈ {1, . . . , n}, |x p| = ‖x‖∞, and apq �= 0, then |xq | = ‖x‖∞
Proof. Suppose that |x p| = ‖x‖∞. Then (6.1.1a) ensures that

|λ − app|‖x‖∞ = |λ − app||x p| =
∣∣∣∣∣∣
∑
j �=p

apj x j

∣∣∣∣∣∣ (6.2.4)

≤
∑
j �=p

|apj ||x j | ≤
∑
j �=p

|apj |‖x‖∞ = R′
p‖x‖∞

and hence |λ − app| ≤ R′
p. However, the inequalities (6.2.2a) ensure that |λ − app| ≥

R′
p, so |λ − app| = R′

p, which is assertion (a). Thus, we have equality in both of the
inequalities in (6.2.4):

|λ − app|‖x‖∞ =
∑
j �=p

|apj ||x j | =
∑
j �=p

|apj |‖x‖∞ = R′
p‖x‖∞ (6.2.4a)
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Assertion (b) follows from the center identity in (6.2.4a):∑
j �=p

|apj |(‖x‖∞ − |x j |) = 0

Because each summand is nonnegative, it must be zero. Thus, apq �= 0 implies that
|xq | = ‖x‖∞. �

The preceding lemma looks rather technical, but it has as an immediate consequence
the following useful result and its corollary.

Theorem 6.2.5. Let A ∈ Mn, and let λ, x = [xi ] be an eigenpair of A such that λ

satisfies the inequalities (6.2.2a). If every entry of A is nonzero, then

(a) every Geršgorin circle of A passes through λ

(b) |xi | = ‖x‖∞ for all i = 1, . . . , n

Exercise. Deduce (6.2.5) from (6.2.3).

Corollary 6.2.6. Let A = [ai j ] ∈ Mn, and suppose that every entry of A is nonzero. If
A is diagonally dominant and if there is a k ∈ {1, . . . , n} such that |akk | > R′

k , then A
is nonsingular.

Proof. Since A is diagonally dominant, λ = 0 satisfies the inequalities (6.2.2a). The
hypothesis ensures that the kth Geršgorin circle does not pass through 0, so it follows
from the preceding theorem that 0 is not an eigenvalue of A. �

The preceding corollary is both useful and interesting, but we can do much better if
we use the information in (6.2.3) more carefully.

Definition 6.2.7. A matrix A = [ai j ] ∈ Mn is said to have property SC if for each pair
of distinct integers p, q ∈ {1, . . . , n} there is a sequence of distinct integers k1 = p,
k2, . . ., km = q such that each entry ak1k2, ak2k3, . . . , akm−1km is nonzero.

For example, consider p = 2, q = 1, and the matrix in (6.2.1a). Then k2 = 3 is the
only choice possible. But it is not possible to choose k3 = 1 since the entry in position
3, 1 is zero. Thus, the matrix in (6.2.1a) does not have property SC.

Exercise. For p = 1, q = 2, and the matrix in (6.2.1a), find a sequence of integers
that satisfies the condition stated in (6.2.7).

Using this notion and (6.2.3), we can improve (6.2.5) as follows.

Theorem 6.2.8 (Better theorem). Let A ∈ Mn, and let λ, x = [xi ] be an eigenpair of
A such that λ satisfies the inequalities (6.2.2a). If A has property SC, then

(a) every Geršgorin circle passes through λ

(b) |xi | = ‖x‖∞ for all i = 1, . . . , n

Proof. Let p ∈ {1, . . . , n} be an index such that |x p| = ‖x‖∞. Then (6.2.3a) ensures
that |λ − app| = R′

p, so the pth Geršgorin circle passes through λ. Let q ∈ {1, . . . , n}
be any index such that q �= p. Because A has property SC, there is a sequence
of distinct indices k1 = p, k2, . . . , km = q such that each entry ak1k2, . . . , akm−1km
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is nonzero. Since ak1k2 �= 0, (6.2.3b) ensures that |xk2 | = ‖x‖∞ and (6.2.3a) ensures
that |λ − ak2k2 | = R′

k2
. Proceeding in this way, we conclude that |xki | = ‖x‖∞ and

|λ − aki ki | = R′
ki

for each i = 2, . . . , m. In particular, for i = m, we conclude that the
qth Geršgorin circle passes through λ and |xq | = ‖x‖∞. �

Just as in (6.2.6), we can now deduce a useful sufficient condition for non-
singularity.

Corollary 6.2.9 (Better corollary). Suppose that A = [ai j ] ∈ Mn has property SC. If
A is diagonally dominant and if there is a k ∈ {1, . . . , n} such that |akk | > R′

k , then A
is nonsingular.

Exercise. Deduce (6.2.9) from (6.2.8).

What is this strange property SC? Notice that it involves only the locations of
the off-diagonal nonzero entries of A; the main diagonal entries and the values of
the nonzero off-diagonal entries are irrelevant. Motivated by this observation, we
define two matrices related to A.

Definition 6.2.10. For any given A = [ai j ] ∈ Mm,n, define |A| = [|ai j |] and M(A) =
[μi j ], in which μi j = 1 if ai j �= 0 and μi j = 0 if ai j = 0. The matrix M(A) is the
indicator matrix of A.

Exercise. Show that A ∈ Mn has property SC if and only if either (and hence
both of) |A| or M(A) has property SC.

The sequence of nonzero entries of A that arises in the statement of property SC can
be summarized visually by certain paths in a graph associated with A.

Definition 6.2.11. The directed graph of A ∈ Mn, denoted by �(A), is the directed
graph on n nodes P1, P2, . . . , Pn such that there is a directed arc in �(A) from Pi to
Pj if and only if ai j �= 0.

Examples.

A1 =
[

1 1
1 1

]
; �(A1) =

P1 P2

A2 =
[

0 1
1 0

]
; �(A2) =

P1 P2

A3 =
[

1 1
0 0

]
; �(A3) =

P1 P2
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A4 =
⎡
⎣4 2 1

0 1 1
0 0 1

⎤
⎦ ; �(A4) =

P3

P2

P1

Definition 6.2.12. A directed path γ in a graph � is a sequence of arcs Pi1 Pi2 , Pi2 Pi3 ,
Pi3 Pi4 , . . . in �. The ordered list of nodes in the directed path γ is Pi1 , Pi2 , . . . . The
length of a directed path is the number of arcs in the directed path if this number is
finite; otherwise, the directed path is said to have infinite length. A cycle (sometimes
called a simple directed cycle) is a directed path that begins and ends at the same
node; this node must occur exactly twice in the ordered list of nodes in the path, and
no other node can occur more than once in the list. A cycle of length 1 is a loop or
trivial cycle.

Definition 6.2.13. A directed graph � is strongly connected if between each pair of
distinct nodes Pi , Pj in � there is a directed path of finite length that begins at Pi and
ends at Pj .

Theorem 6.2.14. Let A ∈ Mn. Then A has property SC if and only if the directed
graph �(A) is strongly connected.

Exercise. Prove the preceding theorem.

Exercise. If each pair of nodes of a directed graph � belongs to at least one cycle,
explain why � is strongly connected. Consider the matrix⎡

⎣0 1 0
1 0 1
0 1 0

⎤
⎦

and give a counterexample to the converse implication.

There may be more than one directed path between two given nodes of a directed
graph, but two such paths with different lengths may not be essentially different; one
of them might contain repetitions of one or more subpaths. If one ever visits a given
node twice in going along a directed path, then the directed path may be shortened
(without changing the end points) by deleting all the intermediate arcs between the first
and second visits to the node (the subgraph deleted is, or contains, a cycle).

Observation 6.2.15. Let � be a directed graph on n nodes. If there is a directed path
in � between two given nodes, then there is a directed path between them that has
length not greater than n − 1.
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To determine if a given matrix A has property SC , one can check to see if �(A)
is strongly connected. If n is not large or if M(A) has a special structure, then one
may be able to inspect �(A) and ascertain that there is a path between each pair of
nodes. Alternatively, the following theorem provides the foundation for a computational
algorithm that does not rely on visual inspection.

Theorem 6.2.16. Let A ∈ Mn, and let Pi and Pj be given nodes of �(A). The following
are equivalent:

(a) There is a directed path of length m in �(A) from Pi to Pj .
(b) The i, j entry of |A|m is nonzero.
(c) The i, j entry of M(A)m is nonzero.

Proof. We proceed by induction. For m = 1 the assertion is trivial. For m = 2 we
compute

(|A|2)i j =
n∑

k=1

|A|ik |A|k j =
n∑

k=1

|aik ||akj |

so that (|A|2)i j �= 0 if and only if for at least one value of k, both aik and akj are nonzero.
But this is the case if and only if there is a path of length 2 in �(A) from Pi to Pj . In
general, suppose that the assertion has been proved for m = q. Then

(|A|q+1)i j =
n∑

k=1

(|A|q )ik |A|k j =
n∑

k=1

(|A|q )ik |akj | �= 0

if and only if for at least one value of k, both (|A|q )ik and |akj | are nonzero. This is the
case if and only if there is a path from Pi to Pk of length q and one from Pk to Pj of
length 1, that is, if and only if there is a path from Pi to Pj of length q + 1.

The same argument works for M(A). �

Definition 6.2.17. Let A = [ai j ] ∈ Mn. We say that A ≥ 0 (A is nonnegative) if all its
entries ai j are real and nonnegative. We say that A > 0 (A is positive) if all its entries
ai j are real and positive.

Corollary 6.2.18. Let A ∈ Mn. Then |A|m > 0 if and only if from each node Pi to each
node Pj in �(A) there is a directed path in �(A) of length m. The same is true for
M(A)m.

Corollary 6.2.19. Let A ∈ Mn. The following are equivalent:

(a) A has property SC.
(b) (I + |A|)n−1 > 0.
(c) (I + M(A))n−1 > 0.

Proof. (I + |A|)n−1 = I + (n − 1)|A| + ( n−1
2 )|A|2 + · · · + |A|n−1 > 0 if and only if

for each pair i, j of nodes with i �= j at least one of the matrices |A|, |A|2, . . . , |A|n−1

has a positive entry in position i, j . But (6.2.16) ensures that this happens if and only if
there is a directed path in �(A) from Pi to Pj . This is equivalent to �(A) being strongly
connected, which is equivalent to A having property SC . �

Exercise. Prove the assertion involving M(A) in the preceding corollary.
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Corollary 6.2.20. If A ∈ Mn, i, j ∈ {1, . . . , n}, and i �= j , there is a path in �(A) from
Pi to Pj if and only if the i, j entry of (I + |A|)n−1 is nonzero.

Exercise. Use the preceding corollary to give an explicit computational test for
property SC that involves about log2(n − 1) matrix multiplications instead of
n − 2 matrix multiplications. Hint: Consider (I + |A|)2, the square of this matrix,
and so on.

We now introduce one more equivalent characterization of property SC . It is based
on the fact that strong connectivity of �(A) is just a topological property of �(A); it
has nothing to do with the labeling assigned to the nodes of �(A). If we permute the
labels of the nodes, the graph stays either strongly connected or not strongly connected.
Interchanging the i th and j th rows of A, as well as the i th and j th columns, affects �(A)
by interchanging the labels on nodes Pi and Pj . Conversely, relabeling the nodes of
�(A) corresponds to interchanging some rows and columns of A. Thus, a permutation
similarity A → PT AP (the result of finitely many interchanges of rows and columns)
is equivalent to permuting the labels of the nodes of �(A).

It is important to know whether some permutation of the rows and columns of A can
be found that brings it into the special block form described in the following definition.

Definition 6.2.21. A matrix A ∈ Mn is reducible if there is a permutation matrix P ∈
Mn such that

PT AP =
[

B C
0n−r,r D

]
and 1 ≤ r ≤ n − 1

In the preceding definition, we do not insist that any of the blocks B, C , and D have
nonzero entries. We require only that a lower-left (n − r )-by-r block of zero entries
can be created by some sequence of row and column interchanges. However, we do
insist that both of the square matrices B and D have size at least one, so no 1-by-1
matrix is reducible.

Exercise. If A ∈ Mn is reducible, explain why it has at least n − 1 zero entries.

Suppose that we want to solve a system of linear equations Ax = y, and suppose

that A is reducible. If we write Ã = PT AP =
[

B C
0 D

]
, we have Ax = P ÃPT x = y,

or Ã(PT x) = PT y. Set PT x = x̃ =
[

z
ζ

]
(unknown) and PT y = ỹ =

[
w

ω

]
(known),

in which z, w ∈ Cr and ζ , ω ∈ Cn−r . Then the system of equations to be solved is

equivalent to Ãx̃ = ỹ =
[

B C
0 D

] [
z
ζ

]
=
[

w

ω

]
, that is, to the two systems Dζ = ω and

Bz + Cζ = w. If we first solve Dζ = ω for ζ , and then solve Bz = w − Cζ for z,
we have reduced the original problem to two smaller problems. A linear system with
a reducible coefficient matrix can be reduced to two smaller linear systems.

Definition 6.2.22. A matrix A ∈ Mn is irreducible if it is not reducible.

Theorem 6.2.23. Let A ∈ Mn. The following are equivalent:

(a) A is irreducible.
(b) (I + |A|)n−1 > 0.
(c) (I + M(A))n−1 > 0.
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Proof. To show that (a) and (b) are equivalent, it suffices to prove that A is reducible
if and only if (I + |A|)n−1 has a zero entry. Suppose first that A is reducible and that

for some permutation matrix P we have PT AP =
[

B C
0 D

]
= Ã, in which B ∈ Mr ,

D ∈ Mn−r , and 1 ≤ r ≤ n − 1. Notice that PT |A|P = |PT AP| = | Ã| since the effect
of a permutation similarity is only to permute rows and columns; also notice that each
of the matrices | Ã|2, | Ã|3, . . . , | Ã|n−1 has a lower-left (n − r )-by-r zero block. Thus

PT (I + |A|)n−1 P = (I + PT |A|P)n−1 = (I + |PT AP|)n−1

= (I + | Ã|)n−1

= I + (n − 1)| Ã| + (n−1
2

)| Ã|2 + · · · + | Ã|n−1

in which each summand has a lower-left (n − r )-by-r zero block. Thus, (I + |A|)n−1

is reducible, so it has a zero entry.
Conversely, suppose for some indices p �= q that the p, q entry of (I + |A|)n−1 is

0. Then there is no directed path in �(A) from Pp to Pq . Define the set of nodes

S1 = {Pi : Pi = Pq or there is a path in �(A) from Pi to Pq}
and let S2 be the set of all nodes of �(A) that are not in S1. Notice that S1 ∪ S2 =
{P1, . . . , Pn} and Pq ∈ S1 �= ∅, so S2 �= {P1, . . . , Pn}. If there were a path from some
node Pi of S2 to some node Pj of S1, then (by definition of S1) there would be a path from
Pi to Pq and so Pi would be in S1. Thus, there are no paths from any node of S2 to any
node of S1. Now relabel the nodes so that S1 = {P̃1, . . . , P̃r } and S2 = {P̃r+1, . . . , P̃n}.
Let P be the permutation matrix that corresponds to the relabeling. Then

Ã = PT AP =
[

B C
0 D

]
, B ∈ Mr , D ∈ Mn−r

and hence A is reducible.
The argument for (a) and (c) is the same. �

Let us summarize.

Theorem 6.2.24. Let A ∈ Mn. The following are equivalent:

(a) A is irreducible.
(b) (I + |A|)n−1 > 0.
(c) (I + M(A))n−1 > 0.
(d) �(A) is strongly connected.
(e) A has property SC.

Definition 6.2.25. Let A ∈ Mn. We say that A is irreducibly diagonally dominant if

(a) A is irreducible
(b) A is diagonally dominant, that is, |aii | ≥ R′

i (A) for all i = 1, . . . , n
(c) There is an i ∈ {1, . . . , n} such that |aii | > R′

i (A)

Exercise. Show by example that a matrix can be irreducible and diagonally
dominant without being irreducibly diagonally dominant.



404 Location and perturbation of eigenvalues

What we have learned about an irreducible matrix and any of its eigenvalues on the
boundary of its Geršgorin set can be summarized as follows:

Theorem 6.2.26 (Taussky). Let A ∈ Mn be irreducible and suppose that λ ∈ C satis-
fies the inequalities (6.2.2a); for example, λ could be a boundary point of the Geršgorin
set G(A). If λ is an eigenvalue of A, then every Geršgorin circle of A passes through
λ. Equivalently, if some Geršgorin circle of A does not pass through λ, then it is not
an eigenvalue of A.

Corollary 6.2.27 (Taussky). Let A = [ai j ] ∈ Mn be irreducibly diagonally dominant.
Then

(a) A is nonsingular
(b) if every main diagonal entry of A is real and positive, then every eigenvalue of A

has positive real part
(c) if A is Hermitian and every main diagonal entry is positive, then every eigenvalue

of A is positive, that is, A is positive definite

Problems

6.2.P1 Let A ∈ Mn be irreducible and suppose that n ≥ 2. Show that A does not have a
zero row or column.

6.2.P2 Show by an example that the hypothesis of irreducibility in (6.2.28) is necessary.

6.2.P3 Suppose that A = [ai j ] ∈ Mn , that λ, x = [xi ] is an eigenpair of |A|, and that all
xi > 0. Let D = diag(x1, . . . , xn). Explain why every Geršgorin circle of D−1|A|D passes
through λ and why λ = ρ(|A|). Draw a picture. What can you say about the absolute row
sums of D−1 AD?

6.2.P4 It will be proved in Chapter 8 that a square matrix with positive entries always has
a positive eigenvalue and an associated eigenvector with positive entries. Use this fact and
the preceding problem to show that ρ(A) ≤ ρ(|A|) for all A ∈ Mn .

6.2.P5 Use (6.2.28) to show that Cauchy’s bound (5.6.47) on the zeroes z̃ of the polynomial
p(z) = zn + an−1zn−1 + · · · + a1z + a0, a0 �= 0 can be improved to |z̃| < max{|a0|, |a1| +
1, |a2| + 1, . . . , |an−1| + 1}, provided that not all of the real numbers |a0|, |a1| + 1, |a2| + 1,
. . . , |an−1| + 1 are the same. What improvements can be made in Montel’s bound (5.6.48),
Carmichael and Mason’s bound (5.6.49), and Kojima’s bound (5.6.53)?

6.2.P6 Explain why (a) an irreducible upper Hessenberg matrix is unreduced, and give an
example of an unreduced upper Hessenberg matrix that is reducible; (b) a Hermitian or
symmetric tridiagonal matrix is unreduced if and only if it is irreducible.

6.2.P7 Let A ∈ Mn be the real symmetric tridiagonal matrix whose main diagonal entries
are all 2 and whose superdiagonal entries are all −1. Use (6.2.27) to show that A is positive
definite.

6.2.P8 Let A ∈ Mn . We know that ρ(A) ≤ ‖|A‖|∞. If A is irreducible and not all the
absolute row sums of A are equal, explain why ρ(A) < ‖|A‖|∞. Can the assumption of
irreducibility be omitted?
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6.3 Eigenvalue perturbation theorems

Let D = diag(λ1, . . . , λn) ∈ Mn , let E = [ei j ] ∈ Mn , and consider the perturbed matrix
D + E . Theorem 6.1.1 ensures that the eigenvalues of D + E are contained in the set

n⋃
i=1

{z ∈ C : |z − λi − eii | ≤ R′
i (E) =

∑
j �=i

|ei j |}

which is contained in the set
n⋃

i=1

{z ∈ C : |z − λi | ≤ Ri (E) =
n∑

j=1

|ei j |}

Thus, if λ̂ is an eigenvalue of D + E , there is some eigenvalue λi of D such that
|λ̂ − λi | ≤ ‖|E‖|∞. We can use this bound to obtain a perturbation bound for the
eigenvalues of a diagonalizable matrix.

Observation 6.3.1. Let A ∈ Mn be diagonalizable, and suppose that A = S�S−1, in
which S is nonsingular and � is diagonal. Let E ∈ Mn. If λ̂ is an eigenvalue of A + E,
there is an eigenvalue λ of A such that

|λ̂ − λ| ≤ ‖|S‖|∞ ‖|E‖|∞ ‖|S−1‖|∞ = κ∞(S)‖|E‖|∞
in which κ∞(·) is the condition number with respect to the matrix norm ‖| · ‖|∞.

Proof. Since A + E and S−1(A + E)S = � + S−1 E S have the same eigenvalues, and
since � is diagonal, the preceding argument shows that there is some eigenvalue λ of
A for which |λ̂ − λ| ≤ ‖|S−1 E S‖|∞. The stated inequality follows from submultiplica-
tivity of the matrix norm ‖| · ‖|∞. �

The maximum row sum norm is induced by the sum norm on Cn , which is an
absolute norm. We can use (5.6.36) to generalize the preceding observation.

Theorem 6.3.2 (Bauer and Fike). Let A ∈ Mn be diagonalizable, and suppose that
A = S�S−1, in which S is nonsingular and � is diagonal. Let E ∈ Mn and let ‖| · ‖| be
a matrix norm on Mn that is induced by an absolute norm on Cn. If λ̂ is an eigenvalue
of A + E, there is an eigenvalue λ of A such that

|λ̂ − λ| ≤ ‖|S‖| ‖|S−1‖| ‖|E‖| = κ(S)‖|E‖| (6.3.3)

in which κ(·) is the condition number with respect to the matrix norm ‖| · ‖|.
Proof. If λ̂ is an eigenvalue of S−1(A + E)S = � + S−1 E S, then λ̂I − � − S−1 E S is
singular. If λ̂ is an eigenvalue of A, the bound (6.3.3) is trivially satisfied. Suppose that
λ̂ is not an eigenvalue of A, so λ̂I − � is nonsingular. In this case, (λ̂I − �)−1(λ̂I −
� − S−1 E S) = I − (λ̂I − �)−1S−1 E S is singular, so (5.6.16) ensures that ‖|(λ̂I −
�)−1S−1 E S‖| ≥ 1. Using (5.6.36), we compute

1 ≤ ‖|(λ̂I − �)−1S−1 E S‖| ≤ ‖|S−1 E S‖| ‖|(λ̂I − �)−1‖|

= ‖|S−1 E S‖| max
1≤i≤n

|λ̂ − λi |−1 = ‖|S−1 E S‖|
min1≤i≤n |λ̂ − λi |
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and hence

min
1≤i≤n

|λ̂ − λi | ≤ ‖|S−1 E S‖| ≤ ‖|S−1‖| ‖|S‖| ‖|E‖| = κ(S)‖|E‖|

�

Exercise. Give an example of a matrix norm that does not satisfy the assumption
of the theorem.

Exercise. Explain why a unitary matrix has condition number 1 with respect to
the spectral norm.

The condition number κ(·) arose in (5.8) in the context of a priori error bounds for
computed inverses or solutions of linear equations, but we now see that it arises in the
context of a priori error bounds for computed eigenvalues of a diagonalizable matrix.
If we think of λ̂ as an exactly computed eigenvalue of the perturbed matrix A + E ,
then (6.3.3) ensures that the relative error made by using it as an approximation to an
eigenvalue λ of A satisfies the inequality

|λ̂ − λ|
‖|E‖| ≤ κ(S)

The matrix norm used must be induced by an absolute vector norm, and the columns
of S are any independent set of eigenvectors of A. If κ(S) is small (near 1), then
small perturbations in the data can result in only small changes in the eigenvalues. If
κ(S) is very large, however, then a computed eigenvalue of A + E might be a poor
approximation to an eigenvalue of A.

If A is normal, then one may take S to be unitary, which has condition number 1
with respect to the spectral norm. Thus, normal matrices are well conditioned with
respect to eigenvalue computations.

Corollary 6.3.4. Let A, E ∈ Mn and suppose that A is normal. If λ̂ is an eigenvalue
of A + E, then there is an eigenvalue λ of A such that |λ̂ − λ| ≤ ‖|E‖|2.

In the preceding corollary, neither the perturbation matrix E nor the perturbed matrix
A + E need be normal. For example, A might be a real symmetric matrix A that is
subjected to a real, but not necessarily symmetric, perturbation.

Exercise. Provide details for a proof of (6.3.4).

Exercise. If A, E ∈ Mn are Hermitian, if λ1 ≤ · · · ≤ λn are the ordered eigen-
values of A, if λ̂1 ≤ · · · ≤ λ̂n are the ordered eigenvalues of A + E , and if
λ1(E) ≤ · · · ≤ λn(E) are the ordered eigenvalues of E , use Weyl’s inequalities
(4.3.2a,b) to show that

λ1(E) ≤ λ̂k − λk ≤ λn(E) for each k = 1, . . . , n (6.3.4.1)

and that |λ̂k − λk | ≤ ρ(E) = ‖|E‖|2. Why is this bound better than the one in
(6.3.4)? What can you say if all the eigenvalues of E are nonnegative?

It is common in numerical applications to have both A and the perturbing matrix E
be real and symmetric. In this case, and in the more general situation in which both
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A and A + E are normal, there is a Frobenius norm upper bound for perturbations to
all of the eigenvalues.

Theorem 6.3.5 (Hoffman and Wielandt). Let A, E ∈ Mn, assume that A and A + E
are both normal, let λ1, . . . , λn be the eigenvalues of A in some given order, and let
λ̂1, . . . , λ̂n be the eigenvalues of A + E in some given order. There is a permutation
σ (·) of the integers 1, . . . , n such that

n∑
i=1

|λ̂σ (i) − λi |2 ≤ ‖E‖2
2 = tr(E∗E) (6.3.6)

Proof. Let � = diag(λ1, . . . , λn), let �̂ = diag(λ̂1, . . . , λ̂n), let V, W ∈ Mn be unitary
matrices such that A = V �V ∗ and A + E = W �̂W ∗, and let U = V ∗W = [ui j ].
Using unitary invariance of the Frobenius norm, we compute

‖E‖2
2 = ‖(A + E) − A‖2

2 = ‖W �̂W ∗ − V �V ∗‖2
2

= ‖V ∗W �̂ − �V ∗W‖2
2 = ‖U�̂ − �U‖2

2

=
n∑

i, j=1

|λ̂i − λ j |2| |ui j |2

Just as in the proof of (4.3.49), we observe that the matrix [|ui j |2] is doubly stochastic.
Therefore,

‖E‖2
2 =

n∑
i, j=1

|λ̂i − λ j |2| |ui j |2

≥ min{
n∑

i, j=1

|λ̂i − λ j |2si j : S = [si j ] ∈ Mn is doubly stochastic}

The function f (S) =∑n
i, j=1 |λ̂i − λ j |2si j is a linear function on the compact convex

set of doubly stochastic matrices, so (8.7.3) (a corollary of Birkhoff’s theorem) ensures
that f attains its minimum at a permutation matrix P = [pi j ]. If PT corresponds to
the permutation σ (·) of the integers 1, . . . , n, we have

‖E‖2
2 ≥

n∑
i, j=1

|λ̂i − λ j |2 pi j =
n∑

i=1

|λ̂σ (i) − λi |2 �

Theorem 6.3.5 says that eigenvalues of a normal matrix enjoy a strong stability under
perturbations, but it does not identify a permutation of the eigenvalues that satisfies the
stated inequality. Not every permutation will do, and indeed there is always one for
which the inequality in (6.3.6) is reversed; see (6.3.P8). But in the important special
case of Hermitian matrices, a natural ordering of the eigenvalues will do.

Corollary 6.3.8. Let A, E ∈ Mn. Assume that A is Hermitian and A + E is normal,
let λ1, . . . , λn be the eigenvalues of A, arranged in increasing order λ1 ≤ · · · ≤ λn,
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and let λ̂1, . . . , λ̂n be the eigenvalues of A + E, ordered so that Re λ̂1 ≤ · · · ≤ Re λ̂n.
Then

n∑
i=1

|λ̂i − λi |2 ≤ ‖E‖2
2

Proof. The preceding theorem ensures that there is a permutation of the given order
for the eigenvalues of A + E such that

n∑
i=1

|λ̂σ (i) − λi |2 ≤ ‖E‖2
2 (6.3.9)

If the eigenvalues of A + E in the list λ̂σ (1), . . . , λ̂σ (n) are already in increasing order
of their real parts, there is nothing to prove. If not, two successive eigenvalues in the
list are not ordered in this way, say, Re λ̂σ (k) > Re λ̂σ (k+1). A computation reveals that

|λ̂σ (k) − λk |2 + |λ̂σ (k+1) − λk+1|2 = |λ̂σ (k+1) − λk |2 + |λ̂σ (k) − λk+1|2 + (k)

in which (k) = 2(λk − λk+1)(Re λ̂σ (k+1) − Re λ̂σ (k)) ≥ 0. Thus,

|λ̂σ (k) − λk |2 + |λ̂σ (k+1) − λk+1| ≥ |λ̂σ (k+1) − λk |2 + |λ̂σ (k) − λk+1|2

and the two eigenvalues λ̂σ (k) and λ̂σ (k+1) can be interchanged without increasing the
sum of squared differences in (6.3.9). By a finite sequence of such interchanges (which
do not increase the left-hand side of (6.3.9)), the list of eigenvalues λ̂σ (1), . . . , λ̂σ (n) can
be transformed into the list λ̂1, λ̂2, . . . , λ̂n . �

In an important special case of the preceding corollary, both A and A + E are
Hermitian, or even real and symmetric. For a generalization of (6.3.8) in this case, see
(7.4.9.3).

Exercise. If A, E ∈ Mn are Hermitian and if their eigenvalues are arranged in
the same (increasing or decreasing) order, explain why

n∑
i=1

(λi (A + E) − λi (A))2 ≤ ‖E‖2
2

Exercise. Consider A =
[

0 0
0 4

]
and E =

[
−1 −1
1 −3

]
. Explain why the assertion in

(6.3.5) need not be true if one of A and A + E is not normal. Hint:
∑2

i=1(λi (A +
E) − λi (A))2 = 16 for any ordering of the eigenvalues.

If A is not diagonalizable, there are no bounds known that are as easy to state as
those in (6.3.2). However, there is a simple explicit formula that describes how a simple
eigenvalue varies when the matrix entries are perturbed. Underlying our formula are
basic facts in (1.4.7) and (1.4.12), which we restate here.

Lemma 6.3.10. Let λ be a simple eigenvalue of A ∈ Mn. Let x and y be, respectively,
right and left eigenvectors of A corresponding to λ. Then
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(a) y∗x �= 0
(b) there is a nonsingular S ∈ Mn such that S = [x S1], S−∗ = [ y

x∗ y Z1], S1, Z1 ∈
Mn,n−1,

A = S

[
λ 0
0 A1

]
S−1 (6.3.11)

and λ is not an eigenvalue of A1 ∈ Mn−1

Theorem 6.3.12. Let A, E ∈ Mn and suppose that λ is a simple eigenvalue of A. Let
x and y be, respectively, right and left eigenvectors of A corresponding to λ. Then

(a) for each given ε > 0 there exists a δ > 0 such that, for all t ∈ C such that |t | < δ,
there is a unique eigenvalue λ(t) of A + t E such that |λ(t) − λ − t y∗Ex/y∗x |
≤ |t |ε

(b) λ(t) is continuous at t = 0, and limt→0 λ(t) = λ

(c) λ(t) is differentiable at t = 0, and

dλ(t)

dt

∣∣∣∣
t=0

= y∗Ex

y∗x
(6.3.13)

Proof. Our strategy is to find a matrix that is similar to A + t E , has λ + t x∗Ey/y∗x as
its 1, 1 entry, and whose Geršgorin disc associated with its first row has radius at most
|t |ε and is disjoint from the other n − 1 Geršgorin discs. Let μ = min{|λ − λ̂| : λ̂ is an
eigenvalue of A and λ̂ �= λ}; the hypothesis is that μ > 0. Let ε ∈ (0, μ/7).

Using the notation of (6.3.10), let η = y/y∗x and perform the similarity

S−1(A + t E)S = S−1 AS + t S−1 E S =
[

λ 0
0 A1

]
+ t

[
η∗Ex η∗E S1

Z∗
1 Ex Z∗

1 E S1

]

=
[

λ + tη∗Ex tη∗E S1

t Z∗
1 Ex A1 + t Z∗

1 E S1

]
which puts λ + t y∗Ex/y∗x in position 1, 1. Now perform a similarity that puts A1 into
an “almost diagonal” upper triangular form described in (2.4.7.2): A1 = SεTεS−1

ε , in
which Tε is upper triangular, has the eigenvalues of A1 on its main diagonal, and has
deleted absolute row sums at most ε. Let Sε = [1] ⊕ Sε and compute the similarity

Sε
−1S−1(A + t E)SSε =

[
λ + tη∗Ex tη∗E S1Sε

tSε
−1 Z∗

1 Ex Tε + tSε
−1 Z∗

1 E S1Sε

]
Now let R(r ) = [1] ⊕ r In−1 with r > 0 such that r ‖η∗E S1Sε‖1 < ε, and perform a
final similarity

R(r )−1Sε
−1S−1(A + t E)SSεR(r )

=
[

λ + tη∗Ex t rη∗E S1Sε

t r−1Sε
−1 Z∗

1 Ex Tε + tSε
−1 Z∗

1 E S1Sε

]
(6.3.13a)

Choose δ1 > 0 such that δ1|η∗Ex | < ε, choose δ2 > 0 such that
δ2

∥∥r−1Sε
−1 Z∗

1 Ex
∥∥
∞ < ε, and choose δ3 > 0 such that δ3

∥∥Sε
−1 Z∗

1 E S1Sε

∥∥
∞ < ε/2.

Let δ = min{δ1, δ2, δ3, 1} and suppose that 0 < |t | < δ. Any main diagonal entry τ

of Tε + tSε
−1 Z∗

1 E S1Sε is at most ε from an eigenvalue λ̂ of A1, and every point
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in the Geršgorin disc around τ is at most 4ε from λ̂ (ε from the displacement due
to a diagonal entry of tSε

−1 Z∗
1 E S1Sε, ε from an absolute deleted row sum of Tε, ε

from an entry of tr−1Sε
−1 Z∗

1 Ex , and ε from a row of tSε
−1 Z∗

1 E S1Sε). The radius of
the Geršgorin disc G1 associated with the main diagonal entry λ + tη∗Ex is at most
|tε| ≤ ε, and no point in that disc is at a distance greater than 2|tη∗Ex | < 2ε from λ.
Since 4ε + 2ε = 6ε ≤ 6μ/7 < μ, it follows that G1 is disjoint from the Geršgorin
discs associated with rows 2, . . . , n of the matrix in (6.3.13a). Theorem 6.1.1 ensures
that there is a unique eigenvalue λ(t) of A + t E in G1, so |λ(t) − λ − tη∗Ex | ≤ |t |ε.

The assertion in (b) follows from observing that

|λ(t) − λ| ≤ |λ(t) − λ − tη∗Ex | + |tη∗Ex | ≤ |t |ε + ε ≤ 2ε

if |t | < δ. The inequality∣∣∣∣λ(t) − λ

t
− η∗Ex

∣∣∣∣ < ε if 0 < |t | < δ

implies the assertion in (c). �
Exercise. Using the assumptions and notation of the preceding theorem, let x =
[xi ] and y = [yi ]. Explain why

∂λ

∂ai j
= ȳi x j

y∗x
(6.3.13b)

for all i, j = 1, . . . , n. Hint: Let E = Ei j , the n-by-n matrix whose only nonzero
entry is a one in the i, j position.

Exercise. Let ε > 0 be given. Consider the matrix A =
[

1 1
0 1 + ε

]
, the simple

eigenvalue λ = 1, and the right and left eigenvectors x = [1 0]T and y =
[ε − 1]T . Compute ∂λ/∂ai j for all four pairs i, j . What happens as ε → 0?
Conclude that an eigenvalue of a matrix can be very sensitive to certain matrix
perturbations if its associated right and left eigenvectors are nearly orthogonal.

The formula (6.3.13) for the derivative of a simple eigenvalue has an analog for
singular values; see (7.3.12).

In contrast to the situation for eigenvalues, the eigenvectors of a diagonalizable
matrix may suffer radical changes with only small perturbations in the entries of the

matrix. For example, if A =
[

1 0
0 1

]
, E =

[
ε δ

0 0

]
, and ε, δ �= 0, the eigenvalues of

A + E are λ = 1 and 1 + ε and the respective normalized right eigenvectors are[
1

0

]
and

1

(ε2 + δ2)1/2

[−δ

ε

]
By choosing the ratio of ε to δ appropriately, the second eigenvector can be chosen to
point in any direction whatsoever, for ε and δ both arbitrarily small.

Our eigenvalue perturbation estimates so far have all been a priori bounds; they do not
involve the computed eigenvalues or eigenvectors or any quantity derived from them.
Let x̂ �= 0 be an “approximate eigenvector” of A ∈ Mn and let λ̂ be a corresponding
“approximate eigenvalue.” If A is diagonalizable, we can use the residual vector
r = Ax̂ − λ̂x̂ to estimate how well λ̂ approximates an eigenvalue of A.
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Theorem 6.3.14. Let A ∈ Mn be diagonalizable with A = S�S−1 and � =
diag(λ1, . . . , λn). Let ‖| · ‖| be a matrix norm on Mn that is induced by an abso-
lute vector norm ‖ · ‖ on Cn. Let x̂ ∈ Cn be nonzero, let λ̂ ∈ C, and let r = Ax̂ − λ̂x̂ .

(a) There is an eigenvalue λ of A such that

|λ̂ − λ| ≤ ‖|S‖| ‖|S−1‖| ‖r‖
‖x̂‖ = κ(S)

‖r‖
‖x̂‖ (6.3.15)

in which κ(·) is the condition number with respect to ‖| · ‖|.
(b) If A is normal, there is an eigenvalue λ of A such that

|λ̂ − λ| ≤ ‖r‖2

‖x̂‖2
(6.3.16)

Proof. If λ̂ is an eigenvalue of A, then the asserted bounds are trivially satisfied, so we
suppose that it is not an eigenvalue of A. Then r = Ax̂ − λ̂x = S(� − λ̂I )S−1 x̂ and
x̂ = S(� − λ̂I )−1S−1r . We use (5.6.36) to compute

‖x̂‖ = ‖S(� − λ̂I )−1S−1r‖ ≤ ‖|S(� − λ̂I )−1S−1‖| ‖r‖
≤ ‖|S‖| ‖|S−1‖| ‖|(� − λ̂I )−1‖| ‖r‖ = κ(S)‖|(� − λ̂I )−1‖| ‖r‖
= κ(S) max

λ∈σ (A)
|λ − λ̂|−1‖r‖

so that

‖x̂‖ min
λ∈σ (A)

|λ − λ̂| ≤ κ(S)‖r‖

The bound (6.3.16) in the normal case is a consequence of the fact that a normal
matrix is unitarily diagonalizable, the matrix norm induced by the Euclidean norm is
the spectral norm, and a unitary matrix has unit condition number with respect to the
spectral norm. �

The preceding result should be contrasted with the a posteriori bound (5.8.10) on the
relative error in the solution to a system of linear equations. If the matrix of coefficients
of a system of linear equations is ill-conditioned, even if it is normal, a small residual
does not ensure a small relative error in the solution. However, (6.3.16) says that if A
is normal, and if an approximate eigenpair has a small residual, then the absolute error
in the eigenvalue is guaranteed to be small; no condition number appears in the bound.

This pleasant result for the eigenvalues is not matched by a similarly pleasant result
for the eigenvectors. Even for a real symmetric matrix, a small residual does not
guarantee that an approximate eigenvector is close to an eigenvector.

Exercise. Consider A =
[

1 ε

ε 1

]
with ε > 0. Take λ̂ = 1 and x̂ = [1 0]T , and show

that the residual is r = [0 ε]T . Show that the eigenvectors of A are [1 1]T and
[1 − 1]T for all ε > 0, so that x̂ is not approximately parallel to either of these
two vectors no matter how small ε is. Show that the eigenvalues of A are 1 + ε

and 1 − ε, and verify the bound (6.3.16).
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Problems

6.3.P1 Let A = [ai j ] ∈ Mn be normal and let λ1, . . . , λn be its eigenvalues. Show that there
is a permutation σ of the integers 1, . . . , n such that

∑n
i=1 |aii − λσ (i)|2 ≤∑

i �= j |ai j |2.

6.3.P2 The upper bounds in (6.3.14) involve the norm of the residual vector r = Ax̂ − λ̂x̂ .
For a given A ∈ Mn and a given nonzero x̂ , what is an optimal choice of λ̂? (a) For the
Euclidean norm and a given nonzero x̂ , show that ‖r‖2 ≥ ‖Ax̂ − (x̂∗ Ax̂)x̂‖2 for all λ̂ ∈ C.
(b) If A is normal and y is a unit vector, explain why there is at least one eigenvalue of A
in the disc

{z ∈ C : |z − y∗ Ay| ≤ (‖Ay‖2
2 − |y∗Ay|2)1/2} (6.3.17)

(c) If A is Hermitian and y is a unit vector, explain why there is at least one eigenvalue of
A in the real interval

{t ∈ R : |t − y∗ Ay| ≤ (‖Ay‖2
2 − (y∗ Ay)2)1/2}

6.3.P3 Partition a normal matrix A ∈ Mn as A =
[

B X
Y C

]
, in which B ∈ Mk and C ∈ Mn−k .

Let β be an eigenvalue of B and let γ be an eigenvalue of C . (a) Use (6.3.14b) to show
that there is an eigenvalue of A in the disc {z ∈ C : |z − β| ≤ ‖|Y‖|2} as well as in the disc

{z ∈ C : |z − γ | ≤ ‖|X‖|2}. (b) If k = 1 and A =
[

b x∗
y C

]
, in which b ∈ C and x, y ∈ Cn−1,

explain why there is an eigenvalue of A in the disc {z ∈ C : |z − b| ≤ ‖x‖2} as well as in
the disc {z ∈ C : |z − γ | ≤ ‖x‖2}.
6.3.P4 Let A ∈ Mn be normal, let S be a given k-dimensional subspace of Cn , and let
γ ∈ C and δ > 0 be given. (a) If ‖Ax − γ x‖2 ≤ δ for every unit vector x ∈ S, show that
there are at least k eigenvalues of A in the disc {z ∈ C : |z − γ | ≤ δ}. (b) Explain why the
assertion in case k = 1 of (a) is equivalent to the assertion in (6.3.14b), and specialize your
proof in (a) to give an alternative proof of the bound (6.3.16).

6.3.P5 Let t0 be real and consider the polynomial p(t) = (t − t0)2. For ε > 0, show that the
zeroes of the polynomial p(t) − ε are t0 ± ε1/2. Explain why the ratio of the perturbation
in a zero of a polynomial to a perturbation in its coefficients can be unbounded.

6.3.P6 Consider the bound in (6.3.4), which says that for a normal matrix, the ratio of the
perturbation in an eigenvalue to a perturbation in the matrix entries is bounded. Since the
eigenvalues of the matrix are just the zeroes of its characteristic polynomial, explain how
this pleasant situation could be consistent with the conclusion of the preceding problem.
The moral is that it is very unwise to attempt to compute the eigenvalues of a matrix (normal
or otherwise) by forming its characteristic polynomial and then computing its zeroes: This
can turn an inherently well-conditioned problem into an ill-conditioned one!

6.3.P7 Consider A =
[

0 1
0 0

]
, E =

[
0 0
1 0

]
, and A + t E for t > 0. (a) Does A satisfy the

hypotheses of (6.3.12)? (b) Show that the eigenvalues of A + t E are ±√
t , and explain why

the eigenvalue λ(t) = √
t is continuous but not differentiable at t = 0. (c) Does A satisfy

the hypotheses of (6.3.2)? (d) Let λ be an eigenvalue of A and let λ(t) be an eigenvalue
of A + t E . Explain why there is no c > 0 such that |λ(t) − λ| ≤ c‖|t E‖| for all t > 0 and
contrast with the bound (6.3.3).
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6.3.P8 Use the argument in the proof of (6.3.5) to show that, under the hypotheses of the
theorem, there is a permutation τ of the integers 1, . . . , n such that

∑n
i=1 |λ̂τ (i) − λi |2 ≥

‖E‖2
2.

6.3.P9 In the proof of (6.3.5) we used the fact that if U = [ui j ] ∈ Mn is unitary, then
A = [|ui j |2] is doubly stochastic and unistochastic (see (4.3.P10)). Show that the following
doubly stochastic matrix is not unistochastic:⎡

⎣ 1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

⎤
⎦

6.3.P10 Consider the real symmetric matrix A(t) =
[

0 t
t 0

]
, t ∈ R. Show that the eigen-

values of A(t) are λ1(t) = |t | and λ2(t) = −|t |, neither of which is differentiable at t = 0.
Does this contradict (6.3.12)? Why?

Further Readings. The first version of (6.3.2) appeared in F. Bauer and C. Fike, Norms
and exclusion theorems, Numer. Math. 2 (1960) 137–141. The original version of (6.3.5)
is in A. J. Hoffman and H. Wielandt, The variation of the spectrum of a normal matrix,
Duke Math. J. 20 (1953) 37–39. An elementary proof of this result in the real symmetric
case is in Wilkinson (1965), pp. 104–109. Theorem 6.3.12 is only the first part of a very
interesting story. For a summary of the rest of the tale, see J. Moro, J. V. Burke, and
M. L. Overton, On the Lidskii–Vishik–Lyusternik perturbation theory for eigenvalues
of matrices with arbitrary Jordan structure, SIAM J. Matrix Anal. Appl. 18 (1997)
793–817; for more details, see Baumgärtel (1985), Chatelin (1993), and Kato (1980).

6.4 Other eigenvalue inclusion sets

We have discussed Geršgorin discs in some detail. Many authors, perhaps attracted
by the geometrical elegance of the Geršgorin theory, have generalized its ideas and
methods to obtain other types of eigenvalue inclusion sets. We now discuss a few of
these to give a flavor of what has been done.

The first theorem, due to Ostrowski, gives an eigenvalue inclusion set that is a union
of discs, like the Geršgorin set, but the radii of the discs depend on both deleted row
and column sums. The row and column versions of Geršgorin’s theorem are included
in this result, which gives a continuum of eigenvalue inclusion sets that interpolate
between (6.1.2) and (6.1.4).

Theorem 6.4.1 (Ostrowski). Let A = [ai j ] ∈ Mn, let α ∈ [0, 1], and let R′
i and C ′

i
denote the deleted row and column sums of A:

R′
i =

∑
j �=i

|ai j | and C ′
i =

∑
j �=i

|ai j | (6.4.2)

The eigenvalues of A are in the union of n discs
n⋃

i=1

{z ∈ C : |z − aii | ≤ R′α
i C ′1−α

i } (6.4.3)
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Proof. The cases α = 0 and α = 1 were proved in (6.1.1) and (6.1.3), so we may
assume that 0 < α < 1. Furthermore, we may assume that all R′

i > 0, because we may
perturb A by inserting a small nonzero entry into any row in which R′

i = 0; the resulting
matrix has an eigenvalue inclusion set (6.4.4) that is larger than the set for A, and the
result follows in the limit as the perturbation goes to zero.

Now suppose that Ax = λx with x = [xi ] �= 0. Then for each i = 1, 2, . . . , n we
have

|λ − aii ||xi | =
∣∣∣∣∣∣
∑
j �=i

ai j x j

∣∣∣∣∣∣ ≤
∑
j �=i

|ai j ||x j | =
∑
j �=i

|ai j |α(|ai j |1−α|x j |)

≤
⎛
⎝∑

j �=i

(|ai j |α)1/α

⎞
⎠α ⎛⎝∑

j �=i

(|ai j |1−α|x j |)1/(1−α)

⎞
⎠1−α

(6.4.4)

= R′α
i

⎛
⎝∑

j �=i

|ai j ||x j |1/(1−α)

⎞
⎠1−α

which, since R′
i > 0, is equivalent to

|λ − aii |
R′α

i

|xi | ≤
⎛
⎝∑

j=1

|ai j ||x j |1/(1−α)

⎞
⎠1−α

and hence [ |λ − aii |
R′α

i

]1/(1−α)

|xi |1/(1−α) ≤
n∑

j �=i

|ai j ||x j |1/(1−α) (6.4.5)

Hölder’s inequality (Appendix B) is employed in (6.4.4) with p = 1/α and q = p/

(p − 1) = 1/(1 − α). Now sum (6.4.5) on i to get

n∑
i=1

( |λ − aii |
R′α

i

)1/(1−α)

|xi |1/(1−α) ≤
n∑

i=1

∑
j �=i

|ai j ||x j |1/(1−α)

=
n∑

j=1

C ′
j |x j |1/(1−α) (6.4.6)

If ( |λ − aii |
R′α

i

)1/(1−α)

> C ′
i

for every i such that xi �= 0, then (6.4.6) could not be correct. Therefore, there is some
k ∈ {1, . . . , n} such that xk �= 0 and( |λ − akk |

R′α
k

)1/(1−α)

≤ C ′
k

It follows that |λ − akk | ≤ R′α
k C ′1−α

k , so λ is in the set (6.4.3). �
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Exercise. Consider A =
[

1 4
1 6

]
and compare its Geršgorin row and column

eigenvalue inclusion sets with Ostrowski’s set for α = 1
2 . What estimate does

Ostrowski’s theorem give for the spectral radius of A and how does it compare
with the Geršgorin estimates (6.1.5)?

Exercise. What is the Ostrowski version of (6.1.6)?

In the following theorem, due to A. Brauer, the familiar elements of Geršgorin’s
theorem are also present, but now the rows are taken two at a time; the eigenvalue
inclusion sets are no longer discs but sets known as ovals of Cassini. The proof
parallels the proof of Geršgorin’s theorem, but selects the two largest modulus entries
of an eigenvector. Brauer’s eigenvalue inclusion set is a subset of Geršgorin’s.

Theorem 6.4.7 (Brauer). Let A = [ai j ] ∈ Mn and assume that n ≥ 2. The eigenvalues
of A are in the union of n(n − 1)/2 ovals of Cassini⋃

i �= j

{z ∈ C : |z − aii ||z − a j j | ≤ R′
i R′

j } (6.4.8)

which is contained in the Geršgorin set (6.1.2).

Proof. Let λ be an eigenvalue of A, and suppose that Ax = λx with x = [xi ] �= 0.
There is an entry of x that has largest absolute value, say x p, so |x p| ≥ |xi | for all
i = 1, . . . , n and x p �= 0. If all the other entries of x are zero, then the assumption that
Ax = λx means that app = λ, which is in the set (6.4.8).

Now suppose that x has at least two nonzero entries, and let xq be an entry
with second largest absolute value; that is, x p �= 0 �= xq and |x p| ≥ |xq | ≥ |xi | for
all i ∈ {1, . . . , n}, i �= p. It follows from the identity Ax = λx that x p(λ − app) =∑

j �=p apj x j , and hence

|x p| |λ − app| =
∣∣∣∣∣∣
∑
j �=p

apj x j

∣∣∣∣∣∣ ≤
∑
j �=p

|apj ||x j | ≤
∑
j �=p

|apj ||xq | = R′
p|xq |

or

|λ − app| ≤ R′
p

|xq |
|x p| (6.4.9)

But we also have xq (λ − aqq ) =∑
j �=q aq j x j , which implies that

|xq | |λ − aqq | =
∣∣∣∣∣∣
∑
j �=q

aq j x j

∣∣∣∣∣∣ ≤
∑
j �=q

|aq j | |x j | ≤
∑
j �=q

|aq j | |x p| = R′
q |x p|

or

|λ − aqq | ≤ R′
q

|x p|
|xq | (6.4.10)



416 Location and perturbation of eigenvalues

Taking the product of (6.4.9) and (6.4.10) permits us to eliminate the unknown ratios
of entries of x and obtain the inequality

|λ − app||λ − aqq | ≤ R′
p

|xq |
|x p| R′

q

|x p|
|xq | = R′

p R′
q

Thus, the eigenvalue λ lies in the set (6.4.8).
Let Ci j = {z ∈ C : |z − aii ||z − a j j | ≤ R′

i R′
j } be the Cassini oval associated with

rows i, j ∈ {1, . . . , n}, i �= j . We claim that Ci j ⊂ Gi ∪ G j , in which Gi = {z ∈ C :
|z − aii | ≤ R′

i (A)} is the Geršgorin disc associated with row i of A. If Ri R j = 0, our
claim is certainly correct, so we may suppose that Ri R j > 0. In this case,

Ci j = {z ∈ C :
|z − aii |

R′
i

|z − a j j |
R′

j

≤ 1}

If z is a point that satisfies the inequality |z−aii |
R′

i

|z−a j j |
R′

j
≤ 1, then not both of the ratios in

this product can be greater than one. This means that either z ∈ Gi or z ∈ G j , which
verifies our claim. It follows that ∪i �= j Ci j ⊂ ∪i Gi . �

Exercise. What is the column sum version of Brauer’s theorem?

Any theorem about eigenvalue inclusion sets implies (and, indeed, is implied by) a
related theorem about nonsingularity: We can use Ostrowski’s and Brauer’s theorems
to formulate conditions that prohibit z = 0 from being in the respective eigenvalue
inclusion sets.

Corollary 6.4.11. Let A = [ai j ] ∈ Mn with n ≥ 2. Each of the following conditions
implies that A is nonsingular:

(a) (Ostrowski) For some α ∈ [0, 1], |aii | > R′α
i C ′1−α

i for all i = 1, . . . , n.
(b) (Brauer) |aii ||a j j | > R′

i R′
j for all distinct i, j = 1, . . . , n.

Exercise. Use (6.4.1) and (6.4.7) to prove (6.4.11).

Brauer’s eigenvalue inclusion set (6.4.8) is smaller than Geršgorin’s (6.1.2), so it is
perhaps not surprising that it fails to have the boundary property described in (6.2.8).

Exercise. Verify that the matrix ⎡
⎣1 1 1

2 4 0
1 0 2

⎤
⎦ (6.4.11a)

is irreducible and its eigenvalue λ = 0 is on the boundary of the Brauer set (6.4.8).
Explain why the Cassini ovals |z − 1| |z − 2| = 2 and |z − 1| |z − 4| = 4 pass
through λ, but |z − 4| |z − 2| = 2 does not.

Brauer’s theorem involves products of deleted row sums taken two at a time. An
attractive possibility to obtain additional eigenvalue inclusion sets is to take deleted
row sums of m rows of A ∈ Mn and consider a union of sets of the form

⋃
i1,...,im∈Im

{
z ∈ C :

m∏
k=1

|z − aik ik | ≤
m∏

k=1

R′
ik

}
(6.4.12)
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in which Im = {i1, . . . , im ∈ {1, . . . , n} : i1, . . . , im are distinct}. For each m, there are
( n

m ) sets of this form: m = 1 gives the n Geršgorin discs and m = 2 gives Brauer’s n(n −
1)/2 ovals of Cassini. However, for m ≥ 3 the sets (6.4.12) need not be eigenvalue
inclusion sets for A, as shown by the example

A = J2 ⊕ I2 (6.4.13)

in which J2 =
[

1 1
1 1

]
∈ M2. The sets (6.4.12) for this matrix all collapse to the point

z = 1 if m = 3 or m = 4.

Exercise. Show that the eigenvalues of the matrix in (6.4.13) are λ = 0, 1, 1, and
2. Sketch the sets (6.4.12) for m = 1, m = 2, and m = 3, 4. Show that the same
phenomenon occurs for all m ≥ 3 by considering

A = J2 ⊕ In ∈ Mn+2 (6.4.14)

One problem with the set (6.4.12) is that it admits products that contain deleted row
sums that are zero. Of course, this does not happen if the matrix A is irreducible; all
R′

i > 0 in this case. However, even if A is irreducible, the set (6.4.12) still might not
be an eigenvalue inclusion set for A. Consider the perturbation of (6.4.13) given by

Aε =

⎡
⎢⎢⎣

1 1 ε ε

1 1 0 0
ε 0 1 0
ε 0 0 1

⎤
⎥⎥⎦ , 1 > ε ≥ 0 (6.4.15)

The directed graph �(Aε) of Aε is

P1

P3

P2

P4

in which the dashed arcs disappear when ε = 0.

Exercise. Verify that if ε �= 0, then �(Aε) is strongly connected, Aε is irreducible,
R′

1 = 1 + 2ε , R′
2 = 1, R′

3 = ε, R′
4 = ε, and the eigenvalues of Aε are λε = 1, 1,

1 + (1 + 2ε2)1/2, and 1 − (1 + 2ε2)1/2.

Since any product of three or more deleted row sums for the matrix (6.4.15) contains
at least one factor of ε, the sets (6.4.12) cannot be eigenvalue inclusion sets for either
m = 3 or m = 4 if ε is positive and sufficiently small.

What property of the matrices (6.4.13) and (6.4.15) allows m = 1 and m = 2 to be
acceptable in (6.4.12) for providing an eigenvalue inclusion set, but not m = 3 and
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m = 4? Observe that the directed graphs in each case contain cycles of length 1 and 2,
but not of length 3 or 4.

Motivated by this observation, consider the irreducible 3-by-3 matrix

B =
⎡
⎣−2 1

6 − 1
8

0 1 − 1
4

24 0 1

⎤
⎦ (6.4.15a)

which has λ = 0 as a triple eigenvalue. The deleted row sums of B are R′
1 = 7/24,

R′
2 = 1/4, and R′

3 = 24. Brauer’s set (6.4.12) is{
z ∈ C : |z + 2| |z − 1|2 ≤ 7

4

}
which does not include λ. The directed graph �(B) contains cycles of length 1, 2, and
3. Brauer’s theorem ensures that the union of the three sets (6.4.12) for m = 2 contains
λ. However, observe that just one of these sets,

{z ∈ C : |z + 2| |z − 1| ≤ 7}
contains all the eigenvalues of B. This one set corresponds to the nodes of �(B) that
are in the only cycle of length two. This not an accident.

A directed graph � is strongly connected if from each of its nodes there is a directed
path in � to any other node. We say that � is weakly connected if from each of its
nodes there is a directed path to some other node and back, that is, each node in �

belongs to some nontrivial cycle. A trivial cycle (or loop) is a directed path of length
one that begins and ends at the same node.

The directed graph �(A) of a matrix A ∈ Mn is strongly connected if and only if
A is irreducible. We say that A is weakly irreducible if and only if �(A) is weakly
connected. Thus, A is weakly irreducible if and only if for each i = 1, . . . , n the i th
row of A has at least one nonzero off-diagonal entry ai ji such that there is a sequence
ak1k2, ak2k3, . . . , akm−1km of nonzero entries of A for which k1 = ji and km = i . This
cumbersome condition is about half of the requirement (6.2.7) that A have property
SC , and it is more conveniently stated for computational purposes in a form analogous
to (6.2.23).

Lemma 6.4.16. A matrix A ∈ Mn is weakly irreducible if and only if B = [bi j ] = (I +
|A|)n−1 (equivalently, B = (I + M(A))n−1) has the property that for each i = 1, . . . , n
there is at some j �= i such that bi j b ji �= 0, that is, for each i = 1, . . . , n there is least
one nonzero off-diagonal entry bi j such that b ji is nonzero.

Exercise. Prove Lemma (6.4.16). Hint: Use the ideas in (6.2.19).

Exercise. Suppose that A ∈ Mn . Show that A is weakly irreducible if and only
if �((I + |A|)n−1) has the property that each of its nodes belongs to a cycle of
length 2. What is the corresponding property for irreducible? Which property is
weaker? Recall that a cycle is simple by definition; only the initial (which is the
same as the final) node can appear in the list of nodes more than once.

Exercise. If A ∈ Mn is weakly irreducible, explain why all R′
i > 0 and all C ′

i > 0.
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A preorder on a set S is a relation R defined between all pairs of points of S such that
for any pair of elements s, t ∈ S, either s Rt or t Rs or both. A preorder must also be
reflexive (s Rs for every s ∈ S) and transitive (if s Rt and t Ru, then s Ru). A preorder
might not be symmetric (s Rt if and only if t Rs), and it is possible to have s Rt and t Rs
without having s = t . A point z in a subset S0 of S is said to be a maximal element of
S0 if s Rz for all s ∈ S0.

Exercise. Let a nonempty set S ⊂ C be given. Show that the relation between
pairs z, w ∈ S defined by

z Rw if and only if |z| ≤ |w|
is a preorder on C.

Lemma 6.4.17. Let S be a nonempty finite set on which a preorder R is defined. Then
S contains at least one maximal element.

Proof. Arrange the elements in any order s1, . . . , sk . Set s = s1. If s2 Rs, leave s alone;
if not, then set s = s2. If s3 Rs, leave s alone; if not, then set s = s3. Continue this
process with s4, . . . , sk . The final value of s is a maximal element. �

If � is a directed graph and if Pi is a node of �, we define �out(Pi ) to be the set
of nodes different from Pi that can be reached from Pi via some directed path of
length 1. Notice that if � is weakly connected, then �out(Pi ) is nonempty for every
node Pi ∈ �.

Let us denote by C(A) the set of nontrivial cycles in the directed graph �(A). For
the matrix (6.4.13), C(A) consists of the single cycle γ = P1 P2, P2 P1; for the matrix
(6.4.15) there are three nontrivial cycles, all of length 2; for the matrix (6.4.15a) there
are two nontrivial cycles, one of length 2 and one of length 3.

Theorem 6.4.18 (Brualdi). Let A = [ai j ] ∈ Mn and suppose that n ≥ 2. If A is weakly
irreducible, then every eigenvalue of A is contained in the set

⋃
γ∈C(A)

⎧⎨
⎩z ∈ C:

∏
Pi∈γ

|z − aii | ≤
∏
Pi∈γ

R′
i

⎫⎬
⎭ (6.4.19)

The notation means that if γ = Pi1 Pi2, . . . , Pik Pik+1 is a nontrivial cycle with Pik+1 =
Pi1 , then the corresponding set in the union (6.4.19) is defined by a product with exactly
k factors; the index i takes on the k values i1, . . . , ik .

Proof. Weak irreducibility of A ensures that each of its deleted row sums is positive,
so if λ is an eigenvalue of A and λ = aii for some i = 1, . . . , n, then λ is in the interior
of the set (6.4.19).

For the rest of the argument, we suppose that λ is an eigenvalue of A and λ �= aii

for all i = 1, . . . , n. Let Ax = λx for some nonzero x = [xi ] ∈ Cn . Define a preorder
R on the nodes of � by

Pi R Pj if and only if |xi | ≤ |x j | (6.4.20)
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We claim that there exists a cycle γ ′ in �(A) with the following three properties:

(a) γ ′ = Pi1 Pi2, Pi2 Pi3, . . . , Pik Pik+1 is a nontrivial
cycle with k ≥ 2 and Pik+1 = Pi1 .

(b) For each j = 1, . . . , k, the node Pi j+1 is a maximal
node in �out(Pi j ); that is, |xi j+1 | ≥ |xm | for all m
such that Pm ∈ �out(Pi j ).

(c) All xi j �= 0, j = 1, . . . , k.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6.4.21)

If γ ′ is a cycle that satisfies the conditions (6.4.21), then the identity Ax = λx
implies that for every j = 1, . . . , k we have

(λ − ai j i j )xi j =
n∑

m �=i j

ai j m xm =
∑

Pm∈�out(Pi j )

ai j m xm

and hence

|λ − ai j i j ||xi j | =
∣∣∣∣∣∣

∑
Pm∈�out(Pi j )

ai j m xm

∣∣∣∣∣∣ ≤
∑

Pm∈�out(Pi j )

|ai j m ||xm | (6.4.22)

≤
∑

Pm∈�out(Pi j )

|ai j m ||xi j+1 | (6.4.22a)

= R′
i j
|xi j+1 |

Now take the product of the inequalities (6.4.22) over all the nodes in γ ′ to obtain

k∏
j=1

|λ − ai j i j ||xi j | ≤
k∏

j=1

R′
i j
|xi j+1 | (6.4.23)

But

k∏
j=1

|λ − ai j i j | =
∏

Pi∈γ ′
|λ − aii | and

k∏
j=1

R′
i j
=
∏

Pi∈γ ′
R′

i

and since Pik+1 = Pi1 , we also have xik+1 = xi1 . Therefore,

k∏
j=1

|xi j | =
k∏

j=1

|xi j+1 | �= 0 (6.4.24)

Thus, dividing (6.4.23) by (6.4.24), we obtain∏
Pi∈γ ′

|λ − aii | ≤
∏

Pi∈γ ′
R′

i (6.4.25)

Since γ ′ is a nontrivial cycle in �(A), the eigenvalue λ is in the set (6.4.19).
We must now show that there is a cycle γ ′ that satisfies the conditions (6.4.21). Let i

be any index for which xi �= 0, and note that �out(Pi ) is nonempty because �(A) is
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weakly connected. Since xi �= 0 and λ − aii �= 0, the identity

0 �= (λ − aii )xi =
∑
j �=i

ai j x j =
∑

Pj∈�out(Pi )

ai j x j

ensures that there is at least one node of �out(Pi ) (call it Pj ), for which the corresponding
eigenvector entry x j is nonzero. Let Pi1 = Pi , and let Pi2 be a maximal node among the
nodes in �out(Pi1 ), that is, |xi2 | ≥ |xm | for all m such that Pm ∈ �out(Pi1 ). In particular,
|xi2 | ≥ |x j | > 0.

Suppose that the preceding construction has produced a directed path Pi1 Pi2, Pi2 Pi3,

. . . , Pi j−1 Pi j of length j − 1 that satisfies conditions (b) and (c) of (6.4.21); we have
just done this for j = 2. Then the identity

0 �= (λ − ai j i j )xi j =
∑

Pm∈�out(Pi j )

ai j m xm

ensures that there is at least one node in �out(Pi j ) for which the corresponding eigen-
vector entry is nonzero. Choose Pi j+1 to be a maximal node in �out(Pi j ), which ensures
that xi j+1 �= 0.

There are only finitely many nodes in �(A), so this construction for j = 2, 3, . . .

eventually produces a first maximal node Piq ∈ �out(Piq−1 ) that was produced as
a node Pi p at some previous step (2 ≤ p + 1 < q). Then γ ′ = Pi p Pi p+1, Pi p+1 Pi p+2,

. . . , Piq−1 Piq is a cycle in �(A) that satisfies all three conditions in (6.4.21). �

Brualdi’s theorem has a sharper form when A is irreducible; it is the generalized
Brauer (6.4.7) version of (6.2.26).

Theorem 6.4.26 (Brualdi). Let A = [ai j ] ∈ Mn be irreducible and suppose that n ≥
2. A boundary point λ of the set (6.4.19) can be an eigenvalue of A only if the boundary
of each set ⎧⎨

⎩z ∈ C:
∏
Pi∈γ

|z − aii | ≤
∏
Pi∈γ

R′
i

⎫⎬
⎭ (6.4.27)

passes through λ for every nontrivial cycle γ ∈ C(A).

Proof. Since all R′
i > 0, if λ = aii for some i ∈ {1, . . . , n}, then λ is not on the

boundary of the set (6.4.27). Thus, we may assume that λ �= aii for all i = 1, . . . , n
and we may continue the argument used in (6.4.18) with the same notation, but with
the additional assumption that λ is an eigenvalue of A that lies on the boundary of the
set (6.4.19). Just as in the proof of (6.2.3), λ must satisfy the inequality∏

Pi∈γ

|λ − aii | ≥
∏
Pi∈γ

R′
i

for all nontrivial cycles γ ∈ C(A), with equality for at least one γ ∈ C(A). Comparing
this inequality with (6.4.25), we see that∏

Pi∈γ ′
|λ − aii | =

∏
Pi∈γ ′

R′
i (6.4.28)
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for the particular cycle γ ′ constructed in the proof of (6.4.18). Thus, the inequality in
(6.4.23) is an equality, as are both of the inequalities in (6.4.22), for all j ∈ {1, , . . . , k}.
In particular, the inequality (6.4.22a) is an equality, and hence for each Pi j ∈ γ ′ and
for all m such that Pm ∈ �out(Pi j ), |xm | = |xi j−1 | = ci j+1 = constant. This conclusion
follows for any cycle that satisfies the conditions (6.4.21).

Now define the set

K = {Pi ∈ �(A): |xm | = ci = constant for all m such that Pm ∈ �out(Pi )}

We know that K is not empty because all the nodes of γ ′ are in K . We would like to
show that every node of �(A) is in K .

Suppose that a node Pq of �(A) is not in K . Because �(A) is strongly connected,
there is at least one directed path in �(A) from each node of K to this external node
Pq . If we select from all such directed paths a path with shortest length, then its first
arc must be from a node in K to a node Pf that is not in K . If we use the same
preorder on the nodes of �(A) that we used in the proof of (6.4.18), then we may
employ the same construction that we used there: start with the node Pf = Pj1 , se-
lect a maximal node Pj2 ∈ �out(Pj1 ), select a maximal node Pj3 ∈ �out(Pj2 ), and so
on. At each step, �out(Pji ) is nonempty because �(A) is weakly (even strongly) con-
nected, and the maximal node satisfies condition (c) of (6.4.21) for the same reason as
before.

If, at some step of this construction, we have a choice between selecting a maximal
node that is in K or not in K , we choose one that is not in K . If, at any step, all the
maximal nodes from which we may choose are in K , choose any one of them and then
follow a directed path of shortest length (necessarily in K ) to a first node that is not
in K and resume selecting maximal nodes as before. The definition of K ensures that
any directed path in K has the property that each of its nodes is a maximal node in �out

of its predecessor node; this is condition (b) of (6.4.21). Because the complement of
K has only finitely many nodes, this construction ultimately produces a first maximal
node in the complement of K that was produced as a node at some previous step. The
directed path between the first and second occurrences of this node in the construction
is a nontrivial directed cycle, which may not be simple because of the way we have
forced the path to leave K whenever the construction leads to a node in K . There
may be finitely many cycles in the part of the path that lies within K , but they can be
pruned off to leave a simple directed cycle γ ′′, which satisfies the conditions (6.4.21)
and contains at least one node that is not in K .

Since the cycle γ ′′ satisfies the conditions (6.4.21), it can be used in place of the
cycle γ ′ in the proof of (6.4.18). By the argument in the first paragraph of the present
proof, we conclude that |xm | = c jr = constant for all Pm ∈ �out(Pjr ) for all Pjr ∈ γ ′′.
Therefore, every node in γ ′′ is in K , a contradiction to the conclusion that γ ′′ contains
at least one node that is not in K . This shows that every node of �(A) is in K .

If γ is any nontrivial cycle in �(A), it automatically satisfies the conditions (6.4.21)
because all its nodes are in K . It may therefore be used in place of γ ′ in the proof
of (6.4.18), and hence it may be used in place of γ ′ in (6.4.28). This is the desired
conclusion: The boundary of every set (6.4.27) passes through λ. �
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Corollary 6.4.29. If A ∈ Mn and n ≥ 2, then each of the following conditions ensures
that A is nonsingular:

(a) A is weakly irreducible and ∏
Pi∈γ

|aii | >
∏
Pi∈γ

R′
i

for every nontrivial cycle γ ∈ C(A).
(b) A is irreducible and ∏

Pi∈γ

|aii | ≥
∏
Pi∈γ

R′
i

for every nontrivial cycle γ ∈ C(A), with strict inequality for at least one cycle.

As our final result, we state a strengthened form of Brauer’s theorem that locates
the eigenvalues of A in a union of possibly fewer ovals of Cassini than are required in
(6.4.7). It can dramatically reduce the number of ovals to be considered if A is a sparse
(but irreducible) matrix that has many symmetrically located zero entries.

Theorem 6.4.30 (Kolotilina). Let n ≥ 2 and let A = [ai j ] ∈ Mn be irreducible. Every
eigenvalue of A is contained in the set⋃

i �= j
|ai j |+|a ji |�=0

{z ∈ C : |z − aii ||z − a j j | ≤ R′
i R′

j } (6.4.31)

The notation means that an oval corresponding to distinct rows i and j appears in the
union only if either ai j or a ji is nonzero.

Exercise. Apply the preceding theorem to the matrix (6.4.11a). Which of the
three Cassini ovals in (6.4.7) does it permit us to omit? Does the omitted oval
contain any eigenvalues of A?

Problems

6.4.P1 Show that if n ≥ 2 and A = [ai j ] satisfies Brauer’s condition (6.4.11b) for non-
singularity, then |aii | > R′

i for all but at most one value of i = 1, . . . , n. Thus, Brauer’s
condition is only slightly weaker than the Levy–Desplanques condition (strict diagonal
dominance) in (6.1.10a). How is this related to (6.1.11)?

6.4.P2 Consider A =
[

2 3
1 3

]
. Show that both conditions (6.4.11) ensure that A is non-

singular, but neither (6.1.10a) nor (6.1.11) guarantees nonsingularity. What about the
column form of (6.1.11)?

6.4.P3 Show that every irreducible A ∈ Mn with n ≥ 2 is weakly irreducible. Give an
example of a weakly irreducible matrix that is not irreducible.

6.4.P4 Use the arguments in (6.1.10) and (6.2.6) to provide details for a proof of (6.4.29).

6.4.P5 Show that A ∈ Mn is weakly irreducible if and only if A is not permutation similar
to a block triangular matrix, one of whose diagonal blocks is 1-by-1.
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6.4.P6 Consider the matrix

A =
⎡
⎣−2 4 −3

0 1 − 1
4

1 0 1

⎤
⎦

(a) Show that λ = 0 is a triple eigenvalue of A. (b) Show that the set (6.4.12) for m = 3
is {z ∈ C : |z + 2| |z − 1|2 ≤ 7

4 }, which does not contain λ. (c) Show that the set (6.4.12)
for AT and m = 3 does contain λ. (d) Determine the set (6.4.19) for A and show that it
contains λ.

6.4.P7 Let A = [ai j ] ∈ Mn and suppose that aii = 0 for each i = 1, . . . , n. Order the set
of deleted absolute row sums of A as R′

[1] ≥ · · · ≥ R′
[n]. Show that ρ(A) ≤ (R′

[1] R′
[2])

1/2.

6.4.P8 Although the Brauer set (6.4.8) does not have a boundary eigenvalue property like
the one described in (6.2.8), a subset of the Brauer set does have such a property: It is known
that if A = [ai j ] ∈ Mn is irreducible and if λ is an eigenvalue of A that is a boundary point
of the set ⋃

γ∈C(A)

⋃
Pi ,Pj∈γ
Pi �=Pj

{z ∈ C : |z − aii | |z − a j j | ≤ R′
i R′

j }

then λ is in the set {z ∈ C : |z − aii | |z − a j j | = R′
i R′

j } for each γ ∈ C(A) and each distinct
pair of nodes Pi , Pj ∈ γ . (a) Explain why this theorem does not exclude the possibility
of λ = 0 being an eigenvalue of the matrix (6.4.11a). (b) Deduce the following criterion
for nonsingularity of A: |aii | |a j j | ≥ R′

i R′
j for every pair of distinct nodes Pi , Pj ∈ γ for

every γ ∈ C(A); and for at least one γ 0 ∈ C(A), |aii | |a j j | > R′
i R′

j for every pair of distinct
nodes Pi , Pj ∈ γ 0.

Notes and Further Readings. For more details about eigenvalue inclusion sets and many
references to the original literature, see R. Brualdi, Matrices, eigenvalues, and directed
graphs, Linear Multilinear Algebra 11 (1982) 143–165. Theorem 6.4.7 appears in A.
Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment.
Math. Helv. 10 (1937) 69–96; it was independently rediscovered 10 years later and
published in A. Brauer, Limits for the characteristic roots of a matrix: II, Duke Math.
J. 14 (1947) 21–26. For this reason, (6.4.7) is sometimes referred to as the Ostrowski–
Brauer theorem. For a proof of (6.4.30), see L. Yu. Kolotilina, Generalizations of the
Ostrowski–Brauer theorem, Linear Algebra Appl. 364 (2003) 65–80. The theorem in
(6.4.P6) is proved in X. Zhang and D. Gu, A note on A. Brauer’s theorem, Linear
Algebra Appl. 196 (1994) 163–174. For a singular value inclusion set that is analogous
to (6.4.31), see L. Li, The undirected graph and estimates of matrix singular values,
Linear Algebra Appl. 285 (1998) 181–188.



CHAPTER 7

Positive Definite and
Semidefinite Matrices

7.0 Introduction

A class of Hermitian matrices with a special positivity property arises naturally in many
applications. Hermitian (and, in particular, real symmetric) matrices with this positivity
property also provide one generalization to matrices of the notion of a positive number.
This observation often provides insight into the properties and applications of positive
definite matrices. The following examples illustrate several ways in which these special
Hermitian matrices arise.

7.0.1 Hessians, minimization, and convexity. Let f be a smooth real-valued func-
tion on some domain D ⊂ Rn . If y = [yi ] is an interior point of D, then Taylor’s
theorem says that

f (x) = f (y) +
n∑

i=1

(xi − yi )
∂ f

∂xi

∣∣∣∣
y

+ 1

2

n∑
i, j=1

(xi − yi )(x j − y j )
∂2 f

∂xi∂x j

∣∣∣∣
y

+ · · ·

for points x ∈ D that are near y. If y is a critical point of f , then all the first-order
partial derivatives vanish at y, and we have

f (x) − f (y) = 1

2

n∑
i, j=1

(xi − yi )(x j − y j )
∂2 f

∂xi ∂x j

∣∣∣∣
y

+ · · ·

= 1

2
(x − y)T H ( f ; y)(x − y) + · · ·

The real n-by-n matrix

H ( f ; y) =
[

∂2 f

∂xi ∂x j

∣∣∣∣
y

]n

i, j=1

425
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is the Hessian of f at y; equality of the mixed partial derivatives (∂2 f/∂xi∂x j =
∂2 f/∂x j∂xi ) ensures that it is symmetric. If the quadratic form

zT H ( f ; y)z, z �= 0, z ∈ Rn (7.0.1.1)

is always positive, then y is a relative minimum for f . If this quadratic form is always
negative, then y is a relative maximum for f . If n = 1, these criteria are just the usual
second derivative test for a relative minimum or a maximum.

If the quadratic form (7.0.1.1) is nonnegative at all points of D (not just at the critical
points of f ), then f is a convex function in D. This is a direct generalization of the
familiar situation when n = 1.

7.0.2 Covariance matrices. Let X1, . . . , Xn be real or complex random variables
with finite second moments on some probability space with expectation functional E ,
and suppose that μi = E(Xi ) are the respective means. The covariance matrix of the
random vector X = (X1, . . . , Xn)T is the matrix A = [ai j ] in which

ai j = E[(X̄i − μ̄i )(X j − μ j )], i, j = 1, . . . , n

It is apparent that A is Hermitian. Moreover, for any z = [zi ] ∈ Cn , we have

z∗Az = E

⎛
⎝ n∑

i, j=1

z̄i (X̄i − μ̄i )z j (X j − μ j )

⎞
⎠

= E

∣∣∣∣ n∑
i=1

zi (Xi − μi )

∣∣∣∣2 ≥ 0

The only properties of the expectation functional that are involved in this observation
are its linearity, homogeneity, and nonnegativity; that is, E[Y ] ≥ 0 whenever Y is a
nonnegative random variable.

The same observation can be made without recourse to probabilistic language. If
one has a family of complex valued functions f1, . . . , fn on the real line, if g is a
real-valued function, and if all the integrals

ai j =
∫ ∞

−∞
fi (x) f j (x)g(x)dx, i, j = 1, . . . , n

are defined and converge, then the matrix A = [ai j ] is Hermitian. Moreover,

z∗Az =
n∑

i, j=1

∫ ∞

−∞
z̄i fi (x)z j f j (x)g(x) dx

=
∫ ∞

−∞

∣∣∣∣ n∑
i=1

zi fi (x)

∣∣∣∣2g(x) dx

so this quadratic form is nonnegative if the function g is nonnegative.
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7.0.3 Algebraic moments of nonnegative functions. Let f be an absolutely inte-
grable real-valued function on the unit interval [0, 1] and consider the numbers

ak =
∫ 1

0
xk f (x) dx (7.0.3.1)

The sequence a0, a1, a2, . . . is a Hausdorff moment sequence, and it is naturally asso-
ciated with the real quadratic form

n∑
j,k=0

a j+k z j zk =
n∑

j,k=0

∫ 1

0
x j+k z j zk f (x)dx =

∫ 1

0

(
n∑

k=0

zk xk

)2

f (x)dx (7.0.3.2)

The matrix A = [ai+ j ] is real symmetric. If the function f is nonnegative, then zT Az
≥ 0 for all z ∈ Rn+1 and each n = 0, 1, 2, . . . . A matrix with the structure of A (i.e.,
the elements ai j are a function only of i + j) is called a Hankel matrix, whether or not
its quadratic form is nonnegative; see (0.9.8).

7.0.4 Trigonometric moments of nonnegative functions. Let f be an absolutely
integrable real-valued function on [0, 2π] and consider the numbers

ak =
∫ 2π

0
eikθ f (θ)dθ, k = 0,±1,±2, . . . (7.0.4.1)

The sequence a0, a1, a−1, a2, a−2, . . . is a Toeplitz moment sequence, and it is naturally
associated with the quadratic form

n∑
j,k=0

a j−k z j z̄k =
n∑

j,k=0

∫ 2π

0
ei( j−k)θ z j z̄k f (θ ) dθ

=
∫ 2π

0

∣∣∣∣ n∑
k=0

zkeikθ

∣∣∣∣2 f (θ ) dθ (7.0.4.2)

The matrix A = [ai− j ] is Hermitian. If the function f is nonnegative, then z∗Az ≥ 0
for all z ∈ Cn+1 and each n = 0, 1, 2, . . . . A matrix that has the structure of A (i.e., the
elements ai j are a function only of i − j) is called a Toeplitz matrix, whether or not its
quadratic form is nonnegative; see (0.9.7). Bochner’s theorem says that nonnegativity
of the quadratic form (7.0.4.2) is both necessary and sufficient for the numbers ak to
be generated by a slight modification of the formula (7.0.4.1) (a nonnegative measure
dμ replaces f (θ ) dθ ).

7.0.5 Discretization and difference schemes for numerical solution of differ-
ential equations. Suppose that we have a two-point boundary value problem of the
form

−y′′(x) + σ (x)y(x) = f (x), 0 ≤ x ≤ 1
y(0) = α

y(1) = β

in which α and β are given real constants and f (x) and σ (x) are given real-valued func-
tions. If we discretize this problem and look only for the values of y(kh) ≡ yk, k = 0,
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1, . . . , n + 1, and if we use a divided difference approximation to the derivative term

y′′(kh) ∼= y((k + 1)h) − 2y(kh) + y((k − 1)h)

h2
= yk+1 − 2yk + yk−1

h2

we obtain a system of linear equations

−yk+1+2yk−yk−1

h2 + σ k yk = fk, k = 1, 2, . . . , n
y0 = α

yn+1 = β

in which h = 1/(n + 1), yk = y(kh), σ k = σ (kh), and fk = f (kh). The boundary
conditions can be incorporated into the first (k = 1) and last (k = n) equations to give
the linear system

(2 + h2σ 1)y1 − y2 = h2 f1 + α

−yk−1 + (2 + h2σ k)yk − yk+1 = h2 fk, k = 2, 3, . . . , n − 1

−yn−1 + (2 + h2σ n)yn = h2 fn + β

This system can be written as Ay = w, in which y = [yk] ∈ Rn , w = [h2 f1 +
α, h2 f2, . . . , h2 fn−1, h2 fn + β]T ∈ Rn , and A ∈ Mn is the tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

2 + h2σ 1 −1
−1 2 + h2σ 2 −1 0

. . .
. . .

. . .
−1 2 + h2σ n−1 −1

0 −1 2 + h2σ n

⎤
⎥⎥⎥⎥⎥⎦ (7.0.5.1)

The matrix A is real, symmetric, and tridiagonal regardless of the values of σ (x), but
if we want to be able to solve Ay = w for any given right-hand side, then we must
impose some condition on σ (x) to ensure that A is nonsingular.

The real quadratic form associated with A is

x T Ax =
(

x2
1 +

n−1∑
i=1

(xi − xi+1)2 + x2
n

)
+ h2

n∑
i=1

σ i x
2
i

The first group of three terms is nonnegative; it vanishes only if all the entries of x
are equal, and equal to zero. If the function σ is nonnegative, then the last sum is
nonnegative and

xT Ax ≥
(

x2
1 +

n−1∑
i=1

(xi − xi+1)2 + x2
n

)
≥ 0 (7.0.5.2)

If A is singular, then there is a nonzero vector x̂ ∈ Rn such that Ax̂ = 0, and hence
x̂ T Ax̂ = 0. But then the central group of terms in (7.0.5.2) vanishes, which implies
that x̂ = 0. Thus, if the function σ is nonnegative, the matrix A is nonsingular and the
discretized boundary value problem can be solved for arbitrary boundary conditions α

and β.
This is a typical situation in the study of numerical solutions of ordinary or partial dif-

ferential equations. For computational stability it is desirable to design a discretization
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of a differential equation problem that leads to a system of linear equations Ay = w

in which A is positive definite, and it is usually possible to do so when the differential
equations are elliptic.

Matrices with the special positivity property illustrated in these examples are the
object of study in this chapter. These matrices arise in many applications: In harmonic
analysis, in complex analysis, in the theory of vibrations of mechanical systems, and in
other areas of matrix theory such as the singular value decomposition and the solution
of linear least squares problems.

Problems

7.0.P1 If the sequence ak is generated by the formula (7.0.3.1) with a nonnegative function
f , show that the quadratic forms

n∑
i, j=1

ai+ j+1zi z j and
n∑

i, j=1

(ai+ j − ai+ j+1)zi z j , z = [zi ] ∈ Rn

are both nonnegative.

7.0.P2 Make a sketch illustrating which diagonals are constant in a Hankel matrix. Do the
same for a Toeplitz matrix.

7.0.P3 Show that the matrix A in (7.0.5.1) is always irreducible, and that it is irreducibly
diagonally dominant if the function σ is nonnegative. Use (6.2.27) to show that A is
nonsingular and that all of its eigenvalues are positive.

Further Readings. For a short survey of facts about real positive definite matrices, see
C. R. Johnson, Positive definite matrices, Amer. Math. Monthly 77 (1970) 259–264.
Other surveys that focus on positive definite matrices and contain numerous references
are O. Taussky, Positive definite matrices, pp. 309–319 of Inequalities, ed. O. Shisha,
Academic Press, New York, 1967; and O. Taussky, Positive definite matrices and their
role in the study of the characteristic roots of general matrices, Adv. Math. 2 (1968)
175–186. Bhatia (2007) is a book entirely devoted to positive definite matrices; several
special topics are treated in depth.

7.1 Definitions and properties

A Hermitian matrix A ∈ Mn is positive definite if

x∗Ax > 0 for all nonzero x ∈ Cn (7.1.1a)

it is positive semidefinite if

x∗Ax ≥ 0 for all nonzero x ∈ Cn (7.1.1b)

Implicit in these definitions is the fact that if A is Hermitian, then x∗Ax is real for
all x ∈ Cn; see (4.1.3). Conversely, if A ∈ Mn and x∗Ax is real for all x ∈ Cn , then
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A is Hermitian, so assuming that A is Hermitian in the preceding definitions, while
customary, is actually superfluous; see (4.1.4). Of course, if A is positive definite, it
is also positive semidefinite. In this section, we continue the discussion of these ideas
that we began in (4.1).

Exercise. What are the positive definite and positive semidefinite matrices in M1?

Exercise. Explain why
[

1 1
1 1

]
is positive semidefinite but not positive definite.

Exercise. If A = [ai j ] ∈ Mn is positive definite, explain why Ā = [āi j ], AT , A∗,
and A−1 are all positive definite. Hint: If Ay = x, x∗A−1x = y∗A∗y.

The concepts negative definite and negative semidefinite may be defined for A ∈ Mn

by reversing the inequalities in (7.1.1a) and (7.1.1b) or, equivalently, by saying that −A
is positive definite or positive semidefinite, respectively. If A is Hermitian and x∗Ax
has both positive and negative values, then A is said to be indefinite.

Observation 7.1.2. Let A ∈ Mn be Hermitian. If A is positive definite, then all of its
principal submatrices are positive definite. If A is positive semidefinite, then all of its
principal submatrices are positive semidefinite.

Proof. Let α be a proper subset of {1, . . . , n} and consider the principal submatrix
A[α]; see (0.7.1). Let x ∈ Cn be a vector such that x[α] �= 0 and x[αc] = 0. Then
x �= 0 and x[α]∗A[α]x[α] = x∗Ax > 0. Since the nonzero vector x[α] is arbitrary,
we conclude that A[α] is positive definite. The second assertion follows in the same
way. �

Exercise. Explain why every main diagonal entry of a positive definite (respec-
tively, positive semidefinite) matrix is a positive (respectively, nonnegative) real
number.

Observation 7.1.3. Let A1, . . . , Ak ∈ Mn be positive semidefinite and let α1, . . . , αk

be nonnegative real numbers. Then
∑k

i=1 αi Ai is positive semidefinite. If there is a
j ∈ {1, . . . , k} such that α j > 0 and A j is positive definite, then

∑k
i=1 αi Ai is positive

definite.

Proof. Let x ∈ Cn be nonzero and observe that x∗(
∑k

i=1 αi Ai )x =∑k
i=1 αi (x∗Ai x)

≥ 0 since each αi ≥ 0 and each x∗Ai x ≥ 0. The latter sum is positive if any summand
is positive. �

Observation 7.1.4. Each eigenvalue of a positive definite (respectively, positive semi-
definite) matrix is a positive (respectively, nonnegative) real number.

Proof. Let λ, x be an eigenpair of a positive semidefinite matrix A and calculate
x∗Ax = x∗λx = λx∗x . Then λ = (x∗Ax)/x∗x ≥ 0 if A is positive semidefinite, and
λ > 0 if A is positive definite. �

Corollary 7.1.5. Let A ∈ Mn be positive semidefinite (respectively, positive definite).
Then tr A, det A, and the principal minors of A are all nonnegative (respectively,
positive). Moreover, tr A = 0 if and only if A = 0.
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Proof. The trace of A is the sum of its eigenvalues, which are all nonnegative (res-
pectively, positive); if that sum is zero, then each eigenvalue is zero and hence the
diagonalizable matrix A is zero; see (1.3.4). The determinant of A is the product of its
eigenvalues, which are all nonnegative. Principal minors are determinants of principal
submatrices, so they are products with nonnegative or positive factors; see (7.1.2). �

Exercise. If A ∈ Mn is negative definite, explain why: The eigenvalues and trace
of A are negative; det A is negative for odd n and positive for even n.

Exercise. Consider the Hermitian matrix A =
[

1 0
0 −1

]
. Exhibit a nonzero vector

such that x∗Ax = 0 but Ax �= 0.

The following result shows that the phenomenon illustrated in the preceding exercise
cannot occur for a positive semidefinite matrix.

Observation 7.1.6. Let A ∈ Mn be positive semidefinite and let x ∈ Cn. Then x∗Ax =
0 if and only if Ax = 0.

Proof. Suppose that x �= 0 and x∗Ax = 0. Consider the polynomial p(t) = (t x +
Ax)∗A(t x + Ax) = t2x∗Ax + 2t x∗A2x + x∗A3x = 2t ‖Ax‖2

2 + x∗A3x . The hypo-
theses ensure that p(t) ≥ 0 for all real t . However, if ‖Ax‖2 �= 0 then for sufficiently
large negative values of t we would have p(t) < 0. We conclude that ‖Ax‖2 = 0, so
Ax = 0. �

Corollary 7.1.7. A positive semidefinite matrix is positive definite if and only if it is
nonsingular.

Proof. Suppose that A ∈ Mn is positive semidefinite. The preceding observation en-
sures that the following statements are equivalent: (a) A is singular; (b) there is a
nonzero vector x such that Ax = 0; (c) there is a nonzero vector x such that x∗Ax = 0;
(d) A is not positive definite. �

An important property of a positive semidefinite matrix is that it remains positive
semidefinite after a ∗congruence.

Observation 7.1.8. Let A ∈ Mn be Hermitian and let C ∈ Mn,m.

(a) Suppose that A is positive semidefinite. Then C∗AC is positive semidefinite,
nullspace C∗AC = nullspace AC, and rank C∗AC = rank AC.

(b) Suppose that A is positive definite. Then rank C∗AC = rank C, and C∗AC is
positive definite if and only if rank C = m.

Proof. (a) Let x ∈ Cn . Let y = Cx and observe that x∗C∗ACx = y∗Ay ≥ 0.
Thus, C∗AC is positive semidefinite. The remaining assertions follow from (7.1.6):
C∗ACx = 0 ⇔ x∗C∗ACx = (Cx)∗A(Cx) = 0 ⇔ A(Cx) = ACx = 0. Thus, the
null spaces of C∗AC and AC are the same, so they have the same rank.
(b) Since A is nonsingular, it follows from (a) that rank C = rank AC = rank C∗AC .
The preceding corollary ensures that the positive semidefinite matrix C∗AC ∈ Mm is
positive definite if and only if it is nonsingular, which is the case if and only if m = rank
C∗AC , which is equal to rank C . �
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Exercise. If A ∈ Mn and C ∈ Mn with m > n, show by example that C∗AC
may be positive definite even if A ∈ Mn is positive semidefinite and not positive
definite.

The following observation permits many results about positive definite matrices to
be extended to positive semidefinite matrices with a continuity argument.

Observation 7.1.9. Let A ∈ Mn be Hermitian. Then A is positive semidefinite if and
only if there is a sequence of positive definite matrices A1, A2, . . . such that Ak → A
as k → ∞.

Proof. If A is positive semidefinite, let Ak = A + k−1 I , k = 1, 2, . . . . Conversely, if
Ak → A as k → ∞ and each Ak is positive definite, then for any nonzero x ∈ Cn we
have x∗Ak x > 0 for each k = 1, 2, . . . , so limk→∞ x∗Ak x = x∗Ax ≥ 0. �

Positive definite and semidefinite matrices have two perhaps surprising special
properties that have profound consequences. We encountered these properties – row
and column inclusion – in (3.5.3) during our study of LU factorizations: Let A ∈ Mn

be partitioned as A =
[

A11 A12
A21 A22

]
, in which A11 ∈ Mk . We say that A has the column

inclusion property if range A12 ⊂ range A11 for every k ∈ {1, . . . , n − 1}. We say that
A has the row inclusion property if A∗ has the column inclusion property.

Exercise. Partition A ∈ Mn as A =
[

A11 A12
A21 A22

]
, in which A11 ∈ Mk and k ∈

{1, . . . , n − 1}. Explain why the following statements are equivalent:

(a) A has the column inclusion property.
(b) For each k ∈ {1, . . . , n − 1}, nullspace A∗

11 ⊂ nullspace A∗
12.

(c) For each k ∈ {1, . . . , n − 1}, every column of A12 is a linear combination
of the columns of A11.

(d) For each k ∈ {1, . . . , n − 1}, there is an X ∈ Mk,n−k such that A12 = A11 X .
(e) For each k ∈ {1, . . . , n − 1}, rank[A11 A12] = rank A11.

Exercise. What are the corresponding equivalent statements for the row inclusion
property?

Exercise. Suppose that A ∈ Mn is Hermitian. Explain why A has the column
inclusion property if and only if it has the row inclusion property.

Observation 7.1.10. Every positive semidefinite matrix has the row and column in-
clusion properties. In particular, if A = [ai j ] is positive semidefinite and akk = 0 for
some k ∈ {1. . . . , n}, then aik = aki = 0 for each i = 1, . . . , n.

Proof. Let A ∈ Mn be positive semidefinite and partition it as A =
[

A11 A12
A∗

12 A22

]
, in which

A11 ∈ Mk is Hermitian and k ∈ {1, . . . , n − 1}. It suffices to show that nullspace A11 ⊂
nullspace A∗

12. If A11 is nonsingular, there is nothing to prove, so we assume that ξ ∈ Ck

is nonzero and ξ ∗A11 = 0; we must show that ξ ∗A12 = 0. Let x =
[

ξ

0

]
∈ Cn . Then

x∗Ax = ξ ∗A11ξ = 0, so (7.1.6) ensures that x∗A = 0. Then 0 = x∗A = ξ ∗[ A11 A12 ] =
[ ξ∗ A11 ξ∗ A12 ] = [ 0 ξ∗ A12 ], so ξ ∗A12 = 0. For the second assertion, observe that row
inclusion ensures that each entry aik is a scalar multiple of akk . �
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Exercise. Let A =
[

A11 A12
A∗

12 A22

]
∈ Mn be positive semidefinite. If either A11 = 0 or

A22 = 0, explain why A12 = 0.

Exercise. Let A ∈ Mn be positive semidefinite. Partition A = [a1 . . . an] ac-
cording to its columns, let α ⊂ {1, . . . , n} be any nonempty index set, and let
j ∈ {1, . . . , n} be any column index. Explain why a j [α] is in the column space
of A[α]. Hint: Permutation similarity preserves positive definiteness; see (7.1.8).

There is a related, and much larger, class of matrices that also has the row and
column inclusion properties. Although the matrices in this class need not be positive
definite or even Hermitian, they all have positive semidefinite Hermitian parts; see
(4.1.2).

Exercise. Write A ∈ Mn as A = H + i K , in which H and K are Hermitian.
If x ∈ Mn , explain why the following statements are equivalent: (a) x∗Ax = 0;
(b) x∗A∗x = 0; and (c) x∗H x = x∗K x = 0.

Lemma 7.1.11. Suppose that A ∈ Mn has positive semidefinite Hermitian part
H (A) = 1

2 (A + A∗). Then

(a) nullspace A ⊂ nullspace H (A) and nullspace A∗ ⊂ nullspace H (A)
(b) rank H (A) ≤ rank A
(c) the following statements are equivalent:

(i) A and H (A) have the same null space.
(ii) A∗ and H (A) have the same null space.

(iii) rank A = rank H (A).

Proof. (a) Write A = H + i K , in which H and K are Hermitian, and let x ∈ Cn . If
either x∗A = 0 or Ax = 0, then x∗Ax = 0, which implies that x∗H x = 0. It follows
from (7.1.6) that H x = 0.
(b) Follows from (a).
(c) Equality in the two inclusions in (a) follows from equality in (b). �

Exercise. If A ∈ Mn and H (A) is positive definite, explain why A is nonsingular.

Observation 7.1.12. Let A ∈ Mn have positive semidefinite Hermitian part H (A). If
rank A = rank H (A), then A has the row and column inclusion properties.

Proof. (a) Partition A ∈ Mn as A =
[

A11 A12
A21 A22

]
, in which A11 ∈ Mk and k ∈ {1, . . . ,

n − 1}. Since H (A) is positive semidefinite, the preceding lemma ensures that A, A∗,
and H (A) have the same null space. If A11 is nonsingular, there is nothing to prove, so
assume that A11 is singular. First consider the column inclusion property. We assume

that ξ ∈ Ck is nonzero and ξ ∗A11 = 0; we must show that ξ ∗A12 = 0. Let x =
[

ξ

0

]
∈ Cn . Then 0 = ξ ∗A11ξ = x∗Ax = x∗H (A)x + i x∗K (A)x , so x∗H (A)x = 0. It fol-
lows from (7.1.6) that H (A)x = 0. Since the null spaces of A∗ and H (A) are the same,
we have 0 = x∗A = ξ ∗[ A11 A12 ] = [ ξ∗ A11 ξ∗ A12 ] = [ 0 ξ∗ A12 ], so ξ ∗A12 = 0. The same
approach (using equality of the null spaces of A and H (A)) shows that A∗ has the
column inclusion property, so A has the row inclusion property. �



434 Positive definite and semidefinite matrices

Exercise. The sufficient condition in the preceding observation is not a necessary

condition. Consider A =
[

i 0
0 −i

]
. Explain why A has both the row and column

inclusion properties, but rank A > rank H (A).

Exercise. Deduce (7.1.10) from (7.1.12).

Corollary 7.1.13. If A ∈ Mn has positive definite Hermitian part, then A has the row
and column inclusion properties.

Proof. If H (A) is nonsingular, then (7.1.11(b)) ensures that rank A = n = rank H (A),
so the assertion follows from (7.1.12). �

Our final observation is a generalization of a fact about real numbers: If a and b are
real and nonnegative, then a + b = 0 if and only if a = b = 0.

Observation 7.1.14. Let A, B ∈ Mn be positive semidefinite. Then

(a) A + B = 0 if and only if A = B = 0
(b) rank(A + B) > 0 if and only if at least one of A or B is nonzero

Proof. (a) Only the forward implication requires a proof. Let A = [ai j ] and B =
[bi j ] and suppose that A + B = 0. Then aii + bii = 0 for each i = 1, . . . , n and each
summand is real and nonnegative, so each aii = bii = 0. It follows from the second
assertion in (7.1.10) that A = B = 0.
(b) rank(A + B) = 0 if and only if A + B = 0 if and only if A = B = 0. �

Problems

7.1.P1 Let A = [ai j ] ∈ Mn be positive semidefinite. Why is aii a j j ≥ |ai j |2 for all distinct
i, j ∈ {1, . . . , n}? If A is positive definite, why is aii a j j > |ai j |2 for all distinct i, j ∈
{1, . . . , n}? If there is a pair of distinct indices i, j such that aii a j j = |ai j |2, why is A
singular?

7.1.P2 Use the preceding problem to prove the second assertion in (7.1.10): A positive
semidefinite matrix has a zero entry on its main diagonal if and only if the entire row and
column to which that entry belongs is zero.

7.1.P3 Let A = [ai j ] ∈ Mn be positive semidefinite and have positive main diagonal entries.
Show that the matrix [ai j/

√
aii a j j ] is positive semidefinite, that all its main diagonal entries

are +1, and that all its entries are bounded by 1 in absolute value. Such a matrix is called a
correlation matrix.

7.1.P4 If A = [ai j ] ∈ Mn is a correlation matrix, show that |ai j | ≤ 1 for all i, j = 1, . . . , n.
Can equality occur? Can equality occur if A is positive definite?

7.1.P5 Let A ∈ Mn be Hermitian. If | tr A| < ‖A‖2 (the Frobenius norm), show that A is
indefinite.

7.1.P6 Let A ∈ Mn and B ∈ Mm be Hermitian. Show that A ⊕ B is positive semidefinite if
and only both A and B are positive semidefinite. What can you say in the positive definite
case?
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7.1.P7 A function f : R → C is said to be a positive definite function if the matrix [ f (ti −
t j )] ∈ Mn is positive semidefinite for all choices of points {t1, . . . , tn} ⊂ R and all n =
1, 2, . . . . If f is a positive definite function, why is f (−t) = f̄ (t) for all t ∈ R? Use
(7.1.5) to show that if f is a positive definite function, then (a) f (0) ≥ 0; (b) f is a bounded
function and | f (t)| ≤ f (0) for all t ∈ R; and (c) if f is continuous at 0, then it is continuous
everywhere.

7.1.P8 If f1, . . . , fn are positive definite functions and if a1, . . . , an are nonnegative real
numbers, show that f = a1 f1 + · · · + an fn is a positive definite function.

7.1.P9 Show that f (t) = eist is a positive definite function for each s ∈ R. Use the preceding
problem to show that f (t) = a1eis1t + · · · + aneisn t is a positive definite function for any
choice of points s1, . . . , sn ∈ R and any nonnegative real numbers a1, . . . , an .

7.1.P10 Prove that cos t is a positive definite function.

7.1.P11 Is sin t a positive definite function?

7.1.P12 If g is a nonnegative and integrable function on R, show that f (t) = ∫∞
−∞ eits g(s)ds

is a positive definite function. Explain why the following functions are positive definite:

(a) f (t) = sin(αt)
αt = 1

2α

∫ α

−α
eitsds, α > 0

(b) f (t) = e−t2 = 1
2
√

π

∫∞
−∞ eitse−s2/2 ds

(c) f (t) = e−|t | = 1
π

∫∞
−∞

eits

1+s2 ds
(d) f (t) = 1+i t

1+t2 = 1
1−i t =

∫∞
0 eitse−s ds

Alternative approaches to showing that the functions in (b) and (c) are positive definite are
in (7.2.P12 and P14).

7.1.P13 (a) If f is a positive definite function, show that f̄ and 1
2 ( f + f̄ ) = Re f are

positive definite functions. (b) Deduce from the preceding problem that g(t) = 1/(1 + t2)
is a positive definite function. (c) Is h(t) = i t/(1 + t2) a positive definite function?

7.1.P14 Let A ∈ Mn be positive semidefinite, and consider the bordered matrix B =[
A y
y∗ α

]
. If B is positive semidefinite, explain why y ∈ range A.

7.1.P15 Let f be a positive definite function and suppose that there is a positive real number
τ such that f (τ ) = f (0). Use the preceding problem to show that f is periodic with period
τ , that is, f (t) = f (t − τ ) for all real t .

7.1.P16 Let λ1, . . . , λn ∈ C be given and suppose that Re λ j > 0 for all j = 1, . . . , n.
Show that A = [(λi + λ̄ j )−1]n

i, j=1 is positive semidefinite, and it is positive definite if
λ1, . . . , λn are distinct. Conclude that the Hankel matrices A = [(i + j)−1]n

i, j=1 and B =
[(i + j − 1)−1]n

i, j=1 are positive definite.

7.1.P17 Let Jn be the n-by-n all-ones matrix; see (0.2.8). Show that x∗ Jn x = |x1 + · · · +
xn|2 and conclude that Jn is positive semidefinite for all n = 1, 2, . . . .

7.1.P18 (a) Suppose that 0 < α1 < · · · < αn and let A = [min{αi , α j }]n
i, j=1. Show that

A = α1 Jn + (α2 − α1)(01 ⊕ Jn−1)+(α3−α2)(02 ⊕ Jn−2)+· · · + (αn − αn−1)(0n−1 ⊕ J1)
and prove that A is positive definite. (b) Let β1, . . . , βn be positive real numbers, not
necessarily algebraically ordered and not necessarily distinct. Explain why the min matrix
[min{β i , β j }] is positive semidefinite and is positive definite if β i �= β j whenever i �= j .
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(c) Show that the reciprocal max matrix [(max{β i , β j })−1] is positive semidefinite and is
positive definite if β i �= β j whenever i �= j .

7.1.P19 Use the preceding problem and a limiting argument to show that the kernel
K (s, t) = min{s, t} is positive semidefinite on [0, N ] for any N > 0, that is,∫ N

0

∫ N

0
min{s, t} f̄ (s) f (t)ds dt ≥ 0 (7.1.15)

for all continuous complex-valued function f on [0, N ].

7.1.P20 Prove that
∫ N

0

∫ N
0 min{s, t} f̄ (s) f (t)ds dt = ∫ N

0

∣∣∣∫ N
t f (s)ds

∣∣∣2 dt for every contin-

uous complex valued function f on [0, N ] and use it to give an alternate proof of the
assertion in the preceding problem. Why does this proof show that K (s, t) = min{s, t} is
positive definite?

7.1.P21 Let A ∈ Mn have positive semidefinite Hermitian part. (a) Explain why the same is
true of S AS∗ for any nonsingular S ∈ Mn . (b) Explain why every block in the ∗congruence
canonical form of A has positive semidefinite Hermitian part. (c) Consider the three types
of ∗congruence canonical blocks listed in (4.5.21). Which of these blocks have positive
semidefinite Hermitian part? Show that the only Type 0 block with this property is [0];
no Type II block has this property; and the only Type I blocks with this property are [eiθ ]

with −π/2 ≤ θ ≤ π/2 and −i
[

0 1
1 i

]
=
[

0 −i
−i 1

]
. (d) Show that rank A = rank H (A) if

and only if the ∗congruence canonical form of A is the direct sum of a zero matrix and
blocks of the form [eiθ ] with −π/2 < θ < π/2. (e) Explain why H (A) is positive definite
if and only if there is a nonsingular S ∈ Mn such that

A = S diag(eiθ1 , . . . , eiθn )S∗, each θ j ∈ (−π/2, π/2) (7.1.15)

(f) If H (A) is positive definite, show that H (A−1) is positive definite. (g) Show that H (A)
is positive semidefinite if and only if A is ∗congruent to a block diagonal matrix of the form

(Ip + i�p) ⊕ (0q + i�q ) ⊕ (E2r + i F2r ) (7.1.16)

in which Ip ∈ Mp is an identity matrix, �p ∈ Mp is real diagonal, 0q ∈ Mq is a zero matrix,

�q = 0q1 ⊕ Iq2 ⊕ (−Iq3 ) ∈ Mq is an inertia matrix, E2r =
[

0 0
0 1

]
⊕ · · · ⊕

[
0 0
0 1

]
∈ M2r ,

and F2r =
[

0 1
1 0

]
⊕ · · · ⊕

[
0 1
1 0

]
∈ M2r . Moreover, this block diagonal matrix is unique

up to permutations of the diagonal entries of �q . (h) To what form does (7.1.16) reduce if
H (A) is positive definite? Explain how this form is consistent with (7.1.15).

7.1.P22 Let A ∈ Mn have positive semidefinite Hermitian part H (A). We claim that if
H (A2) is positive semidefinite, then rank A = rank H (A), and hence (7.1.12) ensures that
A has the row and column inclusion properties. Provide details: (a) Let r = rank H (A). After
a suitable unitary similarity, we may assume that A = � + i K , in which � = L ⊕ 0n−r ,

L ∈ Mr is positive diagonal, and K =
[

K11 K12
K ∗

12 K22

]
is Hermitian and partitioned conformally

to �. (b) The lower-right block of A2 is −K ∗
12 K12 − K 2

22, so K12 = 0 and K22 = 0 if H (A2)
is positive semidefinite. (c) A = (L + i K11) ⊕ 0n−r , so rank A = rank L = r .

7.1.P23 Consider A =
[

1 −2
2 1

]
. Show that H (A) is positive definite, so (7.1.13) ensures

that A has the row and column inclusion properties even though H (A2) is not positive
semidefinite.
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7.1.P24 Let A =
[

A11 A12
A∗

12 A22

]
∈ Mn be positive semidefinite. Use (7.1.10) to show that

rank A ≤ rank A11 + rank A22.

7.1.P25 Let A ∈ Mn be positive semidefinite, suppose that n = km, and partition A =
[Ai j ]k

i, j=1 as a k-by-k block matrix in which each block is m-by-m. We claim that the
compressed matrix T = [tr Ai j ]k

i, j=1 ∈ Mk is positive semidefinite. Provide details: (a)
Let e1, . . . , em be the standard basis of Cm and let e = e1 + · · · + em . For a given p ∈
{1, . . . , m}, describe the vector vec(epeT ) ∈ Cm2

; see (0.7.8). (b) For each p ∈ {1, . . . , m},
construct X p ∈ Mm2,m as follows: its pth column is vec(epeT ); all other columns are zero.
Explain why T =∑m

p=1 X∗
p AX p. (c) Explain why T is positive semidefinite; use (7.1.8)

and (7.1.3). For a different proof, and other compressions that preserves positive semidef-
initeness, see (7.2.P25). The compressed matrix T is known in the physics literature as a
partial trace of A.

7.1.P26 Let A ∈ Mn . Suppose that its Hermitian part H (A) is positive semidefinite and
rank A = rank H (A). Explain why there are lower triangular matrices L , L ′ ∈ Mn and upper
triangular matrices U, U ′ ∈ Mn such that L and U ′ are nonsingular and A = LU = L ′U ′.

7.1.P27 Let A, B ∈ Mn be positive semidefinite and let α ⊂ {1, . . . , n}. (a) Explain why
rank Ak = rank A for each k = 1, 2, . . . . (b) Use (7.1.10) to show that rank(AB)[α] ≤
min{rank A[α], rank B[α]} and rank A2[α] = rank A[α]. (c) Explain why rank A[α] =
rank A2[α] = rank A4[α] = · · · = rank A2k

[α] = · · · and show that rank A[α] = rank
Ak[α] for every k = 2, 3, . . . .

7.1.P28 This problem is a continuation of (4.5.P21). Let A ∈ Mn be positive semidefinite

and partitioned as A =
[

B C
C∗ D

]
. If B is singular, we cannot form its Schur complement,

but the column inclusion property permits us to form a generalized Schur complement. (a)
Let C = B X and verify the ∗congruence

[
I 0

−X∗ I

] [
B C

C∗ D

] [
I −X
0 I

]
=
[

B 0
0 D − X∗B X

]
(b) The matrix X whose existence is guaranteed by the column inclusion property need not
be unique. However, if C = BY , show that X∗B X = Y ∗BY , so the matrix S̃ = D − X∗B X
is well-defined, independent of the choice of X such that C = B X . (c) If B is nonsingular,
show that S̃ = S = D − C∗B−1C , which is the Schur complement of B in A. Consequently,
it is reasonable to call S̃ the generalized Schur complement of B in A. (d) Explain why
S̃ = D − X∗B X is positive semidefinite, and why rank A = rank B + rank S̃. (e) Why may
we regard the two statements in (d) as analogs of the identities (4.5.28) in Haynsworth’s
theorem? For a further development of these ideas, see (7.3.P8).

7.1.P29 Let A = H1 + i K1, B = H2 + i K2 ∈ Mn , in which H1, H2, K1, and K2 are
Hermitian, and H1 and H2 are positive definite. Use the ∗congruence canonical form
(7.1.15) to show that the following are equivalent:

(a) A and B are ∗congruent.
(b) A−∗A and B−∗B are similar.
(c) A−∗A and B−∗B have the same eigenvalues.
(d) H−1

1 K1 and H−1
2 K2 are similar.

(e) H−1
1 K1 and H−1

2 K2 have the same eigenvalues.
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7.1.P30 Let A ∈ Mn have positive definite Hermitian part. Show that A−∗A is similar to a
unitary matrix and that I + A−∗A is nonsingular.

7.2 Characterizations and properties

Positive definite and semidefinite matrices can be characterized in many different,
sometimes surprising, ways. We have already met the first of these characterizations
as (4.1.8).

Theorem 7.2.1. A Hermitian matrix is positive semidefinite if and only if all of its
eigenvalues are nonnegative. It is positive definite if and only if all of its eigenvalues
are positive.

Exercise. Deduce from the preceding theorem that a nonsingular Hermitian
matrix A ∈ Mn is positive definite if and only if A−1 is positive definite.

Exercise. Let A ∈ Mn be positive semidefinite. Use (7.2.1) to show that A is
positive definite if and only if rank A = n.

Corollary 7.2.2. If A ∈ Mn is positive semidefinite, then so is each Ak, k = 1, 2, . . . .

Proof. If the eigenvalues of A are λ1, . . . , λn , then the eigenvalues of Ak are λk
1, . . . , λ

k
n .

The latter are nonnegative if the former are. �

Corollary 7.2.3. Suppose that A = [ai j ] ∈ Mn is Hermitian and strictly diagonally
dominant. If aii > 0 for all i = 1, 2, . . . , n, then A is positive definite.

Proof. This is (6.1.10(c)). The conditions imply that each Geršgorin disc for A lies in
the open right half-plane. Since the eigenvalues of a Hermitian matrix are all real, the
eigenvalues of A must all be positive. �

The next characterization is not very practical for verifying positive definiteness
computationally, but it can be of theoretical utility.

Corollary 7.2.4. Let A ∈ Mn be Hermitian, and let pA(t) = antn + an−1tn−1 + · · · +
an−mtn−m be its characteristic polynomial, in which an = 1, an−m �= 0, and 1 ≤ m ≤ n.
Then A is positive semidefinite if and only if akak+1 < 0 for each k = n − m, . . . , n − 1.

Proof. The hypothesis is that the leading coefficients of pA(t) are nonzero and alternate
strictly in sign. If this condition is met, pA(t) has no negative zeroes, so A has only
nonnegative eigenvalues. Conversely, if A is positive semidefinite, denote its positive
eigenvalues by λ1, . . . , λm ; its remaining n − m eigenvalues are all zero. An induction
argument shows that the signs of the coefficients of the polynomials (t − λ1), (t −
λ1)(t − λ2), . . . , (t − λ1)(t − λ2) · · · (t − λm) alternate strictly; multiplying by tn−m

gives pA(t). �
The following theorem gives a converse to the observation in (7.1.5) about principal

minors of a positive semidefinite matrix, with a perhaps surprising statement in the
positive definite case.
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Theorem 7.2.5 (Sylvester’s criterion). Let A ∈ Mn be Hermitian.

(a) If every principal minor of A (including det A) is nonnegative, then A is positive
semidefinite.

(b) If every leading (respectively, trailing) principal minor of A is positive (including
det A), then A is positive definite.

(c) If the first n − 1 leading principal minors (respectively, the last n − 1 trailing
principal minors) of A are positive and det A ≥ 0, then A is positive semi-
definite.

Proof. (a) Let r = rank A. If r = 0, there is nothing to prove, so we suppose that
r ≥ 1. The hypothesis ensures that Ek(A), the sum of all principal minors of size k, is
nonnegative for each k = 1, . . . , n. Every Hermitian matrix is rank principal (0.7.6), so
some r -by-r principal submatrix of A is nonsingular; it follows that Er (A) is positive.
If k > r , every minor of size k is zero, so Ek = 0. The representation (1.2.13) for the
characteristic polynomial of A is

pA(t) = tn−r (tr − E1tr−1 + · · · + (−1)r−1 Er−1t + (−1)r Er )

in which Er > 0 and the hypothesis implies that Ek is nonnegative for each k =
1, . . . , r − 1. The coefficient sign pattern of the polynomial p(t)/tn−m ensures that it
has no zeroes in the interval (−∞, 0]; all of its zeroes must be positive. We conclude
that the eigenvalues of A are nonnegative, so it is positive semidefinite.
(b) Let Ak denote the leading principal submatrix A[{1, . . . , k}], k = 1, . . . , n. If
det A1 > 0, then A1 is positive definite. If k ∈ {1, . . . , n − 1} and Ak is positive definite,
then all of its eigenvalues are positive; the interlacing inequalities (4.3.18) ensure that
all the eigenvalues of Ak+1 are positive except perhaps for its smallest eigenvalue.
But the product of all the eigenvalues of Ak+1 is det Ak+1, which is positive, so we
can conclude that the smallest eigenvalue of Ak+1 is positive and Ak+1 is positive
definite. It follows by induction that An = A is positive definite. The statement about
trailing principal minors follows from the statement about leading principal minors and
a suitable permutation similarity of A.
(c) The hypothesis and the interlacing argument in (b) ensure that A has at least
n − 1 positive eigenvalues. If det A = 0, then the remaining eigenvalue is zero, so A
is positive semidefinite. �

Exercise. The leading principal minors of the Hermitian matrix
[

0 0
0 −1

]
are non-

negative, but it is not positive semidefinite. What is going on here? Does this
contradict the preceding theorem?

Every positive real number has a unique positive kth root for each k = 1, 2, . . . .

Positive definite matrices have a corresponding property.

Theorem 7.2.6. Let A ∈ Mn be Hermitian and positive semidefinite, let r = rankA,
and let k ∈ {2, 3, . . .}.

(a) There is a unique Hermitian positive semidefinite matrix B such that Bk = A.
(b) There is a polynomial p with real coefficients such that B = p(A). Consequently,

B commutes with any matrix that commutes with A.
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(c) range A = range B, so rank A = rankB.
(d) B is real if A is real.

Proof. Represent A = U�U ∗, in which U = [U1 U2] is unitary, U1 ∈ Mn,r , � =
diag(λ1, . . . , λr ) ⊕ 0n−r , and λ1, . . . , λr are positive. Define B = U�1/kU ∗, in which
�1/k = diag(+λ

1/k
1 , . . . ,+λ1/k

r ) ⊕ 0n−r and the unique nonnegative kth root is taken
in each case. Then B is Hermitian and positive semidefinite, and Bk = A. Observe that
range A = range B is the column space of U1, so rank A = rank B = r . If A is real and
positive semidefinite, then U may be chosen to be real orthogonal, so our construction
produces a real matrix B in this case. It remains to address the questions of uniqueness
and commutativity.

Let p be a polynomial such that p(λi ) = +λ
1/k
i , i = 1, . . . , r and p(0) = 0 if r < n;

see (0.9.11), which ensures that p has real coefficients. Then p(�) = �1/k and
p(A) = p(U�U ∗) = U p(�)U ∗ = U�1/kU ∗ = B, which verifies (b). If C is a pos-
itive semidefinite Hermitian matrix such that Ck = A, then B = p(A) = p(Ck) and
hence B commutes with C . Theorem 4.1.6 ensures that there is a unitary V that
simultaneously diagonalizes B and C , so B = V �1V ∗and C = V �2V ∗, in which
�1, �2 ∈ Mn are nonnegative diagonal. Since Bk = A = Ck , we deduce that �k

1 = �k
2.

Uniqueness of the nonnegative kth root of a nonnegative number implies that
�1 = (�k

1)1/k = (�k
2)1/k = �2, so B = C . �

We denote the unique positive (semi)definite square root of a positive (semi)definite
matrix A by A1/2; A1/k denotes the unique positive (semi)definite kth root of A for
each k = 1, 2, . . . . See (7.2.P20) for an application of the uniqueness assertion in the
preceding theorem.

Exercise. Use the construction in the proof of the preceding theorem to compute[
5 4
4 5

]1/2
.

Exercise. If A is positive definite, show that (A1/2)−1 = (A−1)1/2.

Theorem 7.2.7. Let A ∈ Mn be Hermitian.

(a) A is positive semidefinite if and only if there is a B ∈ Mm,n such that A = B∗B.
(b) If A = B∗B with B ∈ Mm,n, and if x ∈ Cn, then Ax = 0 if and only if Bx = 0,

so nullspace A = nullspace B and rank A = rank B.
(c) If A = B∗B with B ∈ Mm,n, then A is positive definite if and only if B has full

column rank.

Proof. (a) If A = B∗B for some B ∈ Mm,n , then x∗Ax = x∗B∗Bx = ‖Bx‖2
2 ≥ 0. The

asserted factorization can be achieved, for example, with B = A1/2 and m = n.
(b) If Ax = 0, then x∗Ax = ‖Bx‖2

2 = 0; if Bx = 0 then Ax = B∗Bx = 0 = 0, so A
and B have the same null spaces and hence the same nullity and rank.
(c) The nullity of A is zero if and only if the nullity of B is zero if and only if
rank B = n. �

See (7.2.P9) for a refinement of the preceding theorem.
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Corollary 7.2.8. A Hermitian matrix A is positive definite if and only if it is ∗congruent
to the identity.

Proof. This is simply a restatement of (7.2.7). �
Exercise. Let A ∈ Mn be positive definite and suppose that A = C∗C with C ∈
Mn . Show that there is a unitary V ∈ Mn such that C = V A1/2. Hint: Show that
A−1/2C∗C A−1/2 = (C A−1/2)∗(C A−1/2) = I .

A factorization A = B∗B of a positive semidefinite matrix can be achieved in various
ways. For example, every square matrix C has a Q R factorization (2.1.14), so it can be
written as C = Q R, in which Q is unitary, and R is upper triangular, has nonnegative
diagonal entries, and has the same rank as C . Then C∗C = (Q R)∗Q R = R∗Q∗Q R =
R∗R.

Corollary 7.2.9 (Cholesky factorization). Let A ∈ Mn be Hermitian. Then A is pos-
itive semidefinite (respectively, positive definite) if and only if there is a lower triangu-
lar matrix L ∈ Mn with nonnegative (respectively, positive) diagonal entries such that
A = L L∗. If A is positive definite, L is unique. If A is real, L may be taken to be real.

Proof. Let A1/2 = Q R be a Q R factorization and let L = R∗. Then A = A1/2 A1/2 =
R∗Q∗Q R = R∗R = L L∗. The asserted properties of L follow from the properties of
R stated in (2.1.14). �

Let v1, . . . , vm be vectors in an inner product space V with inner product 〈·, ·〉. The
Gram matrix of the vectors v1, . . . , vm with respect to the inner product 〈·, ·〉 is G =
[〈v j , vi 〉]m

i, j=1 ∈ Mm . If A ∈ Mn is positive semidefinite, partition A1/2 = [v1 . . . vn]
according to its columns and notice that A = A1/2 A1/2 = (A1/2)∗A1/2 = [v∗

i v j ] =
[〈v j , vi 〉]n

i, j=1, in which 〈·, ·〉 is the Euclidean inner product on Cn . Thus, every positive
semidefinite matrix is a Gram matrix. The following theorem provides another charac-
terization of positive semidefinite matrices by establishing the converse implication in
a wider context: a Gram matrix of vectors in any inner product space, finite dimensional
or not, is positive semidefinite.

Theorem 7.2.10. Let v1, . . . , vm be vectors in an inner product space V with inner
product 〈·, ·〉, and let G = [〈v j , vi 〉]m

i, j=1 ∈ Mm. Then

(a) G is Hermitian and positive semidefinite
(b) G is positive definite if and only if the vectors v1, . . . , vm are linearly independent
(c) rank G = dim span{v1, . . . , vm}

Proof. (a) Let ‖ · ‖ be the norm derived from the given inner product and let x = [xi ] ∈
Cm . The properties listed in (5.1.3) ensure that G is Hermitian and

x∗Gx =
m∑

i, j=1

〈v j , vi 〉x̄i x j =
m∑

i, j=1

〈x jv j , xivi 〉

=
〈

m∑
j=1

x jv j ,

m∑
i=1

xivi

〉
=
∥∥∥∥∥

m∑
i=1

xivi

∥∥∥∥∥
2

≥ 0 (7.2.11)

so G is positive semidefinite.



442 Positive definite and semidefinite matrices

(b) The inequality (7.2.11) is an equality if and only if
∑m

i=1 xivi = 0. This cannot
happen if x �= 0 and the vectors v1, . . . , vm are linearly independent; in this case G
is positive definite. Conversely, if x∗Gx > 0 whenever x �= 0, then

∥∥∑m
i=1 xivi

∥∥ �= 0
whenever x �= 0, which implies that the vectors v1, . . . , vm are linearly independent.
(c) Let r = rank G and let d = dim span{v1, . . . , vm}. Since G is rank principal, it has
a nonsingular, and hence positive definite, principal submatrix of size r . That principal
submatrix is the Gram matrix of r of the vectors vi , so (b) ensures that these vectors
are linearly independent. This means that r ≤ d. On the other hand, d of the vectors
vi are linearly independent, and the Gram matrix of these vectors (positive definite
by (b) again) is a principal submatrix of G. This means that d ≤ r . We conclude that
r = d. �

Exercise. Let A ∈ Mn be positive semidefinite and have rank r . Explain why there
are vectors v1, . . . , vn ∈ Cn such that rank[v1 . . . vn] = r and A = [v∗

i v j ]n
i, j=1,

which is a Gram matrix with respect to the standard inner product. Hint: See the
discussion preceding (7.2.10).

Exercise. If A ∈ Mn is the Gram matrix of the vectors v1, . . . , vn in an inner
product space, explain why each principal submatrix is the Gram matrix of a list
of vectors chosen from the list v1, . . . , vn .

Exercise. With (7.2.10) in mind, discuss (7.1.P25) as well as (7.1.P12 and P16).
In each case, what is the vector space V , the inner product 〈·, ·〉, the vectors vi ,
and the Gram matrix G?

Problems

7.2.P1 Let A ∈ Mn be Hermitian. Show that A2k is positive semidefinite for all k = 1, 2, . . .

and eA is positive definite. See the exercises and text following (5.6.15).

7.2.P2 Let A ∈ Mn be positive semidefinite and let x ∈ Cn . Show that x∗ Ax = ∥∥A1/2x
∥∥2

2
and deduce (7.1.6) from this identity.

7.2.P3 Let A = [min{i, j}]n
i, j=1 and let R be the n-by-n upper triangular matrix with entries

+1 on and above the main diagonal. (a) Show that A = RT R (an LU factorization of A)
and conclude that A is positive definite. (b) Show that R−1 is the upper bidiagonal matrix
with +1 entries on the main diagonal and −1 entries on the first superdiagonal. (c) Show
that A−1 = R−1 R−T is the tridiagonal matrix with +2 entries on the main diagonal and −1
entries on the first subdiagonal and first superdiagonal.

7.2.P4 If A ∈ Mn is Hermitian and has positive leading principal minors, show that, in the
L DU factorization of A described in (3.5.6b), U = L∗ and D is positive diagonal. Use the
factorization A = L DL∗ to give a proof of (7.2.5b) that does not involve interlacing.

7.2.P5 (a) Verify that L1 =
[

2 0
1

√
3

]
provides a Cholesky factorization (7.2.9) of the positive

definite matrix A1 =
[

4 2
2 4

]
, and that 4 · 4 ≥ 22 · (

√
3)2 = det A1. (b) Let A = [ai j ] ∈ Mn

be positive definite and let A = L L∗ be a Cholesky factorization. Let L = [ci j ], so ci j = 0 if
j > i . Show that det A = c2

11 · · · c2
nn . Show that each aii = |ci1|2 + · · · + |ci,i−1|2 + c2

i i ≥
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c2
i i , with equality if and only if cik = 0 for each k = 1, . . . , i − 1. Deduce Hadamard’s

inequality: det A ≤ a11 · · · ann , with equality if and only if A is diagonal.

7.2.P6 Let n ≥ 2, let A ∈ Mn be Hermitian, and let B ∈ Mn−1 be a leading principal
submatrix of A. If B is positive semidefinite and rank B = rank A, show that A is positive
semidefinite.

7.2.P7 What are necessary and sufficient conditions on the signs of its minors for a
Hermitian matrix A to be negative definite (semidefinite)?

7.2.P8 A positive semidefinite or positive definite matrix can have a Hermitian, but not
positive semidefinite, square root. It can also have non-Hermitian square roots. Compute

the squares of the matrices
[

a b
−a2/b −a

]
for any a, b ∈ C with b �= 0, and

[
1 1
0 −1

]
.

7.2.P9 The representation in (7.2.7) can always be achieved with a matrix B that has full
row rank and orthogonal rows. (a) Suppose that A ∈ Mn is positive semidefinite and let
r = rank A. Let A = U�U ∗, in which U is unitary, � = �r ⊕ 0n−r , and �r is positive
diagonal. Partition U = [U1 U2] conformally to �. Show that A = B∗B in which B =
�

1/2
r U ∗

1 ∈ Mr,n has full row rank and orthogonal rows. (b) Deduce that a rank one positive
semidefinite matrix may always be written in the form xx∗ for some x ∈ Cn .

7.2.P10 Let A ∈ Mn . Theorem 4.1.7 says that A is similar to A∗ via a Hermitian matrix
if and only if A is similar to a real matrix. Show that A is similar to A∗ via a Hermitian
positive definite matrix if and only if A is similar to a real diagonal matrix.

7.2.P11 Let A ∈ Mn be Hermitian. (a) Show that A is positive definite if and only if adj A is
positive definite and det A > 0. (b) If n is odd, show that adj(−In) is positive semidefinite,
so the determinant condition in (a) cannot be omitted. (c) If A is positive semidefinite, show
that adj A is positive semidefinite and det A ≥ 0. (d) If adj A is positive semidefinite and
det A ≥ 0, show by example that A need not be positive semidefinite.

7.2.P12 Let r ∈ C be nonzero and consider the symmetric Toeplitz matrix M(r, n) =
[r |i− j |]n

i, j=1 ∈ Mn(R), sometimes called a Markovian matrix. Evaluate Dn = det M(r, n)
as follows: (a) Let Mi j denote the submatrix of M(r, n) obtained by deleting row i and
column j . Show that det Mi j = 0 whenever |i − j | ≥ 2 and explain why adj M(r, n) is
tridiagonal and symmetric. (b) Show that D2 = 1 − r2 and use (a) to show that Dn+1 =
Dn − r2 Dn = (1 − r2)Dn = (1 − r2)n by expanding according to cofactors of the first row.
(c) For n ≥ 2, conclude that M(r, n) is nonsingular for all nonzero complex r �= ±1. (d)
For r ∈ (−1, 1) and n ≥ 2, use (7.2.5) to show that the real symmetric matrix M(r, n)
is positive definite. (e) Show that f (t) = e−|t | is a positive definite function on R; see
(7.1.P7).

7.2.P13 If r �= ±1, explain why the Markovian matrix M(r, n) in the preceding problem
has an inverse that is symmetric and tridiagonal. Show that (1 − r2)M(r, n)−1 has the entry
−r in every position of the superdiagonal and subdiagonal; it has main diagonal entries
1, 1 + r2, . . . , 1 + r2, 1.

7.2.P14 Let r ∈ C be nonzero and consider the symmetric Toeplitz matrix G(r, n) =
[r (i− j)2

]n
i, j=1 ∈ Mn , sometimes called a Gaussian matrix. Evaluate Dn = det G(r, n) as

follows: (a) For j = n, n − 1, . . . , 2, subtract r2 j−3 times column j − 1 from column j to
produce zero entries in positions (1, 2), . . . , (1, n). If min{i, j} ≥ 2, the new entry in po-
sition i, j is 1 − r2(i−1) times the original entry. (b) Repeat this elimination process n − 2
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times to obtain a lower triangular matrix. (c) Conclude that Dn =∏n−1
k=1(1 − r2k)Dn−1 =∏n−1

k=1(1 − r2k)n−k . (d) For n ≥ 2, conclude that G(r, n) is nonsingular for all nonzero
r ∈ C such that r /∈ {z ∈ C : z2k = 1, k = 1, . . . , n − 1}. (e) For r ∈ (−1, 1) and n ≥ 2,
use (7.2.5) to show that the real symmetric matrix G(r, n) is positive definite. (f ) Show that
f (t) = e−t2

is a positive definite function on R.

7.2.P15 Let A ∈ Mn be positive semidefinite and have ordered eigenvalues μ1 ≤ · · ·
≤ μn . Let z ∈ Cn be nonzero. (a) Verify the identities A + zz∗ = [ A1/2 z ]

[
A1/2

z∗

]
and[

A1/2

z∗

]
[ A1/2 z ] =

[
A A1/2z

z∗ A1/2 z∗z

]
. Denote the latter matrix by B and let λ1 ≤ λ2 ≤ · · · ≤

λn ≤ λn+1 be its ordered eigenvalues. (b) Deduce from (1.3.22) that λ2 ≤ · · · ≤ λn ≤ λn+1

are the ordered eigenvalues of A + zz∗ and λ1 = 0. (c) Explain why each of (4.3.9) and
(4.3.17) ensures that the interlacing inequalities

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ μn−1 ≤ λn ≤ μn ≤ λn+1

are valid. (d) Explain why each of (4.3.9) and (4.3.17) implies the other.

7.2.P16 Let A ∈ Mn be positive definite and not a scalar matrix. Show that the condition
number κ(A + t I ) with respect to the spectral norm is a strictly monotone decreasing
convex function of t ∈ [0,∞).

7.2.P17 Let A, B ∈ Mn and suppose that A is positive definite. Show that C = A + B +
B∗ + B A−1 B∗ is positive semidefinite. What is C if n = 1 and why is it nonnegative in
this case?

7.2.P18 If A ∈ Mn is nonsingular, show that B = A + A−∗ is nonsingular.

7.2.P19 Let A ∈ Mn be positive definite and let x ∈ Cn be a unit vector. (a) Show
that (x∗ Ax)−1 ≤ x∗ A−1x , with equality if and only if x is an eigenvector of A. (b) If
A = [ai j ] is a nonsingular correlation matrix and A−1 = [αi j ], explain why each αi i ≥ 1,
with equality for some i = p if and only if apj = a jp = 0 for all j = 1, . . . , n such that
j �= p.

7.2.P20 Let A, B ∈ Mn be positive definite. Theorem 4.5.8 says that there is a nonsingular
S ∈ Mn such that A = SBS∗. (a) Show that one may choose S = A1/2 B−1/2, which need
not be Hermitian. (b) Show that one may also choose S = B−1/2(B1/2 AB1/2)1/2 B−1/2, and
this choice is positive definite. (c) Use (7.2.6a) to show that there is a unique positive
definite S such that A = SBS∗.

7.2.P21 Let A, B ∈ Mn be positive semidefinite. (a) If A and B commute, show that AB
is Hermitian and positive semidefinite. (b) Give an example to show that AB need not be
Hermitian. (c) Use (1.3.22) to explain why AB and A1/2 B A1/2 have the same eigenvalues,
and the latter matrix has real nonnegative eigenvalues. Why doesn’t this reasoning permit
us to conclude that AB is diagonalizable? Nevertheless, see (7.6.2b). (d) If A is positive
definite, explain why AB is similar to A1/2 B A1/2, which is similar to a nonnegative diagonal
matrix.

7.2.P22 Let A, G, H ∈ Mn be positive definite and suppose that G AG = H AH . We claim
that G = H . Provide details: (a) Let X = A1/2G and Y = A1/2 H . Then X∗X = Y ∗Y . (b)
(Y X−1)−1 = (Y X−1)∗, so Y X−1 = A1/2G H−1 A−1/2 is unitary. (c) Every eigenvalue of
G H−1 has modulus one. (d) G H−1 is diagonalizable and each of its eigenvalues is positive.
(e) Every eigenvalue of G H−1 is +1 and hence G H−1 = I .
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7.2.P23 Let A, B ∈ Mn be positive definite. The matrix

G(A, B) = A1/2(A−1/2 B A−1/2)1/2 A1/2

is the geometric mean of A and B. (a) Why is G(A, B) positive definite? (b) If A and
B commute, show that G(A, B) = A1/2 B1/2 = B1/2 A1/2 = G(B, A). (c) Show that X =
G(A, B) is the unique solution of the equation X A−1 X = B. What is X if n = 1? (d) Show
that X A−1 X = B if and only if X B−1 X = A, and conclude that G(A, B) = G(B, A). (e)
Show that G(A, Ā) = G(A, AT ) is real. (f ) Show that G(A, A−T ) = G(A, Ā−1) is complex
orthogonal and coninvolutory.

7.2.P24 Let A ∈ Mn be positive semidefinite. Represent A = X∗X as the Gram matrix of
the columns of X ∈ Mn; see (7.2.7a). Let k ∈ {1, . . . , n}. (a) Explain why every principal
minor of A of size k is zero if and only if every list of k vectors chosen from the columns
of X is linearly dependent. (b) If every principal minor of A of size k is zero, show that

rank A < k and every principal minor of A of size m ≥ k is zero. (c) Consider A =
[

0 1
1 0

]
and explain why the assertion in (b) need not be correct if A is Hermitian but not positive
semidefinite.

7.2.P25 Let A ∈ Mn be positive semidefinite, suppose that n = km, and partition A =
[Ai j ]k

i, j=1 as a k-by-k block matrix in which each block is m-by-m. Let C p(Ai j ) denote
the pth compound matrix, p ∈ {1, . . . , m}; see (0.8.1). Recall that tr C p(Ai j ) = E p(Ai j );
see (2.3.P12). We claim that the compressed matrices T = [tr Ai j ]k

i, j=1 ∈ Mk , Cp =
[C p(Ai j )]k

i, j=1 ∈ Mk , Ep = [E p(Ai j )]k
i, j=1, and D = [det Ai j ]k

i, j=1 are all positive semidef-
inite. Provide details: (a) Let A = B∗B, in which B ∈ Mn . Partition B = [B1 . . . Bk] in
which each B j ∈ Mn,m . (b) Show thatT = [tr(B∗

i B j )]k
i, j=1, explain whyT is a Gram matrix,

and conclude that it is positive semidefinite. Compare with (7.1.P25). (c) Use the multi-
plicativity property of the pth compound matrix to explain why Cp = [C p(B∗

i B j )]k
i, j=1 =

[C p(Bi )∗C p(B j )]k
i, j=1 is a Gram matrix and conclude that it is positive semidefinite. (d)

Combine the results in (b) and (c) to show that Ep is positive semidefinite. (e) Observe that
D = Em and conclude that it is positive semidefinite.

7.2.P26 Let A, B ∈ Mn be positive semidefinite. Show that (a) 0 ≤ tr AB ≤ ‖|A‖|2 tr B.
(b)

√
tr AB ≤ √

tr A
√

tr B ≤ 1
2 (tr A + tr B).

7.2.P27 Let A1, . . . , Am ∈ Mn be positive semidefinite. Show that
∥∥∑m

i=1 Ai

∥∥2
2 ≥∑m

i=1 ‖Ai‖2
2.

7.2.P28 Let A ∈ Mn be positive semidefinite and let A = B∗B be any representation of
the form guaranteed in (7.2.7), with B = [b1 . . . bn]. (a) Show that A is a correlation
matrix if and only if each b j is a unit vector. (b) A vector x = [xi ] ∈ Cn is balanced
if |xi | ≤

∑
j �=i |x j | for each i = 1, . . . , n. If A is a correlation matrix, show that every

vector in its null space is balanced. (c) Show that every main diagonal entry of A = [ai j ]
is positive if and only if each b j �= 0. (d) If every main diagonal entry of A is positive,
D = diag(

√
a11, . . . ,

√
ann), and x ∈ nullspace A, show that Dx is a balanced vector.

7.2.P29 Let n ≥ 2 and let A = [ai j ] ∈ Mn be a correlation matrix. (a) Explain why |ai j | ≤ 1
for every pair i, j of distinct indices, with strict inequality if A is positive definite. (b) Use
(6.1.1) to show that σ (A) ⊂ [0, n]. Consider the example A = Jn and explain why no
smaller interval contains every eigenvalue of every n-by-n correlation matrix. (c) If A is
positive definite, show that λ ∈ (0, n). (d) Suppose that A is tridiagonal. (i) Use (6.1.1) to
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show that λ ∈ [0, 3]. (ii) Use (1.4.P4) to show that λ ∈ [0, 2], that λ ∈ σ (A) if and only if
2 − λ ∈ σ (A), and that λ = 1 is an eigenvalue of A if n is odd. (iii) Explain why λ = 2
is an eigenvalue of A if and only if A is singular and conclude that σ (A) ⊂ (0, 2) if A is
positive definite.

7.2.P30 Let A, B ∈ Mn be Hermitian. (a) If A is positive definite, show that AB is similar to
a real diagonal matrix. Show that the numbers of positive, negative, and zero eigenvalues of
AB and B are the same. (b) Give an example to show that AB need not be diagonalizable
if A is positive semidefinite and singular. (c) If A is positive semidefinite, explain why
tr(AB) = tr(A1/2 B A1/2) is real.

7.2.P31 Let A = [ai j ] ∈ Mn(R) be symmetric and positive definite, and suppose that ai j ≤
0 if i �= j . We claim that A−1 has nonnegative entries. Provide details: (a) Order the
eigenvalues of A as 0 < λ1 ≤ · · · ≤ λn and let μ ≥ max{λn, max1≤i≤n aii }. Then B = μI −
A has nonnegative entries; its eigenvalues are μ − λ1 ≥ · · · ≥ μ − λn ≥ 0. (b) ρ(B) =
μ − λ1 < μ. (c) A−1 = μ−1(I − μ−1 B)−1 = μ−1 ∑∞

k=0 μ−k Bk ≥ 0. For a generalization
(same conclusion but a much weaker hypothesis), see (8.3.P15).

7.2.P32 Let 〈·, ·〉 be an inner product on Cn , letB = {e1, . . . , en} be the standard orthonor-
mal basis for Cn , and let G ∈ Mn denote the Gram matrix of B with respect to the in-
ner product 〈·, ·〉. Show that 〈x, y〉 = y∗Gx for all x, y ∈ Cn . Conclude that a function
〈·, ·〉 : Cn × Cn → Cn is an inner product if and only if there is a positive definite matrix
G such that 〈x, y〉 = y∗Gx for all x, y ∈ Cn .

7.2.P33 The Jordan product of A, B ∈ Mn is ]A, B[ = AB + B A. The commutator of A
and B is [A, B] = AB − B A, so the Jordan product is sometimes called the anticommuta-
tor. Let A and B be Hermitian. (a) Show that ]A, B[ is Hermitian, so it has real eigenvalues
and a real trace. (b) If A and B are positive definite, show that tr ]A, B[ > 0, but consider

A =
[

20 0
0 1

]
and B =

[
2 1
1 2

]
and conclude that ]A, B[ can have some negative eigenvalues.

(c) Show that [A, B] is skew Hermitian, has pure imaginary eigenvalues, and has trace
zero.

Problems (7.2.P34 to P36) explore some ideas that arise in studying finite-dimensional
quantum systems.

7.2.P34 Let R ∈ Mn be a Hermitian positive semidefinite matrix such that tr R = 1 (a
density matrix), and define the function CovR(·, ·) : Mn × Mn → C by

CovR(X, Y ) = tr(R XY ∗) − (tr(R X ))(tr(RY ∗))

(the covariance of X and Y in the state R). (a) Explain why
∥∥R1/2

∥∥
2 = 1 (the Frobenius

norm), and why R1/2 = R if and only if rank R = 1 if and only if R = uu∗ for some
Euclidean unit vector u. If rank R = 1, our quantum system is in a pure state; if rank R > 1
it is in a mixed state. The expression tr(R X ) is interpreted as the average (mean) of X in the
state R. (b) Show that CovR(X, Y ) = 〈R1/2 X, R1/2Y 〉F − 〈R1/2 X, R1/2〉F 〈R1/2, R1/2Y 〉F

(the Frobenius inner product). (c) Show that CovR(·, ·) is sesquilinear and CovR(X, X )
≥ 0, so CovR(·, ·) is a semi-inner product on the complex vector space Mn . Show that
CovR(λI, μI ) = 0 and CovR(X − λI, Y − μI ) = CovR(X, Y ) for all λ,μ ∈ C. (d) Define
VarR(X ) = CovR(X, X ) (the variance of X in the state R). Show that

VarR(X ) = tr(R X X∗) − | tr(R X )|2
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This variance is interpreted as the average of X X∗ minus the absolute square of the average
of X (both in the state R). (e) Use the Cauchy–Schwarz inequality (5.1.8) to explain why

VarR(X ) VarR(Y ) ≥ |CovR(X, Y )|2 (7.2.12)

7.2.P35 (Continuation; same notation) Let A, B ∈ Mn be Hermitian (the observables of
our quantum system). Let [A, B] and ]A, B[ be, respectively, the commutator and Jordan
product of A and B. (a) Show that

CovR(A, B) = tr(R AB) − (tr(R A))(tr(RB))

in which both averages tr(R A) and tr(RB) are real. (b) Show that

Im CovR(A, B) = 1

2i
(tr(R AB) − tr(RB A)) = 1

2i
tr(R[A, B])

which reflects the average of the commutator in the state R and is interpreted as a measure
of noncommutativity of the observables A and B in the state R. (c) Let A0 = A − (tr(R A))I
and B0 = B − (tr(RB))I . Verify that tr(R A0) = tr(RB0) = 0 (mean zero in the state R).
Show that tr(R ]A0, B0[) = tr(R ]A, B[) − 2(tr(R A))(tr(RB)). (d) Show that

Re CovR(A, B) = 1

2
tr(R ]A0, B0[) = 1

2
(CovR(A, B) + CovR(B, A))

(e) Explain why the inequality

VarR(A) VarR(B) ≥ 1

4
| tr(R[A, B])|2 + 1

4
(CovR(A, B) + CovR(B, A))2 (7.2.13)

is just an elaboration of the Cauchy–Schwarz inequality (7.2.12) associated with the semi-
inner product CovR(·, ·). This is the Schrödinger uncertainty principle; it implies the weaker
inequality

VarR(A) VarR(B) ≥ 1

4
| tr(R[A, B])|2 (7.2.14)

which is the Heisenberg uncertainty principle. (f ) If AR = λR for some real λ (R is an
eigenstate of A), show that VarR(A) = 0. Explain why every density matrix is an eigenstate
of a scalar matrix.

7.2.P36 (Continuation; same notation) Define the function CorrR(·.·) : Mn × Mn → C by

CorrR(X, Y ) = tr(R XY ∗) − tr(R1/2 X R1/2Y ∗)

(the Wigner–Yanase correlation). Define IR(X ) = CorrR(X, X ) (the Wigner-Yanase skew
information),

so

IR(X ) = tr(R X X∗) − tr(R1/2 X R1/2 X∗)

(a) Show that IR(X ) is real. (b) Show that

CorrR(X, Y ) = 〈R1/2 X, R1/2Y 〉F − 〈R1/2 X, Y R1/2〉F

and

IR(X ) = ∥∥R1/2 X
∥∥2

2 − 〈R1/2 X, X R1/2〉F ≥ ∥∥R1/2 X
∥∥2

2 −
∥∥R1/2 X

∥∥
2

∥∥X R1/2
∥∥

2
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(c) Consider R = diag(4, 9) and show that IR(J2(0)) = −2. The problem here is that∥∥J2(0)R1/2
∥∥

2 >
∥∥R1/2 J2(0)

∥∥
2. (d) Explain why CorrR(·, ·) is a sesquilinear form on

Mn that is not a semi-inner product on the complex vector space Mn . Show that
CorrR(λI, μI ) = 0 and CorrR(X − λI, Y − μI ) = CorrR(X, Y ) for all λ, μ ∈ C. (e)
If X ∈ Mn is normal, show that IR(X ) ≥ 0. (f) Show that CorrR(X, Y ) = CovR(X, Y )
if rank R = 1; see (7.2.P34(a)). (g) Now let A, B ∈ Mn be Hermitian, so IR(A) is real
and nonnegative; it is regarded as a measure of the information content of the density
matrix R with respect to an observable A. (h) Explain why Hn = {A ∈ Mn : A = A∗}
is a real vector space. (i) Explain why Re CorrR(·, ·) is a bilinear function on the real
vector space Hn and Re CorrR(A, A) ≥ 0, so Re CorrR(·, ·) is a semi-inner product on
Hn . (j) Show that

IR(A) = tr(R A2) − tr((R1/2 A)2) = −1

2
tr([R1/2, A]2) (7.2.15)

Re CorrR(A, B) = 1

2
(CorrR(A, B) + CorrR(B, A))

= 1

4
(IR(A + B) − IR(A − B)) (7.2.16)

and

Im CorrR(A, B) = 1

2i
(CorrR(A, B) − CorrR(B, A))

= 1

2i
tr(R[A, B]) = Im CovR(A, B) (7.2.17)

(k) Use the Cauchy-Schwarz inequality to show that

IR(A)Ir (B) ≥ 1

4
(CorrR(A, B) + CorrR(B, A))2

= 1

16
(IR(A + B) − IR(A − B))2 (7.2.18)

(l) Consider the function f : Mm × Mn → C defined by f (X, Y ) = tr(R1/2 X R12Y ∗).
Show that f is sesquilinear and f (X, X ) ≥ 0. (m) Explain why | f (X, I )|2 ≤
f (X, X ) f (I, I ) = f (X, X ) and hence | tr(R X )|2 ≤ tr(R1/2 X R1/2 X∗) for all X ∈ Mn .
(n) Explain why (tr(R A))2 ≤ tr((R1/2 A)2) and deduce that IR(A) ≤ VarR(A) for every
observable A (skew information is not greater than variance).

7.3 The polar and singular value decompositions

Each complex scalar can be factored as z = reiθ , in which r is real and nonnegative
(we may think of it as a 1-by-1 positive semidefinite matrix) and eiθ has modulus
one (we may think of it as a 1-by-1 unitary matrix). The factor r = |z| is always
uniquely determined, but the factor eiθ is uniquely determined only if z is nonzero. The
polar decomposition is a matrix analog of this scalar factorization; it is an immediate
consequence of the singular value decomposition.
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Theorem 7.3.1 (Polar decomposition). Let A ∈ Mn,m.

(a) If n < m, then A = PU, in which P ∈ Mn is positive semidefinite and U ∈ Mn,m

has orthonormal rows. The factor P = (AA∗)1/2 is uniquely determined; it is a
polynomial in AA∗. The factor U is uniquely determined if rank A = n.

(b) If n = m, then A = PU = U Q, in which P, Q ∈ Mn are positive semidefi-
nite and U ∈ Mn is unitary. The factors P = (AA∗)1/2 and Q = (A∗A)1/2 are
uniquely determined; P is a polynomial in AA∗ and Q is a polynomial in A∗A.
The factor U is uniquely determined if A is nonsingular.

(c) If n > m, then A = U Q, in which Q ∈ Mm is positive semidefinite and U ∈ Mn,m

has orthonormal columns. The factor Q = (A∗A)1/2 is uniquely determined; it
is a polynomial in A∗ A. The factor U is uniquely determined if rank A = m.

(d) If A is real, the factors P, Q, and U in (a), (b), and (c) may be taken to be real.

Proof. We adopt the notation of (2.6.3), which ensures that there are unitary matrices
V ∈ Mn and W ∈ Mm , and a nonnegative diagonal matrix � ∈ Mn,m with a special
structure, such that A = V �W ∗. Let q = min{n, m} and let �q ∈ Mq be the diagonal
matrix of singular values defined in (2.6.3.1).
(a) Let W = [W1 W2], in which W1 ∈ Mm,n . Then A = V �W ∗ = V [�n 0]W ∗ =
V �nW ∗

1 = (V �n V ∗)(V W ∗
1 ) = PU , in which P = V �n V ∗ is positive semidefi-

nite and U = V W ∗
1 has orthonormal rows. Since P2 = V �n�n V ∗ = V ��T V ∗ =

(V �W ∗)(W�T V ∗) = AA∗, P is uniquely determined as the (polynomial) positive
semidefinite square root of AA∗; see (7.2.6). If rank A = n, then �n and P are positive
definite, so U = P−1 A is uniquely determined.
(b) Let � = �n . We have A = V �W ∗ = (V �V ∗)(V W ∗) = (V W ∗)(W�W ∗), so if
we let P = V �V ∗, Q = W�W ∗, and U = V W ∗, then we have factorizations of the
required form. Since P2 = AA∗ and Q2 = A∗A, P and Q are uniquely determined as
the respective (polynomial) positive semidefinite square roots of AA∗ and A∗A. If A
is nonsingular, then U = P−1 A = AQ−1 is uniquely determined.
(c) Apply (a) to A∗.
(d) Corollary 2.6.7 ensures that the unitary factors V and W may be chosen to be real
orthogonal if A is real. The matrices P and Q are real if V and W are real. �

Exercise. Let x ∈ Cn = Mn,1 be nonzero. Show that its polar decomposition is
x = up, in which p = ‖x‖2 > 0 and u = x/‖x‖2.

Exercise. Let A ∈ Mn . Use the polar decomposition to show that AA∗ is unitarily
similar to A∗A. What unitary matrix provides the similarity?

Uniqueness of the positive semidefinite factors in the polar decompositions has
many important consequences. One of them (see (7.3.P33)) motivates the following
thin version of the singular value decomposition, which shows that any unitary matrix
that diagonalizes A∗A can be used as the right unitary factor in a singular value
decomposition of A.

Theorem 7.3.2. Let A ∈ Mn,m, let q = min{n, m}, and let r = rank A. Suppose
that A∗A = W�W ∗, in which W ∈ Mm is unitary, � = diag(σ 2

1, . . . , σ
2
r ) ⊕ 0m−r ,
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and σ 1 ≥ · · · ≥ σ r > 0 are the ordered positive singular values of A. Let �r =
diag(σ 1, . . . , σ r ) ∈ Mr and define � =

[
�r 0
0 0

]
∈ Mn,m.

(a) (thin SVD) Partition W = [W1 W2], in which W1 ∈ Mm,r . There is a V1 ∈ Mn,r

with orthonormal columns such that A = V1�r W ∗
1 .

(b) There is a unitary V ∈ Mn such that A = V �W ∗.
(c) If A is real, then the matrices W , V , and V1 in (a) and (b) may be taken to be

real.

Proof. (a) Let D = �r ⊕ Im−r ∈ Mm and partition X = AW D−1 = [V1 Z ] ∈ Mn,m , in
which V1 ∈ Mn,r . Then X∗X = D−1W ∗A∗AW D−1 = D−1�D−1 = Ir ⊕ 0m−r , and a
block product computation reveals that[

Ir 0
0 0m−r

]
= X∗X =

[
V ∗

1
Z∗

]
[V1 Z ] =

[
V ∗

1 V1 �
� Z∗Z

]
Therefore, Z = 0, V1 has orthonormal columns, and A = X DW ∗ = [V1 0](�r ⊕
In−r )

[
W ∗

1
W ∗

2

]
= V1�r W ∗

1 .

(b) Let V = [V1 V2] ∈ Mn be unitary and observe that A = V1�r W ∗
1 = [V1 V2][

�r 0
0 0

] [
W ∗

1
W ∗

2

]
= V �W ∗. (c) If A is real, then A∗A = AT A is real, so it can be

diagonalized by a real orthogonal matrix W . �

Associated with any A ∈ Mn,m is the Hermitian matrix A∗A, whose eigenvalues tell
us what the singular values of A are, but the relationship between the eigenvalues of
A∗A and the singular values of A is nonlinear. Another Hermitian matrix associated
with A has better properties in this regard.

Theorem 7.3.3. Let A ∈ Mn,m, let q = min{n, m}, let σ 1 ≥ · · · ≥ σ q be the ordered
singular values of A, and define the Hermitian matrix

A =
[

0 A
A∗ 0

]
(7.3.4)

The ordered eigenvalues of A are

−σ 1 ≤ · · · − σ q ≤ 0 = · · · = 0︸ ︷︷ ︸
|n−m|

≤ σ q ≤ · · · ≤ σ 1

Proof. Suppose that n ≥ m and let A = V �W ∗ be a singular value decomposition,
in which � = [�m 0]T ∈ Mn,m . Write the left unitary factor as V = [V1 V2] ∈ Mn , in
which V1 ∈ Mn,m . Let V̂ = V1/

√
2 and Ŵ = W/

√
2, and define

U =
[

V̂ −V̂ V2

Ŵ Ŵ 0m,n−m

]
∈ Mm+n

A calculation reveals that U is unitary and

A = U

⎡
⎣�m 0 0

0 −�m 0
0 0 0n−m

⎤
⎦U ∗

If m < n, consider A∗ instead. �
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The preceding theorem provides a bridge to link properties of eigenvalues of
Hermitian matrices with properties of singular values of arbitrary matrices; see
(7.3.P16) for an example of how to use that bridge. The following two corollaries
also make use of it. The first is a pair of singular value perturbation results that
are obtained from Weyl’s inequalities for eigenvalues of Hermitian matrices, and the
Hermitian Hoffman–Wielandt theorem; the second is an interlacing theorem that is
obtained from Cauchy’s interlacing theorem for bordered Hermitian matrices.

Corollary 7.3.5. Let A, B ∈ Mn,m and let q = min{m, n}. Let σ 1(A) ≥ · · · ≥ σ q (A)
and σ 1(B) ≥ · · · ≥ σ q (B) be the nonincreasingly ordered singular values of A and B,
respectively. Then

(a) |σ i (A) − σ i (B)| ≤ ‖|A − B‖|2 for each i = 1, . . . , q
(b)

∑q
i=1(σ i (A) − σ i (B))2 ≤ ‖A − B‖2

2

Proof. (a) Let E = A − B and apply (6.3.4.1) to A =
[

0 A
A∗ 0

]
and E =

[
0 E

E∗ 0

]
.

(b) Apply (6.3.9) to A and E ; see the exercise following (6.3.8). �

Exercise. Provide details for the proofs of the two parts of the preceding corollary.

Corollary 7.3.6. Let A ∈ Mn,m, let q = min{m, n}, and let Â be a matrix obtained from
A by deleting any one of its columns or rows. Let σ 1 ≥ · · · ≥ σ q and σ̂ 1 ≥ · · · ≥ σ̂ q

denote the respective ordered singular values of A and Â, in which we define σ̂ q = 0
if n ≥ m and a column is deleted, or if n ≤ m and a row is deleted. Then

σ 1 ≥ σ̂ 1 ≥ σ 2 ≥ σ̂ 2 ≥ · · · ≥ σ q ≥ σ̂ q (7.3.7)

Proof. Let A =
[

0 A
A∗ 0

]
. Deleting row i from A corresponds to deleting row i and

column i from A; deleting column j from A corresponds to deleting row n + j and
column n + j from A. Let Ad denote the result of performing either deletion on A.
Then (4.3.17) ensures that the eigenvalues of Ad interlace the eigenvalues of A. The
preceding theorem ensures that the interlacing inequalities between the eigenvalues of
A and Ad contain the inequalities (7.6.7). �

Exercise. Provide details for a proof of the preceding corollary.

The following analog of the Courant–Fischer theorem provides another example of
the close logical relationship between eigenvalues of Hermitian matrices and singular
values of arbitrary matrices.

Theorem 7.3.8. Let A ∈ Mn,m, let q = min{n, m}, let σ 1(A) ≥ · · · ≥ σ q (A) be the
ordered singular values of A, and let k ∈ {1, . . . , q}. Then

σ k(A) = min
{S:dim S=m−k+1}

max
{x :0�=x∈S}

‖Ax‖2

‖x‖2
(7.3.9)

and

σ k(A) = max
{S:dim S=k}

min
{x :0�=x∈S}

‖Ax‖2

‖x‖2
(7.3.10)
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Proof. These characterizations follow from (4.2.7) and (4.2.8). If λ1 ≤ λ2 ≤ · · · ≤ λm

are the ordered eigenvalues of the positive semidefinite Hermitian matrix A∗A, then
σ 2

k(A) = λm−k+1(A∗A), and (4.2.7) ensures that

σ 2
k(A) = λm−k+1(A∗A) = min

{S:dim S=m−k+1}
max

{x :0�=x∈S}
x∗A∗Ax

x∗x

= min
{S:dim S=m−k+1}

max
{x :0�=x∈S}

‖Ax‖2
2

‖x‖2
2

The second identity is proved in the same way. �

Exercise. Let A ∈ Mn . Explain why ‖Ax‖2 ≤ σ 1(A) ‖x‖2 for every x ∈ Cn .
Hint: (5.6.2b).

Exercise. Let A, B ∈ Mn . Use the preceding theorem to show that σ k(AB) ≤
σ 1(A)σ k(B) for each k = 1, . . . , n.

The final theorem of this section states a useful basic principle.

Theorem 7.3.11. Let n, p, and q be positive integers with p ≤ q. Let A ∈ Mp,n and
B ∈ Mq,n. Then A∗A = B∗B if and only if there is a V ∈ Mq,p with orthonormal
columns such that B = V A. If A and B are real, then V may be taken to be real.

Proof. If B = V A, then B∗B = A∗V ∗V A = A∗A. Conversely, if A∗A = B∗B, then
use (7.3.2) and its notation to write A = V1�r W ∗

1 and B = V2�r W ∗
1 , in which

V1 ∈ Mp,r and V2 ∈ Mq,r have orthonormal columns. Let V̂1 =
[

V1
0

]
∈ Mq,r (no aug-

mentation is needed if p = q). Then V̂1 has orthonormal columns, so (2.1.18) ensures
that there is a unitary U ∈ Mq such that V2 = U V̂1. If we partition U = [V Z ] with

V ∈ Mq,r , then V2 = U V̂1 = [V Z ]
[

V1
0

]
= V V1, so B = V2�r W ∗

1 = V V1�r W ∗
1 =

V A. If A and B are real, (7.3.2) and (2.1.18) ensure that W1, V1, and U may be
taken to be real. �

In a typical application of the preceding theorem, we are given a matrix X (per-
haps with some special structure) and we use some facts about positive semidefinite
matrices to factor X∗X as X∗X = Y ∗Y , in which Y has some special form. If the
dimensions match up correctly, we can conclude that X = V Y for some matrix V with
orthonormal columns; see (7.3.P34) for an example.

Problems

In the following problems, σ 1(X ) ≥ · · · ≥ σ q (X ) are the ordered singular values of
X ∈ Mm,n and q = min{m, n}.
7.3.P1 Explain why the singular values of A are the eigenvalues of the positive semidefinite
factors P and Q in the polar decomposition (7.3.1).

7.3.P2 Let A, B ∈ Mn . Let A = P1U1 and B = P2U2 be polar decompositions. Show that
A and B are unitarily equivalent if and only if P1 and P2 are unitarily similar.
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7.3.P3 Show that A ∈ Mn has a zero singular value if and only if it has a zero eigenvalue.

7.3.P4 Let A ∈ Mm,n and let A = V �W ∗ be a singular value decomposition in which
diag � = [σ 1 . . . σ q ]T . Partition V = [v1 . . . vm] and W = [w1 . . . wn]. (a) Show that
A∗vk = σ kwk , Awk = σ kvk , and v∗

k Awk = σ k for each k = 1, . . . , q. The unit vectors wk

are (right) singular vectors of A; the unit vectors vk are left singular vectors of A. (b)
Let i ∈ {1, . . . , q}. Show that max{‖Ax‖2 : x ∈ span{wi , . . . , wn} and ‖x‖2 = 1} = σ i =
min{‖Ax‖2 : x ∈ span{w1, . . . , wi } and ‖x‖2 = 1}.
7.3.P5 Let A, E ∈ Mm,n , let k ∈ {1, . . . , q}, suppose that σ k is a simple nonzero singular
value of A, and let vk and wk , respectively, be unit singular vectors such that Avk = σ kwk .

(a) Explain why σ k is a simple eigenvalue of A =
[

0 A
A∗ 0

]
with associated eigenvector

x =
[

v

w

]
. (b) Use (6.3.12) to show that

d

dt
σ k(A + t E)|t=0 = Re v∗

k Ewk (7.3.12)

7.3.P6 Let B ∈ Mn(R), let A(t) =
[

B x
y∗ t

]
∈ Mn+1(R) for all t ∈ R, and suppose that

at least one of B, x, y is nonzero. Let μ = max{σ 1(
[

B
y∗

]
), σ 1([B x ])}. (a) Explain

why σ 1(A(t)) ≥ μ > 0 for all t and why there is some t0 ∈ R such that σ 1(A(t0)) =
min{σ 1(A(t)) : t ∈ R} > 0. (b) If σ 1(A(t0)) is not a simple singular value of A(t0), explain
why μ = σ 1(A(t0)). (c) If σ 1(A(t0)) is a simple singular value of A(t0), use (7.3.12) to show
that μ = σ 1(A(t0)).

7.3.P7 Let A ∈ Mm,n and let A = V �W ∗ be a singular value decomposition. Define
A† = W�†V ∗, in which �† is obtained from � by first replacing each nonzero sin-
gular value with its inverse and then transposing. Show that: (a) AA† and A†A are
Hermitian; (b) AA†A = A; (c) A†AA† = A†; (d) A† = A−1 if A is square and nonsin-
gular; (e) (A†)† = A; and (f) A† is uniquely determined by the properties (a)–(c). The
matrix A† is the Moore–Penrose generalized inverse of A. Alternatively, write down a sin-
gular value decomposition for A† and show that its three factors are uniquely determined by
(a)–(c).

7.3.P8 This problem is a continuation of (7.1.P28), whose notation we adopt. (a) Use the
identities (a)-(c) in the preceding problem to show that X∗B X = C∗B†C for any X such

that C = B X . (b) Conclude that the positive semidefinite matrix A =
[

B C
C∗ D

]
is ∗congruent

to B ⊕ (D − C∗B†C). (c) Explain why D − C∗B†C = D − C∗B−1C if B is nonsingular.
(d) Comment on the wisdom of regarding D − C∗B†C as a generalized Schur complement
of B in A.

7.3.P9 A least squares solution to the linear system Ax = b is a vector x such that ‖x‖2 is
minimal among all vectors x for which ‖Ax − b‖2 is minimal. Show that x = A†b is the
unique least squares solution to Ax = b.

7.3.P10 Let A = V �W ∗ be a singular value decomposition of A ∈ Mm,n and let r =
rank A. Show that (a) the last n − r columns of W are an orthonormal basis for the null
space of A; (b) the first r columns of V are an orthonormal basis for the range of A; (c) the
last n − r columns of V are an orthonormal basis for the null space of A∗; and (d) the first
r columns of W are an orthonormal basis for the range of A∗.
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7.3.P11 Let A ∈ Mm,n . Show that σ 1(A) = max{|x∗Ay| : x ∈ Cm , y ∈ Cn , and ‖x‖2 =
‖y‖2 = 1}.
7.3.P12 Let A ∈ Mm,n and B ∈ Mp,n , let C =

[
A
B

]
∈ Mm+p,n , let rank C = r , and let

C = V �W ∗ be a singular value decomposition. Show that the last n − r columns of W are
an orthonormal basis for the intersection of the null spaces of A and B. How can one use
the singular value decomposition to obtain an orthonormal basis for range A + range B?

7.3.P13 Derive the singular value decomposition (2.6.3) from the polar decomposition
(7.3.1).

7.3.P14 Let A ∈ Mn . Show that A is diagonalizable by similarity if and only if there is a
positive definite Hermitian matrix P such that P−1 AP is normal.

7.3.P15 Let A ∈ Mm,n . Show that A† = limt→0(A∗(AA∗ + t I )−1).

7.3.P16 Let A, B ∈ Mm,n . Two basic inequalities for singular values are

σ i+ j−1(A + B) ≤ σ i (A) + σ j (B) if 1 ≤ i, j ≤ q and i + j ≤ q + 1 (7.3.13)

and

σ i+ j−1(AB∗) ≤ σ i (A)σ j (B) if 1 ≤ i, j ≤ q and i + j ≤ q + 1 (7.3.14)

(a) To prove (7.3.13), let A,B ∈ Mm+n be Hermitian block matrices defined as in
(7.3.4). Explain the singular value-eigenvalue identity σ k(A) = λm+n−k+1(A), for any
k ∈ {1, . . . , q}. Derive (7.3.13) from this identity and the Weyl inequalities (4.3.1).
(b) Deduce from (7.3.13) that σ 1(A + B) ≤ σ 1(A) + σ 1(B). Why is this not surprising?
(c) Give an example to show that the inequality σ i (A + B) ≤ σ i (A) + σ i (B) need not be
valid if i > 1. (d) Prove the perturbation bound

|σ i (A + B) − σ i (A)| ≤ σ 1(B) for any i ∈ {1, . . . , q} (7.3.15)

(f) Deduce from (7.3.14) that σ 1(AB∗) ≤ σ 1(A)σ 1(B). Why is this not surprising? For a
proof of (7.3.14) that uses only tools at hand (polar decomposition, subspace intersection,
(7.3.P4(b)), and (7.3.8)), see Theorem 3.3.16 in Horn and Johnson (1991).

7.3.P17 Let the eigenvalues of A ∈ Mn be arranged so that |λ1(A)| ≥ · · · ≥ |λn(A)|. (a)
A sequence of inequalities due to H. Weyl (1949) describes a multiplicative majorization
between the nonincreasingly ordered absolute eigenvalues and singular values of A:

|λ1 · · · λk | ≤ σ 1 · · · σ k for each k = 1, . . . , n (7.3.16)

with equality for k = n. For a proof, see Theorem 3.3.2 in Horn and Johnson (1991); see
(5.6.P57) for a different proof. Explain why Weyl’s product inequalities are valid for k = 1
and for k = n. (b) The multiplicative inequalities (7.3.16) imply the additive inequalities

|λ1| + · · · + |λk | ≤ σ 1 + · · · + σ k for each k = 1, . . . , n (7.3.17)

For a proof, see theorem 3.3.13 in Horn and Johnson (1991). Explain why the inequalities
(7.3.15) are not (quite) a majorization relationship between the absolute eigenvalues of A
and its singular values.

7.3.P18 The case k = n of the inequalities (7.3.17) can be approached with tools at hand,
and without relying on the product inequalities (7.3.16). Adopt the notation of the preceding
problem and provide details: (a) Let A = U T U ∗ in which T = [ti j ] is upper triangular and
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each tii = λi . Explain why there is a diagonal unitary matrix D = diag(d1, . . . , dn) such that
each di tii = |λi |. (b) Let DT = V �W ∗, in which V = [v1 . . . vn] and W = [w1 . . . wn]
are unitary, � = diag(s1, . . . , sn), and s1 ≥ · · · ≥ sn ≥ 0. Why is s j = σ j for each j =
1, . . . , n? (c) Explain why

∑
j |λ j | = tr DT = tr(

∑
j σ jv jw

∗
j ) = |∑ j σ jw

∗
j v j | ≤

∑
j σ j ,

with equality if and only if w j = eiθ j v j for each j such that σ j �= 0. (d) Deduce that there
is a diagonal unitary E such that V �W ∗ = V �EV ∗. (e) Explain why DT is normal.
Conclude that T is diagonal and A is normal. (f ) Explain why

|λ1| + · · · + |λn| ≤ σ 1 + · · · + σ n (7.3.18)

with equality if and only if A is normal. (g) Explain why

| tr A| ≤ σ 1 + · · · + σ n (7.3.19)

with equality if and only if A is Hermitian and positive semidefinite.

7.3.P19 Let A, B ∈ Mn . (a) Although AB and B A have the same eigenvalues, after consid-

ering
[

0 1
0 0

]
and

[
0 0
0 1

]
, explain why AB and B A need not have the same singular values.

(b) Why do AB and B∗ A∗ have the same singular values? (c) If A and B are Hermitian,
show that AB and B A have the same singular values. (d) If A and B are normal, show that
AB and B A have the same singular values.

7.3.P20 Let A ∈ Mm,n and let A denote the matrix (7.3.4). Let v ∈ Cn and suppose that

Av �= 0. Let u = (Av)/ ‖Av‖2 and let y = 1√
2

[
u
v

]
. Show that y∗Ay = ‖Av‖2 and compute

the upper bound (6.3.17) for A and y. Conclude that there is at least one singular value of
A in the real interval

{t ∈ R : |t − ‖Av‖2 | ≤
1√
2

∥∥(A∗u − ‖Av‖2 v)
∥∥

2

= 1√
2 ‖Av‖2

∥∥(A∗A − ‖Av‖2
2 I )v

∥∥
2}

7.3.P21 Use (7.3.15) to explain why “small” perturbations to a matrix cannot decrease its
rank, but they can increase it. How small is “small”?

7.3.P22 Show that A, B ∈ Mm,n are unitarily equivalent if and only if tr((A∗A)k) =
tr((B∗B)k) for k = 1, . . . , n. If m = n, compare this condition with the one in (2.2.8)
that is necessary and sufficient to determine whether A and B are unitarily similar.

7.3.P23 Let A, B ∈ Mn . (a) Show that AA∗ = B B∗ if and only if there is a unitary U such
that A = BU . (b) If A is nonsingular, A = BU , and U is unitary, show that AĀ = B B̄ if and
only if A = U T B. (c) If A and B are nonsingular, AA∗ = B B∗, and AĀ = B B̄, show that

AT Ā = BT B̄. (d) Consider x = [1 1]T , y = [1 − 1]T , A =
[

0 xT

02,1 02

]
, and B =

[
0 yT

02,1 02

]
.

Explain why the implication in (c) need not be valid if the nonsingularity assumption is
omitted. (e) Construct block matrices K ′

A, K ′
B ∈ M4n by replacing the 2, 4 blocks in the

matrices (4.4.32) by zero blocks. If A and B are nonsingular, use (4.4.P46) to show that A
and B are unitarily congruent if and only if K ′

A and K ′
B are unitarily similar.

7.3.P24 Let A, B ∈ Mm,n . Show that A and B are unitarily equivalent if and only if
[

0 A
A∗ 0

]
and

[
0 B

B∗ 0

]
are (unitarily) similar.
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7.3.P25 Let A = [ai j ] ∈ Mn and let U ∈ Mn be unitary. (a) Show that | tr(U A)| ≤∑
i, j |ai j |. (b) Show that σ 1 + · · · + σ n ≤∑

i, j |ai j | and compare with (2.3.P14).

7.3.P26 Let A ∈ M2 be Hermitian, positive semidefinite, and nonzero. Let τ = +(tr A +
2
√

det A)1/2. (a) Show that

A1/2 = τ−1(A +
√

det AI2)

(b) Use this representation to compute the square root in the exercise following (7.2.6).

7.3.P27 Let A ∈ M2 be nonzero, let A = PU and A = V Q be polar decompositions in
which P and Q are positive semidefinite (and uniquely determined). Let s = (‖A‖2

2 +
2| det A|)1/2. Show that

P = s−1(AA∗ + | det A|I2) and Q = s−1(A∗A + | det A|I2)

Notice that P and Q are real if A is real.

7.3.P28 Let A ∈ M2 be nonzero and let θ be any real number such that det A = eiθ | det A|.
Let Zθ = A + eiθ adj A∗ and let δ = | det Zθ |. (a) Show that δ = (σ 1 + σ 2)2 �= 0. (b) Show
that

U = δ−1/2(A + eiθ adj A∗)

is unitary, and that U ∗A and AU ∗ are positive semidefinite. (c) Let P and Q be the positive
semidefinite matrices determined in the preceding problem. Explain why A = PU = U Q
are polar decompositions. (d) If A is real, explain why U may be chosen to be real.

7.3.P29 Use the two preceding problems to compute left and right polar decompositions

for A =
[

0 −1
0 0

]
.

7.3.P30 If A ∈ Mn is nonsingular, explain why the ordered singular values of A−1 are
σ−1

n ≥ · · · ≥ σ−1
1 .

7.3.P31 Explain why A ∈ Mn is a scalar multiple of a unitary matrix if and only if σ 1 =
· · · = σ n .

7.3.P32 Let A ∈ Mn,m and suppose that rank A = r . (a) Use the thin singular value de-
composition in (7.3.2(a)) to provide a full-rank factorization of A as A = XY ∗, in which
X ∈ Mn,r , Y ∈ Mm,r , and rank X = rank Y = r . (b) Let B be a submatrix of A that is the
intersection of r linearly independent rows of A and r linearly independent columns of A.
Use the full-rank factorization A = XY ∗ to show that B is nonsingular.

7.3.P33 Let A ∈ Mn,m with n ≥ m and let P = (A∗A)1/2 = W�W ∗ ∈ Mm . Use (7.3.1)
to show that there is a V ∈ Mn,m with orthonormal columns such that A = V �W ∗. What
about the case n < m?

7.3.P34 In (7.2.9) we derived the Cholesky decomposition from the Q R factorization. Use
(7.3.12) to derive the Q R factorization from the Cholesky factorization.

7.3.P35 Let A ∈ Mn , and let A = PU be a polar decomposition. Show that A is normal if
and only if PU = U P .

7.3.P36 Let A ∈ Mn be normal and suppose that its singular values are distinct. (a) What
can you say about the eigenvalues of A? (b) If A∗A is real, show that A is symmetric.
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7.3.P37 Let A, B ∈ Mn be Hermitian and similar: A = SBS−1. If S = U Q is a polar
decomposition, show that A and B are unitarily similar via U .

7.3.P38 Let V, W ∈ Mn be unitary and ∗congruent: V = SBS∗. If S = PU is a polar
decomposition, show that V and W are unitarily similar via U .

7.3.P39 Let � = diag(λ1, . . . , λr ) and M = diag(μ1, . . . , μr ), in which |λi | = |μi | =
1 for each i = 1, . . . , r . Let D = � ⊕ 0n−r and E = M ⊕ 0n−r . Suppose that S =[

S11 S12
S21 S22

]
∈ Mn is nonsingular and D = SE S∗. (a) Show that S11 is nonsingular and

� = S11 M S∗
11. (b) Show that there is a permutation matrix P ∈ Mr such that D = P M PT .

7.3.P40 Let A ∈ Mn . Suppose that rank A = r and suppose that A is ∗congruent to diagonal
matrices D = � ⊕ 0n−r and E = M ⊕ 0n−r , in which � and M are unitary. Show that �

and M are permutation similar. Refer to the discussion of the ∗congruence canonical form
in (4.5) (in the special case (4.5.24) of ∗congruence to a diagonal matrix) and explain why
this is not surprising.

7.3.P41 Let A, B ∈ Mn be normal. Show that A is ∗congruent to B if and only if rank A =
rank B and every ray from the origin in the complex plane contains the same number of
nonzero eigenvalues of A and B.

7.3.P42 Let A ∈ Mm,n , let q = min{m, n} let A =
[

A 0
0 0

]
∈ Mr,s , and let t = min{r, s}.

Explain why the singular values of A are σ 1(A), . . . , σ q (A) together with t − q zero
singular values.

7.3.P43 Let ‖·‖ be a unitarily invariant norm on Mn . If A, B ∈ Mn , A is normal, and B is
Hermitian, show that ‖AB‖ = ‖B A‖. Compare this result with (5.6.P58(b)).

7.3.P44 Let A ∈ Mm,n and let Â ∈ Mr,s be a submatrix of A obtained by deleting cer-
tain of its rows and/or columns. Let p = m − r + n − s. For any X ∈ Mk,�, let σ 1(X ) ≥
σ 2(X ) ≥ · · · denote its nonincreasingly ordered singular values and define σ i (X ) = 0 if
i > min{k, �}. Deduce from (7.3.6) that

σ i (A) ≥ σ i ( Â) ≥ σ i+p(A), 1 ≤ i ≤ min{r, s} (7.3.20)

7.3.P45 Let A, B ∈ Mn . We claim that that A is unitarily similar to B if and only if there
is a nonsingular S ∈ Mn such that A = SBS−1 and A∗ = SB∗S−1. Provide details: (a)
Show that A(SS∗) = (SS∗)A. (b) Let S = PU be a polar decomposition, in which the
positive definite matrix P is a polynomial in SS∗. Explain why AP = P A. (c) Conclude
that B = S−1 AS = U ∗AU . (d) Compare this argument with the one used to prove (2.5.21).

Notes and Further Readings. The real case of (7.3.3) was published by C. Jordan in
1874; some authors refer to the Hermitian matrix in (7.3.4) as the Wielandt matrix.
For additional applications of (7.3.14) and a historical survey, see R. A. Horn and
I. Olkin, When does A∗A = B∗B and why does one want to know?, Amer. Math.
Monthly 103 (1996) 470–482. Problems (7.3.P26 to 28) provide explicit polar de-
compositions for 2-by-2 matrices. Explicit polar decompositions are also available
for companion matrices; see P. van den Driessche and H. K. Wimmer, Explicit polar
decompositions of companion matrices, Electron. J. Linear Algebra 1 (1996) 64–69.
Problem (7.3.P28) and generalizations to matrices of size three or more are discussed
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in R. A. Horn, G. Piazza, and T. Politi, Explicit polar decompositions of complex
matrices, Electron. J. Linear Algebra 18 (2009) 693–699.

7.4 Consequences of the polar and singular
value decompositions

The polar and the singular value decompositions appear in a host of interesting matrix
analytic problems. We sample several of them in this section; more are presented in the
problems. Throughout this section, if X ∈ Mm,n , we let q = min{m, n} and denote its
nonincreasingly ordered singular values by σ 1(X ) ≥ · · · ≥ σ q (X ). The matrix �(X ) =
[si j ] is the m-by-n diagonal matrix such that sii = σ i (X ) for each i = 1, . . . , q.

7.4.1 von Neumann’s trace theorem. The following singular value inequality plays
a key role in many matrix approximation problems. Our proof of the core inequality is
in (8.7), where we obtain it as an application of Birkhoff’s theorem.

Theorem 7.4.1.1 (von Neumann). Let A, B ∈ Mm,n, let q = min{m, n}, and let
σ 1(A) ≥ · · · ≥ σ q (A) and σ 1(B) ≥ · · · ≥ σ q (B) denote the non-increasingly ordered
singular values of A and B, respectively. Then

Re tr(AB∗) ≤
q∑

i=1

σ i (A)σ i (B) (7.4.1.2)

Proof. If m = n, the stated inequality is exactly the assertion of (8.7.6). If m > n,
augment A and B with a block of zeroes to obtain square matrices, that is, define
A = [A 0],B = [B 0] ∈ Mm . Then AB∗ = AB∗, so it follows from (8.7.6) that
Re tr(AB∗) = Re tr(AB∗) ≤∑m

i=1 σ i (A)σ i (B) =∑n
i=1 σ i (A)σ i (B). If m < n, define

A =
[

A
0

]
,B =

[
B
0

]
∈ Mn . Then AB∗ =

[
AB∗ 0

0 0

]
, so it follows from (8.7.6) again that

Re tr(AB∗) = Re tr(AB∗) ≤∑n
i=1 σ i (A)σ i (B) =∑m

i=1 σ i (A)σ i (B). �

Corollary 7.4.1.3. Let A, B ∈ Mm,n, let q = min{m, n}, and let σ 1(A) ≥ · · · ≥ σ q (A)
and σ 1(B) ≥ · · · ≥ σ q (B) denote the nonincreasingly ordered singular values of A and
B, respectively. Then

(a) ‖A − B‖2
2 ≥∑q

i=1(σ i (A) − σ i (B))2

(b)
∑q

i=1 σ i (A) =
⎧⎨
⎩

max
unitary U∈Mn

Re tr(AU ) if m ≤ n

max
unitary U∈Mm

Re tr(UA) if m ≥ n

(c)
∑q

i=1 σ i (A)σ i (B) = max{Re tr(AT B∗U ) : T ∈ Mn and U ∈ Mm are unitary}
(d)

∑q
i=1 σ i (AB∗) ≤∑q

i=1 σ i (A)σ i (B)
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Proof. (a) Use the Frobenius inner product and (7.4.1.2) to compute

‖A − B‖2
2 = 〈A − B, A − B〉F

= 〈A, A〉F − 〈A, B〉F − 〈B, A〉F + 〈B, B〉F

=
q∑

i=1

σ 2
i (A) − 2 Re tr(AB∗) +

q∑
i=1

σ 2
i (B)

≥
q∑

i=1

σ 2
i (A) − 2

q∑
i=1

σ i (A)σ i (B) +
q∑

i=1

σ 2
i (B)

=
q∑

i=1

(σ i (A) − σ i (B))2

(b) If m ≤ n, let A =
[

A
0

]
∈ Mn and use (7.4.1.2):

Re tr(AU ) = Re trAU ≤
n∑

i=1

σ i (A)σ i (U
∗)

=
n∑

i=1

σ i (A) =
q∑

i=1

σ i (A)

If A = PU is a polar factorization, then Re tr(AU ∗) = Re tr P =∑q
i=1 σ i (A), so the

upper bound can be achieved. If m ≥ n, let A = [A 0] ∈ Mm and use (7.4.1.2) again:

Re tr(U A) = Re tr UA ≤
m∑

i=1

σ i (U )σ i (A∗)

=
m∑

i=1

σ i (A) =
q∑

i=1

σ i (A)

If A = U Q is a polar factorization, then Re tr(U ∗A) = Re tr Q =∑q
i=1 σ i (A), so the

upper bound can be achieved.
(c) Use (7.4.1.2) to compute Re tr(AT B∗U ) ≤∑q

i=1 σ i (AT )σ i (U ∗B) =∑q
i=1 σ i (A)

σ i (B) for any unitary T and U . If A = V1�1W ∗
1 and B = V2�2W ∗

2 are singular
value decompositions in which the diagonal entries of �1 and �2 are, respectively,
σ 1(A) ≥ · · · ≥ σ q (A) and σ 1(B) ≥ · · · ≥ σ q (B), then the upper bound is achieved for
T = W1W ∗

2 and U = V2V ∗
1 ; with these choices, AT B∗U = V1�1�

T
2 V ∗

1 , whose trace
is
∑q

i=1 σ i (A)σ i (B).
(d) Let AB∗ = PU be a polar decomposition. Use (7.4.1.2) to compute

q∑
i=1

σ i (AB∗) = tr P = Re tr(AB∗U )

≤
q∑

i=1

σ i (A)σ i (U
∗B) =

q∑
i=1

σ i (A)σ i (B)

�
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Part (b) of the preceding corollary ensures that Re tr A ≤∑q
i=1 σ i (A) for any A ∈

Mm,n , but for some applications it is important to identify the case of equality. For
example, if A is square, the following theorem shows that Re tr A =∑q

i=1 σ i (A) if and
only if A is positive semidefinite.

Theorem 7.4.1.4. Let A = [ai j ] ∈ Mm,n, let q = min{m, n} and p = max{m, n}, let
α = {1, . . . , q}, and let σ 1 ≥ · · · ≥ σ q be the nonincreasingly ordered singular values
of A. Then Re tr A ≤∑q

i=1 σ i , with equality if and only if the leading principal subma-
trix A[α] is positive semidefinite and A has no nonzero entries outside this principal
submatrix.

Proof. We are concerned only with the case of equality. To prove that the asserted condi-
tions are sufficient, observe that if the principal submatrix A[α] is positive semidefinite,
then its eigenvalues are its singular values, which are also the singular values of A since
no other entries of A are nonzero; the trace of A[α] is the sum of its eigenvalues, which
is the sum of the singular values of A.

Now suppose that Re
∑q

i=1 aii =
∑q

i=1 σ i . If A = 0 there is nothing to prove, so
let rank A = r ≥ 1. If necessary, augment A with zero blocks to obtain a square

matrix A =
[

A 0m,p−n

0p−m,n 0p−m,p−n

]
∈ Mp, which has the same trace and singular values as

A. Let A = V �r W ∗ be a thin singular value decomposition (7.3.2a), in which V =
[v1 . . . vr ] ∈ Mp,r and W = [w1 . . . wr ] ∈ Mp,r have orthonormal columns, and
�r = diag(σ 1, . . . , σ r ). Then

Re trA = Re tr A = Re
q∑

i=1

aii = Re
p∑

i=1

r∑
k=1

vikσ kw̄ik

= Re
r∑

k=1

σ k

p∑
i=1

vikw̄ik

=
r∑

k=1

σ k Re(w∗
k vk) =

r∑
k=1

σ k =
q∑

k=1

σ k

It follows that Re(w∗
k vk) = 1 for each k = 1, . . . , r . Since

1 = Re(w∗
k vk)

(γ )≤ |w∗
k vk |

(δ)≤ ‖vk‖2
2 ‖wk‖2

2 = 1

equality at (δ) and the equality case of the Cauchy–Schwarz inequality ensure that there
are scalars dk such that vk = dkwk for each k = 1, . . . , r ; equality at (γ ) ensures that
each dk = 1. Therefore, V = W and A = V �r V ∗ is positive semidefinite. It follows
that its principal submatrix A[α] is positive semidefinite (7.1.2) and no other entries of
A (and hence of A) are nonzero (7.1.10). �

Corollary 7.4.1.5. Let A, B ∈ Mm,n, let q = min{m, n}, and let σ 1(A) ≥ · · · ≥ σ q (A)
and σ 1(B) ≥ · · · ≥ σ q (B) denote the nonincreasingly ordered singular values of A and
B, respectively. Then

(a) ‖A − B‖2
2 ≥∑q

i=1(σ i (A) − σ i (B))2, with equality if and only if Re tr(AB∗) =∑q
i=1 σ i (A)σ i (B)
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(b) If ‖A − B‖2
2 =∑q

i=1(σ i (A) − σ i (B))2, then both AB∗ and B∗A are positive
semidefinite, so tr(AB∗) is real and nonnegative

Proof. (a) The stated inequality is (7.4.1.3a), so we are concerned only with the case
of equality, which occurs if and only if the one inequality in the proof of (7.4.1.3a) is
an equality, that is, if and only if Re tr(AB∗) =∑q

i=1 σ i (A)σ i (B).
(b) If ‖A − B‖2

2 =∑q
i=1(σ i (A) − σ i (B))2, the preceding theorem and (7.4.1.3d) en-

sure that

Re tr(AB∗) ≤
q∑

i=1

σ i (AB∗) ≤
q∑

i=1

σ i (A)σ i (B) = Re tr(AB∗)

so Re tr(AB∗) =∑q
i=1 σ i (AB∗), and the preceding theorem ensures that AB∗ is pos-

itive semidefinite. Since ‖A − B‖2
2 = ‖B∗ − A∗‖2

2, it follows that B∗(A∗)∗ = B∗A is
also positive semidefinite. �

7.4.2 A nearest singular matrix and a nearest rank-k matrix. Every matrix that
is sufficiently close to a nonsingular matrix A (with respect to some norm) is nonsingular
(see the exercise preceding (5.6.17)), but what can we say about the distance from A
to the closed set of singular matrices? How can we identify a nearest singular matrix?
Is it unique?

Let A = V �W ∗ ∈ Mn be a singular value decomposition in which � =
diag(σ 1(A), . . . , σ n(A)) and σ n(A) > 0. If B ∈ Mn is singular, then σ n(B) = 0. The
inequality (7.4.1.3a) ensures that

‖A − B‖2
2 ≥

n∑
i=1

(σ i (A) − σ i (B))2

=
n−1∑
i=1

(σ i (A) − σ i (B))2 + σ 2
n(A) ≥ σ 2

n(A)

for every singular B ∈ Mn , so any B such that ‖A − B‖2
2 = σ 2

n(A) is a closest singular
matrix to A in the Frobenius norm. The singular values of such a matrix are uniquely
determined: they must be the n − 1 largest singular values of A and one zero. If
we let �0 = diag(σ 1(A), . . . , σ n−1(A), 0) and take B0 = V �0W ∗, then ‖A − B0‖2

2 =∑n
i=1(σ i (A) − σ i (B))2 = σ 2

n(A) and, as predicted by (7.4.1.5), AB∗
0 and B∗

0 A are
positive semidefinite. The distance in the Frobenius norm from A to B0 is σ n(A),
and no singular matrix can be closer, so σ n(A) is the distance in the Frobenius norm
from A to the closed set of singular matrices. We may think of B0 as a best singular
approximation to A in the Frobenius norm.

What about uniqueness? If σ n−1(A) = σ n(A), let �̂0 = diag(σ 1(A), . . . , σ n−2(A),
0, σ n(A)). Then C0 = V �̂0W ∗ is singular, B0 �= C0, and ‖A − C0‖2 = σ n−1(A) =
σ n(A) = ‖A − B0‖2, so a best singular approximation to A is not unique in this
case. If σ n−1(A) > σ n(A), however, then B0 is the only singular matrix such that
‖A − B‖2 = σ n(A); see (7.4.P17).

If A ∈ Mm,n , rank A = r , and 1 ≤ k < r , the same principles can be employed
to find a “best rank-k approximation” to A. Let A = V �W ∗ be a singular value
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decomposition in which the diagonal entries of � ∈ Mm,n are σ 1(A) ≥ · · · ≥ σ q (A)).
If B ∈ Mm,n and rank B = k, then (7.4.1.3a) ensures that

‖A − B‖2
2 ≥

q∑
i=1

(σ i (A) − σ i (B))2

=
k∑

i=1

(σ i (A) − σ i (B))2 +
q∑

i=k+1

σ 2
i (A) ≥

q∑
i=k+1

σ 2
i (A)

so any B such that ‖A − B‖2
2 =∑q

i=k+1 σ 2
i (A) is a best rank-k approximation to A.

The singular values of such a matrix are again uniquely determined: They must be the k
largest singular values of A and q − k zeroes. If we let �0 ∈ Mm,n be the diagonal matrix
whose diagonal entries are σ 1(A), . . . , σ k(A) and q − k zeroes and take B0 = V �0W ∗,
then ‖A − B0‖2

2 =∑q
i=k+1 σ 2

i (A), so B0 is a best rank-k approximation to A; it is
unique if and only if σ k−1(A) > σ k(A). The distance in the Frobenius norm from A to
a closest rank k matrix is (

∑q
i=k+1 σ 2

i (A))1/2.

7.4.3 Least squares solution of a linear system. Let A ∈ Mm,n and b ∈ Cm be
given, let m ≥ n, and suppose that rank A = k. Consider how one might “solve” the
linear system Ax = b using the singular value decomposition A = V �W ∗. We want
to choose an x ∈ Cn so that ‖Ax − b‖2 is minimized. Partition V = [v1 . . . vm] ∈
Mm and W = [w1 . . . wn] ∈ Mn according to their columns. The vector Ax − b =
V �W ∗x − b has the same Euclidean norm as the vector �W ∗x − V ∗b. Let ξ = W ∗x
and β = V ∗b, so ξ = [ξ i ] = [w∗

i x]n
i=1 and β = [β i ] = [w∗

i β]m
i=1. The Euclidean norm

of the vector

�ξ − β = [
σ 1ξ 1 − β1 . . . σ kξ k − βk βk+1 . . . βm

]T

achieves its minimum value (
∑m

i=k+1 |β|2i )1/2 if we choose ξ i = σ−1
i β i = σ−1

i w∗
i β

for each i = 1, . . . , k; the Euclidean norm of the vector ξ is minimized if we then
choose ξ i = 0 for each i = k + 1, . . . , n. That is, x =∑k

i=1(σ−1
i v∗

i b)wi is a vector
of minimum Euclidean norm such that ‖Ax − b‖2 achieves its minimum value of
(
∑m

i=k+1 |v∗
i b|2)1/2.

Exercise. If A ∈ Mm,n and rank A = n, use the preceding analysis to explain why
there is an x ∈ Cn such that Ax = b if and only if b is orthogonal to nullspace A∗.
Explain why this solution x is unique and can be expressed as x = (A∗A)−1 A∗b.

7.4.4 Approximation by a scalar multiple of a unitary matrix. What is the best
least squares approximation to a given A ∈ Mn by a scalar multiple of a unitary matrix?
Invoking (7.4.1.3a), for any unitary U ∈ Mn and any c ∈ C, we have

‖A − cU‖2
2 ≥

n∑
i=1

(σ i (A) − σ i (cU ))2 =
n∑

i=1

(σ i (A) − |c|σ i (U ))2

=
n∑

i=1

(σ i (A) − |c|)2 =
n∑

i=1

σ 2
i (A) − 2|c|

n∑
i=1

σ i (A) + n|c|2
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which is minimized if |c| = 1
n

∑n
i=1 σ i (A) = μ, the mean of the singular values of A.

The resulting lower bound is

‖A − cU‖2
2 ≥

n∑
i=1

σ 2
i (A) − nμ2 =

n∑
i=1

(σ i (A) − μ)2

for any unitary U ∈ Mn . We know that if cU is a minimizer, then (cU )∗A is positive
semidefinite. The polar decomposition (7.3.1) suggests that if A = PU0 is a polar
decomposition, then its unitary polar factor might be a good candidate. We compute
tr P =∑n

i=1 σ i (A) = nμ and

‖PU0 − μU0‖2
2 = ‖P − μI‖2

2 = tr P2 − 2μ tr P + nμ2

= ‖A‖2
2 − 2nμ2 + nμ2 = ‖A‖2

2 − nμ2

so ( 1
n tr P)U0 is a best least squares approximation to A by a scalar multiple of a unitary

matrix.

7.4.5 The unitary procrustes problem. Let A, B ∈ Mm,n . How well can A be
approximated in the Frobenius norm by the “rotation” U B for some unitary U ∈ Mm?
This question is known in factor analysis as the unitary Procrustes problem for A and
B.

For any unitary U ∈ Mm we have

‖A − U B‖2
2 = ‖A‖2

2 − 2 Re tr(AB∗U ∗) + ‖B‖2
2

≥ ‖A‖2
2 − 2

m∑
i=1

σ i (AB∗) + ‖B‖2
2 (7.4.5.1)

with equality if and only if AB∗U ∗ is positive semidefinite. If AB∗ = PU0 is a polar
decomposition, then AB∗U ∗

0 = P is positive semidefinite and tr(AB∗U ∗
0 ) = tr P =∑m

i=1 σ i (AB∗), so ‖A − U B‖2
2 = ‖A‖2

2 − 2 tr P + ‖B‖2
2 achieves the lower bound in

(7.4.5.1).
Thus, U0 B is a best least squares approximation to A by a unitary rotation of B and

‖A − U0 B‖2
2 = ‖A‖2

2 − 2 tr P + ‖B‖2
2.

7.4.6 A two-sided rotation problem. Let A, B ∈ Mm,n . How well can A be approx-
imated in the Frobenius norm by a two-sided rotation U BT for some unitary matrices
U ∈ Mm and T ∈ Mm?

For any such unitary U and T , (7.4.1.3(a)) ensures that

‖A − U BT ‖2
2 ≥

q∑
i=1

(σ i (A) − σ i (U BT ))2 =
q∑

i=1

(σ i (A) − σ i (B))2 (7.4.6.1)

Let A = V1�1W ∗
1 be a singular value decomposition in which the diagonal entries of

�1 are σ 1(A) ≥ · · · ≥ σ q (A), and let B = V2�2W ∗
2 be a singular value decomposi-

tion in which the diagonal entries of �2 are σ 1(B) ≥ · · · ≥ σ q (B). Let U0 = V1V ∗
2

and T0 = W2W ∗
1 . Then ‖A − U0 BT0‖2

2 = ‖V1�1W ∗
1 − V1�2W ∗

1 ‖2
2 = ‖�1 − �2‖2

2 =∑m
i=1(σ i (A) − σ i (B))2, so U0 BT0 achieves the lower bound in (7.4.6.1).
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7.4.7 Unitarily invariant norms and symmetric gauge functions. If A ∈ Mm,n ,
if A = V �W ∗ is a singular value decomposition, and if ‖ · ‖ is a unitarily invariant
norm, then ‖A‖ = ‖V �W ∗‖ = ‖�‖, so a unitarily invariant norm of a matrix depends
only on its singular values. What can we say about the nature of that dependence?

Suppose that X = [xi j ], Y = [yi j ] ∈ Mm,n are diagonal and have diagonal entries
xii = xi and yii = yi for i = 1, . . . , q. Let x = [xi ], y = [yi ] ∈ Cq . Then X∗X is
diagonal and has diagonal entries |x1|2, . . . , |xq |2 (and n − q additional zero entries
if q < n), so the (not necessarily nonincreasingly ordered) singular values of X are
|x1|, . . . , |xq |. Define the function g : Cq → R+ by

g(x) = g([x1 . . . xq ]T ) = ‖X‖
The function g inherits certain properties from the norm ‖ · ‖:

(a) g(x) ≥ 0 for all x ∈ Cq since ‖X‖ is always nonnegative.
(b) g(x) = 0 if and only if x = 0 since ‖X‖ = 0 if and only if X = 0.
(c) g(αx) = |α|g(x) for all x ∈ Cq and all α ∈ C since ‖αX‖ = |α|‖X‖ for all α ∈ C

and all X ∈ Mm,n .
(d) g(x + y) ≤ g(x) + g(y) for all x, y ∈ Cq since ‖X + Y‖ ≤ ‖X‖ + ‖Y‖ for all

X, Y ∈ Mm,n .

These four properties ensure that g is a norm on Cq ; it has two additional properties:

(e) g is an absolute norm on Cq since the matrices X and |X | associated with
the vectors x = [xi ] and |x | = [|xi |] have the same singular values, namely,
|x1|, . . . ,

∣∣xq

∣∣.
(f ) g(Px) = g(x) for all x ∈ Cq and every permutation matrix P ∈ Mq since

‖ · ‖ is unitarily invariant. For example, if q = m ≤ n, then g(x) = ‖X‖ =∥∥P X (PT ⊕ In−m)
∥∥ = g(Px).

Exercise. If q = n ≤ m, explain why g(x) = g(Px) for all x ∈ Cn and every
permutation matrix P ∈ Mn .

Exercise. Explain why the Euclidean norm, the max norm, and the sum norm are
the vector norms g associated with, respectively, the Frobenius, spectral, and trace
norms according to the preceding prescription. Are these norms permutation-
invariant absolute norms?

Definition 7.4.7.1. A function g : Cq → R+ is a symmetric gauge function if it is an
absolute vector norm such that g(x) = g(Px) for every x ∈ Cq and every permutation
matrix P ∈ Mq.

The preceding discussion shows that every unitarily invariant norm on Mm,n deter-
mines a symmetric gauge function on Cq . The interesting half of the following theorem
says that every unitarily invariant norm is determined by a symmetric gauge function,
so there is a one-to-one correspondence between unitarily invariant norms on Mm,n and
symmetric gauge functions on Cq .

Theorem 7.4.7.2. Let m and n be given positive integers and let q = min{m, n}. For
any A ∈ Mm,n, let A = V �(A)W ∗, in which V ∈ Mm and W ∈ Mn are unitary and
�(A) = [si j ] ∈ Mm,n is a nonnegative diagonal matrix whose diagonal entries are
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the nonincreasingly ordered singular values of A: σ 1(A) ≥ · · · ≥ σ q (A). Let s(A) =
[σ 1(A) . . . σ q (A)]T .

(a) Let ‖ · ‖ be a unitarily invariant norm on Mm,n. For any x = [xi ] ∈ Cq , let X =
[xi j ] ∈ Mm,n be the diagonal matrix such that xii = xi for each i = 1, . . . , q. The
function g : Cq → R+ defined by g(x) = ‖X‖ is a symmetric gauge function on
Cq .

(b) Let g be a symmetric gauge function on Cq . The function ‖ · ‖ : Mm,n → R+

defined by ‖A‖ = g(s(A)) is a unitarily invariant norm on Mm,n.

Proof. The assertion in (a) has already been proved, so we have only (b) to deal with.
First observe that ‖ · ‖ is a well-defined function on Mm,n because the singular values of
a matrix are uniquely determined. Unitary invariance of the singular values of a matrix
ensures that ‖U AV ‖ = g(s(U AV )) = g(s(A)) = ‖A‖ for all unitary U ∈ Mm and
V ∈ Mn . Because g is a vector norm, we have ‖A‖ ≥ 0 for all A ∈ Mm,n , with equality
if and only if g(s(A)) = 0 if and only if s(A) = 0 if and only if A = 0. Homogeneity
follows from observing that ‖cA‖ = g(s(cA) = g(|c|s(A) = |c| g(s(A)) = |c| ‖A‖.

Finally, we must show that ‖ · ‖ satisfies the triangle inequality. For any given
A, B ∈ Mm,n , compute

‖A + B‖ = g(s(A + B))
(α)= gDD(s(A + B))

(β)= max
gD(y)=1

Re(y∗s(A + B))

= max
gD(s(C))=1

q∑
i=1

σ i (A + B)σ i (C)

(γ )= max
gD(s(�))=1

max
T,U unitary

Re tr((A + B)T �∗U )

≤ max
gD(s(�))=1

max
T,U unitary

Re tr(AT �∗U )

+ max
gD(s(�))=1

max
T,U unitary

Re tr(BT �∗U )

(γ )= max
gD(s(�))=1

q∑
i=1

σ i (A)σ i (�) + max
gD(s(�))=1

q∑
i=1

σ i (B)σ i (�)

= max
gD(y)=1

Re(y∗s(A)) + max
gD(y)=1

Re(y∗s(B))

(β)= gDD(s(A)) + gDD(s(B))
(α)= g(s(A)) + g(s(B))

= ‖A‖ + ‖B‖
We have used (5.5.9(c)) and the hypothesis that g is a norm at the identities labeled
(α), (5.5.10) at the identities labeled (β), and (7.4.1.3(c)) at the identities labeled (γ ).
We have also made use of (4.3.52) and the fact that the vectors s(A + B), s(A), and
s(B) have nonnegative entries, so only y vectors with nonnegative entries need to be
considered in achieving the respective maxima. �

A familiar example of a family of symmetric gauge functions on Cn is the family
of l p norms (5.2.4). The unitarily invariant norms on Mm,n determined by the l p norms
are known as Schatten p-norms.
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7.4.8 Ky Fan’s dominance theorem. The family of k-norms (5.2.5) are symmetric
gauge functions that play a special role in the theory of unitarily invariant norms. The
corresponding unitarily invariant norms on Mm,n are known as Ky Fan k-norms; we
denote them by

‖A‖[k] = σ 1(A) + · · · + σ k(A), k = 1, . . . , q = min{m, n} (7.4.8.1)

Suppose that ‖·‖ is a unitarily invariant norm on Mm,n and let g be the symmetric
gauge function associated with it, as described in the preceding section, whose notation
we adopt. Then, for any A ∈ Mm,n , we have

‖A‖ = g(s(A)) = max
gD(y)=1

Re(y∗s(A))

= max
gD(s(�))=1

q∑
i=1

σ i (A)σ i (�) (7.4.8.2)

and a summation by parts yields the identity

q∑
i=1

σ i (A)σ i (�) = σ 1(�)σ 1(A) +
q−1∑
i=2

⎛
⎝(σ i (�) − σ i+1(�))

i∑
j=1

σ j (A)

⎞
⎠

+ σ q (�)
q∑

j=1

σ i (A)

= σ 1(�) ‖A‖[1] +
q−1∑
i=2

(σ i (�) − σ i+1(�)) ‖A‖[i] (7.4.8.3)

+ σ q (�) ‖A‖[q]

Observe that σ 1(�) ≥ 0, each σ i (�) − σ i+1(�) ≥ 0, and σ q (�) ≥ 0, so if B ∈ Mm,n

and ‖A‖[k] ≤ ‖B‖[k] for each k = 1, . . . , q, then

q∑
i=1

σ i (A)σ i (�) = σ 1(�) ‖A‖[1] +
q−1∑
i=2

(σ i (�) − σ i+1(�)) ‖A‖[i]

+ σ q (�) ‖A‖[q]

≤ σ 1(�) ‖B‖[1] +
q−1∑
i=2

(σ i (�) − σ i+1(�)) ‖B‖[i]

+ σ q (�) ‖B‖[q]

=
q∑

i=1

σ i (B)σ i (�)
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Thus,

‖A‖ = max
gD(s(�))=1

q∑
i=1

σ i (A)σ i (�)

≤ max
gD(s(�))=1

q∑
i=1

σ i (B)σ i (�) = ‖B‖

This argument shows that if ‖A‖[k] ≤ ‖B‖[k] for each k = 1, . . . , q, then ‖A‖ ≤ ‖B‖
for every unitarily invariant norm ‖·‖. Conversely, if ‖A‖ ≤ ‖B‖ for every unitarily
invariant norm ‖·‖ on Mm,n , then this inequality must be valid for the Ky Fan k-norms
on Mm,n . We summarize these conclusions in the following theorem.

Theorem 7.4.8.4. Let A, B ∈ Mm,n be given. Then ‖A‖ ≤ ‖B‖ for every unitarily
invariant norm ‖·‖ on Mm,n if and only if ‖A‖[k] ≤ ‖B‖[k] for each k = 1, . . . , q =
min{m, n}.

7.4.9 Approximation bounds for unitarily invariant norms. The inequalities
(7.4.1.3(a)) and (7.3.5(b)) say that for the Frobenius norm and any A, B ∈ Mm,n ,
‖A − B‖2 ≥ ‖�(A) − �(B)‖2. The inequality (7.3.5(a)) says that for the spectral norm
and any A, B ∈ Mm,n , ‖|A − B‖|2 ≥ ‖|�(A) − �(B)‖|2. In fact, these inequalities are
valid for every unitarily invariant norm on Mm,n .

Theorem 7.4.9.1. Let m and n be given positive integers and let q = min{m, n}.
For any A, B ∈ Mm,n, let A = V1�(A)W ∗

1 and B = V2�(B)W ∗
2 , in which V1, V2 ∈

Mm and W1, W2 ∈ Mn are unitary, and �(A) = [si j (A)], �(B) = [si j (B)] ∈ Mm,n are
nonnegative diagonal matrices whose diagonal entries sii (A) = σ i (A) and sii (B) =
σ i (B) are the nonincreasingly ordered singular values of A and B, respectively. Then
‖A − B‖ ≥ ‖�(A) − �(B)‖ for every unitarily invariant norm ‖·‖ on Mm,n.

Proof. Let

A =
[

0 A
A∗ 0

]
and B =

[
0 B

B∗ 0

]
According to (7.3.3), the algebraically nonincreasingly ordered eigenvalues of A are

σ 1(A) ≥ · · · ≥ σ q (A) ≥ 0 = · · · = 0︸ ︷︷ ︸
|m−n|

≥ −σ q (A) ≥ · · · ≥ −σ 1(A)

with similar expressions for the algebraically nonincreasingly ordered eigenvalues of
B and A− B. The differences of the respective ordered eigenvalues of A and B are
±(σ 1(A) − σ 1(B)), . . . ,±(σ q (A) − σ q (B)) together with |m − n| zeroes. Although it
is not clear how to order these values algebraically, the q algebraically largest values
are |σ 1(A) − σ 1(B)|, . . . , |σ q (A) − σ q (B)|. Theorem 4.3.47(b) ensures that λ(A− B)
majorizes λ↓(A) − λ↓(B), that is,

k∑
i=1

σ i (A − B) ≥ max
1≤i1<···<ik≤q

k∑
j=1

|σ i j (A) − σ i j (B)|, k = 1, . . . , q



468 Positive definite and semidefinite matrices

Inspection of these inequalities reveals that they are exactly the inequalities

‖A − B‖[k] ≥ ‖�(A) − �(B)‖[k] , k = 1, . . . , q

so (7.4.8.4) ensures that ‖A − B‖ ≥ ‖�(A) − �(B)‖ for every unitarily invariant norm
‖·‖ on Mm,n . �

One consequence of the preceding theorem is a generalization of the problem of
finding a best (in the sense of least squares) rank-k approximation to a given A ∈ Mm,n

with rank A > k, which we considered in (7.4.2). If ‖ · ‖ is a unitarily invariant norm on
Mm,n and if B ∈ Mm,n and rank B = k, then σ 1(B) ≥ · · · ≥ σ k(B) > 0 = σ k+1(B) =
· · · = σ q (B). Using the fact that a unitarily invariant norm on diagonal matrices in
Mm,n is a monotone norm, we have

‖A − B‖ ≥ ‖�(A) − �(B)‖
= ‖diag(σ 1(A) − σ 1(B), . . . , σ k(A) − σ k(B), σ k+1(A), . . . , σ q (A))‖
≥ ‖diag(0, . . . , 0, σ k+1(A), . . . , σ q (A))‖ (7.4.9.2)

for any B ∈ Mm,n such that rank B = k. If A = V �(A)W ∗ is a singular value de-
composition, we can always attain equality in the inequality (7.4.9.2) with B =
V �0W ∗, in which �0 ∈ Mm,n is a nonnegative diagonal matrix with diagonal en-
tries σ 1(A), . . . , σ k(A), and q − k zeroes. Thus, the same matrix that provides a best
rank-k approximation to A in the Frobenius norm provides a best approximation in
every unitarily invariant norm.

Exercise. How closely can A ∈ Mm,n be approximated in the spectral norm by a
rank-k matrix?

Another consequence of (7.4.9.1) is a version of (6.3.8) (the Hoffman–Wielandt
theorem) that is valid for any unitarily invariant norm. For a Hermitian matrix H ∈ Mn ,
diag λ↓(H ) ∈ Mn is the diagonal matrix whose diagonal entries are the nonincreasingly
ordered eigenvalues of H .

Corollary 7.4.9.3 (Mirsky). Let A, B ∈ Mn be Hermitian and let ‖ · ‖ be a unitarily
invariant norm on Mn. Then

‖ diag λ↓(A) − diag λ↓(B)‖ ≤ ‖A − B‖ (7.4.9.4)

Proof. Let μ ∈ [0,∞) be such that A + μI and B + μI are both positive semidefinite.
Then

�(A + μI ) = diag λ↓(A + μI ) = diag λ↓(A) + μI

and �(B + μI ) = diag λ↓(B) + μI . Theorem 7.4.9.1 ensures that

‖ diag λ↓(A) − diag λ↓(B)‖ = ‖(�(A + μI ) − μI ) − (�(B + μI ) − μI )‖
= ‖�(A + μI ) − �(B + μI )‖
≤ ‖(A + μI ) − (B + μI )‖ = ‖A − B‖

�
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Exercise. Let A, E ∈ Mn be Hermitian. For which unitarily invariant norms are
the bounds in (6.3.4) and (6.3.8) consequences of the preceding corollary?

7.4.10 Unitarily invariant matrix norms. Let ‖·‖ be a unitarily invariant matrix
norm on Mn . For any A ∈ Mn , (5.6.34(d)) ensures that ‖A‖ ≥ σ 1(A). The following
theorem provides a converse to this observation.

Theorem 7.4.10.1. A unitarily invariant norm ‖·‖ on Mn is a matrix norm if and only
if ‖A‖ ≥ σ 1(A) for all A ∈ Mn.

Proof. Suppose that ‖X‖ ≥ σ 1(X ) for all X ∈ Mn , and let A, B ∈ Mn be given. We
must show that ‖AB‖ ≤ ‖A‖ ‖B‖. Let g be the symmetric gauge function determined
by ‖·‖. In the following computation, we adopt the notation of (7.4.7) and use the
fact that g is a monotone norm as well as the singular value inequality σ k(AB) ≤
σ 1(A)σ k(B); see the exercise preceding (7.3.11):

‖AB‖ = g(s(AB)) = g([σ 1(AB) σ 2(AB) . . . σ n(AB)]T )

≤ g([σ 1(A)σ 1(B) σ 1(A)σ 2(B) . . . σ 1(A)σ n(B)]T )

= σ 1(A)g([σ 1(B) σ 2(B) . . . σ n(B)]T )

= σ 1(A)g(s(B)) = σ 1(A) ‖B‖
≤ ‖A‖ ‖B‖

�
The theorem ensures that the Ky Fan k-norms and the Schatten p-norms for p ≥ 1

are unitarily invariant matrix norms on Mn .
Although a convex combination of matrix norms need not be a matrix norm (see

(5.6.P9)), a convex combination of unitarily invariant matrix norms is always a unitarily
invariant matrix norm.

Corollary 7.4.10.2. Let ‖·‖a and ‖·‖b be unitarily invariant matrix norms on Mn and
let α ∈ [0, 1]. Then α ‖·‖a + (1 − α) ‖·‖b is a unitarily invariant matrix norm on Mn.

Proof. The convex combination α ‖·‖a + (1 − α) ‖·‖b is a unitarily invariant norm,
and since

α ‖A‖a + (1 − α) ‖A‖b ≥ ασ 1(A) + (1 − α)σ 1(A) = σ 1(A)

the preceding theorem ensures that it is a matrix norm. �

7.4.11 Absolute unitarily invariant norms on matrices. The Frobenius norm of
a matrix A = [ai j ] ∈ Mm,n can be expressed as ‖A‖2 = (σ 1(A)2 + · · · + σ n(A)2)1/2

and as ‖A‖2 = (
∑

i, j |ai j |2)1/2, so it is both unitarily invariant and absolute. Are there
other absolute unitarily invariant norms on Mm,n? The following exercise is a first step
toward an answer.

Exercise. Let α ≥ β > 0 be given. Let a = 1
2 (
√

α2 + β2 + α − β), b = √
αβ/2,

and c = 1
2 (
√

α2 + β2 − α + β). Consider the real symmetric matrices B± =[
a b
b ±c

]
. Show that a, b, c > 0; the eigenvalues of B+ are

√
α2 + β2 and 0;
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and the eigenvalues of B− are α and −β. Conclude that the singular values of B+
are

√
α2 + β2 and 0, while the singular values of B− are α and β. Hint: (1.2.4b),

a + c =
√

α2 + β2, and a − c = α − β.

Theorem 7.4.11.1. Let ‖·‖ be a unitarily invariant norm on Mm,n. Then ‖·‖ is an
absolute norm if and only if it is a positive scalar multiple of the Frobenius norm.

Proof. For convenience, suppose that ‖·‖ is normalized so that ‖E11‖ = 1, in which
E11 ∈ Mm,n has a 1 in position 1, 1 and zero entries elsewhere. Let q = min{m, n}
and let σ 1 ≥ · · · ≥ σ q denote the singular values of a given A ∈ Mm,n . We claim that
‖A‖ = ‖A‖2 = (σ 2

1 + · · · + σ 2
q )1/2.

If rank A = 1, then ‖A‖ = ‖�(A)‖ = ‖σ 1 E11‖ = σ 1 ‖E11‖ = σ 1 = ‖A‖2.

If rank A = 2, define A± =
[

B± 0
0 0

]
∈ Mm,n , in which B± =

[
a b
b ±c

]
, a =

1
2 (
√

σ 2
1 + σ 2

2 + σ 1 − σ 2), b = √
σ 1σ 2/2, and c = 1

2 (
√

σ 2
1 + σ 2

2 − σ 1 + σ 2). The pre-
ceding exercise ensures that the singular values of A− are σ 1, σ 2, and q − 2 zeroes,

while the singular values of A+ are
√

σ 2
1 + σ 2

2 and q − 1 zeroes. In the latter case,

rank A+ = 1, so ‖A+‖ = ‖A+‖2 =
√

σ 2
1 + σ 2

2 = ‖A‖2. Since A and A− have the same
singular values and ‖·‖ is unitarily invariant, we have ‖A‖ = ‖A−‖; since ‖·‖ is abso-
lute, we also have ‖A−‖ = ‖A+‖. It follows that ‖A‖ = ‖A−‖ = ‖A+‖ = ‖A‖2.

Proceed by induction on the rank of A. Suppose that rank A = r ≥ 3 and

‖X‖ = ‖X‖2 for every X ∈ Mn such that rank X ≤ r − 1. Define A± =
[

B± 0
0 0

]
∈

Mm,n , in which B± =
[

a b
b ±c

]
⊕ diag(σ 2, . . . , σ r−1), a = 1

2 (
√

σ 2
1 + σ 2

r + σ 1 − σ r ),

b = √
σ 1σ r/2, and c = 1

2 (
√

σ 2
1 + σ 2

r − σ 1 + σ r ). The preceding exercise ensures that
the singular values of A− are σ 1, . . . , σ r and q − r zeroes, while the singular values

of A+ are
√

σ 2
1 + σ 2

r , σ 2, . . . , σ r−1, and q − r + 1 zeroes. The induction hypothesis
ensures that ‖A+‖ = ‖A+‖2 = ‖A‖2; as in the rank two case, the hypotheses of unitary
invariance and absoluteness ensure that ‖A‖ = ‖A−‖ = ‖A+‖ = ‖A‖2.

If ‖·‖ is not necessarily normalized, we have shown that ‖·‖ / ‖E11‖ = ‖·‖2, that is,
‖A‖ = ‖E11‖ ‖A‖2 for every A ∈ Mm,n . �

Exercise. Use the preceding theorem to give a conceptual proof that the spectral
norm on Mn is not an absolute norm if n ≥ 2. Compare with (5.6.P40).

7.4.12 Inequalities of Kantorovich and Wielandt. Let A ∈ Mn be Hermitian and
positive definite; let λ1 and λn be its smallest and largest eigenvalues. Our goals are
to show that the following two classical inequalities are equivalent and valid and to
explore some of their analytic and geometric consequences.

Kantorovich’s inequality is

(x∗Ax)(x∗A−1x) ≤ (λ1 + λn)2

4λ1λn
‖x‖4

2 for all x ∈ Cn (7.4.12.1)
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and Wielandt’s inequality is

∣∣x∗Ay
∣∣2 ≤

(
λ1 − λn

λ1 + λn

)2

(x∗Ax)(y∗Ay) for all orthogonal x, y ∈ Cn (7.4.12.2)

The inequality (7.4.12.1) is valid if x = 0, and (7.4.12.2) is valid if either x = 0 or
y = 0, so in the following discussion we consider only the case x �= 0 �= y.

Our approach to Kantorovich’s inequality begins with the two positive semidefinite
matrices λn I − A and A − λ1 I , and the positive definite matrix A−1. These three
Hermitian matrices commute, so their product is Hermitian and positive semidefinite.
Therefore, for any nonzero vector x , we have

0 ≤ x∗(λn I − A)(A − λ1 I )A−1x = x∗((λ1 + λn)I − λ1λn A−1 − A)x

and hence

x∗Ax + λ1λn(x∗A−1x) ≤ (λ1 + λn)(x∗x) (7.4.12.3)

Let t0 = λ1λn(x∗A−1x) and rewrite (7.4.12.3) in the equivalent form

t0(x∗Ax) ≤ t0(λ1 + λn)(x∗x) − t2
0 (7.4.12.4)

The function f (t) = t(λ1 + λn)(x∗x) − t2 is concave and has a critical point at t =
(x∗x)(λ1 + λn)/2, where it has a global maximum. Therefore, f (t0) ≤ (x∗x)2(λ1 +
λn)2/4 and it follows from (7.4.12.4) that

λ1λn(x∗A−1x)(x∗Ax) ≤ 1

4
(λ1 + λn)2(x∗x)2

This is Kantorovich’s inequality (7.4.12.1).
We claim that Kantorovich’s inequality implies Wielandt’s inequality. Consider a

2-by-2 positive definite matrix B =
[

a b
b̄ c

]
, whose inverse is B−1 = (det B)−1 adj B =[

c/ det B ∗
∗ ∗

]
. Let μ1 ≤ μ2 be the eigenvalues of B. With x = e1 and A = B, the in-

equality (7.4.12.1) is

(μ1 + μ2)2

4μ1μ2
≥ (e∗1 Be1)(e∗B−1e1) = ac

ac − |b|2 = 1

1 − |b|2
ac

and a calculation reveals that

|b|2
ac

≤
(

μ1 − μ2

μ1 + μ2

)2

=
(

1 − μ2
μ1

1 + μ2
μ1

)2

(7.4.12.5)

Now let x and y be any pair of orthonormal vectors in Cn and consider the positive
definite 2-by-2 matrix

B = [x y]∗A[x y] =
[

x∗Ax x∗Ay
y∗Ax y∗Ay

]
The interlacing inequalities (4.3.38) of the Poincaré separation theorem ensure
that the eigenvalues μ1 ≤ μ2 of B satisfy the inequalities 0 < λ1 ≤ μ1 ≤ μ2 ≤
λn , so 0 <

μ2
μ1

≤ λ2
λ1

. The inequality (7.4.12.5) and monotonicity of the function
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f (t) = (1 − t)2/(1 + t)2 on (1,∞) ensure that

|x∗Ay|2
(x∗Ax)(y∗Ay)

≤
(

1 − μ2
μ1

1 + μ2
μ1

)2

≤
(

1 − λ2
λ1

1 + λ2
λ1

)2

=
(

λ1 − λn

λ1 + λn

)2

This is Wielandt’s inequality (7.4.12.2).

Exercise. Explain why both (7.4.12.1) and (7.4.12.2) are satisfied if x ∈ Cn is an
eigenvector of A. Hint: The arithmetic–geometric inequality.

Exercise. If x ∈ Cn is not an eigenvector of A, explain why A−1x −
(x∗A−1x)x �= 0 and x − (x∗A−1x)Ax �= 0.

Exercise. If x ∈ Cn is a unit vector, explain why (x∗Ax)(x∗A−1x) ≥ 1, with strict
inequality if x is not an eigenvector of A, Hint: 1 = (x∗x)2 = (x∗A1/2 A−1/2x)2 ≤∥∥A1/2x

∥∥2
2

∥∥A−1/2x
∥∥2

2 = (x∗Ax)(x∗A−1x), with equality only if A1/2x =
αA−1/2x , in which case x is an eigenvector of A.

To deduce Kantorovich’s inequality from Wielandt’s inequality, let x ∈ Cn be a
unit vector that is not an eigenvector of A, and define y = A−1x − (x∗A−1x)x . Then
y �= 0 and a computation reveals that x∗y = 0, Ay = x − (x∗A−1x)Ax �= 0, x∗Ay =
1 − (x∗Ax)(x∗A−1x) < 0, and y∗Ay = −(x∗A−1x)(x∗Ay). Wielandt’s inequality in
this case is

(x∗Ay)2 ≤ −
(

λ1 − λn

λ1 + λn

)2

(x∗Ax)(x∗A−1x)(x∗Ay)

so we have

(x∗Ax)(x∗A−1x) − 1 = −x∗Ay ≤
(

λ1 − λn

λ1 + λn

)2

(x∗Ax)(x∗A−1x)

from which it follows that

(x∗Ax)(x∗A−1x) ≤ (λ1 + λn)2

4λ1λn

This is Kantorovich’s inequality.

Exercise. Let u, v ∈ Cn be orthonormal vectors such that Au = λ1u and Av =
λnv. Let x = (u + v)/

√
2 and y = (u − v)/

√
2. Show that (7.4.12.2) is an equal-

ity for the orthonormal vectors x and y, and that (7.4.12.1) is an equality for this
unit vector x .

If B ∈ Mn is nonsingular with singular values σ 1 ≥ · · · ≥ σ n > 0, and if we take
A = B∗B in Wielandt’s inequality (7.4.12.2), we obtain the inequality

|〈Bx, By〉| ≤
(

σ 2
1 − σ 2

n

σ 2
1 + σ 2

n

)
‖Bx‖ ‖By‖ =

(
κ2 − 1

κ2 + 1

)
‖Bx‖ ‖By‖ (7.4.12.6)

in which x, y ∈ Cn are orthogonal vectors and κ = σ 1/σ n is the spectral condition
number of B. Let θκ ∈ (0, π/2] be the unique angle such that cos θ k = (κ2 − 1)/
(κ2 + 1).
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Exercise. Show that sin θκ = 2κ/(κ2 + 1) and cot(θκ/2) = κ , with θκ ∈
(0, π/2].

If B, x , and y are real, then (7.4.12.6) can be written in the form

cos θ Bx,By = |〈Bx, By〉|
‖Bx‖ ‖By‖ ≤ cos θκ for all orthogonal nonzero x, y ∈ Rn

(7.4.12.7)
in which θ Bx,By ∈ (0, π/2] is the angle between the real vectors Bx and By; see
(0.6.3.1). This formulation gives us the geometric inequality 0 ≤ θκ ≤ θ Bx,By . More-
over, since there are nonzero orthogonal vectors for which (7.4.12.2) – and hence also
(7.4.12.7) – is an equality, we have the geometric interpretation that θ k (determined
solely by the spectral condition number of B) is the minimum angle between the real
vectors Bx and By as x and y range over all orthonormal pairs of real vectors. If κ

is large, then κ2−1
κ2+1 = 1−κ−2

1+κ−2 is close to 1 and θκ = cos−1( 1−κ−2

1+κ−2 ) is close to zero, and
conversely. Thus, κ is large if and only if there is an orthonormal pair of vectors x, y
such that Bx and By are nearly parallel.

Exercise. Let B ∈ Mn be nonsingular, let κ be its spectral condition number, and
take A = B∗B in Kantorovich’s inequality. Deduce that

‖Bx‖2

∥∥B−∗x
∥∥

2 ≤
(

2κ

κ2 + 1

)
‖x‖2

2 (7.4.12.8)

and

sin θκ ‖Bx‖2

∥∥B−∗x
∥∥

2 ≤ ‖x‖2
2 (7.4.12.9)

for any x ∈ Cn .

Problems

7.4.P1 Suppose that 0 < λ1 ≤ · · · ≤ λn , α1, . . . , αn are nonnegative and α1 + · · · + αn =
1. Let A = (λ1 + λn)/2 and G = √

λ1λn (the arithmetic and geometric means of λ1 and
λn). Derive the scalar Kantorovich inequality(

n∑
i=1

αiλi

)(
n∑

i=1

αiλ
−1
i

)
≤ A2G−2 (7.4.12.10)

from (7.4.12.1).

7.4.P2 Let A = [ai j ] ∈ Mn be positive definite and have eigenvalues 0 < λ1 ≤ · · · ≤ λn .
We know that |ai j |2 < aii a j j for all i �= j ; see (7.1.P1). Use (7.4.12.2) to prove the better

bound |ai j |2 ≤
(

λ1−λn
λ1+λn

)2
aii a j j for all i �= j .

7.4.P3 Prove the following 2-matrix generalization of (7.4.12.1): Let B, C ∈ Mn be com-
muting positive definite matrices with eigenvalues 0 < λ1 ≤ · · · ≤ λn and 0 < μ1 ≤ · · · ≤
μn , respectively. The Greub–Rheinboldt inequality says that

(x∗B2x)(x∗C2x) ≤ (λ1μ1 + λnμn)2

4λ1λnμ1μn
(x∗BCx)2, any x ∈ Cn (7.4.12.11)
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which we can express equivalently as

〈Bx, Cx〉
‖Bx‖2 ‖Cx‖2

≥ 2
√

λ1λnμ1μn

λ1μ1 + λnμn
, any nonzero x ∈ Cn (7.4.12.12)

Unlike Kantorovich’s inequality, however, if neither B nor C is a scalar matrix, there
need not be a unit vector x for which the Greub–Rheinboldt inequality is an equality. (a)
Prove (7.4.12.11). (b) Show that equality is possible in (7.4.12.12) if at least one of B, C
is a scalar matrix. (c) For what choice of commuting positive definite matrices B and C
does (7.4.12.11) reduce to (7.4.12.1)? (d) If B, C , and x are real, interpret (7.4.12.12)
geometrically as a lower bound on the cosine of the smaller angle between the vectors Bx
and By, that is, as an upper bound on the smaller angle between Bx and By.

7.4.P4 Let A ∈ Mn be positive definite and have eigenvalues 0 < λ1 ≤ · · · ≤ λn . Let
u1, un ∈ Cn be orthonormal vectors such that Au1 = λ1u1 and Aun = λnun , and let
κ = λn/λ1 be the spectral condition number of A. Deduce from (7.4.12.12) that

〈x, Ax〉
‖x‖2 ‖Ax‖2

≥ 2
√

λ1λn

λ1 + λn
= 2

√
κ

κ + 1
, any nonzero x ∈ Cn (7.4.12.13)

with equality for the vector x0 = λ1/2
n u1 + λ

1/2
1 un . If A and x are real, interpret the preceding

inequality geometrically:

cos θ x,Ax ≥ 2
√

κ

κ + 1
, any unit vector x ∈ Rn (7.4.12.14)

in which the lower bound is achieved for the vector x0. Thus, 0 ≤ θ x,Ax ≤ cos−1(2κ1/2(κ +
1)−1) for every unit vector x , with equality in the lower bound for every eigenvector of A
and equality in the upper bound for x0.

7.4.P5 Let A ∈ Mn be nonsingular, and let κ be its spectral condition number. Use the
polar decomposition and the Kantorovich inequality to show that

|(x∗ Ax)(x∗ A−1x)| ≤ 1

4
(κ1/2 + κ−1/2)2 ‖x‖4

2 , any x ∈ Cn (7.4.12.15)

with equality for some unit vector x .

7.4.P6 Let κ be the spectral condition number of the positive definite matrix A. Show that
the Kantorovich and Wielandt inequalities are, respectively,

(x∗ Ax)(x∗ A−1x) ≤ 1

4
(κ1/2 + κ−1/2)2 ‖x‖4

2 , any x ∈ Cn (7.4.12.16)

and

∣∣x∗ Ay
∣∣2 ≤

(
κ − 1

κ + 1

)2

(x∗ Ax)(y∗ Ay), all orthogonal x, y ∈ Cn (7.4.12.17)

7.4.P7 Let A ∈ Mn be nonsingular and Hermitian and have spectral condition number κ .
Show that

max
‖x‖2=1

(‖Ax‖2

∥∥A−1x
∥∥

2) = 1

2
(κ + κ−1)

Exhibit a vector x for which the maximum is achieved.
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7.4.P8 Let A ∈ Mn be positive definite, and suppose that all its eigenvalues lie in the interval
[m, M], in which 0 < m < M < ∞. Show that (x∗ Ax)(x∗ A−1x) ≤ (m + M)2 ‖x‖4

2 /4m M
for all x ∈ Cn .

7.4.P9 Let α1, . . . , αn, β1, . . . , βn be (not necessarily ordered) positive real numbers. We
know that

∑n
i=1 αiβ i ≤

∑n
i=1 α

↓
i β

↓
i ; see (4.3.54). The Kantorovich inequality permits us

to reverse this inequality:

n∑
i=1

α
↓
i β

↓
i ≤ m + M

2
√

m M

n∑
i=1

αiβ i (7.4.12.18)

in which 0 < m ≤ αi/β i ≤ M < ∞ for all i = 1, . . . , n. Provide details: (a) Let
A = diag(α1/β1, . . . , αn/βn) and x = [

√
αiβ i ]

n
i=1. Compute (xT Ax)(xT A−1x) and use

(7.4.12.1) to provide an upper bound for it. (b) (
∑n

i=1 α
↓
i β

↓
i )2 ≤ (

∑n
i=1 α2

i )(
∑n

i=1 α2
i ) gives

a lower bound.

7.4.P10 Let x, y ∈ Cn be nonzero vectors and let A, B ∈ Mn be positive definite. (a) Show
that |x∗y|2 ≤ (x∗Ax)(y∗ A−1 y), with equality for x = A−1 y. (b) Conclude that the function
f (A, y) = (y∗A−1 y)−1 has the variational representation

f (A, y) = min
x∗ y �=0

x∗ Ax

|x∗y|2

(c) Deduce that f (A + B, y) ≥ f (A, y) + f (B, y). (d) Let y = ei , the i th standard unit
basis vector, and deduce that γ−1

i i ≥ α−1
i i + β−1

i i , in which (A + B)−1 = [γ i j ], A−1 = [αi j ],
and B−1 = [β i j ]. This is Bergström’s inequality. (e) Explain why Bergström’s inequality
can be written in the form

det(A + B)

det(A + B)[{i}c]
≥ det A

det A[{i}c]
+ det B

det B[{i}c]
, i = 1, . . . , n (7.4.12.19)

in which the denominators are cofactors of main diagonal entries.

7.4.P11 Let A ∈ Mn be positive definite, let x, y ∈ Cn , and let α, β be real and posi-

tive. Let Aα =
[

A x
x∗ α

]
and Bβ =

[
B y
y∗ β

]
. (a) Show that detAα/ det A = α − x∗ A−1x ,

detBα/ det B = β − y∗B−1 y, and det(Aα + Bα)/ det(A + B) = α + β − (x + y)∗(A +
B)−1(x + y). (b) Show that

det(Aα + Bα)

det(A + B)
− detAα

det A
− detBα

det B

= x∗ A−1x + y∗B−1 y − (x + y)∗(A + B)−1(x + y) (7.4.12.20)

(c) Explain why Aα and Bβ are positive definite for all sufficiently large positive α, β, and
use (7.4.12.20) to show that (7.4.12.19) implies the Berenstein–Veinstein inequality:

x∗ A−1x + y∗B−1 y ≥ (x + y)∗(A + B)−1(x + y) (7.4.12.21)

(d) Use (7.4.12.20) to show that (7.4.12.21) implies (7.4.12.19), and conclude that the
Bergström and Berenstein–Veinstein inequalities are equivalent.

7.4.P12 Let N1(·) and N2(·) be unitarily invariant norms on Mm,n . Show that the function
f (A) = N1(A)/N2(A) is constant on rank-one matrices in Mm,n . What is the constant?
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7.4.P13 For any complex number z and any real number x , we have the inequality |z −
Re z| ≤ |z − x |. A plausible generalization of this to square matrices A ∈ Mn is∥∥∥∥A − 1

2
(A + A∗)

∥∥∥∥ ≤ ‖A − H‖ (7.4.12.22)

for all Hermitian H ∈ Mn . Prove that this inequality is valid for all unitarily invariant
norms ‖ · ‖ and, more generally, for all self-adjoint norms. Conclude that the distance (with
respect to ‖ · ‖) from a given A ∈ Mn to the closed set of Hermitian matrices in Mn is
1
2 ‖A − A∗‖; this is the norm of the skew-Hermitian part of A.

7.4.P14 For any complex number z, |Rez| ≤ |z|. Let ‖ · ‖ be a unitarily invariant norm and
let A ∈ Mn . Show that (a) ‖ (A + A∗)/2 ‖≤‖ A ‖ (Hermitian part); (b) ‖ (A + AT )/2 ‖≤
‖ A ‖ (symmetric part); (c) ‖ (A + Ā)/2 ‖≤‖ A ‖ (real part).

7.4.P15 Let A ∈ Mn and let ‖ · ‖ be a unitarily invariant norm on Mn . Use (7.4.9.1) to
show that ‖A − U‖ ≥ ‖�(A) − I‖ for every unitary U ∈ Mn , with equality if U is the
unitary factor in a polar decomposition of A. Conclude that ‖�(A) − I‖ is the distance
(with respect to ‖ · ‖) from A to the compact set of unitary matrices in Mn .

7.4.P16 Let A ∈ Mn have a singular value decomposition A = V �(A)W ∗ and let ‖ · ‖ be
a unitarily invariant norm on Mn . Show that

‖�(A) − I‖ ≤ ‖A − U‖ ≤ ‖�(A) + I‖ (7.4.12.23)

for any unitary U ∈ Mn .

7.4.P17 Let A ∈ Mn be nonsingular, and let A = V �(A)W ∗ be a singular value de-
composition in which �(A) = diag(σ 1(A), . . . , σ n(A)). We showed in (7.4.2) that there
are at least two different best singular approximations to A in the Frobenius norm
if σ n−1(A) = σ n(A). Provide details for the following outline of a proof that if B ∈
Mn is singular, ‖A − B‖2 = σ n(A), and σ n−1(A) > σ n(A), then B is the matrix B0

constructed in (7.4.2). The condition σ n−1(A) > σ n(A) is used only in (d) and (e).
(a) Let �0 = diag(σ 1(A), . . . , σ n−1(A), 0). Review the discussion in (7.4.2) and explain
why the singular values of B must be the same as those of �0, that is, �(B) = �0.
(b) Explain why AB∗ and B∗ A are positive semidefinite and tr(AB∗) =∑n−1

i=1 σ 2
i (A).

(c) Show that there are unitary X, Y ∈ Mn such that A = X�(A)Y ∗, B = X�Y ∗, and
� = diag(λ1, . . . , λn) = P�0 PT for some permutation matrix P . (d) Show that � = �0.
(e) Show that there is a unitary Z = U ⊕ [eiθ ] ∈ Mn such that X = V Z , Y = W Z , and
Z�(A) = �(A)Z . (f ) Explain why Z�0 = �0 Z and conclude that B = B0.

7.4.P18 Let ‖ · ‖ be a unitarily invariant norm on Mn,m . Show that ‖A‖ ≤ ‖ |A| ‖ for all
A ∈ Mn,m .

Notes and Further Readings. For generalizations of Kantorovich’s inequality and refer-
ences, see A. Clausing, Kantorovich-type inequalities, Amer. Math. Monthly 89 (1982)
314–320. For more information about inequalities valid for all unitarily invariant norms,
see L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math.
Oxford 11 (1960) 50–59, and K. Fan and A. J. Hoffman, Some metric inequalities in
the space of matrices, Proc. Amer. Math. Soc. 6 (1955) 111–116. As an example of
how these results are applied in statistics, and for further references to the statistics
literature, see C. R. Rao, Matrix approximations and reduction of dimensionality in
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multivariate statistical analysis, Multivariate Analysis–V, Proceedings of the Fifth In-
ternational Symposium on Multivariate Analysis, P. R. Krishnaiah, North-Holland,
Amsterdam, 1980, pp. 1–22.

7.5 The Schur product theorem

Definition 7.5.1. If A = [ai j ] ∈ Mm,n and B = [bi j ] ∈ Mm,n, then the Hadamard prod-
uct (Schur product) of A and B is the entrywise product matrix A ◦ B = [ai j bi j ] ∈
Mm,n.

Like the usual matrix product, the Hadamard product distributes over matrix addi-
tion: A ◦ (B + C) = (A ◦ B) + (A ◦ C); unlike the usual matrix product, the Hadamard
product is commutative: A ◦ B = B ◦ A.

The Hadamard product arises naturally from several different points of view. For
example, if f and g are real-valued continuous periodic functions on R with period 2π

and if

ak =
∫ 2π

0
eikθ f (θ )dθ and bk =

∫ 2π

0
eikθ g(θ )dθ, k = 0,±1,±2, . . .

are their trigonometric moments (Fourier coefficients), then the convolution product

h(θ ) =
∫ 2π

0
f (θ − t)g(t)dt

of f and g has trigonometric moments ck = ∫ 2π

0 eikθ h(θ )dθ that satisfy the identities
ck = akbk , k = 0,±1,±2, . . . . Thus, the Toeplitz matrix of trigonometric moments of
h is the Hadamard product of the Toeplitz matrices of trigonometric moments of f
and g:

[ci− j ] = [ai− j ] ◦ [bi− j ]

If f and g are both nonnegative real-valued functions, then their convolution is also a
nonnegative real-valued function. Therefore, as shown in (7.0.4.1), the matrices [ai− j ],
[bi− j ], and [ci− j ] are all positive semidefinite. This is an instance of the Schur product
theorem: The Hadamard product of two positive semidefinite matrices is positive
semidefinite.

As another example, consider the integral operator

K ( f ) =
∫ b

a
K (x, y) f (y)dy

in which f ∈ C[a, b] and the kernel K (x, y) is a continuous function on a finite interval
[a, b] × [a, b]. Suppose that the kernel H (x, y) satisfies the same conditions, and
consider the (pointwise) product kernel L(x, y) = K (x, y)H (x, y) and the associated
integral operator

L( f ) =
∫ b

a
L(x, y) f (y) dy =

∫ b

a
K (x, y)H (x, y) f (y) dy
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The linear mapping f → K ( f ) is a limit of matrix-vector multiplications (approximate
the integral as a finite Riemann sum), and many properties of integral operators can be
deduced by taking appropriate limits of results known for matrices. The (pointwise)
product of integral kernels leads to an integral operator that is, from this point of view,
a continuous analog of the Hadamard product of matrices.

If an integral kernel K (x, y) has the property that∫ b

a

∫ b

a
K (x, y) f (x) f̄ (y) dx dy ≥ 0

for all f ∈ C[a, b], then K (x, y) is said to be a positive semidefinite kernel. It is a classi-
cal result (Mercer’s theorem) that if K (x, y) is a continuous positive semidefinite kernel
on a finite interval [a, b], then there exist positive real numbers λ1, λ2, . . . (known as
“eigenvalues”) and continuous functions φ1(x), φ2(x), . . . (known as “eigenfunctions”)
such that

K (x, y) =
∞∑

i=1

φi (x)φ̄i (y)

λi
on [a, b] × [a, b]

and the series converges absolutely and uniformly.
If K (x, y) and H (x, y) are both continuous positive semidefinite kernels on [a, b],

then H (x, y) also has an absolutely and uniformly convergent representation

H (x, y) =
∞∑

i=1

ψ i (x)ψ̄ i (y)

μi
on [a, b] × [a, b]

with all μi > 0. The (pointwise) product kernel L(x, y) = K (x, y)H (x, y) has the
representation

L(x, y) =
∞∑

i, j=1

φi (x)ψ j (x)φ̄i (y)ψ̄ j (y)

λiμ j
on [a, b] × [a, b]

which also converges absolutely and uniformly. Then∫ b

a

∫ b

a
L(x, y) f (x) f̄ (y) dx dy =

∞∑
i, j=1

1

λiμ j

∣∣∣∣
∫ b

a
φi (x)ψ j (x) f (x) dx

∣∣∣∣
2

≥ 0

so L(x, y) is also positive semidefinite. This is another instance of the Schur product
theorem.

Exercise. The usual matrix product of two Hermitian matrices is Hermitian if
and only if they commute. Show that the Hadamard product of two Hermitian
matrices is always Hermitian.

Exercise. Consider A =
[

2 1
1 1

]
and B =

[
2 1
1 3

]
. Show that A, B, and A ◦ B are

positive definite, but AB is not symmetric, so it is not positive semidefinite. Verify
that AB is diagonalizable and has positive eigenvalues. Is this an accident? Hint:
(7.2.P21).

The sesquilinear form associated with a Hadamard product has a convenient repre-
sentation as the trace of an ordinary matrix product.
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Exercise. Let A = [ai j ], B = [bi j ] ∈ Mn be given. Verify that
∑n

i, j=1 ai j bi j =
tr(ABT ).

Lemma 7.5.2. Let A, B ∈ Mn and x, y ∈ Cn be given. Let diag x and diag y be the
n-by-n diagonal matrices whose respective main diagonal entries are the respective
entries of x and y; see (0.9.1). Then

x∗(A ◦ B)y = tr((diag x̄)A(diag y)BT )

Proof. Let A = [ai j ], B = [bi j ], x = [xi ], and y = [yi ]. Then (diag x̄)A = [x̄i ai j ] and
B diag y = [bi j y j ]. Use the preceding exercise to compute

tr((diag x̄)A(diag y)BT ) = tr(((diag x̄)A)(B diag y)T )

=
n∑

i, j=1

(x̄i ai j )(bi j y j ) = x∗(A ◦ B)y

�

Exercise. Let x, y ∈ Cn and A ∈ Mn . Show that (xy∗) ◦ A = (diag x)A(diag ȳ).

Exercise. If A ∈ Mn is Hermitian (in particular, if A is positive semidefinite),
explain why AT = Ā.

The first assertion of the following theorem is the Schur product theorem.

Theorem 7.5.3. Let A, B ∈ Mn be positive semidefinite.

(a) A ◦ B is positive semidefinite.
(b) If A is positive definite and every main diagonal entry of B is positive, then A ◦ B

is positive definite.
(c) If both A and B are positive definite, then A ◦ B is positive definite.

Proof. Let A = [ai j ], B = [bi j ], and x = [xi ].
(a) Let C = (diag x)B̄1/2 and use the preceding lemma to compute

x∗(A ◦ B)x = tr((diag x̄)A(diag x)B̄)

= tr(B̄1/2(diag x̄)A(diag x)B̄1/2) = tr(C∗AC)

It follows from (7.1.8(a)) that C∗AC is positive semidefinite, so it has nonnegative
eigenvalues and a nonnegative trace. Thus, x∗(A ◦ B)x ≥ 0 for all x ∈ Cn , so A ◦ B is
positive semidefinite.
(b) Let λ1 > 0 be the smallest eigenvalue of A, let β > 0 be the smallest main diagonal
entry of B, and let x = [xi ] ∈ Cn be a nonzero vector. Then A − λ1 I has nonneg-
ative eigenvalues, so it is positive semidefinite and hence (A − λ1 I ) ◦ B is positive
semidefinite. Then 0 ≤ x∗((A − λ1 I ) ◦ B)x = x∗(A ◦ B)x − λ1x∗(I ◦ B)x , so

x∗(A ◦ B)x ≥ λ1x∗(I ◦ B)x = λ1

n∑
i=1

bii |xi |2 ≥ λ1β ‖x‖2
2 > 0

(c) If B is positive definite, then (7.1.2) ensures that its main diagonal entries are
positive; the assertion follows from (b). �
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Exercise. For any nonzero x ∈ Cn , show that the rank-one matrices xx∗ and x̄ xT

are positive semidefinite.

Theorem 7.5.4 (Moutard). Let A = [ai j ] ∈ Mn. Then A is positive semidefinite if
and only if tr(ABT ) =∑n

i, j=1 ai j bi j ≥ 0 for every positive semidefinite B = [bi j ] ∈
Mn.

Proof. Suppose that A and B are positive semidefinite, and let e ∈ Cn be the all-
ones vector. Then diag(e) = I and tr(ABT ) = tr((diag e)A(diag e)BT ) = e∗(A ◦ B)e is
nonnegative since A ◦ B is positive semidefinite. Conversely, if tr(ABT ) ≥ 0 whenever
B is positive semidefinite, let x = [xi ] ∈ Cn , let B = x̄ x T , and compute tr(ABT ) =∑n

i, j=1 ai j x̄i x j = x∗Ax ≥ 0. �

Application 7.5.5. Let D ⊂ Rn be an open bounded set. The real second-order linear
differential operator on C2(D) given by

Lu =
n∑

i, j=1

ai j (x)
∂2u

∂xi ∂x j
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u (7.5.6)

is said to be elliptic in D if the matrix A(x) = [ai j (x)] is positive definite for all
x ∈ D. Suppose that u ∈ C2(D) satisfies the equation Lu = 0 in D. What can we
say about the local maxima or minima of the function u in D? If y ∈ D is a local
minimum for u, then ∂u/∂xi = 0 at y for all i = 1, . . . , n and the Hessian matrix
[∂2u/∂xi ∂x j ] is positive semidefinite at y. Therefore, Lu = 0 =∑n

i, j=1 ai j
∂2u

∂xi ∂x j
+

cu, so the preceding theorem ensures that −cu =∑n
i, j=1 ai j

∂2u
∂xi ∂x j

≥ 0 at the point y.
In particular, u(y) > 0 if c(y) < 0. A similar argument shows that u(y) < 0 at a relative
maximum y ∈ D if c(y) < 0. These simple observations are the heart of the following
important principle.

Weak minimum principle 7.5.7. Let the operator L defined by (7.5.6) be elliptic in
D, and suppose that c(x) < 0 in D. If u ∈ C2(D) satisfies Lu = 0 in D, then u cannot
have a negative interior relative minimum or a positive interior relative maximum. If,
in addition, u is continuous on the closure of D and u is nonnegative on the boundary
of D, then u must be nonnegative everywhere in D.

From the weak minimum principle follows one of the fundamental uniqueness
theorems for partial differential equations.

Fejér’s uniqueness theorem 7.5.8. Suppose that the operator L defined by (7.5.6) is
elliptic, assume that c(x) < 0 in D, let f be a given real-valued function on D, and
let g be a given real-valued function on ∂ D. Then there is at most one solution to the
following boundary value problem:

u is twice continuously differentiable in D
Lu = f in D
u is continuous on the closure of D
u = g on ∂ D
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Proof. If u1 and u2 are two solutions to this problem, then the functions ±v = u1 − u2

are solutions to the problem Lv = 0 in D and v = 0 on ∂ D. The weak minimum
principle says that v and −v are both nonnegative in D, so v = 0 in D. �

Exercise. Explain how the weak minimum principle and Fejer’s uniqueness the-
orem apply to the partial differential equation

∑n
i=1

∂2u
∂xi ∂xi

− λu = 0 in D ⊂ Rn ,
in which λ is a positive real parameter.

If A = [ai j ] ∈ Mn is positive semidefinite, then A ◦ A = [a2
i j ] is also positive

semidefinite. It follows from an induction argument that every positive integer
Hadamard power A(k) = [ak

i j ] is positive semidefinite, k = 1, 2, . . . . Since any non-
negative linear combination of positive semidefinite matrices is positive semidefinite,
it follows that

[p(ai j )] = a0 Jn + a1 A + a2 A(2) + · · · + am A(m)

= [a0 + a1ai j + a2a2
i j + · · · + amam

i j ]

is positive semidefinite whenever p(t) = a0 + a1t + · · · + amtm is a polynomial with
nonnegative coefficients; the matrix Jn is the all-ones matrix. More generally, if f (z) =∑∞

k=0 ak zk is an analytic function with all ak ≥ 0 and radius of convergence R > 0,
then a limit argument shows that [ f (ai j )] ∈ Mn is positive semidefinite if all |ai j | < R.
An important example is f (z) = ez , whose power series converges for all z ∈ C and
whose coefficients are all positive: ak = 1/k!. The Hadamard exponential matrix [eai j ]
is defined for every A = [ai j ] ∈ Mn; it is positive semidefinite whenever A is positive
semidefinite, and it fails to be positive definite if and only if A is singular in an especially
obvious way.

Theorem 7.5.9. Let A = [ai j ] ∈ Mn be positive semidefinite.

(a) The Hadamard powers A(k) = [ak
i j ] are positive semidefinite for all k = 1, 2, . . .;

they are positive definite if A is positive definite.
(b) Let f (z) = a0 + a1z + a2z2 + · · · be an analytic function with nonnegative co-

efficients and radius of convergence R > 0. Then [ f (ai j )] is positive semidefinite
if |ai j | < R for all i, j ∈ {1, . . . , n}; it is positive definite if, in addition, A is
positive definite and ai > 0 for some i ∈ {1, 2, . . .}.

(c) The Hadamard exponential matrix [eai j ] is positive semidefinite; it is positive
definite if and only if no two rows of A are identical.

Proof. Only the assertions about positive definiteness require justification. The asser-
tion in (a) follows from (7.5.3) and an induction. The assertion in (b) follows from (a).
See (7.5.P18 to P21) for a proof of the assertion in (c). �

Problems

7.5.P1 Let A, B ∈ Mn be positive semidefinite. Provide details for the following outline
of an alternative proof that A ◦ B is positive semidefinite: (a) There are matrices X =
[x1 . . . xn], Y = [y1 . . . yn] ∈ Mn such that X X∗ = A and Y Y ∗ = B; (b) A =∑n

i=1 xi x∗
i
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and B =∑n
i=1 yi y∗i ; (c) A ◦ B =∑n

i, j=1(xi x∗
i ) ◦ (y j y∗j ); (d) If ξ = [ξ i ], η = [ηi ] ∈ Cn ,

then (ξξ ∗) ◦ (ηη∗) = (ξ ◦ η)(ξ ◦ η)∗ is a rank-one positive semidefinite matrix.

7.5.P2 Let A, B ∈ Mn . Suppose that H (A) (the Hermitian part of A) is positive definite
and B is positive definite. (a) Show that H (A ◦ B) is positive definite. (b) Explain why
A ◦ B has the row and column inclusion properties.

7.5.P3 If A = [ai j ] ∈ Mn is positive semidefinite, show that the matrix [|ai j |2] is also
positive semidefinite.

7.5.P4 Let A = [ai j ] ∈ Mn be positive semidefinite. The preceding problem ensures that
A ◦ Ā = [|ai j |2] is positive semidefinite, but what about the Hadamard absolute value
matrix |A| = [|ai j |]? (a) Suppose that A is positive definite. For n = 1, 2, 3, use Sylvester’s
criterion (7.2.5) to show that |A| is positive definite. Use a limit argument to show that
the same conclusion is valid if A is positive semidefinite (n = 1, 2, 3 only). (b) Problem
(7.1.P10) ensures that cos t is a positive definite function, so the matrix C = [cos(ti − t j )]
is positive semidefinite for all choices of t1, . . . , tn ∈ R and for all n = 1, 2, . . . . Let n = 4;
let t1 = 0, t2 = π/4, t3 = π/2, and t4 = 3π/4. Compute |C | and show that it is not positive
semidefinite.

7.5.P5 Consider the matrix |C | ∈ M4 in (7.5.P4). Compute |C | ◦ |C | and verify that it is
positive semidefinite. Conclude that B = |C | ◦ |C | is a positive semidefinite matrix whose
nonnegative “Hadamard square root” is not positive semidefinite. Contrast this with the
situation for the ordinary square root B1/2.

7.5.P6 Consider the matrix

A =

⎡
⎢⎢⎣

10 3 −2 1
3 10 0 9

−2 0 10 4
1 9 4 10

⎤
⎥⎥⎦

Show that A is positive definite but |A| is not positive semidefinite.

7.5.P7 Let K (x, y) be a continuous integral kernel on a finite interval [a, b]. Show
that K (x, y) is a positive semidefinite kernel if and only if the matrix [K (xi , x j )] ∈
Mn is positive semidefinite for all choices of the points x1, . . . , xn ∈ [a, b] and all
n = 1, 2, . . . .

7.5.P8 Use (7.5.P7) and the Schur product theorem to show that the ordinary (pointwise)
product of positive semidefinite integral kernels is positive semidefinite.

7.5.P9 Show that f ∈ C(R) is a positive definite function if and only if K (s, t) = f (s − t)
is a positive semidefinite integral kernel.

7.5.P10 Explain why the product of two positive definite functions is a positive definite
function.

7.5.P11 If A = [ai j ] ∈ Mn is positive semidefinite, show that the matrix [ai j/(i + j)] is
also positive semidefinite.

7.5.P12 Let A = [ai j ] ∈ Mn be positive semidefinite and suppose that each of its entries is
nonzero. Consider the Hadamard inverse matrix A(−1) = [a−1

i j ]. Show that A(−1) is positive
semidefinite if and only if rank A = 1, that is, if and only if A = xx∗ for some x ∈ Cn with
nonzero entries.
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7.5.P13 Let A, B ∈ Mn . Suppose that A is positive definite and B is positive semidefinite.
Let ν(B) denote the number of nonzero main diagonal entries of B. (a) Explain why B is
permutation similar to 0n−ν(B) ⊕ C , in which C ∈ Mν(B) is positive semidefinite. (b) Why
is ν(B) ≥ rank B? (c) Use (7.5.3) to show that rank(A ◦ B) ≥ ν(B) ≥ rank B.

7.5.P14 Let A ∈ Mn be positive definite. The matrix A ◦ A−T = A ◦ Ā−1 is known in
chemical engineering process control as a relative gain array. (a) Explain why A ◦ A−T

is positive definite, so its smallest eigenvalue λmin is positive. (b) Use the trace identity in
(7.5.2) to show that λmin ≥ 1.

7.5.P15 Provide details for the following outline of a proof that the Hilbert matrix Hn =
[1/(i + j − 1)] ∈ Mn is positive semidefinite: (a) X = [ξ i j ] = [(i − 1)( j − 1)/ i j] ∈ Mn

is a positive semidefinite matrix and 0 ≤ ξ i j < 1 for all i, j = 1, . . . , n; (b) Y = [i−1 j−1] ∈
Mn is a positive semidefinite matrix with positive diagonal entries; (c) Z = [1/(1 − ξ i j )]
is positive semidefinite; (e) Use (7.2.5) and (0.9.12.2) to show that Hn is actually positive
definite; see (7.5.P22) for a different approach.

7.5.P16 Let A ∈ Mn be Hermitian. Show that A is positive semidefinite if and only if A ◦ B
is positive semidefinite for every positive semidefinite B ∈ Mn .

7.5.P17 Let n1, . . . , nm be m given distinct positive integers and let gcd(ni , n j ) denote
the greatest common divisor of ni and n j , i, j = 1, . . . , m. We claim that the gcd ma-
trix G = [gcd(ni , n j )] ∈ Mm is real symmetric positive semidefinite. Provide details:
(a) Let 2 ≤ p1 < · · · < pd be an ordered list of all the distinct prime number factors
of all the integers n1, . . . , nm . Then, for each i = 1, . . . , m, ni = pν(i,1)

1 · · · pv(i,d)
d for

a unique set of positive integers ν(i, j), i = 1, . . . , m, j = 1, . . . , d. (b) gcd(ni , n j ) =
pmin{ν(i,1),ν( j,1)}

1 · · · pmin{ν(i,d),ν( j,d)}
d . (c) Each matrix [min{ν(i, k), ν( j, k)}], k = 1, . . . , d, is

positive semidefinite. (d) Each matrix Gk = [pmin{ν(i,k),ν( j,k)
k ]m

i, j=1 is positive semidefinite.
(e) G = G1 ◦ · · · ◦ Gd .

The following four problems provide a proof of the assertion in (7.5.9(c)) about positive
definiteness of a Hadamard exponential matrix.

7.5.P18 Let A = [ai j ] ∈ Mn be positive semidefinite and let Bt = [etai j ]. Why is Bt positive
semidefinite for all t > 0? Show that the following are equivalent:

(a) B1 = [eai j ] is singular.
(b) There is a nonzero x ∈ Cn such that Bt x = 0 for all t > 0.
(c) Bt is singular for all t > 0.

The following ideas might be useful: x �= 0 and x∗B1x = 0 ⇒ 0 = x∗B1x = x∗ Jn x +
x∗ Ax + 1

2! x∗ A(2)x + · · · ⇒ x∗ Jn x = 0 and x∗ A(k)x = 0 for all k = 1, 2, . . . ⇒ 0 =
x∗Bt x = x∗ Jn x + t x∗Ax + t2

2! x∗ A(2)x + · · · for all t > 0 ⇒ Bt x = 0 for all t > 0.

7.5.P19 Let A =
[

α1 β

β̄ α2

]
∈ M2 be positive semidefinite. We know that B =

[
eα1 eβ

eβ̄ eα2

]
is

positive semidefinite. Provide details to show that B is singular if and only if α1 = α2 =
β. (a) det B = 0 ⇒ α1 + α2 = 2 Re β ⇒ (α2

1 + α2
2)/2 = 2(Re β)2 − α1α2. (b) A positive

semidefinite ⇒ α1α2 ≥ |β|2. (c) The arithmetic–geometric inequality ensures that

2(Re β)2 − α1α2 = α2
1 + α2

2

2
≥ α1α2 ≥ (Re β)2 + (Im β)2 (7.5.10)
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(d) (Re β)2 ≥ α1α2 + (Im β)2 ≥ (Re β)2 + 2(Im β)2 ⇒ Im β = 0 and α1 + α2 = 2β.
(e) It follows from (7.5.10) and (b) that

β2 ≥ 2β2 − α1α2 = α2
1 + α2

2

2
≥ α1α2 ≥ β2

so equality in the arithmetic–geometric mean inequality implies that α1 = α2.

7.5.P20 Let n ≥ 2 and suppose that A = [ai j ] ∈ Mn is positive semidefinite. If there are
distinct p, q ∈ {1, . . . , n} such that app = aqq = apq = α, show that the pth and qth rows
of A are identical.

7.5.P21 Let n ≥ 2, let A = [ai j ] ∈ Mn be positive semidefinite, and let B = [eai j ] be the
Hadamard exponential of A, which is positive semidefinite. We claim that B is positive
definite if and only if A has distinct rows. Consider the equivalent assertion: B is singular
if and only if two rows of A are identical. Sufficiency of the latter condition is apparent,
so assume that B is singular and provide details for the following outline of a proof that
two rows of A must be identical: (a) Let Bt = [etai j ]. Problem (7.5.P18) ensures that Bt

is positive semidefinite and singular for all t > 0. Let Dt = diag(e−ta11/2, . . . , e−tann/2).
Then Ct = Dt Bt Dt = [e−t(aii+a j j−2ai j )/2] is a singular correlation matrix for all t > 0. (b)
We know that bii b j j ≥ |bi j |2 for all i, j ∈ {1, . . . , n}. If bii b j j > |bi j |2 for all distinct
i, j , then eaii+a j j > e2 Re ai j ⇒ aii + a j j − 2 Re ai j > 0 for all distinct i, j ⇒ Ct → In as
t → ∞, so Ct is nonsingular for all sufficiently large t . This contradiction shows that
there must be distinct p, q ∈ {1, . . . , n} such that bppbqq = |bpq |2, that is, the principal

submatrix
[

bpp bpq

bqp bqq

]
of B is singular. (c) Problem (7.5.P19) ensures that app = aqq = apq

and (7.5.P20) tells us that rows p and q of A are identical.

7.5.P22 Revisit (7.5.P15) and use the ideas in (7.5.P18) to show that the Hilbert
matrix is positive definite. (a) Z = Jn + X + X (2) + X (3) + · · · is positive semidefi-
nite. (b) If x ∈ Cn is nonzero and x∗Z x = 0, then x∗ Jn x = 0 and x∗X (k)x = 0 for
all k = 1, 2, . . . . Consequently, Jn x = 0 and X (k)x = 0 for all k = 1, 2, . . . . (c) Let
α j = ( j − 1)/j for j = 2, . . . , n. Explain why

∑n
i=1 xi = 0 and

∑n
i=1 αk

i xi = 0 for each
k = 1, 2, . . . . (d) Why does it follow that x = 0? (e) Conclude that Hn is positive
definite.

7.5.P23 Let z1, . . . , zn be distinct complex numbers. (a) Show that the n-by-n matrices
[ezi z̄ j ] and [cosh(zi z̄ j )] are positive definite. (b) If f (z) = (1 − z3)−1 and |zi | < 1 for each
i = 1, . . . , n, show that [ f (zi z̄ j )] is positive definite.

7.5.P24 Let A, B = [bi j ] ∈ Mn be positive semidefinite. (a) Examine the proof of (7.5.3(b))
and explain why λmin(A ◦ B) ≥ λmin(A) min{bii }, which is useful only if A is posi-
tive definite and B has positive main diagonal entries. (b) Show that λmax(A ◦ B) ≤
λmax(A) max{bii }, which is useful without any further assumptions.

7.5.P25 Let A ∈ Mn be positive semidefinite, let z ∈ Cn , let c ∈ R, and let e ∈ Rn be
the all-ones vector. Define B = [bi j ] = A + ze∗ + ez∗ + cJn . (a) Explain why B, while
Hermitian, need not be positive semidefinite. (b) Show that the Hadamard exponential
matrix H = [ebi j ] is positive semidefinite, and that it is positive definite unless A has
two equal rows. (c) If x ∈ Cn satisfies the condition x∗e = 0, show that x∗Bx ≥ 0. The
matrix B is conditionally positive semidefinite; the condition is that x must belong to the
(n − 1)-dimensional subspace of Cn that is orthogonal to the vector e.
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Notes and Further Readings. The first systematic study of norm and eigenvalue bounds
for entrywise products of matrices seems is in I. Schur, Bemerkungen zur Theorie der
beschränkten Bilinearformen mit unedlich vielen Veränderlichen, J. Reine Angew.
Math. 140 (1911) 1–28; the results in (7.5.3) and (7.5.P24) are Satz VII in this paper.
Theorem 7.5.4 was published by Th. Moutard in 1894; L. Fejér recognized in 1918
that it implies the Schur product theorem. J. Hadamard studied term-by-term products
of Maclaurin series of analytic functions in 1899. For a short historical survey of the
Hadamard product, see section 5.0 of Horn and Johnson (1991). Problem (7.5.P25)
describes a class of Hermitian matrices, larger than the class of positive semidefinite
matrices, whose Hadamard exponentials are positive semidefinite. See chapter 5 and
section 6.3 of Horn and Johnson (1991) for a discussion of this point and a detailed
treatment of Hadamard products.

7.6 Simultaneous diagonalizations, products, and convexity

In this section we discuss two different ways to diagonalize a pair of Hermitian matrices
and preserve Hermicity. The first, which we address in the following theorem, is useful
in dealing with products, while the second is useful in dealing with linear combinations.

Theorem 7.6.1. Let A, B ∈ Mn be Hermitian.

(a) If A is positive definite, then there is a nonsingular S ∈ Mn such that A = SI S∗

and B = S−∗�S−1, in which � is real diagonal. The inertias of B and � are the
same, so � is nonnegative diagonal if B is positive semidefinite and � is positive
diagonal if B is positive definite.

(b) If A and B are positive semidefinite and rank A = r , then there is a nonsingu-
lar S ∈ Mn such that A = S(Ir ⊕ 0n−r )S∗ and B = S−∗�S−1, in which � is
nonnegative diagonal.

Proof. (a) Theorem 4.5.7 ensures that there is a nonsingular T ∈ Mn such that
T −1 AT −∗ = I . The matrix T ∗BT is Hermitian, so there is a unitary U ∈ Mn such
that U ∗(T ∗BT )U = � is diagonal. Let S = T U . Then S−1 AS−∗ = U ∗T −1 AT −∗U =
U ∗ IU = I and S∗BS = U ∗T ∗BT U = �. Theorem 4.5.8 tells us that B and � have
the same inertia.
(b) Using (4.5.7) again, choose a nonsingular T ∈ Mn such that T−1 AT −∗ = Ir ⊕ 0n−1

and partition T ∗BT =
[

B11 B12
B∗

12 B22

]
conformally to it. Since T ∗BT is positive semidef-

inite, (7.1.10) ensures that there is an X ∈ Mn−r such that B12 = B11 X . Let

R =
[

Ir −X
0 In−r

]
and compute R∗(T ∗BT )R = B11 ⊕ (B22 − X∗B11 X ); see (7.1.P28).

There are unitary matrices U1 ∈ Mr and U2 ∈ Mn−r such that U ∗
1 B11U1 = �1 and

U ∗
2 (B22 − X∗B11 X )U2 = �2 are real diagonal. Let U = U1 ⊕ U2, � = �1 ⊕ �2, and

S = T RU . A computation reveals that S−1 AS−∗ = Ir ⊕ 0n−r and S∗BS = �. �

Exercise. In the proof of part (a) of the preceding theorem, explain why one
possible choice of T is the matrix A1/2, so S = A1/2U , in which U is any unitary
matrix such that A1/2 B A1/2 = U�U ∗ is a spectral decomposition. If A and B
are real, use this observation to show that S may be chosen to be real.



486 Positive definite and semidefinite matrices

The preceding theorem has an immediate application to some questions about matrix
products.

Corollary 7.6.2. Let A, B ∈ Mn be Hermitian.

(a) If A is positive definite, then AB is diagonalizable and has real eigenvalues. If,
in addition, B is positive definite or positive semidefinite, then � has positive or
nonnegative eigenvalues, respectively.

(b) If A and B are positive semidefinite, then AB is diagonalizable and has nonneg-
ative eigenvalues.

Proof. (a) Use part (a) of the preceding theorem to represent A = SS∗ and B =
S−∗�S−1. Then AB = SS∗S−∗�S−1 = S�S−1.
(b) Use part (b) of the preceding theorem to represent A = S(Ir ⊕ 0n−r )S∗ and
B = S−∗�S−1. Then AB = S(Ir ⊕ 0n−r )S∗S−∗�S−1 = S(�1 ⊕ 0n−r ), in which � =
�1 ⊕ �2 is partitioned conformally to Ir ⊕ 0n−r . �

One case not covered in the corollary requires a different approach. The example

A =
[

1 0
0 0

]
and B =

[
0 1
1 0

]
shows that the product of a positive semidefinite matrix

and a Hermitian matrix need not be diagonalizable. The next theorem shows that this
example is typical: AB is always quasi-diagonalizable, and any 2-by-2 blocks in its
Jordan canonical form are nilpotent.

Theorem 7.6.3. Let A, B ∈ Mn be Hermitian, and assume that A is positive semidef-
inite and singular. Then AB is similar to � ⊕ N, in which � is real diagonal and
N = J2(0) ⊕ · · · ⊕ J2(0) is a direct sum of 2-by-2 nilpotent blocks; either direct sum-
mand � or N may be absent.

Proof. Choose a nonsingular S such that S−1 AS−∗ = Ir ⊕ 0n−r and partition S∗BS =
[Bi j ] conformally to Ir ⊕ 0n−r . Then S−1 ABS = (S−1 AS−∗)(S∗BS) =

[
B11 B12

0 0

]
and

B11 ∈ Mr is Hermitian. If B11 is nonsingular, then (2.4.6.1) ensures that
[

B11 B12
0 0

]
is

similar to B11 ⊕ 0n−r , which is diagonalizable. If rank B11 = p < r , then B11 is similar

to D ⊕ 0r−p, in which D ∈ Mp(R) is nonsingular real diagonal. Partition B12 =
[

C1
C2

]
,

in which C1 ∈ Mp,n−r , and use (2.4.6.1) again:⎡
⎣ D 0 C1

0 0 C2

0 0 0

⎤
⎦ is similar to

⎡
⎣ D 0 0

0 0 C2

0 0 0

⎤
⎦ = D ⊕

[
0 C2

0 0

]

Finally, observe that
[

0 C2
0 0

]
is nilpotent and has a zero square, so its Jordan canonical

form is a direct sum of a zero matrix and rank C2 copies of J2(0). �

We now turn to a second way to diagonalize a pair of Hermitian matrices and
preserve Hermicity. Proofs of the following assertions are parallel to the arguments
used to prove (7.6.1).
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Theorem 7.6.4. Let A, B ∈ Mn be Hermitian.

(a) If A is positive definite, then there is a nonsingular S ∈ Mn such that A = SI S∗

and B = S�S∗, in which � is real diagonal. The inertias of B and � are the same,
so � is nonnegative diagonal if B is positive semidefinite; it is positive diagonal
if B is positive definite. The main diagonal entries of � are the eigenvalues of
the diagonalizable matrix A−1 B.

(b) If A and B are positive semidefinite and rank A = r , then there is a nonsingular
S ∈ Mn such that A = S(Ir ⊕ 0n−r )S∗ and B = S�S∗, in which � is nonnegative
diagonal; rank B = rank �.

Proof. (a) Choose a nonsingular T ∈ Mn such that T −1 AT −∗ = I . Choose a unitary
U ∈ Mn such that U ∗(T −1 BT −∗)U = � is diagonal. Let S = T U . Then S−1 AS−∗ =
U ∗T −1 AT −∗U = U ∗ IU = I and S−1 BS−∗ = U ∗T −1 BT −∗U = �. The final asser-
tion follows from a computation: A−1 B = (S−∗S−1)(S�S∗) = S−∗�S∗.
(b) Choose a nonsingular T ∈ Mn such that T −1 AT −∗ = Ir ⊕ 0n−1 and partition

T −1 BT −∗ =
[

B11 B12
B∗

12 B22

]
conformally to it. Let X ∈ Mn−r be such that B12 = B11 X .

Let R =
[

Ir −X
0 In−r

]
and compute R∗(T −1 BT −∗)R = B11 ⊕ (B22 − X∗B11 X ). There are

unitary matrices U1 ∈ Mr and U2 ∈ Mn−r such that U ∗
1 B11U1 = �1 and U ∗

2 (B22 −
X∗B11 X )U2 = �2 are real diagonal. Let U = U1 ⊕ U2, � = �1 ⊕ �2, and S = T RU .
Then S−1 AS−∗ = Ir ⊕ 0n−r and S−1 BS−∗ = �. �

Exercise. In the proof of part (a) of the preceding theorem, explain why one
possible choice of T is the matrix A1/2, so S = A1/2U , in which U is any unitary
matrix such that A−1/2 B A−1/2 = U�U ∗ is a spectral decomposition. What can
you say if A and B are real? Use (7.2.9) to describe a possible choice of T that
is lower triangular. What is the corresponding choice of U? What is S?

A variant of the preceding results can be proved with similar methods.

Theorem 7.6.5. Let A, B ∈ Mn. If A is positive definite and B is complex symmetric,
then there is a nonsingular S ∈ Mn such that A = SI S∗ and B = S�ST , in which �

is nonnegative diagonal. The main diagonal entries of �2 are the eigenvalues of the
diagonalizable matrix A−1 B Ā−1 B̄.

Proof. Choose a nonsingular matrix R ∈ Mn such that R−1 AR−∗ = I . Use (4.4.4(c))
to choose a unitary U ∈ Mn such that U ∗R−1 B R−T Ū = � is nonnegative diago-
nal. Let S = RU . Then S−1 AS−∗ = U ∗R−1 AR−∗U = U ∗ IU = I and S−1 BS−T =
U ∗R−1 B R−T Ū = �. A computation verifies the second assertion: A−1 B Ā−1 B̄ =
(S−∗S−1)(S�ST )(S−T S̄−1)(S̄�S∗) = S−∗�2S∗. �

This result has applications to complex function theory: The Grunsky inequalities
for univalent analytic functions discussed in (4.4) are inequalities between quadratic
forms generated by a positive definite Hermitian matrix and a complex symmetric
matrix.

The following result is an application of (7.6.4(a)).
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Theorem 7.6.6. The function f (A) = log det A is a strictly concave function on the
convex set of positive definite Hermitian matrices in Mn.

Proof. Let A, B ∈ Mn be positive definite. We must show that

log det(αA + (1 − α)B) ≥ α log det A + (1 − α) log det B (7.6.7)

for all α ∈ (0, 1), with equality if and only if A = B. Use (7.6.4(a)) to write A = SI S∗

and B = S�S∗ for some nonsingular S ∈ Mn and � = diag(λ1, . . . , λn) with each
λi > 0. Then

f (αA + (1 − α)B) = f (S(α I + (1 − α)�)S∗) = f (SS∗) + f (α I + (1 − α)�)

= f (A) + f (α I + (1 − α)�)

and

α f (A) + (1 − α) f (B) = α f (A) + (1 − α) f (S�S∗)

= α f (A) + (1 − α)( f (SS∗) + f (�))

= α f (A) + (1 − α) f (A) + (1 − α) f (�)

= f (A) + (1 − α) f (�)

It suffices to show that f (α I + (1 − α)�) ≥ (1 − α) f (�) for all α ∈ (0, 1). This fol-
lows from strict concavity of the logarithm function:

f (α I + (1 − α)�) = log
n∏

i=1

(α + (1 − α)λi ) =
n∑

i=1

log(α + (1 − α)λi )

≥
n∑

i=1

(α log 1 + (1 − α) log λi )

= (1 − α)
n∑

i=1

log λi = (1 − α) log
n∏

i=1

λi

= (1 − α) log det � = (1 − α) f (�)

This inequality is an equality if and only if every λi = 1, if and only if � = I if and
only if B = SI S∗ = A. �

Theorem 7.6.6 is often used in the following form, which is obtained by exponenti-
ating the inequality (7.6.7).

Corollary 7.6.8. Let A, B ∈ Mn be positive definite and let 0 < α < 1. Then

det(αA + (1 − α)B) ≥ (det A)α(det B)1−α (7.6.9a)

with equality if and only if A = B.

Exercise. If A, B ∈ Mn are positive definite, explain why

det

(
A + B

2

)
≥

√
det AB (7.6.9b)
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with equality if and only if A = B. This inequality may be thought of as an
arithmetic–geometric mean inequality for the determinant.

Another application of (7.6.4(a)) draws on the same ideas as (7.6.6).

Theorem 7.6.10. The function f (A) = tr A−1 is a strictly convex function on the con-
vex set of positive definite Hermitian matrices in Mn.

Proof. Let A, B ∈ Mn be positive definite. We must show that

tr(αA + (1 − α)B)−1 ≤ α tr A−1 + (1 − α) tr B−1

for all α ∈ (0, 1), with equality if and only if A = B. Use (7.6.4(a)) to write A = SI S∗

and B = S�S∗ for some nonsingular S ∈ Mn and � = diag(λ1, . . . , λn) with each
λi > 0. Let s1, . . . , sn be the (necessarily positive) main diagonal entries of the positive
definite matrix S−1S−∗. Then

tr(αA + (1 − α)B)−1 = tr(αSS∗ + (1 − α)S�S∗)−1

= tr(S−∗(α I + (1 − α)�)−1S−1)

= tr((α I + (1 − α)�)−1S−1S−∗)

=
n∑

i=1

(α + (1 − α)λi )
−1si

≤
n∑

i=1

(αsi + (1 − α)λ−1
i si )

= tr(αS−1S−∗ + (1 − α)S−1�−1S−∗)

= α tr A−1 + (1 − α) tr B−1

with equality if and only if every λi = 1, if and only if A = B. �
For a stronger result, see (7.7.P14).

Problems

7.6.P1 Let A ∈ Mn . Show that the following statements are equivalent:

(a) A is similar to a Hermitian matrix.
(b) A is diagonalizable and has real eigenvalues.
(c) A = H K , in which H, K ∈ Mn are Hermitian and at least one factor is positive definite.
(d) A is similar to A∗ via a positive definite similarity.

Compare with (4.1.7).

7.6.P2 Let A, B ∈ Mn be Hermitian. If there are real numbers α and β such that αA + β B is
positive definite, show that there is a nonsingular S ∈ Mn such that S−1 AS−∗ and S−1 BS−∗

are real diagonal.

7.6.P3 Show that the matrix A−1 B Ā−1 B̄ in (7.6.5) is similar to a matrix that is ∗congruent
to the positive definite matrix A−T .
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7.6.P4 Use the following idea to prove (7.6.1(b)): Let S ∈ Mn be nonsingular and such
that A + B = S(Im ⊕ 0n−m)S∗. Partition S−1 AS−∗ = [Ai j ] and S−1 BS−∗ = [Bi j ] con-
formally to Im ⊕ 0n−m . Then (7.1.14) ensures that A22 + B22 = 0 ⇒ A22 = B22 = 0, so
A12 = B12 = 0. A11 + B11 = Im ⇒ A11 and B11 commute, so they are simultaneously
unitarily diagonalizable.

7.6.P5 Consider the two real quadratic forms 5x2
1 − 2x1x2 + x2

2 and x2
1 + 2x1x2 − x2

2 .
(a) Explain why there is a nonsingular change of variables x → Sξ that transforms the given
quadratic forms to α1ξ

2
1 + α2ξ

2
2 and β1ξ

2
1 − β2ξ

2
2, respectively, with positive coefficients

α1, α2, β1, β2. (b) Explain how you could determine an S that effects this transformation.

7.6.P6 Let A, B ∈ Mn be positive semidefinite. Show that det(A + B) ≥ det A + det B,
with equality if and only if either A + B is singular or A = 0 or B = 0.

7.6.P7 Let A, B ∈ Mn be Hermitian and suppose that A is positive definite. Use (7.6.4)
to show that A + B is positive definite if and only if every eigenvalue of A−1 B is greater
than −1.

7.6.P8 Let C ∈ Mn be Hermitian, and write C = A + i B with A, B ∈ Mn(R). If C
is positive definite, we claim that | det B| < det A and det C ≤ det A. Provide details:
(a) Verify that A is symmetric and B is skew symmetric, so the eigenvalues of B are pure
imaginary and occur in conjugate pairs. (b) Show that C is positive definite if and only if
A is positive definite and every eigenvalue of i A−1 B is greater than −1. (c) If A is positive
definite, show that the eigenvalues of i A−1 B are either zero or occur in ± pairs. (d) If C is
positive definite then A is positive definite, every eigenvalue of i A−1 B lies in the interval
(−1, 1), and the eigenvalues of i A−1 B are either zero or occur in ± pairs. (e) If C is positive
definite, conclude that | det i A−1 B| < 1 and hence | det B| < det A; this is an inequality of
H. P. Robertson. (f) If C is positive definite, then det C = det A det(I + i A−1 B). Why is
0 < det(I + i A−1 B) ≤ 1, with equality if and only if B = 0? (g) If C is positive definite,
conclude that det C ≤ det A, with equality if and only if B = 0; this is an inequality of O.
Taussky. See (7.8.19) and (7.8.24) for generalizations of these inequalities.

7.6.P9 In (4.1.7) we found that A ∈ Mn is the product of two Hermitian matrices if and
only if A is similar to a real matrix. Use (7.6.1(a)) to show that A ∈ Mn is the product of
two positive definite Hermitian matrices if and only if A is diagonalizable and has positive
eigenvalues.

7.6.P10 If A, B, C ∈ Mn are positive definite, we know that AB is positive definite if and
only if it is Hermitian (AB = B A). Show that S = ABC is positive definite if and only if
it is Hermitian (ABC = C B A). Show that tr(AB) is always positive, and give an example
to show that tr(ABC) can be negative.

7.6.P11 Provide the details for the following alternative proof of the result in the preceding
problem, with the same notation and assumptions: Let S(α) = ((1 − α)C + αA)BC for
all α ∈ [0, 1], and assume that S(1) is Hermitian. (a) Why is S(α) Hermitian for all α ∈
[0, 1]? (b) Why is S(α) nonsingular for all α ∈ [0, 1]? (c) The eigenvalues of S(α) depend
continuously on α, all the eigenvalues of S(0) are positive, and every eigenvalue of S(α) is
nonzero, for all α ∈ [0, 1]. Conclude that every eigenvalue of S(1) is positive.

7.6.P12 Let A, B ∈ Mn be Hermitian and assume that A is positive semidefinite. Theorem
7.6.3 says that AB is similar to a direct sum of a positive diagonal matrix D+ ∈ Mπ (R),
a negative diagonal matrix D− ∈ Mν(R), a zero matrix, and s copies of J2(0), the
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2-by-2 nilpotent Jordan block. (a) Examine the proof of (7.6.3) and show that π ≤ i+(B),
ν ≤ i−(B), and s = rank(AB) − rank((AB)2); see (4.5.6).

7.6.P13 Let A, B ∈ Mn(R) be symmetric and positive definite, and let x(t) =
[x1(t) . . . xn(t)]T . Use (7.6.2(a)) or (7.6.4(a)) to show that every solution x(t) of Ax ′′(t) =
−Bx(t) is bounded on (−∞,∞).

7.6.P14 Let A, B ∈ Mn be Hermitian. (a) If A is positive definite, or if A and B are positive
semidefinite, show that ρ(AB) = 0 if and only if AB = 0. (b) If A is positive semidefinite
and ρ(AB) = 0, is AB = 0?

7.6.P15 Let A, B ∈ Mn be positive semidefinite and nonzero. Show that tr AB =∥∥A1/2 B1/2
∥∥2

2 ≥ 0 with equality if and only if AB = 0.

7.6.P16 Let A, B ∈ Mn be Hermitian and suppose that A is positive semidefinite. Show
that AB is similar to a real diagonal matrix if and only if rank(AB) = rank(AB)2.

7.6.P17 LetS ⊂ Mn be a compact convex set of positive semidefinite matrices that contains
at least one positive definite matrix. (a) Explain why μ = sup{det A : A ∈ S} is positive
and finite, and why there is a matrix Q ∈ S such that μ = det Q. (b) Use (7.6.9b) to show
that if A1, A2 ∈ S and det A1 = det A2 = μ, then A1 = A2. (c) Conclude that there is a
unique matrix Q ∈ S such that det Q = max{det A : A ∈ S}.

The following 10 problems explore properties of the ellipsoid E(A) = {x ∈ Fn : x∗ Ax
≤ 1} associated with a positive definite matrix A ∈ Mn(F) (F = R or C).

7.6.P18 Let A ∈ Mn(F) be positive definite. Show that E(A) is the unit ball of the norm
ν A(x) = ∥∥A1/2x

∥∥
2, so it is a convex set.

7.6.P19 (Continuation; same notation) Let A ∈ Mn(R) be positive definite. Show that the
volume of E(A) is vol(E(A)) = cn/

√
det A, in which cn = πn/2�(1 + n/2) is the volume

of the Euclidean unit ball in Rn; cn satisfies the recurrence c1 = 2, c2 = π , cn = 2π
n cn−2

for n = 3, 4, . . . . Observe that larger determinants correspond to smaller volumes.

7.6.P20 (Continuation; same notation) Let ‖·‖ be a norm on Fn and define E(‖·‖) = {B ∈
Mn(F) : B is positive semidefinite and x∗Bx ≤ ‖x‖2 for all x ∈ Fn}. Let A ∈ Mn(F) be
positive definite and consider the norm ν A(x) = ∥∥A1/2x

∥∥
2 defined in (7.6.P18); its unit ball

is E(A). Show that (a) the unit ball of ‖·‖ is contained in E(B) for every positive definite
B ∈ E(‖·‖); (b) there is an ε > 0 such that εν A(x) = νε2 A(x) ≤ ‖x‖ for all x ∈ Fn , so
ε2 A ∈ E(‖·‖); (c) E(ε2 A) contains the unit ball of ‖·‖; (d) the set E(‖·‖) is convex, compact
(closed and bounded; any norm on Mn(F)), and contains a positive definite matrix; (e) there
is a unique positive definite matrix Q ∈ E(‖·‖) with maximum determinant; (f ) if F = R,
Q ∈ E(‖·‖) is the unique positive definite matrix such that vol(E(Q)) = min{vol(E(B)) : B
is positive definite and E(B) contains the unit ball of ‖·‖}.

The ellipsoid E(Q) is the Loewner ellipsoid associated with the norm ‖·‖. The positive
definite matrix L = Q1/2 is the Loewner–John matrix associated with the norm ‖·‖. The unit
ball of ‖·‖ is contained in (and must touch) the unit ball of νQ(·) = ‖L·‖2, so ‖Lx‖2 ≤ ‖x‖
for all x ∈ Fn with equality for some nonzero x0 ∈ Fn . Moreover, ‖L(cx0)‖2 = ‖cx0‖ for
all c ∈ F with modulus one.

7.6.P21 (Continuation; same notation) Let F‖·‖ = {A ∈ Mn(F) : A is an isometry for
‖·‖} be the isometry group of ‖·‖; see (5.4.P11). Let A ∈ F‖·‖ (so | det A| = 1),
let L be the Loewner–John matrix associated with ‖·‖, and let Q = L2. Show that
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(a) x∗ A∗Q Ax = (Ax)∗Q(Ax) ≤ ‖Ax‖2 = ‖x‖2, so A∗Q A ∈ E(‖·‖); (b) det(A∗Q A) =
| det A|2 det Q = det Q, so

A∗Q A = Q (7.6.11)

(c) it follows from (7.6.11) that

L AL−1 is unitary if F = C; it is real orthogonal if F = R (7.6.12)

(d) F is a bounded multiplicative matrix group; each member of F is similar, via the same
positive definite matrix L , to a unitary matrix in Mn(F); each member ofF is diagonalizable;
LFL−1 is a subgroup of the unitary group in Mn(F).

7.6.P22 (Continuation; same notation) LetG ⊂ Mn(F) be a bounded multiplicative group of
matrices. We claim that there is a norm ‖·‖G on Fn such that every member ofG is an isometry
of ‖·‖G . Provide details: (a) Let ‖·‖ be any norm on Fn . Then ‖x‖G = sup{‖Bx‖ : B ∈ G}
defines a norm on Fn . (b) If A ∈ G, then ‖Ax‖G = sup{‖B Ax‖ : B ∈ G} = sup{‖Cx‖ :
C ∈ G} = ‖x‖G .

7.6.P23 (Continuation; same notation) Let G ⊂ Mn(F) be a bounded multiplicative group
of matrices. Deduce from the preceding two problems that the Loewner–John matrix L
associated with the norm ‖·‖G is a positive definite matrix such that L AL−1 is unitary for
every A ∈ G. This result is a strong form of Auerbach’s theorem: A bounded multiplicative
group of complex (respectively, real) matrices is similar to a group of unitary (respectively,
real orthogonal) matrices.

7.6.P24 (Continuation; same notation) Let ‖·‖ be an absolute norm on Fn . Show that its
Loewner–John matrix is positive diagonal.

7.6.P25 (Continuation; same notation) Let ‖·‖ be an absolute norm on Fn that is
permutation-invariant (that is, ‖·‖ is a symmetric gauge function) and let L be its Loewner–
John matrix. Show that L = α I , in which α = min{‖x‖ : ‖x‖2 = 1}.
7.6.P26 (Continuation; same notation) Show that the Loewner–John matrix L associated
with the l p norms on Fn is α I , in which α = 1 if 1 ≤ p ≤ 2 and α = n(p−2)/2p if p ≥ 2.

7.6.P27 Let ‖·‖ be a norm on Rn . (a) Show that vol E(Q) ≥ cn/
∏n

i=1 ‖ei‖, in which the
vectors ei are the standard basis vectors in Rn and cn is the volume of the Euclidean unit
ball in Rn . (b) Conclude that vol E(Q) ≥ cn if

∏n
i=1 ‖ei‖ ≤ 1, which is the case if ‖·‖ is a

standardized norm. (c) Confirm that vol E(Q) ≥ π if n = 2 and ‖·‖ = ‖·‖p, an l p norm on
R2 with 1 ≤ p ≤ ∞. What is E(Q) if 1 ≤ p ≤ 2? if p = ∞?

7.6.P28 Deduce (7.6.4(a)) from the more general result in (4.5.17(a)).

7.6.P29 Deduce (7.6.5) from the more general result in (4.5.17(c)).

Further Readings. For a variety of results about products of matrices from various
positivity classes, see C. S. Ballantine and C. R. Johnson, Accretive matrix prod-
ucts, Linear Multilinear Algebra 3 (1975) 169–185. For a proof of the assertion in
(7.6.P12(c)), see R. A. Horn and Y. P. Hong, The Jordan canonical form of a product
of a Hermitian and a positive semidefinite matrix, Linear Algebra Appl. 147 (1991)
373–386. Problems (7.6.P18 to P25) are adapted from E. Deutsch and H. Schneider,
Bounded groups and norm-Hermitian matrices, Linear Algebra Appl. 9 (1974) 9–27,
which contains other interesting applications of the Loewner–John matrix.
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7.7 The Loewner partial order and block matrices

The natural analogy between Hermitian matrices and real numbers, with positive
semidefinite matrices as the analogs of nonnegative real numbers, suggests an order
relation among Hermitian matrices.

Definition 7.7.1. Let A, B ∈ Mn. We write A ! B if A and B are Hermitian and
A − B is positive semidefinite; we write A " B if A and B are Hermitian and A − B
is positive definite.

Observe that A ! 0 if A is Hermitian and positive semidefinite; A " 0 if A is
Hermitian and positive definite.

Exercise. Show that A ! B and B ! A if and only if A = B.

Exercise. Show that the relation ! is transitive and reflexive, but that it is not a
total order if n > 1: If n > 1, there are always Hermitian matrices A, B ∈ Mn

such that neither A ! B nor B ! A.

The preceding exercise shows that the order relation defined in (7.7.1) is a partial
order. It is often referred to as the Loewner partial order.

Exercise. If A ! B and C ! 0, explain why A ◦ C ! B ◦ C . Hint: A − B ! 0
and (7.5.3a).

Exercise. If A ∈ Mn is Hermitian with smallest and largest eigenvalues
λmin(A) and λmax(A), respectively, explain why λmax(A)I ! A ! λmin(A)I . Hint:
(4.2.2(c)).

Exercise. Let A ∈ Mn be Hermitian. Explain why: I ! A if and only if λmax(A) ≤
1; I " A, if and only if λmax(A) < 1.

A partial order on a real linear space can be defined by identifying a special closed
convex cone and saying that one element of the linear space is “greater” than another
if their difference lies in the special cone. For the Loewner partial order, the elements
of the real linear space are n-by-n Hermitian matrices and the elements of the closed
convex cone are positive semidefinite matrices. For this partial order and matrices of
size one, the real linear space is R and the closed convex cone is [0,∞): This gives the
usual order relation on the real numbers.

A different partial order provides the setting for the following chapter: The real linear
space is Mn(R) and the closed convex cone consists of real matrices with nonnegative
entries.

Exercise. Show by example that if A ! B and if A �= B, it does not follow that
A " B.

Let X ∈ Mn,m . Then σ 1(X ) = λmax(X X∗)1/2 = λmax(X∗X )1/2 = σ 1(X∗) is the
largest singular value (the spectral norm) of X . We say that X is a contraction if
σ 1(X ) ≤ 1; it is a strict contraction if σ 1(X ) < 1.

The following properties of the Loewner partial order generalize familiar facts about
real numbers.
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Theorem 7.7.2. Let A, B ∈ Mn be Hermitian and let S ∈ Mn,m. Then

(a) if A ! B, then S∗ AS ! S∗BS
(b) if rank S = m, then A " B implies S∗ AS " S∗BS
(c) if m = n and S ∈ Mn is nonsingular, then A " B if and only if S∗AS " S∗BS;

A ! B if and only if S∗AS ! S∗BS
(d) Im " S∗S (respectively, In " SS∗) if and only if S is a strict contraction; Im !

S∗S (respectively, In ! SS∗) if and only if S is a contraction

Proof. (a) If (A − B) ! 0, then (7.1.8(a)) ensures that S∗(A − B)S = S∗AS − S∗BS
! 0.
(b) This assertion follows in the same way from (7.1.8(b)).
(c) If S∗AS " S∗BS, then S−∗(S∗AS)S−1 = A " B = S−∗(S∗BS)S−1, and likewise
for the remaining assertion.
(d) Im ! S∗S if and only if 1 ≥ λmax(S∗S) = σ 1(S)2, and likewise for the remaining
assertions. �

Theorem 7.7.3. Let A, B ∈ Mn be Hermitian and suppose that A is positive definite.

(a) If B is positive semidefinite, then A ! B (respectively, A " B) if and only
if ρ(A−1 B) ≤ 1 (respectively, ρ(A−1 B) < 1) if and only if there is a posi-
tive semidefinite contraction (respectively, strict contraction) X such that B =
A1/2 X A1/2.

(b) A2 ! B2 (respectively, A2 " B2) if and only if σ 1(A−1 B) ≤ 1 (respectively,
σ 1(A−1 B) < 1) if and only if there is a contraction (respectively, strict con-
traction) X such that B = AX = X∗ A.

Proof. (a) It follows from (a) and (d) of the preceding theorem that A ! B if and
only if I = A−1/2 AA−1/2 ! A−1/2 B A−1/2 if and only if 1 ≥ σ 1(A−1/2 B A−1/2). But
A−1/2 B A−1/2 is positive semidefinite, so

σ 1(A−1/2 B A−1/2) = λmax(A−1/2 B A−1/2)

= λmax(A−1/2 A−1/2 B) = λmax(A−1 B)

Finally, (7.6.2(a)) ensures that A−1 B has real nonnegative eigenvalues, so
λmax(A−1 B) = ρ(A−1 B). Conversely, if B = A1/2 X A1/2 and X is a positive semidef-
inite contraction, then A−1 B = A−1 A1/2 X A1/2 = A−1/2 X A1/2 is similar to a pos-
itive semidefinite contraction, so ρ(A−1 B) = ρ(X ) = σ 1(X ) ≤ 1. The argument is
the same if A " B, but in this case I = A−1/2 AA−1/2 " A−1/2 B A−1/2, so 1 >

σ 1(A−1/2 B A−1/2).
(b) Since B2 is positive semidefinite, A2 ! B2 if and only if I ! A−1 B2 A−1 if and only
if 1 ≥ σ 1(A−1 B2 A−1) = λmax((A−1 B)(A−1 B)∗) = σ 1(A−1 B)2. Let X = A−1 B. Then
X is a contraction and B = AX is Hermitian, so AX = X∗A. Conversely, if X is a
contraction and B = AX = X∗A, then B2 = AX X∗A, so A2 − B2 = A(I − X X∗)A
is positive semidefinite. �

Exercise. Suppose that A is positive definite and B is positive semidefinite. If
σ 1(A−1 B) ≤ 1, explain why both A ! B and A2 ! B2. Hint: σ 1(X ) ≥ ρ(X ) for
all X ∈ Mn; see (5.6.9).



7.7 The Loewner partial order and block matrices 495

Corollary 7.7.4. Let A, B ∈ Mn be Hermitian. Let λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤
· · · ≤ λn(B) be the ordered eigenvalues of A and B, respectively.

(a) If A " 0 and B " 0, then A ! B if and only if B−1 ! A−1.
(b) If A " 0, B ! 0, and A ! B, then A1/2 ! B1/2.
(c) If A ! B, then λi (A) ≥ λi (B) for each i = 1, . . . , n.
(d) If A ! B, then tr A ≥ tr B with equality if and only if A = B.
(e) If A ! B ! 0, then det A ≥ det B ≥ 0.

Proof. (a) The preceding theorem ensures that A ! B if and only if ρ(A−1 B) =
ρ(B A−1) ≤ 1 if and only if B−1 ! A−1.
(b) Let X = A−1/2 B1/2. If A ! B, then 1 ≥ ρ(A−1 B) = ρ(A−1/2 B1/2 B1/2 A−1/2) =
ρ((A−1/2 B1/2)(A−1/2 B1/2)∗) = σ 1(A−1/2 B1/2)2 ≥ ρ(A−1/2 B1/2)2. The criterion in
(7.7.3(a)) ensures that A1/2 ! B1/2.
(c) A = B + (A − B) and A − B ! 0; the asserted eigenvalue inequalities follow from
(4.3.12).
(d) The asserted inequality follows from (c). Since A − B ! 0, (7.1.5) ensures that
tr(A − B) = 0 if and only if A − B = 0.
(e) Use (c) to compute det A =∏n

i=1 λi (A) ≥∏n
i=1 λi (B) = det B ≥ 0. �

Exercise. Let A =
[

3 1
1 2

]
and B =

[
2 0
0 1

]
. Show that A " B " 0 but A2 − B2 is

not positive semidefinite. Thus, the implications in (7.7.4b) cannot be reversed.

Exercise. If A " B in each of the assertions in the preceding corollary, how can
the respective conclusions be strengthened?

If a partitioned Hermitian matrix H =
[

A B
B∗ C

]
has a nonsingular leading princi-

pal submatrix A, the fundamental identity for the Schur complement (0.8.5.3) is the
nonsingular ∗congruence[

I 0
Y ∗ I

] [
A B
B∗ C

] [
I Y
0 I

]
=
[

A 0
0 C − B∗A−1 B

]
(7.7.5)

in which Y = −A−1 B. This identity and (7.7.2(c)) reveal that H is positive definite if
and only if both A and its Schur complement C − B∗A−1 B are positive definite; it is
positive semidefinite if and only if A " 0 and C − B∗A−1 B ! 0. This observation has
a host of pleasant consequences. We prepare to present some of them by establishing
the following lemma.

Lemma 7.7.6. Let X ∈ Mp,q and let K =
[

Ip X
X∗ Iq

]
∈ Mp+q . Then

(a) K is positive definite if and only if X is a strict contraction
(b) K is positive semidefinite if and only if X is a contraction

Proof. The identity (7.7.5) and (7.7.2(d)) ensure that
[

Ip X
X∗ Iq

]
" 0 if and only if Iq −

X∗X " 0 if and only if σ 1(X ) < 1. The assertion in (b) follows in a similar fashion. �

Theorem 7.7.7. Let H =
[

A B
B∗ C

]
∈ Mp+q be Hermitian with A ∈ Mp and C ∈ Mq.

The following are equivalent:
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(a) H is positive definite.
(b) A is positive definite and C − B∗A−1 B is positive definite.
(c) A and C are positive definite and ρ(B∗A−1 BC−1) < 1.
(d) A and C are positive definite and σ 1(A−1/2 BC−1/2) < 1.
(e) A and C are positive definite and there is a strict contraction X ∈ Mp,q such that

B = A1/2 XC1/2.

Proof. (a) ⇔ (b): Demonstrated in our discussion of (7.7.5).
(b) ⇒ (c): Follows from (7.7.3(a)).
(c) ⇔ (d): Let X = A−1/2 BC−1/2. Then 1 > ρ(B∗A−1 BC−1) = ρ(C−1/2 B∗A−1

BC−1/2) = ρ(X∗X ) = σ 1(X )2.
(d) ⇒ (e): For X = A−1/2 BC−1/2, σ 1(X ) < 1 and B = A1/2 XC1/2.
(e) ⇒ (a): Let B = A1/2 XC1/2, in which X ∈ Mp,q and σ 1(X ) < 1. Let

S = A1/2 ⊕ C1/2. The preceding lemma ensures that
[

Ip X
X∗ Iq

]
" 0, so H =

S∗
[

Ip X
X∗ Iq

]
S " 0. �

We use the following lemma to obtain a version of the preceding theorem in the
positive semidefinite case.

Lemma 7.7.8. Let A ∈ Mn be positive semidefinite and singular, and let Ak = A +
k−1 In for each k = 1, 2, . . . . Let Xk ∈ Mm,n be a contraction for each k = 1, 2, . . . .

Then

(a) each Ak is positive definite and limk→∞ A1/2
k = A1/2

(b) there is a sequence of positive integers ki → ∞ as i → ∞ such that X =
limi→∞ Xki exists and is a contraction

Proof. (a) Let r = rank A, let λ1, . . . , λr be the positive eigenvalues of A, and let A =
U (diag(λ1, . . . , λr ) ⊕ 0n−r )U ∗ be a spectral decomposition. Then continuity of the
square root function on [0,∞) ensures that A1/2

k = U (diag((λ1 + k−1)1/2, . . . , (λr +
k−1)1/2) ⊕ k−1/2 In−r )U ∗ → U (diag(λ1/2

1 , . . . , λ1/2
r ) ⊕ 0n−r )U ∗ = A1/2 as k → ∞.

(b) If B = [bi j ] = [b1 . . . bn] ∈ Mm,n is a contraction, then for any entry of B, we
have

|bi j |2 ≤ ∥∥b j

∥∥2
2 = ∥∥Be j

∥∥2
2 = eT

j B∗Be j ≤ λmax(B∗B)
∥∥e j

∥∥2
2 = σ 1(B)2 ≤ 1

The given sequence of contractions is therefore a bounded sequence in Mm,n , so it
contains a convergent subsequence Xki → X as i → ∞. Theorem 2.6.4 ensures that
σ 1(X ) = limi→∞ σ 1(Xki ) ≤ 1, so X is a contraction. �

Theorem 7.7.9. Let H =
[

A B
B∗ C

]
∈ Mp+q be Hermitian, with A ∈ Mp and C ∈ Mq.

The following two statements are equivalent:

(a) H is positive semidefinite.
(b) A and C are positive semidefinite, and there is a contraction X ∈ Mp,q such that

B = A1/2 XC1/2.
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If H is positive semidefinite, we may choose the contraction in (b) to be

X = lim
i→∞

(A + k−1
i Ip)−1/2 B(C + k−1

i Iq )−1/2 (7.7.9.1)

for some sequence of positive integers ki → ∞ as i → ∞.
If H is positive semidefinite and A and C are nonsingular, then X = A−1/2 BC−1/2

and the following statements are equivalent:

(c) A and C are positive definite and ρ(B∗A−1 BC−1) ≤ 1.
(d) A and C are positive definite and A−1/2 BC−1/2 is a contraction.
(e) A and C are positive definite and C − B∗ A−1 B is positive semidefinite.

Proof. (a) ⇒ (b): Consider Hk = H + k−1 In for each k = 1, 2, . . . . Then Hk ,
Ak = A + k−1 Ip, and Ck = C + k−1 Iq are positive definite for each k = 1, 2, . . . ,

so (7.7.7(e)) ensures that there is a contraction Xk ∈ Mp,q such that B = A1/2
k XkC1/2

k
for each k = 1, 2, . . . . The preceding lemma tells us that there is a sequence ki → ∞
such that X = limi→∞ Xki is a contraction, limi→∞ A1/2

ki
= A1/2, limi→∞ C1/2

ki
= C1/2,

and B = limi→∞ A1/2
ki

Xki C
1/2
ki

= A1/2 XC1/2.
(b) ⇒ (a): If B = A1/2 XC1/2 and X is a contraction, let S = A1/2 ⊕ C1/2. Then

(7.1.8(b)) and (7.7.6) ensure that H =
[

A B
B∗ C

]
= S

[
Ip X
X∗ Iq

]
S∗ is positive semidefinite.

(b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a): Proceed as in the corresponding implications
in (7.7.7). �

The characterization (7.7.9.1) has an important consequence: If

(A + ε Ip)−1/2 B(C + ε Iq )−1/2

is Hermitian, skew Hermitian, symmetric, skew symmetric, positive semidefinite, or
real for each sufficiently small ε > 0, then a contraction X such that B = A1/2 XC1/2

may be chosen to have the same property.

Corollary 7.7.10. Let A, C ∈ Mp be Hermitian.

(a) If
[

A Ip

Ip C

]
! 0, then A " 0, C " 0, A ! C−1, and C ! A−1.

(b) If A " 0, C " 0, and either A ! C−1 or C ! A−1, then
[

A Ip

Ip C

]
! 0.

(c) If A " 0, then
[

A Ip

Ip A−1

]
! 0.

(d) If A " 0, then the following are equivalent: (i)
[

A Ip

Ip A

]
! 0; (ii) A ! A−1;

(iii) A ! I ! A−1.

Proof. (a) The hypothesis ensures that A ! 0 and C ! 0. Theorem 7.7.9(b) ensures
that there is a contraction X such that I = A1/2 XC1/2, so both A1/2 and C1/2 (and hence
both A and C) are nonsingular. Then A ! C−1 and C ! A−1 follow from (7.7.9(e))
and (7.7.4(a)).
(b) and (c) follow from (7.7.5).
(d) (i) ⇒ (ii) and (iii) ⇒ (i) follow from (7.7.5). (ii) ⇒ (iii) follows from (7.7.3(a)):
A ! A−1 ⇒ ρ(A−2) ≤ 1 ⇒ ρ(A−1) ≤ 1 ⇒ A ! I and I ! A−1. �
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The inequalities in the following theorem arise in complex function theory and har-
monic analysis; they are best understood as facts about partitioned positive semidefinite
matrices.

Theorem 7.7.11. Let A ∈ Mp and C ∈ Mq be positive semidefinite and let B ∈ Mp,q .
The following four statements are equivalent:

(a) (x∗ Ax)(y∗Cy) ≥ |x∗By|2 for all x ∈ Cp and all y ∈ Cq .
(b) x∗ Ax + y∗Cy ≥ 2|x∗By| for all x ∈ Cp and all y ∈ Cq .

(c) H =
[

A B
B∗ C

]
is positive semidefinite.

(d) There is a contraction X ∈ Mp,q such that B = A1/2 XC1/2.

If A and C are positive definite, then the following statement is equivalent to (c):

(e) ρ(B∗A−1 BC−1) ≤ 1.

Proof. (a) ⇒ (b): This implication follows from the arithmetic–geometric mean
inequality: 1

2 (x∗Ax + y∗Cy) ≥ (x∗Ax)1/2(y∗Cy)1/2 ≥ |x∗By|.
(b) ⇒ (c): Let z = [x∗ y∗]∗ and compute

z∗H z = x∗Ax + y∗Cy + 2 Re(x∗By) ≥ x∗Ax + y∗Cy − 2|x∗By|
which (b) ensures is nonnegative.
(c) ⇒ (d): This implication is in (7.7.9).
(d) ⇒ (a): If B = A1/2 XC1/2 and X is a contraction, then the Cauchy–Schwarz
inequality and (7.3.9) permit us to compute

|x∗By|2 = |x∗A1/2 XC1/2 y|2 = |(A1/2x)∗(XC1/2 y)|2

≤ ∥∥A1/2x
∥∥2

2

∥∥XC1/2 y
∥∥2

2 ≤ ∥∥A1/2x
∥∥2

2 σ 1(X )
∥∥C1/2 y

∥∥2

2

≤ ∥∥A1/2x
∥∥2

2

∥∥C1/2 y
∥∥2

2 = (x∗Ax)(y∗Cy)

(e) ⇔ (c): This equivalence is in (7.7.7). �

The following special case of the preceding theorem introduces a generalization of
the notion of positive definiteness: x∗Ax ≥ |x∗Bx | for all x , rather than x∗Ax ≥ 0 for
all x ; for a different generalization see (7.7.P16).

Corollary 7.7.12. Let A ∈ Mn be positive semidefinite and let B ∈ Mn be Hermitian.
The following four statements are equivalent:

(a) x∗ Ax ≥ |x∗Bx | for all x ∈ Cn.
(b) x∗ Ax + y∗ Ay ≥ 2|x∗By| for all x, y ∈ Cn.

(c) H =
[

A B
B A

]
is positive semidefinite.

(d) There is a Hermitian contraction X ∈ Mn such that B = A1/2 X A1/2.

If A is positive definite, then the following statement is equivalent to (a):

(e) ρ(A−1 B) ≤ 1.
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Proof. (a) ⇒ (b): Let x, y ∈ Cn and use the inequality in (a), the triangle inequality,
and Hermicity of B to compute

2(x∗Ax + y∗Ay) = (x + y)∗A(x + y) + (x − y)∗A(x − y)

≥ |(x + y)∗B(x + y)| + | − (x − y)∗A(x − y)|
≥ |(x + y)∗B(x + y) − (x − y)∗A(x − y)| = 4|x∗By|

(b) ⇒ (c) ⇒ (d) ⇒ (a): Let A = C and B = B∗ in the preceding theorem. Since
(A + ε I )−1/2 B(A + ε I )−1/2 is Hermitian for each ε > 0, (7.7.9) ensures that we may
take X to be Hermitian.
(e)⇔ (c): In the preceding theorem, (e) becomes ρ(A−1 B)2 ≤ 1 if A = C and B = B∗.

�

The next corollary provides a version of the basic representation (7.7.3(a)) in the
positive semidefinite case.

Corollary 7.7.13. Let A, B ∈ Mn be positive semidefinite. The following statements
are equivalent:

(a) A ! B.

(b)
[

A B
B A

]
! 0.

(c) There is a positive semidefinite contraction X ∈ Mn such that B = A1/2 X A1/2.

Proof. Since A ! B if and only if x∗Ax ≥ x∗Bx for all x ∈ Cn , the asserted equiv-
alences follow from (7.7.12) in the special case in which the Hermitian matrix B is
positive semidefinite, provided we can choose X to be positive semidefinite instead
of merely Hermitian. But (A + ε I )−1/2 B(A + ε I )−1/2 is positive semidefinite for each
ε > 0, so (7.7.9.1) ensures that we may take X to be positive semidefinite. �

Corollary 7.7.14. Let A, B, C, D ∈ Mn be Hermitian and suppose that A and C are
positive semidefinite. If x∗Ax ≥ |x∗Bx | and x∗Cx ≥ |x∗Dx | for all x ∈ Cn, then
x∗(A ◦ C)x ≥ |x∗(B ◦ D)x | for all x ∈ Cn.

Proof. The hypotheses and the implication (a) ⇒ (c) in (7.7.12) ensure that
[

A B
B A

]
!

0 and
[

C D
D C

]
! 0, so (7.5.3) tells us that

[
A B
B A

]
◦
[

C D
D C

]
=
[

A ◦ C B ◦ D
B ◦ D A ◦ C

]
! 0. The

conclusion now follows from the implication (c) ⇒ (a) in (7.7.12). �

The inverse of a positive definite matrix is positive definite, and any principal
submatrix of a positive definite matrix is positive definite. If we apply these two
operations successively in both orders, we obtain matrices that obey an interesting
inequality.

Theorem 7.7.15. Let H ∈ Mn be positive definite and let α ⊂ {1, . . . , n}. Then
H−1[α] ! (H [α])−1.

Proof. Since a permutation congruence of a positive definite matrix is positive

definite, we may assume that H =
[

A B
B∗ C

]
, α = {1, . . . , k}, and H [α] = A. The

identity (0.7.3.1) ensures that H−1[α] = (A − BC−1 B∗)−1 = (A − B∗C−1 B)−1 " 0.
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The inequality A ! A − B∗C−1 B " 0 and (7.7.4(a)) tell us that (A − B∗C−1 B)−1 !
A−1, so H−1[α] = (A − B∗C−1 B)−1 ! A−1 = (H [α])−1. �

Exercise. Let A = [ai j ] ∈ Mn be positive definite and let A−1 = [αi j ]. Deduce
from the preceding theorem that αi i ≥ 1/aii for each i = 1, . . . , n.

Several 2-by-2 block matrices that are positive (semi)definite can be constructed
using (7.7.9(b)).

Theorem 7.7.16. Let A ∈ Mn be positive definite. The following matrices are positive
semidefinite and singular:

(a)
[

A X
X∗ X∗ A−1 X

]
for any X ∈ Mn,m.

(b)
[

A In

In A−1

]
.

(c)
[

A A
A A

]
.

Proof. Use (7.7.9). In each case, we verify that for
[

A B
B∗ C

]
we have A nonsingular and

C = B∗A−1 B.
(a) X∗A−1 X − X∗A−1 X = 0.
(b) Take X = In in (a).
(c) Take X = A in (a). �

Exercise. Show that
[

A A
A A

]
! 0 if A ! 0. Hint: Consider S

[
I I
I I

]
S∗ and S =

A1/2 ⊕ A1/2.

Many inequalities for Hadamard products of positive semidefinite matrices can
be derived by considering Hadamard products of suitable positive semidefinite 2-by-
2 block matrices; (7.5.3) ensures that these products are positive semidefinite. The
following theorem is an example of this technique.

Theorem 7.7.17. Let A, B ∈ Mn be positive definite. Then

(a) A−1◦B−1 ! (A◦B)−1

(b) A−1◦A−1 ! (A◦A)−1

(c) A−1 ◦ A ! I ! (A−1 ◦ A)−1

Proof. (a) The preceding theorem and the Schur product theorem ensure that[
A In

In A−1

]
◦
[

B In

In B−1

]
=
[

A ◦ B In

In A−1 ◦ B−1

]
is positive semidefinite. Therefore, (7.5.3(c)) and (7.7.10(a)) ensure that A−1 ◦ B−1 !
(A ◦ B)−1.
(b) Set B = A in (a).
(c) Set B = A−1 in (a) and invoke (7.7.10(d)). �

Our final result, a consequence of the preceding theorem, provides a lower bound
that gives a quantitative version of (7.5.3(a)). For a different lower bound, see (7.5.P24).
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Theorem 7.7.18. Let A, B ∈ Mn be positive definite. Then λmin(A ◦ B) ≥
max{λmin(AB), λmin(ABT )}.

Proof. Since λmin(B1/2 AB1/2) = λmin(AB), we have B1/2 AB1/2 ! λmin(AB)I , which
is equivalent to A ! λmin(AB)B−1. It follows from (7.7.17(c)) that A ◦ B !
λmin(AB)(B−1 ◦ B) ! λmin(AB)I and hence λmin(A ◦ B) ≥ λmin(AB). Likewise,
λmin((B1/2)T A(B1/2)T ) = λmin(ABT ), so A ! λmin(ABT )B−T and (7.5.P14) ensures
that A ◦ B ! λmin(ABT )(B−T ◦ B) ! λmin(ABT )I . It follows that λmin(A ◦ B) ≥
λmin(ABT ). �

Problems

7.7.P1 Consider
[

4 0
0 2

]
and

[
1 0
0 3

]
, and explain why the implication in (7.7.4(c)) cannot be

reversed. However, if A, B ∈ Mn are Hermitian; if A = U�U ∗ and B = V MV ∗ are spec-
tral decompositions in which � = diag(λ1, . . . , λn), M = diag(μ1, . . . , μn), λ1 ≤ · · · ≤
λn , and μ1 ≤ · · · ≤ μn; and if � ! M , show that there is a unitary W such that W ∗ AW ! B;
in fact, we may take W = U V ∗.

7.7.P2 Let A1, A2, B1, B2 ∈ Mn be Hermitian. If A1 ! B1 and A2 ! B2, show that A1 +
A2 ! B1 + B2.

7.7.P3 The assertion in (7.7.4(b)) can be improved. Use (7.7.8) to show that if A ! B ! 0,
then A1/2 ! B1/2.

7.7.P4 Let A, B, C, D ∈ Mn be Hermitian. Suppose that A ! B ! 0 and C ! D ! 0.
Show that A ◦ C ! B ◦ D ! 0.

7.7.P5 Let A, B ∈ Mn be Hermitian. If A ! B and α ⊂ {1, . . . , n}, show that A[α] ! B[α].

7.7.P6 Let A, B ∈ Mn be positive semidefinite. If A ! B, show that range B ⊆ range A.

7.7.P7 Let A ∈ Mn and let y ∈ Cn be nonzero. Show that there is an x ∈ Cn such that
‖x‖2 ≤ 1 and Ax = y if and only if AA∗ ! yy∗.

7.7.P8 Let H =
[

A B
B∗ C

]
∈ Mn be positive definite, let A ∈ Mk , and let α = {1, . . . , k}.

Examine the proof of (7.7.15) and explain why H−1[α] " (H [α])−1 if and only if B has
full column rank.

7.7.P9 Suppose that H =
[

A B
B∗ C

]
! 0. Show that min{rank A, rank C} ≥ rank B. In par-

ticular, A and C are positive definite if B is square and nonsingular.

7.7.P10 Let A ∈ Mn be positive definite, and let x, y ∈ Cn . Show that (x∗Ax)(y∗ A−1 y) ≥
|x∗y|2.

7.7.P11 If H =
[

A B
B∗ C

]
is positive semidefinite and A, C ∈ Mp, show that

(det A)(det C) ≥ | det B|2. What can you say if H is positive definite?

7.7.P12 Let A, B ∈ Mn and let Z =
[

I A
B∗ I

]
. Verify that Z Z∗ =

[
I + AA∗ A + B
(A + B)∗ I + B∗B

]
and

show that | det(A + B)|2 ≤ (det(I + AA∗))(det(I + B B∗)).

7.7.P13 Let A, B ∈ Mn be Hermitian and let α ∈ (0, 1). Verify that αA2 + (1 − α)B2 !
(αA + (1 − α)B)2 + α(1 − α)(A − B)2 ! (αA + (1 − α)B)2. Conclude that f (t) = t2 is
strictly convex on Hermitian matrices.
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7.7.P14 Let A, B ∈ Mn be positive definite and let α ∈ (0, 1). (a) Show that αA−1 + (1 −
α)B−1 ! (αA + (1 − α)B)−1, with equality if and only if A = B. Thus, f (t) = t−1 is
strictly convex on positive definite matrices.

7.7.P15 Let A = [ai j ] ∈ Mn be positive semidefinite, let B = [bi j ] ∈ Mn be Hermitian,
and suppose that x∗ Ax ≥ |x∗Bx | for all x ∈ Cn . (a) Show that x∗[ak

i j ]x ≥ |x∗[bk
i j ]x |

for all x ∈ Cn and all k = 1, 2, . . . . (b) Show that x∗[eai j ]x ≥ |x∗[ebi j ]x | for all
x ∈ Cn .

7.7.P16 Let A ∈ Mn be positive semidefinite and let B ∈ Mn be symmetric. Show that the
following statements are equivalent:

(a) x∗ Ax ≥ |xT Bx | for all x ∈ Cn .
(b) x∗ Ax + y∗ Ay ≥ 2|xT By| for all x, y ∈ Cn .
(c) x∗ Āx + y∗ Ay ≥ 2|x∗By| for all x, y ∈ Cn .

(d) H =
[

Ā B
B̄ A

]
is positive semidefinite.

(e) There is a symmetric contraction X ∈ Mn such that B = Ā1/2 X A1/2.

If A is positive definite, then the following statements are each equivalent to (c):

(f ) ρ(B̄ Ā−1 B A) ≤ 1.
(g) σ 1( Ā−1/2 B A−1/2) ≤ 1.

7.7.P17 Let A, B, C, D ∈ Mn . Suppose that A and C are positive semidefinite, while B
and D are symmetric. If x∗ Ax ≥ |xT Bx | and x∗Cx ≥ |xT Dx | for all x ∈ Cn , show that
x∗(A ◦ C)x ≥ |xT (B ◦ D)x | for all x ∈ Cn .

7.7.P18 Let A = [ai j ] ∈ Mn be positive semidefinite, let B = [bi j ] ∈ Mn be symmetric,
and suppose that x∗ Ax ≥ |xT Bx | for all x ∈ Cn . (a) Show that x∗[ak

i j ]x ≥ |xT [bk
i j ]x |

for all x ∈ Cn and all k = 1, 2, . . . . (b) Show that x∗[eai j ]x ≥ |xT [ebi j ]x | for all
x ∈ Cn .

7.7.P19 Let f be a complex analytic function on the unit disc that is normalized so that
f (0) = 0 and f ′(0) = 1. Consider the Grunsky inequalities (4.4.1). Explain why

n∑
i, j=1

xi x̄ j

1 − zi z̄ j
≥
∣∣∣∣∣∣

n∑
i, j=1

xi x j

(
zi z j

f (zi ) f (z j )

f (zi ) − f (z j )

zi − z j

)±1
∣∣∣∣∣∣ (7.7.19)

for all z1, . . . , zn ∈ C with |zi | < 1, all x1, . . . , xn ∈ C, and all n = 1, 2, . . . if and only if
f is one-to-one.

7.7.P20 (a) Explain why the contractions X in (7.7.7(e)), (7.7.9(b)), and (7.7.11(d)) can be
expressed as X = (A†)1/2 B(C†)1/2 (Moore–Penrose inverses), with similar expressions in
(7.7.12(d)) and in (7.7.P16(d)). (b) Revisit (7.3.P8) and explain why the Hermitian block
matrix H in (7.7.9) is positive semidefinite if and only if A is positive semidefinite and
C ! B∗A†B.

7.7.P21 Let A ∈ Mn be positive definite and let B ∈ Mn be positive semidefinite. (a) Show
that there is a positive scalar c such that cA ! B. (b) Show that the smallest such scalar
is c = ρ(A−1 B). (c) Show that the smallest positive scalar c such that cA ◦ X ! X for all
X ! 0 is c = eT A−1e (the all-ones vector).
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7.7.P22 Let A ∈ Mn be positive definite and let A = A1 + i A2, in which A1 and A2 are
real. Show that A1 is real symmetric and positive definite, while A2 is real skew symmetric.

7.7.P23 Let A ∈ Mn be positive definite. We claim that Re A−1 ! (Re A)−1 and
range Im A ⊂ range Re A. Refer to (1.3.P20) and provide details: Let A = A1 + i A2

and A−1 = B1 + i B2, in which A1, A2, B1, B2 are real. Let H =
[

A1 A2
−A2 A1

]
and K =[

B1 B2
−B2 B1

]
. (a) H is unitarily similar to A ⊕ Ā, so A is positive definite if and only if

H is positive definite. (b) H−1 = K . (c) Let α = {1, . . . , n}. Then Re A−1 = B1 =
H−1[α] ! (H [α])−1 = A−1

1 = (Re A)−1. (d) H has the column inclusion property.

7.7.P24 (Continuation; same notation) (a) What inequality do you obtain if you choose α =
{ j} in the preceding problem ( j ∈ {1, . . . , n})? (b) Show that there is a real skew-symmetric
strict contraction X such that Im A = (Re A)1/2 X (Re A)1/2. (c) Show that det(Re A) >

| det(Im A)|. Why is this inequality not very interesting if n is odd?

7.7.P25 Let A ∈ Mn be Hermitian and let A = A1 + i A2, in which A1 and A2 are real.
Show that A is positive definite if and only if A1 is positive definite and ρ(A−1

1 A2) < 1.

7.7.P26 Let C1, . . . , Ck ∈ Mn be positive definite. Let E = (Re C1) ◦ · · · ◦ (Re Ck) and
F = (Im C1) ◦ · · · ◦ (Im Ck). Show that det E > | det F |. Why is E + i F positive definite
if k is odd? What goes wrong when k is even?

7.7.P27 Let A, B ∈ Mm,n . We claim that σ 1(A ◦ B) ≤ σ 1(A) σ 1(B). Provide details:

Assume that A �= 0 �= B. Let X = A/σ 1(A) and Y = B/σ 1(B). Then
[

Im X
X∗ In

]
◦
[

Im Y
Y ∗ In

]
=[

Im X ◦ Y
(X ◦ Y )∗ In

]
is positive semidefinite, so X ◦ Y is a contraction.

7.7.P28 Let A ∈ Mn be positive definite. Show that the bordered matrix
[

A x
x∗ a

]
∈ Mn+1 is

positive definite if and only if a > x∗ A−1x .

7.7.P29 Let A ∈ Mn be positive definite. Show that A−1 ◦ · · · ◦ A−1 ! (A ◦ · · · ◦ A)−1

(same number of factors in each Hadamard product).

7.7.P30 Let A ∈ Mn be nonsingular. Show that (A−1◦A)e = e, in which e is the all-ones
vector. If A is positive definite, explain why A−1◦A " I is not possible, although (7.7.17(c))
ensures that A−1◦A ! I .

7.7.P31 Let A ∈ Mn be Hermitian and nonsingular, and let S ⊂ Cn be a subspace. Suppose
that A is positive definite on S, that is, x∗ Ax > 0 for all nonzero x ∈ S. Which of the two
following assumptions is necessary and sufficient for A to be positive definite (on Cn)?
(a) A is positive definite on S⊥, or (b) A−1 is positive definite on S⊥? Before attempting a

proof, consider the example A =
[

1 2
2 1

]
and S = span{e1}.

7.7.P32 Let A, B ∈ Mn be positive definite. Show that A ! B ⇔
[

I B1/2

B1/2 A

]
! 0 ⇔[

B−1 I
I A

]
! 0.

7.7.P33 Let Ai , Bi ∈ Mn be positive definite for each i = 1, . . . , k and let αi ≥ 0 for
each i = 1, . . . , k. Suppose that each Ai ! Bi and α1 + · · · + αk = 1. (a) Show that∑k

i=1 αi Ai ! (
∑k

i=1 αi B1/2
i )2 and

∑k
i=1 αi Ai ! (

∑k
i=1 αi B−1

i )−1. (b) What do the inequal-
ities in (a) say if n = 1, k = 2, and α1 = α2? Prove these scalar inequalities directly.

7.7.P34 Let A ∈ Mn . Show that (a) AA∗ ! A∗A if and only if A is normal; (b) (AA∗)1/2 !
(A∗A)1/2 if and only if A is normal.
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7.7.P35 Let A ∈ Mn be nonsingular. (a) Show that
[

(AA∗)1/2 A
A∗ (A∗ A)1/2

]
is positive semidefinite

and singular. (b) Show that
[

(AA∗)1/2 A
A∗ (AA∗)1/2

]
is positive semidefinite if and only if A is

normal.

7.7.P36 Let A, B ∈ Mn be Hermitian and let H =
[

A B
B A

]
. (a) Revisit (1.3.P19) and explain

why H ! 0 if and only if A ± B ! 0. (b) Deduce the equivalence of (7.7.12(a)) and
(7.7.12(c)) from (a).

7.7.P37 Let A, B ∈ Mn be positive definite. Show that A ◦ B−1 + A−1 ◦ B ! 2I .

7.7.P38 Let X ∈ Mn be Hermitian. Show that X is a contraction if and only if I ! X2.

7.7.P39 Let A, B ∈ Mn . Show that
[

I A
A∗ A∗ A

]
! 0 and deduce that A∗A ◦ B∗B ! (A ◦

B)∗(A ◦ B).

7.7.P40 Let A ∈ Mp be positive definite, let B ∈ Mq be positive semidefinite, and suppose

that H =
[

A B
B∗ C

]
∈ Mp+q is positive semidefinite. Denote the Schur complement of A in

H by SH (A) = C − B∗ A−1 B. We claim that

SH (A) = max
{

E ∈ Mq : E = E∗ and H !
[

0 0
0 E

]}
(7.7.20)

The “max” is with respect to the Loewner partial order. Provide details: (a) Use the
∗congruence in (7.7.5) to show that H −

[
0 0
0 E

]
is ∗congruent to A ⊕ (SH (A) − E). (b)

H −
[

0 0
0 E

]
! 0 if and only if A is positive definite and SH (A) − E ! 0. (c) The “max” is

achieved for E = SH (A), which is positive semidefinite.

7.7.P41 (Continuation; same notation) Let H1 =
[

A1 B1
B∗

1 C1

]
, H2 =

[
A2 B2
B∗

2 C2

]
∈ Mp+q be pos-

itive semidefinite, and suppose that A1, A2 ∈ Mp are positive definite. Use the variational
characterization (7.7.20) of the Schur complement to prove the following.

(a) Monotonicity of the Schur complement: If H1 ! H2, then SH1 (A1) ! SH2 (A2).
(b) Concavity of the Schur complement: SH1+H2 (A1 + A2) ! SH1 (A1) + SH2 (A2).

(c) Explain why H1 ◦ H2 !
[

0 0
0 SH1 (A1)

]
◦ H2 =

[
0 0
0 SH1 (A1) ◦ C2

]
!
[

0 0
0 SH1 (A1) ◦ SH2 (A2)

]
and

conclude that

SH1◦H2 (A1 ◦ A2) ! SH1 (A1) ◦ C2 ! SH1 (A1) ◦ SH2 (A2)

7.7.P42 Let A ∈ Mn and suppose that H (A) = 1
2 (A + A∗) (the Hermitian part of A) is

positive definite. Use the ∗congruence canonical form (7.1.15) to show that H (A)−1 !
H (A−1) " 0.

7.7.P43 Let A, B ∈ Mn be positive definite and suppose that A ! B. Prove that det(A +
B) ≥ det A + n(det A)

n−1
n (det B)

1
n ≥ det A + n det B. Compare with (7.6.P6).

7.7.P44 Let A, B ∈ Mn be positive definite and suppose that A ! B. Provide details
to show from the definition that B−1 ! A−1: (a) Let x, y ∈ Cn be nonzero. We must
show that x∗B−1x ≥ x∗ A−1x . (b) (y − B−1x)∗B(y − B−1x) ≥ 0 ⇒ 2 Re y∗x − y∗ Ay ≥
2 Re y∗x − y∗By. (c) Now let y = A−1x .

7.7.P45 Let A, B ∈ Mn be positive definite and let H =
[

B−1 I
I A

]
. Compute H/B−1 and

H/A. Explain why A ! B if and only if H ! 0 if and only if B−1 ! A−1.
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Notes and Further Readings. In 1934, C. Loewner (K. Löwner) characterized functions
of matrices that are monotone with respect to his eponymous partial order: A ! B ⇒
f (A) ! f (B). He discovered that f is a monotone matrix function if and only if its
difference quotient kernel L f (s, t) = ( f (s) − f (t))/(s − t) is positive semidefinite. For
example, (7.7.4) shows that the functions f (t) = −t−1 and f (t) = t1/2 are monotone on
positive definite matrices, while the exercise following (7.7.4) shows that the monotone
real-valued function f (t) = t2 is not monotone on positive definite matrices. The
following table of functions, difference quotient kernels, and associated matrices (each
xi ∈ (0,∞)) illustrates Loewner’s theory:

f (t) = −t−1 L f = 1
st [ξ iξ j ]

n
i, j=1 ! 0

f (t) = √
t L f = 1√

s+√
t

[(ξ i + ξ j )
−1]n

i, j=1 ! 0 (7.1.P16)

f (t) = t2 L f = s + t [ξ i + ξ j ]
n
i, j=1 is indefinite (1.3.25)

There is also a theory of convex matrix functions: α f (A) + (1 − α) f (B) ! f (αA +
(1 − α)B) for all α ∈ (0, 1). Problems (7.7.P13 and P14) study the strictly convex func-
tions f (t) = t2 (on Hermitian matrices) and f (t) = t−1 (on positive definite matrices).
The functions f (t) = −t1/2 and f (t) = t−1/2 are known to be strictly convex on posi-
tive definite matrices. See section 6.6 in Horn and Johnson (1991), Bhatia (1997), and
Donoghue (1974) for more information about monotone and convex matrix functions.
For more information about the ideas in (7.7.11–13) and (7.7.P15 to P18), see C. H.
FitzGerald and R. A. Horn, On the structure of Hermitian–symmetric inequalities,
J. London Math. Soc. 15 (1977) 419–430. For further references related to (7.7.15)
and (7.7.17), see C. R. Johnson, Partitioned and Hadamard product matrix inequalities,
J. Research NBS 83 (1978) 585–591.

7.8 Inequalities involving positive definite matrices

Positive definite matrices are involved in a rich variety of inequalities involving deter-
minants, eigenvalues, diagonal entries, and other quantities. In this section, we examine
some of these inequalities.

The fundamental determinant inequality for positive definite matrices is Hadamard’s
inequality. Many other inequalities are either equivalent to it or generalizations of it.

Theorem 7.8.1 (Hadamard’s inequality). Let A = [ai j ] ∈ Mn be positive definite.
Then

det A ≤ a11 · · · ann (7.8.2)

with equality if and only if A is diagonal.

Proof. Since A is positive definite, it has positive main diagonal entries and is di-
agonally ∗congruent to a correlation matrix. Let D = diag(a1/2

11 , . . . , a1/2
nn ) and define

C = D−1 AD−1, which is also positive definite; it has unit diagonal entries, so tr C = n.
Let λ1, . . . , λn be the (necessarily positive) eigenvalues of C . Then the arithmetic–
geometric mean inequality ensures that

det C = λ1 · · · λn ≤
(

1

n
(λ1 + · · · + λn)

)n

=
(

1

n
tr C

)n

= 1
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with equality if and only if each λi = 1. Since C is Hermitian and hence diagonalizable,
each λi = 1 if and only if C = I . Thus,

det A = det(DC D) = (det C)(det D)2

= (det C)(a11 · · · ann) ≤ a11 · · · ann

with equality if and only if A = DC D = D2 = diag(a11, . . . , ann). �
For any nonsingular A ∈ Mn(R), | det A| is the volume of the real n-dimensional

parallelepiped whose edges are given by the columns of A. This volume is largest if
the edges are orthogonal, and in this case the volume is the product of the lengths of
the edges. The following version of Hadamard’s inequality is an algebraic statement
of this geometric inequality; it is valid even for complex square matrices.

Corollary 7.8.3 (Hadamard’s inequality). Let B ∈ Mn be nonsingular and partition
B = [b1 . . . bn] and B∗ = [β1 . . . βn] according to their columns. Then

| det B| ≤ ‖b1‖2 · · · ‖bn‖2 and | det B| ≤ ∥∥β1

∥∥
2 · · ·

∥∥βn

∥∥
2 (7.8.4)

The respective inequalities in (7.8.4) are equalities if and only if the columns (respec-
tively, rows) of B are orthogonal.

Proof. Apply (7.8.2) to the positive definite matrix A = B∗B: det A = | det B|2, and
the main diagonal entries of A are ‖b1‖2

2 , . . . , ‖bn‖2
2. The columns of B are orthogonal

if and only if A is diagonal. The second inequality in (7.8.4) follows from applying the
first to B∗. �

Exercise. We have deduced (7.8.4) from (7.8.2). Now show that (7.8.4) implies
(7.8.2). Hint: If A is positive definite, use (7.2.7) to write A = B∗B (any such B
will do). Apply (7.8.4) to B and square.

Hadamard’s inequality makes a statement about certain principal submatrices of a
positive definite matrix. We now turn to three other inequalities that make statements
of the same type. Each is equivalent to Hadamard’s inequality.

Theorem 7.8.5 (Fischer’s inequality). Suppose that the partitioned Hermitian matrix

H =
[

A B
B∗ C

]
∈ Mp+q , A ∈ Mp and C ∈ Mq

is positive definite. Then

det H ≤ (det A)(det C) (7.8.6)

Proof. Let A = U�U ∗ and C = V �V ∗ be spectral decompositions, in which U and V
are unitary and � = diag(λ1, . . . , λp) and � = diag(γ 1, . . . , γ q ) are positive diagonal.
Let W = U ⊕ V and compute

W ∗H W =
[

� U ∗BV
V ∗B∗U �

]
Hadamard’s inequality (7.8.2) ensures that

det H = det(W ∗H W ) ≤ (λ1 · · · λp)(γ 1 · · · γ q ) = (det A)(det C) �
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Exercise. We have deduced (7.8.6) from (7.8.2). Use (7.8.6) to prove by induction
that if H = [Hi j ]k

i, j=1 is partitioned as a k-by-k block matrix in which each
diagonal block Hii ∈ Mni , then

det H ≤ (det H11) · · · (det Hkk) (7.8.7)

Now explain why (7.8.2) follows from (7.8.7), and conclude that Fischer’s in-
equality is equivalent to Hadamard’s inequality.

The Fischer and Hadamard inequalities involve determinants of disjoint princi-
pal submatrices. Hadamard’s inequality is det A ≤ (det A[{1}]) · · · (det A[{n}]), while
Fischer’s inequality involves a pair of complementary principal submatrices: det A ≤
(det A[α])(det A[αc]), in which α ⊂ {1, . . . , n} and we observe the convention that
det A[∅] = 1. An inequality due to Koteljanskiı̆ (often called the Hadamard–Fischer
inequality) embraces the noncomplementary case: The principal submatrices are per-
mitted to overlap. We adopt the convention that det A[α] = 1 if the index set α is empty.
The following lemma is a consequence of Fischer’s inequality.

Lemma 7.8.8. Let B ∈ Mm be positive definite. Let α, β ⊂ {1, . . . , m}. Suppose that
αc and βc are nonempty and disjoint, and α ∪ β = {1, . . . , m}. Then det B[αc ∪ βc] ≤
(det B[αc])(det B[βc]).

Proof. There is no loss of generality to assume that βc = {1, . . . , k}, αc = { j, . . . , m},
and 1 < k < j < m. Then A[αc] and A[βc] are complementary principal submatrices
of A[αc ∪ βc], so (7.8.6) ensures that det A[αc ∪ βc] ≤ (det A[αc])(det A[βc]). �

Theorem 7.8.9 (Koteljanskiı̆’s inequality). Let A ∈ Mn be positive definite and let
α, β ⊂ {1, . . . , n}. Then

(det A[α ∪ β])(det A[α ∩ β]) ≤ (det A[α])(det A[β]) (7.8.10)

Proof. There is no loss of generality to assume that α ∪ β = {1, . . . , n} (if not, work
within the principal submatrix A[α ∪ β])). We may also assume that α ∩ β is nonempty
(if it is empty, then β = αc and (7.8.10) reduces to (7.8.6)). Finally, we may assume
that both αc and βc are nonempty (if αc is empty then α = {1, . . . , n} and (7.8.10) is
trivial). These three assumptions ensure that αc and βc are disjoint and nonempty. Our
strategy is to use Jacobi’s identity (0.8.4.2) to express det A[α ∩ β] in a form to which
we can apply the preceding lemma, and then use Jacobi’s identity again. Compute

det A[α ∩ β]

det A
= det A−1[(α ∩ β)c] = det A−1[αc ∪ βc]

≤ (det A−1[αc])(det A−1[βc])

= det A[α]

det A

det A[β]

det A

and hence (det A)(det A[α ∩ β]) ≤ (det A[α])(det A[β]). �

Exercise. We have deduced (7.8.10) from (7.8.6) (via (7.8.9)). Show that (7.8.10)
implies (7.8.6), and conclude that Koteljanskiı̆’s inequality is equivalent to
Hadamard’s inequality.
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Another equivalent version of Hadamard’s inequality is due to Szász. For each
k ∈ {1, . . . , n}, let Pk(A) denote the product of the

(n
k

)
k-by-k principal minors of

A ∈ Mn . Notice that Pn(A) = det A and P1(A) = a11 · · · ann , so Hadamard’s inequality
(7.8.2) may be restated as Pn(A) ≤ P1(A).

Theorem 7.8.11 (Szász’s inequality). Let A ∈ Mn be positive definite. Then

Pk+1(A)(
n−1

k )−1 ≤ Pk(A)(
n−1
k−1)

−1

for each k = 1, . . . , n − 1 (7.8.12)

Proof. The identity A−1 = (det A)−1 adj A reminds us that each diagonal entry of A−1

is the ratio of a principal minor of A of size n − 1 and det A. Thus, an application of
(7.8.2) to the positive definite matrix A−1 gives the inequality

1

det A
= det A−1 ≤ Pn−1(A)

(det A)n

and hence Pn(A)n−1 = (det A)n−1 ≤ Pn−1(A). It follows that

Pn(A) ≤ Pn−1(A)1/(n−1) = Pn−1(A)(
n−1
n−2)

−1

(7.8.13)

This is the case k = n − 1 of Szász’s family of inequalities. The remaining cases
may be derived inductively. For example, to obtain the next case, apply (7.8.13)
to each principal submatrix of A of size n − 1. Since each principal submatrix of
A of size n − 2 occurs twice as a principal submatrix of some principal subma-
trix of size n − 1, we obtain the inequality Pn−1(A)n−2 ≤ Pn−2(A)2, which implies
that

Pn−1(A)(
n−1
n−2)

−1 = Pn−1(A)
1

n−1 ≤ Pn−2(A)
2

(n−1)(n−2)

= (Pn−2(A)2)
1

(n−1)(n−2) = Pn−2(A)(
n−1
n−3)

−1

This is the case k = n − 2 of Szász’s inequalities. The remaining cases follow in the
same way. �

Exercise. We have deduced (7.8.12) from (7.8.2). Use (7.8.12) to show that

a11 · · · ann = P1(A) ≥ P2(A)(
n−1

2 )−1 ≥ · · · ≥ Pk+1(A)(
n−1

k )−1

≥ · · · ≥ Pn(A)(
n−1
n−1)

−1 = det A (7.8.14)

in which k = 2, . . . , n − 1. Conclude that Szász’s inequality is a refinement of
Hadamard’s inequality that is equivalent to it.

Lemma 7.8.15. Let A = [ai j ] ∈ Mn be positive semidefinite and partitioned as A =[
a11 x∗
x A22

]
, in which A22 ∈ Mn−1. Define

α(A) =
{ det A

det A22
if A22 is positive definite

0 otherwise

Then Ã =
[

a11 − α(A) x∗
x A22

]
is positive semidefinite.
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Proof. There is nothing to prove if A is singular, so assume that A is positive definite.
Apply Sylvester’s criterion (7.2.5) to the trailing principal minors. The trailing minors
det( Ã[{k, . . . , n}]) = det A[{k, . . . , n}] are positive for each k = 2, . . . , n; det Ã =
det A − α(A) det A22 = det A − det A = 0. �

Exercise. Prove Hadamard’s inequality (7.8.2) by induction using (7.8.15).

Hadamard’s inequality (7.8.2) may be stated as

1 · · · 1︸ ︷︷ ︸
n times

det A ≤ det(I ◦ A)

The following theorem is a substantial generalization of this observation.

Theorem 7.8.16 (Oppenheim-Schur inequalities). Let A = [ai j ], B = [bi j ] ∈ Mn

be positive semidefinite. Then

max{a11 · · · ann det B, b11 · · · bnn det A} ≤ det(A ◦ B) (7.8.17)

and

a11 · · · ann det B + b11 · · · bnn det A ≤ det(A ◦ B) + det(AB) (7.8.18)

Proof. We continue to use the notation in (7.8.15) and begin with (7.8.17), which one
verifies is correct for n = 1. We proceed by induction on the dimension, let n ≥ 2, and
assume that (7.8.17) is correct for matrices of sizes at most n − 1. Since Ã is positive
semidefinite, Ã ◦ B is positive semidefinite and

0 ≤ det( Ã ◦ B) = det(A ◦ B) − det
[

α(A)b11 0
∗ A22 ◦ B22

]
= det(A ◦ B) − α(A)b11 det(A22 ◦ B22)

The induction hypothesis ensures that

det(A ◦ B) ≥ α(A)b11(b22 · · · bnn det A22) = b11b22 · · · bnn det A

The other inequality in (7.8.17) follows from the first and the identity A ◦ B = B ◦ A.
Now consider (7.8.18), which one verifies is correct for n = 1. We proceed again by

induction, let n ≥ 2, and assume that (7.8.18) is correct for matrices of sizes at most
n − 1. Apply (7.8.17) to Ã ◦ B:

(a11 − α(A))a22 · · · ann det B ≤ det( Ã ◦ B)

= det(A ◦ B) − α(A)b11 det(A22 ◦ B22)

Now apply the induction hypothesis to det(A22 ◦ B22) :

det(A ◦ B) ≥ (a11 − α(A))a22 · · · ann det B + α(A)b11 det(A22 ◦ B22)

≥ (a11 − α(A))a22 · · · ann det B

+ α(A)b11(a22 · · · ann det B22 + b22 · · · bnn det A22

− det(A22 B22))
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Rearrange this inequality as follows:

det(A ◦ B) + det(AB) − a11 · · · ann det B − b11 · · · bnn det A

≥ det(AB) − α(A)a22 · · · ann det B

+ α(A)b11(a22 · · · ann det B22 − det(A22 B22))

= α(A)(a22 · · · ann − det A22)(b11 det B22 − det B)

Finally, observe that (7.8.2) ensures that a22 · · · ann − det A22 ≥ 0 and (7.8.6) ensures
that b11 det B22 − det B ≥ 0, so

det(A ◦ B) + det(AB) − a11 · · · ann det B − b11 · · · bnn det A ≥ 0

This inequality is a restatement of (7.8.18). �

Exercise. If A, B ∈ Mn are positive definite, deduce from the preceding theorem
that

(det A)(det B) ≤ det(A ◦ B)

and hence det(A ◦ A−1) ≥ 1. Compare this inequality with (7.7.17(c)).

Exercise. If A, B ∈ Mn are positive definite, explain why

(det A)(det B) ≤ a11 · · · ann det B ≤ det(A ◦ B) ≤ a11 · · · annb11 · · · bnn

A determinant inequality of a rather different sort applies to matrices with positive
definite Hermitian part. It follows from the inequality |z| ≥ |Rez| for complex numbers.

Theorem 7.8.19 (Ostrowski–Taussky inequality). Let H, K ∈ Mn be Hermitian and
let A = H + i K . If H is positive definite, then

det H ≤ | det(H + i K )| = | det A| (7.8.20)

with equality if and only if K = 0, that is, if and only if A is Hermitian.

Proof. We have A = H (I + i H−1 K ), so (7.8.20) is equivalent to the inequality
| det(I + i H−1 K )| ≥ 1. Corollary 7.6.2(a) ensures that H−1 K is diagonalizable and
has real eigenvalues λ1, . . . , λn . Then

| det(I + H−1 K )| =
n∏

j=1

|1 + iλ j |

and it suffices to note that |1 + iλ|2 = 1 + λ2 ≥ 1 for any real number λ, with equality
if and only if λ = 0. Therefore, the inequality (7.8.20) is an equality if and only if
H−1 K = 0 if and only if K = 0 if and only if A = H . �

The following inequality involving the sum of two positive definite matrices is a
consequence of a classical scalar inequality.

Theorem 7.8.21 (Minkowski’s determinant inequality). Let A, B ∈ Mn be positive
definite. Then

(det A)1/n + (det B)1/n ≤ (det(A + B))1/n (7.8.22)

with equality if and only if A = cB for some c > 0.
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Proof. Theorem 7.6.4 ensures that there is a nonsingular S ∈ Mn such that A = SI S∗

and B = S�S∗, in which � = diag(λ1, . . . , λn) is positive diagonal. The assertion
(7.8.22) is that

(det SS∗)1/n + (det S�S∗)1/n = | det S|2/n + | det S|2/n(det �)1/n

= | det S|2/n(1 + (det �)1/n)

≤ | det S|2/n(det(I + �))1/n

= (det(SS∗ + S�S∗))1/n

so we must prove that 1 + (det �)1/n ≤ (det(I + �))1/n , that is,

1 +
(

n∏
i=1

λ j

)1/n

≤
(

n∏
i=1

(1 + λi )

)1/n

(7.8.23)

This inequality is a special case of Minkowski’s product inequality (B10), which is an
equality if and only if λ1 = · · · = λn = c > 0 if and only if A = cB.

�
Exercise. Let A, B ∈ Mn be positive definite. Derive the inequality det(A + B) ≥
det A + det B from (7.8.22). Compare with (7.4.P6).

The inequality (7.8.20) can be improved for matrices of size two or larger. For
n = 1, the inequality in the following theorem is Re z + | Im z| ≤ |z|, which is false if
Im z �= 0.

Theorem 7.8.24. Let n ≥ 2, let H, K ∈ Mn be Hermitian, and let A = H + i K . If H
is positive definite, then

det H + | det K | ≤ | det(H + i K )| = | det A| (7.8.25)

If n = 2, the inequality (7.8.25) is an equality if and only if K = cH for some c ∈ R;
if n ≥ 3, it is an equality if and only if K = 0, that is, if and only if A is Hermitian.

Proof. Proceed as in the proof of (7.8.19). We have A = H (I + i H−1 K ), so | det A| =
(det H )| det(I + i H−1 K )| and det H + | det K | = (det H )(1 + | det(H−1 K )|). Since
H−1 K is similar to a real diagonal matrix � = diag(λ1, . . . , λn), we must prove the
inequality

| det(I + i H−1 K )| =
n∏

j=1

|1 + iλ j | ≥ 1 +
n∏

j=1

|λ j | = det I + | det(H−1 K )|

Each |1 + iλ j |2 = 1 + λ2
j , so it suffices to prove the equivalent inequality

n∏
j=1

(1 + λ2
j ) ≥ (1 +

n∏
j=1

|λ j |)2, n ≥ 2 and each λ j ∈ R (7.8.26)

If n = 2, the arithmetic–geometric inequality ensures that

(1 + λ2
1)(1 + λ2

2) = 1 + λ2
1 + λ2

2 + λ2
1λ

2
2

≥ 1 + 2|λ1λ2| + λ2
1λ

2
2 = (1 + |λ1λ2|)2
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with equality if and only if λ1 = λ2 = c, if and only if K = cH . Now suppose that
n ≥ 3 and compute

n∏
j=1

(1 + λ2
j ) = 1 +

n∏
j=1

λ2
j +

n−1∏
j=1

λ2
j +

n∑
j=1

λ2
j + nonnegative terms

≥ 1 +
n−1∏
j=1

λ2
j + λ2

n +
n∏

j=1

λ2
j +

n−1∑
j=1

λ2
j

≥ 1 + (
n−1∏
j=1

λ2
j + λ2

n) +
n∏

j=1

λ2
j

≥ 1 + 2(
n−1∏
j=1

|λ j |)|λn| +
n∏

j=1

λ2
j = (1 +

n∏
j=1

|λ j |)2

The first inequality in this computation is the result of discarding a sum of nonnegative
terms, the second inequality results from discarding the sum

∑n−1
j=1 λ2

j , and the final
inequality is an application of the arithmetic–geometric mean inequality. Consequently,
if n ≥ 3 and the inequality (7.8.26) is an equality, then λ1 = · · · = λn−1 = 0 and
λn =∏n−1

j=1 λ j , which is zero. Conversely, if λ1 = · · · = λn = 0, then (7.8.26) is an
equality. If n ≥ 3, we conclude that the inequality (7.8.26) is an equality if and only if
� = 0 if and only if K = 0 if and only if A is Hermitian. �

Exercise. Provide details for a proof by induction that (7.8.26) is an equality for
some n ≥ 3 if and only if K = 0.

Exercise. If K = cH , verify that (7.8.25) is an equality if n = 2. What goes
wrong if n > 2?

The inequality (7.8.20) can be strengthened by combining elements of the proofs of
(7.8.21) and (7.8.24).

Theorem 7.8.27 (Fan’s determinant inequality). Let H, K ∈ Mn be Hermitian and
let A = H + i K . If H is positive definite, then

(det H )2/n + | det K |2/n ≤ | det(H + i K )|2/n = | det A|2/n (7.8.28)

with equality if and only if all of the eigenvalues of H−1 K (necessarily real) have the
same absolute value.

Proof. Theorem 7.6.4 ensures that there is a nonsingular S ∈ Mn such that H = SI S∗

and K = S�S∗, in which � = diag(λ1, . . . , λn) is real diagonal; its diagonal entries
are the eigenvalues of the diagonalizable matrix H−1 K . The inequality (7.8.28) is
equivalent to the inequality

| det(I + i�)|2/n ≥ 1 + | det �|2/n



7.8 Inequalities involving positive definite matrices 513

Since (
∏n

j=1 |1 + iλ j |)2/n = (
∏n

j=1(1 + λ2
j ))

1/n and | det �|2/n = (
∏n

j=1 λ2
j )

1/n , we
must prove that

1 +
⎛
⎝ n∏

j=1

λ2
j

⎞
⎠1/n

≤
⎛
⎝ n∏

j=1

(1 + λ2
j )

⎞
⎠1/n

which is another special case of Minkowski’s inequality (B10). The case of equality is
λ2

1 = · · · = λ2
n = c ≥ 0. We have c = 0 if and only if K = S�S∗ = 0. �

Exercise. Under the hypotheses of the preceding theorem, explain why all of the
eigenvalues of H−1 K have the same absolute value if and only if (H−1 K )2 = cI
for some c ≥ 0.

Exercise. If there is a real number γ such that K = γ H , show that the inequality
(7.8.28) is an equality. This is not the only case of equality, of course.

Exercise. Derive the inequality (7.8.20) from each of (7.8.25) and (7.8.28).

Problems

7.8.P1 Let A, B ∈ Mn be positive semidefinite. Use (7.8.17) to show that A ◦ B is positive
definite if A is positive definite and B has positive diagonal entries; this is (7.5.3(b)).

7.8.P2 Let A = [Ai j ]n
i, j=1 ∈ Mnk , with each Ai j ∈ Mk . Prove the following block general-

ization of Hadamard’s inequality (7.8.2):

| det A| ≤
⎛
⎝ n∏

i=1

⎛
⎝ n∑

j=1

‖|Ai j‖|22

⎞
⎠
⎞
⎠k/2

What is this inequality if k = 1? if n = 1?

7.8.P3 Let A, B ∈ Mn be positive definite. Show that the following statements are equiva-
lent:

(a) A ◦ B = AB.
(b) det(A ◦ B) = det(AB).
(c) A and B are positive diagonal matrices.

7.8.P4 Let A ∈ Mn be positive definite and let f (A) = (det A)1/n . (a) Show that

f (A) = min{1

n
tr(AB) : B is positive definite and det B = 1} (7.8.29)

(b) Deduce that f (A) is a concave function on the convex set of positive definite matrices.
(c) Derive (7.8.21) from (b).

7.8.P5 Suppose that H+ =
[

A B
B∗ C

]
is positive definite. (a) Show that H− =

[
A −B

−B∗ C

]
is

positive definite. (b) Apply Minkowski’s inequality (7.8.22) to the two positive definite
matrices H± and deduce Fischer’s inequality (7.8.6).
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7.8.P6 Let H =
[

A B
B∗ C

]
∈ Mn be positive definite. Let H = L L∗ be a Cholesky factor-

ization (7.2.9), in which L =
[

L11 0
L21 L22

]
, so A = L11L∗

11 and C = L22L∗
22 + L21L∗

21. Use

these representations to prove Fischer’s inequality (7.8.6).

7.8.P7 Let A = [ai j ] ∈ M3(R). If all |ai j | ≤ 1, we claim that | det A| ≤ 3
√

3 and that this
bound is never attained. Provide details:

∂

∂ai j
(det A) = (−1)i+ j det A[{i}c, { j}c] and

∂2

∂a2
i j

(det A) = 0

If det A[{i}c, { j}c] = 0, then det A is independent of the value of ai j , which may therefore
be taken to be ±1. If det A[{i}c, { j}c] �= 0, then det A does not have a relative maximum or
minimum with respect to ai j if−1 < ai j < 1. Thus, | det A| achieves its maximum value
within the given constraints when all ai j = ±1. There are only finitely many such matrices
for n = 3. What is the result for general n > 3? If A has complex entries, use the maximum
principle (the maximum modulus theorem) for analytic functions to show that | det A|
cannot have a maximum in the interior of the set {A ∈ Mn : all |ai j | ≤ 1}.
7.8.P8 Let A = [ai j ] ∈ Mn . (a) Use Hadamard’s inequality to show that | det A| ≤
‖A‖n

∞ nn/2, a famous inequality in the theory of Fredholm integral equations. (b) Con-
sider the characteristic polynomial (1.2.10a) of A and show that |an−k | ≤

(n
k

) ‖A‖k
∞ kk/2 for

each k = 1, . . . , n.

7.8.P9 Let A ∈ Mn be positive definite. Show that det A = min{∏n
i=1 v∗

i Avi : v1, . . . , vn ∈
Cn are orthonormal}.
7.8.P10 Let A ∈ Mn be positive definite and let u1, . . . , un ∈ Cn be orthonormal. Use the
preceding problem to show that u1, . . . , un are eigenvectors of A and u∗

1 Au1, . . . , u∗
n Aun

are eigenvalues of A if and only if det A =∏n
i=1 u∗

i Aui .

7.8.P11 Let A =
[

A11 A12
A∗

12 A22

]
be positive definite. Prove the reverse Fischer inequality for

Schur complements: det(A/A11) det(A/A22) ≤ det A; see (0.8.5).

7.8.P12 Let A = [ai j ] ∈ Mn be positive definite. Partition A =
[

A11 x
x∗ ann

]
, in which A11 ∈

Mn−1. Use the Cauchy expansion (0.8.5.10) or the Schur complement to show that det A =
(ann − x∗A−1

11 x) det A ≤ ann det A11, with equality if and only if x = 0. Use this observation
to give a proof by induction of Hadamard’s inequality (7.8.2) and its case of equality.

7.8.P13 Let A = [ai j ] ∈ Mn be positive definite and have eigenvalues λ1, . . . , λn . Con-
sider the kth elementary symmetric function Sk(t1, . . . , tn) defined in (1.2.14). Observe
that S1(λ1, . . . , λn) = tr A = S1(a11, . . . , ann) and that Hadamard’s inequality (7.8.2) may
be restated as Sn(λ1, . . . , λn) ≤ Sn(a11, . . . , ann). Use (1.2.16) and (7.8.2) to show that
Sk(λ1, . . . , λn) ≤ Sk(a11, . . . , ann) for each k = 1, . . . , n.

Versions of the basic determinant inequalities (7.8.20, 25, 28) are valid for nonsingular
normalizable matrices; these inequalities can all be obtained with a unified approach. Let
A = H + i K ∈ Mn , in which H and K are Hermitian. Suppose that A is nonsingular and
is diagonalizable by ∗congruence, that is, there is a nonsingular S ∈ Mn and a diagonal
unitary matrix D = diag(eiθ1 , . . . , eiθn ) such that A = SDS∗; see (4.5.24) and (4.5.P37).
In this case, we have H = S�S∗ and K = S�S∗, in which � = diag(cos θ1, . . . , cos θn)
and � = diag(sin θ1, . . . , sin θn). We use this notation in the following seven problems.
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7.8.P14 If C ∈ Mn has positive definite Hermitian part, show that C is diagonalizable by
∗congruence. Give an example of a matrix that is diagonalizable by ∗congruence but does
not have positive definite Hermitian part.

7.8.P15 Verify that | det H | = | det S|2| det �| = | det S|2 ∏n
j=1 | cos θ j |, | det K | =

| det S|2| det �| = | det S|2 ∏n
j=1 | sin θ j |, and | det A| = | det S|2.

7.8.P16 (Analog of (7.8.20)) We claim that | det H | ≤ | det A|. Explain why, to prove this
claim, it suffices to show that

∏n
j=1 | cos θ j | ≤ 1, and do so.

7.8.P17 (Analog of (7.8.25)) We claim that | det H | + | det K | ≤ | det A| if n ≥ 2. Explain
why, to prove this claim, it suffices to show that

∏n
j=1 | cos θ j | +

∏n
j=1 | sin θ j | ≤ 1 if

n ≥ 2, and do so. What goes wrong for n = 1?

7.8.P18 (Analog of (7.8.28)) We claim that | det H |2/n + | det K |2/n ≤ | det A|2/n . Explain
why, to prove this claim, it suffices to show that (

∏n
j=1 cos2 θ j )1/n + (

∏n
j=1 sin2 θ j )1/n ≤ 1,

and do so.

7.8.P19 (Another approach to (7.8.22)): If H and K are positive definite, we claim that
(det H )1/n + (det K )1/n ≤ (det(H + K ))1/n . Explain why, to prove this claim, it suffices
to show that (

∏n
j=1 cos θ j )1/n + (

∏n
j=1 sin θ j )1/n ≤ (

∏n
j=1(cos θ j + sin θ j ))1/n under the

assumption that each θ j ∈ (0, π/2). Do so.

7.8.P20 Deduce the inequalities (7.8.20), (7.8.25), and (7.8.28) from (7.8.P16, P17 and
P18).





CHAPTER 8

Positive and Nonnegative
Matrices

8.0 Introduction

Suppose that there are n ≥ 2 cities C1, . . . , Cn among which migration takes place as
follows: Simultaneously at 8:00 a.m. each day a constant fraction aij of the current
population of city j moves to city i for all distinct i, j ∈ {1, . . . , n}; the fraction a j j of
the current population of city j remains in city j . Thus, if we denote the population of
city i on day m by p(m)

i , we have the recursive relation

p(m+1)
i = ai1 p(m)

1 + · · · + ain p(m)
n , i = 1, . . . , n, m = 0, 1, . . .

between the population distributions on days m and m + 1. If we denote the n-by-n
matrix of migration coefficients by A = [aij ] and the population distribution vector on
day m by p(m) = [p(m)

i ], then

p(m+1) = Ap(m) = AAp(m−1) = · · · = Am+1 p(0), m = 0, 1, . . .

in which p(0) is the initial population distribution. Observe that 0 ≤ aij ≤ 1 for all
i, j ∈ {1, . . . , n}, and

∑n
i=1 aij = 1 for each j = 1, . . . , n.

To make sensible long-range plans for city services and capital investment, govern-
ment officials wish to know how the population will be distributed among the cities far
into the future; that is, they want to know about the asymptotic behavior of p(m) for
large m. But since p(m) = Am p(0), we are led to investigate the asymptotic behavior of
Am .

As an example, let us consider in detail the case of two cities. We have a11 + a21 =
1 = a12 + a22, so if we denote a21 = α and a12 = β, we have

A =
[

1 − α β

α 1 − β

]
and we are interested in Am for large m. If A were diagonalizable, we could compute
Am explicitly. Thus, we begin by computing the eigenvalues of A: λ2 = 1 and λ1 = 1 −
α − β. Since 0 ≤ α, β ≤ 1, we have λ2 = 1 ≥ |λ1| = |1 − α − β|, so 1 = |λ2| = ρ(A)
and the spectral radius of A is an eigenvalue of A. Moreover, except in the trivial case
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α = β = 0 (in which case A is reducible), we see that λ2 = ρ(A) is a simple eigenvalue
of A.

If α + β �= 0, the respective eigenvectors are x = [β α]T (for λ2 = 1) and z =
[1 − 1]T (for λ1), so in this case A is diagonalizable and A = S�S−1, in which

� =
[

1 0
0 1 − α − β

]
, S =

[
β 1
α −1

]
, and S−1 = 1

α + β

[
1 1
α −β

]
The entries of the eigenvector x are nonnegative; they are positive if A is irreducible.

If α and β are not both 1, then |λ1| = |1 − α − β| < 1 and so λm
1 → 0 as m → ∞.

Thus, in this case we have

lim
m→∞ Am = S

(
lim

m→∞�m
)

S−1 = S

[
1 0
0 0

]
S−1 = 1

α + β

[
β β

α α

]
and so the equilibrium population distribution

lim
m→∞ p(m) = 1

α + β

[
β β

α α

][
p(0)

1

p(0)
2

]
= p(0)

1 + p(0)
2

α + β

[
β

α

]

does not depend on the initial distribution. The matrices Am approach a limit whose
columns are proportional to the eigenvector x that is associated with the eigenvalue 1
(the spectral radius of A), and the limiting population distribution is proportional to
this same eigenvector.

The two exceptional cases are easily analyzed individually. If α = β = 0, then
A = I , limm→∞ Am = I , and limm→∞ p(m) = p(0), so the limiting distribution depends
on the initial distribution.

If α = β = 1, then A =
[

0 1
1 0

]
, and the two cities exchange their entire populations

on successive days. The powers of A do not approach a limit and neither does the
population distribution if the initial population distribution is unequal. However, there
is a sense in which an “average equilibrium” is attained, namely,

lim
m→∞

1

m

m∑
k=1

Ak =
[
.5 .5
.5 .5

]
and lim

m→∞
1

m

m∑
k=1

p(k) = p(0)
1 + p(0)

2

2

[
1
1

]

Exercise. Verify that these two assertions about limits are correct.

In summary, we found the following in this example:

1. The spectral radius ρ(A) is an eigenvalue of A; it is not just the absolute value of
an eigenvalue.

2. The eigenvector x associated with the eigenvalue ρ(A) can be taken to have
nonnegative entries, which are positive if A is irreducible.

3. If every entry of A is positive, then ρ(A) is a simple eigenvalue that is strictly
larger than the modulus of any other eigenvalue.

4. If every entry of A is positive, then limm→∞(A/ρ(A))m exists and is a rank-one
matrix, each of whose columns is proportional to the eigenvector x.

5. Even if some entry of A is zero, limm→∞(1/m)
∑m

k=1(A/ρ(A))k exists.
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These conclusions are generally true for n ≥ 2, but it is not possible to analyze the
general case with simple direct methods. New tools are required and are developed in
the rest of this chapter.

Problems

8.0.P1 Show that the matrix A =
[

1 1
0 1

]
has spectral radius 1 and the sequence

A, A2, A3, . . . is unbounded.

8.0.P2 Consider the matrix Aε =
[

(1 + ε)−1 (1 + ε)−1

ε2(1 + ε)−1 (1 + ε)−1

]
, ε > 0. (a) Show that λ2 = 1 is

a simple eigenvalue of Aε , that ρ(A) = λ2 = 1, and that 1 > |λ1|. (b) Show that x =
(1 + ε)−1[1 ε]T and y = (1 + ε)(2ε)−1[ε 1]T are eigenvectors of Aε and AT

ε , respectively,
corresponding to the eigenvalue λ = 1. (c) Calculate Am

ε explicitly, m = 1, 2, . . . . (d) Show

that limm→∞ Am
ε = 1

2

[
1 ε−1

ε 1

]
. (e) Calculate xyT and comment. (f) What happens if ε → 0?

8.0.P3 If an n-by-n matrix of intercity migration coefficients is irreducible, what can you
say about the freedom of travel of the populace?

Further Readings. For a wealth of information about properties of positive and nonneg-
ative matrices as well as many references to the theoretical and applied literature, see
Berman and Plemmons (1994) and Seneta (1973). The book Varga (2000) contains a
summary of results about nonnegative matrices, with special emphasis on applications
to numerical analysis.

8.1 Inequalities and generalities

Let A = [aij ] ∈ Mm,n and B = [bij ] ∈ Mm,n and define |A| = [|aij |] (entrywise abso-
lute value). If A and B have real entries, we write

A ≥ 0 if all aij ≥ 0, and A > 0 if all aij > 0

A ≥ B if A − B ≥ 0, and A > B if A − B > 0

The reversed relations ≤ and < are defined similarly. If A ≥ 0, we say that A is a
nonnegative matrix, and if A > 0, we say that A is a positive matrix. The following
simple facts follow immediately from the definitions.

Exercise. Let A, B ∈ Mm,n . Show that

(8.1.1) |A| ≥ 0 and |A| = 0 if and only if A = 0
(8.1.2) |a A| = |a||A| for all a ∈ C
(8.1.3) |A + B| ≤ |A| + |B|
(8.1.4) A ≥ 0 and A �= 0 ⇒ A > 0 only if m = n = 1
(8.1.5) if A ≥ 0, B ≥ 0, and a, b ≥ 0, then a A + bB ≥ 0
(8.1.6) if A ≥ B and C ≥ D, then A + C ≥ B + D
(8.1.7) if A ≥ B and B ≥ C , then A ≥ C
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Proposition 8.1.8. Let A = [aij ] ∈ Mn and x = [xi ] ∈ Cn be given.

(a) |Ax | ≤ |A| |x |.
(b) Suppose that A is nonnegative and has a positive row. If |Ax | = A|x |, then there

is a real θ ∈ [0, 2π ) such that e−iθ x = |x |.
(c) Suppose that x is positive. If Ax = |A|x, then A = |A|, so A is nonnegative.

Proof. (a) The assertion follows from the triangle inequality:

|Ax |k = |
∑

j

ak j x j | ≤
∑

j

|akj x j | =
∑

j

|akj | |x j | = (|A| |x |)k (8.1.8.1)

for each k = 1, . . . , n.
(b) The hypothesis is that A ≥ 0, ak1, . . . , akn are all positive, and |Ax | = A|x |. Then
|Ax |k = |∑ j ak j x j | =

∑
j ak j |x j | = (A|x |)k . This is a case of equality in the triangle

inequality (8.1.8.1), so there is a θ ∈ R such that e−iθakj x j = akj |x j | for each j =
1, . . . , n; see Appendix A. Since each akj is positive, it follows that e−iθ x j = |x j | for
each j = 1, . . . , n, that is, e−iθ x = |x |.
(c) We have |A|x = Re(|A|x) = Re(Ax) = (Re A)x , so (|A| − Re A)x = 0. But |A| −
Re A ≥ 0 and x > 0, so (8.1.1) ensures that |A| = Re A. Then A = |A| ≥ 0. �

Exercise. Let A, B, C, D ∈ Mn , let x, y ∈ Cn , and let m ∈ {1, 2, . . .}. Show that

(8.1.9) |AB| ≤ |A| |B|
(8.1.10) |Am | ≤ |A|m
(8.1.11) if 0 ≤ A ≤ B and 0 ≤ C ≤ D, then 0 ≤ AC ≤ B D
(8.1.12) if 0 ≤ A ≤ B, then 0 ≤ Am ≤ Bm

(8.1.13) if A ≥ 0, then Am ≥ 0; if A > 0, then Am > 0
(8.1.14) if A > 0, x ≥ 0, and x �= 0, then Ax > 0
(8.1.15) if A ≥ 0, x > 0, and Ax = 0, then A = 0
(8.1.16) if |A| ≤ |B|, then ‖A‖2 ≤ ‖B‖2

(8.1.17) ‖A‖2 = ‖ |A| ‖2

Of course, the assertions (8.1.16–17) hold for any absolute vector norm on matrices,
not just the Frobenius norm. Our first application of these facts is to an inequality for
the spectral radius.

Theorem 8.1.18. Let A, B ∈ Mn and suppose that B is nonnegative. If |A| ≤
B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof. Invoking (8.1.10) and (8.1.12), we have |Am | ≤ |A|m ≤ Bm for each m =
1, 2, . . . . Thus, (8.1.16) and (8.1.17) ensure that

‖Am‖2 ≤ ‖ |A|m ‖2 ≤ ‖Bm‖2 and ‖Am‖1/m
2 ≤ ‖ |A|m ‖1/m

2 ≤ ‖Bm‖1/m
2

for each m = 1, 2, . . . . If we now let m → ∞ and apply the Gelfand formula (5.6.14),
we deduce that ρ(A) ≤ ρ(|A|) ≤ ρ(B). �

Corollary 8.1.19. Let A, B ∈ Mn be nonnegative. If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).
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Corollary 8.1.20. Let A = [aij ] ∈ Mn be nonnegative.

(a) If Ã is principal submatrix of A, then ρ( Ã) ≤ ρ(A).
(b) maxi=1,...,n aii ≤ ρ(A).
(c) ρ(A) > 0 if any main diagonal entry of A is positive.

Proof. (a) If r = n, there is nothing to prove. Suppose that 1 ≤ r < n, let Ã be an
r-by-r principal square submatrix of A, and let P be a permutation matrix such that

P APT =
[

Ã B
C D

]
. The preceding theorem ensures that

ρ( Ã) = ρ( Ã ⊕ 0n−r ) = ρ
([

Ã 0
0 0

])
≤ ρ

([
Ã B
C D

])
= ρ(P APT ) = ρ(A)

(b) Take r = 1 to see that aii ≤ ρ(A) for all i = 1, . . . , n.
(c) ρ(A) ≥ maxi=1,...,n aii > 0. �

Exercise. The hypothesis that A is nonnegative is essential for the inequalities in

(8.1.20). Consider A =
[

1 1
−1 −1

]
. Is 1 ≤ ρ(A)?

Exercise. If A > 0, why is ρ(A) > 0?

Since we shall soon have rather good upper bounds on the spectral radius of a
nonnegative matrix, (8.1.18) will be useful in obtaining upper bounds on the spectral
radius of an arbitrary matrix.

Lemma 8.1.21. Let A = [aij ] ∈ Mn be nonnegative. Then ρ(A) ≤ ‖|A‖|∞ =
max1≤i≤n

∑n
j=1 aij and ρ(A) ≤ ‖|A‖|1 = max1≤ j≤n

∑n
i=1 aij . If all the row sums of

A are equal, then ρ(A) = ‖|A‖|∞; if all the column sums of A are equal, then
ρ(A) = ‖|A‖|1.

Proof. We know that |λ| ≤ ρ(A) ≤ ‖|A‖| for any eigenvalue λ of A and any matrix
norm ‖| · ‖|. If all the row sums of A are equal, then e = [1 . . . 1]T is an eigenvector of
A with eigenvalue λ = ‖|A‖|∞ and so ‖|A‖|∞ = λ ≤ ρ(A) = ‖|A‖|∞. The statement
for column sums follows from applying the same argument to AT . �

The largest row sum of a nonnegative matrix is an upper bound on its spectral
radius; it may seem surprising that the smallest row sum is a lower bound.

Theorem 8.1.22. Let A = [aij ] ∈ Mn be nonnegative. Then

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij (8.1.23)

and

min
1≤ j≤n

n∑
i=1

aij ≤ ρ(A) ≤ max
1≤ j≤n

n∑
i=1

aij (8.1.24)
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Proof. Let α = min1≤i≤n
∑n

j=1 aij . If α = 0, let B = 0. If α > 0, define B = [bij ]
by letting each bij = αaij (

∑n
k=1 aik)−1. Then A ≥ B ≥ 0 and

∑n
j=1 bij = α for all

i = 1, . . . , n. The preceding lemma ensures that ρ(B) = α, and (8.1.19) tells us that
ρ(B) ≤ ρ(A). The upper bound in (8.1.23) is the norm bound in (8.1.21). The column
sum bounds follow from applying the row sum bounds to AT . �

Corollary 8.1.25. Let A = [aij ] ∈ Mn. If A is nonnegative and either
∑n

j=1 aij > 0
for all i = 1, . . . , n or

∑n
i=1 aij > 0 for all j = 1, . . . , n, then ρ(A) > 0. In particular,

ρ(A) > 0 if n ≥ 2 and A is irreducible and nonnegative.

Exercise. Let A, B ∈ Mn be nonnegative and suppose that n ≥ 2. Suppose that
A is irreducible and B is positive. Explain why A cannot have a zero row or a
zero column, but all its main diagonal entries can be zero. Why is AB positive?

We can generalize the preceding theorem by introducing some free parameters.
If A ≥ 0, S = diag(x1, . . . , xn), and all xi > 0, then S−1 AS = [aij x

−1
i x j ] ≥ 0 and

ρ(A) = ρ(S−1 AS). Applying (8.1.22) to S−1 AS yields the following result.

Theorem 8.1.26. Let A = [aij ] ∈ Mn be nonnegative. Then for any positive vector
x = [xi ] ∈ Rn we have

min
1≤i≤n

1

xi

n∑
j=1

aij x j ≤ ρ(A) ≤ max
1≤i≤n

1

xi

n∑
j=1

aij x j (8.1.27)

and

min
1≤ j≤n

x j

n∑
i=1

aij

xi
≤ ρ(A) ≤ max

1≤ j≤n
x j

n∑
i=1

aij

xi
(8.1.28)

Corollary 8.1.29. Let A = [aij ] ∈ Mn be nonnegative and let x = [xi ] ∈ Rn be a pos-
itive vector. If α, β ≥ 0 are such that αx ≤ Ax ≤ βx, then α ≤ ρ(A) ≤ β. If αx < Ax,
then α < ρ(A); if Ax < βx, then ρ(A) < β.

Proof. If αx ≤ Ax , then αxi ≤ (Ax)i and α ≤ min1≤i≤n x−1
i

∑n
j=1 aij x j , so the pre-

ceding theorem ensures that α ≤ ρ(A). If αx < Ax , then there is some α′ > α such
that αx < α′x ≤ Ax . In this event, ρ(A) ≥ α′ > α. The upper bounds can be verified
in a similar fashion. �

Corollary 8.1.30. Let A ∈ Mn be nonnegative. If x is a positive eigenvector of A, then
ρ(A), x is an eigenpair for A; that is, if A ≥ 0, x > 0, and Ax = λx, then λ = ρ(A).

Proof. If x > 0 and Ax = λx , then λ ≥ 0 and λx ≤ Ax ≤ λx . But then (8.1.29)
ensures that λ ≤ ρ(A) ≤ λ. �

Corollary 8.1.31. Let A = [aij ] ∈ Mn be nonnegative. If A has a positive eigenvector,
then

ρ(A) = max
x>0

min
1≤i≤n

1

xi

n∑
j=1

aij x j = min
x>0

max
1≤i≤n

1

xi

n∑
j=1

aij x j (8.1.32)

Exercise. Prove the preceding corollary. Hint: Use the positive eigenvector x in
(8.1.27).
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Corollary 8.1.33. Let A = [aij ] ∈ Mn be nonnegative and write Am = [a(m)
i j ]. If A has

a positive eigenvector x = [xi ], then for all m = 1, 2, . . . and for all i = 1, . . . , n we
have

n∑
j=1

a(m)
i j ≤

(
max1≤k≤n xk

min1≤k≤n xk

)
ρ(A)m (8.1.34a)

and (
min1≤k≤n xk

max1≤k≤n xk

)
ρ(A)m ≤

n∑
j=1

a(m)
i j (8.1.34b)

If ρ(A) > 0, then the entries of [ρ(A)−1 A]m are uniformly bounded for m = 1, 2, . . . .

Proof. Let x = [xi ] be a positive eigenvector of A. Then (8.1.30) ensures that Ax =
ρ(A)x , so Am x = ρ(A)m x for each m = 1, 2, . . . . Since Am ≥ 0, for any i = 1, . . . , n
we have

ρ(A)m max
1≤k≤n

xk ≥ ρ(Am)xi = (Am x)i =
n∑

j=1

a(m)
i j x j

≥
(

min
1≤k≤n

xk

) n∑
j=1

a(m)
i j

Since min1≤k≤n xk > 0, the asserted upper bound on
∑n

j=1 a(m)
i j follows:

ρ(A)m max1≤k≤n xk

min1≤k≤n xk
≥

n∑
j=1

a(m)
i j

The asserted lower bound follows in a similar fashion. �

Problems

8.1.P1 If A ∈ Mn is nonnegative and if Ak is positive for some positive integer k, explain
why ρ(A) > 0.

8.1.P2 Give an example of a 2-by-2 matrix A such that A ≥ 0, A is not positive, and
A2 > 0.

8.1.P3 Suppose that A ∈ Mn is nonnegative and nonzero. If A has a positive eigenvector,
explain why ρ(A) > 0.

8.1.P4 Let A ∈ Mn . Corollary 5.6.13 ensures that for each ε > 0 there is a nonnegative
matrix C(A, ε) such that |Am | ≤ (ρ(A) + ε)mC(A, ε) for all m = 1, 2, . . . . If we assume
that A is nonnegative and has a positive eigenvector, explain why there is a nonnegative

matrix C(A) such that |Am | ≤ ρ(A)mC(A) for all m = 1, 2, . . . . Consider A =
[

1 1
0 1

]
and

explain why the assumption about a positive eigenvector cannot be omitted.

8.1.P5 If A ∈ Mn is nonnegative and has a positive eigenvector, show that A is diagonally
similar to a nonnegative matrix, all of whose row sums are equal. Equal to what?
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8.1.P6 Give an example to show that a reducible nonnegative matrix can have a positive
eigenvector.

8.1.P7 Let A = [aij ] ∈ Mn be nonnegative and let x = [xi ] ∈ Rn be a positive vector.
(a) Explain why (8.1.27) can be restated as

min
1≤i≤n

(Ax)i

xi
≤ ρ(A) ≤ max

1≤i≤n

(Ax)i

xi
(8.1.29)

(b) Show that the choice x = e (the all-ones vector) in (8.1.29) gives the bounds in (8.1.23).
(c) If A has positive row sums Ri = (Ae)i , i = 1, . . . , n, show that the choice x = Ae in
(8.1.29) leads to the improved bounds

min
1≤i≤n

Ri ≤ min
1≤i≤n

1

Ri

n∑
j=1

aij R j ≤ ρ(A) ≤ max
1≤i≤n

1

Ri

n∑
j=1

aij R j ≤ max
1≤i≤n

Ri

8.1.P8 Let A, B ∈ Mn be nonnegative and suppose that A ≥ B ≥ 0. Show that ‖|A‖|2 ≥
‖|B‖|2.

8.1.P9 Let A ∈ Mn . Use (8.1.18) to show that ‖|A‖|2 ≤ ‖| |A| ‖|2.

8.1.P10 Let A = [Aij ]k
i, j=1 ∈ Mn , in which each Aij ∈ Mni ,n j and n1 + · · · + nk = n. Let

G(·) be a given vector norm on all Mni ,n j , 1 ≤ i, j ≤ k, that is compatible with a given norm
‖·‖ on all Cni , 1 ≤ i ≤ k (5.7.12). Let A = [G(Aij )] ∈ Mk . (a) Show that ρ(A) ≤ ρ(A).
(b) Give examples of some vector norms G(·) on matrices for which the bound ρ(A) ≤ ρ(A)
is valid and explain why. (c) Explain why (5.6.9(a)) and (8.1.18) are special cases of (a);
describe the partition, G(·), and ‖·‖ in each case.

8.1.P11 Let A = [aij ] ∈ Mn be nonnegative, let σ be a given permutation of {1, . . . , n},
and let γ = a1σ (1)a2σ (2) · · · anσ (n). Show that ρ(A) ≥ γ 1/n . This inequality is interesting
only if there is a σ such that γ > 0, which is the case if and only if �(A) contains a cycle
of length n.

8.2 Positive matrices

The theory of nonnegative matrices assumes its simplest and most elegant form for
positive matrices, and it is for this case that Oskar Perron published the fundamen-
tal discoveries in 1907. In developing this theory, we begin with some remarkable
properties of eigenvectors that are associated with eigenvalues of maximum modulus.

Lemma 8.2.1. Let A ∈ Mn be positive. If λ, x is an eigenpair of A and |λ| = ρ(A),
then |x | > 0 and A|x | = ρ(A)|x |.
Proof. The hypotheses ensure that z = A|x | > 0 (8.1.14). We have z = A|x | ≥ |Ax | =
|λx | = |λ| |x | = ρ(A)|x |, so y = z − ρ(A)|x | ≥ 0. If y = 0, then ρ(A)|x | = A|x | > 0,
so ρ(A) > 0 and |x | > 0. If, however, y �= 0, (8.1.14) again ensures that 0 < Ay =
Az − ρ(A)A|x | = Az − ρ(A)z, in which case Az > ρ(A)z. It follows from (8.1.29)
that ρ(A) > ρ(A), which is not possible. We conclude that y = 0. �

From this technical result we now deduce a basic fact about positive matrices.

Theorem 8.2.2. If A ∈ Mn is positive, there are positive vectors x and y such that
Ax = ρ(A)x and yT A = ρ(A)yT .
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Proof. There is an eigenpair λ, x of A with |λ| = ρ(A). The preceding lemma ensures
that ρ(A), |x | is also an eigenpair of A and |x | > 0. The assertion about y follows from
considering AT . �

Exercise. If A ∈ Mn and A > 0, use (8.1.31) and the preceding theorem to ex-
plain why

ρ(A) = max
x>0

min
i

1

xi

n∑
j=1

aij x j = min
x>0

max
i

1

xi

n∑
j=1

aij x j (8.2.2a)

After strengthening the conclusion of (8.2.1), we will be able to show that the only
maximum modulus eigenvalue of a positive matrix is its spectral radius.

Lemma 8.2.3. Let A ∈ Mn be positive. If λ, x is an eigenpair of A and |λ| = ρ(A),
then there is a θ ∈ R such that e−iθ x = |x | > 0.

Proof. The hypothesis is that x ∈ Cn is nonzero and |Ax | = |λx | = ρ(A)|x |; (8.2.1)
ensures that A|x | = ρ(A)|x | and |x | > 0. Since |Ax | = ρ(A)|x | = A|x | and some (in
fact, every) row of A is positive, (8.1.8b) ensures that there is a θ ∈ R such that
e−iθ x = |x |. �

Theorem 8.2.4. Let A ∈ Mn be positive. If λ is an eigenvalue of A and λ �= ρ(A), then
|λ| < ρ(A).

Proof. Let λ, x be an eigenpair of A, so |λ| ≤ ρ(A). If |λ| = ρ(A), (8.2.3) ensures that
w = e−iθ x > 0 for some θ ∈ R. Since Aw = λw and w > 0, it follows from (8.1.30)
that λ = ρ(A). �

If A is positive, we now know that ρ(A) is its eigenvalue of strictly largest modulus.
What can be said about the geometric or algebraic multiplicity of ρ(A)?

Theorem 8.2.5. If A ∈ Mn is positive, then the geometric multiplicity of ρ(A) as an
eigenvalue of A is 1.

Proof. Suppose that w, z ∈ Cn are nonzero vectors such that Aw = ρ(A)w and
Az = ρ(A)z. Then w = αz for some α ∈ C. Lemma 8.2.3 ensures that there are real
numbers θ1 and θ2 such that p = [p j ] = e−iθ1 z > 0 and q = [q j ] = e−iθ2w > 0. Let
β = min1≤i≤n qi p−1

i and let r = q − β p. Notice that r ≥ 0 and at least one entry of r
is zero. If r �= 0, then 0 < Ar = Aq − β Ap = ρ(A)q − βρ(A)p = ρ(A)(q − β p) =
ρ(A)r , so ρ(A)r > 0 and r > 0, which is a contradiction. We conclude that r = 0,
q = β p, and w = βei(θ2−θ1)z. �

Corollary 8.2.6. Let A ∈ Mn be positive. There is a unique vector x = [xi ] ∈ Cn such
that Ax = ρ(A)x and

∑
i xi = 1. Such a vector must be positive.

Exercise. Prove (8.2.6).

The unique normalized eigenvector characterized in (8.2.6) is the Perron vector
of A, sometimes called the right Perron vector; ρ(A) is the Perron root of A. Of
course, the matrix AT is positive if A is positive, so all the preceding results about
eigenvectors of A apply to AT as well. An eigenvector y = [yi ] of AT corresponding
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to the eigenvalue ρ(A) and normalized so that
∑

i xi yi = 1 is positive and unique; it is
the left Perron vector of A.

Exercise. If A ∈ Mn is positive, explain carefully why any nonzero vector y such
that yT A = ρ(A)yT can be normalized as described in the preceding sentence,
and why, after this normalization, it is positive and unique.

Our final result about the spectral radius of a positive matrix is that its algebraic
multiplicity is also 1. Consequently, the powers of a positive matrix have a very special
asymptotic behavior.

Theorem 8.2.7. Let A ∈ Mn be positive. The algebraic multiplicity of ρ(A) as an
eigenvalue of A is 1. If x and y are the right and left Perron vectors of A, then
limm→∞(ρ(A)−1 A)m = xyT , which is a positive rank-one matrix.

Proof. We know that ρ(A) > 0, and that x and y are positive vectors such that Ax =
ρ(A)x , yT A = ρ(A)yT , and y∗x = yT x = 1. Theorem 1.4.12b ensures that ρ(A) has
algebraic multiplicity 1, and (1.4.7b) tells us that there is a nonsingular S = [x S1] such
that S−∗ = [y Z1] and A = S([ρ(A)] ⊕ B)S−1. Since ρ(A) is a simple eigenvalue of A
that is its eigenvalue of strictly largest modulus, ρ(B) < ρ(A), that is, ρ(ρ(A)−1 B) < 1.
Theorem 5.6.12 ensures that(

1

ρ(A)
A

)m

= S

[
1 0
0 (ρ(A)−1 B)m

]
S−1 (8.2.7a)

→ [x S1]

[
1 0
0 0n−1

] [
yT

Z T
1

]
= xyT as m → ∞

�

We now summarize the principal results obtained in this section for positive matrices.

Theorem 8.2.8 (Perron). Let A ∈ Mn be positive. Then

(a) ρ(A) > 0
(b) ρ(A) is an algebraically simple eigenvalue of A
(c) there is a unique real vector x = [xi ] such that Ax = ρ(A)x and x1 + · · · + xn =

1; this vector is positive
(d) there is a unique real vector y = [yi ] such that yT A = ρ(A)yT and x1 y1 + · · · +

xn yn = 1; this vector is positive
(e) |λ| < ρ(A) for every eigenvalue λ of A such that λ �= ρ(A)
(f) (ρ(A)−1 A)m → xyT as m → ∞
Perron’s theorem has many applications, one of which exhibits an eigenvalue inclu-

sion set for any square complex matrix. This inclusion set is determined by the spectral
radius and main diagonal entries of a dominating nonnegative matrix.

Theorem 8.2.9 (Fan). Let A = [aij ] ∈ Mn. Suppose that B = [bij ] ∈ Mn is nonnega-
tive and bij ≥ |aij | for all i �= j . Then every eigenvalue of A is in the union of n discs

n⋃
i=1

{z ∈ C : |z − aii | ≤ ρ(B) − bii } (8.2.9a)

In particular, A is nonsingular if |aii | > ρ(B) − bii for all i = 1, . . . , n.
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Proof. First, assume that B > 0. Theorem 8.2.8 ensures that there is a positive vector
x such that Bx = ρ(B)x , and hence∑

j �=i

|aij |x j ≤
∑
j �=i

bij x j = ρ(B)xi − bii xi for each i = 1, . . . , n

Thus, we have

1

xi

∑
j �=i

|aij |x j ≤ ρ(B) − bii for each i = 1, . . . , n

The result follows from (6.1.6) with pi = xi .
If some entry of B is zero, consider Bε = B + ε Jn for ε > 0. Then bij + ε > |aij |

for all i �= j , so Ky Fan’s eigenvalue inclusion set with respect to Bε is a union of n disks
of the form {z ∈ C : |z − aii | ≤ ρ(Bε) − (bii + ε)}. The assertion for a nonnegative B
now follows from observing that ρ(Bε) − (bii + ε) → ρ(B) − bii as ε → 0.

If |aii | > ρ(B) − bii for all i = 1, . . . , n, then z = 0 is not in the set (8.2.9a). �
Part (f) of (8.2.8) guarantees that a certain limit exists. The proof of (8.2.7) and the

bounds in (5.6.13) give an upper bound on the rate of convergence:∥∥(ρ(A)−1 A)m − xyT
∥∥
∞ =

∥∥∥∥S

[
1 0
0 (ρ(A)−1 B)m

]
S−1

∥∥∥∥
∞

≤ Crm (8.2.10)

in which r is any real number in the open interval (|λn−1|/ρ(A), 1), C is a positive
constant that depends on r and the positive matrix A, and |λn−1| = max{|λ| : λ ∈ σ (A)
and λ �= ρ(A)} is the modulus of a second-largest-modulus eigenvalue of A, sometimes
called a secondary eigenvalue. It is known that

|λn−1|
ρ(A)

≤ 1 − κ2

1 + κ2
(8.2.11)

in which κ = min{aij : i, j = 1, . . . , n}/ max{aij : i, j = 1, . . . , n}. This upper bound
is easy to compute and can be used as the rate parameter r in (8.2.10).

Problems

8.2.P1 If A ∈ Mn is positive, describe in detail the asymptotic behavior of Am as m → ∞.

8.2.P2 The second exercise following (6.1.8) involves a 2-by-2 positive matrix. Discuss
that exercise in light of the exercise following (8.2.2).

8.2.P3 Apply the results derived in this section (which make no assumption about diagonal-

izability) to the matrix A =
[

1 − α β

α 1 − β

]
, 0 < α, β < 1, and compare with the conclusions

reached in (8.0). Use (8.2.8(b)) to explain why the eigenvalues of A must be distinct.

8.2.P4 Consider the general intercity migration model with n > 2 cities as described in
(8.0). If all the migration coefficients aij are positive, what is the asymptotic behavior of
the population distribution p(m) as m → ∞?

8.2.P5 Let A, B ∈ Mn and suppose that A > B > 0. Use the “min max” characterization
of ρ(B) (8.2.2a) to show that ρ(A) > ρ(B).

8.2.P6 If A ∈ Mn is positive and if x = [xi ] is its Perron vector, explain why ρ(A) =∑n
i, j=1 aij x j .
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8.2.P7 Let n ≥ 2 and let A ∈ Mn be nonsingular. If A is positive, show that A−1 cannot be
nonnegative. If A is nonnegative, show that A−1 is nonnegative only if A has exactly
one nonzero entry in each column. How is such a matrix related to a permutation
matrix?

8.2.P8 Let A ∈ Mn be positive. Let x and y be positive vectors (not necessarily the
Perron vectors) such that Ax = ρ(A)x and AT y = ρ(A)y. Explain why (ρ(A)−1 A)m →
(yT x)−1xyT .

8.2.P9 Let A ∈ Mn be positive and let x = [xi ] be the Perron vector of A. (a) Suppose
that either mini

∑n
j=1 aij = ρ(A) or maxi

∑n
j=1 aij = ρ(A). Show that x1 = · · · = xn and

deduce that every row sum of A is equal to ρ(A). (b) Consider the two basic inequalities
(8.1.23). Explain why either both inequalities are strict or both are equalities. Moreover,
either every row sum of A is the same or both inequalities are strict. What about the pairs
of inequalities (8.1.24), (8.1.27), and (8.1.28)?

8.2.P10 Suppose that A = [aij ] ∈ Mn is both positive and symmetric and has exactly one
positive eigenvalue. Show that aij ≥ √

aii a j j ≥ min{aii , a j j } for all i, j = 1, . . . , n.

8.2.P11 Let A ∈ Mn be positive, let ρ(A) be its spectral radius, and let x = [xi ] and y
be positive vectors such that Ax = ρ(A)x and yT A = ρ(A)yT . We know that ρ(A) has
geometric multiplicity 1. Let D = diag(x1, . . . , xn), let B = D−1 AD, and let pB(t) = pA(t)
be its characteristic polynomial. Provide details for the following alternative argument to
show that (i) ρ(A) has algebraic multiplicity 1, and (ii) adj(ρ(A)I − A) = γ xyT for some
γ > 0. (a) B is positive and has the same eigenvalues as A. (b) Every row sum of B is
equal to ρ(A) = ρ(B). (c) pB(ρ(B)) = 0, and to show that ρ(B) is a simple eigenvalue, it
suffices to show that p′

B(t)|t=ρ(B) �= 0. (d) p′
B(t) = tr adj(t I − B) =∑

i pBi (t) (0.8.10.2),
in which Bi = B[{i}c] is a principal submatrix of B of size n − 1. (e) Every row sum of
each Bi is strictly less than ρ(B), so each ρ(Bi ) < ρ(B). (f) Each pBi (t) has its largest
real zero at ρ(Bi ) and pBi (t) → +∞ as t → ∞, so each pBi (ρ(B)) > 0. (g) p′

B(t)|t=ρ(B) >

0. (h) adj(ρ(A)I − A) = γ xyT (1.4.11). (i) p′
B(t)|t=ρ(B) = tr adj(ρ(A)I − A) = γ yT x ⇒

γ > 0. (j) If the eigenvalues of A other than ρ(A) are λ2, . . . , λn , explain why γ = (ρ(A) −
λ2) · · · (ρ(A) − λn)/yT x and use this representation to explain why γ > 0.

8.2.P12 Provide details for the following proof that the spectral radius of a positive matrix
A ∈ Mn is an eigenvalue with algebraic multiplicity 1. (a) Define B = D−1 AD as in the
preceding problem, so B is positive and has the same eigenvalues as A, and every row sum
of B is equal to ρ(A). (b) For the maximum row sum matrix norm, we have ‖|B‖|1 = ρ(B).
(c) (5.6.P38) and (8.2.5).

8.2.P13 Let A ∈ Mn be positive. Show that ρ(A) = limm→∞(tr Am)1/m .

8.2.P14 Let A ∈ Mn be positive. Explain why (a) adj(ρ(A)I − A) is positive; (b) each
column of adj(ρ(A)I − A) is a positive multiple of the Perron vector of A; (c) each row
of adj(ρ(A)I − A) is a positive multiple of the left Perron vector of A. If ρ(A) is known,
these observations provide an algorithm to compute the left and right Perron vectors of A
without solving any linear equations.

8.2.P15 Let A, B ∈ Mn(R). Suppose that 0 ≤ A ≤ B but A �= B, so some (nonnegative)
entry of A is strictly less than the corresponding entry of B. Then (8.1.9) ensures that

ρ(A) ≤ ρ(B). (a) Consider A =
[

0 1
0 0

]
and B =

[
0 2
0 0

]
to show that ρ(A) = ρ(B) is

possible. (b) If B is positive, however, use (8.2.8) to show that ρ(A) < ρ(B).
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8.2.P16 Let A ∈ Mn be positive, and let x ∈ Rn be a nonnegative and nonzero eigenvector
of A. Refer to (1.4.P6) and the principle of biorthogonality to explain why x cannot be an
eigenvector associated with any eigenvalue of A other than λ = ρ(A). Why must it be a
positive vector?

Further Readings. For many different bounds on the ratio |λn−1|/ρ(A), including the
bound (8.2.11), see U. Rothblum and C. Tan, Upper bounds on the maximum modulus
of subdominant eigenvalues of nonnegative matrices, Linear Algebra Appl. 66 (1985)
45–86.

8.3 Nonnegative matrices

What parts of the theory developed in the preceding section can be generalized
(perhaps by a suitable limit argument) to nonnegative matrices that are not positive?
The only results in Perron’s theorem that generalize by taking limits are contained in
the following theorem.

Theorem 8.3.1. If A ∈ Mn is nonnegative, then ρ(A) is an eigenvalue of A and there
is a nonnegative nonzero vector x such that Ax = ρ(A)x.

Proof. For any ε > 0, define A(ε) = A + ε Jn . Let x(ε) = [x(ε)i ] be the Perron vector
of A(ε), so x(ε) > 0 and

∑n
i=1 x(ε)i = 1. Since the set of vectors {x(ε) : ε > 0} is

contained in the compact set {x : x ∈ Cn, ‖x‖1 ≤ 1}, there is a monotone decreasing
sequence ε1 ≥ ε2 ≥ · · · with limk→∞ εk = 0 such that limk→∞ x(εk) = x exists. Since
x(εk) > 0 and ‖x(εk)‖1 = 1 for all k = 1, 2, . . ., the limit vector x = limk→∞ x(εk)
must be nonnegative and nonzero (indeed, ‖x‖1 = 1). Theorem 8.1.18 ensures that
ρ(A(εk)) ≥ ρ(A(εk+1)) ≥ · · · ≥ ρ(A) for all k = 1, 2, . . . , so ρ = limk→∞ ρ(A(εk))
exists and ρ ≥ ρ(A). However, x �= 0 and

Ax = lim
k→∞

A(εk)x(εk) = lim
k→∞

ρ(A(εk))x(εk)

= lim
k→∞

ρ(A(εk)) lim
k→∞

x(εk) = ρx

so ρ is an eigenvalue of A. It follows that ρ ≤ ρ(A), so ρ = ρ(A). �

There is a generalization of the “max min” part of the variational characteriza-
tion (8.1.32) of the spectral radius to nonnegative matrices and vectors. To approach
it, we prove the half of (8.1.29) that remains correct for nonnegative matrices and
vectors.

Theorem 8.3.2. Let A ∈ Mn be nonnegative, and let x ∈ Rn be nonnegative and
nonzero. If α ∈ R and Ax ≥ αx, then ρ(A) ≥ α.

Proof. Let A = [aij ], let ε > 0, and define A(ε) = A + ε Jn > 0. Then A(ε) has a
positive left Perron vector y(ε): y(ε)T A(ε) = ρ(A(ε))y(ε)T . We are given that Ax −
αx ≥ 0, so A(ε)x − αx > Ax − αx ≥ 0 and hence y(ε)T (A(ε)x − αx) = (ρ(A(ε)) −
α)y(ε)T x > 0. Since y(ε)T x > 0, we have ρ(A(ε)) − α > 0 for all ε > 0. But
ρ(A(ε)) → ρ(A) as ε → 0, so we conclude that ρ(A) ≥ α. �
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Corollary 8.3.3. If A ∈ Mn is nonnegative, then

ρ(A) = max
x≥0
x �=0

min
1≤i≤n
xi �=0

1

xi

n∑
j=1

aij x j (8.3.3a)

Proof. Let x be any nonzero nonnegative vector and let α = minxi �=0
∑

j aij x j/xi . Then
Ax ≥ αx , so the preceding theorem ensures that ρ(A) ≥ a, and hence

ρ(A) ≥ max
x≥0
x �=0

min
1≤i≤n
xi �=0

1

xi

n∑
j=1

aij x j

Now use (8.3.1) to choose a nonzero nonnegative x such that Ax = ρ(A)x , which
shows that equality can be attained with α = ρ(A). �

Exercise. Consider A =
[

1 0
0 2

]
and x =

[
1
0

]
. Explain why the implication Ax ≥

αx ⇒ ρ(A) ≥ α in (8.1.29) need not be correct if the nonnegative vector x is
not positive. Show that the “min max” characterization in (8.1.32) need not be
correct for nonnegative matrices.

The matrix in the preceding exercise has no positive left or right eigenvector.
A nonnegative matrix with a positive left or right eigenvector has some special
properties.

Theorem 8.3.4. Let A ∈ Mn be nonnegative. Suppose that there is a positive vector
x and a nonnegative real number λ such that either Ax = λx or xT A = λx T . Then
λ = ρ(A).

Proof. Suppose that x = [xi ] ∈ Rn and Ax = λx . Let D = diag(x1, . . . , xn) and de-
fine B = D−1 AD, which has the same eigenvalues as A. Then Be = D−1 ADe =
D−1 Ax = λD−1x = λe, so every row sum of the nonnegative matrix B is equal to λ.
It follows from (8.1.21) that ρ(B) = λ. If x T A = λx T , apply this argument to AT . �

Exercise. Let A ∈ Mn be nonnegative. Explain why (a) every column
(respectively, row) sum of A is equal to one if and only if eT A = eT (respec-
tively, Ae = e); (b) if eT A = eT then eT Am = eT (respectively, if Ae = e then
Ame = e) for each m = 2, 3, . . . ; and (c) under either assumption in (b), every
entry of Am is between zero and one for every m = 1, 2, . . . , so A is power
bounded.

Theorem 8.3.5. Suppose that A ∈ Mn is nonnegative and has a positive left eigenvec-
tor.

(a) If x ∈ Rn is nonzero and Ax ≥ ρ(A)x, then x is an eigenvector of A correspond-
ing to the eigenvalue ρ(A).

(b) If A �= 0, then ρ(A) > 0 and every eigenvalue λ of A such that |λ| = ρ(A)
is semisimple, that is, every Jordan block of A corresponding to a maximum-
modulus eigenvalue is one-by-one.

Proof. Let y be a positive left eigenvector of A. The preceding theorem ensures that
AT y = ρ(A)y.
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(a) We know that x �= 0 and Ax − ρ(A)x ≥ 0. We need to show that Ax − ρ(A)x =
0. If Ax − ρ(A)x �= 0, then yT (Ax − ρ(A)x) > 0. However, yT (Ax − ρ(A)x) =
ρ(A)yT x − ρ(A)yT x = 0, which is a contradiction.
(b) Since y is positive and A is nonzero and nonnegative, some entry of yT A
is positive. Consequently, the identity yT A = ρ(A)yT ensures that ρ(A) > 0. Let
D = diag(y1, . . . , yn) and let B = ρ(A)−1 D AD−1. It suffices to show that every eigen-
value of B with unit modulus is semisimple. Compute eT B = ρ(A)−1eT D AD−1 =
ρ(A)−1 yT AD−1 = ρ(A)−1ρ(A)y D−1 = eT . The preceding exercise ensures that
every column sum of the nonnegative matrix B is one, so B is power bounded and the
assertion follows from (3.2.5.2). �

Exercise. Restate and prove the preceding theorem under the assumption that A
has a positive right eigenvector corresponding to the eigenvalue ρ(A).

Exercise. Give an example to show that the hypothesis that A is nonnegative

cannot be omitted in the preceding theorem. Hint: A =
[

1 −1
2 −2

]
and x = e.

If A ∈ Mn is nonnegative, its eigenvalue ρ(A) is called the Perron root of A.
Because an eigenvector (even if normalized) associated with the Perron root of a non-
negative matrix need not be uniquely determined, there is no well-determined notion of
“the Perron vector” for a nonnegative matrix. For example, every nonzero nonnegative
vector is an eigenvector of the nonnegative matrix A = I associated with the Perron
root ρ(A) = 1.

Problems

8.3.P1 Show by examples that the items from (8.2.11) that are not included in (8.3.1) are
not generally true of all nonnegative matrices.

8.3.P2 If A ∈ Mn is nonnegative and Ak is positive for some k ≥ 1, show that A has a
positive eigenvector.

8.3.P3 If A = [aij ] ∈ Mn is nonnegative and tridiagonal, show that all the eigenvalues of
A are real.

8.3.P4 Show by example that the following generalization of (8.1.30) is false: If A ∈ Mn

is nonnegative and has a nonnegative eigenvector x , then Ax = ρ(A)x .

8.3.P5 Consider A =
[

0 1
0 1

]
and x = [1 2]T . Explain why (8.3.5) need not be correct if

we omit the assumption that A has a positive left eigenvector.

8.3.P6 Let A ∈ Mn be nonnegative and nonzero. (a) If A commutes with a positive matrix B,
show that the left and right Perron vectors of B are, respectively, left and right eigenvectors
of A associated with the eigenvalue ρ(A). (b) Compare and contrast the result in (a) with
the information in (1.3.19). (c) If A has positive left and right eigenvectors, show that there
is a positive matrix that commutes with A.

8.3.P7 Suppose that A ∈ Mn is nonnegative. (a) If A has a nonnegative eigenvector with
r ≥ 1 positive entries and n − r zero entries, show that there is a permutation matrix

P such that PT AP =
[

B C
0 D

]
is nonnegative, B ∈ Mr , D ∈ Mn−r , and B has a positive



532 Positive and nonnegative matrices

eigenvector. If r < n, conclude that A is reducible. (b) Explain why A is irreducible if and
only if all of its nonnegative eigenvectors are positive.

8.3.P8 Let A ∈ Mn be nonnegative. Use the preceding problem to show that either A is
irreducible or there is a permutation matrix P such that

PT AP =

⎡
⎢⎣

A1 �
. . .

0 Ak

⎤
⎥⎦ (8.3.6)

is block upper triangular, and each diagonal block is irreducible (possibly a 1-by-1 zero
matrix). This is an irreducible normal form (Frobenius normal form) of A. Observe that
σ (A) = σ (A1) ∪ · · · ∪ σ (Ak) (including multiplicities), so the eigenvalues of a nonnegative
matrix are zero (with arbitrary multiplicity) together with the spectra of finitely many
nonnegative nonzero irreducible matrices; see (8.4.6) for the special properties of their
spectra. An irreducible normal form of A is not necessarily unique.

8.3.P9 A matrix A = [aij ] ∈ Mn(R) whose off-diagonal entries are all nonnegative is said
to be essentially nonnegative. If A is essentially nonnegative, explain why there is some
λ > 0 such that λI + A ≥ 0. Use this observation and (8.3.1) to show that if A ∈ Mn

is essentially nonnegative, then A has a real eigenvalue r (A) (often called the dominant
eigenvalue of A) with the property that r (A) ≥ Re λi for every eigenvalue λi of A. Show
that r (A) need not be the eigenvalue of A with largest modulus, but if A is nonnegative,
then r (A) = ρ(A).

8.3.P10 Let A ∈ Mn be nonnegative and consider the real symmetric nonnegative matrix
H (A) = 1

2 (A + AT ). Show that ρ(A) ≤ λmax(H (A)).

8.3.P11 Suppose that A ∈ Mn is nonnegative. (a) Explain why its characteristic polynomial
can be factored as pA(t) = (t − ρ(A))g(t), in which g(t) = tn−1 + γ 1tn−2 + γ 2tn−3 + · · ·
and γ 1 = ρ(A) − tr A. Thus, γ 1 = 0 if and only if tr A = ρ(A). (b) If n = 3 and tr A =
ρ(A) > 0, explain why the eigenvalues of A are ρ(A) and ±√

det A/ρ(A), which are either
real or pure imaginary. (c) Magic squares are n-by-n positive matrices whose entries are
distinct integers between 1 and n2; all row sums and column sums, and the sums of the
entries in the main diagonal and counterdiagonal are equal. If A ∈ Mn is a magic square,
explain why ρ(A) = 1

2 n(n2 + 1) is an eigenvalue of A and pA(t) = (t − ρ(A))(tn−1 +
γ 2tn−3 + · · · ).

8.3.P12 Let A ∈ Mn be nonnegative. We claim that adj(ρ(A)I − A) is nonnegative. Provide
details: (a) If r is real and r > ρ(A), show that det(r I − A) > 0. (b) If r > ρ(A), show that
(r I − A)−1 is positive. (c) If r > ρ(A), deduce from (a) and (b) that adj(r I − A) > 0. (d)
Conclude that adj(ρ(A)I − A) ≥ 0.

8.3.P13 Let A ∈ Mn be nonnegative. (a) If ρ(A) has geometric multiplicity greater than
1, explain why adj(ρ(A)I − A) = 0. (b) If ρ(A) has algebraic multiplicity greater than 1,
adj(ρ(A)I − A) can be nonzero, but why is every main diagonal entry of adj(ρ(A)I − A)
zero?

8.3.P14 Let A ∈ Mn be nonnegative. Explain why (a) ρ(A) can have geometric multiplicity
greater than 1, but only if every minor of ρ(A)I − A is zero; (b) ρ(A) can have algebraic
multiplicity greater than 1, but only if every principal minor of ρ(A)I − A is zero.



8.4 Irreducible nonnegative matrices 533

8.3.P15 Let A = [aij ] ∈ Mn(R). Suppose that aij ≤ 0 for all i �= j , and suppose that every
real eigenvalue of A is positive; such a matrix is called an M-matrix. Provide details to
show that A−1 is nonnegative: (a) Let μ = max aii , so μ > 0; (b) B = μI − A is nonneg-
ative and ρ(B) is an eigenvalue of B; (c) μ − ρ(B) is an eigenvalue of A, so μ > ρ(B);
(d) A−1 = μ−1 ∑∞

k=0 μ−k Bk ≥ 0. For a special case of this problem, see (7.2.P31).

8.3.P16 Let A, B ∈ Mn(R). (a) Show that A is nonsingular and A−1 is nonnegative if and
only if whenever x, y ∈ Rn and Ax ≥ Ay, then x ≥ y. (b) A is said to be a monotone matrix
if it satisfies either of the equivalent conditions in (a). If A and B are monotone matrices,
show that AB is a monotone matrix. (c) Explain why every M-matrix is a monotone
matrix.

Further Readings. See C. R. Johnson, R. B. Kellogg, and A. B. Stephens, Complex
eigenvalues of a nonnegative matrix with a specified graph II, Linear Multilinear
Algebra 7 (1979) 129–143, and C. R. Johnson, Row stochastic matrices similar to
doubly stochastic matrices, Linear Multilinear Algebra 10 (1981) 113–130, for re-
sults about the eigenvalue possibilities for nonnegative matrices. The book Bapat and
Raghavan (1997) is a comprehensive reference for results about nonnegative matrices.
See section 2.5 of Horn and Johnson (1991) for 18 equivalent characterizations of
M-matrices.

8.4 Irreducible nonnegative matrices

It is a useful heuristic principle that results about matrices with no zero entries can often
be generalized to irreducible matrices. We have seen one instance of this principle in
the extensions of the basic Geršgorin theorem in Chapter 6, and we now exhibit another.
The basic idea has already been established in (6.2.24); we restate the relevant portion
here.

Lemma 8.4.1. Let A ∈ Mn be nonnegative. Then A is irreducible if and only if
(I + A)n−1 > 0.

Exercise. Explain why A ∈ Mn is irreducible if and only if AT is irreducible.

We also need the following two lemmas.

Lemma 8.4.2. Let λ1, . . . , λn be the eigenvalues of A ∈ Mn. Then λ1 + 1, . . . , λn + 1
are the eigenvalues of I + A and ρ(I + A) ≤ ρ(A) + 1. If A is nonnegative, then
ρ(I + A) = ρ(A) + 1.

Proof. The first assertion is a consequence of (2.4.2). We have ρ(I + A) =
max1≤i≤n |λi + 1| ≤ max1≤i≤n |λi | + 1 = ρ(A) + 1. However, (8.3.1) ensures that
ρ(A) + 1 is an eigenvalue of I + A if A ≥ 0, so ρ(I + A) = ρ(A) + 1 in this
case. �

Lemma 8.4.3. If A ∈ Mn is nonnegative and Am is positive for some m ≥ 1, then
ρ(A) is the only maximum-modulus eigenvalue of A; it is positive and algebraically
simple.
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Proof. Let λ1, . . . , λn be the eigenvalues of A. Then λm
1 , . . . , λm

n are the eigenvalues of
Am . Theorem 8.2.8 ensures that exactly one of λm

1 , . . . , λm
n is equal to ρ(Am) = ρ(A)m ,

which is positive; all the rest have modulus strictly less than ρ(Am). Consequently,
n − 1 of λ1, . . . , λn are strictly less than ρ(A) in modulus; (8.3.1) ensures that ρ(A) is
the remaining eigenvalue. �

Now we investigate how much of Perron’s theorem generalizes to nonnegative
irreducible matrices. The name of Frobenius is associated with generalizations of
Perron’s results about positive matrices to nonnegative matrices.

Theorem 8.4.4 (Perron–Frobenius). Let A ∈ Mn be irreducible and nonnegative,
and suppose that n ≥ 2. Then

(a) ρ(A) > 0
(b) ρ(A) is an algebraically simple eigenvalue of A
(c) there is a unique real vector x = [xi ] such that Ax = ρ(A)x and x1 + · · · + xn =

1; this vector is positive
(d) there is a unique real vector y = [yi ] such that yT A = ρ(A)yT and x1 y1 + · · · +

xn yn = 1; this vector is positive

Proof. (a) Corollary 8.1.25 shows that ρ(A) > 0 under conditions even weaker than
irreducibility.
(b) If ρ(A) is a multiple eigenvalue of A, then (8.4.2) ensures that ρ(A) + 1 = ρ(I +
A) is a multiple eigenvalue of I + A and hence (1 + ρ(A))n−1 = ρ((I + A)n−1) is a
multiple eigenvalue of the positive matrix (I + A)n−1, which contradicts (8.2.8(b)).
(c) Theorem 8.3.1 ensures that there is a nonnegative nonzero vector x such that Ax =
ρ(A)x . Then (I + A)n−1x = (ρ(A) + 1)n−1x , and since (I + A)n−1 is positive (8.4.1),
it follows from (8.1.14) that (I + A)n−1x , and hence also x = (ρ(A) + 1)1−n(I +
A)n−1x , is positive. If we impose the normalization eT x = 1, then (b) ensures that x is
unique.
(d) This follows by applying (c) to AT . �

The preceding theorem ensures that the left and right eigenspaces of an irreducible
nonnegative matrix A associated with its Perron root are one-dimensional. The vector
x in (8.4.4(c)) is the (right) Perron vector of A. the vector y in (8.4.4(d)) is its the left
Perron vector.

Theorem 8.4.4(c–d) ensure that the results in (8.1.30–33) and (8.3.4–5) apply to
irreducible nonnegative matrices. Of particular importance is the variational character-
ization (8.1.32) of the spectral radius. These observations are crucial in the following
extension of (8.1.18).

Theorem 8.4.5. Let A, B ∈ Mn. Suppose that A is nonnegative and irreducible, and
A ≥ |B|. Let λ = eiϕρ(B) be a given maximum-modulus eigenvalue of B. If ρ(A) =
ρ(B), then there is a diagonal unitary matrix D ∈ Mn such that B = eiϕ D AD−1.

Proof. Let x be a nonzero vector such that Bx = λx , and let ρ = ρ(A) = ρ(B). Then

ρ|x | = |λx | = |Bx | ≤ |B| |x | (α)≤ A|x | (8.4.5a)
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Theorem 8.3.5 and the inequality A|x | ≥ ρ|x | imply that A|x | = ρ|x |, and (8.4.4)
ensures that |x | is positive. Equality in the inequality (α) in (8.4.5a) tells us that
(A − |B|)x = 0; since x is positive and A − |B| ≥ 0, (8.1.1) ensures that A = |B|.
Let D be the unique diagonal unitary matrix such that x = D|x |. The identity
Bx = λx = eiϕρx is equivalent to the identity B D|x | = eiϕρD|x |, or e−iϕ D−1 B Dx =
ρ|x | = A|x | = |B| |x |. If we let C = e−iϕ D−1 B D, we have C |x | = |C | |x |, so
(8.1.8(c)) ensures that C = |C | = |B| = A. Thus, B = eiϕ D AD−1. �

If A is positive, Perron’s theorem ensures that ρ(A) is the unique eigenvalue of
A of largest modulus. If A is nonnegative but not positive, it may have eigenvalues
of maximum modulus other than ρ(A). However, if A is also irreducible, then these
eigenvalues (in fact, all of its eigenvalues) occur in a regular pattern.

Corollary 8.4.6. Let A ∈ Mn be irreducible and nonnegative, and suppose that it has
exactly k distinct eigenvalues of maximum modulus. Then

(a) A is similar to e2π i p/k A for each p = 0, 1, . . . , k − 1
(b) if Jm1 (λ) ⊕ · · · ⊕ Jm�

(λ) is a direct summand of the Jordan canonical form of
A, and if p ∈ {1, . . . , k − 1}, then Jm1 (e2π i p/kλ) ⊕ · · · ⊕ Jm�

(e2π i p/kλ) is also a
direct summand of the Jordan canonical form of A

(c) the maximum-modulus eigenvalues of A are e2π i p/kρ(A), p = 0, 1, . . . , k − 1,
and each has algebraic multiplicity 1

Proof. If k = 1, there is nothing to prove, so assume that k ≥ 2. Let λp = eiϕ pρ(A),
p = 0, 1, . . . , k − 1, be the distinct maximum-modulus eigenvalues of A, in which
0 = ϕ0 < ϕ1 < ϕ2 < · · · < ϕk−1 < 2π . Let S = {ϕ0 = 0, ϕ1, ϕ2, . . . , ϕk−1}, which
is the set of (exactly k) distinct arguments of the maximum-modulus eigenvalues
of A. Since A is real, its eigenvalues occur in conjugate pairs, so ϕk−1 = 2π − ϕ1,
ϕk−2 = 2π − ϕ2, etc., that is, for each ϕ p ∈ S, the element ϕk−p ∈ S is such that
ϕk−p + ϕ p = 0 (mod 2π ).

Now apply the preceding theorem with B = A and λ = eiϕ pρ(A) for any p =
0, 1, . . . , k − 1. We find that A = B = eiϕ p Dp AD−1

p = Dp(eiϕ p A)D−1
p , that is, A is

similar to eiϕ p A for any p = 0, 1, . . . , k − 1. Therefore, if Jm1 (λ) ⊕ · · · ⊕ Jm�
(λ) is a

direct summand of the Jordan canonical form of A, then Jm1 (eiϕ pλ) ⊕ · · · ⊕ Jm�
(eiϕ pλ)

is also a direct summand. If we apply this observation to the part of the Jordan canonical
form of A associated with any maximum-modulus eigenvalue λ = eiϕq ρ(A) and take
p = k − q, we find that

Jm1 (ei(ϕk−p+ϕ p)ρ(A) ⊕ · · · ⊕ Jm�
(ei(ϕk−p+ϕ p)ρ(A))

= Jm1 (ρ(A)) ⊕ · · · ⊕ Jm�
(ρ(A))

is a direct summand of the Jordan canonical form of A. However, (8.4.4(b)) ensures
that � = 1 and m1 = 1, that is, each maximum-modulus eigenvalue is simple.

Since A is similar to eiϕ p A as well as to eiϕq A , it follows that A is similar to ei(ϕ p+ϕq ) A
for any p, q ∈ {0, 1, . . . , k − 1}. That is, for each pair of elements ϕ p, ϕ p ∈ S, ϕ p + ϕ p

(mod 2π ) is also in S. By induction, we can conclude that rϕ1 = ϕ1 + · · · + ϕ1 (mod
2π ) is in the finite set S for all r = 1, 2, . . . . The k + 1 elements ϕ1, 2ϕ1, . . . , kϕ1,
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(k + 1)ϕ1 of S cannot all be distinct, so there are positive integers r > s ≥ 1 such
that rϕ1 = sϕ1 (mod 2π), in which case 1 < (r − s) ≤ k. It follows that (r − s)ϕ1 =
0 (mod 2π ), that is, ei(r−s)ϕ1 = 1, so eiϕ1 is a root of unity. Let p (necessarily in
{1, . . . , k}) be the smallest positive integer such that eipϕ1 = 1. Choose any ϕm ∈ S.
Divide the interval [0, 2π) into p half-open subintervals [0, ϕ1), [ϕ1, 2ϕ1), . . . , [(p −
1)ϕ1, 2π). Since ϕm is in one of these subintervals, there is some integer q with 0 ≤
q ≤ p − 1 such that qϕ1 ≤ ϕm < (q + 1)ϕ1; that is, 0 ≤ ϕm − qϕ1 < ϕ1. It follows
that ϕm − qϕ1 = 0 since ϕm − qϕ1 ∈ S and ϕ1 is the smallest nonzero element of
S. We conclude that each element ϕm is some positive integer multiple of ϕ1. If
p < k, there would be fewer than k distinct elements in the set {0, ϕ1, 2ϕ1, . . .},
which we have just shown to contain every point in S. We conclude that p = k,
ϕm = 2πm/k for each m = 0, 1, . . . , k − 1, and the maximum-modulus eigenvalues
of A are ρ(A), e2π i/kρ(A), . . . , e2π i(k−1)/kρ(A). �

Suppose that A ∈ Mn is irreducible and nonnegative, and has k eigenvalues of
maximum modulus. The preceding theorem ensures that the number of eigenvalues of
A (including multiplicities) on any circle {z ∈ C : |z| = r > 0} is a nonnegative integer
multiple of k, possibly a zero multiple. Thus, k must be a divisor of the number of
nonzero eigenvalues of A.

Exercise. If A ∈ Mn is nonnegative, explain why tr Am ≥ 0 for each m =
1, 2, . . . .

Exercise. Can an irreducible nonnegative matrix A ∈ M3 with spectral radius
1 have eigenvalues 1, i , and −i? Can it have those eigenvalues if we drop the
requirement that it be irreducible? Hint: Apply the preceding corollary; consider
tr A2.

Corollary 8.4.7. Suppose that A ∈ Mn is irreducible and nonnegative. If A has k > 1
eigenvalues of maximum modulus, then every main diagonal entry of A is zero. More-
over, every main diagonal entry of Am is zero for each positive integer m that is not
divisible by k.

Proof. Let ϕ = 2π/k. Corollary 8.4.6a ensures that A is similar to eiϕ A, so Am is
similar to eimϕ A for each m = 1, 2, 3, . . . and tr Am = eimϕ tr Am . Since eimϕ is real
and positive only if m is an integer multiple of k, this is impossible if Am has any
positive main diagonal entry and m is not divisible by k. �

Exercise. Suppose that A ∈ Mn is irreducible and nonnegative. To ensure that
ρ(A) is the only eigenvalue of A that has maximum modulus, explain why it is
sufficient for A to have at least one nonzero main diagonal entry. Consider the
matrix ⎡

⎣0 1 1
1 0 1
1 1 0

⎤
⎦

and explain why this sufficient condition is not necessary. Can you find a 2-by-2
example?
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The statement in (8.4.7) can be made more precise: If A ∈ Mn is irreducible and non-
negative, and has k > 1 eigenvalues of maximum modulus, then there is a permutation
matrix P such that

P APT =

⎡
⎢⎢⎢⎢⎣

0 A12 0
... 0

. . .

0
. . . Ak−1,k

Ak,1 0 . . . 0

⎤
⎥⎥⎥⎥⎦ (8.4.8)

in which the main diagonal zero blocks are square; see theorem 1.8.3 in Bapat and
Raghavan (1997).

Problems

8.4.P1 Show by examples that the items in (8.2.11) that are not included in (8.4.4) are not
generally true of irreducible nonnegative matrices.

8.4.P2 Give an example of an A ∈ Mn such that ρ(I + A) �= ρ(A) + 1. Give a condition
on A that is necessary and sufficient to have ρ(I + A) = ρ(A) + 1. Why is this condition
satisfied if A is nonnegative.

8.4.P3 Irreducibility is a sufficient but not necessary condition for a nonnegative matrix to

have a positive eigenvector. Consider
[

1 1
0 0

]
and

[
1 0
1 0

]
to show that a reducible nonnegative

matrix may or may not have a positive eigenvector.

8.4.P4 If n ≥ 2 and if A ∈ Mn is irreducible and nonnegative, show that the entries of the
matrices (ρ(A)−1 A)m are uniformly bounded as m → ∞.

8.4.P5 If A, B ∈ Mn , then AB and B A have the same eigenvalues. Consider
[

0 1
0 1

]
and[

0 0
1 1

]
. Explain why (a) even if A and B are nonnegative, AB can be irreducible while B A

is reducible; (b) an irreducible matrix can be similar (even unitarily similar) to a reducible
matrix.

8.4.P6 Show that the assertion in (8.3.P6(a)) remains correct if the hypothesis that B is
positive is replaced by the weaker hypothesis that B is irreducible and nonnegative.

8.4.P7 Show that the companion matrix of the polynomial t k − 1 = 0 is an example of a
k-by-k nonnegative matrix with k eigenvalues of maximum modulus. Sketch the location
of these eigenvalues in the complex plane.

8.4.P8 Let p, q , and r be given positive integers. Construct a nonnegative matrix of size
p + q + r whose eigenvalues of maximum modulus are all of the pth, qth, and r th roots
of unity.

8.4.P9 An irreducible nonnegative matrix is said to be cyclic of index k if it has k ≥ 1
eigenvalues of maximum modulus. Discuss the aptness of this term.

8.4.P10 If A ∈ Mn is cyclic of index k ≥ 1, explain why its characteristic polynomial is
pA(t) = tr (t k − ρ(A)k)(t k − μk

2) · · · (t k − μk
m) for some nonnegative integers r and m and

some complex numbers μi with |μi | < ρ(A), i = 2, . . . , m. Comment on the pattern of
zero and nonzero coefficients in pA(t) and give a criterion for A to have only one eigenvalue
of maximum modulus based on the form of the characteristic polynomial.
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8.4.P11 Let n > 1 be a prime number. If A ∈ Mn is irreducible, nonnegative, and nonsin-
gular, explain why either ρ(A) is the only eigenvalue of A of maximum modulus or all the
eigenvalues of A have maximum modulus.

8.4.P12 Let p(t) be a polynomial of the form (3.3.11) in which a0 �= 0, and let p̃(t) =
tn − |an−1|tn−1 − · · · − |a1|t − |a0|. Show that p̃(t) has a simple positive zero r that is not
exceeded by the modulus of any zero of either p̃(t) or p(t). What can you say about the
zeroes of p̃(t) if it has exactly k > 1 zeroes of modulus r?

8.4.P13 Let A = [aij ] ∈ Mn be irreducible and nonnegative, and let x = [xi ] and y = [yi ]
be its right and left Perron vectors, respectively. (a) Explain why ρ(A) is a differen-
tiable function of aij for each i, j ∈ {1, . . . , n} and why ∂ρ(A)/∂aij = xi y j for each
i, j ∈ {1, . . . , n}. (b) Why is ∂ρ(A)/∂aij > 0 for all i, j ∈ {1, . . . , n}?
8.4.P14 Let A, B ∈ Mn be nonnegative and suppose that A is irreducible. (a) Use the
preceding problem to show that ρ(A + B) > ρ(A) if B �= 0. (b) Explain why A + B is
irreducible and use (8.4.5) to show that ρ(A + B) > ρ(A) if B �= 0.

8.4.P15 Let A ∈ Mn be nonnegative. (a) If A is irreducible, explain why any nonnegative
eigenvector of A is a positive scalar multiple of the Perron vector of A. (b) If A has a
linearly independent pair of nonnegative eigenvectors, explain why A must be reducible.

8.4.P16 Let A ∈ Mn be nonnegative. (a) Explain why A is irreducible if and only if there
is a polynomial p(t) such that every entry of p(A) is nonzero. (b) If p(t) is a polynomial of
degree d or less such that every entry of p(A) is nonzero, explain why (I + A)d > 0. (c)
Suppose that the minimal polynomial of A has degree m. Show that A is irreducible if and
only if (I + A)m−1 > 0.

8.4.P17 Let A ∈ Mn be nonnegative and consider the problem of finding a best rank-one
approximation to A in the sense of least squares: If either AAT or AT A is irreducible, find
an X ∈ Mn such that ‖A − X‖2 = min{‖A − Y‖2 : Y ∈ Mn and rank Y = 1}. Show that
such an X is nonnegative, unique, and given by X =

√
ρ(AAT )vwT , in which v,w ∈ Rn

are positive unit eigenvectors of AAT and AT A associated with the eigenvalue ρ(AAT ).

8.4.P18 Find a best rank-one least squares approximation to each of the matrices
[

1 1
1 1

]
,[

1 1
0 1

]
, and

[
0 0
1 1

]
. Explain why a best rank-one least squares approximation to I ∈ Mn is

not unique if n > 1.

8.4.P19 Show that all the assertions of (8.2.P9) are correct under the weaker hypothesis
that A is irreducible and nonnegative.

8.4.P20 Let n ≥ 2 and A ∈ Mn(R) be given. (a) Explain why every negative eigenvalue of
A2 has even algebraic and geometric multiplicities. (b) Compute the squares of the matrices[

0 2
−1 − 1

2

]
,

⎡
⎣0 −1 1

0 0 1
0 −1 0

⎤
⎦ , and

⎡
⎢⎢⎢⎢⎢⎣

0 1 · · · 1 n
−1 0 · · · 0 1

...
...

. . .
...

...
−1 0 · · · 0 1
−1 −1 · · · −1 − n−1

n

⎤
⎥⎥⎥⎥⎥⎦ ∈ Mn
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Which of these matrices shows that A2 ≤ 0 and A2 �= 0 is possible, but with some zero
entries? Which shows (and for what n?) that A2 can have no zero entries and only one
positive entry? (c) If A2 ≤ 0, explain why A2 must be reducible. (d) If n > 2 and at least
n2 − n + 2 of the entries of A2 are negative, explain why A2 has at least one positive
entry.

8.4.P21 Let A ∈ Mn be irreducible and nonnegative. (a) If there is a nonnegative nonzero
vector x and a positive scalar α such that Ax ≤ αx , show that x is positive. (b) Deduce
from (a) that any nonnegative eigenvector of A is positive, and is a positive scalar multiple
of the Perron vector of A.

8.4.P22 Let x1, . . . , xn+2 be given unit vectors in Rn , and let G = [xT
i x j ] ∈ Mn+2(R) be

their Gram matrix. (a) If I − G is nonnegative, show that it (and hence also G) must be
reducible. (b) Explain why there are at most n + 1 vectors in Rn such that the angle between
any two of them is greater than π/2.

8.4.P23 Let A ∈ Mn be irreducible and nonnegative, and let x and y, respectively, be its
right and left Perron vectors. Explain why adj(ρ(A)I − A) is a positive scalar multiple of
the rank-one positive matrix xyT .

8.4.P24 Let A ∈ Mn be nonnegative and suppose that ρ(A) > 0. If λ is a maximum-
modulus eigenvalue of A, use (8.3.6) and (8.4.6) to show that λ/ρ(A) = eiθ is a root
of unity and eipθρ(A) is an eigenvalue of A for each p = 0, 1, . . . , k − 1. Illustrate by
examples that these need not be the only maximum-modulus eigenvalues of A, and they
need not be simple.

8.4.P25 The matrix A1 =
[

0 1
1 0

]
shows that the result in (8.2.P13) need not be cor-

rect for nonnegative matrices that are not positive. Explain why limm→∞(tr Am
1 )1/m

does not exist; nevertheless, lim supm→∞(tr Am
1 )1/m = 1 = ρ(A1). Provide details for the

following steps to show that this limit result is correct for any nonnegative matrix
A: If ρ(A) = 0, explain why limm→∞(tr Am)1/m = ρ(A). Now assume that ρ(A) > 0.
(a) tr Am = |∑n

i=1 λi (Am)| ≤ |∑n
i=1 σ i (Am)| = ‖|Am‖|tr, in which the λi are eigenvalues,

the σ i are singular values, and ‖| · ‖|tr is the trace norm; see the example following (5.6.42).
(b) lim supm→∞(tr Am)1/m ≤ lim supm→∞ ‖|Am‖|1/m

tr = ρ(A). (c) Consider an irreducible
normal form (8.3.6) of A, and let Ai1 ∈ Mn1 , . . . , Aig ∈ Mng be all of the diagonal blocks
in (8.3.6) such that ρ(Ai ) = ρ(A). If Ai� has exactly k� eigenvalues with modulus ρ(A),
(8.4.6) ensures that ρ(A)kl is an eigenvalue of Ak�

i�
with multiplicity k� and all other eigen-

values have strictly smaller modulus. Then tr Apk�

i�
= ρ(A)pk� (k� + o(1)) for p = 1, 2, . . . ,

in which o(1) is a quantity that tends to zero as p → ∞. Construct a sequence of posi-
tive integers m j → ∞ such that tr A

m j

i1
+ · · · + tr A

m j

ig
= (k1 + · · · + kg + o(1))ρ(A)m j for

j = 1, 2, . . .. (d) tr Am j ≥ (k1 + · · · + kg + o(1))ρ(A)m j for each j = 1, 2, . . . . (e) For
any given ε ∈ (0, 1/2), lim supm→∞(tr Am)1/m ≥ limm→∞(k1 + · · · + kg − ε)1/mρ(A).
(e) Conclude that if A ∈ Mn is nonnegative, then

lim sup
m→∞

(tr Am)1/m = ρ(A) (8.4.9)

8.4.P26 Let A ∈ Mn be nonnegative and let x = [xi ] and y = [yi ] be nonnegative vectors
such that Ax = ρ(A)x and yT A = ρ(A)yT . We claim that A is irreducible if and only if
no principal minor of ρ(A)I − A is zero if and only if adj(ρ(A)I − A) = cxyT is positive.
Provide details: (a) If A is irreducible, then (8.4.4) ensures that ρ(A) is simple, and y = [yi ]
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and x = [xi ] are positive. Then adj(ρ(A)I − A) = cxyT is nonnegative and nonzero; its
main diagonal entries are cx1 y1, . . . cxn yn , which are nonzero, so they are positive and equal
to the principal minors of ρ(A)I − A. Then c > 0 and cxyT = adj(ρ(A)I − A) > 0. (b)
Conversely, if no principal minor of ρ(A)I − A is zero, then ρ(A) is simple, adj(ρ(A)I −
A) = cxyT has a positive main diagonal, and each of x , y, and c is positive. Problem (8.3.P7)
ensures that A is irreducible.

8.5 Primitive matrices

An examination of the proof of (8.2.7) reveals that it is valid for an irreducible nonnega-
tive matrix provided that we make one additional assumption: There are no eigenvalues
of maximum modulus other than the spectral radius. This property is so important that
it motivates a definition.

Definition 8.5.0. A nonnegative matrix A ∈ Mn is primitive if it is irreducible and has
only one nonzero eigenvalue of maximum modulus.

The notion of primitivity is due to Frobenius (1912).

Theorem 8.5.1. If A ∈ Mn is nonnegative and primitive, and if x and y are, respec-
tively, the right and left Perron vectors of A, then limm→∞(ρ(A)−1 A)m = xyT , which
is a positive rank-one matrix.

Proof. We have in hand all the ingredients required in the proof of (8.2.7): ρ(A) is a
simple eigenvalue with positive associated right and left eigenvectors x and y such that
xT y = 1. We can perform the factorization (8.2.7a), in which every eigenvalue of B
has modulus strictly less than ρ(A), so limm→∞(ρ(A)−1 B)m = 0. �

We have now generalized all of Perron’s theorem from the class of positive matrices
to the class of primitive nonnegative matrices. But how, in practice, can one test a
given irreducible nonnegative matrix for primitivity without computing its maximum-
modulus eigenvalues? The following characterization of primitivity, while not itself a
computationally effective test, leads to several useful criteria.

Theorem 8.5.2. If A ∈ Mn is nonnegative, then A is primitive if and only if Am > 0
for some m ≥ 1.

Proof. If Am is positive, there is a directed path of length m between every pair of nodes
of the directed graph �(A) of A, so �(A) is strongly connected and A is irreducible.
In addition, (8.4.3) ensures that there are no maximum-modulus eigenvalues of A
other than ρ(A), which is algebraically simple. Conversely, if A is primitive, then
limm→∞(ρ(A)−1 A)m = xyT > 0, so there is some m such that (ρ(A)−1 A)m > 0. �

Exercise. If A ∈ Mn is nonnegative and irreducible, and if Am > 0, explain why
Ap > 0 for all p = m + 1, m + 2, . . . .

The characterization in the preceding theorem, and the information in (8.4.6) about
the maximum-modulus eigenvalues of nonnegative irreducible matrices, provide a
graph-theoretical criterion for primitivity.
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Theorem 8.5.3. Let A ∈ Mn be irreducible and nonnegative, and let P1, . . . , Pn be
the nodes of the directed graph �(A). Let Li = {k(i)

1 , k(i)
2 , . . .} be the set of lengths of

all directed paths in �(A) that both start and end at the node Pi , i = 1, . . . , n. Let gi

be the greatest common divisor of all the lengths in Li . Then A is primitive if and only
if g1 = · · · = gn = 1.

Proof. Irreducibility of A implies that no set Li is empty: For each i and for any j �= i ,
there is a path in �(A) that joins Pi to Pj ; there is also a path in �(A) that joins Pj to
Pi . If A is primitive, then (8.5.2) ensures that there is some m ≥ 1 such that Am > 0,
and hence Ak > 0 for all k ≥ m. But then m + p ∈ Li for each integer p ≥ 1 and each
i = 1, . . . , n, so gi = 1 for all i = 1, . . . , n.

Suppose that A = [aij ] is not primitive and has exactly k > 1 eigenvalues of maxi-
mum modulus. Corollary 8.4.8 ensures that Am has a zero main diagonal for every m
that is not an integral multiple of k; for each such m, there is no directed path in �(A)
that both starts and ends at any node of �(A). Thus, Li ⊂ {k, 2k, 3k, . . . }, and hence
gi ≥ k > 1 for each i = 1, . . . , n. �

A theorem of Romanovsky provides additional insight into the preceding result: If
A ∈ Mn is irreducible and nonnegative, then g1 = g2 = · · · = gn = k is the number of
maximum-modulus eigenvalues of A.

The following result is useful in many situations; in particular, it shows that an
irreducible nonnegative matrix with positive main diagonal must be primitive.

Lemma 8.5.4. If A ∈ Mn is irreducible and nonnegative, and if all its main diagonal
entries are positive, then An−1 > 0, so A is primitive.

Proof. If every main diagonal entry of A is positive, let α = min{a11, . . . , ann} > 0 and
define B = A − diag(a11, . . . , ann). Then B is nonnegative and irreducible (because A
is irreducible), and A ≥ α I + B = α(I + (1/α)B). Then (8.4.1) ensures that An−1 ≥
αn−1(I + (1/α)B)n−1 > 0. �

Exercise. If A ∈ Mn is nonnegative has positive diagonal entries, and if the i, j
entry of Am is positive, explain why the i, j entry of Am+p is positive for each
integer p ≥ 1.

Although an irreducible nonnegative matrix may have a reducible power, all powers
of a nonnegative primitive matrix are primitive.

Lemma 8.5.5. Let A ∈ Mn be nonnegative and primitive. Then Am is nonnegative and
primitive for every integer m ≥ 1.

Proof. Since all sufficiently large powers of A are positive, the same is true for Am for
any m. If Am were reducible, then Amp would be reducible for all p = 2, 3, . . . , and
hence these matrices cannot be positive. This contradiction shows that no power of A
can be reducible. �

The characterization in (8.5.2) is not a computationally effective test for primitivity
since no upper bound on the powers to be computed is given. The following theorem
provides a finite (but discouragingly large) upper bound.
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Theorem 8.5.6. Let A ∈ Mn be nonnegative. If A is primitive, then Ak > 0 for some
positive integer k ≤ (n − 1)nn.

Proof. Because A is irreducible, there is a directed path from the node P1 in �(A) back
to itself; let k1 be the shortest such path, so that k1 ≤ n. The matrix Ak1 has a positive
entry in its 1,1 position, and any power of Ak1 also has a positive 1,1 entry. Primitivity
of A and (8.5.5) ensure that Ak1 is irreducible, so there is a directed path from the
node P2 in �(Ak1 ) back to itself; let k2 ≤ n be the length of the shortest such path. The
matrix (Ak1 )k2 = Ak1k2 has positive 1,1 and 2,2 entries. Continue this process down the
main diagonal to obtain a matrix Ak1···kn (with each k1 ≤ n) that is irreducible and has
positive diagonal entries. Lemma 8.5.4 ensures that (Ak1···kn )n−1 > 0. Finally, observe
that k1 · · · kn(n − 1) ≤ nn(n − 1). �

If A ∈ Mn is nonnegative and primitive, the least k such that Ak > 0 is the index of
primitivity of A, which we denote by γ (A). We know that γ (A) ≤ nn(n − 1), and that
γ (A) ≤ n − 1 if the main diagonal of A is positive. The following theorem gives an
upper bound that is much smaller than the former bound, and only twice as large as
the latter one if A has only one positive diagonal entry. If there is at least one cycle in
�(A) that has length s, and if no cycle in �(A) has length less than s, we say that the
shortest cycle in �(A) has length s.

Theorem 8.5.7. Let A ∈ Mn be nonnegative and primitive, and suppose that the short-
est cycle in �(A) has length s. Then γ (A) ≤ n + s(n − 2), that is, An+s(n−2) > 0.

Proof. Because A is irreducible, every node in �(A) is contained in a cycle, and
any shortest cycle has length at most n. We may assume that the distinct nodes in
a shortest cycle are P1, P2, . . . , Ps . Notice that n + s(n − 2) = n − s + s(n − 1) and

consider An−s+s(n−1) = An−s(As)n−1. Partition An−s =
[

X11 X12
X21 X22

]
with X11 ∈ Ms and

X22 ∈ Mn−s . Because the nodes P1, . . . , Ps comprise a cycle in �(A), for each positive
integer m and any i ∈ {1, . . . , s}, there is a directed path in �(A) of length m from
Pi to some Pj with j ∈ {1, . . . , s}. In particular, taking m = n − s, each row of X11

must contain at least one positive entry. For each i ∈ {s + 1, . . . , n} there is a directed
path in �(A) of length r ≤ n − s (the number of nodes not in the cycle) from Pi (not in
the cycle) to some node in the cycle. If r < n − s, one can go an additional n − s − r
steps around the cycle to obtain a directed path in �(A) of length exactly n − s from
Pi to some node in the cycle. It follows that there is at least one nonzero entry in each
row of X21.

Now partition (As)n−1 =
[

Y11 Y12
Y21 Y22

]
with Y11 ∈ Ms and Y22 ∈ Mn−s . Because

P1, . . . , Ps comprise a cycle in �(A), there is a loop at each node P1, . . . , Ps in
�(As). Since A is primitive, As is also primitive, and hence it is irreducible. Therefore,
for any i, j ∈ {1, . . . , n} there is a directed path in �(As) of length at most n − 1 from
Pi to Pj . By first going a sufficient number of times around the loop at Pi , we can
always construct such a path that has length exactly n − 1. It follows that Y11 > 0 and
Y12 > 0.
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To complete the argument, we compute

An−s(As)n−1 =
[

X11 X12

X21 X22

] [
Y11 Y12

Y21 Y22

]
≥
[

X11Y11 X11Y12

X21Y11 X21Y12

]

and use (8.1.14) to conclude that An−s(As)n−1 > 0. �

One consequence of (8.5.7) is a celebrated result of H. Wielandt, which gives a
sharp upper bound for the index of primitivity.

Corollary 8.5.8 (Wielandt). Let A ∈ Mn be nonnegative. Then A is primitive if and
only if An2−2n+2 > 0.

Proof. If some power of A is positive, then A is primitive, so only the converse
implication is of interest. If n = 1, the result is trivial, so assume that n > 1. If A is
primitive, then it is irreducible and there are cycles in �(A). If the shortest cycle in �(A)
has length n, then the length of every cycle in �(A) is a multiple of n and (8.5.3) tells us
that A cannot be primitive. Thus, the length of the shortest cycle in �(A) is n − 1 or less,
so (8.5.7) tells us that γ (A) ≤ n + s(n − 2) ≤ n + (n − 1)(n − 2) = n2 − 2n + 2. �

Wielandt gave an example (see (8.5.P4)) to show that the bound γ (A) ≤ n2 − 2n + 2
is best possible for matrices that have a zero main diagonal.

We know that if A has a positive main diagonal, then it is primitive if and only if
An−1 > 0. The following result of Holladay and Varga uses the ideas employed in the
proof of (8.5.7) to provide a bound on the index of primitivity if some, but perhaps not
all, of the main diagonal entries are positive.

Theorem 8.5.9. Let A ∈ Mn be irreducible and nonnegative, and suppose that A
has d positive main diagonal entries, 1 ≤ d ≤ n. Then A2n−d−1 > 0; that is, γ (A) ≤
2n − d − 1.

Proof. Under the stated hypotheses, A must be primitive, and �(A) has d cycles with
(minimum) length one. We may assume that P1, . . . , Pd are the nodes in �(A) that

have loops. Consider A2n−d−1 = An−d (A1)n−1 and partition An−d =
[

X11 X12
X21 X22

]
and

An−1 =
[

Y11 Y12
Y21 Y22

]
, in which X11, Y11 ∈ Md and X22, Y22 ∈ Mn−d . The argument in the

proof of (8.5.7) shows that each row of the blocks X11 and X21 contains at least one
nonzero entry, the blocks Y11 and Y12 are positive, and An−d An−1 is positive. �

Exercise. Show that A =
[

0 1
1 1

]
is primitive. What are its eigenvalues? Compute

the bounds on γ (A) given by (8.5.7) and (8.5.9). What is the exact value of γ (A)?

If one wishes to verify that a given nonnegative matrix is primitive, one could check
that it is irreducible and that Wielandt’s condition (8.5.8) is satisfied. Matrices arising
in practice frequently have a special structure that makes it easy to see whether the
associated directed graph is strongly connected. Furthermore, if a nonnegative matrix is
irreducible and some main diagonal entry is positive, then it must be primitive. However,
if the matrix with a zero main diagonal is large and its entries have no special structure,
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then it may be necessary to use (8.4.1) or (8.5.8) to check for irreducibility or primitiv-
ity. In either case, a useful strategy is to square the matrix repeatedly until the resulting
power exceeds the critical value (n − 1 or n2 − 2n + 2, respectively). For example, if
n = 10, then calculation of (I + A)2, (I + A)4, (I + A)8, and (I + A)16 is sufficient
to verify irreducibility; this is four matrix multiplications instead of the eight required
by a direct application of (8.4.1). Similarly, calculation of A2, A4, A8, A16, A32, A64,
and A128 is sufficient to verify primitivity when n = 10; this is 7 matrix multi-
plications instead of 81. We are making implicit use of (8.5.P3) in these conside-
rations.

Problems

8.5.P1 One sometimes encounters an alternative definition of primitivity: A nonnegative
square matrix A is primitive if there is a positive integer m such that Am > 0. Is this
definition consistent with (8.5.0)?

8.5.P2 If A ∈ Mn is nonnegative and primitive and Am = [a(m)
i j ], show that

limm→∞(a(m)
i j )1/m = ρ(A) for all i, j = 1, . . . , n.

8.5.P3 If A ∈ Mn is nonnegative and primitive, we know that Am is primitive for any
positive integer m. However, if A, B ∈ Mn are nonnegative and primitive, give an example
to show that AB need not be primitive.

8.5.P4 For n ≥ 3, Wielandt’s matrix A = [aij ] ∈ Mn has a1,2 = a2,3 = · · · = an−1,n =
an,1 = an,2 = 1; all other entries are zero. Construct �(A) and use it to show that A is
irreducible and primitive. Show that the 1, 1 entry of An2−2n+1 is zero and An2−2n+2 > 0.

8.5.P5 Let A ∈ Mn be nonnegative and irreducible. Explain why A is primitive if at least
one main diagonal entry is positive. Show that this sufficient condition is necessary for
n = 2 but not for n ≥ 3.

8.5.P6 Provide details for a proof of (8.5.9).

8.5.P7 Discuss the computational shortcuts suggested at the end of this section.

8.5.P8 If A ∈ Mn is idempotent, then A = limm→∞ Am . If A is nonnegative, irreducible,
and idempotent, show that A is a rank-one positive matrix.

8.5.P9 Let A ∈ Mn be nonnegative. Give an example to show that limm→∞(ρ(A)−1 A)m

can exist even if A is not primitive. Indeed, A can be reducible and can have multiple
eigenvalues of maximum modulus.

8.5.P10 Prove the following partial converse of (8.5.1): If A ∈ Mn is nonnegative and
irreducible, and if limm→∞(ρ(A)−1 A)m exists, then A is primitive.

8.5.P11 Show that A =
[

0 1
1 0

]
is irreducible but A2 is reducible. Does this contradict

(8.5.5)?

8.5.P12 Give an example of an irreducible nonnegative matrix A ∈ Mn such that
limm→∞(ρ(A)−1 A)m does not exist.

8.5.P13 If ε > 0 and if A ∈ Mn is nonnegative and irreducible, prove that A + ε I is
primitive. Conclude that every nonnegative irreducible matrix is a limit of nonnegative
primitive matrices.
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8.5.P14 A nonnegative matrix A = [aij ] is combinatorially symmetric provided that aij > 0
if and only if a ji > 0 for all i, j = 1, . . . , n. If A is combinatorially symmetric and primitive,
show that A2n−2 > 0. Can you strengthen the bound for γ (A), given more information about
the cycle structure of �(A)?

8.5.P15 If n is prime and A ∈ Mn is nonnegative, irreducible, and nonsingular, show that
either (a) A is primitive or (b) A is similar to the companion matrix of xn − ρ(A)n = 0, so
all of its eigenvalues have maximum modulus.

8.5.P16 One way to compute the Perron vector and spectral radius of a nonnegative matrix
A ∈ Mn is the power method:

x (0) is an arbitrary positive vector,
n∑

i=1

x (0)
i = 1

y(m+1) = Ax (m) for all m = 0, 1, 2, . . .

x (m+1) = y(m+1)∑n
i=1 y(m+1)

i

for all m = 0, 1, 2, . . .

If A is primitive, show that the sequence of vectors x (m) converges to the (right) Perron
vector of A and that the sequence of numbers

∑n
i=1 y(m+1)

i converges to the Perron root of
A. What is the rate of convergence? Is the hypothesis of primitivity necessary?

8.5.P17 If A ∈ Mn is nonnegative, show that primitivity of A depends only on the location
of the zero entries and not on the magnitudes of the nonzero entries.

8.5.P18 If A ∈ Mn is nonnegative, irreducible, and symmetric, show that A is primitive if
and only if A + ρ(A)I is nonsingular. In particular, this condition is met if A is positive
semidefinite. Symmetric nonnegative matrices with 0s and 1s as entries arise naturally as
adjacency matrices of undirected graphs.

8.5.P19 Calculate the eigenvalues and eigenvectors of each of the following matrices and
categorize them according to the key concepts of the chapter (nonnegative, irreducible, prim-

itive, positive, and so forth):
[

1 1
1 1

]
,
[

0 1
1 1

]
,
[

1 0
1 1

]
,
[

1 0
0 1

]
,
[

0 1
1 0

]
,
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
0 0

]
.

8.5.P20 In the proof of (8.5.7), explain why each column of X11 and X12 contains at least
one nonzero entry, and why Y21 > 0.

Further Reading. For a proof of Romanovsky’s theorem, see V. Romanovsky,
Recherches sur les chaı̂nes de Markoff, Acta Math. 66 (1936) 147–251. For a non-
negative primitive matrix A ∈ Mn , Wielandt’s theorem says that A(n−1)2+1 > 0; for a
proof that A(m−1)2+1 > 0, in which m is the degree of the minimal polynomial of A, see
J. Shen, Proof of a conjecture about the exponent of primitive matrices, Linear Algebra
Appl. 216 (1995) 185–203.

8.6 A general limit theorem

Even if a nonnegative matrix A is irreducible, the normalized powers of A need have

no limit, as the example A =
[

0 1
1 0

]
shows. Nevertheless, there is a precise sense in

which, on the average, this limit does exist.
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Exercise. Let θ ∈ (0, 2π). Show that (1 − eiθ )
∑N

m=1 eimθ = eiθ − ei(N+1)θ and
conclude that

1

N

N∑
m=1

eimθ = eiθ − ei(N+1)θ

N (1 − eiθ )
→ 0 as N → ∞

Exercise. Let B ∈ Mn and suppose that ρ(B) < 1. Show that (I − B)∑N
m=1 Bm = B − B N+1 and conclude that

1

N

N∑
m=1

Bm = 1

N
(B − B N+1)(I − B)−1 → 0 as N → ∞

Theorem 8.6.1. Let A ∈ Mn be irreducible and nonnegative, let n ≥ 2, and let x and
y, respectively, be the right and left Perron vectors of A. Then

lim
N→∞

1

N

N∑
m=1

(ρ(A)−1 A)m = xyT (8.6.2)

Moreover, there exists a finite positive constant C = C(A) such that∥∥∥∥∥ 1

N

N∑
m=1

(ρ(A)−1 A)m − xyT

∥∥∥∥∥
∞

≤ C

N
(8.6.3)

for all N = 1, 2, . . . .

Proof. If A is primitive, ρ(A)−1 A can be factored as in (8.2.7a), in which x is the first
column of S and y is the first column of S−1. We have

1

N

N∑
m=1

(ρ(A)−1 A)m = S

[
1 0
0 1

N

∑N
m=1 Bm

]
S−1

in which ρ(B) < 1, so the preceding exercise ensures that

1

N

N∑
m=1

(ρ(A)−1 A)m → S

[
1 0
0 0n−1

]
S−1 = xyT

Now suppose that A has exactly k > 1 eigenvalues of maximum modulus and
let θ = 2π/k. Corollary 8.4.6(c) ensures that the maximum-modulus eigenvalues of
ρ(A)−1 A are 1, eiθ , e2iθ , . . . , e(k−1)iθ , and each is a simple eigenvalue. Thus, there is a
nonsingular S ∈ Mn such that x is its first column, y is the first column of S−1, and

ρ(A)−1 A = S([1] ⊕ [eiθ ] ⊕ · · · ⊕ [e(k−1)iθ ] ⊕ B)S−1

in which B ∈ Mn−k and ρ(B) < 1. The preceding exercises ensure that

1

N

N∑
m=1

(ρ(A)−1 A)m = S([1] ⊕ [λ1,N ] ⊕ · · · ⊕ [λk−1,N ] ⊕ BN )S−1



8.7 Stochastic and doubly stochastic matrices 547

in which

λ1,N = eiθ−ei(N+1)θ

N (1−eiθ ) → 0 as N → ∞
...

...
...

λk−1,N = ei(k−1)θ−ei(N+1)(k−1)θ

N (1−ei(k−1)θ ) → 0 as N → ∞
BN = 1

N (B − B N+1)(I − B)−1 → 0 as N → ∞

(8.6.4)

Therefore,

1

N

N∑
m=1

(ρ(A)−1 A)m → S([1] ⊕ [0] ⊕ · · · ⊕ [0] ⊕ 0n−k)S−1 = xyT

The bound in (8.6.3) is revealed in the representation

1

N

N∑
m=1

(ρ(A)−1 A)m − xyT

= S([1] ⊕ [λ1,N ] ⊕ · · · ⊕ [λk−1,N ] ⊕ BN )S−1 − S([1] ⊕ 0n−1)S−1

= S([0] ⊕ [λ1,N ] ⊕ · · · ⊕ [λk−1,N ] ⊕ BN )S−1

= 1

N
S
(
[0] ⊕ [Nλ1,N ] ⊕ · · · ⊕ [Nλk−1,N ] ⊕ NBN

)
S−1 (8.6.5)

The identities (8.6.4) ensure that the matrix factor in (8.6.5) is bounded as N → ∞. �

Problems

8.6.P1 Let A =
[

0 1
1 0

]
. Compute the direct sum in the matrix factor in (8.6.5). Explain why

the bound in (8.6.1) cannot be improved.

8.6.P2 Suppose that A ∈ Mn is irreducible and nonnegative, let n ≥ 2, and write Am =
[a(m)

i j ] for m = 1, 2, . . . . For each pair i, j , show that a(m)
i j > 0 for infinitely many values of

m. Give an example to show that there may also be infinitely many values of m for which
a(m)

i j = 0.

8.7 Stochastic and doubly stochastic matrices

A nonnegative matrix A ∈ Mn with the property that Ae = e, that is, all its row sums
are +1, is said to be a (row) stochastic matrix; each row may be thought of as a discrete
probability distribution on a sample space with n points. A column stochastic matrix is
the transpose of a row stochastic matrix, that is, eT A = eT ; such matrices arose in the
intercity population migration model discussed in (8.0). Stochastic matrices also arise
in the study of Markov chains and in a variety of modeling problems in economics and
operations research.

The defining identity Ae = e and (8.3.4) tell us that +1 is not only an eigenvalue of
a stochastic matrix, but also its spectral radius.
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The set of stochastic matrices in Mn is a compact set (its entries all lie in the closed
real interval [0, 1]) that is also convex: If A and B are stochastic and α ∈ [0, 1], then

(αA + (1 − α)B)e = αAe + (1 − α)Be = αe + (1 − α)e = e

Thus, the stochastic matrices in Mn form an easily recognized family of nonnegative
matrices with a particular positive eigenvector in common. Nonnegative matrices with
a positive eigenvector have many special properties (for example, see (8.1.30), (8.1.31),
(8.1.33), (8.3.4)), which therefore are possessed by all stochastic matrices.

Exercise. Explain why an n-by-n stochastic matrix has at least n nonzero entries.

A stochastic matrix A ∈ Mn such that AT is also stochastic is said to be doubly
stochastic; all row and column sums are +1. The set of doubly stochastic matrices
in Mn is the intersection of two compact convex sets, so it is compact and convex.
A nonnegative matrix A ∈ Mn is doubly stochastic if and only if both Ae = e and
eT A = eT .

We encountered two special classes of doubly stochastic matrices in (4.3.49) and
(6.3.5): Orthostochastic or unistochastic matrices of the form A = [|uij |2], in which
U = [uij ] ∈ Mn is either real orthogonal or unitary.

Another special class of doubly stochastic matrices is the set (group) of permuta-
tion matrices. The permutation matrices are the fundamental and prototypical doubly
stochastic matrices, for Birkhoff’s theorem says that any doubly stochastic matrix is a
convex combination of finitely many permutation matrices.

Exercise. Suppose that n ≥ 2, A = [aij ] ∈ Mn is doubly stochastic, and some
aii = 1. Explain why (a) aki = aik = 0 for all k ∈ {1, . . . , n} such that k �= i ;
(b) A is permutation similar to [1] ⊕ B, in which B is doubly stochastic; (c) the
main diagonal entries of B are obtained from the main diagonal entries of A by
removing one entry equal to +1; and (d) the characteristic polynomials of A and
B are related by the identity pA(t) = (t − 1)pB(t).

In preparation for our proof of Birkhoff’s theorem, we establish the following lemma.

Lemma 8.7.1. Let A = [aij ] ∈ Mn be a doubly stochastic matrix that is not the identity
matrix. There is a permutation σ of {1, . . . , n} that is not the identity permutation and
is such that a1σ (1) · · · anσ (n) > 0.

Proof. Suppose that every permutation σ of {1, . . . , n} that is not the identity permuta-
tion σ 0 has the property that a1σ (1) · · · anσ (n) = 0. This assumption and (0.3.2.1) permit
us to compute the characteristic polynomial of A:

pA(t) = det(t I − A) =
n∏

i=1

(t − aii ) +
∑
σ �=σ 0

(
sgn σ

n∏
i=1

(−aiσ (i))

)

=
n∏

i=1

(t − aii )

It follows that the main diagonal entries of A are its eigenvalues. Since +1 is an
eigenvalue of A, at least one of its main diagonal entries is +1. The preceding exercise
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ensures that A is permutation similar to [1] ⊕ B, in which B = [bij ] ∈ Mn−1 is doubly
stochastic; its main diagonal entries are obtained from the main diagonal entries of
A by omitting one +1 entry; +1 is an eigenvalue of B; and pB(t) = pA(t)/(t − 1) =∏n−1

i=1 (t − bii ). Applying the preceding argument to B shows that some bii = 1, so at
least two main diagonal entries of A are +1. Continuing in this way, after at most
n − 1 steps, we conclude that every main diagonal entry of A is +1, so A = I . This
contradiction shows that some product a1σ (1) · · · anσ (n) must be positive. �

In our proof of Birkhoff’s theorem, we use the preceding lemma to extract a positive
multiple of a permutation matrix from a given doubly stochastic matrix A. We do this
extraction in such a way as to create a new doubly stochastic matrix that has at least
one more zero entry than A. Iterating this extraction process leads in finitely many
steps to a representation of A as a finite convex combination of permutation matrices.

Exercise. Let A ∈ Mn be doubly stochastic. If A has exactly n positive entries,
explain why it is a permutation matrix. If A is not a permutation matrix, explain
why it has at most n2 − n − 1 zero entries.

Theorem 8.7.2 (Birkhoff). A matrix A ∈ Mn is doubly stochastic if and only if there
are permutation matrices P1, . . . , PN ∈ Mn and positive scalars t1, . . . , tN ∈ R such
that t1 + · · · + tN = 1 and

A = t1 P1 + · · · + tN PN (8.7.3)

Moreover, N ≤ n2 − n + 1.

Proof. The sufficiency of the representation (8.7.3) is clear; we prove its necessity by
exhibiting an algorithm that constructs it in finitely many steps.

If A is a permutation matrix, there is nothing to prove. If not, the preceding
lemma ensures that there is a nonidentity permutation σ of {1, . . . , n} such that
a1σ (1) · · · anσ (n) > 0. Let α1 = min{a1σ (1), . . . , anσ (n)} and define the permutation ma-
trix P1 = [pij ] ∈ Mn by piσ (i) = 1 for each i = 1, . . . , n. If α1 = 1, then A is a permuta-
tion matrix, so 0 < α1 < 1. Let A1 = (1 − α1)−1(A − α1 P1) and check that A1 is dou-
bly stochastic and has at least one more zero entry than A, and A = (1 − α1)A1 + α1 P1.
If A1 is a permutation matrix, we stop because we have achieved a representation of the
form (8.7.3) with two summands. If not, we repeat this argument and find α2 ∈ (0, 1)
and a permutation matrix P2 such that A2 = (1 − α2)−1(A1 − α2 P2) is doubly stochas-
tic and has at least one more zero entry than A1, and

A = (1 − α1)(1 − α2)A2 + (1 − α1)α2 P2 + α1 P1

If A2 is a permutation matrix, we stop because we have achieved a representation of
the form (8.7.3) with three summands. If not, we iterate until we are forced to stop
because some Ak is a permutation matrix, at which point we have a representation of
the form (8.7.3) with k + 1 summands. Since Ak has at least k zero entries, and since a
doubly stochastic matrix has at most n2 − n zero entries, we can have at most n2 − n
iterations and at most n2 − n + 1 summands in (8.7.3). �

The following corollary is an important consequence of Birkhoff’s theorem that
has many applications; for example, it was a key element in our proof of the
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Hoffman–Wielandt theorem (6.3.5). It assures us that if we want to find the maxi-
mum value of a convex function on the set of doubly stochastic matrices, it suffices
to restrict our attention to permutation matrices. See Appendix B for a discussion of
convex functions, convex sets, and extreme points.

Corollary 8.7.4. The maximum (respectively, minimum) of a convex (respectively, con-
cave) real-valued function on the set of doubly stochastic n-by-n matrices is attained
at a permutation matrix.

Proof. Let f be a convex real-valued function on the set of n-by-n doubly stochastic
matrices, let A be a doubly stochastic matrix at which f attains its maximum value,
represent A = t1 P1 + · · · + tN PN as a convex combination of permutation matrices,
and let k be an index such that f (Pk) = max{ f (Pi ) : i = 1, . . . , n}. Then

f (A) = f (t1 P1 + · · · + tN PN ) ≤ t1 f (P1) + · · · + tN f (PN )

≤ t1 f (Pk) + · · · + tN f (Pk) = (t1 + · · · + tN ) f (Pk) = f (Pk)

Since f achieves its maximum at A, we have f (A) = f (Pk). A similar argument
validates the assertion about the minimum of a concave function. �

A nonnegative matrix A ∈ Mn is doubly substochastic if Ae ≤ e and eT A ≤ eT ,
that is, all row and column sums are at most one. The following lemma shows that any
doubly substochastic matrix is dominated by a doubly stochastic matrix.

Lemma 8.7.5. Let A ∈ Mn be doubly substochastic. There is a doubly stochastic
matrix S ∈ Mn such that A ≤ S.

Proof. For any doubly substochastic matrix S ∈ Mn , let N (S) denote the number of
row sums and column sums of S that are less than one, that is, the number of entries of
the vectors Ae and AT e whose entries are less than one.

Let A ∈ Mn be doubly substochastic. Then A is doubly stochastic if and only if
N (A) = 0. If N (A) > 0 and we can show that there is always a doubly substochastic
C ∈ Mn such that both A ≤ C and N (C) < N (A), then the assertion of the lemma
would follow from a finite induction.

Let A = [aij ] ∈ Mn be doubly substochastic and suppose that N (A) > 0. Since the
sum of the row sums of A equals the sum of its column sums, there must be a row (say,
row i) and a column (say, column j) whose sums are each less than one. Modify A by
increasing the entry aij until either the i th row sum or the j th column sum (or both)
equals one; let C be this modified matrix. Then C is doubly substochastic, A ≤ C , and
N (C) < N (A). �

In our final result, we deduce the square case of von Neumann’s trace theorem
(7.4.1.1) from the preceding lemma and (8.7.4).

Exercise. Let U = [uij ], V = [vi j ] ∈ Mn be unitary and let S = [|uijv j i |]. Show
that S is doubly substochastic. Hint: The Cauchy–Schwarz inequality.
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Theorem 8.7.6 (von Neumann). Let the ordered singular values of A, B ∈ Mn be
σ 1(A) ≥ · · · ≥ σ n(A) and σ 1(B) ≥ · · · ≥ σ n(B). Then

Re tr(AB) ≤
n∑

i=1

σ i (A)σ i (B)

Proof. Let A = V1�AW ∗
1 and B = V2�B W ∗

2 be singular value decompositions, in
which V1, W1, V2, W2 ∈ Mn are unitary, �A = diag(σ 1(A), . . . , σ n(A)), and �B =
diag(σ 1(B), . . . , σ n(B)). Let U = W ∗

1 V2 = [uij ] and V = W ∗
2 V1 = [vi j ]. Then

Re tr(AB) = Re tr(V1�AW ∗
1 V2�B W ∗

2 )

= Re tr(�AW ∗
1 V2�B W ∗

2 V1) = Re tr(�AU�B V )

= Re
n∑

i, j=1

σ i (A)σ j (B)uijv j i =
n∑

i, j=1

σ i (A)σ j (B) Re(uijv j i )

≤
n∑

i, j=1

σ i (A)σ j (B)|uijv j i |

The preceding exercise tells us that the matrix [|uijv j i |] is doubly substochastic, and
(8.7.5) ensures that there is a doubly stochastic matrix C such that [|uijv j i |] ≤ C =
[cij ]. Therefore,

Re tr(AB) ≤
n∑

i, j=1

σ i (A)σ j (B)cij

≤ max{
n∑

i, j=1

σ i (A)σ j (B)sij : S = [sij ] is doubly stochastic}

The function f (S) =∑n
i, j=1 σ i (A)σ j (B)sij is a linear (and therefore convex) function

on the set of doubly stochastic matrices, so (8.1.4) tells us that it attains its maximum at
a permutation matrix P = [pij ]. If π is the permutation of {1, . . . , n} such that pij = 1
if and only if j = π (i), then

Re tr(AB) ≤
n∑

i, j=1

σ i (A)σ j (B)pij =
n∑

i=1

σ i (A)σπ (i)(B)

≤
n∑

i=1

σ i (A)σ i (B)

The final inequality follows from (4.3.52). �

Problems

8.7.P1 Show that the sets of stochastic and doubly stochastic matrices in Mn each constitute
a semigroup under matrix multiplication; that is, if A, B ∈ Mn are (doubly) stochastic, then
AB is (doubly) stochastic.
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8.7.P2 Let A ∈ Mn be stochastic and let λ be any eigenvalue of A such that |λ| = 1; λ = 1
is one such eigenvalue, but there could be others. Show that A is power bounded and
conclude that λ is a semisimple eigenvalue of A.

8.7.P3 Let A ∈ Mn be a nonnegative nonzero matrix that has a positive eigenvector x =
[xi ], and let D = diag(x1, . . . , xn). Show that ρ(A)−1 D−1 AD is stochastic. This observation
permits many questions about nonnegative matrices with a positive eigenvector to be
reduced to questions about stochastic matrices.

8.7.P4 Let A ∈ Mn be a nonnegative nonzero matrix that has a positive eigenvector. Explain
why every maximum-modulus eigenvalue of A is semisimple.

8.7.P5 Let A ∈ Mn be doubly stochastic and let σ 1(A) be its largest singular value. Show
in two ways that σ 1(A) = ρ(A) = 1, that is, a doubly stochastic matrix is a spectral matrix.
(a) Use the representation (8.7.3). (b) Use (2.6.P29).

8.7.P6 Let ‖| · ‖| be the matrix norm on Mn induced by a permutation-invariant norm ‖·‖
on Rn . Show that ‖|A‖| = 1 for every doubly stochastic matrix in Mn .

8.7.P7 Show that any permutation matrix is an extreme point of the convex set of doubly
stochastic matrices. What more can you say if A is a permutation matrix?

8.7.P8 Explain why a matrix is an extreme point of the compact convex set of doubly
stochastic n-by-n matrices if and only if it is a permutation matrix.

8.7.P9 Let A ∈ Mn be doubly stochastic. (a) Show that A cannot have exactly n + 1 positive
entries. (b) If A is not a permutation matrix, explain why it has at most n2 − n − 2 zero
entries.

8.7.P10 Show that a 2-by-2 doubly stochastic matrix is symmetric and has equal diagonal
entries.

8.7.P11 Show that the representation (8.7.3) need not be unique.

8.7.P12 Let A ∈ Mn be doubly stochastic, symmetric, and positive semidefinite; let A1/2 be
its positive semidefinite square root. (a) Show that A1/2e = e, so all the row (and column)
sums of A1/2 are+1. (b) Although A1/2 need not be nonnegative, show that it is nonnegative
(and hence doubly stochastic) if n = 2.

8.7.P13 Let ‖| · ‖| be a unitarily invariant matrix norm on Mn . Show that ‖|A‖| ≤ ‖|I‖| for
every doubly stochastic matrix A ∈ Mn .

8.7.P14 If A ∈ Mn is doubly stochastic and reducible, show that A is permutation similar
to a matrix of the form A1 ⊕ A2, in which both A1 and A2 are doubly stochastic.

8.7.P15 The upper bound in (8.7.2) can be reduced from n2 − n + 1 to (n2 − n + 1) −
(n − 1) = n2 − 2n + 2. Provide details: (a) Every n-by-n doubly stochastic matrix S = [sij ]
is a solution of the 2n − 1 linear equations

∑n
k=1 sik = 1, i = 1, . . . , n and

∑n
k=1 ski = 1,

i = 1, . . . , n − 1. (b) Write these equations in the form A vec S = e ∈ R2n−1; see (0.7.7).
(c) A ∈ M2n−1,n2 has full row rank. (d) dim nullspace A = n2 − 2n + 1. (e) The set of
doubly stochastic n-by-n matrices may be thought of as a convex polyhedron in Rn2−2n+1.
(f) (8.7.3) and Carathéodory’s theorem (see Appendix B) imply that any doubly stochastic
n-by-n matrix is a convex combination of at most n2 − 2n + 2 permutation matrices.

Notes and Further Readings. Theorem 8.7.2 appears in G. Birkhoff, Tres observaciones
sobre el álgebra lineal, Univ. Nac. Tucumán Rev. Ser. A 5 (1946) 147–150. In 1916,
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D. Kőnig published a theorem that is equivalent to (8.7.2) for matrices with nonnegative
rational entries; see p. 239 of the 1936 book Kőnig (1936) or p. 381 of Kőnig (1990).
Consequently, (8.7.2) is sometimes referred to as the Birkhoff–Kőnig theorem. The
only nonconstructive part of the proof of (8.7.2) is the identification of a particular
permutation σ of {1, . . . , n} such that a1σ (1) · · · anσ (n) > 0. A constructive algorithm
to identify such a permutation is described on pp. 64–65 of Bapat and Raghavan
(1997); this book provides a comprehensive discussion of doubly stochastic matrices
(see chapter 2) and many references to the literature.





APPENDIX A

Complex Numbers

A complex number has the form z = a + ib, in which a and b are real numbers and i is
a formal symbol that satisfies the relation i2 = −1. The real number a is the real part
of z and is denoted by Re z; the real number b is the imaginary part of z and is denoted
by Im z. The complex conjugate of the complex number z = a + ib is z̄ = a − ib.
Addition and multiplication of complex numbers z1 = a1 + ib1 and z2 = a2 + ib2 are
defined by

z1 + z2 = (a1 + a2) + i(b1 + b2), z1z2 = a1a2 − b1b2 + i(a1b2 + a2b1)

Addition is the result of adding real parts and imaginary parts separately; multipli-
cation is the result of algebraic expansion together with the relation i2 = −1. The
additive inverse of z = a + ib is −z = −a + i(−b), and, as long as z �= 0 = 0 + i0,
the multiplicative inverse of z is

1

z
= a − ib

a2 + b2
= a

a2 + b2
+ i

( −b

a2 + b2

)
Subtraction and division of complex numbers z1 and z2 are defined by

z1 − z2 = z1 + (−z2),
z1

z2
= z1

(
1

z2

)
= z1 z̄2

z2 z̄2

The set of all complex numbers is denoted by C; the operations of addition and
multiplication are commutative, and C constitutes a field under these operations, with
0 = 0 + i0 as the additive identity and 1 = 1 + i0 as the multiplicative identity. The
real numbers R form a subfield of C. The modulus (or absolute value) of z, denoted
|z|, is the nonnegative real number |z| = +(zz̄)1/2 = +((Re z)2 + (Im z)2)1/2; |z| = 0
if and only if z = 0. If z2 �= 0, the quotient z1/z2 is (1/|z2|2)z1 z̄2. The operations
of multiplication and complex conjugation commute (z1z2 = z̄1 z̄2), (z̄) = z, Re(z1 +
z2) = Re z1 + Re z2, and Im(z1 + z2) = Im z1 + Im z2. We have Re z = 1

2 (z + z̄) and
Im z = 1

2i (z − z̄). The real numbers are those z ∈ C such that Im z = 0, or equivalently,
such that z = z̄. For any z ∈ C, Re z ≤ |z|, with equality if and only if z is real and
nonnegative, in which case z = |z|.
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Geometrically, the complex numbers C may be thought of as a Cartesian (coordinate)
plane with origin at 0, a “real axis” (“x-axis”), and an “imaginary axis” (“y-axis”).
A complex number z = a + ib may be identified with the real ordered pair (a, b)
(rectangular coordinates) that specifies a point in the Cartesian plane. The real axis is
{z : Im z = 0}, and the imaginary axis is {z : Rez = 0}. The projection of z ∈ C onto
the real axis (imaginary axis) is Re z (i Im z). Complex conjugation is reflection across
the real axis, and |z| is the Euclidean distance of z from the origin. The open (closed)
right half-plane of C is {z ∈ C : Re z > (≥) 0}, and the open (closed) upper half-plane
of C is {z ∈ C : Im z > (≥) 0}.The unit disc of C is {z ∈ C : |z| ≤ 1}, and the disc
about a ∈ C of radius r is {z ∈ C : |z − a| ≤ r}.

The complex plane may also be described by polar coordinates: the position of
z ∈ C is specified by the radius r = |z| of the circle about the origin on which z lies,
and the angle θ , measured counterclockwise from the real line, of the ray from the
origin on which z lies. The polar coordinates of z are (r, θ). The angle θ = arg z is
the argument of z. The notation z = reiθ is used, in which eiθ = cos θ + i sin θ . We
have |eiθ | = +(cos2 θ + i sin2 θ )1/2 = 1, (eiθ )−1 = e−iθ , and |eiθ z| = |z|. Since eiθ =
ei(θ±2nπ), n = 1, 2, . . . , arg z is only determined mod 2π . The transformation from
polar to rectangular coordinates for z = a + ib = reiθ is a = r cos θ and b = r sin θ .
The transformation from rectangular to polar coordinates is r = |z| = (a2 + b2)1/2

and, if r �= 0, θ = arcsin b
r = arg z (take 0 ≤ θ < 2π for the principal value of the

argument). The unit disc in C is {reiθ : 0 ≤ r ≤ 1 and 0 ≤ θ < 2π}. For each z ∈ C,
there is a real number θ such that e−iθ z = |z|: If z �= 0, take θ = arg z; if z = 0, any real
θ will do. For a given z ∈ C, e−iθ z = |z| if and only if z lies on the ray {reiθ : r ≥ 0}.

For any given complex numbers z1, . . . , zm the triangle inequality is |z1 + · · · +
zm | ≤ |z1| + · · · + |zm |. To prove this basic inequality and identify the case of equality,
let θ be a real number such that e−iθ (z1 + · · · + zm) = |z1 + · · · + zm |. Then

|z1 + · · · + zm | = Re |z1 + · · · + zm | = Re(e−iθ (z1 + · · · + zm))

= Re(e−iθ z1) + · · · + Re(e−iθ zm)

≤ |e−iθ z1| + · · · + |e−iθ zm | = |z1| + · · · + |zm |
with equality if and only if Re(e−iθ zk) = |e−iθ zk | for each k = 1, . . . , m, that is, if and
only if each zk = eiθ |zk | lies on the same ray {reiθ : r ≥ 0}.
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Convex Sets and Functions

Let V be a vector space over a field that contains the real numbers. A convex combi-
nation of a selection v1, . . . , vk ∈ V of elements of V is a linear combination whose
coefficients are real, nonnegative, and sum to 1:

α1v1 + · · · + αkvk ; α1, . . . , αk ≥ 0,

k∑
i=i

αi = 1

A subset K of V is said to be convex if any convex combination of any selection of
elements from K lies in K . Equivalently, K is convex if all convex combinations of
pairs of points in K are again in K . Geometrically, this may be interpreted as saying
that the line segment joining any two points of K must lie in K ; that is, K has no
“dents” or “holes.” A convex set K for which αx ∈ K whenever α > 0 and x ∈ K is
called a convex cone (equivalently, positive linear combinations from K are in K ). It is
straightforward to verify that both the set sum and the intersection of two convex sets
(respectively, convex cones) is again a convex set (respectively, convex cone).

Now let V be a real or complex vector space with a given norm, so one can speak
of open, closed, and compact sets in V . An extreme point of a closed convex set
K is a point z ∈ K that may be written as a convex combination of points from
K in only a trivial way; that is, z = αx + (1 − α)y, 0 < α < 1, x, y ∈ K , implies
x = y = z. A closed convex set may have a finite number of extreme points (e.g., a
polyhedron), infinitely many extreme points (e.g., a closed disc), or no extreme points
(e.g., the closed upper half-plane in R2). A compact convex set always has extreme
points, however. The convex hull of a set S of points in V , denoted Co(S), is the set
of all convex combinations of all selections of points from S, or, equivalently, the
“smallest” convex set (intersection of all convex sets) containing S. The Krein–Milman
theorem says that a compact convex set is the closure of the convex hull of its extreme
points. A compact convex set is said to be finitely generated if it has finitely many
extreme points; the extreme points are the generators of the convex set. A theorem
of Carathéodory (sometimes called the Carathéodory–Steinitz theorem) says that any
point in the convex hull of a set S ⊂ Rn is a convex combination of at most n + 1 points
of S.
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Now suppose that V is a real inner product space with inner product 〈·, ·〉. The sepa-
rating hyperplane theorem states that if K1, K2 ⊆ V are two given nonempty noninter-
secting convex sets with K1 closed and K2 compact, then there exists a hyperplane H in
V such that K1 lies in one of the closed half-spaces determined by H while K2 lies in the
other; that is, H separates K1 and K2. A hyperplane H in V is a translation of the orthog-
onal complement of a one-dimensional subspace of V : H = {x ∈ V : 〈x − p, q〉 = 0}
for given vectors p, q ∈ V, q �= 0. The hyperplane H determines two open half-
spaces: H+ = {x ∈ V : 〈x − p, q〉 > 0}, H− = {x ∈ V : 〈x − p, q〉 < 0}. The sets
H+

0 = H+ ∪ H and H−
0 = H− ∪ H are the closed half-spaces determined by H .

Thus, separation means that K1 ⊆ H+
0 and K2 ⊆ H−

0 for some vectors p, q. There
are various ways to strengthen the separation conclusion by making various additional
assumptions about the two convex sets. For example, if the closures of K1 and K2

do not intersect, then the separation may be taken to be strict; that is, K1 ⊆ H+,
K2 ⊆ H−. The closure of the convex hull of any bounded set S ⊂ V can be obtained
as the intersection of all closed half-spaces that contain S.

If V is the vector space Cn with complex inner product 〈·, ·〉, hyperplanes and
half-spaces are defined similarly, except that Cn must be identified with R2n and 〈·, ·〉
must be replaced with the real inner product Re〈·, ·〉 as follows: Identify x + iy ∈ Cn

with
[

x
y

] ∈ R2n , and note that Re〈x1 + iy1, x2 + iy2〉 = 〈x1, x2〉 + 〈y1, y2〉 by conjugate
linearity of the complex inner product. Then 〈x1, x2〉 + 〈y1, y2〉 is the (real) inner
product of

[
x1
y1

]
and

[
x2
y2

]
, and hyperplanes and half-spaces defined in R2n have the

appropriate geometric interpretation in Cn .
A real valued function f defined on a convex set K ⊆ V is said to be convex if

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y) (B1)

for all 0 < α < 1 and all x, y ∈ K , y �= x . If the inequality (B1) is always strict, then
f is said to be strictly convex. If the inequality (B1) is reversed for all 0 < α < 1 and
all x, y ∈ K , y �= x , then f is said to be concave (or strictly concave if it is reversed
and always strict). Equivalently, a concave (respectively, strictly concave) function is
the negative of a convex (respectively strictly convex) function. Geometrically, the
chord joining any two function values f (x) and f (y) lies above (respectively, below) the
graph of a convex (respectively, concave) function. A linear function is both convex
and concave. If V = Rn and K is an open set, the Hessian

H (x) ≡
[

∂2 f

∂xi ∂x j
(x)

]
which is a symmetric matrix in Mn(R), exists almost everywhere in K for a bounded
convex function f and is necessarily positive semidefinite for points in K at which it
exists. It is positive definite in the strictly convex case. Conversely, a function whose
Hessian is positive semidefinite (respectively, positive definite) throughout a convex set
is convex (respectively, strictly convex). Similarly, negative definiteness corresponds
to concavity.

Optimization of convex and concave functions has some pleasant properties. On a
compact convex set the maximum (respectively, minimum) of a convex (respectively,
concave) function is attained at an extreme point. On the other hand, on a convex set, the
set of points at which the minimum (respectively, maximum) of a convex (respectively,
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concave) function is attained is convex and any local minimum (respectively, maximum)
is a global minimum (respectively, maximum). For example, a strictly convex function
attains a minimum at at most one point of a convex set, and a critical point is necessarily
a minimum.

Convex combinations of real numbers obey some simple and frequently useful
inequalities. If x1, . . . , xk are given real numbers, then

min
1≤i≤k

xi ≤
k∑

i=1

ai xi ≤ max
i≤i≤k

xi (B2)

for any convex combination: α1, α2, . . . , αk ≥ 0 and α1 + · · · + αk = 1.
Consideration of certain convex functions f (·) of one variable on an interval leads to

various classical inequalities. One can use induction to show that the defining two-point
inequality (B1) on the interval implies an n-point inequality

f

(
n∑

i=1

αi xi

)
≤

n∑
i=i

αi f (xi ), n = 2, 3, . . . (B3)

whenever αi ≥ 0, a1 + · · · + αn = 1, and all xi are in the interval.
Application of (B3) to the strictly convex function f (x) = − log x over the interval

(0,∞) leads to the weighted arithmetic–geometric mean inequality

n∑
i=1

αi xi ≥
n∏

i=1

xai
i , xi ≥ 0 (B4)

which contains the arithmetic–geometric mean inequality

1

n

n∑
i=i

xi ≥
(

n∏
i=1

xi

)1/n

, xi ≥ 0 (B5)

when all αi = 1/n. The inequality is an equality if and only if all xi are equal.
Application of (B3) to the strictly convex function f (x) = x p, p > 1, over the

interval (0,∞) leads to Hölder’s inequality

n∑
i=1

xi yi ≤
(

n∑
i=1

x p
i

)1/p ( n∑
i=1

yq
i

)1/q

, xi , yi > 0, p > 1,
1

p
+ 1

q
= 1 (B6)

Hölder’s inequality is an equality if and only if the vectors [x p
i ] and [yq

i ] are linearly de-
pendent. If we take p = q = 2, we obtain a version of the Cauchy–Schwarz inequality

n∑
i=1

xi yi ≤
(

n∑
i=1

x2
i

)1/2 ( n∑
i=1

y2
i

)1/2

, xi , yi ∈ R (B7)

which is an equality if and only if the vectors [xi ] and [yi ] are linearly dependent. As
a limiting case of Hölder’s inequality we obtain

n∑
i=1

xi yi ≤
(

n∑
i=1

xi

)
max
1≤i≤n

yi , xi , yi ≥ 0 (B8)
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From Hölder’s inequality one can deduce Minkowski’s sum inequality(
n∑

i=1

(xi + yi )
p

)1/p

≤
(

n∑
i=1

x p
i

)1/p

+
(

n∑
i=1

y p
i

)1/p

, xi , yi ≥ 0, p > 1 (B9)

which is an equality if and only if the vectors [xi ] and [yi ] are linearly dependent.
Minkowski’s product inequality(∏n

i=1
(xi + yi )

)1/n
≥
(∏n

i=1
xi

)1/n
+
(∏n

i=1
yi

)1/n
xi , yi ≥ 0 (B10)

is a consequence of the arithmetic–geometric mean inequality. The inequality (B10) is
an equality if and only if the vectors [xi ] and [yi ] are linearly dependent.

Jensen’s inequality says that(
n∑

i=1

x p1
i

)1/p1

>

(
n∑

i=1

x p2
i

)1/p2

xi , yi > 0, 0 < p1 < p2 (B11)

It follows from the computation(∑n
i=1 x p2

i

)1/p2(∑n
i=1 x p1

i

)1/p1
=
⎛
⎝ n∑

i=1

(
x p1

i∑n
j=1 x p1

j

)p2/p1
⎞
⎠1/p2

<

(
n∑

i=1

x p1
i∑n

j=1 x p1
j

)1/p2

=
(∑n

i=1 x p1
i∑n

j=1 x p1
j

)1/p2

= 1

Further Readings. For more information about convex sets and geometry see Valentine
(1964). For more about convex functions and inequalities, see Boas (1972). Proofs of
the classical inequalities B4–B11 can be found in Beckenbach and Bellman (1965) and
Hardy, Littlewood, and Pólya (1959).



APPENDIX C

The Fundamental Theorem
of Algebra

One historical motivation for introducing the complex numbers C was that polynomials
with real coefficients might not have real zeroes. For example, a calculation reveals
that {1 + i, 1 − i} are zeroes of the polynomial p(t) = t2 − 2t + 2, which has no real
zeroes. All zeroes of any polynomial with real coefficients are, however, contained in
C. In fact, all zeroes of all polynomials with complex coefficients are in C. Thus, C
is an algebraically closed field: There is no field F such that C is a subfield of F, and
such that there is a polynomial with coefficients from C and with a zero in F that is not
in C.

The fundamental theorem of algebra states that any polynomial p with complex
coefficients and of degree at least 1 has at least one zero in C. Using synthetic division,
if p(z) = 0, then t − z divides p(t); that is, p(t) = (t − z)q(t), in which q(t) is a
polynomial with complex coefficients, whose degree is 1 smaller than that of p. The
zeroes of p are z, together with the zeroes of q. The following theorem is a consequence
of the fundamental theorem of algebra.

Theorem. A polynomial of degree n ≥ 1 with complex coefficients has, counting mul-
tiplicities, exactly n zeroes among the complex numbers.

The multiplicity of a zero z of a polynomial p is the largest integer k for which (t − z)k

divides p(t). If a zero z has multiplicity k, then it is counted k times toward the number
n of zeroes of p. It follows that a polynomial with complex coefficients may always be
factored into a product of linear factors over the complex numbers.

If a polynomial p with real coefficients has some nonreal complex zeroes, they must
occur in conjugate pairs, since, if 0 = p(z), then 0 = 0̄ = p(z) = p(z̄). The observation
that (x − z)(x − z̄) = x2 − 2Re(z)x + |z|2 ensures that any real polynomial may be
factored into a product of powers of linear and quadratic factors over the reals; each
irreducible quadratic factor corresponds to a conjugate pair of complex roots.

Further Reading. For an elementary proof of the fundamental theorem of algebra, see
Childs (1979).
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APPENDIX D

Continuity of Polynomial Zeroes
and Matrix Eigenvalues

It is an important fact, typically proved using complex analysis, that the n zeroes of
a polynomial of degree n ≥ 1 with complex coefficients depend continuously on the
coefficients.

For z ∈ Cn , let f (z) = [ f1(z) . . . fm(z)]T , in which fi : Cn → C, i = 1, . . . , m.
The function f : Cn → Cm is continuous at z if each fi is continuous at z, i = 1, . . . , m.
The function fi : Cn → C is continuous at z if, for a given vector norm ‖ · ‖ on Cn

and each ε > 0, there is a δ > 0 such that if ‖ z−ζ‖ < δ, then | fi (z) − fi (ζ )| < ε.
One might be tempted to describe continuous dependence of the zeroes of a polyno-

mial on its coefficients by requiring continuity of the function f : Cn → Cn that takes
the n coefficients (all but the leading 1) of a monic polynomial of degree n to the n
zeroes of the polynomial. There is a problem, however: There is no obvious way to
define this function, since there is no natural way to define an ordering among the n
zeroes. As a quantitative statement of the continuous dependence of the zeroes on the
coefficients of a polynomial, we offer the following.

Theorem D1. Let p(t) = tn + a1tn−1 + · · · + an−1t + an and q(t) = tn + b1tn−1 +
· · · + bn−1t + bn be polynomials of degree n ≥ 1 with complex coefficients. Let
λ1, . . . , λn be the zeroes of p in some order and let μ1, . . . , μn be the zeroes of q
in some order (counting multiplicities in both cases). Define

γ = 2 max
1≤k≤n

{|ak |1/k, |bk |1/k}

Then there exists a permutation τ of {1, . . . , n} such that

max
1≤ j≤n

|λ j − μτ ( j)| ≤ 2
2n−1

n

(
n∑

k=1

|ak − bk |γ n−k

)1/n

In the same spirit, the following explicit bounds ensure continuity of matrix eigen-
values.

Theorem D2. Let A, B ∈ Mn be given. Let λ1, . . . , λn be the eigenvalues of A in some
order and let μ1, . . . , μn be the eigenvalues of B in some order (counting multiplicities
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in both cases). Then there exists a permutation τ of {1, . . . , n} such that

max
1≤ j≤n

|λ j − μτ ( j)| ≤ 2
2n−1

n (‖|A‖|2 + ‖|B‖|2)
n−1

n ‖|A − B‖|
1
n
2

Further Reading. The two theorems quoted here are in R. Bhatia, L. Elsner, and G.
Krause, Bounds on the variation of the roots of a polynomial and the eigenvalues of a
matrix, Linear Algebra Appl. 142 (1990) 195–209.



APPENDIX E

Continuity, Compactness, and
Weierstrass’s Theorem

Let V be a finite-dimensional real or complex vector space with a given norm ‖·‖.
The closed ball of radius ε about x ∈ V is Bε(x) = {y ∈ V :‖ y − x ‖≤ ε}; the corre-
sponding open ball is Bε(x) = {y ∈ V :‖ y − x ‖< ε}. A set S ⊆ V is open if, for each
x ∈ S, there is an ε > 0 such that Bε(x) ⊆ S. A set S ⊆ V is closed if the complement
of S in V is open. A set S ⊆ V is bounded if there is an r > 0 such that S ⊆ Br (0).
Equivalently, a set S ⊆ V is closed if and only if the limit of any convergent (with
respect to ‖·‖) sequence of points in S is itself in S; S is bounded if and only if it is
contained in some ball of finite radius. A set S ⊆ V is compact if it is both closed and
bounded.

For a given set S ⊆ V and a given real-valued function f defined on S, infx∈S f (x)
and supx∈S f (x) need not be finite, and even if they are, there may or may not be
points xmin and xmax in S such that f (xmin) = infx∈S f (x) and f (xmax) = supx∈S f (x),
that is, f need not attain a maximum or minimum value on S. However, under certain
circumstances, we may be sure that f attains both maximum and minimum values
on S.

A real- or complex-valued function f defined on a given set S ⊆ V is continuous
at x0 ∈ S if, for each ε > 0, there is a δ > 0 such that | f (x) − f (x0)| < ε whenever
x ∈ S and ‖x − x0‖ < δ; f is continuous on S if it is continuous at each point of
S; f is uniformly continuous on S if, for each ε > 0, there is a δ > 0 such that
| f (x) − f (y)| < ε whenever x, y ∈ S and ‖x − y‖ < δ.

Theorem (Weierstrass). Let S be a compact subset of a finite-dimensional real or
complex vector space V with a given norm ‖·‖, and let f : S → R be a continuous
function. There exists a point xmin ∈ S such that

f (xmin) ≤ f (x) for all x ∈ S

and a point xmax ∈ S such that

f (x) ≤ f (xmax) for all x ∈ S

That is, f attains its minimum and maximum values on S.
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Of course, the values maxx∈S f (x) and minx∈S f (x) in Weierstrass’s theorem may
each be attained at more than one point of S.

If either of the key hypotheses (compact S and continuous f ) of Weierstrass’s
theorem is violated, the conclusion may fail. The assumption that S is a subset of a finite-
dimensional normed linear space is not essential, however. With suitable definitions of
compact and continuous, Weierstrass’s theorem is valid for a continuous real-valued
function on a compact subset of a general topological space.

Further Readings. For more information about analysis and normed linear spaces, see
chapter 2 of Kreyszig (1978) or chapter 3 of Conway (1990).



APPENDIX F

Canonical Pairs

Any square complex matrix A can be represented uniquely as A = S(A) + C(A), in
which S(A) = 1

2 (A + AT ) is symmetric and C(A) = 1
2 (A − AT ) is skew symmetric;

it can also be represented uniquely as A = H (A) + i K (A), in which both H (A) =
1
2 (A + A∗) and K (A) = 1

2i (A − A∗) are Hermitian. A simultaneous congruence of
S(A) and C(A) corresponds to a congruence of A; a simultaneous ∗congruence of
H (A) and K (A) corresponds to a ∗congruence of A.

Canonical forms for the pairs (S(A), C(A)) and (H (A), K (A)) (called canonical
pairs) can be derived from congruence and ∗congruence canonical forms for A. In
describing the canonical pairs, we use the following k-by-k matrices:

Mk =

⎡
⎢⎢⎢⎢⎣

0 1 0

1 0
. . .

. . .
. . . 1

0 1 0

⎤
⎥⎥⎥⎥⎦ , Nk =

⎡
⎢⎢⎢⎢⎣

0 1 0

−1 0
. . .

. . .
. . . 1

0 −1 0

⎤
⎥⎥⎥⎥⎦

Xk =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 (−1)k+1

· · · 0
−1 · · ·

1 0
−1 0

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Yk =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

· · · (−1)k

0 · · ·
0 1

0 −1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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We also use a 2-parameter version of the type I matrix (4.5.19)

k(a, b) =

⎡
⎢⎢⎣

0 a

· · · b
a · · ·

a b 0

⎤
⎥⎥⎦ , a, b ∈ C

A matrix pair (A, B) is an ordered pair of square matrices of the same size. The
direct sum of two matrix pairs is (A1, A2) ⊕ (B1, B2) = (A1 ⊕ B1, A2 ⊕ B2), in which
A1, A2 ∈ Mp and B1, B2 ∈ Mq . The skew sum of two square matrices of the same
size is

[A � B] =
[

0 B
A 0

]
Matrix pairs (A1, A2) and (B1, B2) are said to be simultaneously congruent

(respectively, simultaneously ∗congruent) if there is a nonsingular matrix R such that
A1 = RT B1 R and A2 = RT B2 R (respectively, A1 = R∗B1 R and A2 = R∗B2 R).
This transformation is a simultaneous congruence (respectively, a simultaneous
∗congruence) of a matrix pair via R.

The following theorem lists the canonical pairs that can occur and their associations
with the three types of ∗congruence and congruence canonical matrices listed in (4.5.21)
and (4.5.25).

Theorem F1. (a) Each pair (S, C) consisting of a symmetric complex matrix S and
a skew-symmetric complex matrix C of the same size is simultaneously congruent to
a direct sum of pairs, determined uniquely up to permutation of summands, of the
following three types, each associated with the indicated congruence canonical matrix
type (4.5.25) for A = S + C:

Type 0: Jn(0) (Mn, Nn)
Type I: �n (Xn, Yn) if n is odd,

(Yn, Xn) if n is even
Type II: H2n(μ) ([Jn(μ + 1)�Jn(μ + 1)T ],

[Jn(μ − 1)� − Jn(μ − 1)T ])
0 �= μ �= (−1)n+1 and μ is determined up to replacement by μ−1

The Type II pair can be replaced by two alternative pairs

Type II: H2n(μ)
(
[In�In], [Jn(ν)� − Jn(ν)T ]

)
0 �= μ �= −1 ν �= 0 if n is odd, ν �= ±1,

μ �= 1 if n is odd ν is determined up to replacement by −ν

Type II: H2n(−1)
(
[Jn(0)�Jn(0)T ], [In� − In]

)
n is odd n is odd

in which

ν = μ − 1

μ + 1
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(b) Each pair (H, K ) of Hermitian matrices of the same size is simultaneously
∗congruent to a direct sum of pairs, determined uniquely up to permutation of sum-
mands, of the following four types, each associated with the indicated ∗congruence
canonical matrix type (4.5.21) for A = H + i K :

Type 0: Jn(0) (Mn, i Nn)
Type I: λn ± (n(1, 0), n(c, 1))
|λ| = 1, λ2 �= −1 c ∈ R
Type I: λn ± (n(0, 1), n(1, 0))

λ2 = −1
Type II: H2n(μ)

(
[In � In], [Jn(a + ib) � Jn(a + ib)∗]

)
|μ| > 1 a, b ∈ R, a + bi �= i, b > 0

in which

a = 2 Im μ

|1 + μ|2 , b = |μ|2 − 1

|1 + μ|2 , c = Im λ

Re λ

Further Readings. The canonical pairs presented are taken from R. A. Horn and V.
V. Sergeichuk, Canonical forms for complex matrix congruence and ∗congruence,
Linear Algebra Appl. 416 (2006) 1010–1032. For alternative versions of canoni-
cal pairs, see P. Lancaster and L. Rodman, Canonical forms for Hermitian matrix
pairs under strict equivalence and congruence, SIAM Review 47 (2005) 407–443,
P. Lancaster and L. Rodman, Canonical forms for symmetric/skew-symmetric real ma-
trix pairs under strict equivalence and congruence, Linear Algebra Appl. 406 (2005)
1–76, R. C. Thompson, Pencils of complex and real symmetric and skew matrices,
Linear Algebra Appl. 147 (1991) 323–371, and V. V. Sergeichuk, Classification prob-
lems for systems of forms and linear mappings, Math. USSR-Izv. 31 (1988) 481–501.
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Notation

R the real numbers
Rn real vector space of real n-vectors, Mn,1(R)
C the complex numbers
Cn complex vector space of complex n-vectors, Mn,1

F a field
Fn vector space (over F) of n-vectors with entries from F
Mm,n(F) m-by-n matrices with entries from F
Mm,n m-by-n complex matrices; same as Mm,n(C)
Mn n-by-n complex matrices; same as Mn,n(C)
A, B, C , etc. matrices; A = [ai j ], etc.
x, y, z, etc. column vectors; x = [xi ], etc.
In identity matrix in Mn; I if size is clear from context
0m,n zero matrix in Mm,n; 0 if size is clear from context
Ā matrix of complex conjugates of entries of A
AT transpose of A
A∗ conjugate transpose of A; same as ĀT

A−1 inverse of A ∈ Mn

A−T inverse of transpose of A ∈ Mn

A−∗ inverse of conjugate transpose of A ∈ Mn

|A| [|ai j |] for A = [ai j ] ∈ Mn

adj A adjunct of A ∈ Mn(F); transposed cofactor matrix
A† Moore-Penrose inverse of A ∈ Mm,n

AD Drazin inverse of A ∈ Mn

B a basis of a vector space
ei i th standard basis vector
e an all-ones vector; the base of natural logarithms
[v]B B-coordinate representation of a vector v

B1 [T ]B2 B1-B2 basis representation of linear transformation T(n
k

)
binomial coefficient, n!/(k!(n − k)!)

pA(·) characteristic polynomial of A ∈ Mn
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576 Notation

κ(A) condition number of A (with respect to some norm)
det A determinant of A ∈ Mn

⊕ direct sum
�(A) directed graph of A
‖·‖D dual norm of a norm ‖·‖
f D(·) dual norm of a pre-norm f (·)
λ usually denotes an eigenvalue
[λi (A)] vector of eigenvalues of A ∈ Mn

n! factorial: n(n − 1) · · · 2 · 1
Gk(A) kth Geršgorin disc
G(A) Geršgorin region, union of Geršgorin discs
GL(n, F) group of nonsingular matrices in Mn(F)
A ◦ B Hadamard product of A, B ∈ Mm,n(F)
γ (A) index of primitivity of a primitive A ∈ Mn(R)
M(A) indicator matrix of A ∈ Mn

Jk(λ) k-by-k Jordan block with eigenvalue λ

qA(·) minimal polynomial of A ∈ Mn

‖·‖1 l1 norm (sum norm)
‖·‖2 l2 norm (Euclidean norm); Frobenius norm
‖·‖∞ l∞ norm (max norm)
‖·‖p l p norm
‖x‖[k] k-norm on vectors
‖|A‖|1 max column sum matrix norm
‖|A‖|2 spectral matrix norm; largest singular value
‖|A‖|∞ max row sum matrix norm
N∞(A) sum of max norms of columns of A (matrix norm)
‖|A‖|tr trace norm (matrix norm)
‖A‖[k] Ky Fan k-norm (matrix norm)
r (A) numerical radius (vector norm on matrices)
⊥ orthogonal complement
per A permanent of A ∈ Mn

rank A rank of A ∈ Mm,n

sgn τ signum of a permutation τ

σ usually denotes a singular value
σ 1(A) largest singular value of A; spectral norm
[σ i (A)] vector of singular values of A
span(S) span of a set S of vectors
range A span of the columns of A; the column space of A
nullspace A subspace of solutions of Ax = 0
ρ(A) spectral radius of A ∈ Mn

σ (A) spectrum; eigenvalues of A, with multiplicities
A[α, β] submatrix of A determined by index sets α and β

A[α] principal submatrix of A determined by index set α

tr A trace of A = [ai j ];
∑

i aii

Ek(A) sum of principal minors of A of size k
Sk(A) kth elementary symmetric function of eigenvalues
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A/A11 Schur complement of A11 in A
Cr (A) r th compound matrix of A
�, � typically, diagonal matrices
[A, B] commutator of A, B ∈ Mn; AB − B A
]A, B[ Jordan product of A, B ∈ Mn; AB + B A

C(a, b)
[

a b
−b a

]
, real Jordan canonical form block

w(A, λ) Weyr characteristic: (w1(A, λ), . . . , wq (A, λ))
xi (A)↓ nonincreasingly ordered entries of a real vector x
xi (A)↑ nondecreasingly ordered entries of a real vector x
k Type I (symmetric) ∗congruence canonical block
H2k(μ) Type II congruence and ∗congruence canonical block
�k Type I (real) congruence canonical block
〈A, B〉F Frobenius inner product
B‖·‖(r ; x) norm ball of radius r around the point x
F(A) field of values of A ∈ Mn

R′
i (A) deleted row sum

C ′
i (A) deleted column sum

A ! B Loewner partial order on Hermitian matrices
H (A) Hermitian part of A ∈ Mn





Hints for Problems

Section 1.0
1.0.P1 f (x) = xT Ax is a continuous function on the compact set {x ∈ Rn : xT x = 1}.

Section 1.1
1.1.P7 Let λ, x be an eigenvalue–eigenvector pair of A. Then x∗ Ax = λx∗x . But x∗x > 0
and x∗ Ax = x∗ A∗x = x∗ Ax is real.

1.1.P13 Ax =λx ⇒ (det A)x = (adj A)Ax =λ(adj A)x ; λ �= 0 ⇒ (adj A)x = (λ−1 det A)x .
If λ = 0, then either adj A = 0 (if rank A < n − 1) or adj A = αxyT (if rank A = n − 1)
(0.8.2).

Section 1.2
1.2.P10 Any non-real complex zeroes of a polynomial with real coefficients occur in
conjugate pairs; pA(t) has real coefficients if A ∈ Mn(R).

1.2.P11 Let B be a basis for V and consider [T ]B.

1.2.P14 Evaluate det(t I − A) by cofactors along the first column, and then use cofactors
along the first row in the next step.

1.2.P21 Example 1.2.8.

1.2.P23 Look at the last two terms of pA(t); (1.2.13).

Section 1.3
1.3.P4 Review the proof of (1.3.12) and show that B and A are simultaneously diagonaliz-
able. See (0.9.11) and explain why there is a (Lagrange interpolating) polynomial p(t) of
degree at most n − 1 such that the eigenvalues of B are p(α1), . . . , p(αn).

1.3.P7 If A2 = B and Ax = λx , show that λ4x = A4x = B2x = 0 and explain why both
eigenvalues of A are zero. Then tr A = 0 so A = [ a

c
b
−a

]
. Also, det A = 0, so a2 + bc = 0.

Then A2 = ?
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580 Hints for problems

1.3.P10 If some linear combination is zero, say, 0 =∑k
i=1

∑ni
j=1ci j x

(i)
j =∑k

i=1 y(i), use
(1.3.8) to show that each y(i) = 0.

1.3.P13 Consider
[ 0

0
0
0

]
and

[ 0
0

1
0

]
.

1.3.P16 pA(t) = tn−r (tr − tr−1 tr B + · · · ± det B), so Er (A) �= 0. (1.2.13) Consider[ 1
i

i
−1

]
.

1.3.P17 Let S = C + i D with C = (S + S̄)/2 and D = (S − S̄)/(2i). Then AS = SB and
AS̄ = S̄B imply that AC = C B and AD = DB. Proceed as in the proof of (1.3.28).

1.3.P19 (b) See (0.9.10).

1.3.P21 (o), (n), and (k).

1.3.P23 Consider a similarity of A via
[ In

0
X
Im

]
.

1.3.P26 (b) Ã pq =∑n
i, j=1 Ppi Ai j PT

q j =
∑n

i, j=1

(
eT

p Ai j eq
)
εiε

T
j .

1.3.P33 (b) (1.3.8). (e) The exercise preceding (1.2.10).

1.3.P35 (a) IfA is reducible, use (1.3.17) to give an example of an A ∈ Mn such that A /∈ A.
(b) Every subspace is A-invariant if A = {0}. (f) If not, let z be a nonzero vector that is
orthogonal to the subspace A∗x , that is, (A∗x)∗z = x∗ Az = 0 for all A ∈ A. Use (d) to
choose an A ∈ A such that Az = x . (g) If d = min{rank A : A ∈ A and A �= 0} > 1, choose
any Ad ∈ A with rank Ad = d . Choose distinct i, j such that the vectors Aei and Ae j are
linearly independent (pair of columns of Ad ), so Adei �= 0 and Ade j �= λAdei for all λ ∈ C.
Choose B ∈ A such that B(Adei ) = e j . Then Ad B Adei �= λAdei for all λ ∈ C. The range
of Ad is Ad B-invariant (Ad B(Ad x) = Ad (B Ad x)) so it contains an eigenvector of Ad B
(1.3.18). Thus, there is an x such that Ad x �= 0 and for some λ0 ∈ C, (Ad B − λ0 I )(Ad x) =
0. Hence, Ad B Ad − λ0 Ad ∈ A, Ad B Ad − λ0 Ad �= 0, and rank(Ad B Ad − λAd ) < d. This
contradiction implies that d = 1. (h) For any given nonzero η, ζ ∈ Cn , choose A, B ∈ A
such that η = Ay and ζ = B∗z. Then ηζ ∗ = A(yz∗)B ∈ A.

1.3.P40 (b) If B =∑N
i=1 αi Ai = 0, then 0 = ]Ai , B[ = αi A2

i .

1.3.P41 (a) Consider D2 D1 AD2 D−1
2 .

Section 1.4
1.4.P6 (a) The principle of biorthogonality.

1.4.P7 Assume without loss of generality that λn = 1 and let y(1), . . . , y(n) be linearly inde-
pendent eigenvectors associated with λ1, . . . , λn . Write x (0) (uniquely: Why?) as x (0) =
α1 y(1) + · · · + αn y(n), with αn �= 0. Then x (k) = ck(α1λ

k
1 y(1) + · · · + αn−1λ

k
n−1 y(n−1) +

αn y(n)) for some scalar ck �= 0. Since |λi |k → 0, i = 1, . . . , n − 1, x (k) converges to a
scalar multiple of y(n).

1.4.P9 (b) Consider S−1 AS with S = [ I
zT

0
1

]
.

1.4.P11 Why is the list consisting of the first n − 1 columns of A − λI linearly independent?

1.4.P13 (a) See (1.2.16).

1.4.P15 (A − λI + κzw∗)u = 0 ⇒ κ(w∗u)y∗z = 0 ⇒ w∗u = 0 ⇒ u = αx ⇒ w∗x = 0.
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1.4.P16 Let λ, x = [xi ]n
i=1 be an eigenvalue–eigenvector pair for A. Then (A − λI )x =

0 ⇒ cxk−1 + (a − λ)xk + bxk+1 = 0 ⇒ xk+1 + a−λ
b xk + c

b xk−1 = 0, k = 1, . . . , n, a sec-
ond order difference equation with boundary conditions x0 = xn+1 = 0, and indicial equa-
tion t2 + a−λ

b t + c
b = 0 with roots r1 and r2. The general solution of the difference equa-

tion is (a) xk = αrk
1 + βrk

2 if r1 �= r2, or (b) xk = αrk
1 + kβrk

1 if r1 = r2; α and β are
determined by the boundary conditions. In either case, r1r2 = c/b (so r1 �= 0 �= r2) and
r1 + r2 = −(a − λ)/b (so λ = a + b(r1 + r2)). If r1 = r2, then 0 = x0 = xn+1 ⇒ x = 0.
Thus, r1 �= r2 and xk = αrk

1 + βrk
2 , so 0 = x0 = α + β and 0 = xn+1 = α(rn+1

1 − rn+1
2 ) ⇒

(r1/r2)n+1 = 1 ⇒ r1/r2 = e
2π iκ
n+1 for some κ ∈ {1, . . . , n}. Since r1r2 = c/b we have r1 =

±√
c/b e

π iκ
n+1 and r2 = ±√

c/b e
−π iκ
n+1 (same choice of signs). Thus, the eigenvalues of A are

{a + b(r1 + r2) : κ = 1, . . . , n} = {a + 2
√

bc cos( πκ
n+1 ) : κ = 1, . . . , n} (for a fixed choice

of sign for the square root).

Section 2.1
2.1.P2 Use (2.1.4(g)) and (1.1.P1).

2.1.P14 U−1 = U T = U ∗.

2.1.P16 (g) (1.3.23) the eigenvalues of [w x]T [−(wT w)−1w y] ∈ M2(R) are 1
2 (xT y −

1 ± i(1 − (xT y)2)1/2).

2.1.P22 (0.2.7).

2.1.P24 (b) det B ≤ √
27.

2.1.P25 Cr (U ∗) versus Cr (U−1) (0.8.1).

2.1.P26 (a) Examine the proof of (2.1.14). (b) The exercise following (2.1.10).

2.1.P28 (a) Apply the construction in the preceding problem to the first column of A (with
k = n − 1), then apply it (with k = n − 2) to the second column of the transformed matrix.

2.1.P29 The exercise following (2.1.10) or (2.1.P21).

Section 2.2
2.2.P8 tr C =?;

[
0 b
a 0

]2
=? Write A = U BU ∗, in which B = [bi j ] has zero main diagonal

entries. Then write B = BL + BR , in which BL = [β i j ], β i j = bi j if i ≥ j and β i j = 0 if
j > i .

2.2.P9 Write A = U BU ∗, in which B = [bi j ] has zero main diagonal entries. Then write
B = BL + BR , in which BL = [β i j ]; β i j = bi j if i ≥ j and β i j = 0 if j > i .

2.2.P10 If λ� = 0, then |ai | ≤
∑

j �=i |a j |.

Section 2.3
2.3.P6 If 1,2 ∈ Mn are both upper triangular, what is the main diagonal of 12 −
21?

2.3.P8 When is
[

a b
0 c

]
complex orthogonal?

2.3.P11 If T ∈ Mn is strictly upper triangular, what does T 2 look like? T 3? T n−1? T n?

2.3.P12 (a) (0.8.1) and (2.1.P25). Cr (U T U ∗) = Cr (U )Cr (T )Cr (T )∗.
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2.3.P13 (2.3.4).

2.3.P14 (2.3.1).
∑

i |λi | = tr(DT ) = tr(DU ∗AU ) for a suitable diagonal unitary D.

Section 2.4
2.4.P10 (2.4.P9).

2.4.P11 (b) (2.4.P2).

2.4.P12 (b) Explain why we may assume that A and B are upper triangular and C is strictly
upper triangular. (c) If A = S�S−1, � = λ1 In1 ⊕ · · · ⊕ λd Ind , and λi �= λ j if i �= j , let
C = S−1C S and B = S−1 BS. If � commutes with C, then C is block diagonal conformal to
�. But C = �B − B� has zero diagonal blocks, so C = 0. (f) Either C = 0 or rank C = 1;
invoke Laffey’s theorem in the preceding problem. (g) A, B, and C are nilpotent, but
B2 − C2 is not; A + B is even nonsingular. (h) Consider

A =
⎡
⎣ e4iθ 0 0

0 e2iθ 0
0 0 e2iθ

⎤
⎦ and B =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , θ = π

3

Show that C3 = 0 and some eigenvalue of AB is not of the form eikθ .

2.4.P14 Let the columns of U2 ∈ Mn,n−r be an orthonormal basis for the null space of A∗

and let U = [U1 U2] be unitary. Then U ∗AU =
[

U ∗
1 AU1 U ∗

1 AU2
0 0

]
. Let V ∈ Mr be unitary

and such that U ∗
1 AU1 = V V ∗ and  is upper triangular. Let W = V ⊕ In−r . Consider

(U W )∗A(U W ).

2.4.P15 (c) What is pA,I (1, t) and why is pA,I (I, A) = 0?

2.4.P19 If A and B are simultaneously upper triangularizable and p(s, t) is any
polynomial in two noncommuting variables, then p(A, B)(AB − B A) is nilpotent.
(2.4.8.7). Explain why p(Aii , Bii )(Aii Bii − Bii Aii ) is nilpotent for i = 1, 2. (b) Consider
p(A1, . . . , Am)(Ai A j − A j Ai ).

2.4.P22 (a) Km = [
∑d

k=1 νkμ
i+ j−2
k ]m

i, j=1 =∑d
k=1 νkv

(m)
k (v(m)

k )T . (c) rank Vm = rank D =
d ⇒ rank Km ≤ d; Kd nonsingular ⇒ rank Km ≥ d.

2.4.P25 (b) (2.4.P10).

2.4.P27 Take p(t) = pC B(t) in the preceding problem.

2.4.P28 (0.4.6(e)).

2.4.P31 What is pA(t) in this case?

Section 2.4
2.4.P33 As in the proof of (2.4.6.1), argue that A = SDS−1, in which D = A11 ⊕ A22 and

S =
[

Ik S12
0 In−k

]
. Let C = S−1 BS. Then C p = D, so D commutes with C , which must be

block diagonal conformal with D, and B = SC S−1.

2.4.P35 If F = C, consider U = diag(eiθ1 , . . . , eiθn ) with 0 ≤ θ1 < · · · < θn < 2π . If
F = R, consider U = diag(±1, . . . ,±1), in which n − 1 of the entries have the same
sign and the remaining entry has the opposite sign. In either case, consider variations on

U =
[

0 1
1 0

]
⊕ In−2.
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Section 2.5
2.5.P18 Consider A =

[
0 1
2 0

]
and A2.

2.5.P20 ‖(A − λI )x‖2 = ‖(A − λI )∗x‖2.

2.5.P25 (2.5.16).

2.5.P26 (h) These are all classical polynomial interpolation problems. Look carefully at
(0.9.11.4).

2.5.P27 (a) (2.5.16). (AB∗)A = A(B∗A). (b) Let B = AĀ.⇒: B A = AB̄ ⇒ B∗ A = AB̄∗

(2.5.16). ⇐: B B∗ = A(AA∗AT ) = A(AT A∗A) and B∗B = (AA∗AT ) Ā.

2.5.P28 (b) (AB)A = A(B A).

2.5.P31 Use (2.5.8).

2.5.P33 Let U ∈ Mn be a unitary matrix that simultaneously diagonalizes every member
of F , let B = Udiag(1, 2, . . . , n)U ∗, let Aα = U�αU ∗ with �α = diag(λ(α)

1 , . . . , λ(α)
n ),

and take pα(t) to be the Lagrange interpolation polynomial such that pα(k) = λ
(α)
k , k =

1, 2, . . . , n.

2.5.P34 (b) (2.4.11.1).

2.5.P35 (a) If xx∗ = yy∗ and xk �= 0, then x j = (yk/xk)y j for all j = 1, . . . , n. (b) AA∗ =
A∗A ⇔ uu∗ = vv∗, in which u = x/ ‖x‖2 and v = y/ ‖y‖2.

2.5.P37 (b) (1.3.P14). (d) (2.5.P35).

2.5.P38 (b) (2.4.P12).

2.5.P43 (a) Use the defect from normality in (2.5.P42).

2.5.P44 (b) tr(A2 B2) = tr((AB)(AB)∗).

2.5.P46 If A ∈ Mn(R) and T = U ∗AU is upper triangular, then T̄ = U T AŪ is unitarily
similar to A and hence to T , so the sets of main diagonal entries of T and T̄ are identical.

2.5.P49 If A = S�S−1, let S = RQ be an RQ factorization. Then R−1 AR is normal.

2.5.P55 (2.5.P15), and (2.4.P10).

2.5.P56 (2.5.P26).

2.5.P57 Use (2.5.17). Which blocks in (2.5.17.1) are symmetric or skew symmetric?

2.5.P60 xT (ne j − e) = nx j ; use the Cauchy–Schwarz inequality (0.6.3).

2.5.P61 (c) The preceding problem and (A) in (2.5.P42).

2.5.P64 (a) (1.3.P39).

2.5.P65 (0.8.1).

2.5.P67 Consider � = �r ⊕ 0n−r and B = [Bi j ]2
i, j=1, in which �r ∈ Mr is nonsingular

and B is partitioned conformally to �. Then �B = 0 ⇒ B11 = 0 and B12 = 0 ⇒ B21 =
0 ⇒ B� = 0.

2.5.P68 The hypothesis is that A is unitarily similar to Ar ⊕ 0n−r , in which Ar is non-
singular.
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2.5.P69 (a) Compare blocks in the respective identities MAW = W MB , starting in block
position (k, 1). Work to the right until reaching block position (k, k − 1). Move up to
block position (k − 1, 1) and work to the right until reaching block position (k − 1, k − 2).
Repeat this process, moving up one block row at a time until reaching block position (2, 1).
(b) (2.5.2).

2.5.P70 (a) Use the preceding problem. (c) (2.2.8).

2.5.P74 Consider A =
[

0 i
i + 1 0

]
, B = AT , X =

[
i 0
0 i + 1

]
.

2.5.P75 (b) (2.5.16).

2.5.P76 (b) See the discussion preceding (2.5.2).

Section 2.6
2.6.P3 Let n ≤ m (if n > m, consider B∗ and A∗). After a common unitary equivalence
(A = V �W ∗, A → V ∗AW , B → V ∗BW ) we may assume that A = �. If �B∗ and B∗�
are normal, then ��T B = B�T � (2.5.P27). Let � = [�q 0], �q = s1 In1 ⊕ · · · ⊕ sd Ind ,
s1 > · · · > sd ≥ 0, B = [B1 B2] with B1 ∈ Mn , and B1 = [Bi j ]d

i, j=1 conformal to �q . Then
��T B = B�T � ⇒ �2

q B1 = B1�
2
q and �2

q B2 = 0; moreover, �q B is normal. If sd > 0,

then B2 = 0, B1 = B11 ⊕ · · · ⊕ Bdd , and each Bii is normal. If sd = 0, then B2 =
[

0
C

]
, in

which C is nd -by-(m − n), B1 = B11 ⊕ · · · ⊕ Bd−1,d−1 ⊕ Bdd , and each B11, . . . , Bd−1,d−1

is normal; replace each normal Bii with its spectral decomposition and replace [Bdd C]
with its singular value decomposition.

2.6.P8 Let A = V �W ∗. Then rank AB = rank �W ∗B, and �W ∗B has at most rank A
nonzero rows.

2.6.P9 Let D = �1 ⊕ In−r , show that (AW D−1)∗(AW D−1) = Ir ⊕ 0n−r , and conclude
that AW D−1 = [V1 0n,n−r ], in which V1 has orthonormal columns. Let V = [V1 V2] be
unitary.

2.6.P10 The preceding problem.

2.6.P11 (2.5.5) and (2.6.P9).

2.6.P13 It suffices to consider only the case in which A = �.

2.6.P14 (b) A is normal if and only if �2 commutes with W ∗V .

2.6.P15 (2.5.P42).

2.6.P16 (2.6.P3).

2.6.P19 Examine the block diagonal entries of the identities U ∗U = I and UU ∗ =
I . For example, U11U ∗

11 + U12U ∗
12 = Ik ⇒ U11U ∗

11 = Ik − U12U ∗
12 ⇒ σ 2

i (U11) = 1 −
σ 2

k−i+1(U12).

2.6.P21 (compare with (2.6.P3)) If AB̄ = AB∗ is normal, then (AB̄)T = B̄ A = B∗A is
normal. We may take A = � (use (2.6.6a) to write A = U�U T , so � B̃ is normal and
B̃ = U ∗BŪ is symmetric). If � B̄ and B̄� are normal and B is symmetric, then �2 B =
B�2 (2.5.P27). Write � = s1 In1 ⊕ · · · ⊕ sd Ind , in which s1 > · · · > sd ≥ 0 and partition
B = [Bi j ]d

i, j=1 conformally to �. Then �2 B = B�2 ⇒ B = B11 ⊕ · · · ⊕ Bdd and each
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Bii is symmetric; Bii is also normal if si > 0. If si > 0, replace Bii with Qi�i QT
i , in which

Qi is real orthogonal and �i is diagonal (2.5.P57); if sd = 0, replace Bdd with the special
singular value decomposition in (2.6.6(a)).

2.6.P25 Let A = V �W ∗ be a singular value decomposition with � = �r ⊕ 0n−r , write

A = V �(W ∗V )V ∗, and partition W ∗V =
[

K L
M N

]
.

2.6.P26 (a) L = 0 ⇒ M = 0 ⇒ K is unitary. (c) Proceed as in (2.6.P23(c)).

2.6.P28 (a) Let A = V �W ∗ be a singular value decomposition with � = �1 ⊕ 0n−r and
partition V = [V1 V2], W = [W1 W2] with V1, W1 ∈ Mn,r . Then W1 = V1U for some uni-

tary U ∈ Mr (why?) ensures that A = V
[

�1U 0
0 0

]
V ∗. (b) (1.3.P16).

2.6.P29 (2.5.P38).

2.6.P31 (b) (1.3.P19).

2.6.P32 Consider
[

0 In

In 0

]
A and use (2.6.P7).

2.6.P33 (0.8.1) Cr (V �W ∗) = Cr (V )Cr (�)Cr (W )∗.

2.6.P35 Apply (2.6.9) to the matrix A − ( 1
n tr A)I .

Section 2.7
2.7.P1 Permute and partition.

2.7.P2 Suppose that m = n. Let A = V �W ∗ be a singular value decomposition in
which � = C ⊕ In−ν and C = diag(c1, . . . , cν) with each c j ∈ [0, 1). Let S = diag((1 −
c2

1)1/2, . . . , (1 − c2
ν)1/2) and consider

(V1 ⊕ V )

⎡
⎣ C S 0
−S C 0
0 0 In−ν

⎤
⎦ (W1 ⊕ W )∗ ∈ Mn+ν

in which V1, W1 ∈ Mν are arbitrary unitary matrices. If m �= n, pad A with a zero block to
obtain a square contraction of size max{m, n} that has ν + |m − n| singular values that are
strictly less than one.

2.7.P6 (b) If u12 �= 0 and u12/u21 = eiφ , consider a similarity via D = diag(1, eiφ/2).

Section 3.1
3.1.P12 (e) Both say that there are exactly k blocks J�(λ) of size � = p in the Jordan
canonical form of A.

3.1.P16 (3.1.18).

3.1.P17 (3.1.P16).

3.1.P18 (b) (3.1.P17) and (1.3.22).

3.1.P19 (c) (3.1.18).

3.1.P20 (1.3.P16).

3.1.P22 (a) Show that there is a positive diagonal D such that D AD−1 is symmetric and
apply (3.1.P21). (b) Perturb A and use continuity.
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3.1.P23 (a) Proceed as in (3.1.P22); choose a positive diagonal D such that D AD−1 is
Hermitian. (c) Consider i A; (1.4.P4).

3.1.P24 (d) Consider the directed graphs of A and B (6.2).

3.1.P26 Use (2.5.P19) to explain why it suffices to show that if x ∈ Cn and A2x = 0,
then Ax = 0. A2x = 0 ⇒ 0 = ∥∥A2x

∥∥2
2 = x∗ A∗A∗AAx = x∗A∗ AA∗Ax = ‖A∗ Ax‖2

2 ⇒
0 = x∗ A∗Ax = ‖Ax‖2

2.

3.1.P27 A = S�S−1 = Q R�R−1 Q∗ ⇒ R�R−1 is normal and upper triangular.

3.1.P30 The preceding problem.

Section 3.2
3.2.P2 Why does it suffice to consider the case in which A is a Jordan matrix? Suppose
that A = Jk(λ) ⊕ J�(λ) ⊕ J , in which J is either empty or is a Jordan matrix and k, � ≥ 1.
For any polynomial p(t) the leading k + � diagonal entries of p(A) are all equal to p(λ).
But −Ik ⊕ I� ⊕ In−k−� commutes with A.

3.2.P3 (1.3.P20(f)).

3.2.P15 Use the two preceding problems.

3.2.P19 (1.4.7).

3.2.P20 (a) (3.2.11.1).

3.2.P24 (a) Write AT = S AS−1 (3.2.3.1). Then D = AB − B(S AS−1) ⇒ DS = A(BS) −
(BS)A. Also, AD = D AT ⇒ A(DS) = (DS)A. Invoke Jacobson’s lemma to conclude
that DS is nilpotent. (b) Let A = S�S−1 with � = λ1 In1 ⊕ · · · ⊕ λd Ind ; let D = S−1 DS
and B = S−1 BS−T . Then �D = D� and D = �B − B�. Conclude that D and B are
block diagonal conformal to � andD = 0. (c) D2 = AB D − B AT D = A(B D) − (B D)A.
Also, AD2 = (AD)D = D AT D = D2 A. Invoke Jacobson’s lemma to conclude that D2 is
nilpotent. (d) Let A = S J S−1 with J = Jn1 (λ1) ⊕ · · · ⊕ Jnd (λd ); let D = S−1 DS and B =
S−1 BS−T . Then JD = DJ T and D = JB − BJ T . Conclude that D = D1 ⊕ · · · ⊕Dd and
B = B1 ⊕ · · · ⊕ Bd are block diagonal conformal to J , JiDi = Di J T

i , and Di = JiBi −
Bi J T

i for each i = 1, . . . , d (Ji := Jni (λi )). Let J T
i = Si Ji S−1

i . Then Ji (Di Si ) = (Di Si )Ji ,
and (Di Si ) = Ji (Bi Si ) − (Bi Si )Ji . Invoke Jacobson’s lemma.

3.2.P26 Show that (B − BT )A = 0 and explain why rank(B − BT ) ≤ 1. See (2.6.P27).

3.2.P27 (c) See (2.6.P12).

3.2.P29 (a) tr C = 0 or use Jacobson’s Lemma.

3.2.P31 Modify the argument in the preceding problem. (c′) There is a nonsingular X ∈ Mn

such that X A = AT X . (d′) There is a nonsingular Y ∈ Mk such that Y AT
11 = A11Y . Let

C = Y ⊕ 0n−k . (f′) Let B = C X . Then AB = B A.

3.2.P32 See (2.4.P12(c)) for the diagonalizable case. Explain why it suffices to consider the
case A = J2(λ). Invoke (3.2.4.2) and argue that C is strictly upper triangular; explain why
strict upper triangularity of AB − B A implies that B is strictly upper triangular. Jacobson’s
lemma can be useful in these arguments.
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3.2.P33 Use (2.3.1) to reduce (via a unitary similarity) to the case in which A is upper
triangular. Then B is a polynomial in A as well as a polynomial in A∗, so it is both upper
and lower triangular.

3.2.P34 (a) Each of Ā and AT is a polynomial in A, so they commute.

3.2.P36 (a) (3.2.5.2).

Section 3.3
3.3.P3 Show that t2 − t = t(t − 1) annihilates A.

3.3.P10 Use cofactors to compute the determinant.

3.3.P13 (1.2.20).

3.3.P19 Suppose that Cn−1 �= 0 and use (3.2.4.2).

3.3.P22 (3.2.P4).

3.3.P26 (f ) (λi I − A)qi (A) = qA(A).

3.3.P28 K 2 = I , so there are three possibilities for the minimal polynomial of K .

3.3.P29 Let K = SDS−1 with D = Im ⊕ (−In−m) and let A = S−1 AS = [Ai j ]2
i, j=1. Then

K A is similar to DA and A = DAD ⇒ A12 = 0 and A22 = 0.

3.3.P30 Let T = i Im ⊕ In−m and compute TBT −1.

3.3.P31 Use (3.3.4).

3.3.P33 Apply Schur’s inequality (2.3.2a) to the companion matrix of p.

Section 3.4
3.4.P1 What is the real Jordan canonical form of A?

3.4.P4 (a) Use (3.4.2.10) and the identities (3.4.2.12). (b) wi (A, λ j )2 ≥ wi (A, λ j ).

3.4.P5 Use (3.4.3.1) as in (3.4.3.3); the unitary Weyr form of A is again block 2-by-2, but
now F12 has full column rank.

3.4.P8 (c) Suppose that W has exactly p diagonal blocks (that is, wp(J, 0) > 0 and
wp+1(J, 0) = 0). Where do the first p rows and columns of PT W P come from? What
does the leading p-by-p principal submatrix of PT W P look like? If wp(J, 0) > 1, what
does PT W P[{p + 1, . . . , 2p}] look like? What happens if wp(J, 0) = 1?

Section 4.1
4.1.P3 If A = SBS−1, show that A = U�U ∗ and B = V �V ∗ with U and V unitary, so
U ∗AU = � = V ∗BV .

4.1.P6 If x∗ Ax = 0 for all x ∈ Cn , (4.1.4) ensures that A is Hermitian. Let x be any
eigenvector of A; why must its corresponding eigenvalue be zero?

4.1.P9 Let A = [ai j ] and B = [bi j ]. Use x = ei and y = e j to show that |ai j | = |bi j | for
all i, j = 1, . . . , n. Let x = ei , y = se j + tek to show that |sai j + taik |2 = |sbi j + tbik |2
and hence Re(st̄[ai j āik − bi j b̄ik]) = 0 for all s, t ∈ C. Deduce that ai j/bi j = aik/bik if
bi j bik �= 0.
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4.1.P12 A =
[

0 1
0 0

]
.

4.1.P13 (a) (2.4.P2). (b) (4.1.P12).

4.1.P18 (2.5.P44).

4.1.P19 x = (I − A)x + Ax is a sum of vectors in the null space and range of A. If the null
space is orthogonal to the range, then x∗ Ax = ((I − A)x + Ax)∗ Ax = x∗(A∗A)x is real.

4.1.P20 Show that (A − A∗)3 = 0; A − A∗ is normal.

4.1.P25 (0.8.1) and (2.3.P12).

Section 4.2
4.2.P3 Take x = ei .

4.2.P7 If S1 and S2 are subspaces of Cn with dim S1 = p and dim S2 = q, let the columns
of X ∈ Mn,p and Y ∈ Mn,q , respectively, be bases for S1 and S2, respectively, and let
Z = [X Y ]. Explain why S1 + S2 = range Z , so rank Z = dim(S1 + S2). Since rank Z +
nullity Z = p + q , it suffices to show that nullity Z = dim(range X ∩ range Y ).

4.2.P8 x∗(A + B)x = x∗ Ax + x∗Bx ≥ x∗ Ax .

Section 4.3
4.3.P5 Use interlacing.

4.3.P6 Consider ⎡
⎣ 0 i 1
−i 0 1
1 1 0

⎤
⎦

4.3.P8 Use (4.3.48), (4.3.49), or the definition.

4.3.P9 The preceding problem; x = e and x = ei .

4.3.P12
∑m

i, j=1 |bi j |2 ≤∑m
i, j=1 |bi j |2 +

∑
i, j |ci j |2 ≤∑m

i=1 R2
i ≤∑m

i=1 σ 2
i , so

∑m
i=1 σ 2

i =∑m
i, j=1 |bi j |2 ⇒∑

i, j |ci j |2 = 0.

4.3.P14 Use the quasilinearization (4.3.39).

4.3.P15 (b) (2.1.14): X = V R and det X∗X = det R∗R.

4.3.P16 (a) A = U ∗�U with a unitary U = [u1 u2] = [ui j ] ∈ M2 and a diagonal � =
diag(λ1, λ2) = λ1 I + (λ2 − λ1)E22. Compute a12 = u∗

1�u2 = (λ2 − λ1)ū21u22. (b) Inter-
lacing.

4.3.P17 (a) What is the nth entry of Ax = λx? (f) pn(λ) = pn−1(λ) = 0 ⇒ pn−1(λ) =
pn−2(λ) = 0 ⇒ · · · ⇒ p0(λ) = 0.

4.3.P19 Compute tr(A + zz∗).

4.3.P20 (1.2.P13).

4.3.P21 Eigenvalue interlacing.
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4.3.P22 Why is rank A ≤ 2? If ai �= a j , why does the principal submatrix
[

2ai ai + a j

ai + a j 2a j

]
have one positive and one negative eigenvalue? Compare with (1.3.25).

4.3.P23 Consider A = diag x and B = diag y.

4.3.P25 (a) What are the entries of AA∗? (b) Apply (4.3.P17) to AA∗.

4.3.P29 Use (4.3.39).

4.3.P30 Let Uii be unitary and such that each U ∗
i i AiiUii = �i is diagonal. Let U = U11 ⊕

· · · ⊕ Ukk . Why is d(A) majorized by λ(A11 ⊕ · · · ⊕ Akk) = d(U ∗AU )? Why is d(U ∗AU )
majorized by λ(A)?

Section 4.4
4.4.P1 (4.4.4c) with S = U�1/2.

4.4.P4 If A = Q�QT with � real diagonal and Q real orthogonal, write � = �D2 and let
U = Q D. When can all the factors in the factorization A = U�U T be taken to be real?

4.4.P5 Partition W = [Wi j ] = U ∗V conformally to �. �W̄ = W� ⇒ si Wi j = s j W̄i j ⇒
Wii is real if si �= 0 and (si − s j ) tr Wi j W ∗

i j = 0.

4.4.P6 Consider the sign of r (A) = (tr AĀ)2 − 4| det A|2, the discriminant of pAĀ(t), and
the fact that tr AĀ < 0 if AĀ has two negative eigenvalues. The product of the eigenvalues
is | det A|2.

4.4.P9 (b) (4.4.P1).

4.4.P19 Represent A as in (4.4.10). Use Schur’s inequality, (4.4.11a,b), and (4.4.12a,b) to
show that tr AA∗ ≥ tr ∗ +∑q/2

j=1 tr � j j�
∗
j j ≥ tr ̄ + tr ��̄ = tr AĀ.

4.4.P22 (3.3.P28).

4.4.P23 (0.9.8).

4.4.P24 (a) Use (1.4.12(a)); alternatively, use (2.4.11.1(b)). (b) Use (1.4.12(b)).

4.4.P26 If Q is complex orthogonal and A = Q B QT , then every word W (A, A∗) =
W (A, AT ) is similar (via Q) to W (B, BT ) = W (B, B∗). Use (2.2.6) and (2.5.21).

4.4.P28 det(I + X ) =∏n
i=1(1 + λi (X )) and (4.4.13).

4.4.P29 (b) (0.8.5.1), the preceding problem, and a continuity argument. (e) (3.4.1.7). (f )
(3.2.P30).

4.4.P30 S AS−1 = SBST S−T C S−1.

4.4.P31 (4.4.25).

4.4.P32 (3.2.3.1) and (3.2.11).

4.4.P33 (b) Show that the negation of each condition implies the negation of the other; use
(3.1.P12).

4.4.P35 (2.5.3) and (2.5.14).

4.4.P38 (d) (1.3.P19).
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4.4.P39 A = B�B−1 = B−T �B ⇒ BT B� = �BT B ⇒ S� = �S ⇒ A = Q�QT .

4.4.P44 (a) What does AĀ = AA∗ say about the blocks in (4.4.31)?

4.4.P45 (4.4.22).

4.4.P46 (b) (2.5.P69 and P70).

4.4.P47 (a) Follow the hint in (2.5.P69(a)).

4.4.P48 (2.5.10).

Section 4.5
4.5.P2 (4.4.19).

4.5.P4 Use (1.3.2) and the proof of (4.5.17(a)). Let S A−1
1 Ai S−1 be real diagonal for all

i = 1, . . . , k. Let Bi = S−∗ Ai S−1 and show that {Bi } is a commuting family of Hermitian
matrices. There is a unitary U such that U BiU ∗ is diagonal for all i = 2, . . . , k; T = U S
provides the required ∗congruence.

4.5.P10 (4.5.P9(c)). A = U (B ⊕ 0n−r )U ∗ ⇒ A = U1 BU ∗
1 . Let P ∈ Mn be a permutation

matrix such that PU1 =
[

X
Y

]
and X ∈ Mr is nonsingular. Then P APT = ?

4.5.P11 (a) Why is 0n−r the singular part of A with respect to ∗congruence, and why is � a
regular part of A? What is the ∗cosquare of �? (b) Diagonalize A by unitary ∗congruence,
construct a ∗congruence to a direct sum of canonical blocks, and invoke uniqueness in
(4.5.21).

4.5.P13 What is the Jordan canonical form (respectively, ∗congruence canonical form) of
a unitary matrix?

4.5.P14 (b) If Ax = 0, then H−1 K x = i x . (c) (4.5.23).

4.5.P18 What are the eigenvalues of A−1 B?

4.5.P20 (d) Consider the continuous function an−r (A) on S. Why does it have constant sign
on S? If A, B ∈ S have different inertias, let f : [0, 1] → S be a continuous function with
f (0) = A and f (1) = B and consider g(t) = an−r ( f (t)).

4.5.P22 If the inequalities (4.3.18) are not satisfied, let k be the smallest index such that
either (a) λk(A) > λk(B) or (b) λk(B) > λk+1(A). Suppose that (a) is the case, so λk(A) >

λk(B) ≥ λk−1(B) ≥ λk−1(A). Let α ∈ (λk(B), λk(A)). Why is B − α I nonsingular? Use
Haynsworth’s theorem to show that i−(A − α I ) ≥ i−(B − α I ). Why is λk(A) − α > 0 >

λk−1(A) − α and λk(B) − α < 0? Why does A − α I have k − 1 negative eigenvalues?
Why does B − α I have at least k negative eigenvalues. Consider case (b).

4.5.P26 Use (4.5.27) and the exercise preceding (4.5.26). The cosquares of H2k(μ) and
H2k(μ̄) are similar if and only if either μ = μ̄ or μ = μ̄−1.

4.5.P31 If A is nonsingular and ∗congruent to a real matrix, then A−∗ A is similar to a real
matrix.

4.5.P33 Use (3.2.3) for Jk(0) and (4.5.27) for �k and H2k(μ).
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4.5.P34 Use (3.2.3) for Jk(0). If Jk(μ)T = S Jk(μ)S−1 and S =
[

0n S∗
S−1 0n

]
, then

SH2k(μ)T S∗ = H2k(μ).

4.5.P36 (c) Use (4.5.7) to reduce to the case in which A = Ii+ ⊕ (−Ii− ) ⊕ 0i0 and i+i− > 0.
Let α = {1, . . . , i+}, β = {i+ + 1, . . . , i+ + i−}, and γ = {i+ + i− + 1, . . . , n}. Choose
vectors x such that x∗ Ax = 0 and that permit one to deduce from x∗Bx = 0 that cer-
tain entries of B are zero and others are proportional to the corresponding entries of
A. Adjustable scalars c and d in the following choices of x have modulus 1. (1) Take
i ∈ α and j ∈ β. Choose x = e1 + ce j . Then x∗Bx = b11 + b j j + 2 Re cb1 j = 0. Choose
c to get b11 + b j j ± |b1 j | = 0, so b j j = −b11. Now choose x = ei + ce j . Then x∗Bx =
bii + b j j + 2 Re cbi j = bii − b11 + 2 Re cbi j = 0 and bii − b11 ± |bi j | = 0, so bi j = 0 and
bii = b11. Conclude that B[α, β] = 0, diag B[α] = [b11 . . . b11]T , and diag B[β] =
−[b11 . . . b11]T . (2) Take i ∈ α, j ∈ β, and k ∈ γ . Choose x = ek . Then x∗Bx =
bkk = 0. Now choose x = ei + ce j + dek . Then x∗Bx = bii + 2 Re cbi j + 2 Re dbik +
b j j + 2 Re c̄db jk + bkk = 2 Re dbik + 2 Re c̄db jk = 0, so |bik | = ±|b jk |. Conclude that
B[α, γ ] = 0, B[β, γ ] = 0, and diag B[γ ] = 0. (3) If |γ | > 1, take i, j ∈ γ , i �= j , and
x = ei + ce j . Then x∗Bx = bii + b j j + 2 Re cbi j = 2 Re cbi j = 0, so bi j = 0. Conclude
that B[γ ] = 0. (4) If |α| > 1, take i, j ∈ α, i �= j , k ∈ β, and x = 3ei + 4ce j + 5ek . Then
x∗Bx = 24 Re cbi j = 0, so bi j = 0. Conclude that B[α] = b11 Ii+ . (5) If |β| > 1, take i ∈ α,
j, k ∈ β, j �= k, and x = 5ei + 3e j + 4cek . Conclude that b jk = 0 and B[β] = −b11 Ii− .

Section 4.6
4.6.P3 If c1, . . . , ck ∈ C and z = c1x1 + · · · + ck xk = 0, then Az̄ = λ(c1x1 + · · · +
ck xk) = 0, so (Re c1)x1 + · · · + (Re ck)xk = 0 and (Im c1)x1 + · · · + (Im ck)xk = 0.

4.6.P6 (4.4.4(c)).

4.6.P7 Represent A as in (4.6.9).

4.6.P9 Why must AĀ have at least one nonnegative eigenvalue?

4.6.P14 If μ �= 0, consider H2k(μ)−1 H2k(μ)H2k(μ).

4.6.P16 (a) AĀz j =? (b) Look at the Type I blocks. (c) Linear independence over C
always implies linear independence over R. (d) In this case, though not in general, linear
independence over R implies linear independence over C.

4.6.P17 Consider the linear system Ax̄1 = Xb1 involving an unknown vector b1. Why is
this linear system consistent (0.4.2)? Why does it have a unique solution?

4.6.P18 (f ) g is equal to half the geometric multiplicity of σ 2 as an eigenvalue of R2(A)2,
which is equal to the geometric multiplicity of σ 2 as an eigenvalue of AĀ.

4.6.P19 (1.3.P21), parts (m) and (c), together with (4.6.18).

4.6.P21 (4.6.11), (4.6.7), (4.6.P17 and P20).

4.6.P24 (b) (1.3.P19).

4.6.P26 D2 = ̄ = (̄) = D2.

4.6.P27 (a) Start with (4.6.3). If A is unitarily congruent to  as in the preceding problem,
then normality ensures that  is block diagonal and two cases must be considered:  j j =
0 or  j j = λIn j with λ > 0.
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Section 5.1
5.1.P4 (a) Use the inner product to express each of the four terms in (5.1.9).

5.1.P10 ‖#0‖ = ‖0#0‖ = |0|‖#0‖ ⇒ ‖#0‖ = 0 (#0 denotes the zero vector; 0 is the zero scalar).
0 = ‖#0‖ = ‖x − x‖ ≤ ‖x‖ + ‖ − x‖ = 2‖x‖ ⇒ (1).

5.1.P14 Since
∑n

i=1(xi − μ) = 0, (x j − μ)2 = (
∑

i �= j (xi − μ))2 ≤ (n − 1)
∑

i �= j (xi −
μ)2 = n(n − 1)σ 2 − (n − 1)(x j − μ)2.

Section 5.2
5.2.P6 (2.1.13).

5.2.P7 (a) ‖x‖
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥ ≤ ‖x‖

∥∥∥ x
‖x‖ − y

‖x‖
∥∥∥+‖x‖

∥∥∥ y
‖x‖ − y

‖y‖
∥∥∥=‖x − y‖ + |‖y‖−‖x‖|

≤2 ‖x−y‖. (c) ‖x‖ ‖y‖
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥2

= 2 ‖x‖ ‖y‖ − 2 Re 〈x, y〉=2 ‖x‖ ‖y‖ − (‖x‖2 +
‖y‖2 − ‖x − y‖2) = ‖x − y‖2 − (‖x‖ − ‖y‖)2 and hence 4 ‖x − y‖2 − (‖x‖ + ‖y‖)2∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥2

= (‖x‖−‖y‖)2

‖x‖‖y‖ ((‖x‖ + ‖y‖)2 − ‖x − y‖2) ≥ 0.

5.2.P9 Consider the unit vector u(t) = (b − a)−1/2, λ = (b − a)1/2(α + β)/2, and μ =
(b − a)1/2(γ + δ)/2.

5.2.P11 Without loss of generality, assume that ‖x‖ ≤ ‖y‖ and compute ‖x + y‖ =∥∥∥ ‖x‖
‖x‖ x+ ‖x‖

‖y‖ y+(1 − ‖x‖
‖y‖ )y

∥∥∥ ≤ ‖x‖
∥∥∥ x
‖x‖ + y

‖y‖
∥∥∥+(1 − ‖x‖

‖y‖ ) ‖y‖=‖x‖ (
∥∥∥ x
‖x‖ + y

‖y‖
∥∥∥− 1) +

‖y‖ = ‖x‖ + ‖y‖ + ‖x‖ (
∥∥∥ x
‖x‖ + y

‖y‖
∥∥∥− 2). For the lower bound, consider ‖x + y‖ =∥∥∥ ‖y‖

‖y‖ y + ‖y‖
‖x‖ x − ( ‖y‖

‖x‖ − 1)x
∥∥∥ ≥ ‖y‖

∥∥∥ ‖y‖
‖y‖ y + ‖y‖

‖x‖ x
∥∥∥− ( ‖y‖

‖x‖ − 1) ‖x‖.

5.2.P12 (5.2.16) ensures that max{‖x‖ , ‖y‖}
∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥ ≤ ‖x − y‖ − ‖x‖ − ‖y‖ +

2 max{‖x‖ , ‖y‖} = ‖x − y‖ + | ‖x‖ − ‖y‖ |.
5.2.P13 (a) Why is 〈H, i K 〉F + 〈i K , H〉F = 0?

Section 5.3
5.3.P2 Consider y = e2, z = e1.

Section 5.4
5.4.P3 Jensen’s inequality (Appendix B) and Hölder’s inequality:

‖x‖p1
p1
=

n∑
i=1

|xi |p1 ≤
(

n∑
i=1

(|xi |p1
) p2

p1

) p1
p2
(

n∑
i=1

(
1

p2
p2−p1

)) p2−p1
p2

= n
p2−p1

p2 ‖x‖p1
p2

5.4.P4 Consider f (x) = 1/‖x‖α on the unit sphere S of ‖ · ‖β . If f is unbounded on S,
there is a sequence {xN } ⊂ S with ‖xN‖α < 1/N and ‖xN‖β = 1 for all N = 1, 2, . . . ,

which contradicts equivalence of ‖ · ‖α and ‖ · ‖β .

5.4.P8 If 1 < k < n reduce to: for y1 ≥ · · · ≥ yn ≥ 0, maximize x1 y1 + · · · + xn yn

subject to x1 ≥ · · · ≥ xk ≥ 0, xk = xk+1 = · · · = xn , x1 + · · · + xk = 1. Let xi = xk +
ti , i = 1, . . . , k − 1 and maximize f (xk, t1, . . . , tk−1) = xk(y1 + · · · + yn) + t1 y1 + · · · +
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tk−1 yk−1 over S = {xk, t1, . . . , tk−1 : kxk + t1 + · · · + tk−1 = 1 and xk, t1, . . . , tk−1 ≥ 0}.
The maximum of f is achieved at an extreme point of S: xk = 1

k and t1 = · · · = tk−1 = 0,
or xk = 0 and some ti = 1 and all other t j = 0.

5.4.P9 (5.4.13) and (5.4.14) with A =
[

1 −1
0 1

]
and ‖x‖ = ‖Ax‖1.

5.4.P12 ‖A∗y‖D = max‖x‖=1 |y∗ Ax | = max‖A−1z‖=1 |y∗z| = max‖z‖=1 |y∗z| = ‖y‖D .

5.4.P13 (5.4.P11(e)). Consider an isometry A = [ai j ] for l p with 1 ≤ p < 2 < q ≤ ∞;
otherwise, consider A∗ and lq . For each standard basis vector e j ,

∥∥Ae j

∥∥
p = ∥∥e j

∥∥
p = 1,

so (a)
∑n

i=1 |ai j |p = 1 for each j = 1, . . . , n; (b) |ai j | ≤ 1 for all i, j = 1, . . . , n; and
(c)

∑n
i, j=1 |ai j |p = n. Consideration of A∗ and q shows that

∑n
i, j=1 |ai j |q = n as well.

However, |ai j |q ≤ |ai j |p with equality if and only if ai j = 0 or 1. Thus, each column of A
contains exactly one nonzero entry, and it has unit modulus; nonsingularity ensures that no
row contains more than one nonzero entry.

5.4.P18 Consider the continuous function det Y , in which Y = [y1 . . . yn].

Section 5.5
5.5.P8 (5.4.16) and (5.5.14).

5.5.P10 (5.4.22) and the duality theorem.

5.5.P11 ‖[x1 . . . xk−1 αxk xk+1 . . . xn]T ‖
= ‖(1 − α)[x1 . . . xk−1 0 xk+1 . . . xn]T + αx‖
≤ (1 − α)‖[x1 . . . xk−1 0 xk+1 . . . xn]T ‖ + α‖x‖
≤ (1 − α)‖x‖ + α‖x‖ = ‖x‖

Section 5.6
5.6.P7 Suppose that maxk Nk(A) = N j (A). ‖|AB‖| = ∥∥[N1(AB) . . . Nm(AB)]T

∥∥ ≤∥∥[N1(A)N1(B) . . . Nm(AB)Nm(B)]T
∥∥ ≤ (maxk Nk(A))‖|B‖| ≤ N j (A)

∥∥e j

∥∥ ‖|B‖| ≤
‖|A‖| ‖|B‖|.
5.6.P9 Consider N1(·) = ‖ · ‖1, N2(·) = ‖ · ‖2, A = [

0
0

1
1

]
, and B = AT .

5.6.P10 (a) ⇒: For a given x , choose θ1, . . . , θn so that |∑n
j=1 eiθ j x j | = ‖x‖1.

Let A = [eiθ1 e1 . . . eiθn e1] and B = [x . . . x], so that ‖x‖1 ‖e1‖ = N‖·‖(AB) ≤
N‖·‖(A)N‖·‖(B) = ‖e1‖ ‖x‖. ⇐: Let A = [a1 . . . an] and B = [b1 . . . bn] =
[bi j ]. Then N‖·‖(AB) = max j

∥∥Ab j

∥∥ = max j

∥∥∑
i ai bi j

∥∥ ≤ max j
∑

i |bi j | ‖ai‖ ≤ ‖|B‖|1
N‖·‖(B) ≤ N‖·‖(A)N‖·‖(B). (d) | det B| ≤ ρ(B)n . Why? (g) To conclude that | det(AD−1

A )| ≤
1, it is sufficient to know that ρ(AD−1

A ) ≤ 1, but this condition is not necessary. Con-
sider A = [

1
1

1
2

]
, for which ρ(AD−1

A ) ∼ 1.37 but nevertheless 1 = | det A| ≤ ‖a1‖2 ‖a2‖2 =√
10 < ‖a1‖1 ‖a2‖1 = 6.

5.6.P12 (a) How are the eigenvalues and singular values of a Hermitian matrix related?
Why do the eigenvalues of the Hermitian matrix A − 1

2‖|A‖|2 I lie in the real interval
[− 1

2‖|A‖|2, 1
2‖|A‖|2]?

5.6.P17 Only three terms in the series are nonzero.

5.6.P18 Choose a diagonal matrix D such that D A has all 1s on the main diagonal.
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5.6.P19 (c) Consider
[

0
0

1
0

]
,
[

0
1

0
0

]
,
[

0
1

1
0

]
, and

[
1
0

1
1

]
.

5.6.P20 The Frobenius norm is unitarily invariant and monotone; ‖�C‖2
2 =∑

i, j |σ i ci j |2 ≤
σ 1
∑

i, j |ci j |2.

5.6.P21 ρ(AA∗) ≤ ‖|AA∗‖|.
5.6.P22 ⇒: ‖|A‖|D = maxB �=0

| tr B∗ A|
‖|B‖| ≥ | tr I ∗ A|

‖|I‖| . ⇐: ‖|I‖| = maxB �=0
| tr B∗ I |
‖|B‖|D ≤ maxB �=0

‖|B‖|D
‖|B‖|D , but ‖|I‖| ≥ 1 for any matrix norm.

5.6.P23 Hint (i, j) in the following list pertains to establishing the (i, j) entry in the 6-by-6
table of constants in (5.6.P23). The matrix given in each case is one for which the inequality
‖|A‖|α ≤ Cαβ‖|A‖|β is an equality. The “equality” matrices are all in Mn: I is the identity
matrix; J = eeT has all entries 1; A1 = eeT

1 has all 1s in its first column and all other
entries are 0; E11 = e1eT

1 has only its 1,1 entry 1 and all other entries are 0.

(1, 2) follows from (2, 1) by (5.6.21)
(1, 3) ‖|A‖|1 ≤ ‖A‖1 ≤ n‖|A‖|∞; A1

(1, 4) A1

(1, 5) (max1≤ j≤n
∑n

i=1 |ai j |)2 ≤∑n
j=1(

∑n
i=1 |ai j |)2 ≤ (

∑n
j=1 1)(

∑n
i=1 |ai j |2)

(Cauchy–Schwarz inequality); A1

(1, 6) max1≤ j≤n
∑n

i=1 |ai j | ≤ n max1≤i, j≤n |ai j |; J
(2, 1) follows from (2, 5) and (5, 1); A∗

1

(2, 3) follows from (2, 5) and (5, 3); A1

(2, 4) follows from (2, 5) and (5, 4); A2

(2, 5) σ 1(A) ≤ (
∑n

i=1 σ 2
i (A))1/2 = ‖A‖2; A1

(2, 6) follows from (2, 5) and (5, 6); J
(3, 1) follows from (1, 3) by (5.6.21); A∗

1

(3, 2) follows from (2, 3) by (5.6.21); A∗
1

(3, 4) A∗
1

(3, 5) similar to (1, 5); A∗
1

(3, 6) similar to (1, 6); J
(4, 1)

∑n
j=1

∑n
i=1 |ai j | ≤ n max1≤ j≤n

∑n
i=1 |ai j |; I

(4, 2) follows from (4, 5) and (5, 2); consider the Fourier matrix, (2.2.P10).
(4, 3) similar to (4, 1); I
(4, 5) (

∑n
i, j=1 |ai j |)2 =∑n

i, j,p,q=1 |ai j ||apq | ≤ 1
2

∑n
i, j,p,q=1(|ai j |2 + |apq |2)

(arithmetic–geometric mean inequality); J
(4, 6)

∑n
i, j=1 |ai j | ≤ n2 max1≤i, j≤n |ai j |; J

(5, 1)
∑n

j=1

∑n
i=1 |ai j |2 ≤∑n

j=1(
∑n

i=1 |ai j |)2 ≤ n(max1≤ j≤n
∑n

i=1 |ai j |)2; I
(5, 2)

∑n
i, j=1 |ai j |2 = tr A∗A =∑n

i=1 σ 2
i (A) ≤ nσ 2

1(A); I
(5, 3) similar to (5, 1); I
(5, 4)

∑n
i, j=1 |ai j |2 ≤ (

∑n
i, j=1 |ai j |)2; E11

(5, 6)
∑n

i, j=1 |ai j |2 ≤ n2 max1≤i, j≤n |ai j |2; J
(6, 1) max1≤i, j≤n |ai j | ≤ max1≤ j≤n

∑n
i=1 |ai j |; I

(6, 2) max1≤i, j≤n |ai j |2 ≤ max1≤i≤n
∑n

j=1 |ai j |2 = max1≤i≤n(A∗A)i i ≤ ρ(A∗A),
(4.2.P3); I

(6, 3) similar to (6, 1); I
(6, 4) max1≤i, j≤n |ai j | ≤

∑n
i, j=1 |ai j |; E11

(6, 5) max1≤i, j≤n |ai j |2 ≤∑n
i, j=1 |ai j |2; E11
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5.6.P24 rank A = number of nonzero singular values of A and ‖A‖2 = (σ 2
1 + · · · + σ 2

n)1/2.

5.6.P25 Use (2.2.9) and (0.9.6.3); Cn is unitary.

5.6.P26 If A ∈ Mn and ρ(A) < 1, show that the Neumann series I + A + A2 + · · · con-
verges to (I − A)−1.

5.6.P36 ‖| Â‖|2 = ρ( Â∗ Â)1/2.

5.6.P37 Consider
[

1
1

0
0

]
,
[

0
0

1
0

]
, and the parallelogram identity.

5.6.P38 ⇒: If A �= 0, let B = A/‖|A‖|, so ‖|Bm‖| is bounded as m → ∞. If Jk(eiθ ) is a
Jordan block of B and k > 1, then Jk(eiθ )m is not bounded as m → ∞. ⇐: If A is not a
scalar matrix, use (3.1.21) and consider the matrix norm ‖|X‖| = ‖|S(ε)−1 X S (ε)) ‖|∞ with
0 < ε < max{ρ(A) − |λ| : λ ∈ σ (A)|.
5.6.P39 (b) Choose a Schur triangularization A/ρ(A) = U T U ∗ in which the eigenvalues
with modulus strictly less than one appear first in the main diagonal of T , followed by the
eigenvalues with modulus equal to one. The spectral norm of T is one, so every column
of T has Euclidean norm at most one. Consider columns of T containing a main diagonal
entry with modulus one. (c) See the exercise following (5.6.9).

5.6.P40 (c) ‖Ax‖2 = ‖ |Ax | ‖2 ≤ ‖ |A| |x | ‖2. (d) ‖Ax‖2 = ‖ |Ax | ‖2 ≤ ‖A|x | ‖2 ≤
‖B|x | ‖2.

5.6.P41 (a) If ‖x‖ = 1 and ‖|A‖| = ‖Ax‖, then ‖Ax‖ = ‖ |Ax | ‖ ≤ ‖ |A| |x | ‖ ≤
max‖y‖=1 ‖ |A|y‖ = N (A) ≤ max‖y‖=1 ‖ |A| |y|‖. (b) If z ≥ 0 and N (AB) = ‖ |AB|z‖,
then N (AB) ≤ ‖ |A| |B|z ‖ ≤ N (A) ‖ |B|z ‖ ≤ N (A)N (B). (c) Let z ≥ 0 be such
that ‖z‖ = 1 and N (A) = ‖ |A|z ‖ = ‖Az‖ = ‖|A‖|. Then ‖Az‖ ≤ ‖Bz‖ ≤ ‖|B‖|.
(d) ‖| |A| ‖|2 ≤ ‖A‖2.

5.6.P43 If λ1, . . . , λn are the main diagonal entries of T , then eλ1 , . . . , eλn are the main
diagonal entries of eT .

5.6.P44 Consider the matrix norm n ‖·‖∞.

5.6.P47 B = A − (A − B) = A(I − A−1(A − B)) is singular, so ‖|A−1(A − B)‖| ≥ 1.

5.6.P48 (c) (5.6.55).

5.6.P56 ‖|A‖|22 = ρ(A∗A) ≤ ‖|A∗A‖| ≤ ‖|A‖|2.

5.6.P58 (b) (AB)∗(AB) = (A∗B)∗(A∗B) and ‖·‖2 is self-adjoint.

Section 5.7
5.7.P3 Consider G(Ak xeT ) if Ax = λx and x �= 0. (c) What can you say about convergence
of power series of matrices using vector norms?

5.7.P11 (b) A previous exercise shows that r (J2(0))r (J2(0)T ) ≥ 1 is necessary for compat-
ibility.

5.7.P16 (a) N is similar to 2N . (b) If B ∈ Mn has zero main diagonal, then it is a linear
combination of nilpotent matrices so G(B) = 0. Use (2.2.3) and (5.1.2) to show that
G(A) = G((n−1 tr A)In + B) = n−1| tr A|G(In).
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5.7.P19 For given norms G1(·) and G2(·) on Mn and α ∈ [0, 1], we must show that m(αG1 +
(1 − α)G2) ≤ αm(G1) + (1 − α)m(G2), that is,

max
A �=0

ρ(A)

αG1(A) + (1 − α)G2(A)
≤ max

A �=0

αρ(A)

G1(A)
+ max

A �=0

(1 − α)ρ(A)

G2(A)

Explain why it is sufficient to show that (αa + (1 − α)b)−1 ≤ α/a + (1 − α)/b if a, b > 0,
which is just convexity of the function f (x) = x−1.

5.7.P20 (d) A = H (A) + i K (A), in which H (A) and K (A) are Hermitian (0.2.5), H (A) =
(A + A∗)/2, and K (A) = (A − A∗)/2i . Compute ‖|A‖|2 ≤ ‖|H (A)‖|2 + ‖|K (A)‖|2 =
r (H (A)) + r (K (A)) ≤ r (A) + r (A∗) = 2r (A). (e) Consider suitable n-by-n versions of
E11 and J2(0).

5.7.P23 Use the Cauchy–Schwarz inequality or (5.6.41(a)).

5.7.P25 (b) Notice that p(z) is a polynomial of degree at most m − 1, and that p(z) =
1
m

∑m
j=1(1 − zm)/(1 − w j z), so that p(z) = p(w1z) = · · · = p(wm z) for all z ∈ C. Hence

p(z) = constant = p(0) = 1.

Section 5.8
5.8.P7 Consider A = λI ∈ Mn .

5.8.P14 (3.3.17).

Section 6.1
6.1.P3 If some column a j is zero, there is nothing to prove. If all a j �= 0, let B =
A diag(‖a1‖1 , . . . , ‖an‖1)−1. Then (6.1.5) ensures that ρ(B) ≤ 1, so | det B| ≤ 1.

6.1.P4 Apply (6.1.10a) to the matrix λI − A.

6.1.P6 Apply (6.1.10) to a principal submatrix of A and use (0.4.4d).

6.1.P9 Use Corollary 6.1.5.

6.1.P10 rank A = rank(AD) for any nonsingular diagonal matrix D, so it suffices to assume
that all aii ≥ 0 and all ‖ai‖1 are either zero or 1. In this case, all the eigenvalues of A lie in the
unit disc, and one must show that rank A ≥∑n

i=1 aii . Explain why
∑n

i=1 aii =
∑n

i=1 λi ≤∑n
i=1 |λi | ≤ number of nonzero eigenvalues of A ≤ rank A.

6.1.P11 As in (6.1.P10), it suffices to consider the case in which all ‖ai‖2 are zero
or 1; in this case we must show that rank A ≥∑n

i=1 |aii |2 =∑n
i=1 |e∗i ai |2, in which

e1, . . . , en are the standard orthonormal basis vectors in Cn . If A has rank k, choose
orthonormal vectors v1, . . . , vk ∈ Cn such that span{v1, . . . , vk} = span{a1, . . . , an}.
Then ai =

∑k
j=1(v∗

j ai )v j , so e∗i ai =
∑k

j=1(v∗
j ai )(e∗i v j ) and

∑n
i=1 |e∗i ai |2≤

∑n
i=1((∑k

j=1 |v∗
j ai |2

) (∑k
j=1 |e∗i v j |2

))
=∑k

j=1

∑n
i=1 |e∗i v j |2 =∑k

j=1 1.

6.1.P13 Choose a diagonal real orthogonal matrix D such that the main diagonal entries of
D A are all positive; use (6.1.10(b)).

6.1.P16 (b) |a−1|∑ j |y j | < 1,
∑

j �=i |bi j | < |bii | − |xi |, and
∑

j �=i |ci j | =
∑

j �=i |bi j −
a−1xi y j | ≤

∑
j �=i |bi j | + |xi |(|a−1|∑ j |y j |). (c) Uniqueness of the Schur complement

(0.8.5(a)).
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6.1.P18 Choose a permutation matrix P1 such that a largest-modulus entry of the first

column of P1 X is in position 1, 1. Let R1 =
[

eiθ z∗
0 Ik−1

]
and choose θ and z such that

P1 X R1 =
[ ‖x1‖∞ 0

∗ X2

]
. Now consider X2 ∈ Mn−1,k−1 and deflate sequentially, as in the

proof of (2.3.1), to obtain a permutation matrix P = Pk−1 · · · P1 and a nonsingular upper
triangular matrix R = R1 · · · Rk−1 such that P X R is an upper triangular matrix whose
diagonal entries are the max norms of their respective columns. Let Y = X R.

6.1.P20 The preceding problem.

Section 6.2
6.2.P4 Start with the case in which A has no zero entries, then argue by continuity.

6.2.P5 Show that the companion matrix C(p) in (3.3.12) is irreducible if a0 �= 0.

6.2.P8 (6.2.26) and (6.2.1a).

Section 6.3
6.3.P1 Apply (6.3.5) to B = diag(a11, . . . , ann) and E = A − B.

6.3.P3 (a) Let ξ ∈ Ck be a unit vector such that Bξ = βξ , let x =
[

ξ

0

]
, and consider the

residual vector Ax − βx . (b) (2.5.P37).

6.3.P4 If λ1, . . . , λn are the eigenvalues of A, why are |λ1 − γ |2, . . . , |λn − γ |2 the eigen-
values of the positive semidefinite matrix B = (A − γ I )∗(A − γ I )? The hypothesis is that
x∗Bx ≤ δ2 for every unit vector x ∈ S. Apply (4.2.10(b)).

Section 6.4
6.4.P7 (6.4.7).

Section 7.1
7.1.P1 (7.1.2) and (7.1.5).

7.1.P3 Perform a congruence by a suitable diagonal matrix.

7.1.P5 If A is positive semidefinite, show that (tr A)2 ≥ tr A2.

7.1.P7 det[ f (ti − t j )]n
i, j=1 ≥ 0. For (a), consider n = 1; for (b), consider n = 2; and for

(c), consider n = 3.

7.1.P10 cos t = (eit + e−i t )/2.

7.1.P14 (7.1.10).

7.1.P15 Consider [ f (ti − t j )] with t1 = 0, t2 = −τ , and t3 = −t .

7.1.P16 Consider
∫∞

0

∣∣∑n
k=1 xke−λk s

∣∣2 ds with x = [xi ] ∈ Cn . If f (s)=∑n
k=1 xke−λk s =0

for all s > 0, then f (0) = 0, f ′(0) = 0, . . . , f (n−1)(0) = 0, a system of linear equations
for the entries of x .

7.1.P18 (a) The preceding problem. (b) Algebraically ordering the numbers corresponds
to a permutation similarity of the min matrix. Consider the representation in (a), in which
some of the summands are zero. (c) Consider [min{β−1

i , β−1
j }].
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7.1.P19 Express the integral as the limit of Riemann sums over partitions of [0, N ] with
equally spaced points.

7.1.P20 Express the double integral as an iterated integral and integrate by parts.

7.1.P21 (f ) A−1 = (S−∗)D−1(S−∗)∗. What does D−1 look like? Alternatively, observe that
A−∗ is ∗congruent to A = A−∗AA−1 and H (A−∗) = H (A−1). (g) The direct summands
correspond to ∗congruences of the various possibilities for the Toeplitz decompositions of
the Type 0 and Type I blocks in the ∗congruence canonical form of A.

7.1.P24 rank A ≤ rank [ A11 A12 ] + rank [ A∗
12 A22 ] = rank [ A11 A11 X ] + rank [ A22Y A22 ].

7.1.P26 (7.1.2) and (3.5.3).

7.1.P27 (a) A =
[

A11 A11 X
� �

]
and B =

[
B11 �

Y ∗B11 �
]
, so AB =

[
A11 B11 + A11 XY ∗B11 �

� �
]

and

(AB)[α] = A11(I + XY ∗)B11. If A = B, then X = Y and I + X X∗ is positive definite.
(c) (a) ⇒ rank A2k

[α] = rank(A2k−k Ak) ≤ rank Ak[α] = rank(Ak−1 A)[α] ≤ rank A[α].

7.1.P28 (b) X∗B = Y ∗B, so X∗B X = Y ∗B X = Y ∗BY . (c) Choose X = B−1C .

7.1.P29 (a) This means that A = S1 DS∗
1 and B = S2 DS∗

2 ; D = diag(eiθ1 , . . . , eiθn ), each
θ j ∈ (−π/2, π/2); D = � + i�, � = diag(cos θ1, . . . , cos θn), � = diag(sin θ1, . . . ,

sin θn). (b) Similar to D2, which has a unique square root with eigenvalues in the open right
half-plane. (d) Similar to T = diag(tan θ1, . . . , tan θn).

Section 7.2
7.2.P6 Interlacing. If the smallest eigenvalue of A is negative, it has more nonzero eigen-
values than B.

7.2.P10 If A∗ = B AB−1 and B = B∗ is positive definite, why is B−1/2 A∗B1/2 =
B1/2 AB−1/2? If A = S�S−1, then A = B A∗B−1 with B = SS∗.

7.2.P11 (a) If A is nonsingular, then adj(adj A) = (det A)n+2 A. (c) (2.5.P47) or consider
Aε = A + ε I, ε > 0. (d) Consider an A ∈ Mn with n ≥ 3 and rank A ≤ n − 2.

7.2.P12 (a) If i = 1 and j > 2, the first column of M1 j is a multiple of the second column.
(e) For s = i

m and t = j
m , f (s − t) = e−

1
m |i− j | = r |i− j | in which r = e−

1
m ∈ (0, 1). Use

continuity and a limiting argument.

7.2.P13 (7.2.P12(a)). Use M(r, n)M(r, n)−1 = M(r, n)−1 M(r, n) = I to determine the en-
tries of M(r, n)−1.

7.2.P14 (f ) Proceed as in (7.2.P12(e)).

7.2.P15 To reduce to the positive semidefinite case, replace A by A + cIn and B by
B + cIn+1 with a sufficiently large positive c, as in the proof of (4.3.17).

7.2.P17 Let D = A1/2 + B A−1/2 and compute DD∗.

7.2.P18 B = A(I + (A∗A)−1).

7.2.P19 (a) Consider ‖x‖2
2 = (A1/2x)∗(A−1/2x) and use the Cauchy–Schwarz inequality.

(b) Let x = ei in (a).

7.2.P20 (c) If A = SBS∗, then B1/2 AB1/2 = (B1/2SB1/2)2.

7.2.P21 (a) (4.1.6).
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7.2.P22 (d) (7.2.P21).

7.2.P23 (c) The preceding problem. (e) G A−1G = Ā ⇒ Ā = Ḡ A−1Ḡ. (f ) G A−1G =
A−T ⇒ A−T = G−T A−1G−T .

7.2.P24 (b) (7.2.10).

7.2.P26 The Cauchy–Schwarz inequality for the Frobenius inner product, the table in
(5.4.P3), and the arithmetic–geometric mean inequality.

7.2.P27 tr((
∑m

i=1 Ai )∗(
∑m

i=1 Ai )) =
∑m

i, j=1 tr(Ai A j ) ≥
∑m

i=1 tr A2
i .

7.2.P28 (b) xi = −∑ j �=i b∗
i b j x j = 0 for each i = 1, . . . , n.

7.2.P29 (a) (7.1.P1).

7.2.P30 (a) A−1/2 AB A1/2 = A1/2 B A1/2; (4.5.8). (b) A =
[

1 0
0 0

]
and C =

[
0 1
1 0

]
.

7.2.P33 (b) (7.2.P30(c)).

7.2.P34 (c) Use the Cauchy–Schwarz inequality for the Frobenius inner product.

7.2.P36 (a) X∗R X and R1/4 X R1/2 X∗R1/4 are positive semidefinite. (e) (5.6.P58). (l)
R1/4 X R1/2 X∗R1/4 is positive semidefinite.

Section 7.3
7.3.P6 (c) Consider d

dt σ 1(A(t0) + t E)|t=0, in which E =
[

0n 0
0 1

]
.

7.3.P7 (f ) If X, Y ∈ Mm,n (in their role as A†) satisfy (a)–(c), then X = X (AX )∗ =
X X∗ A∗ = X (AX )∗(AY )∗ = X AY = (X A)∗(Y A)∗Y = X∗Y ∗Y = (Y A)∗Y = Y . Alterna-
tively, write down a singular value decomposition for A† and show that its three factors are
uniquely determined by (a)–(c).

7.3.P11 |x∗ Ay| ≤ ‖x‖2‖Ay‖2.

7.3.P13 Apply the spectral theorem to P .

7.3.P14 If A = S�S−1, let S = PU .

7.3.P16 (c) A =
[

1 0
0 0

]
and B =

[
0 0
0 1

]
. (d) σ i (A) = σ i ((A + B) − B) ≤ σ i (A + B) +

σ 1(B).

7.3.P19 (d) If �, M ∈ Mn are diagonal and U is unitary, �U M and �̄U M̄ are diagonally
unitarily equivalent.

7.3.P22 (2.4.P9).

7.3.P23 (a) (7.3.1).

7.3.P25 (a) tr(U A) =∑
i, j ui j a ji . (b) tr � = tr(V ∗AW ) = tr(W V ∗�).

7.3.P26 (a) Use pA(A) = 0 to show that (A1/2)2 = A.

7.3.P28 (c) Represent A = V �W ∗ and consider separately the cases (i) A is nonsingular
(σ 1 ≥ σ 2 > 0) and (ii) A is singular (σ 1 > σ 2 = 0).

7.3.P34 If A ∈ Mm,n with m ≥ n, we have A∗A = R∗R, in which R ∈ Mn is upper
triangular.
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7.3.P35 If A is normal, P = Q in (7.3.1).

7.3.P36 Consider a polar factorization A = PU and use the preceding problem.

7.3.P37 A = SBS−1 = S−∗BS∗ ⇒ B commutes with S∗S and hence with Q.

7.3.P38 V = SW S∗ ⇒ P−1V = (U WU ∗)P ⇒ V = U WU ∗; uniqueness of the unitary
factor in (7.3.1(b)).

7.3.P39 (b) The preceding problem.

7.3.P40 The preceding problem.

7.3.P41 The preceding problem.

7.3.P43 (7.3.P35); ‖AB‖ = ‖B A∗‖ = ‖B PU ∗‖ = ‖B PU‖ = ‖B A‖.

Section 7.4
7.4.P3 (a) Since B = U�U ∗ and C = U MU ∗ for some unitary U ∈ Mn , write the asserted
inequality using y = U ∗x and then using z = (�M)1/2 y. Then apply (7.4.12.1) with B =
�M−1 to show that the asserted inequality is valid (and is sharp) with a constant of the
form λ1λnμ jμk/(λ1μ j + λnμk)2 for some choice of indices 1 ≤ j �= k ≤ n. Show that the
least constant of this form occurs for j = 1 and k = n.

7.4.P4 Take B = A1/2 and C = I .

7.4.P5 |x∗ Ax |2 = |x∗PU x |2 = |(P1/2x)∗(P1/2U x)| ≤ (x∗Px)((U x)∗P(U x)) so

|(x∗Ax)(x∗ A−1x)| ≤ (x∗Px)(x∗P−1x)((U x)∗P(U x))((U x)∗P−1(U x))

Use (7.4.12.1) twice.

7.4.P10 (a) x∗y = (A1/2x)∗(A−1/2 y).

7.4.P11 (a) (0.8.5.10). (d) Write A =
[

An ξ

ξ∗ ann

]
and B =

[
Bn η

η∗ bnn

]
. Put An → A, Bn → B,

A → Aα , B → Bβ , ξ → x , and η → y in the left-hand side of (7.4.12.20), which is
nonnegative by assumption. This proves (7.4.12.19) for i = n. Permute for the general
case.

7.4.P13 A − 1
2 (A + A∗) = 1

2 (A − H ) + 1
2 (H − A∗), so ‖ A − 1

2 (A + A∗) ‖≤ 1
2 ‖ A −

H ‖ + 1
2 ‖ H − A∗ ‖.

7.4.P16 See the preceding problem for the lower bound. For the upper bound use (7.3.P16)
to show that σ i (A + (−U )) ≤ σ i (A) + 1, which means that ‖A − U‖[k] ≤ ‖�(A) + I‖[k]

for each k = 1, . . . , n. Invoke (7.4.8.4).

7.4.P17 (b) (7.4.1.7). (c) (2.6.P4). (d) Use the condition (4.3.52a) for the case of
equality in (4.3.51); wi = σ i (A), yi = λi , and xi = σ i (B) (= σ i (A) for i = 1, . . . , n − 1
and xn = 0). Suppose that A has d distinct singular values s1 > · · · > sd−1 =
σ n−1(A) > sd = σ n(A) with respective multiplicities n1, . . . , nd , with nd = 1. Then
(σ n−1(A) − σ n(A))(

∑n−1
i=1 σ i (B) −∑n−1

i=1 λi ) = 0 ⇒ λn = 0. Now work from the top
down through the distinct singular values. (σ n1 (A) − σ n1+1(A))(

∑n1
i=1 σ i (B) −∑n1

i=1 λi ) =
(s1 − s2)(n1s1 −

∑n1
i=1 λi ) = 0 ⇒ λ1 = · · · = λn1 = s1 since all λi ≤ s1. If d > 2,

(σ n1+n2 (A) − σ n1+n2+1(A))(
∑n1+n2

i=1 σ i (B) −∑n1+n2
i=1 λi ) = (s2− s3)(n2s2 −

∑n1+n2
i=n1+1 λi ) =

0 ⇒ λn1+1 = · · · = λn1+n2 = s2. (e) (2.6.5).
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7.4.P18 Show that σ k(A) ≤ σ k(|A|) for all k = 1, . . . , n by observing that ‖Ax‖2 ≤
‖ |Ax | ‖2 ≤ ‖ |A| |x | ‖2 and then invoking (7.3.8). Then use (7.4.8.4).

Section 7.5
7.5.P1 (a) (7.2.7).

7.5.P3 Consider A ◦ Ā.

7.5.P7 To show that the matrix condition is sufficient, consider a Riemann sum approxima-
tion to the integral∫ b

a

∫ b

a
K (x, y) f (x) f̄ (y)dx dy ∼=

n∑
i, j=1

K (xi , y j ) f (xi ) f̄ (x j )xix j

To show that the matrix condition is necessary, consider a function f (x) =∑n
i=1 aiδε(x −

xi ), in which δε(x) is an “approximate delta function,” which is continuous and nonnegative,
vanishes identically outside the interval [−ε, ε], and satisfies

∫∞
−∞ δε(x)dx = 1. Now let

ε → 0.

7.5.P11 (7.1.P16).

7.5.P12 Apply the inequality in (7.1.P1) to both A and A(−1). Conclude that every principal
minor of A of size two is zero and use (7.2.P24).

7.5.P14 (a) Let x = [xi ] be a unit vector and let B = A1/2(diag x)A−1/2. The eigenvalues
of B are xi , so ‖B‖2

F ≥ ‖x‖2
2 = 1. Compute x∗(A ◦ A−1)x = tr((diag x̄)A(diag x)A−1) =

tr(B∗B) = ‖B‖2
F . (4.2.2(c)).

7.5.P15 (c) (7.5.9(b)) with f (t) = 1/(1 − t).

7.5.P17 (c) (7.1.P18). (d) (7.5.9(b)) with fk(t) = et ln pk .

7.5.P18 t A is positive semidefinite if t > 0.

7.5.P20 There is nothing to show if n = 2, so let n ≥ 3 and α = app. After a permutation,
we may assume that p = 1 and q = 2. The leading 2-by-2 principal submatrix of A is

P =
[

α α

α α

]
, so (7.1.10) ensures that

[
a1 j

a2 j

]
is in the range of P for each j = 3, . . . , n.

7.5.P22 (d) (0.9.11).

7.5.P23 (b) (7.5.P21) and the ideas in (7.5.P22).

7.5.P25 (b) H = α(X ◦ Y ), in which α > 0, X is positive semidefinite or positive definite,
and Y is a rank-one positive semidefinite matrix with positive main diagonal entries.

Section 7.6
7.6.P1 (d) If A∗ = S−1 AS, show that AS is Hermitian and use (7.6.4).

7.6.P5 The exercise following (7.6.4).

7.6.P6 (7.6.4).

7.6.P7 A + B = A(I + A−1 B).

7.6.P8 (b) The preceding problem.
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7.6.P10 Write S = (AB)C = EC , in which E has positive eigenvalues. If S is Hermitian,
explain why E = SC−1 has the same number of positive eigenvalues as S, and conclude

that S is positive definite. Consider
[

10 0
0 1

]
,
[

1 −1
−1 2

]
, and

[
3 5
5 10

]
.

7.6.P12 (a) Interlacing: B11 is a principal submatrix of S−∗BS−1.

7.6.P15 The preceding problem.

7.6.P16 (7.6.3).

7.6.P17 μ ≥ det((A1 + A2)/2) ≥ (det A1 det A2)1/2 = μ.

7.6.P18 (5.2.6).

7.6.P19 The volume of E(A) is

vol(E(A)) =
∫

x∈E(A)
dV (x) =

∫
‖y‖2≤1

| det J (y)| dV (y)

in which J (y) = [∂xi/∂yy] is the Jacobian matrix for the change of variables x → y =
A1/2x .

7.6.P20 (b) (5.4.4). (e) (7.6.P17).

7.6.P21 (b) (7.6.P20). (c) (L AL−1)∗(L AL−1) = ?

7.6.P24 Let Uk be a diagonal matrix whose diagonal entry in position k is +1 and all the
other diagonal entries are −1. Then Uk is an isometry for ‖·‖ and (7.6.11) implies that Uk

commutes with Q. Consider k = 1, 2, ... in succession and invoke (2.4.4.3).

7.6.P25 The preceding problem ensures that L is positive diagonal. PT L2 P = L2 for every
permutation matrix P . The unit ball of ‖x‖ is contained in (and must touch) E(α2 I ), so
‖x/ ‖x‖‖2 ≤ α−1 for all x �= 0.

7.6.P26 (5.4.21).

7.6.P27 (a) If Q = [qi j ], then ei Qei ≤ ‖ei‖2, so Hadamard’s inequality ensures that∏n
i=1 ‖ei‖2 ≥∏n

i=1 qii ≥ det Q.

Section 7.7
7.7.P6 (7.7.3(a)) and (7.2.6(c)).

7.7.P7 The preceding problem and (7.7.2) if A is nonsingular. If A is singular, use its
singular value decomposition to reduce to the nonsingular case.

7.7.P9 B = A1/2 XC1.2.

7.7.P10 Use (7.7.11) and (7.7.16), or invoke the Cauchy–Schwarz inequality: x∗y =
(A−1x)∗(Ay).

7.7.P14 (a) (7.6.4).

7.7.P15 (a) (7.7.14). (b) Power series and the triangle inequality.

7.7.P16 Proceed as in the proof of (7.7.12). Write (b) as x∗ Ax + y∗ Ay ≥ 2|xT By| and let
x → x̄ . Invoke (7.7.9) with A → Ā and B∗ = B̄. ( Ā + ε I )−1/2 B(A + ε I )−1/2 is symmetric
for each ε > 0.
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7.7.P17 Use (c) in the preceding problem.

7.7.P19 The preceding problem.

7.7.P21 We need cA ! J = eeT .

7.7.P22 Consider x∗ Ax for real x .

7.7.P25 See (b) in the preceding problem.

7.7.P30 Look at the cofactor representation for the elements of A−1.

7.7.P31 (7.7.15).

7.7.P33 (a) The preceding problem.

7.7.P34 (b) (7.7.4(d)).

7.7.P35 Let A = PU = U Q be polar decompositions and explain why A∗(AA∗)−1/2 A =
(U ∗P)P−1(U Q) = Q = (A∗A)1/2. (b) The preceding problem.

7.7.P37 Consider (7.7.11(b)),
[

A I
I A−1

]
, and

[
B−1 I

I B

]
.

7.7.P41 (a) H2 −
[

0 0
0 SH2 (A2)

]
! 0 and H1 ! H2 ⇒ H1 −

[
0 0
0 SH2 (A2)

]
! 0, and hence

SH1 (A1) ! SH2 (A2). (b) H1 −
[

0 0
0 SH1 (A1)

]
! 0 and H2 −

[
0 0
0 SH2 (A2)

]
! 0 ⇒ H1 + H2 −[

0 0
0 SH1 (A1) + SH2 (A2)

]
! 0 ⇒ SH1+H2 (A1 + A2) ! SH1 (A1) + SH2 (A2). (c) (7.7.P4).

7.7.P42 If z ∈ C and Re z > 0, you must show that (Re z)−1 ≥ Re(z−1).

7.7.P43 det(A + B) = (det A) det(I + A−1 B) and ρ(A−1 B) ≤ 1.

Section 7.8
7.8.P2 Apply Fischer’s inequality to A∗A and use | det B| ≤ ‖|B‖|k2 if B ∈ Mk .

7.8.P3 (7.8.18): (a11 · · · ann − det A) det B + (b11 · · · bnn − det B) det A ≤ 0.

7.8.P4 (a) (7.6.2b) and the arithmetic–geometric mean inequality:
∑

λi (AB) ≥
n(
∏

λi (AB))1/n .

7.8.P6 (7.7.4(e)).

7.8.P9 Let V = [v1 . . . vn] ∈ Mn and apply (7.8.2) to V ∗AV .

7.8.P11 det A = (det A11) det(A/A11) and A11 ! A/A22.

7.8.P13 Ek(λ1, . . . , λn) is a sum of principal minors of size k, each of which is bounded
from above by a product of k distinct diagonal entries.

7.8.P17
∏n

j=1 | cos θ j | +
∏n

j=1 | sin θ j | ≤ | cos θ1 cos θ2| + | sin θ1 sin θ2| ≤ (cos2 θ1+
sin2 θ1)1/2(cos2 θ2 + sin2 θ2)1/2.

7.8.P18 Minkowski’s inequality (B10): (
∏n

j=1 cos2 θ j )1/n + (
∏n

j=1 sin2 θ j )1/n ≤ (
∏n

j=1

(cos2 θ j + sin2 θ j ))1/n .

7.8.P19 Minkowski’s inequality (B10) again.
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Section 8.0
8.0.P2 (f ) Set Bε = (1 + ε)Aε and proceed as in the text to diagonalize Bε .

Section 8.1
8.1.P5 Consider the remarks preceding (8.1.26).

8.1.P8 ‖|A‖|22 = ρ(AT A). Why is AT A ≥ BT B?

8.1.P9 ρ(A∗A) ≤ ρ(|A∗A|).
8.1.P10 (a) If |A| > 0, let x > 0 be such that |A|x = ρ(|A|)x , and partition xT =
[xT

1 . . . xT
k ]T , in which each xi ∈ Rni . Let ξ i = ‖xi‖ and let ξ = [ξ i ] ∈ Rk . Explain

why ρ(|A|)ξ i =
∥∥∥∑ j |Ai j |x j

∥∥∥ ≤∑
j G(|Ai j |)ξ j for each i = 1, . . . , k,Aξ ≥ ρ(|A|)ξ , and

ρ(|A|) ≤ ρ(A) (8.1.29). If A has some zero entries, consider A + εJn and use a continuity
argument.

8.1.P11 The main diagonal entries of An are
∑

ai,i2 ai2,i3 · · · ain−1,nain ,i , i = 1, . . . , n, in
which the sum is over all integers i2, . . . , in ∈ {1, . . . , n}. Why is γ one of the summands?
(8.1.20).

Section 8.2
8.2.P1 There are three cases: Am → 0, Am diverges, and Am converges to a positive matrix.
Characterize and analyze each case.

8.2.P5 Let x be the Perron vector of A so that Ax > Bx .

8.2.P9 (a) If mini
∑n

j=1 ai j = ρ(A), let p be any index such that x p = mini xi and
explain why ρ(A)x p =∑n

j=1 apj x j ≥
∑n

j=1 apj x p ≥ ρ(A)x p and hence xi = x p for all
i = 1, . . . , n.

8.2.P10 Interlacing and (8.2.8) ensure that each 2-by-2 principal submatrix has exactly one
positive eigenvalue.

8.2.P11 (j) (1.4.P13). Any non-real eigenvalues occur in conjugate pairs.

8.2.P13 For any given ε > 0, why is there an N such that 1 − ε < tr( 1
ρ(A) Am) = 1 + rm

1 +
· · · + rm

n < 1 + ε for all m > N (rk = λk(A)/ρ(A))?

8.2.P14 (c) (8.2.P11).

8.2.P15 (b) If any zero entry of A is zero, increase it slightly to obtain a positive matrix
A′ such that 0 ≤ A′ ≤ B but A′ �= B. Let y be the left Perron vector of A′ and let x be the
right Perron vector of B. Then ρ(B ′)yT x = yT B ′x < yT Ax = ρ(A)yT x .

Section 8.3

8.3.P1 Consider
[

1 1
0 1

]
,
[

1 0
0 1

]
, and

[
0 1
1 0

]
.

8.3.P2 If x > 0 and Ak x = ρ(Ak)x , then Ak(Ax) = ρ(Ak)(Ax). Invoke (8.2.5) and (8.3.4).

8.3.P3 If all the sub- and superdiagonal entries are positive, then there is a positive diagonal
matrix D such that D−1 AD is symmetric. Now use a limit argument.
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8.3.P6 (b) B Ax = ABx = ρ(B)Ax , (8.2.6), and (8.3.4). Alternatively, B = S([ρ(B)] ⊕
B1)S−1 and A = S([λ] ⊕ A1)S−1, in which the first column of S is the Perron vector of B
and ρ(B) is not an eigenvalue of B1.

8.3.P9 The eigenvalues of λI + A are λ + λi .

8.3.P10 (8.3.1): ρ(A) ≤ max{yT Ay : y ∈ Rn , y ≥ 0, and ‖y‖2 = 1} ≤ max{yT H (A)y :
y ∈ Rn and ‖y‖2 = 1}.
8.3.P12 (a) Let λ ∈ σ (A). If λ is real, then r − λ ≥ 0. If λ is not real, then λ̄ ∈ σ (A) and
(r − λ)(r − λ̄) > 0. (b) (5.6.16). (c) Continuity.

8.3.P13 (1.2.13), (1.2.15), and the preceding problem. ρ(A) not simple ⇒ Sn−1(ρ(A)I −
A) = 0 ⇒ En−1(ρ(A)I − A) = 0 ⇒ tr adj(ρ(A)I − A) = 0 ⇒ each main diagonal entry
is zero.

8.3.P16 (a) The hypothesis is that Ax ≥ 0 ⇒ x ≥ 0. If Ax = 0, then A(−x) = 0 so x ≥ 0
and −x ≥ 0. If z is a column of A−1, then Az is a column of In , which is nonnegative.

Section 8.4
8.4.P6 (8.4.1).

8.4.16 (c) (1 + t)n−1 = qA(t)h(t) + r (t), in which r (t) has degree at most m − 1.

8.4.17 Use the characterization of a best rank-one approximation given in (7.4.1).

8.4.19 The hint for (8.2.P9) permits us to conclude that x j = x p for all j such that apj > 0.
Let q �= p and let k1 = p, k2, k3, . . . , km = q be a sequence of distinct indices such that
each entry ak1k2,ak2k3 , . . . , akm−1km is positive. Explain why x p = xk2 = · · · = xkm−1 = xq .

8.4.20 (c) If A2 is irreducible, nonpositive, and nonzero, consider the multiplicity of its
negative eigenvalue −ρ(A2). (d) How few zero entries can a reducible matrix have?

8.4.21 (a) (I + A)x ≤ (α + 1)x ⇒ (I + A)n−1x ≤ (α + 1)n−1x .

8.4.22 (a) rank G ≤ n ⇒ λ = 1 is an eigenvalue of I − G with multiplicity at least two.

8.4.24 Let A1 =
[

0 1
1 0

]
and let A2 be the companion matrix of p(t) = t3 − 1. Consider

A1 ⊕ A1 and A1 ⊕ A2.

8.4.26 (a) (1.4.11) and (8.3.P12 and P13). (b) (8.3.P14).

Section 8.5
8.5.P3 Consider

[
1 1
1 0

]
and

[
0 1
1 1

]
.

8.5.P4 Think of A as a linear transformation acting on the standard basis {e1, . . . , en}. Then
A : ei →? An−1 : ei →? A(n−1)(n−1) : e1 →?

8.5.P10 If |μ| = ρ(A), μ �= ρ(A), z �= 0, and Az = μz, then (ρ(A)−1 A)m z →?

8.5.P14 Consider A2 and use (8.5.5) and (8.5.6). Use (8.5.8).
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Section 8.7
8.7.P2 The preceding problem and (3.2.5.2).

8.7.P4 The preceding problems.

8.7.P5 ‖|A‖|2 ≤∑
i αi‖|Pi‖|2.

8.7.P6 Ae = e ⇒ ‖|A‖| ≥ 1. ‖|P‖| = 1 for every permutation matrix ⇒ ‖|A‖| ≤ 1.

8.7.P7 If A = α1 B + α2C with α1, α2 ∈ (0, 1), α1 + α2 = 1, and A, B, C are doubly
stochastic, then every entry of B and C in the same position as a zero entry of A must be
zero.

8.7.P8 (8.7.2).

8.7.P9 If has n + 1 positive entries, some row contains at least two positive entries, so two
different columns of A contain at least two positive entries each. At most n − 3 positive
entries are contained in the remaining n − 2 columns.

8.7.P13 Use the Fan dominance theorem and (8.7.3).

8.7.P14 If A is permutation similar to the block matrix in (6.2.21), what are the column
sums of the block B? What must the sum of its row sums be?
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A and A∗

similar, 229
similar via a Hermitian matrix, 229
similar via a Hermitian positive definite

matrix, 443, 489
a posteriori bound, 384, 411
a priori bound, 382, 405
A2 = 0, see self-annihilating matrix[

A B
B A

]
, 71[

A B
−B A

]
, 71, 187, 273[

A B
B −A

]
, 71, 272[

0 A
Ā 0

]
, 72, 307

conjugate normal or normal, 277[
A A∗
A∗ A

]
, 144[

0 A
A∗ 0

]
, 158[

0 A
AT 0

]
, 158, 276[

A B
−B̄ Ā

]
, 275, 307

AĀ
= 0, see conjugate self-annihilating matrix
= AA∗, 277
= ĀA

and A is normal, 138
real orthogonal quasitriangularization of A,

106
= I , see coninvolutory matrix
= −AA∗, 277
eigenvalues, 267
Hermitian, 277

is real, see barAA
normal, see congruence-normal matrix, 277
positive semidefinite, 277, 311
similar to real matrix, 203

AAT = AT A
and A is normal, 138

AA∗ = B B∗

B = AU , 455
A∗ A = B∗B

B = U A, 155, 452, 457
AB versus B A

Jordan blocks, 184
similarity, 189

AB vs. B A
eigenvalues, 65
singular values, 455

Abel’s formula, 56
absolute norm

‖ei‖ ‖ei‖D ≥ 1, 339
definition, 332
dual norm is absolute, 332
dual norm representation, 332
is monotone, 332, 339
Loewner–John matrix is diagonal, 492
matrix norm that it induces, 358
on matrices, 470
standardized, 339
symmetric gauge function, 464

adjacency matrix, 226
adjoint

classical, see adjugate
Hermitian, see conjugate transpose
of a norm on matrices, 357

607
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adjugate
2-by-2 matrix, 22
and nonzero eigenvector entries, 82
columns are right eigenvectors, 82
definition, 22
eigenvalue with geometric multiplicity one,

82
eigenvectors of 2-by-2 matrix, 82
gradient of determinant, 23
Hermitian, 233
Hermitian matrix, 145
Jordan canonical form, 188
Newton’s identities, 198
nilpotent Jordan block, 190
nilpotent matrix, 190
normal matrix, 145
of a direct sum, 31
of a matrix with rank n − 1, 22
polynomial in A, 125
positive definite, 233, 443
positive definite matrix, 145
positive semidefinite, 233
positive semidefinite matrix, 145
rank 1, 23
reverse product rule, 23
rows are left eigenvectors, 82
r th adjugate matrix

and inverse of compound matrix, 29
definition, 29
det(A + B), 29
identity related to compound matrix, 29
multiplicativity property, 29

singular value decomposition, 155
unitary, 93
unitary matrix, 145
upper triangular, 129

Alfred Horn’s inequalities, 260
algebra generated by

one matrix, 128, 197
two matrices, 74, 128, 197

algebra of matrices, 74
algebraic multiplicity

definition, 51, 76
irreducible nonnegative matrix, 534, 535
positive matrix, 526, 528
spectral radius of a positive matrix, 528

algebraic–geometric multiplicity inequality, 181
algebraic-geometric multiplicity inequality, 55,

59, 79
algebraically closed field, 561
alternative, theorem of the, see Fredholm,

alternative

analytic function
of a matrix, 350
one-to-one, see univalent function, univalent
schlicht, see analytic function, univalent
univalent, 260

Ando, T., xvi
angle

between Ax and Ay with x ⊥ y, 473
between columns (rows) of a real normal

matrix, 132
between one-dimensional subspaces, 317
between real vectors, 15, 473
between x and Ax , 474
principal, see principal angles

annihilating polynomial, 129, 187, 191
anticommutator, see Jordan product
anticommute

definition, 21, 75
intertwining relation, 112

anticommuting family
diagonalizable matrices, 75
finite, 75

antidiagonal, see counterdiagonal
antihomogeneous, see conjugate homogeneous
antilinear transformation, see sesquilinear

transformation
approximate inverse, 351
approximation

by a 2-sided rotation, 463
by a Hermitian matrix, 323
by a positive semidefinite matrix, 323
by a rank one Hermitian matrix, 379
by a rank-k matrix, 462
by a scalar multiple of a unitary matrix, 463
by a singular matrix, 369
in a unitarily invariant norm, 467
least squares, 379
of a nonsingular matrix by a singular matrix,

461
unique, 461, 476

unitary Procrustes problem, 463
argument of a complex number

definition, 556
principal value, 556

argument principle, 389
arithmetic-geometric mean inequality

definition, 559
weighted, 559

arithmetic–geometric mean inequality
determinant, 489

Asano, K., 311
Auerbach’s theorem, 334, 492
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augmented matrix, 12
Autonne’s theorem, 152, 153, 263, 278
Autonne’s uniqueness theorem, 152
Autonne, L., 159, 278, 279
Autonne–Takagi factorization

A = U�U T , 263, 278
uniqueness in, 263

Autonne-Takagi factorization
A = U�U T , 153

back substitution, 216
backward diagonal, see counterdiagonal
backward identity, see reversal matrix
backward shift, 34
balanced vector

and singular circulant matrices, 100
definition, 445
null space of correlation matrix, 445

ball
in a normed linear space, 565
of radius r , 335
unit, see unit ball

Ballantine, C. S., 492
Barrett, W., xii, xvi
basis

and norms, 321
change of, matrix, 40
coordinates of a vector, 39
definition, 3
dual, 93
extend to a, 4
orthonormal, 16
reciprocal, 93
representation, 39
standard, 4

Bauer, F. L., 413
Bauer-Fike theorem, 405
Beasley, L., xii
Belitskii, G., xiv, 207, 210, 215
Benedetti, R., 278
Berenstein–Veinstein inequality,

475
Bergström’s inequality, 475
Bhatia, R., 260, 564
bidiagonal matrix

block bidiagonal, 36
definition, 36
distinct singular values, 259
lower and upper, 36
unreduced, 259

bilinear form, 226
biorthogonality

complete principle of, 123
principle of, 79, 123, 134, 529

Birkhoff’s theorem, 253, 407, 549
Birkhoff, G., 553
Birkhoff–Kőnig theorem, see Birkhoff’s

theorem
block

bidiagonal, 36, 201, 204
centrosymmetric, 2-by-2, 71
diagonal, 21, 30, 32, 202
diagonalizable, 114
Gaussian elimination, 25
Geršgorin theorem, 395
matrix norms, 370
strictly diagonally dominant, 395
triangular, 31

pth root, 130
tridiagonal, 36
upper triangular, 202, 204

block matrix
positive (semi)definite, 495

criterion, 496
Bochner’s theorem, 427
bordered matrix

characteristic polynomial, 56
companion matrix singular values, 197
definition, 26
determinant, 26, 475
eigenvalue interlacing, 242, 258, 444
eigenvalues, 56, 107, 242, 258
normal, 144
rank, 258, 259

boundary, 336
boundary value problem, 427
bounded set, 336, 565
Bourgeois, G., 130
Bračič, J., 200
Brauer set, 415
Brauer’s theorem, 51, 122, 186, 415, 416
Brauer, A., 424
Brualdi’s theorem, 419, 421
Brualdi, R., 175, 191, 396, 424
Buchheim, A., 131
Burke, J. V., 413
Burnside’s theorem on matrix algebras, 74

Cain, B., xii
cancellation theorem

congruence, 295
∗congruence, 291
consimilarity, 305
similarity, 188
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canonical angle, see ∗congruence canonical
form

∗congruence diagonalizable matrix, 293
canonical blocks, see canonical form
canonical form

congruence, 294
∗congruence, 290
consimilarity, 305
definition, 41
Jordan, 167
real Jordan, 202
real normal, 136
real orthogonal, 137
real skew-symmetricc, 136
real symmetric, 136
squared-normal matrix, 147
test for equivalence, 164
unitary Weyr, 211
Weyr, 206

canonical pairs
Hermitian–Hermitian, 295, 567
symmetric–skew symmetric, 295, 567

canonical ray, see ∗congruence canonical form
Carathéodory theorem on convex sets in Rn , 557
Carathéodory’s theorem, 552
Carathéodory–Steinitz theorem, see

Carathéodory theorem
cardinality, 3
Carlen, E., 75
Carlson, D., xii
Carmichael and Mason’s bound, 366, 404
Carroll, Lewis, see Dodgson’s identity
Cartesian product of vector spaces, 370
Cassini ovals, see ovals of Cassini
Cauchy

bound on zeroes of a polynomial, 365, 404
expansion of determinant, 26
interlacing theorem, 242, 298
matrix, 38

determinant, 38
rank-one perturbation, 26, 66
separation theorem, 242
sequence, 328
spectral theorem, 234

Cauchy, A., 234
Cauchy–Binet formula, 28
Cauchy–Schwarz inequality

case of equality, 315
definition, 15
for a pre-norm, 330
proof for a semi-inner product, 316
proof for an inner product, 315

real vectors, 559
Cayley–Hamilton theorem

2-by-2 case, 130
Buchheim’s proof, 131
Cayley’s comments on the proof, 131
commutative ring, 124
Frobenius gave first general proof, 131
theorem, 109
two-variable version, 128

centralizer
definition, 213
dimension, 213

centrohermitian, 36
centrosymmetric

2-by-2 block, see block centrosymmetric,
2-by-2

block structure of, 36
definition, 36
eigenvalues, 199
similar to block diagonal matrix, 74

characteristic equation, 49
characteristic polynomial

bordered matrix, 56
coefficients, 53, 54
definition, 49
derivative

and eigenvalue multiplicities, 54
derivative of, 29
generalized, 127, 297
positive (semi)definite matrix, 438
traces of compound matrices, 108

Choi, M. D., 75
Cholesky factorization

2-by-2 matrix, 442
implies Q R factorization, 456
positive semidefinite matrix, 90, 441

Choudhury, D., xii
Chowdhury, R., xii
circulant matrix

basic circulant permutation, 33
definition, 33
eigenvalues, 100
nonsingular if diagonally dominant in any

one row, 396
nonsingularity and balanced vectors, 100
properties, 33
spectral norm, 365, 594
spectrum of perturbation, 57
unitary diagonalization, 100

classical adjoint, see adjugate
Clausing, A., 476
closed set, 336, 565
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closure, 336
coefficient matrix, 12
cofactor

definition, 17
size r , 17

column
operations, 9
rank, 12

column inclusion property
definition, 216, 432
LU factorization, 216
positive (semi)definite matrix, 432
positive definite Hermitian part, 434
positive semidefinite Hermitian part, 433
real and imaginary parts of a positive

semidefinite matrix, 503
sufficient condition, 436

column space, 8
column stochastic matrix, see stochastic matrix,

column
combinatorially symmetric matrix, see

nonnegative matrix, combinatorially
symmetric

commutative ring, 124
commutator

[A, B] = cI is impossible if c �= 0, 130
A and A∗, 144
commutes with, 126, 130, 190, 198, 200
definition, 126
Laffey’s theorem, 126
multiplicative, 146
nearly normal matrix, 144
of a pair of Hermitian matrices, 446
quantum system, 447
rank 1 ⇒ nilpotent, 126
rank 1 ⇒ simultaneously triangularizable,

126
commute

and invariant subspace, 190
anticommute, see anticommute
definition, 21
quasicommute, 127
with every unitary matrix, 130

commuting family
common eigenvector, 63
definition, 62
normal, 135, 143
real

simultaneous real orthogonal
quasitriangularization, 105

real normal, 137
real symmetric, 145

simultaneous triangularization, 103
simultaneously block triangularizable, 115
simultaneously triangularizable, 115
Weyr canonical form, 211

compact
definition, 336
unit ball in finite dimension, 336

compact set, 565
companion matrix

alternative forms, 197
common eigenvector, 198
condition number, 386
definition, 194
eigenvectors, 198
inverse, 199
irreducible, 404
Newton’s identities, 198
nonderogatory, 195
normal, 197
polar decomposition, 457
singular values, 197
unitary, 197

compatible norms
characterization, 374
definition, 344, 373
matrix norm → vector norm, 347
necessary condition, 375
spectral dominance, 347
vector norm → matrix norm, 344

complementary nullities, 19, 87, 222
complete normed linear space, 329
complete principle of biorthogonality,

see biorthogonality, complete
principle of

complete system of invariants, 41
completeness property, 328
complex number

addition, 555
argument, 556
conjugate, 555
definition, 555
division, 555
imaginary part, 555
modulus, 555
multiplication, 555
polar coordinates, 556
real part, 555
triangle inequality, see triangle

inequality
unit disc, 556

complex orthogonal equivalence
to transpose, 279
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complex orthogonal matrix
2-by-2 block matrix, 93
definition, 92
Jordan canonical form, 276
not necessarily diagonalizable, 276
similar to a, 276
upper triangular ⇔ diagonal, 93

complex representation
quaterion type, 275

complex type, 71
compound matrix

and the characteristic polynomial, 108
definition, 21
det(A + B), 29
determinant of, 22
eigenvalues, 107

of C2(A), 158
homogeneous of order r , 22
identity related to r th adjugate matrix,

29
inverse and r th adjugate matrix, 29
inverse of, 22
multiplicativity property, 21
of a diagonal matrix, 22
of a Hermitian matrix, 233
of a normal matrix, 147
of a positive definite (semidefinite) matrix,

233
of a triangular matrix, 22
of a unitary matrix, 93
of conjugate transpose, 22
of transpose, 22
rank one, 22
singular values, 158
spectral radius, 108
strengthened Schur inequality, 158
trace of a, 108

compression
via determinant, 445
via principal minor sums, 445
via pth compound matrix, 445
via trace, 437, 445

concanonical form
algorithm, 305
theorem, 305

condiagonalizable
definition, 286, 301
unitarily, 301

condiagonalization
algorithm for, 310
coninvolutory matrix, 304
criterion, 304

distinct coneigenvalues, 303
simultaneous, 307

condition number for eigenvalues, 406, 411
condition number for inversion

companion matrix, 386
definition, 382
equivalence, 385
geometric characterization, 386
normal matrix, 385
positive definite matrix, 444

conditionally positive semidefinite matrix
definition, 484
Hadamard exponential, 484

coneigenpair
definition, 301
equivalent to real eigenpair problem, 309

coneigenspace
and null space of AĀ, 304, 310
basis for a, 303, 309
definition, 302
dimension of a, 303, 308

coneigenvalue
definition, 301
real representation, 309

coneigenvectors
algorithm to compute, 309
and eigenvectors of AĀ, 302
associated with nonnegative coneigenvalue,

302
definition, 301
linearly independent, 308, 309, 310
linearly independent over R, 307
linearly independent over C, 307

conformal partition, 17
congruence

cancellation theorem, 295
canonical pairs, 567
cosquare, 294
definition, 41
equivalence relation, 281
lower triangular, 223
nonsingular matrices, 295
normal, see congruence-normal matrix
preserves rank, 281
regular part, 295
regularization, 295
simultaneous diagonalization

Hermitian–Hermitian, 287
Hermitian–symmetric, 286, 287
symmetric–symmetric, 287
via nonsingular, 287
via unitary, 286
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singular part, 295
to a real matrix, 299
to conjugate, 299
to transpose, 299
type I block cosquare, 298
unitary

definition, see unitary congruence
T congruence, see congruence
∗congruence

definition, 41
∗congruence

cancellation theorem, 291
canonical form, see ∗congruence canonical

form
canonical pairs, 567
complex orthogonal, 300
definition, 83, 281
diagonalizable, 436, 457, 514

algorithm, 293
equivalence relation, 281
invariants, 292
normal matrices, 296, 457
preserves rank, 281
regularization, 292
simultaneous diagonalization

via nonsingular, 287
via unitary, 286

to a real matrix, 299
to conjugate, 299
to inertia matrix, 282
to transpose, 299
type I block cosquare, 297
unitary matrices, 457

congruence canonical form
algorithm, 295
theorem, 294

∗congruence canonical form
∗cosquare, 290
algorithm, 292
canonical angle, 290
canonical blocks, 290
canonical ray, 290
definition, 290
diagonalizable, 293
generalization of Sylvester’s inertia theorem,

297
Hermitian matrix, 297
normal matrix, 296
positive definite Hermitian part, 436
positive semidefinite Hermitian part, 436
regular part, 290
singular part, 290

theorem, 289
unitary matrix, 297

congruence-normal matrix
AĀ is Hermitian, 277
AĀ is positive semidefinite, 277
characterizing properties, 143
definition, 143
unitary congruence canonical form, 277

coninvariant subspace, 262
coninvolution

criterion for unitary congruence, 311
definition, 38
product with “real similar”, 306

coninvolutory matrix
complex vs. real similarity, 70
consimilar to I , 304
definition, 38
diagonalizable, 191
intertwining relation, 308
Jordan canonical form, 191
singular value decomposition, 278
singular values, 159
unitary congruence canonical form, 311

conjugate
homogeneous, 305
matrix ∗congruent to its, 299
matrix congruent to its, 299

conjugate linear function, 15
conjugate of a complex number, 555
conjugate partition, 172
conjugate self-annihilating matrix

definition, 157
singular value decomposition, 157

conjugate transpose
definition, 6

conjugate-normal matrix
block matrix criterion, 277
block triangular, 268
block triangular is block diagonal, 268
definition, 268
direct sum of real orthogonals, 269
is congruence normal, 277
triangular is diagonal, 268
unitary congruence canonical form, 268, 274
unitary congruence invariant, 268
unitary congruence of two, 274

conjunctive, 281
consimilarity

and a real representation, 72, 310
cancellation theorem, 305
canonical form, 305
complex orthogonal, 300
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consimilarity (cont.)
definition, 41, 300
real, 300
to a Hermitian matrix, 306
to a real matrix, 306
to conjugate, 306
to transpose, 306
unitary, 300

consistent linear system, see linear system,
consistent

consistent norms, see compatible norms
continuity

definition, 314
eigenvalues of a matrix, 122, 564
with respect to a norm, 314
zeroes of a polynomial, 563

continuous function
definition, 563, 565
uniformly, 565

contraction
definition, 161, 493
dilation to a unitary, 162
strict

definition, 493
contriangularizable

block, 301
definition, 301
unitarily, 301

convergence with respect to a norm, 325
convergent matrix

characterization, 181
criterion, 348
definition, 180, 348

convex
combination, 557
cone, 557
function, 558, 559
hull, 557
set, 557

generators, 557
unit ball of norm, 337

convex function, 426
convex matrix functions, see Loewner partial

order, convex matrix functions
correlation

Wigner–Yanase, see Wigner–Yanase
correlation

correlation matrix
characterization as a special Gram matrix,

445
definition, 434

diagonal of inverse, 444
eigenvalue bounds, 445
nullspace vectors are balanced, 445
tridiagonal

eigenvalues, 445
cosquare

Jordan canonical form, 294
type I block, 298

∗cosquare
A−1 similar to A∗, 86
definition, 290
Jordan canonical form, 290
type I block, 297

counterdiagonal
definition, 33

coupled equations, 176, 285
Courant, Richard, 239
Courant–Fischer theorem, 236
covariance

matrix, 280, 426
of X and Y in the state R

Cauchy–Schwarz inequality, 447
definition, 446

semi-inner product
definition, 446

Cragnolini, P., 278
Cramer’s rule, 24
cramped unitary matrix, see unitary matrix,

cramped
critical point, 425
cross diagonal, see counterdiagonal
C S decomposition

general form, 162
theorem, 160

cycle
definition, 400
simple directed, 400
trivial, 400, 418

cyclic of index k, 537

defect from normality, 102, 144, 147, 156
defective, 77
definite Hermitian matrix, see positive

semidefinite or positive definite matrix
definitions

how to find, xiii
deflation

and the power method, 81
if one eigenvalue is known, 82
proof of Schur triangularization theorem, 101
real matrix, 74
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degree
of a polynomial, 46

deleted absolute column sums, 389
deleted absolute row sum, 388
dense, 363
density matrix

definition, 446
mixed state, 446
pure state, 446
square root is unit vector in Frobenius norm,

446
DePrima, C. R., 94
derogatory

definition, 77
determinant

arithmetic–geometric mean inequality, 489
Cauchy expansion of, 26
cofactor, 17
definition, 8
derivative of, 29
det(A + B), 29, 108
det(A + B) ≥ det A + det B, 490, 511
Dodgson’s identity, 29
empty matrix, 24, 507
Kronecker theorem, 27
Laplace expansion of, 8, 28
log det is strictly concave on positive

definites, 488
minor, 17
multiplicativity, 11
negative definite matrix, 431
positive (semi)definite matrix, 430
product of eigenvalues, 51
rank-one perturbation, 26
similarity invariant, 59
superadditive on positive definites, 490,

511
Sylvester’s identity, 27
upper bound, 107, 363, 394

Hadamard inequality, 93
upper bound used in Fredholm integral

equations, 514
Wronskian, 56

Deutsch, E., 492
dexter-diagonal, see counterdiagonal
diag, 5, 30, 479
diagonal

backward, see counterdiagonal
entries, permutation, 32
main, 5
secondary, see counterdiagonal

subdiagonal, 5
superdiagonal, 5

diagonal entries
eigenvalues, see Mirsky’s theorem
equal, 95

diagonal equivalence
definition, 41
to a matrix with distinct eigenvalues, 75

diagonal matrix
commute with a, 30
definition, 30
left multiplication by a, 30
right multiplication by a, 30

diagonalizable
∗congruence, 436
all eigenvalues = 0, 58
all eigenvalues = 1, 58
almost, 116
∗congruence, see ∗congruence,

diagonalizable, see ∗congruence,
diagonalizable, see ∗congruence,
diagonalizable

consimilarity, 304
criterion, 174, 193, 194
definition, 59
part, 189
rank one, 173
real matrix, 203
real orthogonal equivalence, 155
real orthogonally, 94
simultaneously, 61
unitarily, 94
unitary equivalence, 150
upper triangular, 145
via real orthogonal equivalence, 155

diagonally dominant
circulant matrix (any row), 100, 396
criterion, 397
definition, 392
preserved under Gaussian elimination,

394
strictly, see strictly diagonally dominant

difference equation, 581
differential operator

elliptic, see elliptic differential operator
hyperbolic, see hyperbolic differential

operator
linear second order, 226

dilation
to a unitary matrix, 162

dimension, 4
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direct sum
adjugate, 31
matrix pairs, 568
of matrices, 30
of subspaces, 2

directed path, 400
discriminant

determinant of moment matrix, 128
quadratic polynomial, 50, 75, 264

distance
to nearest Hermitian matrix, 476
to nearest rank-k matrix, 462
to nearest scalar multiple of a unitary matrix,

463
to nearest singular matrix, 369, 461
to nearest unitary matrix, 476

Ðjoković, D., 100
Dodgson’s identity, 29
Domanov, I., xvi, 191
dominant eigenvalue, 532
dot diagram, 172, 206
dot product, see inner product
doubly stochastic matrix

Birkhoff’s theorem, 253
compact convex set, 548
convex combination of permutation matrices,

549, 552
definition, 253, 548
not unistochastic, 413
permutation matrices are extreme points,

552
reducible, 552
semigroup, 551
spectral matrix, 552
unistochastic, 257, 407

doubly substochastic matrix
definition, 550
dominated by doubly stochastic matrix, 550

Drazin inverse
characterized by 3 identities, 186
definition, 185
limit, 189
polynomial in A, 186
projections, 189
reciprocal eigenvalues, 186
semiconvergent matrix, 191

Drazin, M. P., 130
dual basis, 93
dual matrix norm

definition, 358
norm induced by absolute norm, 361
of l1 matrix norm, 359

of ‖| · ‖|1, 343, 360
of spectral norm, 362

dual norm
definition, 329
duality theorem, 338
is a norm, 330
of absolute norm, 332
of Euclidean norm, 331
of k-norm on vectors, 334
of l p norm, 331
of max norm, 331
of sum norm, 331
self-dual norm, 331

duality theorem
application, 339, 343, 344, 353, 355, 359,

361, 364
theorem, 338

Dungey, J. W., 130

e, see vector, all ones
edge, 226
eigenpair, 44
eigenspace, 76
eigenstate

definition, 447
eigenvalue

semisimple, 181
eigenvalue inclusion sets, 393
eigenvalues

2-by-2 matrix, 50, 128
A + B, 239
AB vs. B A, 65
adj A, 145
and dominating nonnegative matrix, 526
and singular values, 347
bordered matrix, 56
bounds on diagonal entries, 238
continuity, 122, 564
definition, 44
derivative, 409
diagonal entries, see Mirsky’s theorem
distinct, 51, 57, 60, 75, 124

moment matrix criterion, 129
number of, 129
sign pattern requires, 129, 130

inclusion set, 388, 396, 399, 412, 413
location near n−1 tr A, 146
low-rank matrix, 65
multiplicity, 51

zero derivatives of characteristic
polynomial, 54

not in interior of any Geršgorin disc, 397
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on boundary of Geršgorin set, 397, 398
perturbation of, 405
polynomial in A, 108
positive (semi)definite matrix, 430
product is determinant, 51
rank-one perturbation, 52, 122, 186
real matrix, 145
real matrix, odd size, 55
reversal matrix, 145
secondary, 527
semisimple, 76, 174, 368, 552
simple, 76, 408, 409

nonzero derivative of characteristic
polynomial, 54

sum is trace, 50
tridiagonal matrix, zero main diagonal, 81
Weyl product inequalities, 370, 454

eigenvector
2-by-2 matrix, 128
common, 63, 120
companion matrix, 198
definition, 44
left, 77
normalized, 45
unit, 45

elementary row/column operations, 9
elementary symmetric function

and Hadamard’s inequality, 514
definition, 54

ellipsoid
Loewner ellipsoid of a norm, 491
positive definite matrix, 491

elliptic differential operator
definition, 296
local maxima/minima, 480
positive definite discretization, 429

Elsner, L., 148, 223, 564
Elton, J. H., 300
empty matrix

determinant, 24, 507
EP matrix

definition, 158
normal matrix is EP, 146
rank-principal, 296
rank-principal matrix, 158

equal diagonal entries, 95
equilibrated, 336
equivalence

and rank, 13, 158, 189
definition, 41
diagonal equivalence, see diagonal

equivalence

triangular, see triangular equivalence
unit triangular, see unit triangular equivalence
unitary

definition, see unitary equivalence
equivalence class, 40
equivalence relation

definition, 40
reflexive, 40
symmetric, 40
transitive, 40

equivalent norms, 327
essentially

Hermitian, 7, 89, 233
nonnegative matrix

definition, 532
dominant eigenvalue, 532
Gram matrix, 539

triangular, 32
Euclidean algorithm, 130, 192
Euclidean length or norm, see norm,

Euclidean
Euler’s theorem, 143
exchange matrix, see reversal matrix
extreme point, 552, 557

family of matrices
definition, 62
irreducible, 62
reducible, 62

Fan
determinant inequality, 512
dominance theorem, 467
eigenvalue majorization inequalities, 250,

259, 260
k-norms, 466
normalizable matrices, 300
theorem on location of eigenvalues,

526
Fan, K., 300, 476
Faßbender, H., 278
Fearnley-Sander, D., 320
Fejér’s uniqueness theorem, 480
Fejér, L., 485
Ferrers diagram, see dot diagram
field

algebraically closed, 561
definition, 1

field of values
definition, 372

Fill, J., xvi
finite-dimensional quantum system, see

quantum system
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finitely generated convex set, 557
Fischer inequality

block generalization, 507
proof via Cholesky decomposition, 514
proof via Minkowski inequality, 513
reverse, 514
theorem, 506

Fischer, E., 239
FitzGerald, C. H., 505
Fletcher, R., 175
Fonseca, C. M., xvi
forward shift, 34
forward substitution, 216
Fourier matrix, 100
Fredholm

alternative, 16
Friedland, S., 75
Frobenius

inner product, 321
norm

absolute norm, 342
definition, 341
l2 matrix norm, 321
‖AB‖2 = ‖B A‖2 sometimes, 370
tr A∗ A, 7, 133
unitarily invariant, 342

rank inequality, 13
theorem, 146

Frobenius normal form, 532
Fuglede–Putnam theorem

alternative proof, 143
AX = X B and X is normal, 148
theorem, 138

Fujii, M., 370
full-rank factorization

definition, 13
Hermitian matrix, 234
normal matrix, 145
singular value decomposition, 450
thin singular value decomposition, 456

function
concave, 558
convex, 558
strictly convave, 558
strictly convex, 558

fundamental theorem of algebra, 46, 561

Garcia, S. R., 100, 273
gauge function, 335
Gaussian elimination

definition, 25
preserves strict diagonal dominance, 394

Gaussian matrix
definition, 443
determinant, 444
positive definite, 444

gcd matrix
definition, 483
positive semidefinite, 483

Gelfand formula
matrix norm, 349
pre-norm, 372
vector norm on matrices, 372

general linear group, 14
generalized coordinates, 285
generalized inverse, 185, 453
generalized matrix function, 9
generalized matrix norm, see vector norm on

matrices
generalized permutation matrix

definition, 33
isometry for l p norm, 334
subgroup of GL(n, C), 33
uniqueness of factors, 221

generators of a convex set, 557
geometric mean

definition, 445
G(A, A−T ) is complex orthogonal and

coninvolutory, 445
G(A, Ā) is real, 445
G(A, B) = G(B, A), 445
unique, 445

geometric multiplicity
and Geršgorin discs, 396
definition, 76
positive matrix, 525

geometric–algebraic multiplicity inequality,
181

geometric-algebraic multiplicity inequality, 55,
59, 79

Gerasimova, T. G., xvi, 279
Geršgorin, S., 396
Geršgorin

circles, 389
discs

and geometric multiplicity,
396

and rank, 392, 394
definition, 388
disjoint, 388, 390

set, 388, 389
theorem

block form, 395
statement and proof, 388
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version if geometric multiplicity > 1, 396
weighted, 390

Gerstenhaber’s theorem, 128
Givens rotation, see plane rotation
Givens’ method, 99
Goldberg, M., 381
Goodson, G., xvi, 148, 191
Google matrix

eigenvalues, 57
Jordan canonical form, 190

Gram matrix
definition, 441
essentially nonnegative, 539
inner product, 446
positive (semi)definite matrix, 440, 441
representation of a correlation matrix, 445

Gram–Schmidt process, 93
definition, 15
minimal polynomial, 196

graph
undirected, 226

greatest common divisor, see gcd matrix
Greub–Reinboldt inequality, 473
Grone, R., 148
group

bounded multiplicative group of matrices,
see Auerbach’s theorem

definition, 85
general linear, 14
Heisenberg, 174
real orthogonal, 85
unitary, 85

Gruenberg, K. W., 130
Grüss inequality, 322
Grunsky inequalities

definition, 260
exponentiated, 502
mixed problem, 286

Gu, D., 424
guess and check, 309
Guralnick, R., xvi

Hadamard exponential matrix
conditionally positive semidefinite matrix,

484
definition, 481
positive definite/semidefinite, 481, 483
quadratic inequalities, 502

Hadamard inequality
and elementary symmetric functions, 514
and permanent, 93
block matrix version, 513

case of equality, 93, 443, 505, 506
column norm version, 506
diagonal product version, 505
proof via arithmetic–geometric mean

inequality, 505
proof via Cholesky decomposition, 443
proof via Q R factorization, 93
proof via Schur complement of bordered

matrix, 514
Hadamard power matrix

definition, 481
positive semidefinite, 481
quadratic inequalities, 502

Hadamard product
commutative, 477
definition, 371, 477
distributes over matrix addition, 477
entrywise absolute value of a matrix, 482
entrywise exponential of a matrix, 481, 484
entrywise functions of a matrix, 481
entrywise reciprocal of a matrix, 482
entrywise square root of a matrix, 482
rank inequality, 483
trace representation of sesquilinear form,

479
trigonometric moments, 477

Hadamard, J., 485
Hadamard–Fischer inequality, 507
Hald, O. H., 260
half-space, 558
Hall, F. J., 396
Halmos, P., 191
Halperin, I., 75
Hankel matrix, 35, 427
Harris, L., 131
Hartley matrix, 100
Hausdorff moment sequence, 427
Hawkins, T., xvi
Haynsworth’s theorem

generalized, 437
inertia and Schur complement, 298

Heisenberg
group, 174
uncertainty principle, 130, 447

Herman, E., xvi
Hermite normal form, see reduced row echelon

form
Hermite, C., 215
Hermitian

adjoint, see conjugate transpose
essentially, 7, 89
projection, 38, 124, 232, 233
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Hermitian matrix
canonical pairs, 567
characterization, 228
commuting family, 229
∗congruence canonical form, 297
definition, 7
eigenvalues are real, 135
essentially, 233
every nonzero principal minor of size r has

the same sign, 234
full-rank factorization, 234
orthonormal eigenvectors, 234
positive semidefinite part, see positive

semidefinite part of a Hermitian matrix,
323

product of two, 229, 489
product with a positive definite, 446, 486
product with a positive semidefinite, 486
product with symmetric, 306
rank-principal, 20, 234
signs of principal minors of size rank A, 234
similar to a, 489
spectral theorem, 135, 229
uniqueness of diagonalization, 134
unitarily diagonalizable, 135

Hermitian part
definition, 7, 227
positive (semi)definite, 433

∗congruence canonical form, 436
LU factorization, 437
row and column inclusion properties, 433,

434
positive definite, 504

∗congruence canonical form, 437
H (A) positive definite ⇔ H (A−1) positive

definite, 436
Toeplitz decomposition, 227, 289, 567
unitarily invariant norm bound, 476

Hessenberg matrix
diagonalizable, 174
unitarily similar to a, 96
unreduced, 35, 82, 174
upper or lower, 35

Hessian, 225, 558
Hessian matrix, 426
Hilbert matrix

condition number, 386
definition, 38
determinant, 38
inverse, 38
positive definite, 483, 484
positive semidefinite, 483

Hilbert–Schmidt norm, 341
Hlawka’s inequality, 319
Hölder’s inequality, 414, 559
Hoffman, A. J., 413, 476
Hoffman–Wielandt theorem

eigenvalues, 407
unitarily invariant norms, 468

singular values, 451
Hong, Y. P., xii, 108, 279, 300, 311, 492
Horn, Alfred

inequalities, 260
Horn, R. A., 108, 148, 278, 279, 300, 311, 457,

492, 505, 569
Householder matrix

defnition, 87
eigenvalues, 88
factorization of an arbitrary matrix, 93

Householder transformation
definition, 95

Hsu, P. L., 311
Hua, L.-K., 278
Huang, L., 311
Huang, Z., 75
hyperbolic differential operator

definition, 296
hyperplane, 558

idempotent, see projection
identity

matrix, 6
Ikramov, Kh., xvi, 148, 278
ill conditioned

matrix inversion, 382
imaginary axis, 556
imaginary part, 7, 48
imaginary part of a complex number, 555
inclusion principle, 246
inclusion set

singular values, see singular values, inclusion
set

inconsistent linear system, see linear system,
inconsistent

indecomposable
permutation similarity, 182

indefinite
positive and negative eigenvalues, 234
simultaneous diagonalization, 299

indefinite Hermitian matrix
definition, 430

complex, 230
indefinite real symmetric matrix

definition, 231
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index
how to use the, xiii

index of an eigenvalue
block upper triangular matrix, 184
definition, 169
equivalent definitions, 183
exponents in minimal polynomial, 200
rq (A, λ) = rq+1(A, λ), 175
Segre characteristic, 170

index of nilpotence
at most n, 109
definition, 38

index of primitivity, see primitive matrix, index
of primitivity

index set, 16
indicial equation, 581
induced matrix norm

bounds between two, 352
by an absolute norm, 358
definition, 344
distance to a nearest singular matrix, 369
equal norms, 354
is minimal, 356
spectral norm is the only self-adjoint, 358
spectral norm is the only unitarily invariant

norm, 357
uniqueness of inducing norm, 356
unital, 343

inequality
Cauchy–Schwarz, 15

inertia
and canonical angles, 297
Haynsworth’s theorem, 298
Hermitian matrix, 281
Sylvester’s law of, 282

inertia matrix
definition, 282

inner product
axioms, 315
definition, 15, 315
Euclidean, 15
Gram matrix, 446
properties, 315
semi-inner product, see semi-inner product
sesquilinear, 315
standard, 15
usual, 15

inner product space
definition, 15, 316

interior point
definition, 336
unit ball, 336

interlacing theorem
Cauchy, 242, 298
inverse, 243, 245
singular values, see singular values,

interlacing
Weyl, 241

intertwining relation
and polynomials, 111
AX∗ = X∗B and X∗ A = B X∗, 148
D = AB − B AT and AD = D AT , 189
definition, 112
Fuglede–Putnam theorem, 138
linear matrix equation, 111
normal matrices and AX = X B̄, 142
uniqueness in Schur triangularization,

113
invariant

complete system, 41
definition, 41
subspace, 62, 190, 262

invariant factors, 200
inverse

2-by-2 matrix, 22
approximate, 351
definition, 14
errors in computing, 382
left, 14
matrix similar to its, 173
partitioned matrix, 18
polynomial in A, 110
rank one adjustment, 19
reverse monotone on positive definite

matrices, 495, 504, 505
right, 14

inverse eigenvalue problem
bordered Hermitian matrix, 243
Jacobi matrix, 260
rank one perturbation of a Hermitian matrix,

245
trace = eigenvalue sum (Mirsky’s theorem),

68
inverse interlacing, 243, 245
invertible matrix, see nonsingular

matrix
involution

A = −K AK , 199
A = K AK , 199
definition, 38
diagonalizable, 199
symmetric, 274

involutory, 38
Ipsen, I., xvi



622 Index

irreducible
definition, 402
family, 62
nonnegative matrix, see nonnegative matrix,

irreducible
irreducible normal form, 532
irreducibly diagonally dominant

definition, 403
isometry

condition number = 1, 386
Euclidean, 85
for a norm, 334

determinant has modulus one, 334, 491
eigenvalues have modulus one, 334
similar to a unitary matrix, 334, 491, 492

for an l p-norm, 334
group, 334

isomorphism, 4
isotropic vector, 7, 148, 274

Jn , see matrix, all ones
Jacobi

identity, 24
method, 98

Jacobi matrix
definition, 36
distinct eigenvalues, 174
inverse eigenvalue problem, 260

Jacobson’s lemma, 126, 130, 189, 200
Jacobson, N., 130, 278
Jensen’s inequality, 333, 560
Jespersen, D. C., xvi
Johnson, C. R., 94, 100, 148, 191, 381, 429,

492, 505, 533
Jordan block

definition, 164
inverse, 173
similar to a symmetric matrix, 271, 272

Jordan canonical form
AB versus B A, 184
complex orthogonal matrix, 276
of a direct sum, 182
of a matrix, 167
optimality, 183
rank-one perturbation, 186
real, 202
real orthogonal matrix, 276
self-annihilating matrix, 172
skew-symmetric matrix, 276
symmetric version, 271
theorem, 167

Jordan decomposition
diagonalizable part, 189
existence, 182
nilpotent part, 189
uniqueness, 189

Jordan matrix, 164
Jordan product

anticommuting family, 75
definition, 75, 446
of positive definites need not be positive

definite, 446
quantum system, 447

Jordan, C., 175
Jordan, P., 320

k-norm
vector norm

definition, 320
dual, 340
dual norm, 334
permutation invariant and absolute, 321

Kakeya’s theorem, 366
Kantorovich inequality

equivalent to Wielandt inequality, 472
proof, 471
scalar version, 473
statement, 470

Kaplansky, I., 279
Kellogg, R. B., 533
kinetic energy, 285
Kirk, W. A., 324
Kittaneh, Fuad, 200
Kojima’s bound, 367, 404
Kolotilina’s theorem, 423
Kolotilina, L. Yu., 424
Kőnig, D., 553
Kosaki, H., xvi
Koteljanskiı̆ inequality, 507
Krass, D., xii
Krause, G., 564
Krein–Milman theorem, 557
Krishnaiah, P. R., 477
Kronecker

theorem for bordered determinants, 27
Krylov sequence, 221
Kubo, F., 370
Kuzma, B., 200
Ky Fan k-norms, see Fan, k-norms

l p-norm, 320
Laffey’s theorem, 126, 127



Index 623

Laffey, Thomas J., 130
Lagrange

interpolation formula, 38
interpolation polynomials, 38

Lagrangian, 44
Laguerre, E. N., 319
Lancaster, P., 569
Lanczos tridiagonalization, 221
Laplace

expansion, 8
expansion theorem, 28

L DU factorization
proof of Sylvester’s criterion, 442
theorem, 218

leading entry, see reduced row echelon form
leading principal minor, see principal minor,

leading
leading principal submatrix, see principal

submatrix, leading
least common multiple, 196
least squares approximation, 379
least squares solution of a linear system, 453,

462
left eigenvector

definition, 77
if it is also a right eigenvector, 77
need not be a right eigenvector, 77

left Perron vector, see Perron vector, left
length

Euclidean, 15
of a directed path, 400
of a vector, see norm
of a word, 97

Levy–Desplanques theorem, 352, 392
Li, C. K., xiv, 75, 260
Li, L., 424
Li, Z., xvi, 131
Lidskii’s eigenvalue majorization inequalities,

250, 259, 260
Lidskii, B. V., 260
Lieb, E., 75
Lim, T. C., xvi
limit point, 336
linear combination

definition, 2
nontrivial, 2
trivial, 2

linear equations, see linear system
linear space, see vector space
linear system

consistent, 12

errors in solution of a, 383
inconsistent, 12
least squares solution, 462
sensitivity of solution, 385
solution, 12

linear transformation
definition, 5
matrix represents a, 5

linearly dependent
definition, 3
list of vectors, 3
set of vectors, 3

linearly independent
definition, 3
list of vectors, 3
set of vectors, 3

Lippert, R. A., xvi, 191, 279
Liping, H., see Huang, L.
list of vectors

length, 3
linearly dependent, 3
linearly independent, 3
span, 3
sublist, 3

Littlewood, D. E., 211, 215
Loewner ellipsoid

associated with a norm
definition, 491

Loewner partial order
and contractions, 494
concavity of Schur complement, 504
convex matrix functions, 505
convexity of inverse, 502
convexity of inverse square root, 505
convexity of negative square root, 505
convexity of square, 501
criterion, 494
definition, 493
H−1[α] ! (H [α])−1, 499
monotone matrix functions and difference

quotients, 505
monotonicity of determinant, 495
monotonicity of Schur complement, 504
monotonicity of square root, 495, 501, 505
monotonicity of trace, 495
reverse monotonicity of inverse, 495, 504,

505
Loewner, C., 505
Loewner–John matrix

absolute norm, 492
applications, 492
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Loewner–John matrix (cont.)
associated with a norm

definition, 491
l p norms, 492
symmetric gauge function, 492

Lomonosov, V., 75
loop, see cycle, trivial
Lorentz transformation, 300
lower triangular congruence, 223
lower triangular matrix

commutes with, 31
definition, 31
LU factorization, 216
not square, 31
unit, 31, 218

L PU factorization, 219
Löwner, K., see Loewner, C.
L P DU factorization, 221
L PU factorization, 219, 222
L Q factorization, 90
LU factorization

definition, 216
min matrix, 442
nonexistence, 217
P LU factorization, 219
positive (semi)definite Hermitian part, 437
tridiagonal matrix, 222
uniqueness, 218

lub norm, see induced matrix norm
LU P factorization, 219

M-matrix
definition, 533
equivalent characterizations, 533
nonnegative inverse, 533

magic square, 532
main diagonal, 5
majorization

definition, 248
diagonal entries and eigenvalues, 249, 251
diagonal entries and eigenvalues (block

version), 259
eigenvalues of Hermitian part, 254
geometric characterization, 254
multiplicative, 454

Marcoux, M., 101, 130
Marcus-Thompson theorem, 146
Markovian matrix

definition, 443
determinant, 443
inverse, 443
positive definite, 443

Marsli, R., 396
Mastnak, M., 101, 130
Mathias, R., xiv, xvi, 260
matrix

adjacency, 226
all ones, 8, 435

eigenvalues, 65
augmented, 12
backward shift, 34
bidiagonal, see bidiagonal matrix
block, 18
block centrosymmetric, 2-by-2, 71
block diagonal, 21, 30, 32
block triangular, 31
bordered, 26, 107
Cauchy, 38
centrohermitian, 36
centrosymmetric, 36
change of basis, 40
circulant, see circulant matrix
coefficient, 12
companion, 194
complex orthogonal, 92
complex type, 71
compound, 21
conditionally positive semidefinite, see

conditionally positive semidefinite
matrix

∗congruence canonical blocks, 289
congruence-normal, see congruence-normal

matrix
coninvolutory, 38
conjugate self-annihilating, see conjugate

self-annihilating matrix
conjugate-normal, see conjugate-normal

matrix
consimilarity canonical blocks, 305
convergent, see congergent matrix
correlation, see correlation matrix
covariance, 426
definition, 5
diagonal, 30
diagonalizable, 59
direct sum, 30
doubly stochastic, see doubly stochastic

matrix, see doubly stochastic matrix
essentially nonnegative, see essentially

nonnegative matrix
essentially triangular, 32
forward shift, 34
Fourier, see Fourier matrix
Gaussian, see Gaussian matrix
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Google, see Google matrix
Gram, see Gram matrix
Hadamard exponential, see Hadamard

exponential matrix
Hadamard power, see Hadamard power

matrix
Hankel, 35, 427
Hartley, 100
Hermitian, 7

projection, 38
Hermitian part, 7
Hessenberg, 35

unreduced, 35
Hessian, 426
Hilbert, 38
Householder, 87
identity, 6
imaginary part, 7
inverse of partitioned, 18
invertible, see nonsingular matrix
involutory, 38
irreducible, 402
Jordan, 164
Jordan block, 164
linear transformation, of a, 5
lower triangular, 31
Markovian, see Markovian matrix
nearly normal, 144
negative definite, see negative definite

matrix
negative semidefinite, see negative

semidefinite matrix
nilpotent, 38
nonderogatory, 178
nonnegative, see nonnegative matrix
nonnegative diagonal, 30
nonsingular, 14
normal, 7
normal and skew symmetric, 146
normal and symmetric, 146
orthogonal, 7, 92
orthostochastic, see orthostochastic matrix,

see orthostochastic matrix
pair, 568
Palais, 92
partitioned, 17
perhermitian, 36
permutation, see permutation, matrix
persymmetric, 36
positive, see positive matrix
positive definite, see positive definite matrix
positive diagonal, 30

positive semidefinite, see positive
semidefinite matrix

power-bounded, see power-bounded matrix
principal submatrix, 17
product of “real similar” and coninvolutory,

306
product of Hermitian and symmetric, 306
product of symmetric and skew symmetric,

276
product of two Hermititians, 229
product of two skew symmetrics, 276
product of two symmetrics, 178, 271
projection, 38, see projection
proper rotation, see proper rotation matrix
quasi-triangular, 103
quasidiagonal, 32
quasitriangular, 32
quaternion type, 275
rank in a partitioned, 20
rank-principal, 20
real, 51

deflation via non-real eigenvalue, 74
real orthogonal, 84, 137
real part, 7
real skew-symmetric, 136
real symmetric, 136
reducible, 402
reversal, 33
scalar, 6, 30
self-annihilating, see self-annihilating matrix
similarity, 58
similarity canonical blocks, 167
singular, 14
skew-centrohermiitian, 36
skew-centrosymmetric, 36
skew-Hermitian, 7
skew-Hermitian part, 7
skew-orthogonal, 92
skew-perhermitian, 36
skew-persymmetric, 36
skew-symmetric, 7
skew-symmetric and normal, 146
skew-symmetric part, 7
spectral, see spectral matrix
square, 5
square of nilpotent, 310
squared-normal, see squared-normal matrix
stochastic, see stochastic matrix
strictly

block triangular, 31
lower triangular, 31
upper triangular, 31
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matrix (cont.)
symmetric, 7
symmetric and normal, 146
symmetric part, 7
Toeplitz, 34, 427
triangular, 31
tridiagonal, see tridiagonal matrix
tripotent, 196
unistochastic, see unistochastic

matrix
unitary, 7, 84
unitary and skew-symmetric, 139
unitary and symmetric, 139
upper triangular, 31
Vandermonde, 37, 128
weakly irreducible, 418
zero, 6
zero-one, 174

matrix exponential
definition, 350
determinant, 369

matrix norm
adjoint, 357
axioms, 340
block matrices, 370
bounds on zeroes of a polynomial, 365
compatible with a vector norm, 344
constants between, 365
dual of a matrix norm, 360
equal to spectral radius, 368
Frobenius norm, 321, 341
generalized, see vector norm on matrices
Hilbert–Schmidt norm, 341
induced by absolute norm, 368
induced by l p norm on Cn , 363
induced norm, see induced matrix norm
l1 matrix norm, 341
l2 matrix norm, 321, 341
lub norm, see induced matrix norm
max of several, 357, 363
minimal, see minimal matrix norm
monotone on the positive orthant, 368
N∞(·) matrix norm, 343
not a convex set, 363
operator norm, see induced matrix norm
scalar multiple of vector norm, 373
Schur norm, 341
self-adjoint, 357
spectral norm, see r
trace norm, see trace norm
unital, see unital matrix norm

unitarily invariant, see unitarily invariant
matrix norm

upper bound for spectral radius, 347
max matrix

definition, 436
Hadamard reciprocal is positive

semidefinite/definite, 436
max norm, see or
max{a, b}, 233
maximum column sum matrix norm

definition, 344
induced by sum norm, 344

maximum row sum matrix norm
definition, 345
induced by max norm, 345

McCoy
theorem, 127, 128

little theorem, see little McCoy theorem
proof, 119

McCoy, N., 130
mean

definition, 319
Mellendorf, S., 396
Mercer’s theorem, 478
Merino, D., xvi
Merino, D. I., 279, 311
min matrix

and gcd matrix, 483
definition, 435
positive semidefinite/definite, 435

min-max theorem, 236
minimal matrix norm

definition, 355
is induced, 356

minimal polynomial
definition, 192
dimension of subalgebra, 197
direct sum, 196
Gram–Schmidt process, 196
rank-one matrix, 200

minimally spectrally dominant norm
definition, 378
spectral characteristic, 378

Minkowski
determinant inequality, 510
product inequality, 511, 560
sum inequality, 320, 560

minor
definition, 17
principal, see principal minor
size r , 17
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minors
quadratic relations between, 28

Mirsky’s theorem
diagonal entries & eigenvalues, general, 68,

75
eigenvalue perturbation, 468

Mirsky, L., 75, 476
mixed state, see density matrix
modulus of a complex number, 555
moment matrix

and the discriminant, 128
definition, 128
of order m, 129

moment sequence
Hausdorff, 427
Toeplitz, 427

moments
of eigenvalues, 109, 126
of zeroes, 126
trigonometric, 260

convolutions and Hadamard products, 477
momentum operator, 130
monic polynomial, 46
monotone matrix

definition, 533
product of two monotone matrices is

monotone, 533
monotone matrix function, see Loewner partial

order, monotone matrix functions
monotone norm, see absolute norm

definition, 332
is absolute, 332
weakly monotone, 340

monotonicity theorem, 238, 241
Montel’s bound, 365
Moore–Penrose inverse

axioms, 453
definition, 453
in a Schur complement, 453
least squares solution of a linear system, 453
limit of ordinary inverse, 454
positive (semi)definite block matrices, 502

Moro, J., 413
Morrison, see Sherman–Morrison–Woodbury

formula
Motzkin, T., 130
Moutard’s theorem, 480
Moutard, Th., 480, 485
multilinear function, 11
multiplicative commutator, 146
multiplicity

algebraic, 51, 76
geometric, 76
of a singular value, 151
of an eigenvalue, 51
root of a polynomial, 46

Nakayama, T., 311
nearly normal matrix

definition, 144
tridiagonal and Toeplitz, 144

negative definite matrix
definition, 430
determinant, 431
trace, 431

negative semidefinite matrix
definition, 430

Nehari’s theorem, 261
Neumaier, A., xvi
Neumann series, 365, 595
Newton’s identities

and unitary equivalence, 455
approximate version, 130
proof, 126
proof via companion matrix, 198

nilpotence
index of, 38, 109

nilpotent
adjugate, 190
block matrix, 128
definition, 38
index, 109
part, 189
self-annihilating, 157
square, 310
zero eigenvalues, 48, 107

node, 226, 400
nondecreasing rearrangement, 249
nondefective, 77
nonderogatory

commute with A and A∗, 190
companion matrix, 195
definition, 77, 178
Jordan and Weyr canonical forms are

identical, 206
matrix commutes with, 178
similar to transpose, 180
unreduced Hessenberg matrix, 82, 174
Weyr characteristic, 206

nonincreasing rearrangement, 249
nonnegative matrix

best rank-one approximation, 538
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nonnegative matrix (cont.)
combinatorially symmetric, 545
commute with a positive matrix, 531
cyclic of index k, 537
definition, 519
irreducible, 532, 533

derivative of spectral radius, 538
general limit theorem, 546
main diagonal entries, 536
positive main diagonal entries, 541
spectrum, 535

irreducible normal form, 532
magic square, 532
Perron root, 531
Perron–Frobenius theorem, 534
positive eigenvector, 522, 523, 530, 531, 548
power method, 545
primitive, see primitive matrix
principal submatrix, 521
reducible, 532
spectral radius is an eigenvalue, 529
spectrum, 532

nonsingular matrix
definition, 14
equivalent conditions, 14
strict diagonal dominance, 352

nontrivial linear combination
definition, 2

norm
absolute, see absolute norm
axioms, 314
bounds between two l p , 333
characterization of derived norm, 318, 324
compatible with a matrix norm, 344
compatible with a non-matrix norm, 375
define via a basis, 321
definition, 314
derived from an inner product, 316

Hlawka’s inequality, 319
parallelogram identity, 317
polarization identity, 318

dual, see dual norm
equivalent, 327
Euclidean, 15, 320
isometry for a, 334
isometry group of a, 334
k-norm, see k-norm, see k-norm
l1-norm, 318, 320
l p-norm, 320
L1-norm, 321
L2-norm, 321
l2 matrix norm (Frobenius norm), 321

l2-norm, 320
limits of l p-norms, 334
L∞-norm, 321
l∞-norm on matrices, 342
L p-norm, 321
l p-norm

Loewner–John matrix, 492
Schatten p-norms, 465

l∞-norm, 318, 320
matrix norm, see matrix norm
monotone, see monotone norm
not derived from an inner product, 318
of a vector of norms, 324
polyhedral, 336
Schatten p-norm, 465
standardized, see standardized norm
sum norm, 318, 320
unitarily invariant, 322
usual, 15
weakly monotone, see weakly monotone

norm
weighted l p-norm, 322

norm on matrices
compatible with some vector norm, 374
Hadamard product norms, 371
l∞-norm on matrices, 372
monotone on the positive orthant, 368
similarity invariant, 378
spectrally dominant, 374

normal
real representation, 71

normal eigenvector
definition, 123, 143
normal matrices, 144
singular value, 158

normal equations
and least squares, 462
may be poorly conditioned, 386

normal matrix
∗congruence, 457
2-by-2, 131, 143
A∗ = p(A), 142
AĀ is real, 138
AB vs. B A, 145
AB = 0 ⇒ B A = 0, 147
angles between pairs of columns and pairs of

rows, 132
block triangular, 132
bordered, 144
characterizations, 148
closure properties, 131
commute with conjugate, 138
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commute with transpose, 138
commuting family, 135, 137, 143
∗congruence canonical form, 296
congruence normal, see congruence-normal

matrix
conjugate normal, see conjugate-normal

matrix
convex hull of eigenvalues, 145
definition, 7, 131
diagonal entries and eigenvalues,

257
diagonalizable, 174
dilation to a, 144
eigenvalues on diagonal, 145
field of values, 145
full-rank factorization, 145
Hermitian, 141
left and right eigenvectors, 134
nondefective, 134
normal eigenvectors, 143
null space and range, 146
orthonormal eigenvectors, 134, 234
polar factors commute, 456
polynomial in A, 142
principal minors of size rank A lie on same

ray, 145
principal submatrix, 144
Q R factorization, 155
rank one, 144
rank principal, 145
real, 136

canonical form, 136
commuting family, 137
orthogonal, 137
skew-symmetric, 136
symmetric, 136, 143

similar, 142
singular value decomposition, 156
skew-Hermitian, 141
skew-symmetric, 146
spectral theorem, 133
symmetric, 146
triangular is diagonal, 132
tridiagonal, 147

Toeplitz, 144
uniqueness of diagonalization, 134
unitarily diagonalizable, 133, 174
unitarily similar, 142
unitary, 141
Wigner–Yanase skew information is

nonnegative, 448
zero-one matrix, 148

normalizable matrix
definition, 300
determinant inequalities, 514
Ky Fan coined term, 300

normalized vector, see vector, normalized
normed linear space, 314
normed vector space, see normed linear

space
null space

and invariant subspace, 190
definition, 6
intersections, 8, 454
normal matrix, 146
of a seminorm, 317
orthonormal basis for the, 453

null spaces
intersection of, 8

nullities
law of complementary, 19, 87

nullity
definition, 6

numerical radius
power inequality, 379
projection, 380
properties, 378, 379
unitary similarity invariant, 379

numerical range, see field of values

O’Meara, K. C., xiv, xvi, 211, 215
observables, 447
Olesky, D., xii
Olkin, I., 457
ones

matrix of all, see matrix, all ones
vector of all, see vector, all ones

open set, 336, 565
operator norm, see induced matrix norm
Oppenheim inequality, 509
Oppenheim–Schur inequality, 509
ordinary differential equations, 176, 199
orthogonal

complement, 16
diagonalization, 272
group, 92
list, 83
list of vectors, 15
matrix, 7, 92
projection, see Hermitian projection
unitary, 140
vectors, 15

orthogonal matrix, see complex orthogonal
matrix or real orthogonal matrix
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orthonormal
basis, 16
list, 83
set, 15

orthostochastic matrix
and majorization, 253
connect eigenvalues with main diagonal

entries, 257
definition, 257
example of doubly stochastic, 548

oscillatory solutions, 176
Ostrowski set, 413
Ostrowski’s theorem, 283, 413, 416
Ostrowski, A., 424
Ostrowski–Brauer theorem, 424
Ostrowski–Taussky inequality, 510
outer product, 8
ovals of Cassini, 415
Overton, M. L., 413

Paige, C., 162
Palais matrix, 92
parallelogram identity

and derived norms, 318
definition, 317
implies triangle inequality, 318

partial order, 493
partial trace, 437
partition

according to columns, 17
conformal, 17
of a finite set, 17
of a matrix, 17
of a set, 16
sequential, 16
standard, 208

Pearcy, C., 381
Pei, P., 191
perfectly conditioned

matrix inversion, 382
scalar multiple of an isometry, 386

perhermitian, 36
permanent, 9

and determinant, 93
permutation

definition, 9
identity, 9
main diagonal entries, 32
matrix

Birkhoff’s theorem, 548
definition, 32

generalized, see generalized permutation
matrix

maximum value of convex function, 550
signum (sgn), 9

permutation invariant norm, 321
permutation similar

definition, 58
Weyr and Jordan forms, 206, 214

Perron root
definition, 525, 531

Perron vector
columns of the adjugate, 528
definition, 525
irreducible nonnegative matrix, 534
left, 526
right, 525

Perron’s theorem, 526
Perron, O., 524
Perron–Frobenius theorem, 534
persymmetric, 36, 394
perturbation theorem, 256
Piazza, G., 457
Pierce, S., xii
plane rotation

create zero entries in a vector, 94
definition, 87
factor a real orthogonal matrix, 94
prove Q R factorization, 94

P LU factorization
theorem, 219

Poincare separation theorem, 248
polar coordinates, 556
polar decomposition

2-by-2 matrix, 456
companion matrix, 457
equivalent to singular value decomposition,

454
explicit, 458
theorem, 449

polar factorization
normal matrix, 456

polar form, see polar decomposition
polarization identity, 318
Politi, T., 458
polynomial

annihilating, 191
bounds on zeroes, 365
degree of, 46
Euclidean algorithm, 130
in noncommuting variables, 118
monic, 46
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of a matrix, 46
rank p(A) = 1, 199

polynomial interpolation, 37
Poore, D. E., 100
poorly conditioned, see ill conditioned
position operator, 130
positive definite function

definition, 435
examples, 435, 443, 444
periodic, 435
product of two is a positive definite function,

482
properties, 435

positive definite Hermitian part, 434, 436
positive definite kernel

criterion, 482
positive definite matrix

characteristic polynomial, 438
characterizations, 438
Cholesky factorization, 441
column inclusion property, 432
compression

via determinant, 445
via principal minor sums, 445
via pth compound matrix, 445
via trace, 445

criterion on real and imaginary parts, 503
definition, 429

complex, 230
real, 231

determinant, 430
eigenvalues, 438
ellipsoid, 491
Gram matrix, 440, 441
Loewner–John matrix, 491
positive eigenvalues, 230
positive leading principal minors, 439
product of three, 490
product of two, 486, 490
product with a Hermitian matrix, 486

similar to a real diagonal matrix, 446
properties, 431
Re A−1 ! (Re A)−1, 503
real symmetric matrix, 231
row inclusion property, 432
simultaneous diagonalization with a complex

symmetric matrix, 487
square root, 439
square root, 2-by-2, 456
Sylvester’s criterion, 439
trace, 430

positive definite on a subspace, 238
positive matrix

algebraic multiplicity of spectral radius, 526,
528

definition, 401, 519
geometric multiplicity of spectral radius, 525
limit theorem, 526
Perron theorem, 526
positive eigenvector, 524

positive semidefinite kernel
definition, 436, 478
Mercer’s theorem, 478

positive semidefinite matrix
∗congruences, 431
characteristic polynomial, 438
characterizations, 438
Cholesky factorization, 441
column inclusion property, 432
compression

via determinant, 445
via principal minor sums, 445
via pth compound matrix, 445
via trace, 437, 445

definition, 429
complex, 230
real, 231

determinant, 430
eigenvalues, 438
generalized Schur complement, 437
Gram matrix, 440, 441
limit of positive definite matrices, 432
nonnegative eigenvalues, 230
nonsingular ⇔ positive definite, 431
product of two, 486
product with a Hermitian matrix, 486
properties, 431
real symmetric matrix, 231
row inclusion property, 432
square root, 439
square root, 2-by-2, 456
trace, 430

positive semidefinite on a subspace, 238
positive semidefinite part of a Hermitian

matrix
best positive semidefinite approximation, 323
definition, 231
properties, 231
role in Lidskii’s eigenvalue majorization

inequalities, 250
well-defined, 233

potential energy, 285
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power inequality
numerical radius, 379
spectrally dominant norm, 376

power method
definition, 81
nonnegative matrix, 545

power series of matrices
norm convergent, 350

power-bounded matrix
characterization, 181
definition, 180
matrix norm and spectral radius, 368
row- or column-stochastic matrix,

530
stochastic matrix, 552

pre-norm
definition, 327
duality theorem, 338
Gelfand formula, 372

preorder on a set
definition, 419
maximal element, 419

definition, 419
primary matrix function, 350
prime, 176
primitive matrix

alternative definition, 544
combinatorially symmetric, 545
definition, 540
index of primitivity, 542
lengths of directed paths, 541
limit theorem, 540
location of zero entries, 545
minimal polynomial, 545
positive main diagonal entries, 541
positive power, 540, 542, 543
powers are primitive, 541
product need not be primitive, 544
Romanovsky’s theorem, 541

principal
angles, 317
minor sums, 53

definition, 52
similarity invariant, 59

principal minor
definition, 17
size r , 17
trailing

definition, 17
Oppenheim–Schur inequality, 509

principal submatrix
determinant is a principal minor, 17

leading
definition, 17
eigenvalues of Jacobi matrix, 260
LU factorization, 216
moment matrix, 129
Sylvester criterion, 439

positive (semi)definite matrix, 430
trailing

definition, 17
Sylvester criterion, 439

principal value of argument, 556
principle of biorthogonality, see biorthogonality
projection

definition, 38
diagonalizable, 196
Drazin inverse, 189
field of values, 380
Hermitian, see Hermitian projection, 233
numerical radius, 380
orthogonal, see Hermitian projection
singular values, 156,

212, 380
strictly diagonally dominant, 394
unitary similarity canonical form, 156, 212

proper rotation matrix, 88, 92
property L , 130
property P , 130
property SC, see strongly connected graph
pth root

block upper triangular matrix, 130
pure state, see density matrix

QL factorization, 91
Q R factorization

derive from Cholesky factorization, 456
L Q version, 90
normal matrix, 155
QL version, 91
RQ version, 91
theorem, 89
uniqueness, 89

QS factorization
definition, 276
Kaplansky proof of rank condition, 279
necessary and sufficient condition for a, 276
unitary matrix, 140

quadratic form
definition, 225
does not determine the matrix, 232
simultaneous diagonalization, 490

quadratic inequalities
general, 498
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Hermitian–Hermitian case, 498
Hadamard exponential, 502
Hadamard powers, 502

Hermitian–symmetric case, 502
Grunsky inequalities, 260, 286, 502
Hadamard exponential, 502
Hadamard powers, 502

quantum cohomology, 260
quantum mechanics, 130, 229, 305
quantum system

eigenstate, 447
finite dimensional, 446
Heisenberg uncertainty principle, 447
observables, 447
Schrödinger uncertainty principle, 447
Wigner–Yanase correlation, 447
Wigner–Yanase skew information, 447

quasicommute, 127, 130
quasidiagonal, 103

definition, 32
quasilinearization

representation of f (A) = (det A)1/n , 513
representation of a norm as the dual of its

dual, 339
representation of eigenvalue sums, 248
representation of f (A, y) = (y∗ A−1 y)−1, 475
representation of Schur complement, 504

quasitriangular, 103
definition, 32

quasitriangularization
real matrix via similarity, 103
simultaneous, 149
via unitary congruence, 266

quaternion matrix
complex representation, 275

quaternion type
complex representation, 275
congruent to a real matrix, 299
matrix, 275

quotient property of Schur complements, 27

radius of convergence, 350
Radjavi, H., 101, 130
range

and invariant subspace, 190
definition, 6
normal matrix, 146
orthonormal basis for the, 453
sums, 8

ranges
intersection of, 16
sum of, 8

rank
and equivalence, 13, 158, 189
complex skew-symmetric matrix, 153
definition, 6
diagonalizable matrix, 70, 124
eigenvalues, 124, 147
full-rank factorization, 13
length of a longest linearly independent list of

columns, 12
length of the longest linearly independent list

of rows, 12
lower bound, 124, 232, 394
nonzero eigenvalues, 124, 147
partitioned matrix, 20
similarity invariant, 59
singular values, 151
small perturbations increase rank, 455
triangular matrix, 124

rank-nullity theorem, 6, 13, 238
rank-one matrix

diagonalizable, 173, 200
minimal polynomial, 200
normal, 144

rank-principal matrix
0 is a semisimple eigenvalue, 70,

174
definition, 20
EP matrix, 158, 296
Hermitian, 234
Hermitian matrix, 20
normal matrix, 145
nullspace A = nullspace A∗, 296
skew-Hermitian matrix, 20
skew-symmetric matrix, 20, 80
symmetric matrix, 20

rank-sum inequality, 13
Rao, C. R., 476
rational canonical form, 200
Rayleigh quotient

definition, 234
eigenvalue inclusion region, 412
optimal approximate eigenvalue, 412
theorem, 234

Rayleigh, Lord, 238
RE factorization, 308
real axis, 556
real Jordan canonical form, 202
real matrix

∗congruent to a, 299
commuting family, 105
complex versus real orthogonal similarity,

275
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real matrix (cont.)
complex vs. real similarity, 67, 141, 275
complex vs. real unitary similarity, 141
congruent to a, 299
diagonalizable, 203
negative entries of A2, 539
quasitriangularization, 103
real eigenvalue if size is odd, 55
real symetrically similar to its transpose,

178
similar to a, 202, 443

real normal matrix, see normal matrix, real
real orthogonal group, 85
real orthogonal matrix

canonical form, 137
definition, 84
Jordan canonical form, 276
product of plane rotations and a reflection, 94
product of real Householder matrices, 93

real orthogonal similarity
of real matrices, 98
of real matrices that are complex

orthogonally similar, 275
simultaneous, 141

real orthogonally diagonalizable, 94
real part, 7, 48, 71, 476
real part of a complex number, 555
real representation

algorithm to compute coneigenvalue, 309
criterion for consimilarity, 72, 310
of a normal matrix, 71
Type 1, 71

2-by-2, 148
block 2-by-2, 187, 273, 275

Type 2, 71
block 2-by-2, 272

real Schur form, see Schur, triangularization,
real, 149

real skew-symmetric matrix
canonical form, 136

real symmetric matrix
canonical form, 136
commuting family, 145

reciprocal basis, 93
reduced row echelon form

definition, 11
leading entry, 11

reducible
definition, 402
doubly stochastic matrix, 552
family, 62
system of linear equations, 402

regular part
congruence, 295
∗congruence, see ∗congruence canonical form

regularization
congruence, 295
∗congruence, 292

regularization algorithm
congruence, 295
∗congruence, 292

Reinboldt–Greub inequality, see
Greub–Rheinboldt inequality

relative gain array
definition, 483
smallest eigenvalue ≥ 1, 483

relative maximum, 426
relative minimum, 426
residual vector, 384, 411
reversal matrix

connects forward and backward shifts, 34
convert Hankel to Toeplitz and vice versa,

35
definition, 33
eigenvalues, 145

reverse Fischer inequality, see Fischer
inequality, reverse

reverse-order law, 7
right eigenvector

definition, 77
if it is also a left eigenvector, 77
need not be a left eigenvector, 77

right half-plane, 556
right Perron vector, see Perron vector, right
right shift operator, 49
ring norm, 341
Robertson’s inequality, 490
Robertson, H. P., 490
Rodman, L., xii, 279, 569
Romanovsky’s theorem, 541
Romanovsky, V., 545
root

conjugate pairs, 561
of an equation, 46, 561

Rosenthal, P., xvi, 75
rotation matrix

proper, see proper rotation matrix
Rothblum, U., 529
row

operations, 9
type 1, 10
type 2, 10
type 3, 10, 31, 219

rank, 12
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row inclusion property
definition, 216, 432
LU factorization, 216
positive (semi)definite matrix, 432
positive definite Hermitian part, 434
positive semidefinite Hermitian part,

433
sufficient condition, 436

row space
definition, 8

row stochastic matrix, see stochastic matrix
RQ factorization, 91
RREF, see reduced row echelon form

Sa, E., 148
Samuelson, P. N., 319
scalar

definition, 1
matrix, 6, 30
product, see inner product

Schatten p-norm, 465
schlicht, 260
Schneider, H., 370, 492
Schreiner, E., 191
Schrödinger uncertainty principle, 447
Schur

complement
and partitioned forms for the inverse, 18
basic ∗congruence identity, 495
definition, 25
generalized, 437, 453
Haynsworth’s theorem, 298
of a strictly diagonally dominant matrix,

395
positive semidefinite matrix, 437
quotient property, 27
variational characterization, 504

inequality, 102, 144, 156, 323
for A2, 158
for C2(A), 158
strengthened, 158, 323
strengthened further, 158, 323

majorization theorem, 249, 259
norm, 341
Oppenheim inequality, see Oppenheim–Schur

inequality
product theorem, 479
real representation, 272
triangularization

complex, 101
real, 103
uniqueness, 113

Schur form, see Schur, triangularization,
complex

Schur product, see Hadamard product
Schur, I., 278, 485
Scott, N. H., 278
second differences, 172
secondary diagonal, see counterdiagonal
secondary eigenvalue

upper bound, 527
Segre characteristic

and Jordan canonical form, 206
and Weyr characteristic, 173, 276
definition, 170

selection principle, 86
self-adjoint matrix norm

definition, 357
dominates the spectral norm, 370
spectral norm is the only induced one, 358

self-adjoint norm on matrices
definition, 357
unitarily invariant norms, 357

self-annihilating matrix
conjugate, see conjugate self-annihilating

matrix
Jordan canonical form, 172
unitary similarity canonical form, 157,

213
semi-inner product

Cauchy–Schwarz inequality, 316
covariance of X and Y in the state R, 446
definition, 15, 316
equality in the Cauchy–Schwarz inequality,

317
induces a seminorm, 316

semiconvergent matrix
definition, 191
representation via the Drazin inverse, 191

semilinear transformation, 305
seminorm

definition, 314
induced by a semi-inner product, 316
null space of a, 317
on matrices, 341

seminorm on matrices
similarity invariant, 378

semisimple eigenvalues, see eigenvalues,
semisimple

nonnegative matrix, 530
separating hyperplane theorem, 558
separation theorem

bordered Hermitian matrices, 242
Poincare, 248
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Sergeichuk, V. V., xvi, 148, 215, 278, 279, 300,
311, 569

sesquilinear
form

absolute value almost determines the
matrix, 232

determines the matrix, 232
form generated by a Hermitian matrix, 227
function, 15
inner product, 315
semi-inner product, 316

Shapiro, H., 215
Shen, J., 545
Sherman–Morrison–Woodbury formula, 19
shift

backward and forward, 34
Shisha, O., 429
Siegel, C. L., 278
sign pattern matrix

requires distinct eigenvalues, 129, 130
signature, 282
signum (sgn) of a permutation, 9
similarity

canonical blocks, 167
complex orthogonal, 272, 275
definition, 41, 58
different basis representations of a single

linear transformation, 43
equivalence relation, 58
invariant, 167, 275, 378
matrix, 58
matrix and its transpose, 177, 180, 271
permutation, 58
real, 67, 141, 275, 300
real orthogonal, 141, 275
to a real matrix, 202, 229
to a symmetric matrix, 271
to conjugate transpose, 229
uniqueness to diagonalize, 67
unitary

definition, 83, 94
simple directed cycle, see cycle, simple directed
simple eigenvalue, see eigenvalues, simple
simultaneous condiagonalization, 307
simultaneous congruence, 286, 568
simultaneous ∗congruence, 286, 568
simultaneous diagonalization

via unitary congruence and ∗congruence , 286
by ∗congruence, 487

via nonsingular, 287, 294
via unitary, 286

by congruence
via nonsingular, 287
via unitary, 286

by ∗congruence, 296
by congruences, 485, 487

via nonsingular, 287
commuting family

complex, 64
real, 68

commuting Hermitian matrices, 229
definition, 61, 64
unitary, 135
via unitary equivalence, 154, 155

simultaneous similarity
A and B; A∗ and B∗, 457
Jordan form, 214
Weyr form, 210

simultaneous singular value decomposition, see
singular value decomposition,
simultaneous

symmetric matrices, 157
simultaneous triangularization

2-by-2 block upper triangular matrices, 128
commuting family, 103, 115, 116
little McCoy theorem, 127
McCoy’s theorem, 119
necessary and sufficient conditions

n = 2, 127
n = 3, 127

simultaneous unitary congruence
and unitary similarity, 278
block matrix criterion, 278, 279, 455

simultaneous unitary similarity
and unitary congruence, 277, 278
block matrix criterion, 279
criterion for, 147
definition, 147
verify with finitely many computations, 147

simultaneous unitary triangularization, 118
singular matrix

best approximation by a, 461
unique, 461, 476

definition, 14
distance to a nearest, 369, 461
nearest, 369

singular part
congruence, 295
∗congruence, see ∗congruence canonical form

singular value decomposition
AĀ = 0, 157
AĀ is positive semidefinite, 277, 311
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adj(A), 155
coninvolutory matrix, 278, 311
equivalent to polar decomposition, 454
normal matrix, 156
real matrix, 154
self-annihilating matrix, 157
simultaneous, 155, 157
skew-symmetric matrix, 153, 270
symmetric matrix, see symmetric matrix,

singular value decomposition
theorem, 150
thin, 443, 450, 456
Toeplitz matrix, 274
uniqueness of factors, 152, 156

distinct singular values, 159
symmetric matrices, 159, 263

singular values
2-by-2 block unitary matrix, 156
2-by-2 matrix, 151
adj(A), 155
and eigenvalues, 347
bidiagonal matrix, 259
companion matrix, 197
continuity, 152
definition, 151
derivative, 453
inclusion set, 424, 455
interlacing, 451, 457
multiplicity, 151
nilpotent bidiagonal block, 151
normal eigenvector, 158
normal matrix, 156
of A, Ā, AT , and A∗, 151
perturbation bounds, 451
product and determinant, 151
rank, 151
simple, 151
skew-symmetric matrix, 153
sum of squares, 151
trace norm, see trace norm
tridiagonal matrix, 259
unitary matrix, 155
variational characterization, 451
Weyl product inequalities, 370,

454
singular vectors

definition, 453
left and right, 453

sip matrix, see reversal matrix
skew centrohermitian, 36
skew centrosymmetric, 36, 200

skew information, see Wigner–Yanase skew
information

skew orthogonal, 92
skew perhermitian, 36
skew persymmetric, 36
skew sum, 568
skew symmetric

definition, 7
skew-Hermitian matrix

definition, 7
rank-principal, 20

skew-Hermitian part
definition, 7, 227
Toeplitz decomposition, 227, 289, 567

skew-symmetric matrix
canonical pairs, 567
even rank, 153
Jordan canonical form, 276
normal, 146
product of two, 276
product with symmetric, 276
rank 1, 157
rank-principal, 20
real

canonical form, 136
singular value decomposition, 153, 270
unitary, 139
unitary congruence canonical form, 270

skew-symmetric part
definition, 7, 567

Smiley, M. F., 324
So, W., xvi
Sorensen, D., 175
span, 2
Specht’s theorem

approximate version, 101
statement, 97

Specht, W., 100
special relativity, 300
spectral characteristic

convex function, 378
definition, 378
minimally spectrally dominant, 378

spectral decomposition, 134
spectral matrix, 368, 552
spectral norm

definition, 346
dominated by any self-adjoint matrix norm,

370
dual of trace norm, 362
induced and unitarily invariant, 357
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spectral norm (cont.)
induced by Euclidean norm, 346
monotone on nonnegative matrices, 368
not absolute, 368
only self-adjoint induced norm, 358
unitarily invariant, 346

spectral radius
2-by-2 Hermitian, 233
compound matrix, 108
definition, 52
equal to a matrix norm, 368
Gelfand formula, 349
greatest lower bound for all matrix norms,

347
Ln − LT

n , 198
not subadditive, 117
subadditive on commuting matrices, 117
submultiplicative on commuting matrices,

117
upper bound, 390, 391, 392
upper bound by any matrix norm, 347

spectral theorem
Hermitian matrix, 135, 229
normal matrix, 133
real symmetric matrix, 234
uniqueness, 134

spectrally dominant norm
and compatible vector norm, 347
characterization, 377
compatible with a norm on Cn , 374
definition, 373
maximum-modulus eigenvalues are

semisimple, 376
noncompatible example, 375

spectrum
definition, 45
nonempty, 47

speed of light, 300
spread

2-by-2 Hermitian, 233
definition, 147
lower bound, 258
upper bound, 147

square root
2-by-2 positive semidefinite matrix, 456
block upper triangular matrix, 130
concave on positive definite matrices, 505
definition, 69
inverse square root is convex on positive

definite matrices, 505
monotone on positive definite matrices, 495,

501, 505

of a diagonalizable matrix, 69
of a positive (semi)definite matrix, 439, 443
of a symmetric unitary matrix, 140

squared-normal matrix
canonical form, 147, 148
definition, 147

standard basis, see basis, standard
standard inner product, see inner product,

standard
standard partition, 208
standardized norm

absolute, 339
definition, 339
dual, 339

Steinitz theorem, see Carathéodory–Steinitz
theorem

Stenzel, H., 279
Stephens, A. B., 533
stochastic matrix

column, 547
compact convex set, 548
definition, 547
power bounded, 530
power-bounded, 552
semigroup, 551
semisimple eigenvalues, 552

Stone, B. J., 370
Strang, G., 191, 370
strict contraction, see contraction, strict
strict diagonal dominance, 352
strictly diagonally dominant

block, 395
definition, 392
idempotent, 394
positive (semi)definite matrix, 438
preserved under Gaussian elimination, 394
Schur complement, 395
sign of determinant, 394

strong majorization, 248
strongly connected graph, 398, 400, 418
Strutt, John William, see Rayleigh, Lord
subadditivity, 314
subdiagonal, 5
sublist, 3
submatrix

definition, 5
notation, 17
principal, 17

submultiplicativity, 341
subordinate norm, see compatible norms
subspace

coninvariant, 262
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definition, 2
intersection lemma, 235, 238
intersection theorem, 4
invariant, 62, 262
nontrivial, 2, 62
proper, 2
sum, 2
trivial, 2, 62

sum norm, see or
sum of subspaces, 2
superdiagonal, 5
SVD, see singular value decomposition
Sylvester

criterion for positive definite matrix, 439
equation, 111
identity for bordered determinants, 27
rank inequality, 13

Sylvester’s law of inertia
analog for congruence, 284
generalization to Mn , 289
quantitative form, 283
singular congruences, 284
theorem, 282

Sylvester’s theorem
law of inertia, see Sylvester’s law of inertia
linear matrix equations, 111, 127

symmetric gauge function
definition, 464
Loewner–John matrix of a, 492
unitarily invariant norms on matrices, 465

symmetric matrix
2-by-2 unitary similar to a, 162
A = SST , 272
canonical pairs, 567
definition, 7
diagonalizable, 272, 277
every matrix similar to a, 271, 272
involution, 274
normal, 146
orthogonally diagonalizable, 272, 277
product of two, 178, 271, 274
product of two real, 274
product with Hermitian, 306
product with skew symmetric, 276
rank-principal, 20
simultaneous SVD, 157
singular value decomposition, 153, 156, 159,

263, 272, 275, 308
unitary, 139

square root, 140
unitary congruence, 153

symmetric part

2-by-2 matrix, 264
definition, 7, 567
unitarily invariant norm bound, 476

Symons, J. S. V., 320
Szász inequality

refines Hadamard’s inequality, 508
theorem, 508

Sze, N. S., 75

Tadmor, E., 381
Takagi

factorization, see Autonne–Takagi
factorization

theorem, see Autonne–Takagi factorization
Takagi, T., 278
Tan, C., 529
Taussky’s inequality, 490
Taussky’s theorem, 404
Taussky, O., 130, 396, 429, 490
Taussky–Ostrowski inequality, see

Ostrowski–Taussky inequality
Tener, J. E., 100, 273
theorem of the alternative, see Fredholm,

alternative
thin singular value decomposition, see singular

value decomposition, thin
thin SVD, see singular value decomposition,

thin
Thompson, R. C., 569
time reversal, 305
Toeplitz decomposition, 7, 227, 289, 567
Toeplitz matrix

definition, 34, 427
eigenvalues, 394
persymmetric, 36
reversal similar to transpose, 34, 177, 270
singular value decomposition, 274
tridiagonal

nearly normal, 144
normal, 144

Toeplitz moment sequence, 427
trace

definition, 7
moments and eigenvalues, 126
negative definite matrix, 431
norm, see trace norm
of AA∗, 7
partial, 437
positive (semi)definite matrix, 430
similarity invariant, 59
Specht identities, 97
sum of eigenvalues, 50
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trace (cont.)
theorem, see von Neumann, trace theorem
tr A−1 is strictly convex on positive definites,

489
trace norm

definition, 362
dual of spectral norm, 362
upper bound on tr Am , 539

trailing principal minor, see principal minor,
trailing

trailing principal submatrix, see principal
submatrix, trailing

transpose
2-by-2 matrix is unitarily similar to its, 99
definition, 6
matrix ∗congruent to its, 299
matrix congruent to its, 299
matrix not unitarily similar to its, 99
matrix similar to its, 177, 180, 190, 191
real matrix is real symmetric similar to its,

178
transposition, 32
trial and error, 309
triangle inequality

complex numbers
case of equality, 96, 520
proof and case of equality, 556

equality in the, 520
norms, 314

triangular equivalence
canonical form, 220
complete set of invariants, 220
definition, 41, 220

triangular matrix
block, 32
commutes with, 31
definition, 31
essentially, 32
strictly, 31
unit, 31

triangularization
real matrix, see Schur, triangularization, real
sequential deflation, 101
simultaneous, see simultaneous

triangularization, 149
tridiagonal matrix

block tridiagonal, 36
correlation matrix

eigenvalues, 445
definition, 35
determinant, 35, 222

eigenvalues, 82, 222
distinct real, 174
real, 174
zero main diagonal, 81, 174

Hermitian and irreducible/unreduced
distinct eigenvalues, 258
eigenvalue interlacing, 258

Jacobi matrix, see Jacobi matrix
LU factorization, 222
nearly normal, 144
normal, 144, 147
real eigenvalues, 232
singular values, 259
Toeplitz

eigenvalues, 82
tridiagonalization

Lanczos, see Lanczos tridiagonalization
tripotent, 196
trivial cycle, see cycle, trivial
trivial linear combination

definition, 2
Tsai, Y. L., xvi
type 1 row operations, see row, operations,

type 1
type 2 row operations, see row, operations,

type 2
type 3 row operations, see row, operations,

type 3

uncoupled equations, 176, 285
uniformly continuous function, see continuous

function, uniformly
unistochastic matrix

and Hoffman–Wielandt theorem, 407
connect eigenvalues with diagonal entries,

257
definition, 257
doubly stochastic but not unistochastic,

413
example of doubly stochastic, 548

unit
lower triangular matrix, see lower triangular

matrix, unit
triangular matrix, see triangular matrix, unit
upper triangular matrix, see upper triangular

matrix, unit
unit ball

compact, 336
convex, 337
definition, 335
equilibrated, 336
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geometric characterization, 337
not compact, 337

unit disc in complex plane, 556
unit triangular equivalence

canonical form, 221
definition, 221

unit vector, see vector, unit
unital matrix norm

definition, 344
not induced, 357

unitarily diagonalizable
definition, 94

unitarily invariant matrix norm
characterization, 469
convex set, 363, 469
definition, 357
dominates the spectral norm, 370
spectral norm is the only induced, 357

unitarily invariant norm on matrices
definition, 357
scalar multiples of Frobenius norm are only

absolute, 470
symmetric gauge functions, 464

unitarily invariant vector norm
Euclidean norm, 84
only scalar multiples of Euclidean norm, 320,

322
permutation invariant norm, see permutation

invariant norm
unitarily irreducible, 233
unitarily reducible, 233
unitary

definition, 84
diagonalization

normal, 133
uniqueness, 134

dilation, 162
equivalence, 156
group, 85
orthogonal, see orthogonal, unitary
Weyr form, 211

commutes with, 207
unitary congruence

block matrix criterion, 278, 279, 455
characterization, 277
criterion, 278, 455
definition, 41
is unitary consimilarity, 300
partial triangularization by a, 261
simultaneous, see simultaneous unitary

congruence

skew-symmetric matrix, 153
symmetric matrix, 159, 263
to a real matrix, 273
verify with finitely many calculations, 278
Youla’s theorem, 266

unitary congruence canonical form
2-by-2 matrix, 264
AĀ is Hermitian, 277
AĀ is positive semidefinite, 311
congruence-normal matrix, 277
coninvolutory matrix, 311
conjugate-normal matrix, 268, 274
conjugate-self-annihilating matrix, 157
skew-symmetric matrix, 153, 270
symmetric matrix, 153
unitary matrix, 270

unitary consimilarity, see unitary congruence
unitary dilation, 162
unitary equivalence

definition, 41, 83
equality of Frobenius norms is a necessary

condition, 94
invariants for, 155
involves two independent unitary matrices,

149
simultaneous

to diagonal matrices, 154
to real or nonnegative diagonal matrices,

155
to real or nonnegative diagonal matrices

via real orthogonal equivalence, 155
unitary matrix

∗congruence, 457
2-by-2 block matrix, 87, 156
2-by-2 unitarily similar to complex

symmetric, 162
commutes with every, 130
compact set, 86
cramped, 146
definition, 7
diagonal, 91
product of Householder matrices, 93
QS factorization, 140
singular values of blocks, 156
skew-symmetric, 139
SQ factorization, 140
symmetric, 139, 140
unitary congruence canonical form, 270

unitary similarity
criterion, 97
definition, 41, 83, 94
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unitary similarity (cont.)
of real matrices, 98
simultaneous, see simultaneous unitary

similarity
simultaneous similarity: A and B; A∗ and B∗,

457
simultaneous, of real matrices, 141
Specht’s theorem, 97
to a complex symmetric matrix, 273
to a matrix with equal diagonal entries, 95
to a real matrix, 273
to an upper Hessenberg matrix, 96
to transpose, 99, 273
verify with finitely many computations,

98
unitary similarity canonical form

self-annihilating matrix, 213
unitary similarity invariant

definition, 379
univalent, 260
unreduced

Hessenberg matrix, see Hessenberg matrix,
unreduced

upper half-plane, 556
upper triangular matrix

block, 32
commutes with, 31, 113
definition, 31
Jordan block, 164
Jordan canonical form, 167
L PU factorization, 219
LU factorization, 216
not square, 31
P LU factorization, 219
Schur triangularization, 101
unit, 31, 218
unitary Weyr form, 211

usual inner product, see inner product, usual

van den Driessche, P., xii, 457
Vandermonde matrix

and the moment matrix, 128
definition, 37
inverse of, 37

Varga, R., 396
variance

definition, 319
variance of X in the state R

definition, 446
not smaller than Wigner–Yanase skew

information, 448

vec mapping
definition, 21

vector
all ones, 8, 57
column, 2
coordinate representation of, 39
isotropic, see isotropic vector
normalized, 15, 45, 83, 314
unit, 15, 314
zero, 1

vector norm, 314
vector norm on matrices

definition, 341
Gelfand formula, 372
scale to a matrix norm, 373

vector space
complete, 329
complex, 2
definition, 1
real, 2
subspace, 2
zero, 2

vectors
angle between two real, 15, 473

Vinsonhaler, C., xiv, 211, 215
volume

and determinant, 491
von Neumann

trace theorem, 458, 550
case of equality, 460

von Neumann, J., 320, 340

weak minimum principle, 480
weakly connected graph, 418
weakly irreducible matrix

characterization, 418
definition, 418

weakly monotone norm, 340
Wedderburn rank-one reduction, 14
Wei, M., 162
Wei, Y., 279
Weierstrass theorem, 565
well conditioned

matrix inversion, 382
Weyl product inequalities, 370, 454
Weyl’s theorem

eigenvalues of A + B, 239, 260
interlacing, 241
monotonicity, 241
singular values of A + B, 454

Weyl, H., 239
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Weyr block, 204, 205
Weyr canonical form

commuting family, 211
definition, 206
Jordan block, 206
nonderogatory matrix, 206
theorem, 205
unitary, 211
unitary, commutes with, 207

Weyr characteristic
AB versus B A, 191
and concanonical form, 305
and Segre characteristic, 173, 276
and Weyr canonical form, 206
definition, 170
square of a nilpotent matrix, 310

Weyr matrix
commutes with, 208, 211
definition, 204

Weyr, E., 215
Wiegmann, N. A., 130
Wielandt

inequality, 471
angle between Ax and Ay with x ⊥ y, 473
equivalent to Kantorovich inequality, 472

matrix, 158, 368, 455, 544
singular values and eigenvalues, 450, 457

theorem on index of primitivity, 543
Wielandt, H., 260, 413, 543
Wigner–Yanase

correlation
definition, 447
not a semi-inner product, 448

real part is a semi-inner product on
Hermitians, 448

skew information
definition, 447
nonnegative on normal matrices, 448
not greater than variance, 448

Wimmer, H., 457
Woerdeman, H., xvi
Wolkowicz, H., 148
Woodbury, see Sherman–Morrison–Woodbury

formula
word

definition, 97
degree of a, 97
in A and A∗, 97

Wronskian, 56

Youla’s factorization, see Youla’s theorem
Youla’s theorem, 266
Youla, D. C., 278
Young diagram, see dot diagram
Young tableau, 214

zero
matrix, see matrix, zero
of a function, 46
vector, see vector, zero

zero-one matrix
normal, 148
not permutation similar, 174

Zhan, X., 191
Zhang, F., xvi, 279
Zhang, X., 424
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