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CHAPTER 5: Optimization of Unconstrained Functions 153 

A GOOD TECHNIQUE for the optimization of a functioh of just one variable is essen- 
tial for two reasons: 

1. Some unconstrained problems inherently involve only one variable 
2. Techniques for unconstrained and constrained optimization problems generally 

involve repeated use of a one-dimensional search as described in Chapters 6 
and 8. 

Prior to the advent of high-speed computers, methods of optimization were 
limited primarily to analytical methods, that is, methods of calculating a potential 
extremum were based on using the necessary conditions and analytical derivatives 
as well as values of the objective function. Modern computers have made possible 
iterative, or numerical, methods that search for an extremum by using function and 
sometimes derivative values ofJTx) at a sequence of trial points xl, x2, . . . . 

As an example consider the following function of a single variable x (see Fig- 
ure 5.1). 

Start - 

f ( x ) = x 2 - 2 x +  1 
- 

Iterative method: - 
second estimate 

Iterative method: 
first estimate of x* 

I 
0 1 2 3 4 

FIGURE 5.1 
Iterative versus analytical methods of finding a minimum. 
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An analflcal method of finding x* at the minimum off (x) is to set the gradient off (x) 
equal to zero 

and solve the resulting equation to get x* = 1; x* can be tested for the sufficient 
conditions to ascertain that it is indeed a minimum: 

To carry out an iterative method of numerical minimization, start with some ini- 
tial value of x, say x" = 0, and calculate successive values of f(x) = x2 - 2x + 1 and 
possibly dfldx for other values of x, values selected according to whatever strategy 
is to be employed. A number of different strategies are discussed in subsequent sec- 
tions of this chapter. Stop when f(xk+') - f(9) < el or when 

where the superscript k designates the iteration number and el and e2 are the pre- 
specified tolerances or criteria of precision. 

Iff (x) has a simple closed-form expression, analytical methods yield an exact 
solution, a closed form expression for the optimal x, x*. If f(x) is more complex, for 
example, if it requires several steps to compute, then a numerical approach must be 
used. Software for nonlinear optimization is now so widely available that the numer- 
ical approach is almost always used. For example, the "Solver" in the Microsoft 
Excel spreadsheet solves linear and nonlinear optirllization problems, and many 
FORTRAN and C optimizers are available as well. General optimization software is 
discussed in Section 8.9. 

Analytical methods are usually difficult to apply for nonlinear objective func- 
tions with more than one variable. For example, suppose that the nonlinear function 
Ax) = f (xl, x2, . . . , xn) is to be minimized. The necessary conditions to be used are 
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Each of the partial derivatives when equated to zero may well yield a nonlinear 
equation. Hence, the minimization of f(x) is converted into a problem of solving a 
set of nonlinear equations in n variables, a problem that can be just as difficult to 
solve as the original problem. Thus, most engineers prefer to attack the minimiza- 
tion problem directly by one of the numerical methods described in Chapter 6, 
rather than to use an indirect method. Even when minimizing a function of one vari- 
able by an indirect method, using the necessary conditions can lead to having to 
find the real roots of a nonlinear equation. 

5.1 NUMERICAL METHODS FOR OPTIMIZING A FUNCTION 
OF ONE VARIABLE 

Most algorithms for unconstrained and constrained optimization make use of an 
efficient unidimensional optimization technique to locate a local minimum of a 
function of one variable. Nash and Soter (1996) and other general optimization 
books (e.g., Dennis and Schnabel, 1983) have reviewed one-dimensional search 
techniques that calculate the interval in which the minimum of a function lies. To 
apply these methods you initially need to know an initial bracket A0 that contains 
the minimum of the objective functionflx), and thatflx) is unimodal in the interval. 
This can be done by coding the function in a spreadsheet or in a programming lan- 
guage like Visual Basic, Fortran, or C, choosing an interval, and evaluatingflx) at 
a grid of points in that interval. The interval is extended if the minimum is at an end 
point. There are various methods of varying the initial interval to reach a final inter- 
val An. In the next section we describe a few of the methods that prove to be the 
most effective in practice. 

One method of optimization for a function of a single variable is to set up as 
fine a grid as you wish for the values of x and calculate the function value for every 
point on the grid. An approximation to the optimum is the best value of f(x). 
Although this is not a very efficient method for finding the optimum, it can yield 
acceptable results. On the other hand, if we were to utilize this approach in opti- 
mizing a multivariable function of more than, say, five variables, the computer time 
is quite likely to become prohibitive, and the accuracy is usually not satisfactory. 

In selecting a search method to minimize or maximize a function of a single 
variable, the most important concerns are software availability, ease of use, and 
efficiency. Sometimes the function may take a long time to compute, and then effi- 
ciency becomes more important. For example, in some problems a simulation may 
be required to generate the function values, such as in determining the optimal 
number of trays in a distillation column. In other cases you have no functional 
description of the physical-chemical model of the process to be optimized and are 
forced to operate the process at various input levels to evaluate the value of the 
process output. The generation of a new value of the objective function in such cir- 
cumstances may be extremely costly, and no doubt the number of plant tests would 
be limited and have to be quite judiciously designed. In such circumstances, effi- 
ciency is a key criterion in selecting a minimization strategy. 
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5.2 SCANNING AND BRACKETING PROCEDURES 

Some unidimensional search procedures require that a bracket of the minimum 
be obtained as the first part of the strategy, and then the bracket is narrowed. 
Along with the statement of the objective function Ax) there must be some 
statement of bounds on x or else the implicit assumption that x is unbounded 
(- oo < x < oo). For example, the problem 

Minimize: f (x) = (x - 1 0 0 ) ~  

has an optimal value of x* = 100. Clearly you would not want to start at -oo (i.e., 
a large negative number) and try to bracket the minimum. Common sense suggests 
estimating the minimum x and setting up a sufficiently wide bracket to contain the 
true minimum. Clearly, if you make a mistake and set up a bracket of 0 5 x r 10, 
you will find that the minimum occurs at one of the bounds, hence the bracket must 
be revised. In engineering and scientific work physical limits on temperature, pres- 
sure, concentration, and other physically meaningful variables place practical 
bounds on the region of search that might be used as an initial bracket. 

Several strategies exist for scanning the independent variable space and deter- 
mining an acceptable range for search for the minimum of f(x). As an example, in 
the above function, if we discretize the independent variable by a grid spacing of 
0.01, and then initiate the search at zero, proceeding with consecutively higher val- 
ues of x, much time and effort would be consumed in order to set up the initial 
bracket for x. Therefore, acceleration procedures are used to scan rapidly for a suit- 
able range of x. One technique might involve using a functional transformation 
(e.g., log x) in order to look at wide ranges of the independent variable. Another 
method might be to use a variable grid spacing. Consider a sequence in x given by 
the following formula: 

Equation (5.1) allows for successively wider-spaced values, given some base incre- 
ment (delta). Table 5.1 lists the values of x and f(x) = (x - 100)~  for Equation 
(5.1) with 6 = 1.Note that in nine calculations we have bounded the minimum of 
f(x). Another scanning procedure could be initiated between x = 63 and x = 255, 
with 6 reduced, and so on to find the minimum of f(x). However, more efficient 
techniques are discussed in subsequent sections of this chapter. 

In optimization of a function of a single variable, we recognize (as for general 
multivariable problems) that there is no substitute for a good first guess for the 
starting point in the search. Insight into the problem as well as previous experience 

TABLE 5.1 
Acceleration in fixing an initial bracket 
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are therefore often very important factors influencing the amount of time and effort 
required to solve a given optimization problem. 

The methods considered in the rest of this chapter are generally termed descent 
methods for minimization because a given step is pursued only if it yields an 
improved value for the objective function. First we cover methods that use function 
values or first or second derivatives in Section 5.3, followed by a review of several 
methods that use only function values in Section 5.4. 

5.3 NEWTON AND QUASI-NEWTON METHODS 
OF UNIDIMENSIONAL SEARCH 

Three basic procedures for finding an extremum of a function of one variable have 
evolved from applying the necessary optimality conditions to the function: 

1. Newton's method 
2. Finite difference approximation of Newton's method 
3. Quasi-Newton methods 

In comparing the effectiveness of these techniques, it is useful to examine the rate 
of convergence for each method. Rates of convergence can be expressed in various 
ways, but a common classification is as follows:" 

Linear 

(rate usually slow in practice) 

Order p 

IIxk+l - x*ll 
5 c c 2 0, p r ' 1, k large 

llxk - x*llP 

(rate fastest in practice if p > 1) 

If p = 2, the order of convergence is said to be quadratic. 
To understand these definitions, assume that the algorithm generating the 

sequence of points xk is converging to x*, that is, as k + 00, if Equation (5.2) holds 
for large k, x + x*.Then 

Ilxk+l - x*ll 5 c llxk - x*ll k large 

aThe symbols xk, xk+', and so on refer to the kth or (k + 1)st stage of iteration and not to powers of x. 
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so the error at iteration k + 1 is bounded by c times the error at iteration k, where 
c < 1. If c = 0.1, then the error is reduced by a factor of 10 at each iteration, at 
least for the later iterations. The constant c is called the convergence ratio. 

If Equation (5.3) holds for large k, then (Ixk+' - x*ll 5 c llxk - xllP, k large 
enough. If p = 2, and 11 xk - xOl( = 10-I for some k, then 

and so on. 
Hence, if c is around 1 .O, the error decreases very rapidly, the number of cor- 

rect digits in xk doubling with each iteration. Because all real numbers in double 
precision arithmetic have about 16 significant decimal digits, only a few iterations 
are needed before the limits of accuracy of Equation (5.3) are reached. 

Superlinear 

1 1 ~ ~ ' ~  - x*Il . 
lim 0 (or < ckandck+Oask+oo) 
+ Ilxk - x*ll (5.4) 

(rate usually fast in practice) 

For a function of a single variable llxll = 1x1 itself. 

5.3.1 Newton's Method 

Recall that the first-order necessary condition for a local minimum is f '(x) = 0. 
Consequently, you can solve the equation f '(x) = 0 by Newton's method to get 

making sure on each stage k that f ( ~ + l )  < f (xk) for a minimum. Examine Figure 5.2. 
To see what Newton's method implies about f(x), suppose f (x) is approximated 

by a quadratic function at J? 

Find df(x)/dx = 0, a stationary point of the quadratic model of the function. The 
result obtained by differentiating Equation (5.6) with respect to x is 
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FiIGURE 5.2 
Newton's method applied to the solution of fl(x) = 0. 

which can be rearranged to yield Equation (5.5). Consequently, Newton's method 
is equivalent to using a quadratic model for a function in minimization (or maxi- 
mization) and applying the necessary conditions. 
The advantages of Newton's method are 

1. The procedure is locally quadratically convergent [p = 2 in Equation (5.3)] to the 
extremum as long as f"(x) # 0. 

2. For a quadratic function, the minimum is obtained in one iteration. 

The disadvantages of the method are 

1. You have to calculate both f'(x) and f "(x). 
2. Iff "(x) + 0, the method converges slowly. 
3. If the initial point is not close enough to the minimum, the method as described 

earlier will not converge. Modified versions that guarantee convergence from 
poor starting points are described in Bazarra et al. (1993) and Nash and Sofer 
(1996). 

5.3.2 Finite Difference Approximations to Derivatives 

If f(x) is not given by a formula, or the formula is so complicated that analytical 
derivatives cannot be formulated, you can replace Equation (5.5) with a finite dif- 
ference approximation 
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FIGURE 5.3 
Quasi-Newton method for solution off ' ( x )  = 0. 

Central differences were used in Equation (5.8), but forward differences or any 
other difference scheme would suffice as long as the step size h is selected to match 
the difference formula and the computer (machine) precision with which the cal- 
culations are to be executed. The main disadvantage is the error introduced by the 
finite differencing. 

5.3.3 Quasi-Newton Method 

In the quasi-Newton method (secant method) the approximate model analogous to 
Equation (5.7) to be solved is 

f'(xk) + m(x - xk) = 0 (5.9) 

where rn is the slope of the line connecting the point xp and a second point d, 
given by 

The quasi-Newton approximates fl(x) as a straight line (examine Figure 5.3); as 
xq +xp, rn approaches the second derivative of f(x). Thus Equation (5.9) imitates 
Newton's method 

where 2 is the approximation to x* achieved on one iteration k. Note that f'(x) can 
itself be approximated by finite differencing. 
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Quasi-Newton methods start out by using two points 9 and x4 spanning the 
interval of x, points at which the first derivatives offlx) are of opposite sign. The zero 
of Equation (5.9) is predicted by Equation (5.10), and the derivative of the function 
is then evaluated at the new point. The two points retained for the next step are x 
and either X4 or 9. This choice is made so that the pair of derivatives f '(x), and 
either f '(9) or f I ( $ ) ,  have opposite signs to maintain the bracket on x*. This varia- 
tion is called "regula falsi" or the method of false position. In Figure 5.3, for the (k 
+ 1)st search, 2 and X4 would be selected as the end points of the secant line. 

Quasi-Newton methods may seem crude, but they work well in practice. The 
order of convergence is (1 + ~ ) / 2  = 1.6 for a single variable. Their conver- 
gence is slightly slower than a properly chosen finite difference Newton method, 
but they are usually more efficient in terms of total function evaluations to achieve 
a specified accuracy (see Dennis and Schnabel, 1983, Chapter 2). 

For any of the three procedures outlined in this section, in minimization you 
assume the function is unimodal, bracket the minimum, pick a starting point, apply 
the iteration formula to get Xk+l (or X" ) from Xk (or 9 and x4), and make sure that 
f(Xk+') < f(xk) on each iteration so that progress is made toward the minimum. As 
long as f "(2) or its approximation is positive, f(x) decreases. 

Of course, you must start in the correct direction to reduce f(x) (for a mini- 
mum) by testing an initial perturbation in x. For maximization, minimize -f (x). 

EXAMPLE 5.1 COMPARISON OF NEWTON, FINITE 
DIFFERENCE NEWTON, AND QUASI-NEWTON METHODS 
APPLIED TO A QUADRATIC FUNCTION 

In this example, we minimize a simple quadratic function f (x)  = x2 - x that is 
illustrated in Figure E5.la using one iteration of each of the methods presented in 
Section 5.3. 

Solution. By inspection we can pick a bracket on the minimum, say x = -3 to x = 
3. Assume x0 = 3 is the starting point for the minimization. 

Newton's method. For Newton's method sequentially apply Equation (5.5). 
Examine Figure 5.1 b for f (x) = x2 - x and f '(x) = 2x - 1 ; f "(x) = 2. Note f "(x) is 
always positive-definite. For this example Equation (5.5) is 

and 

Because the function is quadratic and hence f (x) is linear, the minimum is 
obtained in one step. If the function were not quadratic, then additional iterations 
using Equation (5.5) would take place. 
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FIGURE E5.1b 

Finite difference Newton method. Application of Equation (5.8) to f ( x )  = x2 - x  
is illustrated here. However, we use a forward difference formula for f ' ( x )  and a three- 
point central difference formula for f "(x) 
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with h = 

One more iteration could be taken to improve the estimate of x*, perhaps with a 
smaller value of h (if desired). 

Quasi-Newton method. The application of Equation (5.10) to f(x) = x2 - x starts 
with the two points x = -3 and x = 3 corresponding to the xp and xq, respectively, in 
Figure 5.3: 

As before, the optimum is reached in one step because f '(x) is linear, and the linear 
extrapolation is valid. 

EXAMPLE 5.2 MINIMIZING A MORE DIFFICULT FUNCTION 

In this example we minimize a nonquadratic function f(x) = x" - x + 1 that is illus- 
trated in Figure E5.2a, using the same three methods as in Example 5.1. For a starting 
point of x = 3, minimize f(x) until the change in x is less than Use h = 0.1 for 
the finite-difference method. For the quasi-Newton method, use x4 = 3 and xp = -3. 

Solution 

Newton's method. For Newton's method, f' = 4x3 - 1 and f "  = 12x2, and the 
sequence of steps is 
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X 

FIGURE E5.2a 
Newton iterates for fourth order function. 

Additional iterations yield the following values for x:  

As you can see from the third and fourth columns in the table the rate of convergence 
of Newton's method is superlinear (and in fact quadratic) for this function. 
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Finite Difference Newton. Equation (5.8) for this example is 

For the same problem as used in Newton's method, the first iteration using (b) for 
h = is 

Other values of h give 

For h = the procedure diverged after the second iteration. 

Quasi-Newton. The application of Equation (5.10) yields the following results 
(examine Figure E5.2b). Note how the shape of fl(x) implies that a large number of 
iterations are needed to reach x*. Some of the values of fl(x) and x during the search 
are shown in the following table; notice that xs remains unchanged in order to main- 
tain the bracket with f '(x) > 0. 
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FIGURE E5.2b 
Quazi-Newton method applied to f '(x). 

5.4 POLYNOMIAL APPROXIMATION METHODS 

Another class of methods of unidimensional minimization locates a point x near x*, 
the value of the independent variable corresponding to the minimum of f(x), by 
extrapolation and interpolation using polynomial approximations as models off (x). 
Both quadratic and cubic approximation have been proposed using function values 
only and using both function and derivative values. In functions where f '(x) is con- 
tinuous, these methods are much more efficient than other methods and are now 
widely used to do line searches within multivariable optimizers. 

5.4.1 Quadratic Interpolation 

We start with three points x,, x2, and x3 in increasing order that might be equally 
spaced, but the extreme points must bracket the minimum. From the analysis in 
Chapter 2, we know that a quadratic function f(x) = a + bx + c 2  can be passed 
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exactly through the three points, and that the function can be differentiated and the 
derivative set equal to 0 to yield the minimum of the approximating function 

Suppose that f(x) is evaluated at x,, x,, and x, to yield f(xl) = fi, f(x2) = f2, and 
f(x,) = f3. The coefficients b and c can be evaluated from the solution of the three 
linear equations 

via determinants or matrix algebra. Introduction of b and c expressed in terms of 
x,, x2, x,, fl, f,, and f, into Equation (5.11) gives 

To illustrate the first stage in the search procedure, examine the four points in 
Figure 5.4 for stage 1. We want to reduce the initial interval [x,, x,]. By examining 
the values of f(x) [with the assumptions that f(x) is unimodal and has a minimum], 
we can discard the interval from x, to x, and use the region (x,, x,) as the new inter- 
val. The new interval contains three points, (x,, ;, x,) that can be introduced into 
Equation (5.12) to estimate a x*, and so on. In general, you evaluate f (x*) and discard 
from the set {x,, x,, x,} the point that corresponds to the greatest value offlx), unless 

FIGURE 5.4 
Two stages of quadratic interpolation. 

f (x) 

fi 
f3 

f2 4 
f *  

Stage 1 

Stage 2 

X I  x2 2 X3 x 

I 
I 
I 
I 

I 
I 
I 
I 

x2 2 X3 x 
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I. If 2 lies between x, and x,: 

(a) f * < f2 Pick xz, %, x3 

f *  < f 3  

I 0 I I ( b ) f * > f 2  P i ckx , , x ; ? ,~  
I I I 

I I I f *  < f 3  

X, X, R x3 X, X, R X, 

11. If 2 lies between x, and x2: 

(a) f * < fi Pick xl, 2, x2 

f* <fl 
(b) f * > f2 Pick E, x2, x3 

I ? f *  < f i  

X, R X, X, X, R X, XJ 

X X 

FIGURE 5.5 
How to maintain a bracket on the minimum in quadratic interpolation. 

a bracket on the minimum ofj(x) is lost by so doing, in which case you discard the x 
so as to maintain the bracket. The specific tests and choices of xi to maintain the 
bracket are illustrated in Figure 5.5. In Figure 5.5, f * = f(X). If x* and whichever 
of {x, ,  x2, x,} corresponding to the smallest f(x) differ by less than the prescribed 
accuracy in x, or the prescribed accuracy in the corresponding values of f(x) is 
achieved, terminate the search. Note that only function evaluations are used in the 
search and that only one new function evaluation (for x" ) has to be carried out at each 
new iteration. 

EXAMPLE 5.3 APPLICATION OF QUADRATIC 
INTERPOLATION 

The function to be minimized is f(x) = 2 - x and is illustrated in Figure E5. la. Three 
points bracketing the minimum (- 1.7, - 0.1, 1.5) are used to start the search for the 
minimum off (x); we use equally spaced points here but that is not a requirement of 
the method. 

Solution 

xl = -1.7 x2 = -0.1 x3 = 1.5 

f(x,) = 4.59 f(xz) = 0.1 1 f(x3) = 0.75 
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Two different formulas for quadratic interpolation can be compared: Equation (5.8), 
the finite difference method, and Equation (5.12). 

Note that a solution on the first iteration seems to be remarkable, but keep in mind 
that the function is quadratic so that quadratic interpolation should be good even if 
approximate formulas are used for derivatives. 

5.4.2 Cubic Interpolation 

Cubic interpolation to find the minimum of f(x) is based on approximating the 
objective function by a third-degree polynomial within the interval of interest and 
then determining the associated stationary point of the polynomial 

Four points must be computed (that bracket the minimum) to estimate the minimum, 
either four values of Ax), or the values of Ax) and the derivative of JTx), each at two 
points. 

In the former case four linear equations are obtained with the four unknowns 
being the desired coefficients. Let the matrix X be 
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Then the extremum off (x) is obtained by setting the derivative of f(x) equal to zero 
and solving for x 

so that 

The sign to use before the square root is governed by the sign of the second deriv- 
ative of f (?), that is, whether a minimum or maximum is sought. The vector A can 
be computed from XA = F or 

After the optimum point i is predicted, it is used as a new point in the next 
iteration and the point with the highest [lowest value of f(x) for maximization] 
value off (x) is discarded. 

If the first derivatives of f(x) are available, only two points are needed, and the 
cubic function can be fitted to the two pairs of the slope and function values. These 
four pieces of information can be uniquely related to the four coefficients in the cubic 
equation, which can be optimized for predicting the new, nearly optimal data point. 
If (x,,f,, f ',) and (x,,f,, f ',) are available, then the optimum x is 

where z = 
3[h - hl 
[x2 - ~ 1 1  

+fil+fi 

In a minimization problem, you require x1 < x2, f ;  < 0, and f; > 0 (x, and x, 
bracket the minimum). For the new point (x"), calculate fl(x") to determine which 
of the previous two points to replace. The application of this method in nonlinear pro- 
gramming algorithms that use gradient information is straightforward and effective. 

If the function being minimized is not unimodal locally, as has been assumed 
to be true in the preceding discussion, extra logic must be added to the unidimen- 
sional search code to ensure that the step size is adjusted to the neighborhood of the 
local optimum actually sought. For example, Figure 5.6 illustrates how a large ini- 
tial step can lead to an unbounded solution to a problem when, in fact, a local min- 
imum is sought. 
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FIGURE 5.6 
A unidimensional search for a local minimum of a multimodal 
objective function leads to an unbounded solution. 

EXAMPLE 5.4 OPTIMIZATION OF A MICROELECTRONICS 
PRODUCTION LINE FOR LITHOGRAPHY 

You are to optimize the thickness of resist used in a production lithographic process. 
There are a number of competing effects in lithography. 

1. As the thickness t (measured in micrometers) grows smaller, the defect density 
grows larger. The number of defects per square centimeter of resist is given by 

2. The chip yield in fraction of good chips for each layer is given by 

where a is the active area of the chip. Assume that 50 percent of the defects are 
"fatal" defects (a = 0.5) detected after manufacturing the chip. 

Assume four layers are required for the device. The overall yield is based on a 
series formula: 
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3. Throughput decreases as resist thickness increases. A typical relationship is 

Each wafer has 100 chip sites with 0.25 cm2 active area. The daily production level is 
to be 2500 finished wafers. Find the resist thickness to be used to maximize the num- 
ber of good chips per hour. Assume 0.5 5 t  5 2.5 as the expected range. First use 
cubic interpolation to find the optimal value of t, t*. How many parallel production 
lines are required for t*, assuming 20 hlday operation each? How many iterations are 
needed to reach the optimum if you use quadratic interpolation? 

Solution. The objective function to be maximized is the number of good chips per 
hour, which is found by multiplying the yield, the throughput, and the number of 
chips per wafer (= 100): 

Using initial guesses of t  = 1.0 and 2.0, cubic interpolation yielded the following val- 
ues o f f :  

1 .O 4023.05 5611.10 
2.0 4101.73 -2170.89 
1.414 4973.22 - 148.70 
1.395 4974.60 3.68 (optimum) 

Because f is multiplied by 100, f' after two iterations is small enough. Figure E5.4 
is a plot of the objective function f(t). 

FIGURE E5.4 
Plot of objective function (number of good chips per hour) versus resist 
thickness, t(pm). 
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The throughput for t* = 1.395 is 

If a production line is operated 20 hlday, two lines are needed to achieve 2500 waferslday. 
If quadratic interpolation is used with starting points of t = 1, 2, and 3, the fol- 

lowing iterative sequence results: 

5.5 HOW ONE-DIMENSIONAL SEARCH IS APPLIED IN A 
MULTIDIMENSIONAL PROBLEM 

In minimizing a function f(x) of several variables, the general procedure is to (a) 
calculate a search direction and (b) reduce the value of f(x) by taking one or more 
steps in that search direction. Chapter 6 describes in detail how to select search 
directions. Here we explain how to take steps in the search direction as a function 
of a single variable, the step length a. The process of choosing a is called a unidi- 
mensional search or line search. 

Examine Figure 5.7 in which contours of a function of two variables are 
displayed: 

Suppose that the negative gradient of f(x), - Vf (x), is selected as the search direc- 
tion starting at the point xT = [l 21. The negative gradient is the direction that max- 
imizes the rate of change off (x) in moving toward the minimum. To move in this 
direction we want to calculate a new x 

where s is the search direction, a vector, and a is a scalar denoting the distance moved 
along the search direction. Note as = Ax, the vector for the step to be taken 
(encompassing both direction and distance). 
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FIGURE 5.7 
Unidimensional search to bracket the minimum. 

Execution of a unidimensional search involves calculating a value of a and 
then taking steps in each of the coordinate directions as follows: 

- In the x l  direction: x l ,  ,,, - x, ,  + a s l  

- In the x2 direction: x  ,,,, , - x  ,,,,, + as, 

where s, and s, are the two components of s in the x1 and x2 directions, respectively. 
Repetition of this procedure accomplishes the unidimensional search. 
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EXAMPLE 5.5 EXECUTION OF A UNIDIMENSIONAL SEARCH 

We illustrate two stages in bracketing the minimum in minimizing the function from 
Fox (1971) 

in the negative gradient direction 

starting at xT = [ l  21 where f(x) = 5. Here 

We start to bracket the minimum by taking a0 = 0.05 

Steps (a) and (b) consist of one overall step in the direction s = [4 -2IT, and yield 
AxT = [0.2 -0.11. At xl, f (1.2, 1.9) = 4.25, an improvement. 

Step size a 

FIGURE E5.5 
Values of f(x) along the gradient vector [4 -2IT starting at [ l  2IT. 



176 PART 11: Optimization Theory and Methods 

For the next step, we let a' = 2a0 = 0.1, and take another step in the same 
direction: 

At x2, f(1.6, 1.7) = 5.10, so that the minimum of f(x) in direction s has been brack- 
eted. Examine Figure 5.7. The optimal value of a along the search direction can be 
found to be G* = 0.0797 by one of the methods described in this chapter. Figure 
E5.5 shows a plot off versus a along the search direction. 

5.6 EVALUATION OF UNIDIMENSIONAL SEARCH METHODS 

In this chapter we described and illustrated only a few unidimensional search meth- 
ods. Refer to Luenberger (1984), Bazarra et al. (1993), or Nash and Sofer (1996) for 
many others. Naturally, you can ask which unidimensional search method is best to 
use, most robust, most efficient, and so on. Unfortunately, the various algorithms are 
problem-dependent even if used alone, and if used as subroutines in optimization 
codes, also depend on how well they mesh with the particular code. Most codes sim- 
ply take one or a few steps in the search direction, or in more than one direction, with 
no requirement for accuracy-nly thatflx) be reduced by a sufficient amount. 

REFERENCES 

Bazarra, M. S.; H. D. Sherali; and C. M. Shetly. Nonlinear Programming: Theory andAlgo- 
rithms. Wiley, New York (1993). 

Becker, H. A.; P. L. Douglas; and S. Ilias. "Development of Optimization Strategies for 
Industrial Grain Dryer Systems." Can J Chem Eng, 62: 738-745 (1984). 

Beveridge, G. S. G.; and R. S. Schechter. Optimization: Theory and Practice. McGraw-Hill, 
New York (1970). 

Cook, L. N. "Laboratory Approach Optimizes Filter-Aid Addition." Chem Eng, July 23, 
1984: 45-50. 

Dennis, J. E.; and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and 
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, New Jersey (1983) chapter 2. 

Fox, R. L. Optimization Methods for Engineering Design. Addison-Wesley, Reading, Mas- 
sachusetts (1971) p. 42. 

Luenberger, D. G. Linear and Nonlinear Programming. 2nd ed. Addison-Wesley, Menlo 
Park, CA (1984). 

Nash, S. G.; and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill, New York (1996). 
Wilde, D. J. Optimum Seeking Methods. Prentice-Hd, Englewood Cliffs, New Jersey (1964). 
Wilde, D. J. "Hidden Optima in Engineering Design." In Constructive Approaches to Math- 

ematical Models. Academic Press, New York (1979): 243-248. 



c H A PTE R 5: Optimization of Unconstrained Functions 177 

SUPPLEMENTARY REFERENCES 

Beightler, C. S.; D. T. Phillips; and D. J. Wild. Foundations of Optimization. 2nd ed. Prentice- 
Hall, Englewood Cliffs, New Jersey (1979). 

Brent, R. P. Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewood 
Cliffs, New Jersey (1973). 

Cooper, L.; and D. Steinberg. Introduction to Methods of Optimization. W. B. Saunders Co., 
Philadelphia (1 970). 

Reklaitis, G.  V.; R. A. Ravindran; and K. M. Ragsdell. Engineering Optimization. Wiley- 
Interscience, New York (1983). 

Shoup, T. E.; and F. Mistree. Optimization Methods with Applications for Personal Com- 
puters. Prentice-Hall, Englewood Cliffs, New Jersey (1987). 

Weixnan, L. Optimal Block Search. Helderman, Berlin (1984). 

PROBLEMS 

5.1 Can you bracket the minimum of the following function 

starting at x = O? Select different step sizes (small and large), and explain your results. 
If you have trouble in the analysis, you might plot the function. 

5.2 Bracket the minimum of the following functions: 

(a) f(x) = e x +  1.5x2 

(b) f(x) = 0.5(x2 + l)(x + 1) 

(c) f(x) = x3 - 3x 

(d) f(x) = 2x2(x - 2)(x + 2) 

(e) f(x) = 0.1x6 - 0.29x5 + 2.31x4 - 8.33x3 + 12.89x2 - 6 . 8 ~  + 1 

5.3 Minimize f = (x - via (a) Newton's method and (b) the quasi-Newton (secant) 
method, starting at (1) x = -1, (2) x = -0.5, and (3) x = 0.0. 

5.4 Apply a sequential one-dimensional search technique to reduce the interval of 
uncertainty for the maximum of the function f = 6.64 + 1 . 2 ~  - x2 from [0,1] to less 
than 2 percent of its original size. Show all the iterations. 

5.5 List three reasons why a quasi-Newton (secant) search for the minimum of a function 
of one variable will fail to find a local minimum. 

5.6 Minimize the function f = (x - Use quadratic interpolation but no more than a 
maximum of ten function evaluations. The initial three points selected are x, = 0, x, 
= 0.5, and x3 = 2.0. 

5.7 Repeat Problem 5.6 but use cubic interpolation via function and derivative evaluations. 
Use x, = 0.5 and x2 = 2.0 for a first guess. 
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5.8 Repeat Problem 5.6 for cubic interpolation with four function values: x, = 1.5, x, = 3.0, 
x3 = 4.0, and x4 = 4.5. 

5.9 Carry out the initial and one additional stage of the numerical search for the minimum of 

by (a) Newton's method (start at x = I), (b) the quasi-Newton (secant) method (pick a 
starting point), and (c) polynomial approximation (pick starting points including x = 1). 

5.10 Find the maximum of the following function 

Hint: f'(x) = (1 + x)'(2 - x ) ~  

(a) Analytically. (b) By Newton's method (two iterations will suffice). Start at x = -2. 
List each step of the procedure. (c) By quadratic interpolation (two iterations will suf- 
fice). Start at x = -2. List each step of the procedure. 

5.11 Determine the relative rates of convergence for (1) Newton's method, (2) a finite dif- 
ference Newton method, (3) quasi-Newton method, (4) quadratic interpolation, and 
(5) cubic interpolation, in minimizing the following functions: 
(a) x2 - 6x + 3 (b) sin (x) with 0 < x < 27r (c) # - 202 + 0 . 1 ~  

5.12 The total annual cost of operating a pump and motor C in a particular piece of equip- 
ment is a function of x, the size (horsepower) of the motor, namely 

Find the motor size that minimizes the total annual cost. 

5.13 A boiler house contains five coal-- boilers, each with a nominal rating of 300 boiler horse- 
power (BW). If economically justified, each boiler can be operated at a rating of 350 percent 
of nominal. Due to the growth of manufacturing depar&mnts, it has become necessary to install 
additional boilers. Refer to the following data. Determine the percent of nominal rating at which 
the present boilers should be operated. Hint: Minimize total costs per year BI-IP output. 

Data: The cost of fuel, coal, including the cost of handling coal and removing cin- 
ders, is $7 per ton, and the coal has a heating value of 14,000 BtuAb. The overall effi- 
ciency of the boilers, from coal to steam, has been determined from tests of the pres- 
ent boilers operated at various ratings as: 

-- -~ 

Percent of Percent 
nominal overall thermal 
rating, R efficiency, E 
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The annual fixed charges C,  in dollars per year on each boiler are given by the 
equation: 

Assume 8550 hours of operation per year. 
Hint: You will find it helpful to first obtain a relation between R and E by least 

squares (refer to Chapter 2) to eliminate the variable E. 

5.14 A laboratory filtration study is to be carried out at constant rate. The basic equation 
(Cook, 1984) comes from the relation 

(Pressure drop)(Filter area) 
Flow-rate oc 

(Fluid viscosity )(Cake thickness) 

Cook expressed filtration time as 

where tf = time to build up filter cake, min 
APc = pressure drop across cake, psig (20) 

A = filtration area, ft2 (250) 
p = filtrate viscosity, centipoise (20) 
M = mass flow of filtrate, lb,/min (75) 
c = solids concentration in feed to filter, lb,/lb, filtrate (0.01) 
xc = mass fraction solids in dry cake 
a = constant relating cake resistance to solids fraction (3.643) 
h = constant relating cake resistance to solids fraction (2.680) 
p = 3.2 X (lbm/ft)2 

Numerical values for each parameter are given in parentheses. Obtain the maximum 
time for filtration as a function of xc by a numerical unidimensional search. 

5.15 An industrial dryer for granular material can be modeled (Becker et al., 1984) with the 
total specific cost of drying C($lm3) being 

(FACpA + UA) ATC; 
= [ In( W ~ /  W~)/6VtI AH, + pCL + C; 

where A = heat transfer area of dryer normal to the air flow, m2 (153.84) 
p = constant, function of air plenum temperature and initial moisture level 

C', = unit cost of electricity, $/kwh (0.0253) 
C', = unit cost of labor, $/h (15) 8 

C', = unit cost of propane, $/kg (0.18) 
CpA = specific heat of air, Jkg  K (1046.75) 
FA = flow-rate of air, kglh (3.38 X lo5) 

AHc = heat combustion of propane, Jkg  (4.64 X lo7) 
P = electrical power, kW (188) 

AT = temperature difference (T - TI), K; the plenum air temperature T minus 
the inlet air temperature TI (TI = 390 K) 
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U = overall heat transfer coefficient from dryer to atmosphere, 
W/(m2)(K>(45) 

V, = total volume of the dryer, m3 (56) 
W, = final grain moisture content (dry basis), kglkg (0.1765) 
Wo = initial moisture content (dry basis), kgkg (0.500) 

Numerical values for each parameter are given in parentheses. Values for the coefficient 
are given by 

Find the minimum cost as a function of the plenum temperature T (in kelvin). 

5.16 The following is an example from D. J. Wilde (1979). 

The first example was formulated by Stoecker* to illustrate the steepest 
descent (gradient) direct search method. It is proposed to attach a vapor 
recondensation refrigeration system to lower the temperature, and conse- 
quently vapor pressure, of liquid ammonia stored in a steel pressure vessel, 
for this would permit thinner vessel walls. The tank cost saving must be 
traded off against the refrigeration and thermal insulation cost to find the 
temperature and insulation thickness minimizing the total annual cost. 
Stoecker showed the total cost to be the sum of insulation cost i = 400~O.~ 
(xis the insulation thickness, in.), the vessel cost v = 1000 + 22(p - 14.7)1.2 
(p is the absolute pressure, psia), and the recondensation cost r = 144(80 
- t)lx (t is the temperature, OF). The pressure is related to the temperature by 

lnp = -3950(t - 460)-' + 11.86 

By direct gradient search, iterated 16 times from a starting temperature of 50°F, the 
total annual cost is found to have a local minimum at x -- 5.94 in. and t = 6.29OF, 
where the cost is $53,400/yr. The reader can verify, however, that an ambient sys- 
tem (80°F) without any recondensation only costs $52,00OIyr, a saving of 3%. 

Is the comment in the example true? 

*Stoecker, W. F. In "Design of Thermal Systems." McGraw-Hill, New York (1971), pp. 152-155. 
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