Kinematics and Dynamics of Machines

3. Kinematic Analysis of Mechanisms
(Relative Velocity Method)

Introduction

- There are various methods of performing kinematic analysis of mechanisms, including graphical, analytical, and numerical. The choice of a method depends on the problem at hand and on available computational means.
- One way to analyze kinematics of mechanisms is relative velocities and accelerations method.
- Another sufficient method for simple and many compound mechanisms is loop-closure equation method which is presented here in vector notation.

Relative Velocity

- From preliminary dynamics we know that the rate of change of a general vector \mathbf{Q} with respect to a fixed frame $O X Y Z$ and with respect to a frame Oxyz rotating with an angular velocity Ω is
$(\dot{\mathbf{Q}})_{\text {OXYZ }}=\left(\dot{\mathbf{Q}} \dot{O}_{\text {OXYZ }}+\boldsymbol{\Omega} \times \mathbf{Q}\right.$
OR

- If frame OXYZ is fixed and frame Oxyz rotates with angular velocity then, Posfltion vector for the particle P is the same in both frames but the rate of change depends on the choice of frame.
- The absolute velocity of the particle P is

$$
\vec{V}_{P}=(\dot{\vec{r}})_{O X Y Z}=\vec{\Omega} \times \vec{r}+(\dot{r})_{O x y z}
$$

- Absolute acceleration for the particle P is

$$
\vec{a}_{P}=\dot{\vec{\Omega}} \times \vec{r}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})+2 \vec{\Omega} \times(\dot{\vec{r}})_{O x y z}+(\ddot{\vec{r}})_{O x y z}
$$

The most general motion of a rigid body in space is equivalent, to the sum of a translation and a rotation. Considering two particles A and B of the body:

$$
\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A}
$$

where $\mathbf{v}_{B / A}$ is the velocity of B relative to a frame $A X^{\prime} Y^{\prime} Z^{\prime}$ attached to A and of fixed orientation. Denoting by $\mathbf{r}_{B / A}$ the position vector of B relative to A, we write

$$
\mathbf{v}_{B}=\mathbf{v}_{A}+\boldsymbol{\omega} \times \mathbf{r}_{B / A}
$$

where ω is the angular velocity of the body at the instant considered. The acceleration of B is, by similar reasoning

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}
$$

or

$$
\mathbf{a}_{B}=\mathbf{a}_{A}+\boldsymbol{\alpha} \times \mathbf{r}_{B / A}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \mathbf{r}_{B / A}\right)
$$

Example : In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The crank $A B$ is 40 mm long and rotates at 120 r.p.m. clockwise, while the link $C D$ $=80 \mathrm{~mm}$ oscillates about D. BC and AD are of equal length. Find the angular velocity of link $C D$ when angle $B A D=60^{\circ}$.

Example : The crank and connecting rod of a theoretical steam engine are 0.5 m and 2 m long respectively. The crank makes 180 r.p.m. in the clockwise direction. When it has turned 45° from the inner dead centre position, determine : 1. velocity of piston, 2. angular velocity of connecting rod, 3. velocity of point E on the connecting rod 1.5 m from the gudgeon pin, 4. velocities of rubbing at the pins of the crank shaft, crank and crosshead when the diameters of their pins are $50 \mathrm{~mm}, 60 \mathrm{~mm}$ and 30 $m m$ respectively, 5. position and linear velocity of any point G on the connecting rod which has the least velocity relative to crank shaft.

Example: In Fig. 7.9, the angular velocity of the crank $O A$ is 600 r.p.m. Determine the linear velocity of the slider D and the angular velocity of the link $B D$, when the crank is inclined at an angle of 75° to the vertical. The dimensions of various links are : $O A=28 \mathrm{~mm} ; A B=44 \mathrm{~mm}$; $B C 49 \mathrm{~mm}$; and $B D=46 \mathrm{~mm}$. The centre distance between the centres of rotation O and C is 65 mm . The path of travel of the slider is 11 mm below the fixed point C. The slider moves along a horizontal path and OC is vertical.

Vector Algebra and Analysis

A vector \mathbf{r} has two components in the (x, y) plane: r_{x} and r_{y}. Note that the bold font identifies vectors. The following two notations for a vector in a component form will be used:

$$
\mathbf{r}-\left\lfloor\begin{array}{l}
r_{x} \\
r_{y}
\end{array}\right]-\left(r_{x}, r_{y}\right)^{T}
$$

Or

$$
\mathbf{r}=|\mathbf{r}|\left[\begin{array}{c}
\cos \alpha \\
\sin \alpha
\end{array}\right]=|\mathbf{r}|(\cos \alpha, \sin \alpha)^{T}
$$

- An addition/subtraction of two (or more) vectors is a vector whose elements are found by addition/subtraction of the corresponding x - and y components of the original vectors. If $\mathbf{a}=(a x, a y)^{T}$ and $\mathbf{b}=(b x, b y)^{T}$, then

$$
\mathbf{a}+\mathbf{b}=\left(a_{x}+b_{x}, a_{y}+b_{y}\right)^{T}
$$

- The scalar (or dot) product of two vectors is a scalar, which is found by multiplication of the corresponding x - and y-components of two vectors and then the summation of results. For the two vectors \mathbf{a} and \mathbf{b}, their scalar product is

$$
\mathbf{d}=\mathbf{a}^{T} \mathbf{b}=\left(a_{x} \quad a_{y}\right)\left[\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right]=a_{x} b_{x}+a_{y} b_{y}
$$

- If vectors \mathbf{a} and \mathbf{b} are given in the form $\mathbf{a}=a(\cos \alpha, \sin \alpha)^{T} \mathbf{b}=$, the $b(\cos \beta, 1 \sin \beta)^{T}$: scalar product takes the form

$$
\mathbf{d}=\mathbf{a}^{T} \mathbf{b}=a b(\cos \alpha \cos \beta+\sin \alpha \sin \beta)=a b \cos (\alpha-\beta)
$$

The result of the cross-product of two vectors is a vector perpendicular to the plane in which the original two vectors are lying. Thus, if the two vectors are lying in the (x, y) plane, then their product will have a z-direction.

$$
\begin{aligned}
& \mathbf{u}=\mathbf{a}^{T} \times \mathbf{b}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{x} & a_{y} & 0 \\
b_{x} & b_{y} & 0
\end{array}\right] \\
& \mathbf{u}=\left(a_{y} 0-b_{y} 0\right) \mathbf{i}-\left(a_{x} 0-b_{x} 0\right) \mathbf{j}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \mathbf{k}=\left(a_{x} b_{y}-b_{x} a_{y}\right) \mathbf{k} \\
& |\mathbf{u}|=u=\left(a_{x} b_{y}-b_{x} a_{y}\right) \\
& \mathbf{u}=a b(\cos \alpha \sin \beta-\cos \beta \sin \alpha)=a b \sin (\beta-\alpha)
\end{aligned}
$$

$\mathbf{a}=a(t)[\cos \alpha(t), \sin \alpha(\mathrm{t})]^{T}$.
$\frac{d \mathbf{a}(t)}{d t}=\frac{d a(t)}{d t}[\cos \alpha(t), \sin \alpha(t)]^{T}+a(\mathbf{t})[-\sin \alpha(t), \cos \alpha(t)]^{T} \frac{d \alpha(t)}{d t}$

Kinematic Analysis Of The Slider-crank Mechanism Using

 Loop-closure Method$$
\begin{aligned}
& \sum_{i-1}^{3} \mathbf{r}_{l}=\mathbf{r}_{\mathbf{1}}+\mathbf{r}_{2}+\mathbf{r}_{3}=0 \\
& \sum_{i=1}^{\mathrm{N}} r_{i}\left(\cos O_{i}, \sin O_{i}\right)^{T}=0
\end{aligned}
$$

(a)

(b)

- In order to perform a velocity analysis, we can derivate position equation with respect to time:

$$
\sum_{t=1}^{N} \dot{r}_{i}(t)\left[\cos \theta_{i}(t), \sin \theta_{i}(t)\right]^{T}+r_{i}(t)\left[-\sin \theta_{i}(t), \cos \theta_{i}(t)\right]^{T} \omega_{i}(t)=0
$$

- And for acceleration analysis:

$$
\begin{aligned}
& \sum_{i=1}^{N} \ddot{r}_{i}\left[\cos \theta_{i}, \sin \theta_{i}\right]^{T}+2 \dot{r}_{i}\left[-\sin \theta_{i}, \cos \theta_{i}\right]^{T} \omega_{i} \\
& -r_{i}\left[\cos \theta_{i}, \sin \theta_{i}\right]^{T} \omega_{i}^{2}+r_{i}\left[-\sin \theta_{i}, \cos \theta_{i}\right]^{T} \alpha_{i}=0
\end{aligned}
$$

- Example 2: In below figure a slider-crank mechanism is shown.
- a. Write a loop-closure equation for this mechanism.
- b. If the input is the crank angle, what are the unknowns?
- c. Solve the equation for the unknowns.
- d. Express the position of point P in terms of the input angle.

