
Types of Algorithms

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Introduction

 In this lecture we will discuss different ways to categorize classes of algorithms.

 There is no one “correct” classification.

 One should regard the task of categorizing algorithms more as giving them certain attributes.

2

Deterministic vs. Randomized

 Deterministic algorithms produce on a given input the same results following the same
computation steps.

 Randomized algorithms throw coins during execution.

 Hence either the order of execution or the result of the algorithm might be different for each run
on the same input.

 What are randomized algorithms good for?

 Randomized algorithms usually have the effect of perturbing the input. Or put it differently, the
input looks random, which makes bad cases very seldom.

 Randomized algorithms are often conceptually very easy to implement. At the same time they
are in run time often superior to their deterministic counterparts.

3

Offline vs. Online

 Offline algorithms know their input beforehand.

 Whereas, Online algorithms do not know their input at the beginning. It is given to them
online.

 Online algorithms are usually analyzed by using the concept of competitiveness, that is the worst
case factor they take longer compared to the best algorithm with complete information.

4

Exact vs Approximate vs. Heuristic vs. Metaheuristic

 Exact algorithms aim at computing the optimal solution given a goal.

 Often this is quite expensive in terms of run time or memory and hence not possible for large
input.

 Approximation algorithms aim at computing a solution which is for example only a certain,
guaranteed factor worse than the optimal solution, that means an algorithm yields a c-
approximation, if it can guarantee that its solution is never worse than a factor c compared to
the optimal solution.

 Heuristic algorithms are specific algorithms for specific problems

 Metaheuristics are not problem-specific. Metaheuristics are higher level strategies that
guide the search process. The goal is to efficiently explore the search space in order to find
(quasi-) optimal solutions.

5

Heuristic vs. Metaheuristic

 In general, special-purpose heuristic algorithms are more effective than general-purpose
meta-heuristics.

 In fact, designing one such method that actually produces high quality solutions is a nontrivial
task, since it mainly depends on the problem, and requires thorough understanding of it.

 On the other hand, meta-heuristics are more easily applicable to a wide variety of different
problems.

 general ideas for almost any problem

6

Exact vs Approximate vs. Heuristic vs. Metaheuristic

7

• Dynamic Programming

• Branch-and-Bound

• First Fit

• Nearest Neighbor

Optimization

Techniques

Exact Approximate

Ad-hoc Heuristics Metaheuristics

Trajectory Population-based

• Simulated Annealing

• Tabu Search

• Genetic Algorithms

• Ant Colony Optimization

Categorization according to main concept

 Backtracking algorithms

 Divide-and-conquer algorithms

 Dynamic programming algorithms

 Greedy algorithms

 Branch-and-bound algorithms

 Brute force algorithms

 and others....

8

Backtracking algorithms

 A backtracking algorithm is based on a depth-first recursive search.

 It tests to see if a solution has been found, and if so, returns it; otherwise

 For each choice that can be made at this point,

 Make that choice

 Recur

 If the recursion returns a solution, return it

 If no choices remain, return failure

 Example: Graph Coloring

9

Divide-and-conquer algorithms

A divide-and-conquer algorithm consists of two parts.

 Divide the problem into smaller subproblems of the same type and solve these subproblems
recursively

 Combine the solutions to the subproblems into a solution to the original problem

 Example: Merge Sort

10

Dynamic programming algorithms

 A dynamic programming algorithm remembers past results and uses them to find new
results.

 Dynamic programming is generally used for optimization problems in which:

 Multiple solutions exist, need to find the best one

 Requires optimal substructure and overlapping subproblem

 Optimal substructure: Optimal solution contains optimal solutions to subproblems

 Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up
fashion

 Example: Longest Common Sequence (LCS)

11

Greedy algorithms

 A greedy algorithm sometimes works well for optimization problems.

 A greedy algorithm works in phases. At each phase:

 You take the best you can get right now, without regard for future consequences

 You hope that by choosing a local optimum at each step, you will end up at a global optimum

 This strategy actually often works quite well and for some class of problems it always yields
an optimal solution.

 Example: Activity Selection Problem

12

Branch-and-bound algorithms

 Branch-and-bound algorithms are generally used for optimization problems.

 As the algorithm progresses, a tree of subproblems is formed.

 A method is used to construct an upper and lower bound for a given problem.

 At each node, apply the bounding methods.

 If the bounds match, it is deemed a feasible solution to that particular subproblem.

 If bounds do not match, partition the problem represented by that node, and make the two
subproblems into children nodes.

 Continue, using the best known feasible solution to trim sections of the tree, until all nodes
have been solved or trimmed.

 Example: Travelling salesman problem (TSP)

13

Brute force algorithms

 A brute force algorithm simply tries all possibilities until a satisfactory solution is found.

 Such an algorithm can be:

 Optimizing: Find the best solution. This may require finding all solutions, or if a value for
the best solution is known, it may stop when any best solution is found (Example: Finding
the best path for a travelling salesman)

 Satisficing: Stop as soon as a solution is found that is good enough (Example: Finding a
travelling salesman path that is within 10% of optimal)

14

