OLlewd,s o 5Ll 0?)0
Types of Algorithms

Sadoon Azizi

s.azizi(@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Introduction
- 2

» In this lecture we will discuss different ways to categorize classes of algorithms.
» There Is no one “correct” classification.

» One should regard the task of categorizing algorithms more as giving them certain attributes.

Deterministic vs. Randomized
- 3

» Deterministic algorithms produce on a given input the same results following the same
computation steps.

» Randomized algorithms throw coins during execution.

= Hence either the order of execution or the result of the algorithm might be different for each run
on the same input.

» What are randomized algorithms good for?

= Randomized algorithms usually have the effect of perturbing the input. Or put it differently, the
Input looks random, which makes bad cases very seldom.

= Randomized algorithms are often conceptually very easy to implement. At the same time they
are in run time often superior to their deterministic counterparts.

Offline vs. Online
. %

» Offline algorithms know their input beforehand.

» Whereas, Online algorithms do not know their input at the beginning. It is given to them
online.

= Online algorithms are usually analyzed by using the concept of competitiveness, that is the worst
case factor they take longer compared to the best algorithm with complete information.

Exact vs Approximate vs. Heuristic vs. Metaheuristic

I 5

» Exact algorithms aim at computing the optimal solution given a goal.

= Often this is quite expensive in terms of run time or memory and hence not possible for large
Input.

» Approximation algorithms aim at computing a solution which is for example only a certain,
guaranteed factor worse than the optimal solution, that means an algorithm yields a c-

approximation, if it can guarantee that its solution is never worse than a factor c compared to
the optimal solution.

» Heuristic algorithms are specific algorithms for specific problems

» Metaheuristics are not problem-specific. Metaheuristics are higher level strategies that

guide the search process. The goal is to efficiently explore the search space in order to find
(quasi-) optimal solutions.

Heuristic vs. Metaheuristic
-

» In general, special-purpose heuristic algorithms are more effective than general-purpose
meta-heuristics.

= |n fact, designing one such method that actually produces high quality solutions is a nontrivial
task, since it mainly depends on the problem, and requires thorough understanding of it.

» On the other hand, meta-heuristics are more easily applicable to a wide variety of different
problems.

= general ideas for almost any problem

Exact vs Approximate vs. Heuristic vs. Metaheuristic

I 7
[Optimization]
Techniques

{ Exact] [Approximate J

« Dynamic Programming
« Branch-and-Bound

[Ad-hoc Heuristics] [Metaheuristics]

* First Fit
* Nearest Neighbor

[Trajectory J [Population-based]

« Simulated Annealing Genetic Algorithms
« Tabu Search « Ant Colony Optimization

Categorization according to main concept
e

Backtracking algorithms
Divide-and-conquer algorithms
Dynamic programming algorithms
Greedy algorithms
Branch-and-bound algorithms

Brute force algorithms

vV V. VvV VY VYV V V

and others....

Backtracking algorithms
.

» A backtracking algorithm is based on a depth-first recursive search.
> |t tests to see If a solution has been found, and iIf so, returns It; otherwise

» For each choice that can be made at this point,

= Make that choice
= Recur

= |f the recursion returns a solution, return it

» If no choices remain, return failure

» Example: Graph Coloring

Divide-and-conquer algorithms
T 10

A divide-and-conqguer algorithm consists of two parts.

» Divide the problem into smaller subproblems of the same type and solve these subproblems
recursively

» Combine the solutions to the subproblems into a solution to the original problem

» Example: Merge Sort

Dynamic programming algorithms
T | 1

» A dynamic programming algorithm remembers past results and uses them to find new
results.

» Dynamic programming is generally used for optimization problems in which:

= Multiple solutions exist, need to find the best one
= Requires optimal substructure and overlapping subproblem
= Optimal substructure: Optimal solution contains optimal solutions to subproblems

= Qverlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up
fashion

» Example: Longest Common Sequence (LCS)

Greedy algorithms

e 12
» A greedy algorithm sometimes works well for optimization problems.

» A greedy algorithm works in phases. At each phase:

= You take the best you can get right now, without regard for future consequences

= You hope that by choosing a local optimum at each step, you will end up at a global optimum

» This strategy actually often works quite well and for some class of problems it always yields
an optimal solution.

» Example: Activity Selection Problem

Branch-and-bound algorithms

T 13

vV VY Y VY

Branch-and-bound algorithms are generally used for optimization problems.
As the algorithm progresses, a tree of subproblems is formed.
A method Is used to construct an upper and lower bound for a given problem.

At each node, apply the bounding methods.

= |f the bounds match, it is deemed a feasible solution to that particular subproblem.

= |f bounds do not match, partition the problem represented by that node, and make the two
subproblems into children nodes.

Continue, using the best known feasible solution to trim sections of the tree, until all nodes
have been solved or trimmed.

Example: Travelling salesman problem (TSP)

Brute force algorithms
e 14

» A brute force algorithm simply tries all possibilities until a satisfactory solution is found.

» Such an algorithm can be:

» Optimizing: Find the best solution. This may require finding all solutions, or if a value for
the best solution is known, it may stop when any best solution is found (Example: Finding
the best path for a travelling salesman)

» Satisficing: Stop as soon as a solution is found that is good enough (Example: Finding a
travelling salesman path that is within 10% of optimal)

