
Types of Algorithms

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Introduction

 In this lecture we will discuss different ways to categorize classes of algorithms.

 There is no one “correct” classification.

 One should regard the task of categorizing algorithms more as giving them certain attributes.

2

Deterministic vs. Randomized

 Deterministic algorithms produce on a given input the same results following the same
computation steps.

 Randomized algorithms throw coins during execution.

 Hence either the order of execution or the result of the algorithm might be different for each run
on the same input.

 What are randomized algorithms good for?

 Randomized algorithms usually have the effect of perturbing the input. Or put it differently, the
input looks random, which makes bad cases very seldom.

 Randomized algorithms are often conceptually very easy to implement. At the same time they
are in run time often superior to their deterministic counterparts.

3

Offline vs. Online

 Offline algorithms know their input beforehand.

 Whereas, Online algorithms do not know their input at the beginning. It is given to them
online.

 Online algorithms are usually analyzed by using the concept of competitiveness, that is the worst
case factor they take longer compared to the best algorithm with complete information.

4

Exact vs Approximate vs. Heuristic vs. Metaheuristic

 Exact algorithms aim at computing the optimal solution given a goal.

 Often this is quite expensive in terms of run time or memory and hence not possible for large
input.

 Approximation algorithms aim at computing a solution which is for example only a certain,
guaranteed factor worse than the optimal solution, that means an algorithm yields a c-
approximation, if it can guarantee that its solution is never worse than a factor c compared to
the optimal solution.

 Heuristic algorithms are specific algorithms for specific problems

 Metaheuristics are not problem-specific. Metaheuristics are higher level strategies that
guide the search process. The goal is to efficiently explore the search space in order to find
(quasi-) optimal solutions.

5

Heuristic vs. Metaheuristic

 In general, special-purpose heuristic algorithms are more effective than general-purpose
meta-heuristics.

 In fact, designing one such method that actually produces high quality solutions is a nontrivial
task, since it mainly depends on the problem, and requires thorough understanding of it.

 On the other hand, meta-heuristics are more easily applicable to a wide variety of different
problems.

 general ideas for almost any problem

6

Exact vs Approximate vs. Heuristic vs. Metaheuristic

7

• Dynamic Programming

• Branch-and-Bound

• First Fit

• Nearest Neighbor

Optimization

Techniques

Exact Approximate

Ad-hoc Heuristics Metaheuristics

Trajectory Population-based

• Simulated Annealing

• Tabu Search

• Genetic Algorithms

• Ant Colony Optimization

Categorization according to main concept

 Backtracking algorithms

 Divide-and-conquer algorithms

 Dynamic programming algorithms

 Greedy algorithms

 Branch-and-bound algorithms

 Brute force algorithms

 and others....

8

Backtracking algorithms

 A backtracking algorithm is based on a depth-first recursive search.

 It tests to see if a solution has been found, and if so, returns it; otherwise

 For each choice that can be made at this point,

 Make that choice

 Recur

 If the recursion returns a solution, return it

 If no choices remain, return failure

 Example: Graph Coloring

9

Divide-and-conquer algorithms

A divide-and-conquer algorithm consists of two parts.

 Divide the problem into smaller subproblems of the same type and solve these subproblems
recursively

 Combine the solutions to the subproblems into a solution to the original problem

 Example: Merge Sort

10

Dynamic programming algorithms

 A dynamic programming algorithm remembers past results and uses them to find new
results.

 Dynamic programming is generally used for optimization problems in which:

 Multiple solutions exist, need to find the best one

 Requires optimal substructure and overlapping subproblem

 Optimal substructure: Optimal solution contains optimal solutions to subproblems

 Overlapping subproblems: Solutions to subproblems can be stored and reused in a bottom-up
fashion

 Example: Longest Common Sequence (LCS)

11

Greedy algorithms

 A greedy algorithm sometimes works well for optimization problems.

 A greedy algorithm works in phases. At each phase:

 You take the best you can get right now, without regard for future consequences

 You hope that by choosing a local optimum at each step, you will end up at a global optimum

 This strategy actually often works quite well and for some class of problems it always yields
an optimal solution.

 Example: Activity Selection Problem

12

Branch-and-bound algorithms

 Branch-and-bound algorithms are generally used for optimization problems.

 As the algorithm progresses, a tree of subproblems is formed.

 A method is used to construct an upper and lower bound for a given problem.

 At each node, apply the bounding methods.

 If the bounds match, it is deemed a feasible solution to that particular subproblem.

 If bounds do not match, partition the problem represented by that node, and make the two
subproblems into children nodes.

 Continue, using the best known feasible solution to trim sections of the tree, until all nodes
have been solved or trimmed.

 Example: Travelling salesman problem (TSP)

13

Brute force algorithms

 A brute force algorithm simply tries all possibilities until a satisfactory solution is found.

 Such an algorithm can be:

 Optimizing: Find the best solution. This may require finding all solutions, or if a value for
the best solution is known, it may stop when any best solution is found (Example: Finding
the best path for a travelling salesman)

 Satisficing: Stop as soon as a solution is found that is good enough (Example: Finding a
travelling salesman path that is within 10% of optimal)

14

