University of Kurdistan
Department of Electrical Engineering

Linear Control Systems

Homework 5: The Root Locus Technique

Instructor: Dr. Q. Shafiee
Teaching Assistant: N. Mohammadi

1. Root Locus Method

1.1 Sketch the root locus for the unity feedback system shown in Figure 1.1 for the following transfer functions.
a) $G(s)=\frac{K}{s^{3}+10 s^{2}+7 s-18}$
b) $G(s)=\frac{K}{(s+2)^{3}(s+5)}$
c) $G(s)=\frac{K\left(s+\frac{3}{2}\right)}{s^{2}(s+10)}$
d) $G(s)=\frac{K(s+4)}{s^{4}+3 s^{3}-8 s^{2}+6 s-20}$
(Hint: You can use MATLAB to find the denominator roots of above transfer functions)

Figure 1.1
1.2 The denominator of a closed-loop transfer function is given by

$$
s^{3}+2 s^{2}+(5+15 K) s+60 K
$$

Sketch the root locus for this system.
1.3 Figure 1.2 shows open-loop poles and zeroes for a feedback control system. Sketch the root locus for this system.

Figure 1.2
1.4 Sketch the root locus for the system shown in Figure 1.3 as α is varied.

Figure 1.3
1.5 Sketch the root locus for the control systems of Figure 1.4. (For both systems the gain k varies from 0 to $+\infty$.)

(a)

(b)

Figure 1.4

2. MATLAB Simulation

2.1 Use MATLAB to sketch the root locus for the system of Figure 2.1 and find the following:
a) The exact point and gain where the locus crosses the 0.7 damping ratio line.
b) The exact point and gain where the locus crosses the $j \omega$ axis
c) The breakaway point on the real axis

Figure 2.1
2.2 Consider the unity feedback system of Figure 2.2, Use MATLAB to do the following for this system:
a) Display a root locus and pause.
b) Draw a close-up of the root locus where the axes go from -2 to 0 on the real axes and -2 to 2 on the imaginary axes.
c) Overlay the 10% overshoot line on the close-up root locus.
d) Select interactively the point where the root locus crosses the 10% overshoot line, and respond with the gain at that point as well as of the closed-loop poles at that gain.
e) Generate the step response at the gain for 10% overshoot.

Figure 2.2

