CHAPTER 5

Kinematics of Rigid Bodies




Kinematics of Rigid Bodies
J Applications

A battering ram is an example of curvilinear translation — the
ram stays horizontal as it swings through its motion.




Kinematics of Rigid Bodies
J Applications

How can we determine the velocity of the tip of a turbine blade?




Kinematics of Rigid Bodies

1 Applications

Planetary gear systems are used to get high reduction ratios
with minimum weight and space. How can we design the
correct gear ratios?




Kinematics of Rigid Bodies
J Applications

Biomedical engineers must determine the velocities and
accelerations of the leg in order to design prostheses.




Kinematics of Rigid Bodies

J Introduction

» Kinematics of rigid bodies: relations between time and the positions,
velocities, and accelerations of the particles forming a rigid body.

 Classification of rigid body motions:

Translation

Rectilinear Translation Curvilinear Translation

@

Path of rectilinear translation Path of curvilinear translation




Kinematics of Rigid Bodies

J Introduction

» Kinematics of rigid bodies: relations between time and the positions,
velocities, and accelerations of the particles forming a rigid body.

 Classification of rigid body motions:

Rotation about a fixed axis Motion about a fixed point

Rotation about a fixed axis



Kinematics of Rigid Bodies

J Introduction

» Kinematics of rigid bodies: relations between time and the positions,
velocities, and accelerations of the particles forming a rigid body.

 Classification of rigid body motions:

General plane motion General motion




Kinematics of Rigid Bodies

(J Translation

 Consider rigid body in translation:

- Direction of any straight line inside the
body is constant,

- All particles forming the body move in
parallel lines.

* For any two particles in the body,

Y
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Kinematics of Rigid Bodies

(J Translation

 Differentiating with respect to time, ¢ Differentiating with respect to time again,

0 0
r;_r*ﬁ]ei_r; = fo=f 4y =F, = |d,=d,
All particles have the same velocity. All particles have the same acceleration.

Y y a

O O

X p
(b) (c)
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Kinematics of Rigid Bodies
(J Rotation about a Fixed Axis

0 Q:;
Angular Motion. Since a point is without dimension, it cannot I
have angular motion. Only lines or bodies undergo angular motion. For wQT;
example, consider the body shown in Fig. 1644 and the angular motion o
of a radial line r located within the shaded\ plane. ﬁ

Angular Position. At the instant shown, the angular position of

r is defined by the angle 8, measured from a fixed reference line to r.
. b

0
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Kinematics of Rigid Bodies
(J Rotation about a Fixed Axis @:

0 Q:;
Angular Displacement. The change in the angular position, which |
can be measured as a differential d@, is called the angular displacement.* wQT;
This vector has a magnitude of d@, measured in degrees, radians, or -
revolutions, where 1 rev = 27 rad. Since motion iIs about a fixed axis, the ﬁ

direction of d@ is always along this axis. Specifically, the direction is
determined by the right-hand rule; that is, the fingers of the right hand are

curled with the sense of rotation, so that in this case the thumb, or d#@,
points upward, Fig. 164a. In two dimensions, as shown by the top view of
the shaded plane, Fig. 164b, both 6 and df are counterclockwise, and so P
gy - do

the thumb points outward from the page. g

Angular Velocity. The time rate of change in the angular position g
is called the angular velocity @ (omega). Since df occurs during an
instant of time df, then,

(C+) © = —




Kinematics of Rigid Bodies

(] Rotation about a Fixed Axis @:
de QI;
. -3
Angular Acceleration. The angular acceleration a (alpha) |
measures the time rate of change of the angular velocity. The magnitude wCT;
of this vector is ﬁ
| do |
- = —
(C+) &=t
P
o T
(C+)

a = —;
d g

(C+) i_ﬂfdi?:wdm

#—




Kinematics of Rigid Bodies
(1 Equations Defining the Rotation of a Rigid Body About a Fixed Axis

* Motion of a rigid body rotating around a fixed axis is
often specified by the type of angular acceleration.

e Recall
do
=0t d?e do
d(() — = dt2 or o= a)@
o =——
dt
« Uniform Rotation, a = 0: « Uniformly Accelerated Rotation, o = constant:
4 @ =, +oat N
[9=6’0+0)t] 6’:90+a)0t+%at2
@ =, +2a(0-6),) y




Kinematics of Rigid Bodies
1 Rotation About a Fixed Axis. Velocity

 Consider rotation of rigid body about a
fixed axis AA’

* Velocity vector V =dr/dt of the particle P is
tangent to the path with magnitude v = ds/dt

As = (BP)AO = (r sin ¢) AO

ds AG :
V=—=Ilim(rsing)— :>[v=r9' ]
" A%ir%)( sin @) A sin ¢

 The same result 1s obtained from

4 . N
R o |
V=—=0oxFf

dt
& = wk =0k =angular velocity




Kinematics of Rigid Bodies
1 Rotation About a Fixed Axis. Velocity

V=r=—wXr

The order of the vectors to be crossed must be retained. The reverse
order givesr X @ = —V.
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Kinematics of Rigid Bodies
1 Concept Quiz

What is the direction of the velocity
of point A on the turbine blade?

a) —

b) « y

5 B
l U, =&
Q
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Kinematics of Rigid Bodies

(] Rotation About a Fixed Axis. Acceleration

« Differentiating to determine the acceleration,

d _ ]
’m = d = angular acceleration

— — oo —

=ak = wk =0k
\_ J

» Acceleration of P 1s combination of two vectors,

axr :tangential acceleration component

[5=§Xf+c?)x(c?)xf)]

@wx(@wxr) :radial acceleration component



Kinematics of Rigid Bodies

d Rotation About a Fixed Axis. Representative Slab

» Consider the motion of a representative slab in
a plane perpendicular to the axis of rotation.

 Acceleration of any point P of the slab,

=)
Q|
X

=l

+ox(oxr) = [ﬁzaIZxF—a)zf]

» Resolving the acceleration into tangential and
normal components,

L =akxT a=roa
~w’f ’

Ol Q)

a. =lrw

n n

Y

\j/”—(/k\l

~ R = — (i)—r

\_/‘K = wk %

.S _/ V — o =ok




Kinematics of Rigid Bodies
1 Concept Quiz

What is the direction of the normal

acceleration of point A on the turbine
blade?

* y
b) « T_)
2-»

c) T an:_a)r X
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Kinematics of Rigid Bodies
d Sample Problem 01

A flywheel rotating freely at 1800 rev/min clockwise is subjected to a vari-
able counterclockwise torque which is first applied at time ¢ = 0. The torque
produces a counterclockwise angular acceleration a« = 4tf rad/s?, where ¢ is the
time in seconds during which the torque is applied. Determine (a) the time re-
quired for the flywheel to reduce its clockwise angular speed to 900 rev/min,
(b) the time required for the flywheel to reverse its direction of rotation, and
(c) the total number of revolutions, clockwise plus counterclockwise, turned by
the flywheel during the first 14 seconds of torque application.
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Kinematics of Rigid Bodies
1 Sample Problem 02

The motor shown in the photo 1s used to turn a wheel and attached
blower contained within the housing. The details are shown in
Fig. 16-7a. If the pulley A connected to the motor begins to rotate
from rest with a constant angular acceleration of a, = 2rad/s?,
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume
the transmission belt does not slip on the pulley and wheel.

0.15 m 5
A @ ay = 2rad/s

23



Kinematics of Rigid Bodies
1 Sample Problem 03

Cable C has a constant acceleration of 9 in/s?
and an initial velocity of 12 in/s, both
directed to the right.

Determine (a) the number of revolutions of
the pulley in 2 s, (b) the velocity and change
in position of the load B after 2 s, and (C) the
acceleration of the point D on the rim of the
inner pulley att = 0.
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Kinematics of Rigid Bodies

J General Plane Motion

» General plane motion is neither a translation nor a rotation.
 General plane motion can be considered as the sum of a translation and rotation.

Plane motion =

* Displacement of particles A and B to A, and B,
can be divided into two parts: g

- translation to A, and By .

- rotation of B about A, to B, ‘

25



Kinematics of Rigid Bodies
d General Plane Motion

BiIK B

- —
Aj—>{Ay

A fF—] Ay

Translation with A + Rotation about A

Plane motion

- Ay
Al

Plane motion = Translation with B + Rotation about B
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Kinematics of Rigid Bodies
d Absolute and Relative Velocity in Plane Motion

* Any plane motion can be replaced by a translation of an arbitrary reference point A
and a simultaneous rotation about A.

Plane motion = Translation with A + Rotation about A Vg =Va 1+ Vg

VB/A :a)k XrB/A

Vg/o =M@
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Kinematics of Rigid Bodies
J Absolute and Relative Velocity in Plane Motion

 Assuming that the velocity v, of end A 1s known, wish to determine the
velocity Vg of end B and the angular velocity ® in terms of v,, |, and 6.

VB/A
O\ @
7~
A (fixed) "
. § \f -_ \,’ ‘. ;
Plane motion = Translation with A +  Rotation about A B A B/A

 The direction of Vg and vy, are known. Complete the velocity diagram.

Vv Vv Vv Vv
B —tanfd = [VB:VAtanH] cosf=—2L =4 =|p=—2>2
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Kinematics of Rigid Bodies
J Absolute and Relative Velocity in Plane Motion

 Selecting point B as the reference point and solving for the velocity v, of end A
and the angular velocity w leads to an equivalent velocity triangle.

B (fixed) .
o o -‘
4 @ g
WD Vi |
Y B o
h N | VA/E
!
+ N @
\‘\ '\\
\_\ \\
\\ \
N A /
N
\\'\<j VA/B
A

VA=V t+VuB

Plane motion = Translation with B + Rotation about B

 V,g has the same magnitude but opposite sense of vg,,. The sense of the
relative velocity is dependent on the choice of reference point.

« Angular velocity @ of the rod in its rotation about B is the same as its rotation
about A. Angular velocity is not dependent on the choice of reference point.
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Kinematics of Rigid Bodies
d Sample Problem 02

The double gear rolls on the stationary lower rack: the velocity of its center is
1.2 m/s.

Determine (a) the angular velocity of the gear, and (b) the velocities of the upper
rack R and point D of the gear.

= )i o 1o = 100 mm
ry = 150 mm N @EES 2
”» -’ -.- — _r ‘-— — -:- ‘::WU-\;“-—J .— - hed N el e —-" .‘—c. .n-o ~— h—’ V-..
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Kinematics of Rigid Bodies
d Sample Problem 02

SOLUTION: « For any point P on the gear, [\7P =V, +Vpp =Vy+ @ K x FP/A]

SV R
________offuniile __R

{
igipipinigiyinigt

atatriea oo 4'\f‘,_ﬁ,,"\fj

- Vo ro= 100 mm
ry =150 mm 2 2
AN T el e T e e e b e e L-j

Rolling Motion

Translation + Rotation
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Kinematics of Rigid Bodies
1 Sample Problem 03

The crank AB has a constant clockwise angular velocity of 2000 rpm.

For the crank position indicated, determine (a) the angular velocity of the
connecting rod BD, and (b) the velocity of the piston P.

32



Kinematics of Rigid Bodies
1 Sample Problem 03
SOLUTION:




Kinematics of Rigid Bodies
1 Sample Problem 03
SOLUTION:

» The direction of the absolute velocity Vp is horizontal.

The direction of the relative velocity Vp g is
perpendicular to BD. Compute the angle between the

horizontal and the connecting rod from the law of sines.

e S p
0° S
g 50°
p
Vi
Plane motion = Translation

r= 3 in BT (
N
—— - './
D

D/B

¥ Rotation
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Kinematics of Rigid Bodies
1 Sample Problem 03
SOLUTION:

/

| n WOBD B =13.95% o
- (fixed) @
A . D /e |NT6.05°

Plane motion = Translation + Rotation

* Determine the velocity magnitudes vp andvp g
from the vector triangle. )

\7D - VB +VD/B
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Kinematics of Rigid Bodies
1 Sample Problem 04

In the position shown, bar AB has an
angular velocity of 4 rad/s clockwise.

Determine the angular velocity of bars
BD and DE.

- [ 1N, —

_ 4 in.

|

B
1
S in.
{"E
3 in.I D

ﬂ
A
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Kinematics of Rigid Bodies
1 Sample Problem 04
SOLUTION:

S in.

3in. I

®,pg= 4 rad/s
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Kinematics of Rigid Bodies
1 Sample Problem 04
SOLUTION:

3 in.




Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

e Plane motion of all particles in a slab can always be
replaced by the translation of an arbitrary point Aand a “’CA
rotation about A with an angular velocity that is 4
independent of the choice of A.

 The same translational and rotational velocities at A are Q\J ‘)
obtained by allowing the slab to rotate with the same
angular velocity about the point C on a perpendicular to
the velocity at A.

« The velocity of all other particles in the slab are the |
same as originally defined since the angular velocity 4 l\~
and translational velocity at A are equivalent. N

» As far as the velocities are concerned, the slab seems to
rotate about the instantaneous center of rotation C.




Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

 If the velocity at two points A and B are known, the
instantaneous center of rotation lies at the intersection

of the perpendiculars to the velocity vectors through A
and B .

 If the velocity vectors are parallel, the instantaneous

center of rotation is at infinity and the angular velocity

IS zero.




Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

o If the velocity vectors at A and B are perpendicular to V' o
the line AB, the instantaneous center of rotation lies at /o
the intersection of the line AB with the line joining the )
extremities of the velocity vectors at A and B. /

. 1
« If the velocity magnitudes are equal, the instantaneous BN
center of rotation is at infinity and the angular : ,”

velocity is zero.




Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

Centrode

Vic= 0

Location of /C
knowing v4 and w

(a)

Location of IC

knowing the directions
of vgand vg

(b)
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Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

A \7 *\[C
i e z F >
{ /> \ YA /IC
AJIC / L")
w ( / \\\‘*. \' //1/,/
d i T VO
. \-—' \\ 5 E (i {
e . B' .,v"/ l
VB
' // Ip/1C u
e o . w
, e
1 '4\ !__/ g

LLocation of IC
knowing v4 and vp
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Kinematics of Rigid Bodies
(] Instantaneous Center of Rotation in Plane Motion

 The instantanecous center of rotation lies at the intersection of
the perpendiculars to the velocity vectors through A and B .

v v v B 1§
w=—">=—>~"_ = |lo=—02 h N
l,. lcos@ | cos @
: V,
Vg =lgco = (Isin6) = | vy =V, tand
| cos &

» The velocities of all particles on the rod are as if they were
rotated about C.
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Kinematics of Rigid Bodies

(] Instantaneous Center of Rotation in Plane Motion

* The particle at the center of rotation has zero
velocity. /

* The particle coinciding with the center of >

rotation changes with time and the acceleration _\\ Ly
of the particle at the instantaneous center of | 0 Space

rotation Is not zero. . /_\\‘ centrode

~

« The acceleration of the particles in the slab
cannot be determined as if the slab were
simply rotating about C.

 The trace of the locus of the center of
rotation on the body is the body centrode
and in space is the space centrode.



Kinematics of Rigid Bodies
1 Group Problem Solving

At the instant shown, what is the
approximate direction of the velocity
of point G, the center of bar AB?
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Kinematics of Rigid Bodies
d Sample Problem 05

The double gear rolls on the stationary lower rack: the velocity of its center is
1.2 m/s.

Determine (a) the angular velocity of the gear, and (b) the velocities of the upper
rack R and point D of the gear.

47



Kinematics of Rigid Bodies
d Sample Problem 05
SOLUTION:

* The point C is in contact with the stationary lower rack
and, instantaneously, has zero velocity. It must be the o \
location of the instantaneous center of rotation. /’4’4 | 5
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Kinematics of Rigid Bodies
1 Sample Problem 06

The crank AB has a constant clockwise angular
velocity of 2000 rpm.

For the crank position indicated, determine (a) the
angular velocity of the connecting rod BD, and (b)
the velocity of the piston P.

/\

=3 in. 5
X 4
AL 40

B |
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Kinematics of Rigid Bodies
1 Sample Problem 06
SOLUTION:

50



Kinematics of Rigid Bodies
1 Sample Problem 06
SOLUTION:

51



Kinematics of Rigid Bodies
d Sample Problem 07

In the position shown, bar AB has an angular
velocity of 4 rad/s clockwise. Determine the

angular velocity of bars BD and DE.

—_—

|
e
A

B0 mm

)

Bl

250 mm —1-—|-— 150 mm —

100

1T

E
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Kinematics of Rigid Bodies

D Sample Problem 07 I—-c— 250 mm —h—‘*— 150 mm —
SOLUTION: # | 1
A '

VB 100 mm
D !

60 mm ~
VD E

®,5= 4 rad/s




Kinematics of Rigid Bodies

(J Absolute and Relative Acceleration in Plane Motion

As the bicycle accelerates, a point on the top of the wheel will
have acceleration due to the acceleration from the axle (the
overall linear acceleration of the bike), the tangential
acceleration of the wheel from the angular acceleration, and
the normal acceleration due to the angular velocity.
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Kinematics of Rigid Bodies

(J Absolute and Relative Acceleration in Plane Motion

» Absolute acceleration of a particle of the slab,

y'
Ao, = 13/ :
— a, ag)
Plane motion = Translation with A + Rotation about A

* Relative acceleration @B/A associated (dgy ). = ok x » (ag ), =T
with rotation about A includes tangential ~ . @) —ra?

a =—wT a =rw

and normal components, (@g/a)n B/A B/A/n
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Kinematics of Rigid Bodies

(J Absolute and Relative Acceleration in Plane Motion

e (Given d, and V . . .
AT TA gy =a,tag, = |ag=a,+(@ga), T(@gak
determine dg and &.

A (fixed)

Plane motion = Translation with A + Rotation about A
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Kinematics of Rigid Bodies

(J Absolute and Relative Acceleration in Plane Motion

« Vector result depends on sense of a, andthe °
relative magnitudes of a, and (a 8/ A)n
e Must also know angular velocity . T
e~
ay
A (fixed)
Translation with A + Rotation about A
A4 ‘ /
S / \ { \
0 4 (a B/A/n \AB/A/n
“B /I A g
(aB/A )t (apsa )i

A
-7
/‘ (a) o (b)
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Kinematics of Rigid Bodies

(J Absolute and Relative Acceleration in Plane Motion

» Vector result depends on sense of a, andthe -

relative magnitudes of a, and (a, / A)n
* Must also know angular velocity . 3=
a.‘_.;
J
ay
A ( ﬁ.\l_‘l_] )
- Translation with A + Rotation about A
8
“.--".
A\ .1 (ap/an
e} \AB/A/n r
(ap/a); (d)
(c)

4‘ (apa)
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Kinematics of Rigid Bodies

o bsolute and Relative Acceleration in Plane Motion

Plane motion = Translation with A

e Write 3dg=3aatapa

+ :
_y X components:

+ T Y components:

A (fixed)

Rotation about A

7

0=a,+lo’sind—lacosd

\

~a, =—lw’ cosO—lasinf

in terms of the two component equations,

* Solve for agand «.
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Kinematics of Rigid Bodies

J Analysis of Plane Motion in Terms of a Parameter

» In some cases, it is advantageous to determine the absolute

velocity and acceleration of a mechanism directly.
B A
e
X, =1sind 4.\\ ‘

. I\.\ X
V,=X,=10cosd = |v,=lwcosb Lo\
a,=X,=-10"sin@+10cos® = |a,=-lw’sinf+lacosd SR Y [

W\
Yy =lcosé ! ‘
Vg =Yy =—160sind = |v, =—lwsind
ag =V, =—160°cos@-10sind = |a, =-lw’cosd—lasinb L
A
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Kinematics of Rigid Bodies
1 Sample Problem 08

The center of the double gear has a velocity and acceleration to the right of 1.2
m/s and 3 m/s?, respectively. The lower rack is stationary.

Determine (a) the angular acceleration of the gear, and (b) the acceleration of
points B, C, and D.

atinintintiaiy

y 111/ 5
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Kinematics of Rigid Bodies
1 Sample Problem 08
SOLUTION:

» The expression of the gear position as a function of &
1s differentiated twice to define the relationship
between the translational and angular accelerations.
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Kinematics of Rigid Bodies

- Sample Problem 08 . The acceleration of each point 1s obtained by adding the
SOLUTION:

acceleration of the gear center and the relative
accelerations with respect to the center. The latter
includes normal and tangential acceleration components.

_|_

(ac/alt

Translation + Rotation

Rolling motion
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Kinematics of Rigid Bodies
1 Sample Problem 08
SOLUTION:

aA (acya)e

Translation + Rotation

Rolling motion
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Kinematics of Rigid Bodies
d Sample Problem 09

Crank AB of the engine system has a constant clockwise angular velocity of 2000
rpm.

For the crank position shown, determine the angular acceleration of the connecting
rod BD and the acceleration of point D.
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Kinematics of Rigid Bodies
d Sample Problem 09
SOLUTION:

» The angular acceleration of the connecting rod BD and
the acceleration of point D will be determined from
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Kinematics of Rigid Bodies AT

A

d Sample Problem 09 Eﬁ/@\?ﬁ%; P
SOLUTION:

* The directions of the accelerations &, (a’D B )t ,and (aD B )n are

determined from the geometry.

Y
.-" ‘I
B X B oD ﬂ? @pp \&p/B/n
ap =
13.95° D — DT
2 ap G D
ap
'J.B
(apyp);
Plane motion = Translation + Rotation
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Kinematics of Rigid Bodies
d Sample Problem 09 ‘

aBD z b (ap/p
SOLUTION: ,/m %D+ w

(app)y

Plane motion = Translation + Rotation

40°\
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Kinematics of Rigid Bodies
d Sample Problem 10

In the position shown, crank AB has a constant angular velocity @, = 20 rad/s
counterclockwise.

Determine the angular velocities and angular accelerations of the connecting
rod BD and crank DE.
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Kinematics of Rigid Bodies
d Sample Problem 10
SOLUTION:

» The angular velocities are determined by simultaneously
solving the component equations for Vp =Vg +Vp g

8 in>=—12 in. 17 in.

rg = 8i + 14
rp=—17i + 17]
I'D/B = ]21 + :_))J
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Kinematics of Rigid Bodies
d Sample Problem 11

Knowing that at the instant shown bar AB has a constant angular

velocity of 4 rad/s clockwise, determine the angular acceleration of
bars BD and DE.

4 in.

' 7 in. |

B
|
i
Q)
3 in.I D
®
E
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Kinematics of Rigid Bodies
d Sample Problem 12

Function Derivative
sin(z) cos(z)
cos() — sin(x)
tan(z) sec” (z)
cot(z) — csc”(z)
sec(z) sec(x) tan(z)
csc(z) — csc(z) cot(x)
_ 1
arcsin(z
@) i
1
arccos(z
(z) ——
t ) !
arctan(z 21
. 1
arccot(x) W

% sin(z) = cos(z)

di; cos(z) = —sin(z)

tane) = (2] = D () e

d cos(z)\'  —sin®(z) — cos®(z)

— cot(z) = ( ) = = —(1+ cot?(z)) = — csc?(z)
dax sin(z) sin? (z)

4 sec(z) = ! | Sinfe) _ 1 sin(z = sec(z) tan(z

dx () (cos(m] ), cos?(z)  cos(z) cos(z) () tan(z)

d;i csc(z) = (Sml(m)) -7 ::4({?) - ;:;S((;) ' sinl(m) = —cot(z) csc(z)
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