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~ Technigues for the design of Algorithms ]

- Divide and Conquer

a Dynamic Programming
d Greedy Algorithms

a Backtracking Algorithms

d Branch and Bound Algorithms



Divide and Conquer

This approach involves three steps:

Divide: Break down the problem into [ Probem nsiance

two or more subproblems. These ’;;;“

subproblems should be similar to the N N

original problem, but smaller in size. e S"b;]:"mz
/

Conquer: Recursively solve the = Sommbl

subproblems (If they are small ——

enough, just solve them in a '

straightforward manner). Combine

Combine: Combine the solutions to

the subproblems into a solution for the

original problem (optional).
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Divide and Conquer (Merge Sort)

MERGE(A., p.q.r)

n=q—p+1

Hy =1 —(

let L[1..ny 4+ 1] and R[1..ny + 1] be new arrays
fori = 1to n,

Lli] = Alp+i—1]
for j = 1 ton,

R[j] = Alg + /]
Ln,+1] = o0
R[n, + 1] = o
i =1
j =1
fork = ptor
13 if L[i] < R[/]

14 Alk] = LJi]
15 i=1i+1
16 else A[k] = R][/]
17 j=j+1
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Analyzing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

G (1) itn <c,

I'(n) = {‘?T{Hﬂ” + D(n)+C(n) otherwise .

T(n): is the time required for an input of size n
n: Is the size of problem

C: IS a constant number

a: Is the number of subproblems

b: Is the size of each subproblem

D(n): Is the time needed for Divide

C(n): is the time needed for Combine



Solving the recurrence equations |

There are different approaches to do this:
Performing Substitution
Constructing Recursion Tree

Master Theorem



U'

MQ Merge Sort by Performing Substitutio+

¢ itn=1,

T'n) = ‘ET{ffﬁ)—l—c‘n ifn =1,

n
T(n) = 2T () +n
:2(2T(%) + g) +n=2%(T (2—"2) +2n

=22(2T (33)+25) + 2n=23(T (%3) + 3n

=2198"T(1) + nlogn = cn + nlogn

=0 (nlogn)



Analyzing Merge Sort by constructing recursion tree

T(n) cr cr
T2 Tirms2) orf2 orf 2
(ns4) (/- T/ (/)
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Master Theorem

Theorem (Master Theorem)

Leta> 1 and b > 1 be constants, let f(n) be a function, and let T(n)
be defined on the nonnegative integers by the recurrence

T(n)=aT(n/b)+1f(n).

Then T(n) can be bounded asymptotically as follows:

. Iff(n) = O(n™9%(@)~¢) for some constant € > 0, then
T(n) = ©(nlo%(a)),

Il Iff(n) = ©(n'°9%(2)), then T(n) = ©(n'°9%(2)jog(n)).

. Iff(n) = O(n'°9%(2)+€) for some constante > 0, and if af(n/b) < cf(n)
for some constant ¢ < 1 and all sufficiently large n, then
T(n) = ©(f(n)).



U

ming Merge Sort by Master Theorem|

¢ itn=1,

F(n)= ""T{nf’)—l—tn iftn =1,

Here we have, a=2, b=2, f(n)=cn

a
nl°8h = n

SO
T(n) = O(nlogn)



= Maximum-subarray problem

- Input: an array A[1...n] of n numbers

= Assume that some of the numbers are negative, because this problem is
trivial when all numbers are nonnegative

1 Output: a nonempty subarray All...J] having the largest sum
S[i,jl=a;+a, +.. +g

a2 g 4 b b e 9 g T e sl 5 16

A 13 3 2520 3 162318 20 7 12 5 2215 4 T
\ /

!

maximum subarray

12



A divide and conguer solution |

Possible locations of a maximum subarray A[l..J] of A[low..high],
where mid = | (low+high)/2]

= entirely in A[low..mid] (low <1 <j < mid)
= entirely in Almid+1..high] (mid <1 <j < high)

= crossing the midpoint (low <1 <mid < < high)

crosses the midpoint

low mid high low { mid ——"——, high
—— mid+1 S>>~ — Se—— mid + 1 J
entirely in A[low..mid]  entirely in Afmid + 1.. high] Alf . .mid]

(a) (b)



A divide and conguer solution

FIND-MAX-CROSSING-SUBARRAY (4, low, mid, high)

CO ~J ON b B W B =

Pt — — f—
hn S W N - OO

left-sum = —c0
sum = 0
for i = mid downto low
sum = sum + Ali]
if sum > left-sum
left-sum = sum

max-left = i
right-sum = —o0
sum = 0

for j = mid + 1to high
sum = sum+ A[]]
if sum > right-sum
right-sum = sum
max-right = j
return (max-left, max-right, left-sum + right-sum)

14



A divide and conguer solution |

FIND-MAXIMUM-SUBARRAY (A, low, high)

1 if high == low
2 return (low, high, Allow]) // base case: only one element
3 else mid = |(low + high)/2]
4 (left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (A, low, mid)

< (right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
6 (cross-low, cross-high, cross-sum) =

FIND-MAX-CROSSING-SUBARRAY (A, low, mid , high)

7 if left-sum > right-sum and left-sum > cross-sum

8 return (left-low, left-high, left-sum)

9 elseif right-sum > left-sum and right-sum > cross-sum
10 return (right-low, right-high, right-sum)
11 else return (cross-low, cross-high, cross-sum)



Analyzing time complexity |

* FIND-MAX-CROSSING-SUBARRAY : ®(n),
where n = high — low + 1

* FIND-MAXIMUM-SUBARRAY
T(n) = 2T(n/2) + O(n)(with T(1) = ©(1))

= O(nlg n) (similar to merge-sort)



