
Divide and Conquer

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

 Divide and Conquer

 Dynamic Programming

 Greedy Algorithms

 Backtracking Algorithms

 Branch and Bound Algorithms

2

Divide and Conquer

 This approach involves three steps:

 Divide: Break down the problem into

two or more subproblems. These

subproblems should be similar to the

original problem, but smaller in size.

 Conquer: Recursively solve the

subproblems (If they are small

enough, just solve them in a

straightforward manner).

 Combine: Combine the solutions to

the subproblems into a solution for the

original problem (optional).
3

Divide and Conquer (Merge Sort)

4

Divide and Conquer (Merge Sort)

5

Analyzing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

T(n): is the time required for an input of size n

n: is the size of problem

c: is a constant number

a: is the number of subproblems

b: is the size of each subproblem

D(n): is the time needed for Divide

C(n): is the time needed for Combine
6

Solving the recurrence equations

There are different approaches to do this:

 Performing Substitution

 Constructing Recursion Tree

 Master Theorem

7

Analyzing Merge Sort by Performing Substitution

8

𝑇(𝑛) = 2𝑇(
𝑛

2
) + 𝑛

=2(2𝑇(
𝑛

4
) +

𝑛

2
) + 𝑛 = 22(𝑇

𝑛

22
+ 2𝑛

=22(2𝑇
𝑛

23
+

𝑛

22
) + 2𝑛=23(𝑇

𝑛

23
+ 3𝑛

.

.

.

=2log𝑛𝑇 1 + 𝑛log𝑛 = 𝑐𝑛 + 𝑛log𝑛

=𝜃(𝑛log𝑛)

Analyzing Merge Sort by constructing recursion tree

9

Master Theorem

10

Analyzing Merge Sort by Master Theorem

11

Here we have, a=2, b=2, f(n)=cn

𝑛log𝑏
𝑎
= 𝑛

So

𝑇 𝑛 = 𝜃(𝑛log𝑛)

Maximum-subarray problem

12

 Input: an array A[1…n] of n numbers

 Assume that some of the numbers are negative, because this problem is

trivial when all numbers are nonnegative

 Output: a nonempty subarray A[i...j] having the largest sum

S[i, j] = ai + ai+1 +... + aj

13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

maximum subarray

A divide and conquer solution

13

 Possible locations of a maximum subarray A[i..j] of A[low..high],

where mid = (low+high)/2

 entirely in A[low..mid] (low i j mid)

 entirely in A[mid+1..high] (mid < i j high)

 crossing the midpoint (low i mid < j high)

A divide and conquer solution

14

A divide and conquer solution

15

Analyzing time complexity

16

• FIND-MAX-CROSSING-SUBARRAY : (n),

where n = high low + 1

• FIND-MAXIMUM-SUBARRAY

T(n) = 2T(n/2) + (n)(with T(1) = (1))

= (nlg n) (similar to merge-sort)

