دانشگاه كردستان
 University of Kurdistan

Divide and Conquer

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

\square Divide and Conquer
\square Dynamic Programming
\square Greedy Algorithms
\square Backtracking Algorithms
\square Branch and Bound Algorithms

Divide and Conquer

\square This approach involves three steps:
> Divide: Break down the problem into two or more subproblems. These subproblems should be similar to the original problem, but smaller in size.
> Conquer: Recursively solve the subproblems (If they are small enough, just solve them in a straightforward manner).
> Combine: Combine the solutions to the subproblems into a solution for the
 original problem (optional).

Divide and Conquer (Merge Sort)

Divide and Conquer (Merge Sort)

```
\(\operatorname{Merge}(A, p, q, r)\)
    \(n_{1}=q-p+1\)
    \(n_{2}=r-q\)
    let \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\) be new arrays
    for \(i=1\) to \(n_{1}\)
            \(L[i]=A[p+i-1]\)
    for \(j=1\) to \(n_{2}\)
        \(R[j]=A[q+j]\)
    \(L\left[n_{1}+1\right]=\infty\)
    \(R\left[n_{2}+1\right]=\infty\)
    \(i=1\)
    \(j=1\)
    for \(k=p\) to \(r\)
    if \(L[i] \leq R[j]\)
        \(A[k]=L[i]\)
        \(i=i+1\)
    else \(A[k]=R[j]\)
        \(j=j+1\)
```


Analyzing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c, \\ a T(n / b)+D(n)+C(n) & \text { otherwise } .\end{cases}
$$

$\mathbf{T}(\mathbf{n})$: is the time required for an input of size n
\mathbf{n} : is the size of problem
c : is a constant number
a: is the number of subproblems
b: is the size of each subproblem
$\mathbf{D}(\mathbf{n})$: is the time needed for Divide
$\mathbf{C}(\mathbf{n})$: is the time needed for Combine

Solving the recurrence equations

There are different approaches to do this:
\square Performing Substitution
\square Constructing Recursion Tree

- Master Theorem

Analyzing Merge Sort by Performing Substitution

$$
T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T(n / 2)+c n & \text { if } n>1\end{cases}
$$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(2 T\left(\frac{n}{4}\right)+\frac{n}{2}\right)+n=2^{2}\left(T\left(\frac{n}{2^{2}}\right)+2 n\right. \\
& =2^{2}\left(2 T\left(\frac{n}{2^{3}}\right)+\frac{n}{2^{2}}\right)+2 n=2^{3}\left(T\left(\frac{n}{2^{3}}\right)+3 n\right. \\
& . \\
& \cdot \\
& =2^{\log n} T(1)+n \log n=c n+n \log n \\
& =\theta(n \log n)
\end{aligned}
$$

Analyzing Merge Sort by constructing recursion tree

$T(n)$

(a)
(b)

Master Theorem

Theorem (Master Theorem)

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n) .
$$

Then $T(n)$ can be bounded asymptotically as follows:
I. If $f(n)=O\left(n^{\log _{b}(a)-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b}(a)}\right)$.
II. If $f(n)=\Theta\left(n^{\log _{b}(a)}\right)$, then $T(n)=\Theta\left(n^{\log _{b}(a)} \log (n)\right)$.
III. If $f(n)=O\left(n^{\log _{b}(a)+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if af $(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Analyzing Merge Sort by Master Theorem

$$
T(n)= \begin{cases}c & \text { if } n=1, \\ 2 T(n / 2)+c n & \text { if } n>1,\end{cases}
$$

Here we have, $a=2, b=2, f(n)=c n$

$$
n^{\log _{b}^{a}}=n
$$

So

$$
T(n)=\theta(n \log n)
$$

Maximum-subarray problem

\square Input: an array $A[1 \ldots n]$ of n numbers

- Assume that some of the numbers are negative, because this problem is trivial when all numbers are nonnegative
\square Output: a nonempty subarray $A[i \ldots j]$ having the largest sum $S[i, j]=a_{i}+a_{i+1}+\ldots+a_{j}$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: |
| A | $\mathbf{1 3}$ | $\mathbf{- 3}$ | $\mathbf{- 2 5}$ | $\mathbf{2 0}$ | $\mathbf{- 3}$ | $\mathbf{- 1 6}$ | $\mathbf{- 2 3}$ | $\mathbf{1 8}$ | $\mathbf{2 0}$ | $\mathbf{- 7}$ | $\mathbf{1 2}$ | $\mathbf{- 5}$ | $\mathbf{- 2 2}$ | $\mathbf{1 5}$ | $\mathbf{- 4}$ | $\mathbf{7}$ |

A divide and conquer solution

- Possible locations of a maximum subarray $A[i . . j]$ of $A[l o w . . h i g h]$, where mid $=\lfloor($ low + high $) / 2\rfloor$
- entirely in $A[l o w . . m i d] \quad(l o w \leq i \leq j \leq m i d)$
- entirely in $A[m i d+1 . . h i g h]$ (mid $<i \leq j \leq h i g h)$
- crossing the midpoint (low $\leq i \leq m i d<j \leq h i g h)$

(a)

(b)

A divide and conquer solution

Find-Max-Crossing-Subarray (A, low, mid, high $)$

```
    left-sum \(=-\infty\)
    sum \(=0\)
    for \(i=\) mid downto low
        sum \(=\operatorname{sum}+A[i]\)
    if sum \(>\) left-sum
        left-sum \(=\) sum
        max-left \(=i\)
    right-sum \(=-\infty\)
    sum \(=0\)
    for \(j=\) mid +1 to high
        sum \(=\operatorname{sum}+A[j]\)
        if sum \(>\) right-sum
        right-sum \(=\) sum
        max-right \(=j\)
15 return (max-left, max-right, left-sum + right-sum)
```


A divide and conquer solution

Find-Maximum-Subarray (A, low, high)

```
if high== low
    return (low, high, A[low])
                            // base case: only one element
else mid = \lfloor(low + high)/2\rfloor
    (left-low,left-high,left-sum) =
    Find-MAXimum-SubarRay ( }A,\mathrm{ low, mid)
    (right-low,right-high,right-sum) =
    FInd-Maximum-Subarray ( }A,\mathrm{ mid }+1,\mathrm{ high)
    (cross-low, cross-high, cross-sum) =
    Find-Max-Crossing-Subarray (A,low, mid, high)
    if left-sum \geq right-sum and left-sum \geq cross-sum
    return (left-low, left-high, left-sum)
    elseif right-sum \geqleft-sum and right-sum \geq cross-sum
    return (right-low, right-high,right-sum)
    else return (cross-low, cross-high, cross-sum)
```


Analyzing time complexity

- FIND-MAX-CROSSING-SUBARRAY : $\Theta(n)$, where $n=$ high - low +1
- FIND-MAXIMUM-SUBARRAY

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n)(\text { with } T(1)=\Theta(1)) \\
& =\Theta(n \lg n) \quad \text { (similar to merge-sort) }
\end{aligned}
$$

