

Divide and Conquer

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

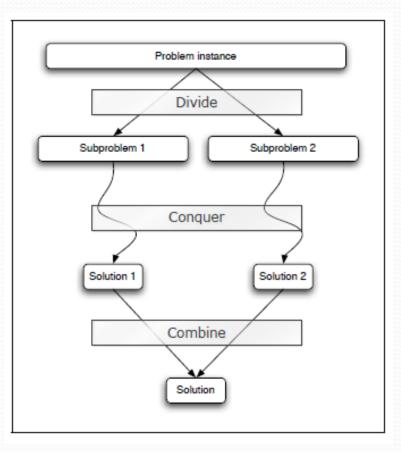
Techniques for the design of Algorithms

- **Divide and Conquer**
- Dynamic Programming
- Greedy Algorithms
- Backtracking Algorithms
- Branch and Bound Algorithms

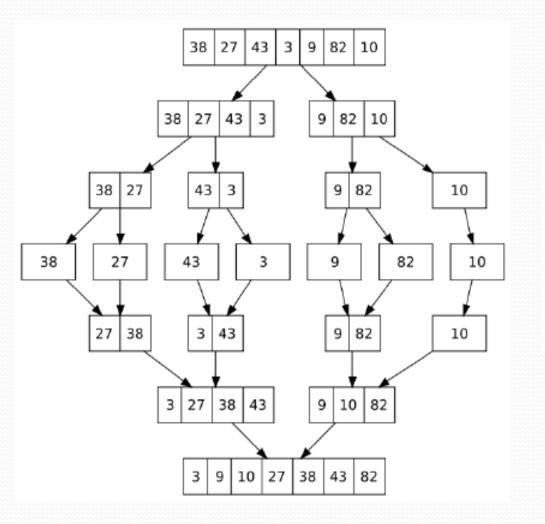
Divide and Conquer

□ This approach involves three steps:

- Divide: Break down the problem into two or more subproblems. These subproblems should be similar to the original problem, but smaller in size.
- Conquer: Recursively solve the subproblems (If they are small enough, just solve them in a straightforward manner).
- Combine: Combine the solutions to the subproblems into a solution for the original problem (optional).



Divide and Conquer (Merge Sort)



MERGE-SORT(A, p, r) $1 \quad if \ p < r$ $2 \qquad q = \lfloor (p+r)/2 \rfloor$ $3 \qquad MERGE-SORT(A, p, q)$ $4 \qquad MERGE-SORT(A, q+1, r)$ $5 \qquad MERGE(A, p, q, r)$

Divide and Conquer (Merge Sort)

MERGE(A, p, q, r)1 $n_1 = q - p + 1$ 2 $n_2 = r - q$ 3 let $L[1 \dots n_1 + 1]$ and $R[1 \dots n_2 + 1]$ be new arrays 4 for i = 1 to n_1 5 L[i] = A[p+i-1]6 **for** j = 1 **to** n_2 7 R[j] = A[q+j]8 $L[n_1 + 1] = \infty$ 9 $R[n_2 + 1] = \infty$ $10 \quad i = 1$ $11 \quad j = 1$ 12 **for** k = p **to** r13 if $L[i] \leq R[j]$ 14 A[k] = L[i]15 i = i + 116 else A[k] = R[j]j = j + 117

Analyzing the Divide-and-Conquer Algorithms

In general we have the following recurrence equation:

 $T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} . \end{cases}$

T(n): is the time required for an input of size n **n:** is the size of problem

- **c:** is a constant number
- **a:** is the number of subproblems
- **b:** is the size of each subproblem
- **D**(**n**): is the time needed for Divide
- **C(n):** is the time needed for Combine

Solving the recurrence equations

There are different approaches to do this:

- Performing Substitution
- Constructing Recursion Tree
- Master Theorem

Analyzing Merge Sort by Performing Substitution

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

$$T(n) = 2T(\frac{n}{2}) + n$$

=2(2T($\frac{n}{4}$) + $\frac{n}{2}$) + n = 2²(T($\frac{n}{2^2}$) + 2n
=2²(2T($\frac{n}{2^3}$) + $\frac{n}{2^2}$) + 2n=2³(T($\frac{n}{2^3}$) + 3n
.
.
.
=2^{logn}T(1) + nlogn = cn + nlogn
= $\theta(nlogn)$

Analyzing Merge Sort by constructing recursion tree



Master Theorem

Theorem (Master Theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n).

Then T(n) can be bounded asymptotically as follows:

I. If $f(n) = O(n^{\log_b(a)-\varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b(a)})$.

II. If $f(n) = \Theta(n^{\log_b(a)})$, then $T(n) = \Theta(n^{\log_b(a)}\log(n))$.

III. If $f(n) = O(n^{\log_b(a)+\varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Analyzing Merge Sort by Master Theorem

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

Here we have, a=2, b=2, f(n)=cn

$$n^{\log_b^a} = n$$

So

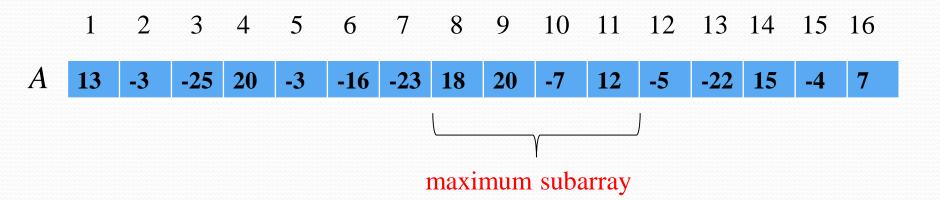
$$T(n) = \theta(n \log n)$$

Maximum-subarray problem

Input: an array A[1...n] of *n* numbers

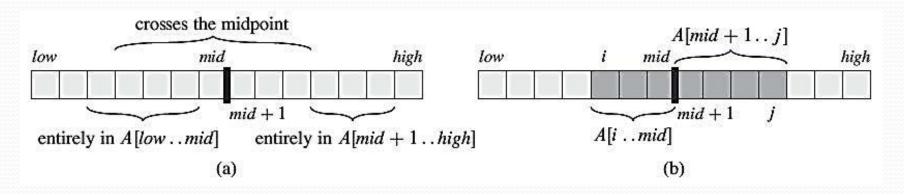
• Assume that some of the numbers are negative, because this problem is trivial when all numbers are nonnegative

□ *Output:* a nonempty subarray A[i...j] having the largest sum $S[i, j] = a_i + a_{i+1} + ... + a_j$



A divide and conquer solution

- Possible locations of a maximum subarray A[i..j] of A[low..high], where $mid = \lfloor (low+high)/2 \rfloor$
 - entirely in A[low..mid] ($low \le i \le j \le mid$)
 - entirely in A[mid+1..high] (mid < $i \le j \le high$)
 - crossing the midpoint ($low \le i \le mid < j \le high$)



A divide and conquer solution

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

left-sum = $-\infty$ 2 sum = 0for i = mid downto low 3 4 sum = sum + A[i]5 if sum > left-sum 6 7 left-sum = sum max-left = i 8 right-sum $= -\infty$ sum = 09 for j = mid + 1 to high 10 sum = sum + A[j]11 if sum > right-sum 12 right-sum = sum 13 max-right = j 14 15 **return** (*max-left*, *max-right*, *left-sum* + *right-sum*)

A divide and conquer solution

FIND-MAXIMUM-SUBARRAY (A, low, high)

1	if $high == low$
2	return (low, high, A[low]) // base case: only one element
3	else $mid = \lfloor (low + high)/2 \rfloor$
4	(left-low, left-high, left-sum) =
	FIND-MAXIMUM-SUBARRAY (A, low, mid)
5	(right-low, right-high, right-sum) =
	FIND-MAXIMUM-SUBARRAY $(A, mid + 1, high)$
6	(cross-low, cross-high, cross-sum) =
	FIND-MAX-CROSSING-SUBARRAY $(A, low, mid, high)$
7	if left-sum \geq right-sum and left-sum \geq cross-sum
8	return (left-low, left-high, left-sum)
9	elseif right-sum \geq left-sum and right-sum \geq cross-sum
10	return (right-low, right-high, right-sum)
11	else return (cross-low, cross-high, cross-sum)

Analyzing time complexity

- FIND-MAX-CROSSING-SUBARRAY : $\Theta(n)$, where n = high - low + 1
- FIND-MAXIMUM-SUBARRAY $T(n) = 2T(n/2) + \Theta(n)(\text{with } T(1) = \Theta(1))$

= $\Theta(n \lg n)$ (similar to merge-sort)