Chapter 3: Equilibrium of a Particle

EQUILIBRIUM OF A PARTICLE, THE FREE-BODY DIAGRAM \& COPLANAR FORCE SYSTEMS

Section I Objectives:

Students will be able to :
a) Draw a free body diagram (FBD), and,
b) Apply equations of equilibrium to solve a 2-D problem.

APPLICATIONS

For a spool of given
weight, what are the forces in cables AB and AC ?

APPLICATIONS

(continued)

For a given cable strength, what is the maximum weight that can be lifted?

COPLANAR FORCE SYSTEMS

This is an example of a 2-D or coplanar force system. If the whole assembly is in equilibrium, then particle A is also in equilibrium.
To determine the tensions in the cables for a given weight of the engine, we need to learn how to draw a free body diagram and apply equations of equilibrium.

THE WHAT, WHY AND HOW OF A FREE BODY DIAGRAM (FBD)

Free Body Diagrams are one of the most important things for you to know how to draw and use.

What? - It is a drawing that shows all external forces acting on the particle.

Why ? - It helps you write the equations of equilibrium used to solve for the unknowns (usually forces or angles).

How ?

1. Imagine the particle to be isolated or cut free from its surroundings.
2. Show all the forces that act on the particle. Active forces: They want to move the particle. Reactive forces: They tend to resist the motion.
3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables .

Note : Engine mass $=250 \mathrm{Kg}$

FBD at A

EQUATIONS OF 2-D EQUILIBRIUM

Since particle A is in equilibrium, the net force at A is zero.

$$
\begin{aligned}
& \text { So } \boldsymbol{F}_{A B}+\boldsymbol{F}_{A C}+\boldsymbol{F}_{A D}=0 \\
& \text { or } \sum \boldsymbol{F}=0
\end{aligned}
$$

In general, for a particle in equilibrium, $\Sigma \boldsymbol{F}=0$ or $\Sigma \mathrm{F}_{\mathrm{x}} \boldsymbol{i}+\Sigma \mathrm{F}_{\mathrm{y}} \boldsymbol{j}=0=0 \boldsymbol{i}+0 \boldsymbol{j} \quad$ (A vector equation)

Or, written in a scalar form,
$\Sigma \mathrm{F}_{\mathrm{x}}=0$ and $\Sigma \mathrm{F}_{\mathrm{y}}=0$
These are two scalar equations of equilibrium (EofE). They can be used to solve for up to two unknowns.

EXAMPLE

Note : Engine mass $=250 \mathrm{Kg}$

FBD at A

Write the scalar EofE:

$$
\begin{aligned}
& +\rightarrow \Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{T}_{\mathrm{B}} \cos 30^{\circ}-\mathrm{T}_{\mathrm{D}}=0 \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{T}_{\mathrm{B}} \sin 30^{\circ}-2.452 \mathrm{kN}=0
\end{aligned}
$$

Solving the second equation gives: $\mathrm{T}_{\mathrm{B}}=4.90 \mathrm{kN}$
From the first equation, we get: $\mathrm{T}_{\mathrm{D}}=4.25 \mathrm{kN}$

SPRINGS, CABLES, AND PULLEYS

Cable is in tension

Spring Force $=$ spring constant $*$ deformation, or

$$
\mathrm{F}=\mathrm{k} * \mathrm{~S}
$$

With a
frictionless
pulley, $\mathrm{T}_{1}=\mathrm{T}_{2}$.

Smooth Contact

(a)

(b)

EXAMPLE

The sphere in Fig. 3-3a has a mass of 6 kg and is supported as shown. Draw a free-body diagram of the sphere, the cord $C E$, and the knot at C.

(a)

EXAMPLE

EXAMPLE

Given: Sack A weighs 20 N . and geometry is as shown.

Find: Forces in the cables and weight of sack B.

Plan:

1. Draw a FBD for Point E.
2. Apply EofE at Point E to solve for the unknowns $\left(\mathrm{T}_{\mathrm{EG}} \& \mathrm{~T}_{\mathrm{EC}}\right)$.
3. Repeat this process at C.

EXAMPLE
 (continued)

GROUP PROBLEM SOLVING

Given: The car is towed at constant speed by the 600 N force and the angle θ is 25°.

Find: The forces in the ropes AB and AC.

Plan:

1. Draw a FBD for point A .
2. Apply the E-of-E to solve for the forces in ropes $A B$ and $A C$.

GROUP PROBLEM SOLVING

(continued)

F_{AB}
FBD at point A

Quiz

3-15. The unstretched length of spring $A B$ is 3 m . If the block is held in the equilibrium position shown, determine the mass of the block at D.

Quiz

Quiz

*3-16. Determine the mass of each of the two cylinders if they cause a sag of $s=0.5 \mathrm{~m}$ when suspended from the rings at A and B. Note that $s=0$ when the cylinders are removed.

Quiz

THREE-DIMENSIONAL FORCE SYSTEMS

Section II Objectives:

Students will be able to solve 3-D particle equilibrium problems by
a) Drawing a 3-D free body diagram, and,
b) Applying the three scalar equations (based on one vector equation) of equilibrium.

APPLICATIONS

The weights of the electromagnet and the loads are given.

Can you determine the forces in the chains?

APPLICATIONS

(continued)

The shear leg derrick is to be designed to lift a maximum of 500 kg of fish.

What is the effect of different offset distances on the forces in the cable and derrick legs?

THE EQUATIONS OF 3-D EQUILIBRIUM

When a particle is in equilibrium, the vector sum of all the forces acting on it must be zero ($\Sigma \boldsymbol{F}=0$).
This equation can be written in terms of its x , y and z components. This form is written as follows.

$$
\left(\Sigma \mathrm{F}_{\mathrm{x}}\right) \boldsymbol{i}+\left(\Sigma \mathrm{F}_{\mathrm{y}}\right) \boldsymbol{j}+\left(\Sigma \mathrm{F}_{z}\right) \boldsymbol{k}=0
$$

This vector equation will be satisfied only when

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{x}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{y}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{z}}=0
\end{aligned}
$$

These equations are the three scalar equations of equilibrium. They are valid at any point in equilibrium and allow you to solve for up to three unknowns.

EXAMPLE \#1

Given: $\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}$ and $\boldsymbol{F}_{\mathbf{3}}$.
Find: The force \boldsymbol{F} required to keep particle O in equilibrium.

Plan:

1) Draw a FBD of particle O.
2) Write the unknown force as

$$
\boldsymbol{F}=\left\{\mathrm{F}_{\mathrm{x}} \boldsymbol{i}+\mathrm{F}_{\mathrm{y}} \boldsymbol{j}+\mathrm{F}_{\mathrm{z}} \boldsymbol{k}\right\} \mathrm{N}
$$

3) Write $\boldsymbol{F}_{\boldsymbol{1}}, \boldsymbol{F}_{\mathbf{2}}$ and $\boldsymbol{F}_{\mathbf{3}}$ in Cartesian vector form.
4) Apply the three equilibrium equations to solve for the three unknowns $\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}$, and F_{z}.

EXAMPLE \#1

(continued)

EXAMPLE \#1

(continued)

Equating the respective $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ components to zero, we have

$$
\begin{array}{ll}
\Sigma \mathrm{F}_{\mathrm{x}}=-200+\mathrm{F}_{\mathrm{x}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{x}}=200 \mathrm{~N} \\
\Sigma \mathrm{~F}_{\mathrm{y}}=400-300+\mathrm{F}_{\mathrm{y}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{y}}=-100 \mathrm{~N} \\
\Sigma \mathrm{~F}_{\mathrm{z}}=-800+600+\mathrm{F}_{\mathrm{z}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{z}}=200 \mathrm{~N}
\end{array}
$$

Thus, $\boldsymbol{F}=\{200 \boldsymbol{i}-100 \boldsymbol{j}+200 \boldsymbol{k}\} \mathrm{N}$
Using this force vector, you can determine the force's magnitude and coordinate direction angles as needed.

EXAMPLE

Given: A 100 Kg crate, as shown, is supported by three cords. One cord has a spring in it.

Find: Tension in cords AC and AD and the stretch of the spring.

Plan:

1) Draw a free body diagram of Point A. Let the unknown force magnitudes be $\mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}, \mathrm{F}_{\mathrm{D}}$.
2) Represent each force in the Cartesian vector form.
3) Apply equilibrium equations to solve for the three unknowns.
4) Find the spring stretch using $\mathrm{F}_{\mathrm{B}}=\mathrm{K} * \mathrm{~S}$.

EXAMPLE \#2 (continued)

$\boldsymbol{F}_{\boldsymbol{B}}=\mathrm{F}_{\mathrm{B}} \mathrm{N} \boldsymbol{i}$
$\boldsymbol{F}_{\boldsymbol{C}}=\mathrm{F}_{\mathrm{C}} \mathrm{N}\left(\cos 120^{\circ} \boldsymbol{i}+\cos 135^{\circ} \boldsymbol{j}+\cos 60^{\circ} \boldsymbol{k}\right)$
$=\left\{-0.5 \mathrm{~F}_{\mathrm{C}} \boldsymbol{i}-0.707 \mathrm{~F}_{\mathrm{C}} \boldsymbol{j}+0.5 \mathrm{~F}_{\mathrm{C}} \boldsymbol{k}\right\} \mathrm{N}$
$\boldsymbol{F}_{\boldsymbol{D}}=\mathrm{F}_{\mathrm{D}}\left(\boldsymbol{r}_{\boldsymbol{A D}} / \mathrm{r}_{\mathrm{AD}}\right)$
$=\mathrm{F}_{\mathrm{D}} \mathrm{N}\left[(-1 \boldsymbol{i}+2 \boldsymbol{j}+2 \boldsymbol{k}) /\left(1^{2}+2^{2}+2^{2}\right)^{1 / 2}\right]$
$=\left\{-0.3333 \mathrm{~F}_{\mathrm{D}} \boldsymbol{i}+0.667 \mathrm{~F}_{\mathrm{D}} \boldsymbol{j}+0.667 \mathrm{~F}_{\mathrm{D}} \boldsymbol{k}\right\} \mathrm{N}$

EXAMPLE \#2 (continued)

GROUP PROBLEM SOLVING

Given: A 150 Kg plate, as shown, is supported by three cables and is in equilibrium.

Find: Tension in each of the cables.

Plan:

1) Draw a free body diagram of Point A. Let the unknown force magnitudes be $\mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}, \mathrm{F}_{\mathrm{D}}$.
2) Represent each force in the Cartesian vector form.
3) Apply equilibrium equations to solve for the three unknowns.

GROUP PROBLEM SOLVING (continued)

Quiz

The $800-\mathrm{lb}$ cylinder is supported by three chains as shown. Determine the force in each chain for equilibrium. Take $d=1 \mathrm{ft}$.

Quiz

