

Numerical Methods
Using MATLAB

Fourth Edition

John. H. Mathews
California State University, Fullerton

Kurtis D. Fink
Northwest Missouri State University

Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data
Numerical methods using MATLAB/John H. Mathews,
Kurtis D. Fink—4th ed.

p. cm.
Includes index
ISBN 0-13-065248-2
1. Numerical analysis–Data processing. 2. MATLAB. I. Fink, Kurtis D.
II. Title.

QA297.M39 2004
518–dc22 2003061022

Editor-in-Chief: Sally Yagan
Acquisitions Editor: George Lobell
Production Editor: Lynn Savino Wendel
Vice President/Director of Production and Manufacturing: David W. Riccardi
Senior Managing Editor: Linda Mihatov Behrens
Assistant Managing Editor: Bayani Mendoza de Leon
Executive Managing Editor: Kathleen Schiaparelli
Assisant Manufacturing Manager/Buyer: Michael Bell
Manufacturing Manager: Trudy Pisciotti
Marketing Manager: Halee Dinsey
Marketing Assistant: Rachael Beckman
Art Director: Jayne Conte
Editorial Assistant: Jennifer Brady
Cover Designer: Bruce Kenselaar
Cover Photo Credits: Fans Quilt, Quiltmaker unidentified, initialed “PM” Indiana 1925–1935
Cotton, wool, and rayon, with cotton embroidery 82× 71 1/2”
Collection American Folk Art Museum, New York Gift of David Pottinger 1980.37.86

c© 2004, 1999 by Pearson Education, Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

Formerly published under the title Numerical Methods for Mathematics,
Science, and Engineering, c© 1992, 1987 by John H. Mathews.

All rights reserved. No part of this book may
be reproduced, in any form or by any means,
without permission in writing from the publisher.

Pearson Prentice Hall R© is a trademark of Pearson Education, Inc.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-065248-2

Pearson Education LTD., London
Pearson Education Australia PTY, Limited, Sydney
Pearson Education Singapore, Pte. Ltd
Pearson Education North Asia Ltd, Hong Kong
Pearson Education Canada, Ltd., Toronto
Pearson Educacion de Mexico, S.A. de C.V.
Pearson Education - Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd

Contents

Preface vii

1 Preliminaries 1
1.1 Review of Calculus 2

1.2 Binary Numbers 13

1.3 Error Analysis 24

2 Solution of Nonlinear Equations
f (x) = 0 40

2.1 Iteration for Solving x = g(x) 41

2.2 Bracketing Methods for Locating a Root 51

2.3 Initial Approximation and Convergence Criteria 62

2.4 Newton-Raphson and Secant Methods 70

2.5 Aitken’s Process and Steffensen’s and
Muller’s Methods (Optional) 90

3 Solution of Linear Systems AX = B 101
3.1 Introduction to Vectors and Matrices 101

3.2 Properties of Vectors and Matrices 109

3.3 Upper-Triangular Linear Systems 120

iii

iv CONTENTS

3.4 Gaussian Elimination and Pivoting 125

3.5 Triangular Factorization 141

3.6 Iterative Methods for Linear Systems 156

3.7 Iteration for Nonlinear Systems: Seidel and
Newton’s Methods (Optional) 167

4 Interpolation and Polynomial
Approximation 186

4.1 Taylor Series and Calculation of Functions 187

4.2 Introduction to Interpolation 199

4.3 Lagrange Approximation 206

4.4 Newton Polynomials 220

4.5 Chebyshev Polynomials (Optional) 230

4.6 Padé Approximations 242

5 Curve Fitting 252

5.1 Least-Squares Line 253

5.2 Methods of Curve Fitting 263

5.3 Interpolation by Spline Functions 279

5.4 Fourier Series and Trigonometric Polynomials 297

5.5 Bézier Curves 310

6 Numerical Differentiation 320

6.1 Approximating the Derivative 321

6.2 Numerical Differentiation Formulas 339

7 Numerical Integration 352

7.1 Introduction to Quadrature 353

7.2 Composite Trapezoidal and Simpson’s Rule 364

7.3 Recursive Rules and Romberg Integration 378

7.4 Adaptive Quadrature 392

7.5 Gauss-Legendre Integration (Optional) 399

CONTENTS v

8 Numerical Optimization 409
8.1 Minimization of a Function of One Variable 410

8.2 Nelder-Mead and Powell’s Methods 431

8.3 Gradient and Newton’s Methods 446

9 Solution of Differential Equations 458
9.1 Introduction to Differential Equations 459

9.2 Euler’s Method 465

9.3 Heun’s Method 475

9.4 Taylor Series Method 482

9.5 Runge-Kutta Methods 489

9.6 Predictor-Corrector Methods 505

9.7 Systems of Differential Equations 518

9.8 Boundary Value Problems 528

9.9 Finite-Difference Method 536

10 Solution of Partial Differential Equations 544
10.1 Hyperbolic Equations 546

10.2 Parabolic Equations 556

10.3 Elliptic Equations 568

11 Eigenvalues and Eigenvectors 585
11.1 Homogeneous Systems: Eigenvalue Problem 586

11.2 Power Method 598

11.3 Jacobi’s Method 611

11.4 Eigenvalues of Symmetric Matrices 624

Appendix: Introduction to MATLAB 638

Answers to Selected Exercises 646

Index 673

Preface

This book provides a fundamental introduction to numerical analysis suitable for un-
dergraduate students in mathematics, computer science, physical sciences, and engi-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fitted modularly for either a
single-term course or a year sequence. In short, the book contains enough material so
that instructors will be able to select topics appropriate to their needs.

Students of various backgrounds should find numerical methods quite interesting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one’s skill in both the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations are
easier to visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms.

Emphasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for each method is presented in a fashion that is
appropriate for the method at hand, yet does not turn off the reader. A mathematical
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLAB give students an
opportunity to practice their skills at scientific programming.

Shorter numerical exercises can be carried out with a pocket calculator/computer,
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor to guide the students regarding the pedagogical use of numerical computations.
Each instructor can make assignments that are appropriate to the available comput-

vii

viii PREFACE

ing resources. Experimentation with the MATLAB subroutine libraries is encouraged.
These materials can be used to assist students in the completion of the numerical anal-
ysis component of computer laboratory exercises.

In this edition a section on Bézier curves has been added to the end of the chapter
on curve fitting. Additionally, the chapter on numerical optimization has been ex-
panded to include an introduction to both direct and derivative based methods for op-
timizing functions of one or more variables. A listing of the MATLAB programs in this
textbook is available upon request from the authors (http://math.fullerton.edu/mathews/
numerical.html). An instructor’s solution manual for the exercise sets is available from
the publisher.

Previously, we took the attitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the tool of nearly all engineers and applied mathematicians, and its newest versions
have improved the programming aspects. So we think that students will have an easier
and more productive time in this MATLAB version of our text.

Acknowledgments

We would like to express our gratitude to all the people whose efforts contributed to
the various editions of this book. I (John Mathews) thank the students at California
State University, Fullerton. I thank my colleagues Stephen Goode, Mathew Koshy,
Edward Sabotka, Harris Schultz, and Soo Tang Tan for their support in the first edition;
additionally, I thank Russell Egbert, William Gearhart, Ronald Miller, and Greg Pierce
for their suggestions for the second edition. I also thank James Friel, Chairman of the
Mathematics Department at CSUF, for his encouragement.

Reviewers who made useful recommendations for the first edition are Walter M.
Patterson, III, Lander College; George B. Miller, Central Connecticut State Univer-
sity; Peter J. Gingo, The University of Akron; Michael A. Freedman, The University
of Alaska, Fairbanks; and Kenneth P. Bube, University of California, Los Angeles. For
the second edition, we thank Richard Bumby, Rutgers University; Robert L. Curry,
U.S. Army; Bruce Edwards, University of Florida; and David R. Hill, Temple Univer-
sity.

For the third edition we wish to thank Tim Sauer, George Mason University; Ger-
ald M. Pitstick, University of Oklahoma; Victor De Brunner, University of Oklahoma;
George Trapp, West Virginia University; Tad Jarik, University of Alabama, Huntsville;
Jeffrey S. Scroggs, North Carolina State University; Kurt Georg, Colorado State Uni-
versity; and James N. Craddock, Southern Illinois University at Carbondale.

Reviewers for the fourth edition were Kevin Kreider, University of Akron; Demetrio
Labate, Washington University at St. Louis; Lee Johnson, Virginia Tech; and Azmy
Ackleh, University of Louisiana at Lafayette. We are grateful to the reviewers for their
time and recommendations.

PREFACE ix

Suggestions for improvements and additions to the book are always welcome and
can be made by corresponding directly with the authors.

John H. Mathews Kurtis D. Fink
Mathematics Department Department of Mathematics
California State University Northwest Missouri State University
Fullerton, CA 92634 Maryville, MO 64468
mathews@fullerton.edu kfink@mail.nwmissouri.edu

1

Preliminaries

Consider the function f (x) = cos(x), its derivative f ′(x) = − sin(x), and its an-
tiderivative F(x) = sin(x)+ C . These formulas were studied in calculus. The former
is used to determine the slope m = f ′(x0) of the curve y = f (x) at a point (x0, f (x0)),
and the latter is used to compute the area under the curve for a ≤ x ≤ b.

The slope at the point (π/2, 0) is m = f ′(π/2) = −1 and can be used to find the
tangent line at this point (see Figure 1.1(a)):

ytan = m
(

x − π

2

)
+ 0 = f ′

(π

2

) (
x − π

2

)
= −x + π

2
.

y

0.5
0.0

0.5

1.0 1.5 2.0
x

1.0

−0.5

y = cos(x)

Figure 1.1 (a) The tangent line to
the curve y = cos(x) at the point
(π/2, 0).

1

2 CHAP. 1 PRELIMINARIES

0.5
0.0

0.5

1.0 1.5 2.0
x

1.0

−0.5

y

y = cos(x)

Figure 1.1 (b) The area under the
curve y = cos(x) over the interval
[0, π/2].

The area under the curve for 0 ≤ x ≤ π/2 is computed using an integral (see Fig-
ure 1.1(b)):

area =
∫ π/2

0
cos(x) dx = F

(π

2

)
− F(0) = sin

(π

2

)
− 0 = 1.

These are some of the results that we will need to use from calculus.

1.1 Review of Calculus

It is assumed that the reader is familiar with the notation and subject matter covered in
the undergraduate calculus sequence. This should have included the topics of limits,
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer to the following results.

Limits and Continuity
Definition 1.1. Assume that f (x) is defined on an open interval containing x = x0,
except possibly at x = x0 itself. Then f is said to have the limit L at x = x0, and we
write

(1) lim
x→x0

f (x) = L ,

if given any ε > 0 there exists a δ > 0 such that | f (x) − L| < ε whenever 0 <

|x − x0| < δ. When the h-increment notation x = x0 + h is used, equation (1)
becomes

�(2) lim
h→0

f (x0 + h) = L .

SEC. 1.1 REVIEW OF CALCULUS 3

Definition 1.2. Assume that f (x) is defined on an open interval containing x = x0.
Then f is said to be continuous at x = x0 if

(3) lim
x→x0

f (x) = f (x0).

The function f is said to be continuous on a set S if it is continuous at each point
x ∈ S. The notation Cn(S) stands for the set of all functions f such that f and its
first n derivatives are continuous on S. When S is an interval, say [a, b], then the
notation Cn[a, b] is used. As an example, consider the function f (x) = x4/3 on the
interval [−1, 1]. Clearly, f (x) and f ′(x) = (4/3)x1/3 are continuous on [−1, 1],
while f ′′(x) = (4/9)x−2/3 is not continuous at x = 0. �

Definition 1.3. Suppose that {xn}∞n=1 is an infinite sequence. Then the sequence is
said to have the limit L , and we write

(4) lim
n→∞ xn = L ,

if given any ε > 0, there exists a positive integer N = N (ε) such that n > N implies
that |xn − L| < ε. �

When a sequence has a limit, we say that it is a convergent sequence. Another
commonly used notation is “xn → L as n →∞.” Equation (4) is equivalent to

(5) lim
n→∞(xn − L) = 0.

Thus we can view the sequence {εn}∞n=1 = {xn − L}∞n=1 as an error sequence. The
following theorem relates the concepts of continuity and convergent sequence.

Theorem 1.1. Assume that f (x) is defined on the set S and x0 ∈ S. The following
statements are equivalent:

(a) The function f is continuous at x0.

(b) If lim
n→∞ xn = x0, then lim

n→∞ f (xn) = f (x0).
(6)

Theorem 1.2 (Intermediate Value Theorem). Assume that f ∈ C[a, b] and L is
any number between f (a) and f (b). Then there exists a number c, with c ∈ (a, b),
such that f (c) = L .

Example 1.1. The function f (x) = cos(x−1) is continuous over [0, 1], and the constant
L = 0.8 ∈ (cos(0), cos(1)). The solution to f (x) = 0.8 over [0, 1] is c1 = 0.356499.
Similarly, f (x) is continuous over [1, 2.5], and L = 0.8 ∈ (cos(2.5), cos(1)). The solution
to f (x) = 0.8 over [1, 2.5] is c2 = 1.643502. These two cases are shown in Figure 1.2. �

4 CHAP. 1 PRELIMINARIES

y

x0.0
0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

1.0

c1 c2

y = L

y = f (x)

Figure 1.2 The intermediate value
theorem applied to the function
f (x) = cos(x − 1) over [0, 1] and
over the interval [1, 2.5].

0.0

(a, f (a))

y

(x1, f (x1))

y = f (x)

(x2, f (x2))

x

(b, f (b))

0.5 1.0 1.5 2.0 2.5 3.0

10

20

30

40

50

60

Figure 1.3 The extreme value
theorem applied to the function
f (x) = 35+ 59.5x − 66.5x2 + 15x3

over the interval [0, 3].

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). Assume that
f ∈ C[a, b]. Then there exists a lower bound M1, an upper bound M2, and two
numbers x1, x2 ∈ [a, b] such that

(7) M1 = f (x1) ≤ f (x) ≤ f (x2) = M2 whenever x ∈ [a, b].
We sometimes express this by writing

(8) M1 = f (x1) = min
a≤x≤b

{ f (x)} and M2 = f (x2) = max
a≤x≤b

{ f (x)}.

Differentiable Functions
Definition 1.4. Assume that f (x) is defined on an open interval containing x0. Then
f is said to be differentiable at x0 if

(9) lim
x→x0

f (x)− f (x0)

x − x0

SEC. 1.1 REVIEW OF CALCULUS 5

exists. When this limit exists, it is denoted by f ′(x0) and is called the derivative of f
at x0. An equivalent way to express this limit is to use the h-increment notation:

(10) lim
h→0

f (x0 + h)− f (x0)

h
= f ′(x0).

A function that has a derivative at each point in a set S is said to be differentiable
on S. Note that the number m = f ′(x0) is the slope of the tangent line to the graph of
the function y = f (x) at the point (x0, f (x0)). �

Theorem 1.4. If f (x) is differentiable at x = x0, then f (x) is continuous at x = x0.

It follows from Theorem 1.3 that if a function f is differentiable on a closed inter-
val [a, b], then its extreme values occur at the endpoints of the interval or at the critical
points (solutions of f ′(x) = 0) in the open interval (a, b).

Example 1.2. The function f (x) = 15x3−66.5x2+59.5x+35 is differentiable on [0, 3].
The solutions to f ′(x) = 45x2 − 123x + 59.5 = 0 are x1 = 0.54955 and x2 = 2.40601.
The maximum and minimum values of f on [0, 3] are:

min{ f (0), f (3), f (x1), f (x2)} = min{35, 20, 50.10438, 2.11850} = 2.11850

and

max{ f (0), f (3), f (x1), f (x2)} = max{35, 20, 50.10438, 2.11850} = 50.10438

(see Figure 1.3). �

Theorem 1.5 (Rolle’s Theorem). Assume that f ∈ C[a, b] and that f ′(x) exists for
all x ∈ (a, b). If f (a) = f (b) = 0, then there exists a number c, with c ∈ (a, b), such
that f ′(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f ∈ C[a, b] and that f ′(x)

exists for all x ∈ (a, b). Then there exists a number c, with c ∈ (a, b), such that

(11) f ′(c) = f (b)− f (a)

b − a
.

Geometrically, the mean value theorem says that there is at least one number c ∈
(a, b) such that the slope of the tangent line to the graph of y = f (x) at the point
(c, f (c)) equals the slope of the secant line through the points (a, f (a)) and (b, f (b)).

Example 1.3. The function f (x) = sin(x) is continuous on the closed interval [0.1, 2.1]
and differentiable on the open interval (0.1, 2.1). Thus, by the mean value theorem, there
is a number c such that

f ′(c) = f (2.1)− f (0.1)

2.1− 0.1
= 0.863209− 0.099833

2.1− 0.1
= 0.381688.

The solution to f ′(c) = cos(c) = 0.381688 in the interval (0.1, 2.1) is c = 1.179174.
The graphs of f (x), the secant line y = 0.381688x + 0.099833, and the tangent line
y = 0.381688x + 0.474215 are shown in Figure 1.4. �

6 CHAP. 1 PRELIMINARIES

0.5 1.0 1.5 2.0a c b

f (a)

f (b)

1.0 (c, f (c))

(a, f (a))

(b, f (b))

m = f ′(c)

0.5

y

x

Figure 1.4 The mean value theorem applied to f (x) =
sin(x) over the interval [0.1, 2.1].

Theorem 1.7 (Generalized Rolle’s Theorem). Assume that f ∈ C[a, b] and that
f ′(x), f ′′(x), . . . , f (n)(x) exist over (a, b) and x0, x1, . . . , xn ∈ [a, b]. If f (x j) = 0
for j = 0, 1, . . . , n, then there exists a number c, with c ∈ (a, b), such that f (n)(c) = 0.

Integrals
Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, b] and F
is any antiderivative of f on [a, b], then

(12)
∫ b

a
f (x) dx = F(b)− F(a) where F ′(x) = f (x).

Theorem 1.9 (Second Fundamental Theorem). If f is continuous over [a, b] and
x ∈ (a, b), then

(13)
d

dx

∫ x

a
f (t) dt = f (x).

Example 1.4. The function f (x) = cos(x) satisfies the hypotheses of Theorem 1.9 over
the interval [0, π/2]; thus by the chain rule

d

dx

∫ x2

0
cos(t) dt = cos(x2)(x2)′ = 2x cos(x2). �

Theorem 1.10 (Mean Value Theorem for Integrals). Assume that f ∈ C[a, b].
Then there exists a number c, with c ∈ (a, b), such that

1

b − a

∫ b

a
f (x) dx = f (c).

The value f (c) is the average value of f over the interval [a, b].

SEC. 1.1 REVIEW OF CALCULUS 7

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5

y
y = f (x)

x

Figure 1.5 The mean value
theorem for integrals applied to
f (x) = sin(x) + 1

3 sin(3x) over the
interval [0, 2.5].

Example 1.5. The function f (x) = sin(x) + 1
3 sin(3x) satisfies the hypotheses of The-

orem 1.10 over the interval [0, 2.5]. An antiderivative of f (x) is F(x) = − cos(x) −
1
9 cos(3x). The average value of the function f (x) over the interval [0, 2.5] is

1

2.5− 0

∫ 2.5

0
f (x) dx = F(2.5)− F(0)

2.5
= 0.762629− (−1.111111)

2.5

= 1.873740

2.5
= 0.749496.

There are three solutions to the equation f (c) = 0.749496 over the interval [0, 2.5]:
c1 = 0.440566, c2 = 1.268010, and c3 = 1.873583. The area of the rectangle with
base b − a = 2.5 and height f (c j) = 0.749496 is f (c j)(b − a) = 1.873740. The area
of the rectangle has the same numerical value as the integral of f (x) taken over the inter-
val [0, 2.5]. A comparison of the area under the curve y = f (x) and that of the rectangle
can be seen in Figure 1.5. �

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that f, g ∈
C[a, b] and g(x) ≥ 0 for x ∈ [a, b]. Then there exists a number c, with c ∈ (a, b),
such that

(14)
∫ b

a
f (x)g(x) dx = f (c)

∫ b

a
g(x) dx .

Example 1.6. The functions f (x) = sin(x) and g(x) = x2 satisfy the hypotheses of
Theorem 1.11 over the interval [0, π/2]. Thus there exists a number c such that

sin(c) =
∫ π/2

0 x2 sin(x) dx∫ π/2
0 x2 dx

= 1.14159

1.29193
= 0.883631

or c = sin−1(0.883631) = 1.08356. �

8 CHAP. 1 PRELIMINARIES

Series

Definition 1.5. Let {an}∞n=1 be a sequence. Then
∑∞

n=1 an is an infinite series. The

nth partial sum is Sn = ∑n
k=1 ak . The infinite series converges if and only if the

sequence {Sn}∞n=1 converges to a limit S, that is,

(15) lim
n→∞ Sn = lim

n→∞

n∑
k=1

ak = S.

If a series does not converge, we say that it diverges. �

Example 1.7. Consider the infinite sequence {an}∞n=1 =
{

1

n(n + 1)

}∞
n=1

. Then the nth
partial sum is

Sn =
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)
= 1− 1

n + 1
.

Therefore, the sum of the infinite series is

S = lim
n→∞ Sn = lim

n→∞

(
1− 1

n + 1

)
= 1. �

Theorem 1.12 (Taylor’s Theorem). Assume that f ∈ Cn+1[a, b] and let x0 ∈
[a, b]. Then, for every x ∈ (a, b), there exists a number c = c(x) (the value of c
depends on the value of x) that lies between x0 and x such that

(16) f (x) = Pn(x)+ Rn(x),

where

(17) Pn(x) =
n∑

k=0

f (k)(x0)

k! (x − x0)
k

and

(18) Rn(x) = f (n+1)(c)

(n + 1)! (x − x0)
n+1.

Example 1.8. The function f (x) = sin(x) satisfies the hypotheses of Theorem 1.12. The
Taylor polynomial Pn(x) of degree n = 9 expanded about x0 = 0 is obtained by evaluating

SEC. 1.1 REVIEW OF CALCULUS 9

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6

y

y = P(x)

x

y = f (x)

Figure 1.6 The graph of f (x) = sin(x) and the Taylor
polynomial P9(x) = x − x3/3! + x5/5! − x7/7! + x9/9!.

the following derivatives at x = 0 and substituting the numerical values into formula (17).

f (x) = sin(x), f (0) = 0,

f ′(x) = cos(x), f ′(0) = 1,

f ′′(x) = − sin(x), f ′′(0) = 0,

f (3)(x) = − cos(x), f (3)(0) = −1,

...
...

f (9)(x) = cos(x), f (9)(0) = 1,

P9(x) = x − x3

3! +
x5

5! −
x7

7! +
x9

9! .
A graph of both f and P9 over the interval [0, 2π] is shown in Figure 1.6. �

Corollary 1.1. If Pn(x) is the Taylor polynomial of degree n given in Theorem 1.12,
then

(19) P(k)
n (x0) = f (k)(x0) for k = 0, 1, . . . , n.

Evaluation of a Polynomial

Let the polynomial P(x) of degree n have the form

(20) P(x) = anxn + an−1xn−1 + · · · + a2x2 + a1x + a0.

10 CHAP. 1 PRELIMINARIES

Horner’s method or synthetic division is a technique for evaluating polynomials. It
can be thought of as nested multiplication. For example, a fifth-degree polynomial can
be written in the nested multiplication form

P5(x) = ((((a5x + a4)x + a3)x + a2)x + a1)x + a0.

Theorem 1.13 (Horner’s Method for Polynomial Evaluation). Assume that P(x)

is the polynomial given in equation (20) and x = c is a number for which P(c) is to be
evaluated.

Set bn = an and compute

(21) bk = ak + cbk+1 for k = n − 1, n − 2, . . . , 1, 0;

then b0 = P(c). Moreover, if

(22) Q0(x) = bnxn−1 + bn−1xn−2 + · · · + b3x2 + b2x + b1,

then

(23) P(x) = (x − c)Q0(x)+ R0,

where Q0(x) is the quotient polynomial of degree n − 1 and R0 = b0 = P(c) is the
remainder.

Proof. Substituting the right side of equation (22) for Q0(x) and b0 for R0 in equa-
tion (23) yields

P(x) = (x − c)(bnxn−1 + bn−1xn−2 + · · · + b3x2 + b2x + b1)+ b0

= bnxn + (bn−1 − cbn)xn−1 + · · · + (b2 − cb3)x2

+ (b1 − cb2)x + (b0 − cb1).

(24)

The numbers bk are determined by comparing the coefficients of xk in equations (20)
and (24), as shown in Table 1.1.

The value P(c) = b0 is easily obtained by substituting x = c into equation (22)
and using the fact that R0 = b0:

•(25) P(c) = (c − c)Q0(c)+ R0 = b0.

The recursive formula for bk given in (21) is easy to implement with a computer.
A simple algorithm is

b(n) = a(n);
for k = n − 1: −1: 0

b(k) = a(k)+ c ∗ b(k + 1);
end

SEC. 1.1 REVIEW OF CALCULUS 11

Table 1.1 Coefficients bk for Horner’s Method

xk Comparing (20) and (24) Solving for bk

xn an = bn bn = an
xn−1 an−1= bn−1−cbn bn−1= an−1+cbn
...

...
...

xk ak = bk−cbk+1 bk = ak+cbk+1
...

...
...

x0 a0= b0 − cb1 b0= a0 + cb1

Table 1.2 Horner’s Table for the Synthetic Division Process

Input an an−1 an−2 · · · ak · · · a2 a1 a0

c xbn xbn−1 · · · xbk+1 · · · xb3 xb2 xb1

bn bn−1 bn−2 · · · bk · · · b2 b1 b0 = P(c)

Output

When Horner’s method is performed by hand, it is easier to write the coefficients of
P(x) on a line and perform the calculation bk = ak + cbk+1 below ak in a column.
The format for this procedure is illustrated in Table 1.2.

Example 1.9. Use synthetic division (Horner’s method) to find P(3) for the polynomial

P(x) = x5 − 6x4 + 8x3 + 8x2 + 4x − 40.

a5 a4 a3 a2 a1 a0

Input 1 −6 8 8 4 −40
c = 3 3 −9 −3 15 57

1 −3 −1 5 19 17 = P(3) = b0

b5 b4 b3 b2 b1 Output

Therefore, P(3) = 17. �

12 CHAP. 1 PRELIMINARIES

Exercises for Review of Calculus

1. (a) Find L = limn→∞(4n+ 1)/(2n+ 1). Then determine {εn} = {L− xn} and find
limn→∞ εn .

(b) Find L = limn→∞(2n2+6n−1)/(4n2+2n+1). Then determine {εn} = {L−xn}
and find limn→∞ εn .

2. Let {xn}∞n=1 be a sequence such that limn→∞ xn = 2.

(a) Find limn→∞ sin(xn). (b) Find limn→∞ ln(x2
n).

3. Find the number(s) c referred to in the intermediate value theorem for each function
over the interval indicated and for the given value of L .

(a) f (x) = −x2 + 2x + 3 over [−1, 0] using L = 2

(b) f (x) = √x2 − 5x − 2 over [6, 8] using L = 3

4. Find the upper and lower bounds referred to in the extreme value theorem for each
function over the interval indicated.

(a) f (x) = x2 − 3x + 1 over [−1, 2]
(b) f (x) = cos2(x)− sin(x) over [0, 2π]

5. Find the number(s) c referred to in Rolle’s theorem for each function over the interval
indicated.

(a) f (x) = x4 − 4x2 over [−2, 2]
(b) f (x) = sin(x)+ sin(2x) over [0, 2π]

6. Find the number(s) c referred to in the mean value theorem for each function over the
interval indicated.

(a) f (x) = √x over [0, 4]
(b) f (x) = x2

x + 1
over [0, 1]

7. Apply the generalized Rolle’s theorem to f (x) = x(x − 1)(x − 3) over [0, 3].
8. Apply the first fundamental theorem of calculus to each function over the interval

indicated.

(a) f (x) = xex over [0, 2]
(b) f (x) = 3x

x2 + 1
over [−1, 1]

9. Apply the second fundamental theorem of calculus to each function.

(a)
d

dx

∫ x
0 t2 cos(t) dt (b)

d

dx

∫ x3

1 et2
dt

10. Find the number(s) c referred to in the mean value theorem for integrals for each
function, over the interval indicated.

(a) f (x) = 6x2 over [−3, 4]
(b) f (x) = x cos(x) over [0, 3π/2]

11. Find the sum of each sequence or series.

SEC. 1.2 BINARY NUMBERS 13

(a)
{

1

2n

}∞
n=0

(b)
{

2

3n

}∞
n=1

(c)
∞∑

n=1

3

n(n + 1)
(d)

∞∑
k=1

1

4k2 − 1

12. Find the Taylor polynomial of degree n = 4 for each function expanded about the
given value of x0.
(a) f (x) = √x , x0 = 1
(b) f (x) = x5 + 4x2 + 3x + 1, x0 = 0
(c) f (x) = cos(x), x0 = 0

13. Given that f (x) = sin(x) and P(x) = x − x3/3! + x5/5! − x7/7! + x9/9!, show that
P(k)(0) = f (k)(0) for k = 1, 2, . . . , 9.

14. Use synthetic division (Horner’s method) to find P(c).
(a) P(x) = x4 + x3 − 13x2 − x − 12, c = 3
(b) P(x) = 2x7 + x6 + x5 − 2x4 − x + 23, c = −1

15. Find the average area of all circles centered at the origin with radii between 1 and 3.

16. Assume that a polynomial, P(x), has n real roots in the interval [a, b]. Show that
P(n−1)(x) has at least one real root in the interval [a, b].

17. Assume that f, f ′, and f ′′ are defined on the interval [a, b]; f (a) = f (b) = 0; and
f (c) > 0 for c ∈ (a, b). Show that there is a number d ∈ (a, b) such that f ′′(d) < 0.

1.2 Binary Numbers

Human beings do arithmetic using the decimal (base 10) number system. Most com-
puters do arithmetic using the binary (base 2) number system. It may seem otherwise,
since communication with the computer (input/output) is in base 10 numbers. This
transparency does not mean that the computer uses base 10. In fact, it converts inputs
to base 2 (or perhaps base 16), then performs base 2 arithmetic, and finally, translates
the answer into base 10 before it displays a result. Some experimentation is required
to verify this. One computer with nine decimal digits of accuracy gave the answer

(1)
100,000∑

k=1

0.1 = 9999.99447.

Here the intent was to add the number 1
10 repeatedly 100,000 times. The mathematical

answer is exactly 10,000. One goal is to understand the reason for the computer’s ap-
parently flawed calculation. At the end of this section it will be shown how something
is lost when the computer translates the decimal fraction 1

10 into a binary number.

14 CHAP. 1 PRELIMINARIES

Base 2 Numbers

Base 10 numbers are used for most mathematical purposes. For illustration, the number
1563 is expressible in expanded form as

1563 = (1× 103)+ (5× 102)+ (6× 101)+ (3× 100).

In general, let N denote a positive integer; then the digits a0, a1, . . . , ak exist so that
N has the base 10 expansion

N = (ak × 10k)+ (ak−1 × 10k−1)+ · · · + (a1 × 101)+ (a0 × 100),

where the digits ak are chosen from {0, 1, . . . , 8, 9}. Thus N is expressed in decimal
notation as

(2) N = akak−1 · · · a2a1a0ten (decimal).

If it is understood that 10 is the base, then (2) is written as

N = akak−1 · · · a2a1a0.

For example, we understand that 1563 = 1563ten.

Using powers of 2, the number 1563 can be written

1563 = (1× 210)+ (1× 29)+ (0× 28)+ (0× 27)+ (0× 26)

+ (0× 25)+ (1× 24)+ (1× 23)+ (0× 22)+ (1× 21)

+ (1× 20).

(3)

This can be verified by performing the calculation

1563 = 1024+ 512+ 16+ 8+ 2+ 1.

In general, let N denote a positive integer; the digits b0, b1, . . . , bJ exist so that N
has the base 2 expansion

(4) N = (bJ × 2J)+ (bJ−1 × 2J−1)+ · · · + (b1 × 21)+ (b0 × 20),

where each digit b j is either a 0 or 1. Thus N is expressed in binary notation as

(5) N = bJ bJ−1 · · · b2b1b0two (binary).

Using the notation (5) and the result in (3) yields

1563 = 11000011011two.

Remarks. The word “two” will always be used as a subscript at the end of a binary
number. This will enable the reader to distinguish binary numbers from the ordinary
base 10 usage. Thus 111 means one hundred eleven, whereas 111two stands for seven.

SEC. 1.2 BINARY NUMBERS 15

It is usually the case that the binary representation for N will require more digits
than the decimal representation. This is due to the fact that powers of 2 grow much
more slowly than do powers of 10.

An efficient algorithm for finding the base 2 representation of the integer N can be
derived from equation (4). Dividing both sides of (4) by 2 yields

(6)
N

2
= (bJ × 2J−1)+ (bJ−1 × 2J−2)+ · · · + (b1 × 20)+ b0

2
.

Hence the remainder, upon dividing N by 2, is the digit b0. Now determine b1. If (6)
is written as N/2 = Q0 + b0/2, then

(7) Q0 = (bJ × 2J−1)+ (bJ−1 × 2J−2)+ · · · + (b2 × 21)+ (b1 × 20).

Now divide both sides of (7) by 2 to get

Q0

2
= (bJ × 2J−2)+ (bJ−1 × 2J−3)+ · · · + (b2 × 20)+ b1

2
.

Hence the remainder, upon dividing Q0 by 2, is the digit b1. This process is continued
and generates sequences {Qk} and {bk} of quotients and remainders, respectively. The
process is terminated when an integer J is found such that Q J = 0. The sequences
obey the following formulas:

(8)

N = 2Q0 + b0

Q0 = 2Q1 + b1

...

Q J−2 = 2Q J−1 + bJ−1

Q J−1 = 2Q J + bJ (Q J = 0).

Example 1.10. Show how to obtain 1563 = 11000011011two.
Start with N = 1563 and construct the quotients and remainders according to the

equations in (8):

1563 = 2× 781+ 1, b0 = 1

781 = 2× 390+ 1, b1 = 1

390 = 2× 195+ 0, b2 = 0

195 = 2× 97+ 1, b3 = 1

97 = 2× 48+ 1, b4 = 1

48 = 2× 24+ 0, b5 = 0

24 = 2× 12+ 0, b6 = 0

12 = 2× 6+ 0, b7 = 0

6 = 2× 3+ 0, b8 = 0

3 = 2× 1+ 1, b9 = 1

1 = 2× 0+ 1, b10 = 1.

16 CHAP. 1 PRELIMINARIES

Thus the binary representation for 1563 is

1563 = b10b9b8 · · · b2b1b0two = 11000011011two. �

Sequences and Series

When rational numbers are expressed in decimal form, it is often the case that infinitely
many digits are required. A familiar example is

(9)
1

3
= 0.3.

Here the symbol 3 means that the digit 3 is repeated forever to form an infinite repeating
decimal. It is understood that 10 is the base in (9). Moreover, it is the mathematical
intent that (9) is the shorthand notation for the infinite series

S = (3× 10−1)+ (3× 10−2)+ · · · + (3× 10−n)+ · · ·

=
∞∑

k=1

3(10)−k = 1

3
.

(10)

If only a finite number of digits is displayed, then an approximation to 1/3 is obtained.
For example, 1/3 ≈ 0.333 = 333/1000. The error in this approximation is 1/3000.
Using (10), the reader can verify that 1/3 = 0.333+ 1/3000.

It is important to understand the expansion in (10). A naive approach is to multiply
both sides by 10 and then subtract.

10S = 3+ (3× 10−1)+ (3× 10−2)+ · · · + (3× 10−n)+ · · ·
−S = − (3× 10−1)− (3× 10−2)− · · · − (3× 10−n)− · · ·
9S = 3+ (0× 10−1)+ (0× 10−2)+ · · · + (0× 10−n)+ · · ·

Therefore, S = 3/9 = 1/3. The theorems necessary to justify taking the difference
between two infinite series can be found in most calculus books. A review of a few of
the concepts follows, and the reader may want to refer to a standard text on calculus to
fill in all the details.

Definition 1.6. The infinite series

(11)
∞∑

n=0

crn = c + cr + cr2 + · · · + crn + · · · ,

where c �= 0 and r �= 0, is called a geometric series with ratio r . �

SEC. 1.2 BINARY NUMBERS 17

Theorem 1.14 (Geometric Series). The geometric series has the following proper-
ties:

If |r | < 1, then
∞∑

n=0

crn = c

1− r
.(12)

If |r | > 1, then the series diverges.(13)

Proof. The summation formula for a finite geometric series is

(14) Sn = c + cr + cr2 + · · · + crn = c(1− rn+1)

1− r
for r �= 1.

To establish (12), observe that

(15) |r | < 1 implies that lim
n→∞ rn+1 = 0.

Taking the limit as n →∞, use (14) and (15) to get

lim
n→∞ Sn = c

1− r

(
1− lim

n→∞ rn+1
)
= c

1− r
.

By equation (15) of Section 1.1, the limit above establishes (12).
When |r | ≥ 1, the sequence {rn+1} does not converge. Hence the sequence {Sn}

in (14) does not tend to a limit. Therefore, (13) is established. •
Equation (12) in Theorem 1.14 represents an efficient way to convert an infinite

repeating decimal into a fraction.

Example 1.11.

0.3 =
∞∑

k=1

3(10)−k = −3+
∞∑

k=0

3(10)−k

= −3+ 3

1− 1
10

= −3+ 10

3
= 1

3
. �

Binary Fractions
Binary (base 2) fractions can be expressed as sums involving negative powers of 2. If
R is a real number that lies in the range 0 < R < 1, there exist digits d1, d2, . . . ,
dn , . . . so that

(16) R = (d1 × 2−1)+ (d2 × 2−2)+ · · · + (dn × 2−n)+ · · · ,
where d j ∈ {0, 1}. We usually express the quantity on the right side of (16) in the
binary fraction notation

(17) R = 0.d1d2 · · · dn · · ·two.

18 CHAP. 1 PRELIMINARIES

There are many real numbers whose binary representation requires infinitely many
digits. The fraction 7/10 can be expressed as 0.7 in base 10, yet its base 2 representa-
tion requires infinitely many digits:

(18)
7

10
= 0.10110two.

The binary fraction in (18) is a repeating fraction where the group of four digits 0110
is repeated forever.

An efficient algorithm for finding base 2 representations can now be developed. If
both sides of (16) are multiplied by 2, the result is

(19) 2R = d1 + ((d2 × 2−1)+ · · · + (dn × 2−n+1)+ · · ·).
The quantity in parentheses on the right side of (19) is a positive number and is less
than 1. Therefore, d1 is the integer part of 2R, denoted d1 = int (2R). To continue the
process, take the fractional part of (19) and write

(20) F1 = frac(2R) = (d2 × 2−1)+ · · · + (dn × 2−n+1)+ · · · ,

where frac(2R) is the fractional part of the real number 2R. Multiplication of both
sides of (20) by 2 results in

(21) 2F1 = d2 + ((d3 × 2−1)+ · · · + (dn × 2−n+2)+ · · ·).
Now take the integer part of (21) and obtain d2 = int(2F1).

The process is continued, possibly ad infinitum (if R has an infinite nonrepeating
base 2 representation), and two sequences {dk} and {Fk} are recursively generated:

(22)
dk = int(2Fk−1),

Fk = frac(2Fk−1),

where d1 = int(2R) and F1 = frac(2R). The binary decimal representation of R is
then given by the convergent geometric series

R =
∞∑
j=1

d j (2)− j .

Example 1.12. The binary decimal representation of 7/10 given in (18) was found using
the formulas in (22). Let R = 7/10 = 0.7; then

2 R = 1.4 d1 = int(1.4) = 1 F1 = frac(1.4) = 0.4

2F1 = 0.8 d2 = int(0.8) = 0 F2 = frac(0.8) = 0.8

2F2 = 1.6 d3 = int(1.6) = 1 F3 = frac(1.6) = 0.6

2F3 = 1.2 d4 = int(1.2) = 1 F4 = frac(1.2) = 0.2

2F4 = 0.4 d5 = int(0.4) = 0 F5 = frac(0.4) = 0.4

2F5 = 0.8 d6 = int(0.8) = 0 F6 = frac(0.8) = 0.8

2F6 = 1.6 d7 = int(1.6) = 1 F7 = frac(1.6) = 0.6

SEC. 1.2 BINARY NUMBERS 19

Note that 2F2 = 1.6 = 2F6. The patterns dk = dk+4 and Fk = Fk+4 will occur for k = 2,
3, 4, Thus 7/10 = 0.10110two. �

Geometric series can be used to find the base 10 rational number that a binary
number represents.

Example 1.13. Find the base 10 rational number that the binary number 0.01two repre-
sents. In expanded form,

0.01two = (0× 2−1)+ (1× 2−2)+ (0× 2−3)+ (1× 2−4)+ · · ·

=
∞∑

k=1

(2−2)k = −1+
∞∑

k=0

(2−2)k

= −1+ 1

1− 1
4

= −1+ 4

3
= 1

3
. �

Binary Shifting
If a rational number that is equivalent to an infinite repeating binary expansion is to be
found, then a shift in the digits can be helpful. For example, let S be given by

(23) S = 0.0000011000two.

Multiplying both sides of (23) by 25 will shift the binary point five places to the right,
and 32S has the form

(24) 32S = 0.11000two.

Similarly, multiplying both sides of (23) by 210 will shift the binary point 10 places to
the right and 1024S has the form

(25) 1024S = 11000.11000two.

The result of naively taking the differences between the left- and right-hand sides of
(24) and (25) is 992S = 11000two or 992S = 24, since 11000two = 24. Therefore,
S = 8/33.

Scientific Notation
A standard way to present a real number, called scientific notation, is obtained by
shifting the decimal point and supplying an appropriate power of 10. For example,

0.0000747 = 7.47× 10−5,

31.4159265 = 3.14159265× 10,

9,700,000,000 = 9.7× 109.

In chemistry, an important constant is Avogadro’s number, which is 6.02252× 1023. It
is the number of atoms in the gram atomic weight of an element. In computer science,
1K = 1.024× 103.

20 CHAP. 1 PRELIMINARIES

Table 1.3 Decimal Equivalents for a Set of Binary Numbers with 4-Bit Mantissa and
Exponent of n = −3, −2, . . . , 3, 4

Exponent

Mantissa n = −3 n = −2 n = −1 n = 0 n = 1 n = 2 n = 3 n = 4

0.1000two 0.0625 0.125 0.25 0.5 1 2 4 8
0.1001two 0.0703125 0.140625 0.28125 0.5625 1.125 2.25 4.5 9
0.1010two 0.078125 0.15625 0.3125 0.625 1.25 2.5 5 10
0.1011two 0.0859375 0.171875 0.34375 0.6875 1.375 2.75 5.5 11
0.1100two 0.09375 0.1875 0.375 0.75 1.5 3 6 12
0.1101two 0.1015625 0.203125 0.40625 0.8125 1.625 3.25 6.5 13
0.1110two 0.109375 0.21875 0.4375 0.875 1.75 3.5 7 14
0.1111two 0.1171875 0.234375 0.46875 0.9375 1.875 3.75 7.5 15

Machine Numbers
Computers use a normalized floating-point binary representation for real numbers.
This means that the mathematical quantity x is not actually stored in the computer.
Instead, the computer stores a binary approximation to x :

(26) x ≈ ±q × 2n.

The number q is the mantissa and it is a finite binary expression satisfying the inequal-
ity 1/2 ≤ q < 1. The integer n is called the exponent.

In a computer, only a small subset of the real number system is used. Typically, this
subset contains only a portion of the binary numbers suggested by (26). The number
of binary digits is restricted in both the numbers q and n. For example, consider the
set of all positive real numbers of the form

(27) 0.d1d2d3d4two × 2n,

where d1 = 1 and d2, d3, and d4 are either 0 or 1, and n ∈ {−3,−2,−1, 0, 1, 2, 3, 4}.
There are eight choices for the mantissa and eight choices for the exponent in (27), and
this produces a set of 64 numbers:

(28) {0.1000two × 2−3, 0.1001two × 2−3, . . . , 0.1110two × 24, 0.1111two × 24}.
The decimal forms of these 64 numbers are given in Table 1.3. It is important to learn
that when the mantissa and exponent in (27) are restricted, the computer has a limited
number of values it chooses from to store as an approximation to the real number x .

What would happen if a computer had only a 4-bit mantissa and was restricted

to perform the computation
(

1
10 + 1

5

)
+ 1

6 ? Assume that the computer rounds all real

numbers to the closest binary number in Table 1.3. At each step the reader can look at
the table to see that the best approximation is being used.

SEC. 1.2 BINARY NUMBERS 21

(29)

1
10 ≈ 0.1101two × 2−3 = 0.01101two × 2−2

1
5 ≈ 0.1101two × 2−2 = 0.1101two × 2−2

3
10 1.00111two × 2−2.

The computer must decide how to store the number 1.00111two × 2−2. Assume that it
is rounded to 0.1010two × 2−1. The next step is

(30)

3
10 ≈ 0.1010two × 2−1 = 0.1010two × 2−1

1
6 ≈ 0.1011two × 2−2 = 0.01011two × 2−1

7
15 0.11111two × 2−1.

The computer must decide how to store the number 0.11111two× 2−1. Since rounding
is assumed to take place, it stores 0.10000two × 20. Therefore, the computer’s solution
to the addition problem is

(31)
7

15
≈ 0.10000two × 20.

The error in the computer’s calculation is

(32)
7

15
− 0.10000two ≈ 0.466667− 0.500000 ≈ 0.033333.

Expressed as a percentage of 7/15, this amounts to 7.14%.

Computer Accuracy

To store numbers accurately, computers must have floating-point binary numbers with
at least 24 binary bits used for the mantissa; this translates to about seven decimal
places. If a 32-bit mantissa is used, numbers with nine decimal places can be stored.
Now, again, consider the difficulty encountered in (1) at the beginning of the section,
when a computer added 1/10 repeatedly.

Suppose that the mantissa q in (26) contains 32 binary bits. The condition 1/2 ≤ q
implies that the first digit is d1 = 1. Hence q has the form

(33) q = 0.1d2d3 · · · d31d32two.

When fractions are represented in binary form, it is often the case that infinitely
many digits are required. An example is

(34)
1

10
= 0.00011two.

22 CHAP. 1 PRELIMINARIES

When the 32-bit mantissa is used, truncation occurs and the computer uses the internal
approximation

(35)
1

10
≈ 0.11001100110011001100110011001100two × 2−3.

The error in the approximation in (35), the difference between (34) and (35) is

(36) 0.1100two × 2−35 ≈ 2.328306437× 10−11.

Because of (36), the computer must be in error when it sums the 100,000 addends
of 1/10 in (1). The error must be greater than (100,000)(2.328306437 × 10−11) =
2.328306437 × 10−6. Indeed, there is a much larger error. Occasionally, the partial
sum could be rounded up or down. Also, as the sum grows, the latter addends of 1/10
are small compared to the current size of the sum, and their contribution is truncated
more severely. The compounding effect of these errors actually produced the error
10,000− 9999.99447 = 5.53× 10−3.

Computer Floating-Point Numbers
Computers have both an integer mode and a floating-point mode for representing num-
bers. The integer mode is used for performing calculations that are known to be integer
valued and has limited usage for numerical analysis. Floating-point numbers are used
for scientific and engineering applications. It must be understood that any computer
implementation of equation (26) places restrictions on the number of digits used in the
mantissa q, and that the range of possible exponents n must be limited.

Computers that use 32 bits to represent single-precision real numbers use 8 bits
for the exponent and 24 bits for the mantissa. They can represent real numbers with
magnitudes in the range

2.938736E − 39 to 1.701412E + 38

(i.e., 2−128 to 2127) with six decimal digits of numerical precision (e.g., 2−23 = 1.2×
10−7).

Computers that use 48 bits to represent single-precision real numbers might use
8 bits for the exponent and 40 bits for the mantissa. They can represent real numbers
in the range

2.9387358771E − 39 to 1.7014118346E + 38

(i.e., 2−128 to 2127) with 11 decimal digits of numerical precision (e.g., 2−39 = 1.8 ×
10−12).

If the computer has 64-bit double-precision real numbers, it might use 11 bits for
the exponent and 53 bits for the mantissa. They can represent real numbers in the range

5.562684646268003E − 309 to 8.988465674311580E + 307

(i.e., 2−1024 to 21023) with about 16 decimal digits of numerical precision (e.g., 2−52 =
2.2× 10−16).

SEC. 1.2 BINARY NUMBERS 23

Exercises for Binary Numbers

1. Use a computer to accumulate the following sums. The intent is to have the computer
do repeated subtractions. Do not use the multiplication shortcut.

(a) 10,000−∑100,000
k=1 0.1 (b) 10,000−∑80,000

k=1 0.125

2. Use equations (4) and (5) to convert the following binary numbers to decimal
(base 10) form.

(a) 10101two (b) 111000two

(c) 11111110two (d) 1000000111two

3. Use equations (16) and (17) to convert the following binary fractions to decimal
(base 10) form.

(a) 0.11011two (b) 0.10101two

(c) 0.1010101two (d) 0.110110110two

4. Convert the following binary numbers to decimal (base 10) form.

(a) 1.0110101two (b) 11.0010010001two

5. The numbers in Exercise 4 are approximately
√

2 and π . Find the error in these
approximations, that is, find

(a)
√

2− 1.0110101two (Use
√

2 = 1.41421356237309 . . .)

(b) π − 11.0010010001two (Use π = 3.14159265358979 . . .)

6. Follow Example 1.10 and convert the following to binary numbers.

(a) 23 (b) 87 (c) 378 (d) 2388

7. Follow Example 1.12 and convert the following to a binary fraction of the form
0.d1d2 · · · dn two.

(a) 7/16 (b) 13/16 (c) 23/32 (d) 75/128

8. Follow Example 1.12 and convert the following to an infinite repeating binary frac-
tion.

(a) 1/10 (b) 1/3 (c) 1/7

9. For the following seven-digit binary approximations, find the error in the approxima-
tion R − 0.d1d2d3d4d5d6d7two.

(a) 1/10 ≈ 0.0001100two (b) 1/7 ≈ 0.0010010two

10. Show that the binary expansion 1/7 = 0.001two is equivalent to 1
7 = 1

8 + 1
64 + 1

512 +· · · . Use Theorem 1.14 to establish this expansion.

11. Show that the binary expansion 1/5 = 0.0011two is equivalent to 1
5 = 3

16 + 3
256 +

3
4096 + · · · . Use Theorem 1.14 to establish this expansion.

12. Prove that any number 2−N , where N is a positive integer, can be represented as a
decimal number that has N digits, that is, 2−N = 0.d1d2d3 · · · dN . Hint. 1/2 = 0.5,
1/4 = 0.25,

24 CHAP. 1 PRELIMINARIES

13. Use Table 1.3 to determine what happens when a computer with a 4-bit mantissa
performs the following calculations.

(a)
(

1
3 + 1

5

)
+ 1

6 (b)
(

1
10 + 1

3

)
+ 1

5

(c)
(

3
17 + 1

9

)
+ 1

7 (d)
(

7
10 + 1

9

)
+ 1

7

14. Show that when 2 is replaced by 3 in all the formulas in (8), the result is a method for
finding the base 3 expansion of a positive integer. Express the following integers in
base 3.
(a) 10 (b) 23 (c) 421 (d) 1784

15. Show that when 2 is replaced by 3 in (22), the result is a method for finding the base 3
expansion of a positive number R that lies in the interval 0 < R < 1. Express the
following numbers in base 3.
(a) 1/3 (b) 1/2 (c) 1/10 (d) 11/27

16. Show that when 2 is replaced by 5 in all the formulas in (8), the result is a method for
finding the base 5 expansion of a positive integer. Express the following integers in
base 5.
(a) 10 (b) 35 (c) 721 (d) 734

17. Show that when 2 is replaced by 5 in (22), the result is a method for finding the base 5
expansion of a positive number R that lies in the interval 0 < R < 1. Express the
following numbers in base 5.
(a) 1/3 (b) 1/2 (c) 1/10 (d) 154/625

1.3 Error Analysis

In the practice of numerical analysis it is important to be aware that computed solutions
are not exact mathematical solutions. The precision of a numerical solution can be
diminished in several subtle ways. Understanding these difficulties can often guide the
practitioner in the proper implementation and/or development of numerical algorithms.

Definition 1.7. Suppose that p̂ is an approximation to p. The absolute error is
E p = |p − p̂|, and the relative error is Rp = |p − p̂|/|p|, provided that p �= 0. �

The absolute error is simply the difference between the true value and the approx-
imate value, whereas the relative error expresses the error as a percentage of the true
value.

Example 1.14. Find the error and relative error in the following three cases. Let x =
3.141592 and x̂ = 3.14; then the error is

(1a) Ex = |x − x̂ | = |3.141592− 3.14| = 0.001592,

SEC. 1.3 ERROR ANALYSIS 25

and the relative error is

Rx = |x − x̂ |
|x | = 0.001592

3.141592
= 0.00507.

Let y = 1,000,000 and ŷ = 999,996; then the error is

(1b) Ey = |y − ŷ| = |1,000,000− 999, 996| = 4,

and the relative error is

Ry = |y − ŷ|
|y| = 4

1,000,000
= 0.000004.

Let z = 0.000012 and ẑ = 0.000009; then the error is

(1c) Ez = |z − ẑ| = |0.000012− 0.000009| = 0.000003,

and the relative error is

Rz = |z − ẑ|
|z| = 0.000003

0.000012
= 0.25. �

In case (1a), there is not too much difference between Ex and Rx , and either could
be used to determine the accuracy of x̂ . In case (1b), the value of y is of magnitude 106,
the error Ey is large, and the relative error Ry is small. In this case, ŷ would probably
be considered a good approximation to y. In case (1c), z is of magnitude 10−6 and
the error Ez is the smallest of all three cases, but the relative error Rz is the largest.
In terms of percentage, it amounts to 25%, and thus ẑ is a bad approximation to z.
Observe that as |p| moves away from 1 (greater than or less than) the relative error Rp
is a better indicator than E p of the accuracy of the approximation. Relative error is
preferred for floating-point representations since it deals directly with the mantissa.

Definition 1.8. The number p̂ is said to approximate p to d significant digits if d is
the largest nonnegative integer for which

�(2)
|p − p̂|
|p| <

101−d

2
.

Example 1.15. Determine the number of significant digits for the approximations in
Example 1.14.

(3a) If x = 3.141592 and x̂ = 3.14, then |x − x̂ |/|x | = 0.000507 < 10−2/2. Therefore,
x̂ approximates x to two significant digits.

(3b) If y = 1,000,000 and ŷ = 999,996, then |y − ŷ|/|y| = 0.000004 < 10−5/2.
Therefore, ŷ approximates y to six significant digits.

(3c) If z = 0.000012 and ẑ = 0.000009, then |z − ẑ|/|z| = 0.25 < 10−0/2. Therefore, ẑ
approximates z to one significant digit. �

26 CHAP. 1 PRELIMINARIES

Truncation Error

The notion of truncation error usually refers to errors introduced when a more com-
plicated mathematical expression is “replaced” with a more elementary formula. This
terminology originates from the technique of replacing a complicated function with a
truncated Taylor series. For example, the infinite Taylor series

ex2 = 1+ x2 + x4

2! +
x6

3! +
x8

4! + · · · +
x2n

n! + · · ·

might be replaced with just the first five terms 1+ x2 + x4

2! +
x6

3! +
x8

4! . This might be
done when approximating an integral numerically.

Example 1.16. Given that
∫ 1/2

0 ex2
dx = 0.544987104184 = p, determine the accuracy

of the approximation obtained by replacing the integrand f (x) = ex2
with the truncated

Taylor series P8(x) = 1+ x2 + x4

2! +
x6

3! +
x8

4! .
Term-by-term integration produces

∫ 1/2

0

(
1+ x2 + x4

2! +
x6

3! +
x8

4!

)
dx =

(
x + x3

3
+ x5

5(2!) +
x7

7(3!) +
x9

9(4!)

)x=1/2

x=0

= 1

2
+ 1

24
+ 1

320
+ 1

5376
+ 1

110, 592

= 2,109,491

3,870,720
= 0.544986720817 = p̂.

Since
10−5/2 > |p − p̂|/|p| = 7.03442× 10−7 > 10−6/2,

the approximation p̂ agrees with the true answer p = 0.544987104184 to five significant
digits. The graphs of f (x) = ex2

and y = P8(x) and the area under the curve for 0 ≤ x ≤
1/2 are shown in Figure 1.7. �

Round-off Error

A computer’s representation of real numbers is limited to the fixed precision of the
mantissa. True values are sometimes not stored exactly by a computer’s represen-
tation. This is called round-off error. In the preceding section the real number
1/10 = 0.00011two was truncated when it was stored in a computer. The actual num-
ber that is stored in the computer may undergo chopping or rounding of the last digit.
Therefore, since the computer hardware works with only a limited number of digits in
machine numbers, rounding errors are introduced and propagated in successive com-
putations.

SEC. 1.3 ERROR ANALYSIS 27

y = P8(x)

0.0 0.5 1.0 1.5

2

4

6

8

y

x

y = f (x)

Figure 1.7 The graphs of y =
f (x) = ex2

, y = P8(x), and the area
under the curve for 0 ≤ x ≤ 1

2 .

Chopping Off versus Rounding Off
Consider any real number p that is expressed in normalized decimal form:

(4) p = ±0.d1d2d3 · · · dkdk+1 · · · × 10n,

where 1 ≤ d1 ≤ 9 and 0 ≤ d j ≤ 9 for j > 1. Suppose that k is the maximum number
of decimal digits carried in the floating-point computations of a computer; then the real
number p is represented by f lchop(p), which is given by

(5) f lchop(p) = ±0.d1d2d3 · · · dk × 10n,

where 1 ≤ d1 ≤ 9 and 0 ≤ d j ≤ 9 for 1 < j ≤ k. The number f lchop(p) is called
the chopped floating-point representation of p. In this case the kth digit of f lchop(p)

agrees with the kth digit of p. An alternative k-digit representation is the rounded
floating-point representation f lround(p), which is given by

(6) f lround(p) = ±0.d1d2d3 . . . rk × 10n,

where 1 ≤ d1 ≤ 9 and 0 ≤ d j ≤ 9 for 1 < j < k and the last digit, rk , is obtained
by rounding the number dkdk+1dk+2 · · · to the nearest integer. For example, the real
number

p = 22

7
= 3.142857142857142857 . . .

has the following six-digit representations:

f lchop(p) = 0.314285× 101,

f lround(p) = 0.314286× 101.

For common purposes the chopping and rounding would be written as 3.14285 and
3.14286, respectively. The reader should note that essentially all computers use some
form of the rounded floating-point representation method.

28 CHAP. 1 PRELIMINARIES

Loss of Significance

Consider the two numbers p = 3.1415926536 and q = 3.1415957341, which are
nearly equal and both carry 11 decimal digits of precision. Suppose that their differ-
ence is formed: p − q = −0.0000030805. Since the first six digits of p and q are
the same, their difference p − q contains only five decimal digits of precision. This
phenomenon is called loss of significance or subtractive cancellation. This reduction
in the precision of the final computed answer can creep in when it is not suspected.

Example 1.17. Compare the results of calculating f (500) and g(500) using six digits

and rounding. The functions are f (x) = x
(√

x + 1−√x
)

and g(x) = x√
x + 1+√x

.
For the first function,

f (500) = 500
(√

501−√500
)

= 500(22.3830− 22.3607) = 500(0.0223) = 11.1500.

For g(x),

g(500) = 500√
501+√500

= 500

22.3830+ 22.3607
= 500

44.7437
= 11.1748.

The second function, g(x), is algebraically equivalent to f (x), as shown by the computa-
tion

f (x) = x
(√

x + 1−√x
) (√

x + 1+√x
)

√
x + 1+√x

=
x
((√

x + 1
)2 − (√x

)2)
√

x + 1+√x

= x√
x + 1+√x

.

The answer, g(500) = 11.1748, involves less error and is the same as that obtained by
rounding the true answer 11.174755300747198 . . . to six digits. �

The reader is encouraged to study Exercise 12 on how to avoid loss of significance
in the quadratic formula. The next example shows that a truncated Taylor series will
sometimes help avoid the loss of significance error.

Example 1.18. Compare the results of calculating f (0.01) and P(0.01) using six digits
and rounding, where

f (x) = ex − 1− x

x2
and P(x) = 1

2
+ x

6
+ x2

24
.

SEC. 1.3 ERROR ANALYSIS 29

The function P(x) is the Taylor polynomial of degree n = 2 for f (x) expanded about
x = 0.

For the first function

f (0.01) = e0.01 − 1− 0.01

(0.01)2
= 1.010050− 1− 0.01

0.001
= 0.5.

For the second function

P(0.01) = 1

2
+ 0.01

6
+ 0.001

24
= 0.5+ 0.001667+ 0.000004 = 0.501671.

The answer P(0.01) = 0.501671 contains less error and is the same as that obtained by
rounding the true answer 0.50167084168057542 . . . to six digits. �

For polynomial evaluation, the rearrangement of terms into nested multiplication
form will sometimes produce a better result.

Example 1.19. Let P(x) = x3 − 3x2 + 3x − 1 and Q(x) = ((x − 3)x + 3)x − 1.
Use three-digit rounding arithmetic to compute approximations to P(2.19) and Q(2.19).
Compare them with the true values, P(2.19) = Q(2.19) = 1.685159.

P(2.19) ≈ (2.19)3 − 3(2.19)2 + 3(2.19)− 1

= 10.5− 14.4+ 6.57− 1 = 1.67.

Q(2.19) ≈ ((2.19− 3)2.19+ 3)2.19− 1 = 1.69.

The errors are 0.015159 and −0.004841, respectively. Thus the approximation Q(2.19) ≈
1.69 has less error. Exercise 6 explores the situation near the root of this polynomial. �

O(hn) Order of Approximation

Clearly, the sequences

{
1

n2

}∞
n=1

and

{
1

n

}∞
n=1

are both converging to zero. In addition,

it should be observed that the first sequence is converging to zero more rapidly than the
second sequence. In the coming chapters some special terminology and notation will
be used to describe how rapidly a sequence is converging.

Definition 1.9. The function f (h) is said to be big Oh of g(h), denoted f (h) =
O(g(h)), if there exist constants C and c such that

�(7) | f (h)| ≤ C |g(h)| whenever h ≤ c.

Example 1.20. Consider the functions f (x) = x2+1 and g(x) = x3. Since x2 ≤ x3 and
1 ≤ x3 for x ≥ 1, it follows that x2 + 1 ≤ 2x3 for x ≥ 1. Therefore, f (x) = O(g(x)). �

30 CHAP. 1 PRELIMINARIES

The big Oh notation provides a useful way of describing the rate of growth of a
function in terms of well-known elementary functions (xn, x1/n, ax , loga x, etc.).

The rate of convergence of sequences can be described in a similar manner.

Definition 1.10. Let {xn}∞n=1 and {yn}∞n=1 be two sequences. The sequence {xn} is
said to be of order big Oh of {yn}, denoted xn = O(yn), if there exist constants C
and N such that

�(8) |xn| ≤ C |yn| whenever n ≥ N .

Example 1.21.
n2 − 1

n3
= O

(
1

n

)
, since

n2 − 1

n3
≤ n2

n3
= 1

n
whenever n ≥ 1. �

Often a function f (h) is approximated by a function p(h) and the error bound is
known to be M |hn|. This leads to the following definition.

Definition 1.11. Assume that f (h) is approximated by the function p(h) and that
there exist a real constant M > 0 and a positive integer n so that

(9)
| f (h)− p(h)|

|hn| ≤ M for sufficiently small h.

We say that p(h) approximates f (h) with order of approximation O(hn) and write

�(10) f (h) = p(h)+ O(hn).

When relation (9) is rewritten in the form | f (h)− p(h)| ≤ M |hn|, we see that the
notation O(hn) stands in place of the error bound M |hn|. The following results show
how to apply the definition to simple combinations of two functions.

Theorem 1.15. Assume that f (h) = p(h) + O(hn), g(h) = q(h) + O(hm), and
r = min{m, n}. Then

f (h)+ g(h) = p(h)+ q(h)+ O(hr),(11)

f (h)g(h) = p(h)q(h)+ O(hr),(12)

and

(13)
f (h)

g(h)
= p(h)

q(h)
+ O(hr) provided that g(h) �= 0 and q(h) �= 0.

It is instructive to consider p(x) to be the nth Taylor polynomial approximation
of f (x); then the remainder term is simply designated O(hn+1), which stands for the
presence of omitted terms starting with the power hn+1. The remainder term converges

SEC. 1.3 ERROR ANALYSIS 31

to zero with the same rapidity that hn+1 converges to zero as h approaches zero, as
expressed in the relationship

(14) O(hn+1) ≈ Mhn+1 ≈ f (n+1)(c)

(n + 1)! hn+1

for sufficiently small h. Hence the notation O(hn+1) stands in place of the quantity
Mhn+1, where M is a constant or “behaves like a constant.”

Theorem 1.16 (Taylor’s Theorem). Assume that f ∈ Cn+1[a, b]. If both x0 and
x = x0 + h lie in [a, b], then

(15) f (x0 + h) =
n∑

k=0

f (k)(x0)

k! hk + O(hn+1).

The following example illustrates the theorems above. The computations use the
addition properties (i) O(h p) + O(h p) = O(h p), (ii) O(h p) + O(hq) = O(hr),
where r = min{p, q}, and the multiplicative property (iii) O(h p)O(hq) = O(hs),
where s = p + q.

Example 1.22. Consider the Taylor polynomial expansions

eh = 1+ h + h2

2! +
h3

3! + O(h4) and cos(h) = 1− h2

2! +
h4

4! + O(h6).

Determine the order of approximation for their sum and product.
For the sum we have

eh + cos(h) = 1+ h + h2

2! +
h3

3! + O(h4)+ 1− h2

2! +
h4

4! + O(h6)

= 2+ h + h3

3! + O(h4)+ h4

4! + O(h6).

Since O(h4)+ h4

4! = O(h4) and O(h4)+ O(h6) = O(h4), this reduces to

eh + cos(h) = 2+ h + h3

3! + O(h4),

and the order of approximation is O(h4).

32 CHAP. 1 PRELIMINARIES

The product is treated similarly:

eh cos(h) =
(

1+ h + h2

2! +
h3

3! + O(h4)

)(
1− h2

2! +
h4

4! + O(h6)

)

=
(

1+ h + h2

2! +
h3

3!

)(
1− h2

2! +
h4

4!

)

+
(

1+ h + h2

2! +
h3

3!

)
O(h6)+

(
1− h2

2! +
h4

4!

)
O(h4)

+ O(h4)O(h6)

= 1+ h − h3

3
− 5h4

24
− h5

24
+ h6

48
+ h7

144
+ O(h6)+ O(h4)+ O(h4)O(h6).

Since O(h4)O(h6) = O(h10) and

−5h4

24
− h5

24
+ h6

48
+ h7

144
+ O(h6)+ O(h4)+ O(h10) = O(h4),

the preceding equation is simplified to yield

eh cos(h) = 1+ h − h3

3
+ O(h4),

and the order of approximation is O(h4). �

Order of Convergence of a Sequence
Numerical approximations are often arrived at by computing a sequence of approxi-
mations that get closer and closer to the answer desired. The definition of big Oh for
sequences was given in Definition 1.10, and the definition of order of convergence for
a sequence is analogous to that given for functions in Definition 1.11.

Definition 1.12. Suppose that limn→∞ xn = x and {rn}∞n=1 is a sequence with
limn→∞ rn = 0. We say that {xn}∞n=1 converges to x with the order of conver-
gence O(rn), if there exists a constant K > 0 such that

|xn − x |
|rn| ≤ K for n sufficiently large.

This is indicated by writing xn = x + O(rn), or xn → x with order of conver-
gence O(rn). �

Example 1.23. Let xn = cos(n)/n2 and rn = 1/n2; then limn→∞ xn = 0 with a rate of
convergence O(1/n2). This follows immediately from the relation

| cos(n)/n2|
|1/n2| = | cos(n)| ≤ 1 for all n. �

SEC. 1.3 ERROR ANALYSIS 33

Propagation of Error

Let us investigate how error might be propagated in successive computations. Consider
the addition of two numbers p and q (the true values) with the approximate values p̂
and q̂ , which contain errors εp and εq , respectively. Starting with p = p̂ + εp and
q = q̂ + εq , the sum is

(16) p + q = (p̂ + εp)+ (q̂ + εq) = (p̂ + q̂)+ (εp + εq).

Hence, for addition, the error in the sum is the sum of the errors in the addends.
The propagation of error in multiplication is more complicated. The product is

(17) pq = (p̂ + εp)(p̂ + εq) = p̂q̂ + p̂εq + q̂εp + εpεq .

Hence, if p̂ and q̂ are larger than 1 in absolute value, the terms p̂εq and q̂εp show
that there is a possibility of magnification of the original errors εp and εq . Insights are
gained if we look at the relative error. Rearrange the terms in (17) to get

(18) pq − p̂q̂ = p̂εq + q̂εp + εpεq .

Suppose that p �= 0 and q �= 0; then we can divide (18) by pq to obtain the relative
error in the product pq:

(19) Rpq = pq − p̂q̂

pq
= p̂εq + q̂εp + εpεq

pq
= p̂εq

pq
+ q̂εp

pq
+ εpεq

pq
.

Furthermore, suppose that p̂ and q̂ are good approximations for p and q; then
p̂/p ≈ 1, q̂/q ≈ 1, and Rp Rq = (εp/p)(εq/q) ≈ 0 (Rp and Rq are the relative errors
in the approximations p̂ and q̂). Then making these substitutions into (19) yields the
simplified relationship

(20) Rpq = pq − p̂q̂

pq
≈ εq

q
+ εp

p
+ 0 = Rq + Rp.

This shows that the relative error in the product pq is approximately the sum of the
relative errors in the approximations p̂ and q̂.

Often, an initial error will be propagated in a sequence of calculations. A quality
that is desirable for any numerical process is that a small error in the initial conditions
will produce small changes in the final result. An algorithm with this feature is called
stable; otherwise, it is called unstable. Whenever possible we shall choose methods
that are stable. The following definition is used to describe the propagation of error.

Definition 1.13. Suppose that ε represents an initial error and ε(n) represents the
growth of the error after n steps. If |ε(n)| ≈ nε, the growth of error is said to be
linear. If |ε(n)| ≈ K nε, the growth of error is called exponential. If K > 1, the
exponential error grows without bound as n →∞, and if 0 < K < 1, the exponential
error diminishes to zero as n →∞. �

34 CHAP. 1 PRELIMINARIES

Table 1.4 Sequence {xn} = {1/3n} and the Approximations {rn}, {pn}, and {qn}

n xn rn pn qn

0 1= 1.0000000000 0.9999600000 1.0000000000 1.0000000000

1 1
3 = 0.3333333333 0.3333200000 0.3333200000 0.3333200000

2 1
9 = 0.1111111111 0.1111066667 0.1110933330 0.1110666667

3 1
27 = 0.0370370370 0.0370355556 0.0370177778 0.0369022222

4 1
81 = 0.0123456790 0.0123451852 0.0123259259 0.0119407407

5 1
243 = 0.0041152263 0.0041150617 0.0040953086 0.0029002469

6 1
729 = 0.0013717421 0.0013716872 0.0013517695 −0.0022732510

7 1
2187 = 0.0004572474 0.0004572291 0.0004372565 −0.0104777503

8 1
6561 = 0.0001524158 0.0001524097 0.0001324188 −0.0326525834

9 1
19,683 = 0.0000508053 0.0000508032 0.0000308063 −0.0983641945

10 1
59,049 = 0.0000169351 0.0000169344 −0.0000030646 −0.2952280648

The next two examples show how an initial error can propagate in either a stable
or an unstable fashion. In the first example, three algorithms are introduced. Each
algorithm recursively generates the same sequence. Then, in the second example, small
changes will be made to the initial conditions and the propagation of error will be
analyzed.

Example 1.24. Show that the following three schemes can be used with infinite-precision
arithmetic to recursively generate the terms in the sequence {1/3n}∞n=0.

r0 = 1 and rn = 1

3
rn−1 for n = 1, 2, . . . ,(21a)

p0 = 1, p1 = 1

3
, and pn = 4

3
pn−1 − 1

3
pn−2 for n = 2, 3, . . . ,(21b)

q0 = 1, q1 = 1

3
, and qn = 10

3
qn−1 − qn−2 for n = 2, 3,(21c)

Formula (21a) is obvious. In (21b) the difference equation has the general solution
pn = A(1/3n)+ B. This can be verified by direct substitution:

4

3
pn−1 − 1

3
pn−2 = 4

3

(
A

3n−1
+ B

)
− 1

3

(
A

3n−2
+ B

)
=
(

4

3n
− 3

3n

)
A −

(
4

3
− 1

3

)
B = A

1

3n
+ B = pn .

SEC. 1.3 ERROR ANALYSIS 35

Table 1.5 Error Sequences {xn − rn}, {xn − pn}, and {xn − qn}

n xn − rn xn − pn xn − qn

0 0.0000400000 0.0000000000 0.0000000000
1 0.0000133333 0.0000133333 0.0000013333
2 0.0000044444 0.0000177778 0.0000444444
3 0.0000014815 0.0000192593 0.0001348148
4 0.0000004938 0.0000197531 0.0004049383
5 0.0000001646 0.0000199177 0.0012149794
6 0.0000000549 0.0000199726 0.0036449931
7 0.0000000183 0.0000199909 0.0109349977
8 0.0000000061 0.0000199970 0.0328049992
9 0.0000000020 0.0000199990 0.0984149998

10 0.0000000007 0.0000199997 0.2952449999

Setting A = 1 and B = 0 will generate the sequence desired. In (21c) the difference
equation has the general solution qn = A(1/3n)+ B3n . This too is verified by substitution:

10

3
qn−1 − qn−2 = 10

3

(
A

3n−1
+ B3n−1

)
−
(

A

3n−2
+ B3n−2

)
=
(

10

3n
− 9

3n

)
A − (10− 1)3n−2 B

= A
1

3n
+ B3n = qn .

Setting A = 1 and B = 0 generates the sequence required. �

Example 1.25. Generate approximations to the sequence {xn} = {1/3n} using the
schemes

r0 = 0.99996 and rn = 1

3
rn−1 for n = 1, 2, . . . ,(22a)

p0 = 1, p1 = 0.33332, and pn = 4

3
pn−1 − 1

3
pn−2 for n = 2, 3, . . . ,(22b)

q0 = 1, q1 = 0.33332, and qn = 10

3
qn−1 − qn−2 for n = 2, 3,(22c)

In (22a) the initial error in r0 is 0.00004, and in (22b) and (22c) the initial errors in p1
and q1 are 0.000013. Investigate the propagation of error for each scheme.

Table 1.4 gives the first ten numerical approximations for each sequence, and Table 1.5
gives the error in each formula. The error for {rn} is stable and decreases in an exponential
manner. The error for {pn} is stable. The error for {qn} is unstable and grows at an expo-
nential rate. Although the error for {pn} is stable, the terms pn → 0 as n → ∞, so that
the error eventually dominates and the terms past p8 have no significant digits. Figures 1.8,
1.9, and 1.10 show the errors in {rn}, {pn}, and {qn}, respectively. �

36 CHAP. 1 PRELIMINARIES

n

xn − rn

2 4 6 8 10

0.000005

0.000010

0.000015

Figure 1.8 A stable decreasing error sequence {xn − rn}.

n

xn − pn

2 4 6 8 10

0.000005

0.000010

0.000015

0.000020

Figure 1.9 A stable error sequence {xn − pn}.

xn − qn

2 4 6 8 10

0.1

0.2

0.3

n

Figure 1.10 An unstable increasing error sequence {xn − qn}.

Uncertainty in Data
Data from real-world problems contain uncertainty or error. This type of error is re-
ferred to as noise. It will affect the accuracy of any numerical computation that is based
on the data. An improvement of precision is not accomplished by performing succes-
sive computations using noisy data. Hence, if you start with data with d significant
digits of accuracy, then the result of a computation should be reported in d significant
digits of accuracy. For example, suppose that the data p1 = 4.152 and p2 = 0.07931
both have four significant digits of accuracy. Then it is tempting to report all the digits
that appear on your calculator (i.e., p1 + p2 = 4.23131). This is an oversight, because
you should not report conclusions from noisy data that have more significant digits
than the original data. The proper answer in this situation is p1 + p2 = 4.231.

SEC. 1.3 ERROR ANALYSIS 37

Exercises for Error Analysis

1. Find the error Ex and relative error Rx . Also determine the number of significant
digits in the approximation.
(a) x = 2.71828182, x̂ = 2.7182
(b) y = 98, 350, ŷ = 98, 000
(c) z = 0.000068, ẑ = 0.00006

2. Complete the following computation:

∫ 1/4

0
ex2

dx ≈
∫ 1/4

0

(
1+ x2 + x2

2! +
x6

3!

)
dx = p̂.

State what type of error is present in this situation. Compare your answer with the
true value p = 0.2553074606.

3. (a) Consider the data p1 = 1.414 and p2 = 0.09125, which have four significant
digits of accuracy. Determine the proper answer for the sum p1 + p2 and the
product p1 p2.

(b) Consider the data p1 = 31.415 and p2 = 0.027182, which have five significant
digits of accuracy. Determine the proper answer for the sum p1 + p2 and the
product p1 p2.

4. Complete the following computation and state what type of error is present in this
situation.

(a)
sin
(π

4
+ 0.00001

)
− sin

(π

4

)
0.00001

= 0.70711385222− 0.70710678119

0.00001
= · · ·

(b)
ln(2+ 0.00005)− ln(2)

0.00005
= 0.69317218025− 0.69314718056

0.00005
= · · ·

5. Sometimes the loss of significance error can be avoided by rearranging terms in the
function using a known identity from trigonometry or algebra. Find an equivalent
formula for the following functions that avoids a loss of significance.
(a) ln(x + 1)− ln(x) for large x

(b)
√

x2 + 1− x for large x

(c) cos2(x)− sin2(x) for x ≈ π/4

(d)

√
1+ cos(x)

2
for x ≈ π

6. Polynomial evaluation. Let P(x) = x3−3x2+3x−1, Q(x) = ((x−3)x+3)x−1,
and R(x) = (x − 1)3.
(a) Use four-digit rounding arithmetic and compute P(2.72), Q(2.72), and R(2.72).

In the computation of P(x), assume that (2.72)3 = 20.12 and (2.72)2 = 7.398.
(b) Use four-digit rounding arithmetic and compute P(0.975), Q(0.975), and

R(0.975). In the computation of P(x), assume that (0.975)3 = 0.9268 and
(0.975)2 = 0.9506.

38 CHAP. 1 PRELIMINARIES

7. Use three-digit rounding arithmetic to compute the following sums (sum in the given
order):

(a)
6∑

k=1

1

3k
(b)

6∑
k=1

1

37−k

8. Discuss the propagation of error for the following:
(a) The sum of three numbers:

p + q + r = (p̂ + εp)+ (q̂ + εq)+ (̂r + εr).

(b) The quotient of two numbers:
p

q
= p̂ + εp

q̂ + εq
.

(c) The product of three numbers:

pqr = (p̂ + εp)(q̂ + εq)(̂r + εr).

9. Given the Taylor polynomial expansions

1

1− h
= 1+ h + h2 + h3 + O(h4)

and

cos(h) = 1− h2

2! +
h4

4! + O(h6),

determine the order of approximation for their sum and product.

10. Given the Taylor polynomial expansions

eh = 1+ h + h2

2! +
h3

3! +
h4

4! + O(h5)

and

sin(h) = h − h3

3! + O(h5),

determine the order of approximation for their sum and product.

11. Given the Taylor polynomial expansions

cos(h) = 1− h2

2! +
h4

4! + O(h6)

and

sin(h) = h − h3

3! +
h5

5! + O(h7),

determine the order of approximation for their sum and product.

SEC. 1.3 ERROR ANALYSIS 39

12. Improving the quadratic formula. Assume that a �= 0 and b2−4ac > 0 and consider
the equation ax2+bx+c = 0. The roots can be computed with the quadratic formulas

(1) x1 = −b +√b2 − 4ac

2a
and x2 = −b −√b2 − 4ac

2a
.

Show that these roots can be calculated with the equivalent formulas

(2) x1 = −2c

b +√b2 − 4ac
and x2 = −2c

b −√b2 − 4ac
.

Hint. Rationalize the numerators in (1). Remark. In the cases when |b| ≈ √b2 − 4ac,
one must proceed with caution to avoid loss of precision due to a catastrophic can-
cellation. If b > 0, then x1 should be computed with formula (2) and x2 should be
computed using (1). However, if b < 0, then x1 should be computed using (1) and x2
should be computed using (2).

13. Use the appropriate formula for x1 and x2 mentioned in Exercise 12 to find the roots
of the following quadratic equations.
(a) x2 − 1,000.001x + 1 = 0
(b) x2 − 10,000.0001x + 1 = 0
(c) x2 − 100,000.00001x + 1 = 0
(d) x2 − 1,000,000.000001x + 1 = 0

Algorithms and Programs

1. Use the results of Exercises 12 and 13 to construct an algorithm and MATLAB pro-
gram that will accurately compute the roots of a quadratic equation in all situations,
including the troublesome ones when |b| ≈ √b2 − 4ac.

2. Follow Example 1.25 and generate the first 10 numerical approximations for each
of the following three difference equations. In each case a small initial error is in-
troduced. If there were no initial error, then each of the difference equations would
generate the sequence {1/2n}∞n=1. Produce output analogous to Tables 1.4 and 1.5 and
Figures 1.8, 1.9, and 1.10.
(a) r0 = 0.994 and rn = 1

2rn−1, for n = 1, 2, . . .

(b) p0 = 1, p1 = 0.497, and pn = 3
2 pn−1 − 1

2 pn−2, for n = 2, 3, . . .

(c) q0 = 1, q1 = 0.497, and qn = 5
2 qn−1 − qn−2, for n = 2, 3, . . .

2
Solution of Nonlinear
Equations f (x) = 0

Consider the physical problem that involves a spherical ball of radius r that is sub-
merged to a depth d in water (see Figure 2.1). Assume that the ball is constructed from
a variety of longleaf pine that has a density of ρ = 0.638 and that its radius measures
r = 10 cm. How much of the ball will be submerged when it is placed in water?

The mass Mw of water displaced when a sphere is submerged to a depth d is

Mw =
∫ d

0
π(r2 − (x − r)2) dx = πd2(3r − d)

3
,

and the mass of the ball is Mb = 4πr3ρ/3. Applying Archimedes’ law, Mw = Mb,
produces the following equation that must be solved:

π(d3 − 3d2r + 4r3ρ)

3
= 0.

r = 10 d
Figure 2.1 The portion of a
sphere of radius r that is to be sub-
merged to a depth d .

40

SEC. 2.1 ITERATION FOR SOLVING x = g(x) 41

y

d

y = 2552 − 30d2 + d3

−1000

0

1000

2000

5 10 15 20

Figure 2.2 The cubic y = 2552− 30d2 + d3.

In our case (with r = 10 and ρ = 0.638) this equation becomes

π(2552− 30d2 + d3)

3
= 0.

The graph of the cubic polynomial y = 2552− 30d2 + d3 is shown in Figure 2.2 and
from it one can see that the solution lies near the value d = 12.

The goal of this chapter is to develop a variety of methods for finding numerical
approximations for the roots of an equation. For example, the bisection method could
be applied to obtain the three roots d1 = −8.17607212, d2 = 11.86150151, and
d3 = 26.31457061. The first root d1 is not a feasible solution for this problem, because
d cannot be negative. The third root d3 is larger than the diameter of the sphere and it
is not the solution desired. The root d2 = 11.86150151 lies in the interval [0, 20] and
is the proper solution. Its magnitude is reasonable because a little more than one-half
of the sphere must be submerged.

2.1 Iteration for Solving x = g(x)

A fundamental principle in computer science is iteration. As the name suggests, a
process is repeated until an answer is achieved. Iterative techniques are used to find
roots of equations, solutions of linear and nonlinear systems of equations, and solutions
of differential equations. In this section we study the process of iteration using repeated
substitution.

A rule or function g(x) for computing successive terms is needed, together with a
starting value p0. Then a sequence of values {pk} is obtained using the iterative rule

42 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

pk+1 = g(pk). The sequence has the pattern

p0 (starting value)

p1 = g(p0)

p2 = g(p1)

...

pk = g(pk−1)

pk+1 = g(pk)

...

(1)

What can we learn from an unending sequence of numbers? If the numbers tend
to a limit, we feel that something has been achieved. But what if the numbers diverge
or are periodic? The next example addresses this situation.

Example 2.1. The iterative rule p0 = 1 and pk+1 = 1.001pk for k = 0, 1, . . . produces
a divergent sequence. The first 100 terms look as follows:

p1 = 1.001p0 = (1.001)(1.000000) = 1.001000,

p2 = 1.001p1 = (1.001)(1.001000) = 1.002001,

p3 = 1.001p2 = (1.001)(1.002001) = 1.003003,

...
...

...

p100 = 1.001p99 = (1.001)(1.104012) = 1.105116.

The process can be continued indefinitely, and it is easily shown that limn→∞ pn = +∞.
In Chapter 9 we will see that the sequence {pk} is a numerical solution to the differential
equation y′ = 0.001y. The solution is known to be y(x) = e0.001x . Indeed, if we compare
the 100th term in the sequence with y(100), we see that p100 = 1.105116 ≈ 1.105171 =
e0.1 = y(100). �

In this section we are concerned with the types of functions g(x) that produce
convergent sequences {pk}.

Finding Fixed Points

Definition 2.1. A fixed point of a function g(x) is a real number P such that P =
g(P). �

Geometrically, the fixed points of a function y = g(x) are the points of intersection
of y = g(x) and y = x .

Definition 2.2. The iteration pn+1 = g(pn) for n = 0, 1, . . . is called fixed-point
iteration. �

SEC. 2.1 ITERATION FOR SOLVING x = g(x) 43

Theorem 2.1. Assume that g is a continuous function and that {pn}∞n=0 is a sequence
generated by fixed-point iteration. If limn→∞ pn = P , then P is a fixed point of g(x).

Proof. If limn→∞ pn = P , then limn→∞ pn+1 = P . It follows from this result, the
continuity of g, and the relation pn+1 = g (pn) that

(2) g(P) = g
(

lim
n→∞ pn

)
= lim

n→∞ g(pn) = lim
n→∞ pn+1 = P.

Therefore, P is a fixed point of g(x). •

Example 2.2. Consider the convergent iteration

p0 = 0.5 and pk+1 = e−pk for k = 0, 1,

The first 10 terms are obtained by the calculations

p1 = e−0.500000 = 0.606531

p2 = e−0.606531 = 0.545239

p3 = e−0.545239 = 0.579703

...
...

p9 = e−0.566409 = 0.567560

p10 = e−0.567560 = 0.566907

The sequence is converging, and further calculations reveal that

lim
n→∞ pn = 0.567143

Thus we have found an approximation for the fixed point of the function y = e−x . �

The following two theorems establish conditions for the existence of a fixed point
and the convergence of the fixed-point iteration process to a fixed point.

Theorem 2.2. Assume that g ∈ C[a, b].
(3) If the range of the mapping y = g(x) satisfies y ∈ [a, b] for all x ∈ [a, b], then

g has a fixed point in [a, b].
(4) Furthermore, suppose that g′(x) is defined over (a, b) and that a positive constant

K < 1 exists with |g′(x)| ≤ K < 1 for all x ∈ (a, b); then g has a unique fixed
point P in [a, b].

44 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Proof of (3). If g(a) = a or g(b) = b, the assertion is true. Otherwise, the values
of g(a) and g(b) must satisfy g(a) ∈ (a, b] and g(b) ∈ [a, b). The function f (x) ≡
x − g(x) has the property that

f (a) = a − g(a) < 0 and f (b) = b − g(b) > 0.

Now apply Theorem 1.2, the intermediate value theorem, to f (x), with the constant
L = 0, and conclude that there exists a number P with P ∈ (a, b) so that f (P) = 0.
Therefore, P = g(P) and P is the desired fixed point of g(x).

Proof of (4). Now we must show that this solution is unique. By way of con-
tradiction, let us make the additional assumption that there exist two fixed points P1
and P2. Now apply Theorem 1.6, the mean value theorem, and conclude that there
exists a number d ∈ (a, b) so that

(5) g′(d) = g(P2)− g(P1)

P2 − P1
.

Next, use the facts that g(P1) = P1 and g(P2) = P2 to simplify the right side of
equation (5) and obtain

g′(d) = P2 − P1

P2 − P1
= 1.

But this contradicts the hypothesis in (4) that |g′(x)| < 1 over (a, b), so it is not
possible for two fixed points to exist. Therefore, g(x) has a unique fixed point P
in [a, b] under the conditions given in (4). •
Example 2.3. Apply Theorem 2.2 to show rigorously that g(x) = cos(x) has a unique
fixed point in [0, 1].

Clearly, g ∈ C[0, 1]. Also, g(x) = cos(x) is a decreasing function on [0, 1]; thus its
range on [0, 1] is [cos(1), 1] ⊆ [0, 1]. Thus condition (3) of Theorem 2.2 is satisfied and
g has a fixed point in [0, 1]. Finally, if x ∈ (0, 1), then |g′(x)| = | − sin(x)| = sin(x) ≤
sin(1) < 0.8415 < 1. Thus K = sin(1) < 1, condition (4) of Theorem 2.2 is satisfied, and
g has a unique fixed point in [0, 1]. �

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1) will produce a convergent or a divergent sequence.

Theorem 2.3 (Fixed-Point Theorem). Assume that (i) g, g′ ∈ C[a, b], (ii) K is a
positive constant, (iii) p0 ∈ (a, b), and (iv) g(x) ∈ [a, b] for all x ∈ [a, b].

(6) If |g′(x)| ≤ K < 1 for all x ∈ [a, b], then the iteration pn = g(pn−1) will
converge to the unique fixed point P ∈ [a, b]. In this case, P is said to be an
attractive fixed point.

(7) If |g′(x)| > 1 for all x ∈ [a, b], then the iteration pn = g(pn−1) will not
converge to P . In this case, P is said to be a repelling fixed point and the iteration
exhibits local divergence.

SEC. 2.1 ITERATION FOR SOLVING x = g(x) 45

P − p1 P − p0

p1a bP p0

Figure 2.3 The relationship among P , p0, p1, |P − p0|,
and |P − p1|.

Remark 1. It is assumed that p0 �= P in statement (7).
Remark 2. Because g is continuous on an interval containing P , it is permissible to use
the simpler criterion |g′(P)| ≤ K < 1 and |g′(P)| > 1 in (6) and (7), respectively.

Proof. We first show that the points {pn}∞n=0 all lie in (a, b). Starting with p0, we
apply Theorem 1.6, the mean value theorem. There exists a value c0 ∈ (a, b) so that

|P − p1| = |g(P)− g(p0)| = |g′(c0)(P − p0)|
= |g′(c0)||P − p0| ≤ K |P − p0| < |P − p0|.(8)

Therefore, p1 is no further from P than p0 was, and it follows that p1 ∈ (a, b) (see
Figure 2.3). In general, suppose that pn−1 ∈ (a, b); then

|P − pn| = |g(P)− g(pn−1)| = |g′(cn−1)(P − pn−1)|
= |g′(cn−1)||P − pn−1| ≤ K |P − pn−1| < |P − pn−1|.(9)

Therefore, pn ∈ (a, b) and hence, by induction, all the points {pn}∞n=0 lie in (a, b).
To complete the proof of (6), we will show that

(10) lim
n→∞ |P − pn| = 0.

First, a proof by induction will establish the inequality

(11) |P − pn| ≤ K n|P − p0|.
The case n = 1 follows from the details in relation (8). Using the induction hypothesis
|P − pn−1| ≤ K n−1|P − p0| and the ideas in (9), we obtain

|P − pn| ≤ K |P − pn−1| ≤ K K n−1|P − p0| = K n|P − p0|.
Thus, by induction, inequality (11) holds for all n. Since 0 < K < 1, the term K n

goes to zero as n goes to infinity. Hence

(12) 0 ≤ lim
n→∞ |P − pn| ≤ lim

n→∞ K n|P − p0| = 0.

The limit of |P − pn| is squeezed between zero on the left and zero on the right, so we
can conclude that limn→∞ |P − pn| = 0. Thus limn→∞ pn = P and, by Theorem 2.1,
the iteration pn = g(pn−1) converges to the fixed point P . Therefore, statement (6) of
Theorem 2.3 is proved. We leave statement (7) for the reader to investigate. •

46 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

p2 p1 p0

P

P

y

x

(p1, p1)
(p0, g(p0))

y = x

y = g(x)

Figure 2.4 (a) Monotone convergence when 0 < g′(P) < 1.

y = g(x)
y = x

p0 p2 p1

P

P

(p1, p1)

y

(p0, g(p0))

x

Figure 2.4 (b) Oscillating convergence when −1 < g′(P) < 0.

Corollary 2.1. Assume that g satisfies the hypothesis given in (6) of Theorem 2.3.
Bounds for the error involved when using pn to approximate P are given by

|P − pn| ≤ K n|P − p0| for all n ≥ 1(13)

and

|P − pn| ≤ K n|p1 − p0|
1− K

for all n ≥ 1.(14)

SEC. 2.1 ITERATION FOR SOLVING x = g(x) 47

P

y = g(x)

y

(p0, g(p0))
y = x

P p0 p1 p2

x
Figure 2.5 (a) Monotone diver-
gence when 1 < g′(P).

P

P

p0 p1 p3p2

x

y

Figure 2.5 (b) Divergent oscilla-
tion when g′(P) < −1.

Graphical Interpretation of Fixed-Point Iteration

Since we seek a fixed point P to g(x), it is necessary that the graph of the curve
y = g(x) and the line y = x intersect at the point (P, P). Two simple types of
convergent iteration, monotone and oscillating, are illustrated in Figure 2.4(a) and (b),
respectively.

To visualize the process, start at p0 on the x-axis and move vertically to the point
(p0, p1) = (p0, g(p0)) on the curve y = g(x). Then move horizontally from (p0, p1)

to the point (p1, p1) on the line y = x . Finally, move vertically downward to p1 on
the x-axis. The recursion pn+1 = g(pn) is used to construct the point (pn, pn+1) on
the graph, then a horizontal motion locates (pn+1, pn+1) on the line y = x , and then a
vertical movement ends up at pn+1 on the x-axis. The situation is shown in Figure 2.4.

48 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

If |g′(P)| > 1, then the iteration pn+1 = g(pn) produces a sequence that diverges
away from P . The two simple types of divergent iteration, monotone and oscillating,
are illustrated in Figure 2.5(a) and (b), respectively.

Example 2.4. Consider the iteration pn+1 = g(pn) when the function g(x) = 1+x−x2/4
is used. The fixed points can be found by solving the equation x = g(x). The two solutions
(fixed points of g) are x = −2 and x = 2. The derivative of the function is g′(x) = 1−x/2,
and there are only two cases to consider.

Case (i): P = − 2 Case (ii): P = 2
Start with p0= − 2.05 Start with p0= 1.6
then get p1= − 2.100625 then get p1= 1.96

p2= − 2.20378135 p2= 1.9996
p3= − 2.41794441 p3= 1.99999996

...
...

lim
n→∞ pn = −∞. lim

n→∞ pn = 2.

Since |g′(x)| > 3
2 on [−3,−1], by The-

orem 2.3, the sequence will not converge
to P = −2.

Since |g′(x)| < 1
2 on [1, 3], by Theo-

rem 2.3, the sequence will converge to
P = 2.

�

Theorem 2.3 does not state what will happen when g′(P) = 1. The next example
has been specially constructed so that the sequence {pn} converges whenever p0 > P
and it diverges if we choose p0 < P .

Example 2.5. Consider the iteration pn+1 = g(pn) when the function g(x) = 2(x−1)1/2

for x ≥ 1 is used. Only one fixed point P = 2 exists. The derivative is g′(x) = 1/(x−1)1/2

and g′(2) = 1, so Theorem 2.3 does not apply. There are two cases to consider when the
starting value lies to the left or right of P = 2.

Case (i): Start with p0 = 1.5, Case (ii): Start with p0 = 2.5,
then get p1= 1.41421356 then get p1= 2.44948974

p2= 1.28718851 p2= 2.40789513
p3= 1.07179943 p3= 2.37309514
p4= 0.53590832 p4= 2.34358284

...
...

p5= 2(−0.46409168)1/2. lim
n→∞ pn = 2.

Since p4 lies outside the domain of
g(x), the term p5 cannot be computed.

This sequence is converging too slowly
to the value P = 2; indeed, P1000 =
2.00398714.

�

SEC. 2.1 ITERATION FOR SOLVING x = g(x) 49

Absolute and Relative Error Considerations
In Example 2.5, case (ii), the sequence converges slowly, and after 1000 iterations the
three consecutive terms are

p1000 = 2.00398714, p1001 = 2.00398317, and p1002 = 2.00397921.

This should not be disturbing; after all, we could compute a few thousand more terms
and find a better approximation! But what about a criterion for stopping the iteration?
Notice that if we use the difference between consecutive terms,

|p1001 − p1002| = |2.00398317− 2.00397921| = 0.00000396.

Yet the absolute error in the approximation p1000 is known to be

|P − p1000| = |2.00000000− 2.00398714| = 0.00398714.

This is about 1000 times larger than |p1001 − p1002| and it shows that closeness of
consecutive terms does not guarantee that accuracy has been achieved. But it is usually
the only criterion available and is often used to terminate an iterative procedure.

Program 2.1 (Fixed-Point Iteration). To approximate a solution to the equation
x = g(x) starting with the initial guess p0 and iterating pn+1 = g(pn).

function [k,p,err,P]=fixpt(g,p0,tol,max1)

% Input - g is the iteration function input as a string ’g’
% - p0 is the initial guess for the fixed point
% - tol is the tolerance
% - max1 is the maximum number of iterations
%Output - k is the number of iterations that were carried out
% - p is the approximation to the fixed point
% - err is the error in the approximation
% - P contains the sequence {pn}

P(1)= p0;
for k=2:max1

P(k)=feval(g,P(k-1));
err=abs(P(k)-P(k-1));
relerr=err/(abs(P(k))+eps);
p=P(k);
if (err<tol) | (relerr<tol),break;end

end

if k == max1
disp(’maximum number of iterations exceeded’)

end
P=P’;

Remark. When using the user-defined function fixpt, it is necessary to input the
M-file g.m as a string: ’g’ (see the Appendix).

50 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Exercises for Iteration for Solving x = g(x)

1. Determine rigorously if each function has a unique fixed point on the given interval
(follow Example 2.3).
(a) g(x) = 1− x2/4 on [0, 1]
(b) g(x) = 2−x on [0, 1]
(c) g(x) = 1/x on [0.5, 5.2]

2. Investigate the nature of the fixed-point iteration when

g(x) = −4+ 4x − 1

2
x2.

(a) Solve g(x) = x and show that P = 2 and P = 4 are fixed points.
(b) Use the starting value p0 = 1.9 and compute p1, p2, and p3.
(c) Use the starting value p0 = 3.8 and compute p1, p2, and p3.
(d) Find the errors Ek and relative errors Rk for the values pk in parts (b) and (c).
(e) What conclusions can be drawn from Theorem 2.3?

3. Graph g(x), the line y = x , and the given fixed point P on the same coordinate
system. Using the given starting value p0, compute p1 and p2. Construct figures
similar to Figures 2.4 and 2.5. Based on your graph, determine geometrically if fixed-
point iteration converges.
(a) g(x) = (6+ x)1/2, P = 3, and p0 = 7
(b) g(x) = 1+ 2/x , P = 2, and p0 = 4
(c) g(x) = x2/3, P = 3, and p0 = 3.5
(d) g(x) = −x2 + 2x + 2, P = 2, and p0 = 2.5

4. Let g(x) = x2+ x − 4. Can fixed-point iteration be used to find the solution(s) to the
equation x = g(x)? Why?

5. Let g(x) = x cos(x). Solve x = g(x) and find all the fixed points of g (there are in-
finitely many). Can fixed-point iteration be used to find the solution(s) to the equation
x = g(x)? Why?

6. Suppose that g(x) and g′(x) are defined and continuous on (a, b); p0, p1, p2 ∈ (a, b);
and p1 = g(p0) and p2 = g(p1). Also, assume that there exists a constant K such
that |g′(x)| < K . Show that |p2 − p1| < K |p1 − p0|. Hint. Use the mean value
theorem.

7. Suppose that g(x) and g′(x) are continuous on (a, b) and that |g′(x)| > 1 on this
interval. If the fixed point P and the initial approximations p0 and p1 lie in the interval
(a, b), then show that p1 = g(p0) implies that |E1| = |P − p1| > |P − p0| = |E0|.
Hence statement (7) of Theorem 2.3 is established (local divergence).

8. Let g(x) = −0.0001x2 + x and p0 = 1, and consider fixed-point iteration.
(a) Show that p0 > p1 > · · · > pn > pn+1 > · · · .
(b) Show that pn > 0 for all n.

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 51

(c) Since the sequence {pn} is decreasing and bounded below, it has a limit. What
is the limit?

9. Let g(x) = 0.5x + 1.5 and p0 = 4, and consider fixed-point iteration.
(a) Show that the fixed point is P = 3.
(b) Show that |P − pn| = |P − pn−1|/2 for n = 1, 2, 3,
(c) Show that |P − pn| = |P − p0|/2n for n = 1, 2, 3,

10. Let g(x) = x/2, and consider fixed-point iteration.
(a) Find the quantity |pk+1 − pk |/|pk+1|.
(b) Discuss what will happen if only the relative error stopping criterion were used

in Program 2.1.

11. For fixed-point iteration, discuss why it is an advantage to have g′(P) ≈ 0.

Algorithms and Programs

1. Use Program 2.1 to approximate the fixed points (if any) of each function. Answers
should be accurate to 12 decimal places. Produce a graph of each function and the
line y = x that clearly shows any fixed points.
(a) g(x) = x5 − 3x3 − 2x2 + 2
(b) g(x) = cos(sin(x))

(c) g(x) = x2 − sin(x + 0.15)

(d) g(x) = xx−cos(x)

2.2 Bracketing Methods for Locating a Root

Consider a familiar topic of interest. Suppose that you save money by making regular
monthly deposits P and the annual interest rate is I ; then the total amount A after N
deposits is

(1) A = P + P

(
1+ I

12

)
+ P

(
1+ I

12

)2

+ · · · + P

(
1+ I

12

)N−1

.

The first term on the right side of equation (1) is the last payment. Then the next-to-
last payment, which has earned one period of interest, contributes P (1+ I/12). The
second-from-last payment has earned two periods of interest and contributes P (1+ I/12)2,
and so on. Finally, the last payment, which has earned interest for N − 1 periods, con-
tributes P (1+ I/12)N−1 toward the total. Recall that the formula for the sum of the
N terms of a geometric series is

(2) 1+ r + r2 + r3 + · · · + r N−1 = 1− r N

1− r
.

52 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

We can write (1) in the form

A = P

(
1+

(
1+ I

12

)
+
(

1+ I

12

)2

+ · · · +
(

1+ I

12

)N−1
)

,

and use the substitution r = (1+ I/12) in (2) to obtain

A = P
1−

(
1+ I

12

)N

1−
(

1+ I

12

) .

This can be simplified to obtain the annuity-due equation,

(3) A = P

I/12

((
1+ I

12

)N

− 1

)
.

The following example uses the annuity-due equation and requires a sequence of
repeated calculations to find an answer.

Example 2.6. You save $250 per month for 20 years and desire that the total value of
all payments and interest is $250, 000 at the end of the 20 years. What interest rate I is
needed to achieve your goal? If we hold N = 240 fixed, then A is a function of I alone;
that is, A = A(I). We will start with two guesses, I0 = 0.12 and I1 = 0.13, and perform a
sequence of calculations to narrow down the final answer. Starting with I0 = 0.12 yields

A(0.12) = 250

0.12/12

((
1+ 0.12

12

)240

− 1

)
= 247,314.

Since this value is a little short of the goal, we next try I1 = 0.13:

A(0.13) = 250

0.13/12

((
1+ 0.13

12

)240

− 1

)
= 282,311.

This is a little high, so we try the value in the middle I2 = 0.125:

A(0.125) = 250

0.125/12

((
1+ 0.125

12

)240

− 1

)
= 264,623.

This is again high and we conclude that the desired rate lies in the interval [0.12, 0.125].
The next guess is the midpoint I3 = 0.1225:

A(0.1225) = 250

0.1225/12

((
1+ 0.1225

12

)240

− 1

)
= 255,803.

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 53

(a, f (a)) (a, f (a))

y = f (x) y = f (x)

(r, 0)

(r, 0)

(c, f (c))

(c, f (c))

(b, f (b)) (b, f (b))

a c bca b
[][]

(a) If f(a) and f(c) have
 opposite signs, then

 squeeze from the right.

(b) If f(c) and f(b) have
 opposite signs, then

 squeeze from the left.

Figure 2.6 The decision process for the bisection process.

This is high and the interval is now narrowed to [0.12, 0.1225]. Our last calculation uses
the midpoint approximation I4 = 0.12125:

A(0.12125) = 250

0.12125/12

((
1+ 0.12125

12

)240

− 1

)
= 251,518.

Further iterations can be done to obtain as many significant digits as required. The
purpose of this example was to find the value of I that produced a specified level L of the
function value, that is, to find a solution to A(I) = L . It is standard practice to place the
constant L on the left and solve the equation A(I)− L = 0. �

Definition 2.3. Assume that f (x) is a continuous function. Any number r for which
f (r) = 0 is called a root of the equation f (x) = 0. Also, we say that r is a zero of
the function f (x). �

For example, the equation 2x2 + 5x − 3 = 0 has two real roots r1 = 0.5 and
r2 = −3, whereas the corresponding function f (x) = 2x2+5x−3 = (2x−1)(x+3)

has two real zeros, r1 = 0.5 and r2 = −3.

Bisection Method of Bolzano

In this section we develop our first bracketing method for finding a zero of a continuous
function. We must start with an initial interval [a, b], where f (a) and f (b) have
opposite signs. Since the graph y = f (x) of a continuous function is unbroken, it will

54 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

cross the x-axis at a zero x = r that lies somewhere in the interval (see Figure 2.6). The
bisection method systematically moves the endpoints of the interval closer and closer
together until we obtain an interval of arbitrarily small width that brackets the zero.
The decision step for this process of interval halving is first to choose the midpoint
c = (a + b)/2 and then to analyze the three possibilities that might arise:

If f (a) and f (c) have opposite signs, a zero lies in [a, c].(4)

If f (c) and f (b) have opposite signs, a zero lies in [c, b].(5)

If f (c) = 0, then the zero is c.(6)

If either case (4) or (5) occurs, we have found an interval half as wide as the original
interval that contains the root, and we are “squeezing down on it” (see Figure 2.6). To
continue the process, relabel the new smaller interval [a, b] and repeat the process until
the interval is as small as desired. Since the bisection process involves sequences of
nested intervals and their midpoints, we will use the following notation to keep track
of the details in the process:

(7)

[a0, b0] is the starting interval and c0 = (a0 + b0)/2 is the midpoint.

[a1, b1] is the second interval, which brackets the zero r , and c1 is its midpoint;
the interval [a1, b1] is half as wide as [a0, b0].
After arriving at the nth interval [an, bn], which brackets r and has midpoint
cn , the interval [an+1, bn+1] is constructed, which also brackets r and is half
as wide as [an, bn].

It is left as an exercise for the reader to show that the sequence of left endpoints is
increasing and the sequence of right endpoints is decreasing; that is,

(8) a0 ≤ a1 ≤ · · · ≤ an ≤ · · · ≤ r ≤ · · · ≤ bn ≤ · · · ≤ b1 ≤ b0,

where cn = (an + bn)/2, and if f (an+1) f (bn+1) < 0, then

(9) [an+1, bn+1] = [an, cn] or [an+1, bn+1] = [cn, bn] for all n.

Theorem 2.4 (Bisection Theorem). Assume that f ∈ C[a, b] and that there exists
a number r ∈ [a, b] such that f (r) = 0. If f (a) and f (b) have opposite signs, and
{cn}∞n=0 represents the sequence of midpoints generated by the bisection process of (8)
and (9), then

(10) |r − cn| ≤ b − a

2n+1
for n = 0, 1, . . . ,

and therefore the sequence {cn}∞n=0 converges to the zero x = r ; that is,

(11) lim
n→∞ cn = r.

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 55

an bnr − cn

bn − an

2

cn
r

Figure 2.7 The root r and midpoint cn of [an, bn] for the
bisection method.

Proof. Since both the zero r and the midpoint cn lie in the interval [an, bn], the dis-
tance between cn and r cannot be greater than half the width of this interval (see Fig-
ure 2.7). Thus

(12) |r − cn| ≤ bn − an

2
for all n.

Observe that the successive interval widths form the pattern

b1 − a1 = b0 − a0

21
,

b2 − a2 = b1 − a1

2
= b0 − a0

22
.

It is left as an exercise for the reader to use mathematical induction and show that

(13) bn − an = b0 − a0

2n
.

Combining (12) and (13) results in

(14) |r − cn| ≤ b0 − a0

2n+1
for all n.

Now an argument similar to the one given in Theorem 2.3 can be used to show that
(14) implies that the sequence {cn}∞n=0 converges to r and the proof of the theorem is
complete. •

Example 2.7. The function h(x) = x sin(x) occurs in the study of undamped forced
oscillations. Find the value of x that lies in the interval [0, 2], where the function takes on
the value h(x) = 1 (the function sin(x) is evaluated in radians).

We use the bisection method to find a zero of the function f (x) = x sin(x)−1. Starting
with a0 = 0 and b0 = 2, we compute

f (0) = −1.000000 and f (2) = 0.818595,

so a root of f (x) = 0 lies in the interval [0, 2]. At the midpoint c0 = 1, we find that
f (1) = −0.158529. Hence the function changes sign on [c0, b0] = [1, 2].

56 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Table 2.1 Bisection Method Solution of x sin(x)− 1 = 0

k
Left

endpoint, ak Midpoint, ck

Right
endpoint, bk

Function value,
f (ck)

0 0 1. 2. −0.158529
1 1.0 1.5 2.0 0.496242
2 1.00 1.25 1.50 0.186231
3 1.000 1.125 1.250 0.015051
4 1.0000 1.0625 1.1250 −0.071827
5 1.06250 1.09375 1.12500 −0.028362
6 1.093750 1.109375 1.125000 −0.006643
7 1.1093750 1.1171875 1.1250000 0.004208
8 1.10937500 1.11328125 1.11718750 −0.001216
...

...
...

...
...

To continue, we squeeze from the left and set a1 = c0 and b1 = b0. The midpoint
is c1 = 1.5 and f (c1) = 0.496242. Now, f (1) = −0.158529 and f (1.5) = 0.496242
imply that the root lies in the interval [a1, c1] = [1.0, 1.5]. The next decision is to squeeze
from the right and set a2 = a1 and b2 = c1. In this manner we obtain a sequence {ck} that
converges to r ≈ 1.114157141. A sample calculation is given in Table 2.1. �

A virtue of the bisection method is that formula (10) provides a predetermined
estimate for the accuracy of the computed solution. In Example 2.7 the width of the
starting interval was b0 − a0 = 2. Suppose that Table 2.1 were continued to the
thirty-first iterate; then, by (10), the error bound would be |E31| ≤ (2 − 0)/232 ≈
4.656613×10−10. Hence c31 would be an approximation to r with nine decimal places
of accuracy. The number N of repeated bisections needed to guarantee that the N th
midpoint cN is an approximation to a zero and has an error less than the preassigned
value δ is

(15) N = int

(
ln(b − a)− ln(δ)

ln(2)

)
.

The proof of this formula is left as an exercise.
Another popular algorithm is the method of false position or the regula falsi

method. It was developed because the bisection method converges at a fairly slow
speed. As before, we assume that f (a) and f (b) have opposite signs. The bisection
method used the midpoint of the interval [a, b] as the next iterate. A better approxi-
mation is obtained if we find the point (c, 0) where the secant line L joining the points
(a, f (a)) and (b, f (b)) crosses the x-axis (see Figure 2.8). To find the value c, we
write down two versions of the slope m of the line L:

(16) m = f (b)− f (a)

b − a
,

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 57

(a, f (a)) (a, f (a))

(c, 0)

(c, 0) b

r r

b

L
L

(c, f (c))

(b, f (b))

(c, f (c))

y = f (x)

a
a

][][

y = f (x)
(b, f (b))

(a) If f(a) and f(c) have
 opposite signs, then

 squeeze from the right.

(b) If f(c) and f(b) have
 opposite signs, then

 squeeze from the left.

Figure 2.8 The decision process for the false position method.

where the points (a, f (a)) and (b, f (b)) are used, and

(17) m = 0− f (b)

c − b
,

where the points (c, 0) and (b, f (b)) are used.
Equating the slopes in (16) and (17), we have

f (b)− f (a)

b − a
= 0− f (b)

c − b
,

which is easily solved for c to get

(18) c = b − f (b)(b − a)

f (b)− f (a)
.

The three possibilities are the same as before:

If f (a) and f (c) have opposite signs, a zero lies in [a, c].(19)

If f (c) and f (b) have opposite signs, a zero lies in [c, b].(20)

If f (c) = 0, then the zero is c.(21)

Convergence of the False Position Method
The decision process implied by (19) and (20) along with (18) is used to construct
a sequence of intervals {[an, bn]} each of which brackets the zero. At each step the
approximation of the zero r is

(22) cn = bn − f (bn)(bn − an)

f (bn)− f (an)
,

58 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

y = f (x)

a0 = a1 = a2

r b2 b1 b0

Figure 2.9 The stationary endpoint for the false position
method.

and it can be proved that the sequence {cn} will converge to r . But beware; although
the interval width bn − an is getting smaller, it is possible that it may not go to zero. If
the graph of y = f (x) is concave near (r, 0), one of the endpoints becomes fixed and
the other one marches into the solution (see Figure 2.9).

Now we rework the solution to x sin(x) − 1 = 0 using the method of false posi-
tion and observe that it converges faster than the bisection method. Also, notice that
{bn − an}∞n=0 does not go to zero.

Example 2.8. Use the false position method to find the root of x sin(x) − 1 = 0 that is
located in the interval [0, 2] (the function sin(x) is evaluated in radians).

Starting with a0 = 0 and b0 = 2, we have f (0) = −1.00000000 and f (2) =
0.81859485, so a root lies in the interval [0, 2]. Using formula (22), we get

c0 = 2− 0.81859485(2− 0)

0.81859485− (−1)
= 1.09975017 and f (c0) = −0.02001921.

The function changes sign on the interval [c0, b0] = [1.09975017, 2], so we squeeze from
the left and set a1 = c0 and b1 = b0. Formula (22) produces the next approximation:

c1 = 2− 0.81859485(2− 1.09975017)

0.81859485− (−0.02001921)
= 1.12124074

and
f (c1) = 0.00983461.

Next f (x) changes sign on [a1, c1] = [1.09975017, 1.12124074], and the next decision is
to squeeze from the right and set a2 = a1 and b2 = c1. A summary of the calculations is
given in Table 2.2. �

The termination criterion used in the bisection method is not useful for the false
position method and may result in an infinite loop. The closeness of consecutive iter-
ates and the size of | f (cn)| are both used in the termination criterion for Program 2.3.
In Section 2.3 we discuss the reasons for this choice.

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 59

Table 2.2 False Position Method Solution of x sin(x)− 1 = 0

k
Left

endpoint, ak Midpoint, ck

Right
endpoint, bk

Function value,
f (ck)

0 0.00000000 1.09975017 2.00000000 −0.02001921
1 1.09975017 1.12124074 2.00000000 0.00983461
2 1.09975017 1.11416120 1.12124074 0.00000563
3 1.09975017 1.11415714 1.11416120 0.00000000

Program 2.2 (Bisection Method). To approximate a root of the equation f (x) = 0
in the interval [a, b]. Proceed with the method only if f (x) is continuous and f (a)

and f (b) have opposite signs.

function [c,err,yc]=bisect(f,a,b,delta)

%Input - f is the function input as a string ’f’
% - a and b are the left and right endpoints
% - delta is the tolerance
%Output - c is the zero
% - yc=f(c)
% - err is the error estimate for c

ya=feval(f,a);
yb=feval(f,b);
if ya*yb>0,break,end
max1=1+round((log(b-a)-log(delta))/log(2));
for k=1:max1

c=(a+b)/2;
yc=feval(f,c);
if yc==0

a=c;
b=c;

elseif yb*yc>0
b=c;
yb=yc;

else
a=c;
ya=yc;

end
if b-a < delta, break,end

end

c=(a+b)/2;
err=abs(b-a);
yc=feval(f,c);

60 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Program 2.3 (False Position or Regula Falsi Method). To approximate a root of
the equation f (x) = 0 in the interval [a, b]. Proceed with the method only if f (x)

is continuous and f (a) and f (b) have opposite signs.

function [c,err,yc]=regula(f,a,b,delta,epsilon,max1)

%Input - f is the function input as a string ’f’
% - a and b are the left and right endpoints
% - delta is the tolerance for the zero
% - epsilon is the tolerance for the value of f at the zero
% - max1 is the maximum number of iterations
%Output - c is the zero
% - yc=f(c)
% - err is the error estimate for c

ya=feval(f,a);
yb=feval(f,b);
if ya*yb>0

disp(’Note: f(a)*f(b)>0’),
break,

end
for k=1:max1

dx=yb*(b-a)/(yb-ya);
c=b-dx;
ac=c-a;
yc=feval(f,c);
if yc==0,break;
elseif yb*yc>0

b=c;
yb=yc;

else
a=c;
ya=yc;

end
dx=min(abs(dx),ac);
if abs(dx)<delta,break,end
if abs(yc)<epsilon,break,end

end

c;
err=abs(b-a)/2;
yc=feval(f,c);

SEC. 2.2 BRACKETING METHODS FOR LOCATING A ROOT 61

Exercises for Bracketing Methods

In Exercises 1 and 2, find an approximation for the interest rate I that will yield the total
annuity value A if 240 monthly payments P are made. Use the two starting values for I
and compute the next three approximations using the bisection method.

1. P = $275, A = $250,000, I0 = 0.11, I1 = 0.12

2. P = $325, A = $400,000, I0 = 0.13, I1 = 0.14

3. For each function, find an interval [a, b] so that f (a) and f (b) have opposite signs.
(a) f (x) = ex − 2− x
(b) f (x) = cos(x)+ 1− x
(c) f (x) = ln(x)− 5+ x
(d) f (x) = x2 − 10x + 23

In Exercises 4 through 7, start with [a0, b0] and use the false position method to compute
c0, c1, c2, and c3.

4. ex − 2− x = 0, [a0, b0] = [−2.4,−1.6]
5. cos(x)+ 1− x = 0, [a0, b0] = [0.8, 1.6]
6. ln(x)− 5+ x = 0, [a0, b0] = [3.2, 4.0]
7. x2 − 10x + 23 = 0, [a0, b0] = [6.0, 6.8]
8. Denote the intervals that arise in the bisection method by [a0, b0], [a1, b1], . . . ,
[an, bn].
(a) Show that a0 ≤ a1 ≤ · · · ≤ an ≤ · · · and that · · · ≤ bn ≤ · · · ≤ b1 ≤ b0.
(b) Show that bn − an = (b0 − a0)/2n .
(c) Let the midpoint of each interval be cn = (an + bn)/2. Show that

lim
n→∞ an = lim

n→∞ cn = lim
n→∞ bn .

Hint. Review convergence of monotone sequences in your calculus book.

9. What will happen if the bisection method is used with the function f (x) = 1/(x − 2)

and
(a) the interval is [3, 7]? (b) the interval is [1, 7]?

10. What will happen if the bisection method is used with the function f (x) = tan(x)

and
(a) the interval is [3, 4]? (b) the interval is [1, 3]?

11. Suppose that the bisection method is used to find a zero of f (x) in the interval [2, 7].
How many times must this interval be bisected to guarantee that the approximation
cN has an accuracy of 5× 10−9?

12. Show that formula (22) for the false position method is algebraically equivalent to

cn = an f (bn)− bn f (an)

f (bn)− f (an)
.

62 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

13. Establish formula (15) for determining the number of iterations required in the bisec-
tion method. Hint. Use |b − a|/2n+1 < δ and take logarithms.

14. The polynomial f (x) = (x−1)3(x−2)(x−3) has three zeros: x = 1 of multiplicity 3
and x = 2 and x = 3, each of multiplicity 1. If a0 and b0 are any two real numbers
such that a0 < 1 and b0 > 3, then f (a0) f (b0) < 0. Thus, on the interval [a0, b0] the
bisection method will converge to one of the three zeros. If a0 < 1 and b0 > 3 are
selected such that cn = (an + bn)/2 is not equal to 1, 2, or 3 for any n ≥ 1, then the
bisection method will never converge to which zero(s)? Why?

15. If a polynomial, f (x), has an odd number of real zeros in the interval [a0, b0], and
each of the zeros is of odd multiplicity, then f (a0) f (b0) < 0, and the bisection
method will converge to one of the zeros. If a0 < 1 and b0 > 3 are selected such that
cn = (an + bn)/2 is not equal to any of the zeros of f (x) for any n ≥ 1, then the
bisection method will never converge to which zero(s)? Why?

Algorithms and Programs

1. Find an approximation (accurate to 10 decimal places) for the interest rate I that will
yield a total annuity value of $500,000 if 240 monthly payments of $300 are made.

2. Consider a spherical ball of radius r = 15 cm that is constructed from a variety of
white oak that has a density of ρ = 0.710. How much of the ball (accurate to eight
decimal places) will be submerged when it is placed in water?

3. Modify Programs 2.2 and 2.3 to output a matrix analogous to Tables 2.1 and 2.2,
respectively (i.e., the first row of the matrix would be

[
0 a0 c0 b0 f (c0)

]
).

4. Use your programs from Problem 3 to approximate the three smallest positive roots
of x = tan(x) (accurate to eight decimal places).

5. A unit sphere is cut into two segments by a plane. One segment has three times the
volume of the other. Determine the distance x of the plane from the center of the
sphere (accurate to 10 decimal places).

2.3 Initial Approximation and Convergence Criteria

The bracketing methods depend on finding an interval [a, b] so that f (a) and f (b) have
opposite signs. Once the interval has been found, no matter how large, the iterations
will proceed until a root is found. Hence these methods are called globally convergent.
However, if f (x) = 0 has several roots in [a, b], then a different starting interval must
be used to find each root. It is not always easy to locate these smaller intervals on
which f (x) changes sign.

In Section 2.4 we develop the Newton-Raphson method and the secant method for
solving f (x) = 0. Both of these methods require that a close approximation to the root

SEC. 2.3 INITIAL APPROXIMATION AND CONVERGENCE CRITERIA 63

be given to guarantee convergence. Hence these methods are called locally convergent.
They usually converge more rapidly than do global ones. Some hybrid algorithms start
with a globally convergent method and switch to a locally convergent method when
the iteration gets close to a root.

If the computation of roots is one part of a larger project, then a leisurely pace
is suggested and the first thing to do is graph the function. We can view the graph
y = f (x) and make decisions based on what it looks like (concavity, slope, oscillatory
behavior, local extrema, inflection points, etc.). But more important, if the coordinates
of points on the graph are available, they can be analyzed and the approximate location
of roots determined. These approximations can then be used as starting values in our
root-finding algorithms.

We must proceed carefully. Computer software packages use graphics software
of varying sophistication. Suppose that a computer is used to graph y = f (x) on
[a, b]. Typically, the interval is partitioned into N + 1 equally spaced points: a =
x0 < x1 < · · · < xN = b and the function values yk = f (xk) computed. Then either
a line segment or a “fitted curve” is plotted between consecutive points (xk−1, yk−1)

and (xk, yk) for k = 1, 2, . . . , N . There must be enough points so that we do not
miss a root in a portion of the curve where the function is changing rapidly. If f (x)

is continuous and two adjacent points (xk−1, yk−1) and (xk, yk) lie on opposite sides
of the x-axis, then the intermediate value theorem implies that at least one root lies
in the interval [xk−1, xk]. But if there is a root, or even several closely spaced roots,
in the interval [xk−1, xk] and the two adjacent points (xk−1, yk−1) and (xk, yk) lie on
the same side of the x-axis, then the computer-generated graph would not indicate a
situation where the intermediate value theorem is applicable. The graph produced by
the computer will not be a true representation of the actual graph of the function f .
It is not unusual for functions to have “closely” spaced roots; that is, roots where the
graph touches but does not cross the x-axis, or roots “close” to a vertical asymptote.
Such characteristics of a function need to be considered when applying any numerical
root-finding algorithm.

Finally, near two closely spaced roots or near a double root, the computer-generated
curve between (xk−1, yk−1) and (xk, yk) may fail to cross or touch the x-axis. If
| f (xk)| is smaller than a preassigned value ε (i.e., f (xk) ≈ 0), then xk is a tentative ap-
proximate root. But the graph may be close to zero over a wide range of values near xk ,
and thus xk may not be close to an actual root. Hence we add the requirement that the

slope change sign near (xk, yk); that is, mk−1 =
yk − yk−1

xk − xk−1
and mk = yk+1 − yk

xk+1 − xk
must

have opposite signs. Since xk − xk−1 > 0 and xk+1− xk > 0, it is not necessary to use
the difference quotients, and it will suffice to check to see if the differences yk − yk−1
and yk+1 − yk change sign. In this case, xk is the approximate root. Unfortunately,
we cannot guarantee that this starting value will produce a convergent sequence. If the
graph of y = f (x) has a local minimum (or maximum) that is extremely close to zero,
then it is possible that xk will be reported as an approximate root when f (xk) ≈ 0,
although xk may not be close to a root.

64 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Table 2.3 Finding Approximate Locations for Roots

Function values Differences in y

xk yk−1 yk yk − yk−1 yk+1 − yk

Significant changes
in f (x) or f ′(x)

−1.2 −3.125 −0.968 2.157 1.329
−0.9 −0.968 0.361 1.329 0.663 f changes sign in [xk−1, xk]
−0.6 0.361 1.024 0.663 0.159
−0.3 1.024 1.183 0.159 −0.183 f ′ changes sign near xk

0.0 1.183 1.000 −0.183 −0.363
0.3 1.000 0.637 −0.363 −0.381
0.6 0.637 0.256 −0.381 −0.237
0.9 0.256 0.019 −0.237 0.069 f ′ changes sign near xk

1.2 0.019 0.088 0.069 0.537

y

y = x3 − x2 − x + 1
1.0

0.5

−0.5

−0.5

−1.0

0.5 1.0 1.5

−1.0

x

Figure 2.10 The graph of the cu-
bic polynomial y = x3 − x2 − x + 1.

Example 2.9. Find the approximate location of the roots of x3 − x2 − x + 1 = 0 on the
interval [−1.2, 1.2]. For illustration, choose N = 8 and look at Table 2.3.

The three abscissas for consideration are−1.05,−0.3, and 0.9. Because f (x) changes
sign on the interval [−1.2,−0.9], the value −1.05 is an approximate root; indeed,
f (−1.05) = −0.210.

Although the slope changes sign near −0.3, we find that f (−0.3) = 1.183; hence
−0.3 is not near a root. Finally, the slope changes sign near 0.9 and f (0.9) = 0.019, so 0.9
is an approximate root (see Figure 2.10). �

SEC. 2.3 INITIAL APPROXIMATION AND CONVERGENCE CRITERIA 65

Pn − 1

y = f (x)
P2

P1

P0

y

x

Pn
P

Figure 2.11 (a) The horizontal convergence band for locating a solution to
f (x) = 0.

x

x = p − δ x = p + δ y = f (x)

y

Pn − 1

P
Pn

P2

P1

P0

Figure 2.11 (b) The vertical convergence band for locating a solution to f (x) = 0.

Checking for Convergence

A graph can be used to see the approximate location of a root, but an algorithm must be
used to compute a value pn that is an acceptable computer solution. Iteration is often
used to produce a sequence {pk} that converges to a root p, and a termination criterion
or strategy must be designed ahead of time so that the computer will stop when an
accurate approximation is reached. Since the goal is to solve f (x) = 0, the final value
pn should have the property that | f (pn)| < ε.

The user can supply a tolerance value ε for the size of | f (pn)| and then an iterative
process produces points Pk = (pk, f (pk)) until the last point Pn lies in the horizontal
band bounded by the lines y = +ε and y = −ε, as shown in Figure 2.11(a). This
criterion is useful if the user is trying to solve h(x) = L by applying a root-finding

66 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

algorithm to the function f (x) = h(x)− L .
Another termination criterion involves the abscissas, and we can try to determine if

the sequence {pk} is converging. If we draw the vertical lines x = p+δ and x = p−δ

on each side of x = p, we could decide to stop the iteration when the point Pn lies
between these two vertical lines, as shown in Figure 2.11(b).

The latter criterion is often desired, but it is difficult to implement because it in-
volves the unknown solution p. We adapt this idea and terminate further calculations
when the consecutive iterates pn−1 and pn are sufficiently close or if they agree within
M significant digits.

Sometimes the user of an algorithm will be satisfied if pn ≈ pn−1 and other times
when f (pn) ≈ 0. Correct logical reasoning is required to understand the conse-
quences. If we require that |pn − p| < δ and | f (pn)| < ε, the point Pn will be
located in the rectangular region about the solution (p, 0), as shown in Figure 2.12(a).
If we stipulate that |pn − p| < δ or | f (pn)| < ε, the point Pn could be located
anywhere in the region formed by the union of the horizontal and vertical stripes, as
shown in Figure 2.12(b). The size of the tolerances δ and ε are crucial. If the tol-
erances are chosen too small, iteration may continue forever. They should be chosen
about 100 times larger than 10−M , where M is the number of decimal digits in the
computer’s floating-point numbers. The closeness of the abscissas is checked with one
of the criteria

|pn − pn−1| < δ (estimate for the absolute error)

or

2|pn − pn−1|
|pn| + |pn−1| < δ (estimate for the relative error).

The closeness of the ordinate is usually checked by | f (pn)| < ε.

Troublesome Functions

A computer solution to f (x) = 0 will almost always be in error due to round off
and/or instability in the calculations. If the graph y = f (x) is steep near the root
(p, 0), then the root-finding problem is well conditioned (i.e., a solution with several
significant digits is easy to obtain). If the graph y = f (x) is shallow near (p, 0), then
the root-finding problem is ill conditioned (i.e., the computed root may have only a few
significant digits). This occurs when f (x) has a multiple root at p. This is discussed
further in the next section.

SEC. 2.3 INITIAL APPROXIMATION AND CONVERGENCE CRITERIA 67

y

Pn

P

Pn − 1

y = f (x)

P2

P1

P0

x

Figure 2.12 (a) The rectangular region defined by |x − p| < δ AND |y| < ε.

P1

P0

x

y = f (x)

y

P2Pn − 1
Pn

P

Figure 2.12 (b) The unbounded region defined by |x − p| < δ OR |y| < ε.

68 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Program 2.4 (Approximate Location of Roots). To roughly estimate the loca-
tions of the roots of the equation f (x) = 0 over the interval [a, b], by using the
equally spaced sample points (xk, f (xk)) and the following criteria:

(i) (yk−1)(yk) < 0, or

(ii) |yk | < ε and (yk − yk−1)(yk+1 − yk) < 0.
That is, either f (xk−1) and f (xk) have opposite signs or | f (xk)| is small and the
slope of the curve y = f (x) changes sign near (xk, f (xk)).

function R = approot (X,epsilon)

% Input - f is the object function saved as an M-file named f.m
% - X is the vector of abscissas
% - epsilon is the tolerance
% Output - R is the vector of approximate roots

Y=f(X);
yrange = max(Y)-min(Y);
epsilon2 = yrange*epsilon;
n=length(X);
m=0;
X(n+1)=X(n);
Y(n+1)=Y(n);

for k=2:n,
if Y(k-1)*Y(k)<=0,

m=m+1;
R(m)=(X(k-1)+X(k))/2;

end
s=(Y(k)-Y(k-1))*(Y(k+1)-Y(k));
if (abs(Y(k)) < epsilon2) & (s<=0),

m=m+1;
R(m)=X(k);

end
end

Example 2.10. Use approot to find approximate locations for the roots of f (x) =
sin(cos(x3)) in the interval [−2, 2]. First save f as an M-file named f.m. Since the results
will be used as initial approximations for a root-finding algorithm, we will construct X so
that the approximations will be accurate to four decimal places.

>>X=-2:.001:2;

>>approot (X,0.00001)

ans=

-1.9875 -1.6765 -1.1625 1.1625 1.6765 1.9875

SEC. 2.3 INITIAL APPROXIMATION AND CONVERGENCE CRITERIA 69

Comparing the results with the graph of f , we now have good initial approximations for
one of our root-finding algorithms. �

Exercises for Initial Approximation

In Exercises 1 through 6, use a computer or graphics calculator to graphically determine
the approximate location of the roots of f (x) = 0 in the given interval. In each case,
determine an interval [a, b] over which Programs 2.2 and 2.3 could be used to determine
the roots (i.e., f (a) f (b) < 0).

1. f (x) = x2 − ex for −2 ≤ x ≤ 2

2. f (x) = x − cos(x) for −2 ≤ x ≤ 2

3. f (x) = sin(x)− 2 cos(x) for −2 ≤ x ≤ 2

4. f (x) = cos(x)+ (1+ x2)−1 for −2 ≤ x ≤ 2

5. f (x) = (x − 2)2 − ln(x) for 0.5 ≤ x ≤ 4.5

6. f (x) = 2x − tan(x) for −1.4 ≤ x ≤ 1.4

Algorithms and Programs

In Problems 1 and 2 use a computer or graphics calculator and Program 2.4 to approximate
the real roots, to four decimal places, of each function over the given interval. Then use
Program 2.2 or Program 2.3 to approximate each root to 12 decimal places.

1. f (x) = 1,000,000x3 − 111,000x2 + 1110x − 1 for −2 ≤ x ≤ 2

2. f (x) = 5x10 − 38x9 + 21x8 − 5πx6 − 3πx5 − 5x2 + 8x − 3 for −15 ≤ x ≤ 15.

3. A computer program that plots the graph of y = f (x) over the interval [a, b] using
the points (x0, y0), (x1, y1), . . . , and (xN , yN) usually scales the vertical height of
the graph, and a procedure must be written to determine the minimum and maximum
values of f over the interval.
(a) Construct an algorithm that will find the values Ymax = maxk{yk} and Ymin =

mink{yk}.
(b) Write a MATLAB program that will find the approximate location and value of

the extreme values of f (x) on the interval [a, b].
(c) Use your program from part (b) to find the approximate location and value of

the extreme values of the functions in Problems 1 and 2. Compare your approx-
imations with the actual values.

70 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

2.4 Newton-Raphson and Secant Methods

Slope Methods for Finding Roots
If f (x), f ′(x), and f ′′(x) are continuous near a root p, then this extra information
regarding the nature of f (x) can be used to develop algorithms that will produce se-
quences {pk} that converge faster to p than either the bisection or false position method.
The Newton-Raphson (or simply Newton’s) method is one of the most useful and best
known algorithms that relies on the continuity of f ′(x) and f ′′(x). We shall introduce
it graphically and then give a more rigorous treatment based on the Taylor polynomial.

Assume that the initial approximation p0 is near the root p. Then the graph of
y = f (x) intersects the x-axis at the point (p, 0), and the point (p0, f (p0)) lies on the
curve near the point (p, 0) (see Figure 2.13). Define p1 to be the point of intersection of
the x-axis and the line tangent to the curve at the point (p0, f (p0)). Then Figure 2.13
shows that p1 will be closer to p than p0 in this case. An equation relating p1 and p0
can be found if we write down two versions for the slope of the tangent line L:

(1) m = 0− f (p0)

p1 − p0
,

which is the slope of the line through (p1, 0) and (p0, f (p0)), and

(2) m = f ′(p0),

which is the slope at the point (p0, f (p0)). Equating the values of the slope m in
equations (1) and (2) and solving for p1 results in

(3) p1 = p0 − f (p0)

f ′ (p0)
.

y

y = f (x)

p p1 p0

p2

(p1, f (p1))
(p0 , f (p0))

x

Figure 2.13 The geometric construction of p1 and p2 for
the Newton-Raphson method.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 71

The process above can be repeated to obtain a sequence {pk} that converges to p.
We now make these ideas more precise.

Theorem 2.5 (Newton-Raphson Theorem). Assume that f ∈ C2[a, b] and there
exists a number p ∈ [a, b], where f (p) = 0. If f ′(p) �= 0, then there exists a δ > 0
such that the sequence {pk}∞k=0 defined by the iteration

(4) pk = g(pk−1) = pk−1 − f (pk−1)

f ′ (pk−1)
for k = 1, 2, . . .

will converge to p for any initial approximation p0 ∈ [p − δ, p + δ].
Remark. The function g(x) defined by the formula

(5) g(x) = x − f (x)

f ′(x)

is called the Newton-Raphson iteration function. Since f (p) = 0, it is easy to see
that g(p) = p. Thus the Newton-Raphson iteration for finding the root of the equation
f (x) = 0 is accomplished by finding a fixed point of the function g(x).

Proof. The geometric construction of p1 shown in Figure 2.13 does not help in un-
derstanding why p0 needs to be close to p or why the continuity of f ′′(x) is essential.
Our analysis starts with the Taylor polynomial of degree n = 1 and its remainder term:

(6) f (x) = f (p0)+ f ′ (p0)(x − p0)+ f ′′(c)(x − p0)
2

2! ,

where c lies somewhere between p0 and x . Substituting x = p into equation (6) and
using the fact that f (p) = 0 produces

(7) 0 = f (p0)+ f ′ (p0)(p − p0)+ f ′′(c)(p − p0)
2

2! .

If p0 is close enough to p, the last term on the right side of (7) will be small com-
pared to the sum of the first two terms. Hence it can be neglected and we can use the
approximation

(8) 0 ≈ f (p0)+ f ′(p0)(p − p0).

Solving for p in equation (8), we get p ≈ p0 − f (p0)/ f ′(p0). This is used to define
the next approximation p1 to the root

(9) p1 = p0 − f (p0)

f ′ (p0)
.

When pk−1 is used in place of p0 in equation (9), the general rule (4) is established. For
most applications this is all that needs to be understood. However, to fully comprehend

72 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

what is happening, we need to consider the fixed-point iteration function and apply
Theorem 2.2 in our situation. The key is in the analysis of g′(x):

g′ (x) = 1− f ′(x) f ′(x)− f (x) f ′′(x)

(f ′(x))2
= f (x) f ′′(x)

(f ′(x))2
.

By hypothesis, f (p) = 0; thus g′(p) = 0. Since g′(p) = 0 and g′(x) is continuous, it
is possible to find a δ > 0 so that the hypothesis |g′(x)| < 1 of Theorem 2.2 is satisfied
on (p − δ, p + δ). Therefore, a sufficient condition for p0 to initialize a convergent
sequence {pk}∞k=0, which converges to a root of f (x) = 0, is that p0 ∈ (p − δ, p + δ)

and that δ be chosen so that

•(10)
| f (x) f ′′(x)|
| f ′(x)|2 < 1 for all x ∈ (p − δ, p + δ).

Corollary 2.2 (Newton’s Iteration for Finding Square Roots). Assume that A > 0
is a real number and let p0 > 0 be an initial approximation to

√
A. Define the sequence

{pk}∞k=0 using the recursive rule

(11) pk =
pk−1 + A

pk−1

2
for k = 1, 2,

Then the sequence {pk}∞k=0 converges to
√

A; that is, limn→∞ pk =
√

A.

Outline of Proof. Start with the function f (x) = x2 − A, and notice that the roots of
the equation x2− A = 0 are ±√A. Now use f (x) and the derivative f ′(x) in formula
(5) and write down the Newton-Raphson iteration formula

(12) g(x) = x − f (x)

f ′(x)
= x − x2 − A

2x
.

This formula can be simplified to obtain

(13) g(x) =
x + A

x
2

.

When g(x) in (13) is used to define the recursive iteration in (4), the result is formula
(11). It can be proved that the sequence that is generated in (11) will converge for any
starting value p0 > 0. The details are left for the exercises. •

An important point of Corollary 2.2 is the fact that the iteration function g(x)

involved only the arithmetic operations +,−,×, and /. If g(x) had involved the cal-
culation of a square root, we would be caught in the circular reasoning that being able
to calculate the square root would permit you to recursively define a sequence that will
converge to

√
A. For this reason, f (x) = x2 − A was chosen, because it involved only

the arithmetic operations.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 73

Example 2.11. Use Newton’s square-root algorithm to find
√

5.
Starting with p0 = 2 and using formula (11), we compute

p1 = 2+ 5/2

2
= 2.25

p2 = 2.25+ 5/2.25

2
= 2.236111111

p3 = 2.236111111+ 5/2.236111111

2
= 2.236067978

p4 = 2.36067978+ 5/2.236067978

2
= 2.236067978.

Further iterations produce pk ≈ 2.236067978 for k > 4, so we see that convergence
accurate to nine decimal places has been achieved. �

Now let us turn to a familiar problem from elementary physics and see why de-
termining the location of a root is an important task. Suppose that a projectile is fired
from the origin with an angle of elevation b0 and initial velocity v0. In elementary
courses, air resistance is neglected and we learn that the height y = y(t) and the dis-
tance traveled x = x(t), measured in feet, obey the rules

(14) y = vyt − 16t2 and x = vx t,

where the horizontal and vertical components of the initial velocity are vx = v0 cos(b0)

and vy = v0 sin(b0), respectively. The mathematical model expressed by the rules
in (14) is easy to work with, but tends to give too high an altitude and too long a range
for the projectile’s path. If we make the additional assumption that the air resistance is
proportional to the velocity, the equations of motion become

(15) y = f (t) = (Cvy + 32C2)
(

1− e−t/C
)
− 32Ct

and

(16) x = r(t) = Cvx

(
1− e−t/C

)
,

where C = m/k and k is the coefficient of air resistance and m is the mass of the
projectile. A larger value of C will result in a higher maximum altitude and a longer
range for the projectile. The graph of a flight path of a projectile when air resistance is
considered is shown in Figure 2.14. This improved model is more realistic but requires
the use of a root-finding algorithm for solving f (t) = 0 to determine the elapsed time
until the projectile hits the ground. The elementary model in (14) does not require a
sophisticated procedure to find the elapsed time.

74 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

0
200 400 600 800 1000

100

200

300
(x, y) = (r (t), f (t))

y

x Figure 2.14 The path of a projec-
tile with air resistance considered.

Table 2.4 Finding the Time When the Height f (t) Is Zero

k Time, pk pk+1 − pk Height, f (pk)

0 8.00000000 0.79773101 83.22097200
1 8.79773101 −0.05530160 −6.68369700
2 8.74242941 −0.00025475 −0.03050700
3 8.74217467 −0.00000001 −0.00000100
4 8.74217466 0.00000000 0.00000000

Example 2.12. A projectile is fired with an angle of elevation b0 = 45◦, vy = vx =
160 ft/sec, and C = 10. Find the elapsed time until impact and find the range.

Using formulas (15) and (16), the equations of motion are y = f (t) = 4800(1 −
e−t/10) − 320t and x = r(t) = 1600(1 − e−t/10). Since f (8) = 83.220972 and f (9) =
−31.534367, we will use the initial guess p0 = 8. The derivative is f ′(t) = 480e−t/10 −
320, and its value f ′(p0) = f ′(8) = −104.3220972 is used in formula (4) to get

p1 = 8− 83.22097200

−104.3220972
= 8.797731010.

A summary of the calculation is given in Table 2.4.
The value p4 has eight decimal places of accuracy, and the time until impact is t ≈

8.74217466 seconds. The range can now be computed using r(t), and we get

r(8.74217466) = 1600
(

1− e−0.874217466
)
= 932.4986302 ft. �

Division-by-Zero Error

One obvious pitfall of the Newton-Raphson method is the possibility of division by
zero in formula (4), which would occur if f ′(pk−1) = 0. Program 2.5 has a procedure

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 75

to check for this situation, but what use is the last calculated approximation pk−1 in
this case? It is quite possible that f (pk−1) is sufficiently close to zero and that pk−1
is an acceptable approximation to the root. We now investigate this situation and will
uncover an interesting fact, that is, how fast the iteration converges.

Definition 2.4. Assume that f (x) and its derivatives f ′(x), . . . , f (M)(x) are defined
and continuous on an interval about x = p. We say that f (x) = 0 has a root of order
M at x = p if and only if

(17) f (p) = 0, f ′(p) = 0, . . . , f (M−1)(p) = 0, and f (M)(p) �= 0.

A root of order M = 1 is often called a simple root, and if M > 1, it is called a
multiple root. A root of order M = 2 is sometimes called a double root, and so on.
The next result will illuminate these concepts. �

Lemma 2.1. If the equation f (x) = 0 has a root of order M at x = p, then there
exists a continuous function h(x) so that f (x) can be expressed as the product

(18) f (x) = (x − p)M h(x), where h(p) �= 0.

Example 2.13. The function f (x) = x3 − 3x + 2 has a simple root at p = −2 and a
double root at p = 1. This can be verified by considering the derivatives f ′(x) = 3x2 − 3
and f ′′(x) = 6x . At the value p = −2, we have f (−2) = 0 and f ′(−2) = 9, so
M = 1 in Definition 2.4; hence p = −2 is a simple root. For the value p = 1, we have
f (1) = 0, f ′(1) = 0, and f ′′(1) = 6, so M = 2 in Definition 2.4; hence p = 1 is a double
root. Also, notice that f (x) has the factorization f (x) = (x + 2)(x − 1)2. �

Speed of Convergence

The distinguishing property we seek is the following. If p is a simple root of f (x) = 0,
Newton’s method will converge rapidly, and the number of accurate decimal places
(roughly) doubles with each iteration. On the other hand, if p is a multiple root, the
error in each successive approximation is a fraction of the previous error. To make
this precise, we define the order of convergence. This is a measure of how rapidly a
sequence converges.

Definition 2.5. Assume that {pn}∞n=0 converges to p and set En = p− pn for n ≥ 0.
If two positive constants A �= 0 and R > 0 exist, and

(19) lim
n→∞

|p − pn+1|
|p − pn|R = lim

n→∞
|En+1|
|En|R = A,

76 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Table 2.5 Newton’s Method Converges Quadratically at a Simple Root

k pk pk+1 − pk Ek = p − pk
|Ek+1|
|Ek |2

0 −2.400000000 0.323809524 0.400000000 0.476190475
1 −2.076190476 0.072594465 0.076190476 0.619469086
2 −2.003596011 0.003587422 0.003596011 0.664202613
3 −2.000008589 0.000008589 0.000008589
4 −2.000000000 0.000000000 0.000000000

then the sequence is said to converge to p with order of convergence R. The num-
ber A is called the asymptotic error constant. The cases R = 1, 2 are given special
consideration.

If R = 1, the convergence of {pn}∞n=0 is called linear.(20)

If R = 2, the convergence of {pn}∞n=0 is called quadratic. �
If R is large, the sequence {pn} converges rapidly to p; that is, relation (19) implies

that for large values of n we have the approximation |En+1| ≈ A|En|R . For example,
suppose that R = 2 and |En| ≈ 10−2; then we would expect that |En+1| ≈ A × 10−4.

Some sequences converge at a rate that is not an integer, and we will see that the
order of convergence of the secant method is R = (1+√5)/2 ≈ 1.618033989.

Example 2.14 (Quadratic Convergence at a Simple Root). Start with p0 = −2.4
and use Newton-Raphson iteration to find the root p = −2 of the polynomial f (x) =
x3 − 3x + 2. The iteration formula for computing {pk} is

(21) pk = g(pk−1) =
2p3

k−1 − 2

3p2
k−1 − 3

.

Using formula (19) with R = 2 to check for quadratic convergence, we get the values in
Table 2.5. �

A detailed look at the rate of convergence in Example 2.14 will reveal that the error
in each successive iteration is proportional to the square of the error in the previous
iteration. That is,

|p − pk+1| ≈ A|p − pk |2,
where A ≈ 2/3. To check this, we use

|p − p3| = 0.000008589 and |p − p2|2 = |0.003596011|2 = 0.000012931

and it is easy to see that

|p − p3| = 0.000008589 ≈ 0.000008621 = 2

3
|p − p2|2.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 77

Table 2.6 Newton’s Method Converges Linearly at a Double Root

k pk pk+1 − pk Ek = p − pk
|Ek+1|
|Ek |

0 1.200000000 −0.096969697 −0.200000000 0.515151515
1 1.103030303 −0.050673883 −0.103030303 0.508165253
2 1.052356420 −0.025955609 −0.052356420 0.496751115
3 1.026400811 −0.013143081 −0.026400811 0.509753688
4 1.013257730 −0.006614311 −0.013257730 0.501097775
5 1.006643419 −0.003318055 −0.006643419 0.500550093
...

...
...

...
...

Example 2.15 (Linear Convergence at a Double Root). Start with p0 = 1.2 and use
Newton-Raphson iteration to find the double root p = 1 of the polynomial f (x) = x3 −
3x + 2. Using formula (20) to check for linear convergence, we get the values in Table 2.6.

�

Notice that the Newton-Raphson method is converging to the double root, but at
a slow rate. The values of f (pk) in Example 2.15 go to zero faster than the values
of f ′(pk), so the quotient f (pk)/ f ′ (pk) in formula (4) is defined when pk �= p.
The sequence is converging linearly, and the error is decreasing by a factor of approx-
imately 1/2 with each successive iteration. The following theorem summarizes the
performance of Newton’s method on simple and double roots.

Theorem 2.6 (Convergence Rate for Newton-Raphson Iteration). Assume that
Newton-Raphson iteration produces a sequence {pn}∞n=0 that converges to the root p
of the function f (x). If p is a simple root, convergence is quadratic and

(22) |En+1| ≈ | f ′′(p)|
2| f ′(p)| |En|2 for n sufficiently large.

If p is a multiple root of order M , convergence is linear and

(23) |En+1| ≈ M − 1

M
|En| for n sufficiently large.

Pitfalls

The division-by-zero error was easy to anticipate, but there are other difficulties that
are not so easy to spot. Suppose that the function is f (x) = x2 − 4x + 5; then the
sequence {pk} of real numbers generated by formula (4) will wander back and forth
from left to right and not converge. A simple analysis of the situation reveals that
f (x) > 0 and has no real roots.

78 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

y

x

0.3

0.2

0.1

0.0
p0 = 2 p1 = 4 p2 p3

6

y = xe
-x

Figure 2.15 (a) Newton-Raphson iteration for f (x) =
xe−x can produce a divergent sequence.

Sometimes the initial approximation p0 is too far away from the desired root and
the sequence {pk} converges to some other root. This usually happens when the slope
f ′(p0) is small and the tangent line to the curve y = f (x) is nearly horizontal. For
example, if f (x) = cos(x) and we seek the root p = π/2 and start with p0 = 3,
calculation reveals that p1 = −4.01525255, p2 = −4.85265757, . . . , and {pk} will
converge to a different root −3π/2 ≈ −4.71238898.

Suppose that f (x) is positive and monotone decreasing on the unbounded interval
[a,∞) and p0 > a; then the sequence {pk} might diverge to +∞. For example, if
f (x) = xe−x and p0 = 2.0, then

p1 = 4.0, p2 = 5.333333333, . . . , p15 = 19.723549434, . . . ,

and {pk} diverges slowly to +∞ (see Figure 2.15(a)). This particular function has
another surprising problem. The value of f (x) goes to zero rapidly as x gets large, for
example, f (p15) = 0.0000000536, and it is possible that p15 could be mistaken for a
root. For this reason we designed the stopping criterion in Program 2.5 to involve the
relative error 2|pk+1 − pk |/(|pk |+10−6), and when k = 15, this value is 0.106817, so
the tolerance δ = 10−6 will help guard against reporting a false root.

Another phenomenon, cycling, occurs when the terms in the sequence {pk} tend to
repeat or almost repeat. For example, if f (x) = x3−x−3 and the initial approximation
is p0 = 0, then the sequence is

p1 = −3.000000, p2 = −1.961538, p3 = −1.147176, p4 = −0.006579,

p5 = −3.000389, p6 = −1.961818, p7 = −1.147430, . . .

and we are stuck in a cycle where pk+4 ≈ pk for k = 0, 1, . . . (see Figure 2.15(b)).
But if the starting value p0 is sufficiently close to the root p ≈ 1.671699881, then {pk}

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 79

p1 p2 p3 p0 1
x

−5

−10

−15

−20

−25

y = x3 − x − 3

Figure 2.15 (b) Newton-Raphson iteration for f (x) =
x3 − x − 3 can produce a cyclic sequence.

y

x
−3

1

−2 −1

y = arctan(x)

−1

1 2p1

p2

p3

p0

Figure 2.15 (c) Newton-Raphson iteration for f (x) =
arctan(x) can produce a divergent oscillating sequence.

converges. If p0 = 2, the sequence converges: p1 = 1.72727272, p2 = 1.67369173,
p3 = 1.671702570, and p4 = 1.671699881.

When |g′(x)| ≥ 1 on an interval containing the root p, there is a chance of di-
vergent oscillation. For example, let f (x) = arctan(x); then the Newton-Raphson
iteration function is g(x) = x − (1+ x2) arctan(x), and g′(x) = −2x arctan(x). If the
starting value p0 = 1.45 is chosen, then

p1 = −1.550263297, p2 = 1.845931751, p3 = −2.889109054,

etc. (see Figure 2.15(c)). But if the starting value is sufficiently close to the root p = 0,

80 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

x

y

y = f (x)

(p, 0)

(p1, f (p1))
(p0, f (p0))

p1 p0p2

Figure 2.16 The geometric construction of p2 for the se-
cant method.

a convergent sequence results. If p0 = 0.5, then

p1 = −0.079559511, p2 = 0.000335302, p3 = 0.000000000.

The situations above point to the fact that we must be honest in reporting an answer.
Sometimes the sequence does not converge. It is not always the case that after N
iterations a solution is found. The user of a root-finding algorithm needs to be warned
of the situation when a root is not found. If there is other information concerning
the context of the problem, then it is less likely that an erroneous root will be found.
Sometimes f (x) has a definite interval in which a root is meaningful. If knowledge
of the behavior of the function or an “accurate” graph is available, then it is easier to
choose p0.

Secant Method

The Newton-Raphson algorithm requires the evaluation of two functions per iteration,
f (pk−1) and f ′(pk−1). Traditionally, the calculation of derivatives of elementary func-
tions could involve considerable effort. But with modern computer algebra software
packages, this has become less of an issue. Still many functions have nonelementary
forms (integrals, sums, etc.), and it is desirable to have a method that converges almost
as fast as Newton’s method yet involves only evaluations of f (x) and not of f ′(x).
The secant method will require only one evaluation of f (x) per step and at a simple
root has an order of convergence R ≈ 1.618033989. It is almost as fast as Newton’s
method, which has order 2.

The formula involved in the secant method is the same one that was used in the
regula falsi method, except that the logical decisions regarding how to define each
succeeding term are different. Two initial points (p0, f (p0)) and (p1, f (p1)) near
the point (p, 0) are needed, as shown in Figure 2.16. Define p2 to be the abscissa

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 81

Table 2.7 Convergence of the Secant Method at a Simple Root

k pk pk+1 − pk Ek = p − pk
|Ek+1|
|Ek |1.618

0 −2.600000000 0.200000000 0.600000000 0.914152831
1 −2.400000000 0.293401015 0.400000000 0.469497765
2 −2.106598985 0.083957573 0.106598985 0.847290012
3 −2.022641412 0.021130314 0.022641412 0.693608922
4 −2.001511098 0.001488561 0.001511098 0.825841116
5 −2.000022537 0.000022515 0.000022537 0.727100987
6 −2.000000022 0.000000022 0.000000022
7 −2.000000000 0.000000000 0.000000000

of the point of intersection of the line through these two points and the x-axis; then
Figure 2.16 shows that p2 will be closer to p than to either p0 or p1. The equation
relating p2, p1, and p0 is found by considering the slope

(24) m = f (p1)− f (p0)

p1 − p0
and m = 0− f (p1)

p2 − p1
.

The values of m in (25) are the slope of the secant line through the first two approxi-
mations and the slope of the line through (p1, f (p1)) and (p2, 0), respectively. Set the
right-hand sides equal in (25) and solve for p2 = g(p1, p0) and get

(25) p2 = g(p1, p0) = p1 − f (p1)(p1 − p0)

f (p1)− f (p0)
.

The general term is given by the two-point iteration formula

(26) pk+1 = g(pk, pk−1) = pk − f (pk)(pk − pk−1)

f (pk)− f (pk−1)
.

Example 2.16 (Secant Method at a Simple Root). Start with p0 = −2.6 and
p1 = −2.4 and use the secant method to find the root p = −2 of the polynomial function
f (x) = x3 − 3x + 2.

In this case the iteration formula (27) is

(27) pk+1 = g(pk, pk−1) = pk − (p3
k − 3pk + 2)(pk − pk−1)

p3
k − p3

k−1 − 3pk + 3pk−1
.

This can be algebraically manipulated to obtain

(28) pk+1 = g(pk, pk−1) =
p2

k pk−1 + pk p2
k−1 − 2

p2
k + pk pk−1 + p2

k−1 − 3
.

The sequence of iterates is given in Table 2.7. �

82 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

There is a relationship between the secant method and Newton’s method. For a
polynomial function f (x), the secant method two-point formula pk+1 = g(pk, pk−1)

will reduce to Newton’s one-point formula pk+1 = g(pk) if pk is replaced by pk−1.
Indeed, if we replace pk by pk−1 in (29), then the right side becomes the same as the
right side of (22) in Example 2.14.

Proofs about the rate of convergence of the secant method can be found in advanced
texts on numerical analysis. Let us state that the error terms satisfy the relationship

(29) |Ek+1| ≈ |Ek |1.618
∣∣∣∣ f ′′(p)

2 f ′(p)

∣∣∣∣0.618

where the order of convergence is R = (1+√5)/2 ≈ 1.618 and the relation in (30) is
valid only at simple roots.

To check this, we make use of Example 2.16 and the specific values

|p − p5| = 0.000022537

|p − p4|1.618 = 0.0015110981.618 = 0.000027296,

and

A = | f ′′(−2)/2 f ′(−2)|0.618 = (2/3)0.618 = 0.778351205.

Combine these and it is easy to see that

|p − p5| = 0.000022537 ≈ 0.000021246 = A|p − p4|1.618.

Accelerated Convergence

We could hope that there are root-finding techniques that converge faster than linearly
when p is a root of order M . Our final result shows that a modification can be made to
Newton’s method so that convergence becomes quadratic at a multiple root.

Theorem 2.7 (Acceleration of Newton-Raphson Iteration). Suppose that the
Newton-Raphson algorithm produces a sequence that converges linearly to the root
x = p of order M > 1. Then the Newton-Raphson iteration formula

(30) pk = pk−1 − M f (pk−1)

f ′(pk−1)

will produce a sequence {pk}∞k=0 that converges quadratically to p.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 83

Table 2.8 Acceleration of Convergence at a Double Root

k pk pk+1 − pk Ek = p − pk
|Ek+1|
|Ek |2

0 1.200000000 −0.193939394 −0.200000000 0.151515150
1 1.006060606 −0.006054519 −0.006060606 0.165718578
2 1.000006087 −0.000006087 −0.000006087
3 1.000000000 0.000000000 0.000000000

Table 2.9 Comparison of the Speed of Convergence

Method
Special

considerations
Relation between

successive error terms

Bisection Ek+1 ≈ 1
2 |Ek |

Regula falsi Ek+1 ≈ A|Ek |
Secant method Multiple root Ek+1 ≈ A|Ek |
Newton-Raphson Multiple root Ek+1 ≈ A|Ek |
Secant method Simple root Ek+1 ≈ A|Ek |1.618

Newton-Raphson Simple root Ek+1 ≈ A|Ek |2
Accelerated Multiple root Ek+1 ≈ A|Ek |2

Newton-Raphson

Example 2.17 (Acceleration of Convergence at a Double Root). Start with p0 = 1.2
and use accelerated Newton-Raphson iteration to find the double root p = 1 of f (x) =
x3 − 3x + 2.

Since M = 2, the acceleration formula (31) becomes

pk = pk−1 − 2
f (pk−1)

f ′(pk−1)
= p3

k−1 + 3pk−1 − 4

3p2
k−1 − 3

,

and we obtain the values in Table 2.8. �

Table 2.9 compares the speed of convergence of the various root-finding methods
that we have studied so far. The value of the constant A is different for each method.

84 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Program 2.5 (Newton-Raphson Iteration). To approximate a root of f (x) = 0
given one initial approximation p0 and using the iteration

pk = pk−1 − f (pk−1)

f ′ (pk−1)
for k = 1, 2,

function [p0,err,k,y]=newton(f,df,p0,delta,epsilon,max1)
%Input - f is the object function input as a string ’f’
% - df is the derivative of f input as a string ’df’
% - p0 is the initial approximation to a zero of f
% - delta is the tolerance for p0
% - epsilon is the tolerance for the function values y
% - max1 is the maximum number of iterations
%Output - p0 is the Newton-Raphson approximation to the zero
% - err is the error estimate for p0
% - k is the number of iterations
% - y is the function value f(p0)

for k=1:max1
p1=p0-feval(f,p0)/feval(df,p0);
err=abs(p1-p0);
relerr=2*err/(abs(p1)+delta);
p0=p1;
y=feval(f,p0);
if (err<delta)|(relerr<delta)|(abs(y)<epsilon),break,end

end

Program 2.6 (Secant Method). To approximate a root of f (x) = 0 given two
initial approximations p0 and p1 and using the iteration

pk+1 = pk − f (pk)(pk − pk−1)

f (pk)− f (pk−1)
for k = 1, 2,

function [p1,err,k,y]=secant(f,p0,p1,delta,epsilon,max1)
%Input - f is the object function input as a string ’f’
% - p0 and p1 are the initial approximations to a zero
% - delta is the tolerance for p1
% - epsilon is the tolerance for the function values y
% - max1 is the maximum number of iterations
%Output - p1 is the secant method approximation to the zero
% - err is the error estimate for p1
% - k is the number of iterations
% - y is the function value f(p1)

for k=1:max1

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 85

p2=p1-feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
err=abs(p2-p1);
relerr=2*err/(abs(p2)+delta);
p0=p1;
p1=p2;
y=feval(f,p1);
if (err<delta)|(relerr<delta)|(abs(y)<epsilon),break,end

end

Exercises for Newton-Raphson and Secant Methods

For problems involving calculations, you can use either a calculator or a computer.

1. Let f (x) = x2 − x + 2.

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) Start with p0 = −1.5 and find p1, p2, and p3.

2. Let f (x) = x2 − x − 3.

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) Start with p0 = 1.6 and find p1, p2, and p3.

(c) Start with p0 = 0.0 and find p1, p2, p3, and p4. What do you conjecture about
this sequence?

3. Let f (x) = (x − 2)4.

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) Start with p0 = 2.1 and find p1, p2, p3, and p4.

(c) Is the sequence converging quadratically or linearly?

4. Let f (x) = x3 − 3x − 2.

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) Start with p0 = 2.1 and find p1, p2, p3, and p4.

(c) Is the sequence converging quadratically or linearly?

5. Consider the function f (x) = cos(x).

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) We want to find the root p = 3π/2. Can we use p0 = 3? Why?

(c) We want to find the root p = 3π/2. Can we use p0 = 5? Why?

6. Consider the function f (x) = arctan(x).

(a) Find the Newton-Raphson formula pk = g(pk−1).

(b) If p0 = 1.0, then find p1, p2, p3, and p4. What is limn→∞ pk?

(c) If p0 = 2.0, then find p1, p2, p3, and p4. What is limn→∞ pk?

86 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

7. Consider the function f (x) = xe−x .
(a) Find the Newton-Raphson formula pk = g(pk−1).
(b) If p0 = 0.2, then find p1, p2, p3, and p4. What is limn→∞ pk?
(c) If p0 = 20, then find p1, p2, p3, and p4. What is limn→∞ pk?
(d) What is the value of f (p4) in part (c)?

In Exercises 8 through 10, use the secant method and formula (27) and compute the next
two iterates p2 and p3.

8. Let f (x) = x2 − 2x − 1. Start with p0 = 2.6 and p1 = 2.5.

9. Let f (x) = x2 − x − 3. Start with p0 = 1.7 and p1 = 1.67.

10. Let f (x) = x3 − x + 2. Start with p0 = −1.5 and p1 = −1.52.

11. Cube-root algorithm. Start with f (x) = x3 − A, where A is any real number, and
derive the recursive formula

pk =
2pk−1 + A/p2

k−1

3
for k = 1, 2,

12. Consider f (x) = x N − A, where N is a positive integer.
(a) What real values are the solution to f (x) = 0 for the various choices of N and

A that can arise?
(b) Derive the recursive formula

pk =
(N − 1)pk−1 + A/pN−1

k−1

N
for k = 1, 2,

for finding the N th root of A.

13. Can Newton-Raphson iteration be used to solve f (x) = 0 if f (x) = x2 − 14x + 50?
Why?

14. Can Newton-Raphson iteration be used to solve f (x) = 0 if f (x) = x1/3? Why?

15. Can Newton-Raphson iteration be used to solve f (x) = 0 if f (x) = (x − 3)1/2 and
the starting value is p0 = 4? Why?

16. Establish the limit of the sequence in (11).

17. Prove that the sequence {pk} in equation (4) of Theorem 2.5 converges to p. Use the
following steps.
(a) Show that if p is a fixed point of g(x) in equation (5), then p is a zero of f (x).
(b) If p is a zero of f (x) and f ′(p) �= 0, show that g′(p) = 0. Use part (b) and

Theorem 2.3 to show that the sequence {pk} in equation (4) converges to p.

18. Prove equation (23) of Theorem 2.6. Use the following steps. By Theorem 1.11, we
can expand f (x) about x = pk to get

f (x) = f (pk)+ f ′(pk)(x − pk)+ 1

2
f ′′(ck)(x − pk)

2.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 87

Since p is a zero of f (x), we set x = p and obtain

0 = f (pk)+ f ′(pk)(p − pk)+ 1

2
f ′′(ck)(p − pk)

2.

(a) Now assume that f ′(x) �= 0 for all x near the root p. Use the facts given above
and f ′(pk) �= 0 to show that

p − pk + f (pk)

f ′(pk)
= − f ′′(ck)

2 f ′(pk)
(p − pk)

2.

(b) Assume that f ′(x) and f ′′(x) do not change too rapidly so that we can use the
approximations f ′(pk) ≈ f ′(p) and f ′′(ck) ≈ f ′′(p). Now use part (a) to get

Ek+1 ≈ − f ′′(p)

2 f ′(p)
E2

k .

19. Suppose that A is a positive real number.
(a) Show that A has the representation A = q × 22m , where 1/4 ≤ q < 1 and m is

an integer.
(b) Use part (a) to show that the square root is A1/2 = q1/2 × 2m . Remark. Let

p0 = (2q + 1)/3, where 1/4 ≤ q < 1, and use Newton’s formula (11). After
three iterations, p3 will be an approximation to q1/2 with a precision of 24
binary digits. This is the algorithm that is often used in the computer’s hardware
to compute square roots.

20. (a) Show that formula (27) for the secant method is algebraically equivalent to

pk+1 = pk−1 f (pk)− pk f (pk−1)

f (pk)− f (pk−1)
.

(b) Explain why loss of significance in subtraction makes this formula inferior for
computational purposes to the one given in formula (27).

21. Suppose that p is a root of order M = 2 for f (x) = 0. Prove that the accelerated
Newton-Raphson iteration

pk = pk−1 − 2 f (pk−1)

f ′(pk−1)

converges quadratically (see Exercise 18).

22. Halley’s method is another way to speed up convergence of Newton’s method. The
Halley iteration formula is

g(x) = x − f (x)

f ′(x)

[
1− f (x) f ′′(x)

2(f ′(x))2

]−1

.

The term in brackets is the modification of the Newton-Raphson formula. Halley’s
method will yield cubic convergence (R = 3) at simple zeros of f (x).
(a) Start with f (x) = x2 − A and find Halley’s iteration formula g(x) for find-

ing
√

A. Use p0 = 2 to approximate
√

5 and compute p1, p2, and p3.

88 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

(b) Start with f (x) = x3 − 3x + 2 and find Halley’s iteration formula g(x). Use
p0 = −2.4 and compute p1, p2, and p3.

23. Modified Newton-Raphson method for multiple roots. If p is a root of multiplic-
ity M , then f (x) = (x − p)Mq(x), where q(p) �= 0.
(a) Show that h(x) = f (x)/ f ′(x) has a simple root at p.
(b) Show that when the Newton-Raphson method is applied to finding the simple

root p of h(x), we get g(x) = x − h(x)/h′(x), which becomes

g(x) = x − f (x) f ′(x)

(f ′(x))2 − f (x) f ′′(x)
.

(c) The iteration using g(x) in part (b) converges quadratically to p. Explain why
this happens.

(d) Zero is a root of multiplicity 3 for the function f (x) = sin(x3). Start with
p0 = 1 and compute p1, p2, and p3 using the modified Newton-Raphson
method.

24. Suppose that an iterative method for solving f (x) = 0 produces the following four
consecutive error terms (see Example 2.14): E0 = 0.400000, E1 = 0.043797, E2 =
0.000062, and E3 = 0.000000. Estimate the asymptotic error constant A and the
order of convergence R of the sequence generated by the iterative method.

Algorithms and Programs

1. Modify Programs 2.5 and 2.6 to display an appropriate error message when (a) di-
vision by zero occurs in (4) or (27), respectively, or (b) the maximum number of
iterations, max1, is exceeded.

2. It is often instructive to display the terms in the sequences generated by (4) and (27)
(i.e., the second column of Table 2.4). Modify Programs 2.5 and 2.6 to display the
sequences generated by (4) and (27), respectively.

3. Modify Program 2.5 to use Newton’s square-root algorithm to approximate each of
the following square roots to 10 decimal places.
(a) Start with p0 = 3 and approximate

√
8.

(b) Start with p0 = 10 and approximate
√

91.
(c) Start with p0 = −3 and approximate −√8.

4. Modify Program 2.5 to use the cube-root algorithm in Exercise 11 to approximate
each of the following cube roots to 10 decimal places.
(a) Start with p0 = 2 and approximate 71/3.
(b) Start with p0 = 6 and approximate 2001/3.
(c) Start with p0 = −2 and approximate (−7)1/3.

SEC. 2.4 NEWTON-RAPHSON AND SECANT METHODS 89

5. Modify Program 2.5 to use the accelerated Newton-Raphson algorithm in Theo-
rem 2.7 to find the root p of order M of each of the following functions.

(a) f (x) = (x − 2)5, M = 5, p = 2; start with p0 = 1.

(b) f (x) = sin(x3), M = 3, p = 0; start with p0 = 1.

(c) f (x) = (x − 1) ln(x), M = 2, p = 1; start with p0 = 2.

6. Modify Program 2.5 to use Halley’s method in Exercise 22 to find the simple zero of
f (x) = x3 − 3x + 2, using p0 = −2.4.

7. Suppose that the equations of motion for a projectile are

y = f (t) = 9600(1− e−t/15)− 480t

x = r(t) = 2400(1− e−t/15).

(a) Find the elapsed time until impact accurate to 10 decimal places.

(b) Find the range accurate to 10 decimal places.

8. (a) Find the point on the parabola y = x2 that is closest to the point (3, 1) accurate
to 10 decimal places.

(b) Find the point on the graph of y = sin(x − sin(x)) that is closest to the point
(2.1, 0.5) accurate to 10 decimal places.

(c) Find the value of x at which the minimum vertical distance between the graphs
of f (x) = x2 + 2 and g(x) = (x/5) − sin(x) occurs accurate to 10 decimal
places.

9. An open-top box is constructed from a rectangular piece of sheet metal measuring 10
by 16 inches. Squares of what size (accurate to 0.000000001 inch) should be cut from
the corners if the volume of the box is to be 100 cubic inches?

10. A catenary is the curve formed by a hanging cable. Assume that the lowest point is
(0, 0); then the formula for the catenary is y = C cosh(x/C) − C . To determine the
catenary that goes through (±a, b) we must solve the equation b = C cosh(a/C)−C
for C .

(a) Show that the catenary through (±10, 6) is y = 9.1889 cosh(x/9.1889) −
9.1889.

(b) Find the catenary that passes through (±12, 5).

90 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

2.5 Aitken’s Process and Steffensen’s and Muller’s
Methods (Optional)

In Section 2.4 we saw that Newton’s method converged slowly at a multiple root and
the sequence of iterates {pk} exhibited linear convergence. Theorem 2.7 showed how
to speed up convergence, but it depends on knowing the order of the root in advance.

Aitken’s Process

A technique called Aitken’s �2 process can be used to speed up convergence of any
sequence that is linearly convergent. In order to proceed, we will need a definition.

Definition 2.6. Given the sequence {pn}∞n=0, define the forward difference �pn by

(1) �pn = pn+1 − pn for n ≥ 0.

Higher powers �k pn are defined recursively by

�(2) �k pn = �k−1(�pn) for k ≥ 2.

Theorem 2.8 (Aitken’s Acceleration). Assume that the sequence {pn}∞n=0 con-
verges linearly to the limit p and that p − pn �= 0 for all n ≥ 0. If there exists a
real number A with |A| < 1 such that

(3) lim
n→∞

p − pn+1

p − pn
= A,

then the sequence {qn}∞n=0 defined by

(4) qn = pn − (�pn)
2

�2 pn
= pn − (pn+1 − pn)

2

pn+2 − 2pn+1 + pn

converges to p faster than {pn}∞n=0, in the sense that

(5) lim
n→∞

∣∣∣∣ p − qn

p − pn

∣∣∣∣ = 0.

Proof. We will show how to derive formula (4) and will leave the proof of (5) as an
exercise. Since the terms in (3) are approaching a limit, we can write

(6)
p − pn+1

p − pn
≈ A and

p − pn+2

p − pn+1
≈ A when n is large.

The relations in (6) imply that

(7) (p − pn+1)
2 ≈ (p − pn+2) (p − pn) .

SEC. 2.5 AITKEN’S PROCESS AND STEFFENSEN’S AND MULLER’S METHODS 91

Table 2.10 Linearly Convergent Sequence {pn}

n pn En = pn − p An =
En

En−1

1 0.606530660 0.039387369 −0.586616609
2 0.545239212 −0.021904079 −0.556119357
3 0.579703095 0.012559805 −0.573400269
4 0.560064628 −0.007078663 −0.563596551
5 0.571172149 0.004028859 −0.569155345
6 0.564862947 −0.002280343 −0.566002341

Table 2.11 Derived Sequence {qn} Using
Aitken’s Process

n qn qn − p

1 0.567298989 0.000155699
2 0.567193142 0.000049852
3 0.567159364 0.000016074
4 0.567148453 0.000005163
5 0.567144952 0.000001662
6 0.567143825 0.000000534

When both sides of (7) are expanded and the terms p2 are canceled, the result is

(8) p ≈ pn+2 pn − p2
n+1

pn+2 − 2pn+1 + pn
= qn for n = 0, 1,

The formula in (8) is used to define the term qn . It can be rearranged algebraically to
obtain formula (4), which has less error propagation when computer calculations are
made. •

Example 2.18. Show that the sequence {pn} in Example 2.2 exhibits linear convergence,
and show that the sequence {qn} obtained by Aitken’s �2 process converges faster.

The sequence {pn} was obtained by fixed-point iteration using the function g(x) =
e−x and starting with p0 = 0.5. After convergence has been achieved, the limit is P ≈
0.567143290. The values pn and qn are given in Tables 2.10 and 2.11. For illustration, the
value of q1is given by the calculation

q1 = p1 − (p2 − p1)
2

p3 − 2p2 + p1

= 0.606530660− (−0.061291448)2

0.095755331
= 0.567298989. �

92 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

(p1, f (p1))

(p0, f (p0))

(p2, f (p2))

p0
t = h0

h1

h0

p1
t = h1

p2
t = 0

p3
t = z

y = f (x)

Figure 2.17 The starting approximations p0, p1, and p2 for Muller’s method, and the
differences h0 and h1.

Although the sequence {qn} in Table 2.11 converges linearly, it converges faster
than {pn} in the sense of Theorem 2.8, and usually Aitken’s method gives a better
improvement than this. When Aitken’s process is combined with fixed-point iteration,
the result is called Steffensen’s acceleration. The details are given in Program 2.7 and
in the exercises.

Muller’s Method
Muller’s method is a generalization of the secant method, in the sense that it does
not require the derivative of the function. It is an iterative method that requires three
starting points (p0, f (p0)), (p1, f (p1)), and (p2, f (p2)). A parabola is constructed
that passes through the three points; then the quadratic formula is used to find a root
of the quadratic for the next approximation. It has been proved that near a simple
root Muller’s method converges faster than the secant method and almost as fast as
Newton’s method. The method can be used to find real or complex zeros of a function
and can be programmed to use complex arithmetic.

Without loss of generality, we assume that p2 is the best approximation to the
root and consider the parabola through the three starting values, shown in Figure 2.17.
Make the change of variable

(9) t = x − p2,

and use the differences

(10) h0 = p0 − p2 and h1 = p1 − p2.

Consider the quadratic polynomial involving the variable t :

(11) y = at2 + bt + c.

SEC. 2.5 AITKEN’S PROCESS AND STEFFENSEN’S AND MULLER’S METHODS 93

Each point is used to obtain an equation involving a, b, and c:

(12)

At t = h0: ah2
0 + bh0 + c = f0,

At t = h1: ah2
1 + bh1 + c = f1,

At t = 0: a02 + b0 + c = f2.

From the third equation in (12), we see that

(13) c = f2.

Substituting (13) into the first two equations in (12) and using the definition e0 = f0−c
and e1 = f1 − c results in the linear system

(14)
ah2

0 + bh0 = f0 − c = e0,

ah2
1 + bh1 = f1 − c = e1.

Solving the linear system for a and b results in

(15)

a = e0h1 − e1h0

h1h2
0 − h0h2

1

b = e1h2
0 − e0h2

1

h1h2
0 − h0h2

1

.

The quadratic formula is used to find the roots t = z1, z2 of (11):

(16) z = −2c

b ±√b2 − 4ac
.

Formula (16) is equivalent to the standard formula for the roots of a quadratic and is
better in this case because we know that c = f2.

To ensure the stability of the method, we choose the root in (16) that has the small-
est absolute value. If b > 0, use the positive sign with the square root, and if b < 0,
use the negative sign. Then p3 is shown in Figure 2.17 and is given by

(17) p3 = p2 + z.

To update the iterates, choose the new p0 and the new p1 to be the two values
selected from among the old {p0, p1, p3} that lie closest to p3 (i.e., throw out the one
that is farthest away). Then take new p2 to be old p3. Although a lot of auxiliary
calculations are done in Muller’s method, it only requires one function evaluation per
iteration.

If Muller’s method is used to find the real roots of f (x) = 0, it is possible that
one may encounter complex approximations, because the roots of the quadratic in (16)
might be complex (nonzero imaginary components). In these cases the imaginary com-
ponents will have a small magnitude and can be set equal to zero so that the calculations
proceed with real numbers.

94 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Table 2.12 Comparison of Convergence near a Simple Root

k
Secant
method

Muller’s
method

Newton’s
method

Steffensen
with Newton

0 −2.600000000 −2.600000000 −2.400000000 −2.400000000
1 −2.400000000 −2.500000000 −2.076190476 −2.076190476
2 −2.106598985 −2.400000000 −2.003596011 −2.003596011
3 −2.022641412 −1.985275287 −2.000008589 −1.982618143
4 −2.001511098 −2.000334062 −2.000000000 −2.000204982
5 −2.000022537 −2.000000218 −2.000000028
6 −2.000000022 −2.000000000 −2.000002389
7 −2.000000000 −2.000000000

Comparison of Methods

Steffensen’s method can be used together with the Newton-Raphson fixed-point func-
tion g(x) = x − f (x)/ f ′(x). In the next two examples we look at the roots of
the polynomial f (x) = x3 − 3x + 2. The Newton-Raphson function is g(x) =
(2x3 − 2)/(3x2 − 3). When this function is used in Program 2.7, we get the calcula-
tions under the heading Steffensen with Newton in Tables 2.12 and 2.13. For example,
starting with p0 = −2.4, we would compute

p1 = g(p0) = −2.076190476,(18)

and

p2 = g(p1) = −2.003596011.(19)

Then Aitken’s improvement will give p3 = −1.982618143.

Example 2.19 (Convergence near a Simple Root). This is a comparison of methods
for the function f (x) = x3 − 3x + 2 near the simple root p = −2.

Newton’s method and the secant method for this function were given in Examples 2.14
and 2.16, respectively. Table 2.12 provides a summary of calculations for the methods. �

Example 2.20 (Convergence near a Double Root). This is a comparison of the methods
for the function f (x) = x3 − 3x + 2 near the double root p = 1. Table 2.13 provides a
summary of calculations. �

Newton’s method is the best choice for finding a simple root (see Table 2.12). At a
double root, either Muller’s method or Steffensen’s method with the Newton-Raphson
formula is a good choice (see Table 2.13). Note in the Aitken’s acceleration formula (4)
that division by zero can occur as the sequence {pk} converges. In this case, the last
calculated approximation to zero should be used as the approximation to the zero of f .

SEC. 2.5 AITKEN’S PROCESS AND STEFFENSEN’S AND MULLER’S METHODS 95

Table 2.13 Comparison of Convergence near a Double Root

k
Secant
method

Muller’s
method

Newton’s
method

Steffensen
with Newton

0 1.400000000 1.400000000 1.200000000 1.200000000
1 1.200000000 1.300000000 1.103030303 1.103030303
2 1.138461538 1.200000000 1.052356417 1.052356417
3 1.083873738 1.003076923 1.026400814 0.996890433
4 1.053093854 1.003838922 1.013257734 0.998446023
5 1.032853156 1.000027140 1.006643418 0.999223213
6 1.020429426 0.999997914 1.003325375 0.999999193
7 1.012648627 0.999999747 1.001663607 0.999999597
8 1.007832124 1.000000000 1.000832034 0.999999798
9 1.004844757 1.000416075 0.999999999

...
...

In the following program the sequence {pk}, generated by Steffensen’s method
with the Newton-Raphson formula, is stored in a matrix Q that has max1 rows and
three columns. The first column of Q contains the initial approximation to the root,
p0, and the terms p3, p6, . . . , p3k , . . . generated by Aitken’s acceleration method (4).
The second and third columns of Q contain the terms generated by Newton’s method.
The stopping criteria in the program are based on the difference between consecutive
terms from the first column of Q.

Program 2.7 (Steffensen’s Acceleration). To quickly find a solution of the fixed-
point equation x = g(x) given an initial approximation p0; where it is assumed
that both g(x) and g′(x) are continuous, |g′(x)| < 1, and that ordinary fixed-point
iteration converges slowly (linearly) to p.

function [p,Q]=steff(f,df,p0,delta,epsilon,max1)

%Input - f is the object function input as a string ’f’
% - df is the derivative of f input as a string ’df’
% - p0 is the initial approximation to a zero of f
% - delta is the tolerance for p0
% - epsilon is the tolerance for the function values y
% - max1 is the maximum number of iterations
%Output - p is the Steffensen approximation to the zero
% - Q is the matrix containing the Steffensen sequence

%Initialize the matrix R
R=zeros(max1,3);
R(1,1)=p0;

96 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

for k=1:max1
for j=2:3

%Denominator in Newton-Raphson method is calculated
nrdenom=feval(df,R(k,j-1));

%Calculate Newton-Raphson approximations
if nrdenom==0

’division by zero in Newton-Raphson method’
break

else
R(k,j)=R(k,j-1)-feval(f,R(k,j-1))/nrdenom;

end

%Denominator in Aitken’s acceleration process calculated
aadenom=R(k,3)-2*R(k,2)+R(k,1);

%Calculate Aitken’s acceleration approximations
if aadenom==0

’division by zero in Aitken’s acceleration’
break

else
R(k+1,1)=R(k,1)-(R(k,2)-R(k,1))^2/aadenom;

end

end

%End program if division by zero occurred
if (nrdenom==0)|(aadenom==0)

break
end

%Stopping criteria are evaluated
err=abs(R(k,1)-R(k+1,1));
relerr=err/(abs(R(k+1,1))+delta);
y=feval(f,R(k+1,1));
if (err<delta)|(relerr<delta)|(y<epsilon)

% p and the matrix Q are determined
p=R(k+1,1);
Q=R(1:k+1,:);
break

end

end

SEC. 2.5 AITKEN’S PROCESS AND STEFFENSEN’S AND MULLER’S METHODS 97

Program 2.8 (Muller’s Method). To find a root of the equation f (x) = 0 given
three distinct initial approximations p0, p1, and p2.

function [p,y,err]=muller(f,p0,p1,p2,delta epsilon,max1)

%Input - f is the object function input as a string ’f’
% - p0, p1, and p2 are the initial approximations
% - delta is the tolerance for p0, p1, and p2
% - epsilon the the tolerance for the function values y
% - max1 is the maximum number of iterations
%Output - p is the Muller approximation to the zero of f
% - y is the function value y = f(p)
% - err is the error in the approximation of p.

%Initialize the matrices P and Y
P=[p0 p1 p2];
Y=feval(f,P);

%Calculate a and b in formula (15)
for k=1:max1

h0=P(1)-P(3);h1=P(2)-P(3);e0=Y(1)-Y(3);e1=Y(2)-Y(3);c=Y(3);
denom=h1*h0^2-h0*h1^2;
a=(e0*h1-e1*h0)/denom;
b=(e1*h0^2-e0*h1^2)/denom;

%Suppress any complex roots
if b^2-4*a*c > 0

disc=sqrt(b^2-4*a*c);
else

disc=0;
end

%Find the smallest root of (17)
if b < 0

disc=-disc;
end

z=-2*c/(b+disc);
p=P(3)+z;

%Sort the entries of P to find the two closest to p
if abs(p-P(2))<abs(p-P(1))

Q=[P(2) P(1) P(3)];
P=Q;
Y=feval(f,P);

end
if abs(p-P(3))<abs(p-P(2))

R=[P(1) P(3) P(2)];
P=R;

98 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Y=feval(f,P);
end

%Replace the entry of P that was farthest from p with p
P(3)=p;
Y(3) = feval(f,P(3));
y=Y(3);

%Determine stopping criteria
err=abs(z);
relerr=err/(abs(p)+delta);
if (err<delta)|(relerr<delta)|(abs(y)<epsilon)

break
end

end

Exercises for Aitken’s, Steffensen’s, and Muller’s Methods

1. Find �pn , where

(a) pn = 5 (b) pn = 6n + 2 (c) pn = n(n + 1)

2. Let pn = 2n2 + 1. Find �k pn , where

(a) k = 2 (b) k = 3 (c) k = 4

3. Let pn = 1/2n . Show that qn = 0 for all n, where qn is given by formula (4).

4. Let pn = 1/n. Show that qn = 1/(2n + 2) for all n; hence there is little acceleration
of convergence. Does {pn} converge to 0 linearly? Why?

5. Let pn = 1/(2n − 1). Show that qn = 1/
(
4n+1 − 1

)
for all n.

6. The sequence pn = 1/(4n + 4−n) converges linearly to 0. Use Aitken’s formula (4)
to find q1, q2,and q3, and hence speed up the convergence.

n pn qn

0 0.5 −0.26437542
1 0.23529412
2 0.06225681
3 0.01562119
4 0.00390619
5 0.00097656

7. The sequence {pn} generated by fixed-point iteration starting with p0 = 2.5 and using
the function g(x) = (6 + x)1/2 converges linearly to p = 3. Use Aitken’s formula
(4) to find q1, q2, and q3, and hence speed up the convergence.

SEC. 2.5 AITKEN’S PROCESS AND STEFFENSEN’S AND MULLER’S METHODS 99

8. The sequence {pn} generated by fixed-point iteration, starting with p0 = 3.14, and
using the function g(x) = ln(x) + 2 converges linearly to p ≈ 3.1419322. Use
Aitken’s formula (4) to find q1, q2, and q3, and hence speed up the convergence.

9. For the equation cos(x) − 1 = 0, the Newton-Raphson function is g(x) = x − (1 −
cos(x))/ sin(x) = x − tan(x/2). Use Steffensen’s algorithm with g(x) and start with
p0 = 0.5, and find p1, p2, and p3; then find p4, p5, and p6.

10. Convergence of series. Aitken’s method can be used to speed up the convergence of
a series. If the nth partial sum of the series is

Sn =
n∑

k=1

Ak,

show that the derived series using Aitken’s method is

Tn = Sn +
A2

n+1

An+1 − An+2
.

In Exercises 11 through 14, apply Aitken’s method and the results of Exercise 10 to speed
up the convergence of the series.

11. Sn =∑n
k=1(0.99)k

12. Sn =∑n
k=1

1
4k+4−k

13. Sn =∑n
k=1

k
2k−1

14. Sn =∑n
k=1

1
2k k

15. Use Muller’s method to find the root of f (x) = x3 − x − 2. Start with p0 = 1.0,
p1 = 1.2, and p2 = 1.4 and find p3, p4, and p5.

16. Use Muller’s method to find the root of f (x) = 4x2 − ex . Start with p0 = 4.0,
p1 = 4.1, and p2 = 4.2 and find p3, p4, and p5.

17. Let {pn} and {qn} be any two sequences of real numbers. Show that
(a) �(pn + qn) = �pn +�qn

(b) �(pnqn) = pn+1�qn + qn�pn

18. Start with formula (8), add the terms pn+2 and−pn+2 to the right side, and show that
an equivalent formula is

p ≈ pn+2 − (pn+2 − pn+1)
2

pn+2 − 2pn+1 + pn
= qn .

19. Assume that the error in an iteration process satisfies the relation En+1 = K En for
some constant K and |K | < 1.
(a) Find an expression for En that involves E0, K , and n.
(b) Find an expression for the smallest integer N so that |EN | < 10−8.

100 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0

Algorithms and Programs

1. Use Steffensen’s method with the initial approximation p0 = 0.5 to approximate the
zero of f (x) = x − sin(x) accurate to 10 decimal places.

2. Use Steffensen’s method with the initial approximation p0 = 0.5 to approximate the
zero of f (x) = sin(x3) closest to 0.5 accurate to 10 decimal places.

3. Use Muller’s method with the initial approximations p0 = 1.5, p1 = 1.4, and
p2 = 1.3 to find a zero of f (x) = 1+ 2x − tan(x) accurate to 12 decimal places.

4. In Program 2.8 (Muller’s method) a 1× 3 matrix P is initialized with p0, p1, and p2.
Then at the end of the loop, one of the values p0, p1, or p2 is replaced with the new
approximation to the zero. This process is continued until the stopping criteria are
satisfied, say at k = K . Modify Program 2.8 so that, in addition to p and err, a
(K + 1) × 3 matrix Q is produced such that the first row of Q contains the 1 × 3
matrix P with the initial approximations to the zero, and the kth row of Q contains
the kth set of three approximations to the zero.

Use this modification of Program 2.8 with the initial approximations p0 = 2.4,
p1 = 2.3, and p2 = 2.2 to find a zero of f (x) = 3 cos(x)+ 2 sin(x) accurate to eight
decimal places.

3
Solution of Linear Systems
AX = B

Three planes form the boundary of a solid in the first octant, which is shown in Fig-
ure 3.1. Suppose that the equations for these planes are

5x + y + z = 5

x + 4y + z = 4

x + y + 3z = 3.

What are the coordinates of the point of intersection of the three planes? Gaussian
elimination can be used to find the solution of the linear system

x = 0.76, y = 0.68, and z = 0.52.

In this chapter we develop numerical methods for solving systems of linear equations.

3.1 Introduction to Vectors and Matrices

A real N -dimensional vector X is an ordered set of N real numbers and is usually
written in the coordinate form

(1) X = (x1, x2, . . . , xN).

Here the numbers x1, x2, . . . , and xN are called the components or coordinates of
X . The set consisting of all N -dimensional vectors is called N -dimensional space.
When a vector is used to denote a point or position in space, it is called a position

101

102 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

0.0

0.5

1.0
x

z

y

1.0

0.5

0.5
1.0

0.0

Figure 3.1 The intersection of three planes.

vector. When it is used to denote a movement between two points in space, it is called
a displacement vector.

Let another vector be Y = (y1, y2, . . . , yN). The two vectors X and Y are said to
be equal if and only if each corresponding coordinate is the same; that is,

(2) X = Y if and only if x j = y j for j = 1, 2, . . . , N .

The sum of the vectors X and Y is computed component by component, using the
definition

(3) X + Y = (x1 + y1, x2 + y2, . . . , xN + yN).

The negative of the vector X is obtained by replacing each coordinate with its
negative:

(4) −X = (−x1,−x2, . . . ,−xN).

The difference Y − X is formed by taking the difference in each coordinate:

(5) Y − X = (y1 − x1, y2 − x2, . . . , yN − xN).

SEC. 3.1 INTRODUCTION TO VECTORS AND MATRICES 103

Vectors in N -dimensional space obey the algebraic property

(6) Y − X = Y + (−X).

If c is a real number (scalar), we define scalar multiplication cX as follows:

(7) cX = (cx1, cx2, . . . , cxN).

If c and d are scalars, then the weighted sum cX + dY is called a linear combina-
tion of X and Y , and we write

(8) cX + dY = (cx1 + dy1, cx2 + dy2, . . . , cxN + dyN).

The dot product of the two vectors X and Y is a scalar quantity (real number)
defined by the equation

(9) X · Y = x1 y1 + x2 y2 + · · · + xN yN .

The norm (or length) of the vector X is defined by

(10) ‖X‖ = (x2
1 + x2

2 + · · · + x2
N)1/2.

Equation (10) is referred to as the Euclidean norm (or length) of the vector X .
Scalar multiplication cX stretches the vector X when |c| > 1 and shrinks the

vector when |c| < 1. This is shown by using equation (10):

‖cX‖ = (c2x2
1 + c2x2

2 + · · · + c2x2
N)1/2

= |c|(x2
1 + x2

2 + · · · + x2
N)1/2 = |c|‖X‖.(11)

An important relationship exists between the dot product and norm of a vector. If
both sides of equation (10) are squared and equation (9) is used, with Y being replaced
with X , we have

(12) ‖X‖2 = x2
1 + x2

2 + · · · + x2
N = X · X .

If X and Y are position vectors that locate the two points (x1, x2, . . . , xN) and
(y1, y2, . . . , yN) in N -dimensional space, then the displacement vector from X to Y
is given by the difference

(13) Y − X (displacement from position X to position Y).

Notice that if a particle starts at the position X and moves through the displacement
Y − X , its new position is Y . This can be obtained by the following vector sum:

(14) Y = X + (Y − X).

Using equations (10) and (13), we can write down the formula for the distance
between two points in N -space.

(15) ‖Y − X‖ =
(
(y1 − x1)

2 + (y2 − x2)
2 + · · · + (yN − xN)2

)1/2
.

When the distance between points is computed using formula (15), we say that the
points lie in N -dimensional Euclidean space.

104 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Example 3.1. Let X = (2,−3, 5,−1) and Y = (6, 1, 2,−4). The concepts mentioned
above are now illustrated for vectors in 4-space.

Sum X + Y = (8,−2, 7,−5)

Difference X − Y = (−4,−4, 3, 3)

Scalar multiple 3X = (6,−9, 15,−3)

Length ‖X‖ = (4+ 9+ 25+ 1)1/2 = 391/2

Dot product X · Y = 12− 3+ 10+ 4 = 23
Displacement from X to Y Y − X = (4, 4,−3,−3)

Distance from X to Y ‖Y − X‖ = (16+ 16+ 9+ 9)1/2 = 501/2 �

It is sometimes useful to write vectors as columns instead of rows. For example,

(16) X =

x1
x2
...

xN

 and Y =

y1
y2
...

yN

 .

Then the linear combination cX + dY is

(17) cX + dY =

cx1 + dy1
cx2 + dy2

...

cxN + dyN

 .

By choosing c and d appropriately in equation (17), we have the sum 1X + 1Y ,
the difference 1X − 1Y , and the scalar multiple cX + 0Y . We use the superscript “ ′ ”,
for transpose to indicate that a row vector should be converted to a column vector, and
vice versa.

(18) (x1, x2, . . . , xN)′ =

x1
x2
...

xN

 and

x1
x2
...

xN

′

= (x1, x2, . . . , xN).

The set of vectors has a zero element 0, which is defined by

(19) 0 = (0, 0, . . . , 0).

Theorem 3.1 (Vector Algebra). Suppose that X , Y , and Z are N -dimensional vec-
tors and a and b are scalars (real numbers). The following properties of vector addition
and scalar multiplication hold:

(20) Y + X = X + Y commutative property
(21) 0+ X = X + 0 additive identity

SEC. 3.1 INTRODUCTION TO VECTORS AND MATRICES 105

(22) X − X = X + (−X) = 0 additive inverse
(23) (X + Y)+ Z = X + (Y + Z) associative property
(24) (a + b)X = aX + bX distributive property for scalars
(25) a(X + Y) = aX + aY distributive property for vectors
(26) a(bX) = (ab)X associative property for scalars

Matrices and Two-Dimensional Arrays

A matrix is a rectangular array of numbers that is arranged systematically in rows and
columns. A matrix having M rows and N columns is called an M×N (read “M by N”)
matrix. The capital letter A denotes a matrix, and the lowercase subscripted letter ai j
denotes one of the numbers forming the matrix. We write

(27) A = [ai j]M×N for 1 ≤ i ≤ M, 1 ≤ j ≤ N ,

where ai j is the number in location (i, j) (i.e., stored in the i th row and j th column
of the matrix). We refer to ai j as the element in location (i, j). In expanded form we
write

(28)
row i →

a11 a12 · · · a1 j · · · a1N
a21 a22 · · · a2 j · · · a2N
...

...
...

...

ai1 ai2 · · · ai j · · · ai N
...

...
...

...

aM1 aM2 · · · aM j
↑

column j

· · · aM N

= A.

The rows of the M × N matrix A are N -dimensional vectors:

(29) V i = (ai1, ai2, . . . , ai N) for i = 1, 2, . . . , M .

The row vectors in (29) can also be viewed as 1×N matrices. Here we have sliced
the M × N matrix A into M pieces (submatrices) that are 1× N matrices.

In this case we could express A as an M × 1 matrix consisting of the 1 × N row
matrices V i ; that is,

(30) A =

V 1
V 2
...

V i
...

V M

= [V 1 V 2 · · · V i · · · V M

]′
.

106 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Similarly, the columns of the M × N matrix A are M × 1 matrices:

(31) C1 =

a11
a21
...

ai1
...

aM1

, . . . , C j =

a1 j
a2 j
...

ai j
...

aM j

, . . . , C N =

a1N
a2N
...

ai N
...

aM N

.

In this case we could express A as a 1× N matrix consisting of the M × 1 column
matrices C j :

(32) A = [C1 C2 · · · C j · · · C N
]
.

Example 3.2. Identify the row and column matrices associated with the 4× 3 matrix

A =

−2 4 9

5 −7 1
0 −3 8
−4 6 −5

 .

The four row matrices are V 1 =
[−2 4 9

]
, V 2 =

[
5 −7 1

]
, V 3 =

[
0 −3 8

]
,

and V 4 =
[−4 6 −5

]
. The three column matrices are

C1 =

−2

5
0
−4

 , C2 =

4

−7
−3

6

 , and C3 =

9
1
8
−5

 .

Notice how A can be represented with these matrices:

A =

V 1
V 2
V 3
V 4

 = [C1 C2 C3
]
. �

Let A = [ai j]M×N and B = [bi j]M×N be two matrices of the same dimension.
The two matrices A and B are said to be equal if and only if each corresponding
element is the same; that is,

(33) A = B if and only if ai j = bi j for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

The sum of the two M × N matrices A and B is computed element by element,
using the definition

(34) A+ B = [ai j + bi j]M×N for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

SEC. 3.1 INTRODUCTION TO VECTORS AND MATRICES 107

The negative of the matrix A is obtained by replacing each element with its nega-
tive:

(35) −A = [−ai j]M×N for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

The difference A− B is formed by taking the difference of corresponding coordi-
nates:

(36) A− B = [ai j − bi j]M×N for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

If c is a real number (scalar), we define scalar multiplication c A as follows:

(37) c A = [cai j]M×N for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

If p and q are scalars, the weighted sum p A + q B is called a linear combination
of the matrices A and B, and we write

(38) p A+ q B = [pai j + qbi j]M×N for 1 ≤ i ≤ M , 1 ≤ j ≤ N .

The zero matrix of order M × N consists of all zeros:

(39) 0 = [0]M×N .

Example 3.3. Find the scalar multiples 2A and 3B and the linear combination 2A− 3B
for the matrices

A =
−1 2

7 5
3 −4

 and B =
−2 3

1 −4
−9 7

 .

Using formula (37), we obtain

2A =
−2 4

14 10
6 −8

 and 3B =
 −6 9

3 −12
−27 21

 .

The linear combination 2A− 3B is now found:

2A− 3B =
−2+ 6 4− 9

14− 3 10+ 12
6+ 27 −8− 21

 =
 4 −5

11 22
33 −29

 . �

Theorem 3.2 (Matrix Addition). Suppose that A, B, and C are M × N matrices
and p and q are scalars. The following properties of matrix addition and scalar multi-
plication hold:

(40) B + A = A+ B commutative property
(41) 0+ A = A+ 0 additive identity
(42) A− A = A+ (−A) = 0 additive inverse
(43) (A+ B)+ C = A+ (B + C) associative property
(44) (p + q)A = p A+ q A distributive property for scalars
(45) p(A+ B) = p A+ pB distributive property for matrices
(46) p(q A) = (pq)A associative property for scalars

108 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Exercises for Introduction to Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.

1. Given the vectors X and Y , find (a) X+Y , (b) X−Y , (c) 3X , (d) ‖X‖, (e) 7Y −4X ,
(f) X · Y , and (g) ‖7Y − 4X‖.
(i) X = (3,−4) and Y = (−2, 8)

(ii) X = (−6, 3, 2) and Y = (−8, 5, 1)

(iii) X = (4,−8, 1) and Y = (1,−12,−11)

(iv) X = (1,−2, 4, 2) and Y = (3,−5,−4, 0)

2. Using the law of cosines, it can be shown that the angle θ between two vectors X and
Y is given by the relation

cos(θ) = X · Y
‖X‖ ‖Y‖ .

Find the angle, in radians, between the following vectors:
(a) X = (−6, 3, 2) and Y = (2,−2, 1)

(b) X = (4,−8, 1) and Y = (3, 4, 12)

3. Two vectors Xand Y are said to be orthogonal (perpendicular) if the angle between
them is π/2.
(a) Prove that X and Y are orthogonal if and only if X · Y = 0.

Use part (a) to determine if the following vectors are orthogonal.
(b) X = (−6, 4, 2) and Y = (6, 5, 8)

(c) X = (−4, 8, 3) and Y = (2, 5, 16)

(d) X = (−5, 7, 2) and Y = (4, 1, 6)

(e) Find two different vectors that are orthogonal to X = (1, 2,−5).

4. Find (a) A+ B, (b) A− B, and (c) 3A− 2B for the matrices

A =
−1 9 4

2 −3 −6
0 5 7

 , B =
−4 9 2

3 −5 7
8 1 −6

 .

5. The transpose of an M × N matrix A, denoted A′, is the N × M matrix obtained
from A by converting the rows of A to columns of A′. That is, if A = [ai j]M×N and
A′ = [bi j]N×M , then the elements satisfy the relation

b ji = ai j for 1 ≤ i ≤ M, 1 ≤ j ≤ N .

Find the transpose of the following matrices.

(a)

−2 5 12

1 4 −1
7 0 6

11 −3 8

 (b)

4 9 2
3 5 7
8 1 6

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 109

6. The square matrix A of dimension N × N is said to be symmetric if A = A′ (see
Exercise 5 for the definition of A′). Determine whether the following square matrices
are symmetric.

(a)

 1 −7 4
−7 2 0

4 0 3

 (b)

4 −7 1
0 2 −7
3 0 4

(c) A = [ai j]N×N , where ai j =

{
i j i = j

i − i j + j i �= j

(d) A = [ai j]N×N , where ai j =
{

cos(i j) i = j

i − i j − j i �= j

7. Prove statements (20), (24), and (25) in Theorem 3.1.

3.2 Properties of Vectors and Matrices
A linear combination of the variables x1, x2, . . . , xN is a sum

(1) a1x1 + a2x2 + · · · + aN xN

where ak is the coefficient of xk for k = 1, 2, . . . , N .
A linear equation in x1, x2, . . . , xN is obtained by requiring the linear combination

in (1) to take on a prescribed value b; that is,

(2) a1x1 + a2x2 + · · · + aN xN = b.

Systems of linear equations arise frequently, and if M equations in N unknowns
are given, we write

(3)

a11x1 + a12x2 + · · · + a1N xN = b1

a21x1 + a22x2 + · · · + a2N xN = b2

...
...

...
...

ak1x1 + ak2x2 + · · · + ak N xN = bk

...
...

...
...

aM1x1 + aM2x2 + · · · + aM N xN = bM .

To keep track of the different coefficients in each equation, it is necessary to use the
two subscripts (k, j). The first subscript locates equation k and the second subscript
locates the variable x j .

A solution to (3) is a set of numerical values x1, x2, . . . , xN that satisfies all the
equations in (3) simultaneously. Hence a solution can be viewed as an N -dimensional
vector:

(4) X = (x1, x2, . . . , xN).

110 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Example 3.4. Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch 1 contains ce-
ment, sand, and gravel mixed in the proportions 1/8, 3/8, 4/8; batch 2 has the proportions
2/10, 5/10, 3/10; and batch 3 has the proportions 2/5, 3/5, 0/5.

Let x1, x2, and x3 denote the amount (in cubic yards) to be used from each batch to
form a mixture of 10 cubic yards. Also, suppose that the mixture is to contain b1 = 2.3,
b2 = 4.8, and b3 = 2.9 cubic yards of portland cement, sand, and gravel, respectively.
Then the system of linear equations of the ingredients is

(5)

0.125x1 + 0.200x2 + 0.400x3 = 2.3 (cement)

0.375x1 + 0.500x2 + 0.600x3 = 4.8 (sand)

0.500x1 + 0.300x2 + 0.000x3 = 2.9 (gravel)

The solution to the linear system (5) is x1 = 4, x2 = 3, and x3 = 3, which can be verified
by direct substitution into the equations:

(0.125)(4)+ (0.200)(3)+ (0.400)(3) = 2.3

(0.375)(4)+ (0.500)(3)+ (0.600)(3) = 4.8

(0.500)(4)+ (0.300)(3)+ (0.000)(3) = 2.9. �

Matrix Multiplication

Definition 3.1. If A = [aik]M×N and B = [bkj]N×P are two matrices with the
property that A has as many columns as B has rows, then the matrix product AB is
defined to be the matrix C of dimension M × P:

(6) AB = C = [ci j]M×P ,

where the element ci j of C is given by the dot product of the i th row of A and the j th
column of B:

(7) ci j =
N∑

k=1

aikbk j = ai1b1 j + ai2b2 j + · · · + ai N bN j

for i = 1, 2, . . . , M and j = 1, 2, . . . , P . �

Example 3.5. Find the product C = AB for the following matrices, and state why B A
is not defined.

A =
[

2 3
−1 4

]
, B =

[
5 −2 1
3 8 −6

]
.

The matrix A has two columns and B has two rows, so the matrix product AB is
defined. The product of a 2× 2 and a 2× 3 matrix is a 2× 3 matrix. Computation reveals

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 111

that

AB =
[

2 3
−1 4

] [
5 −2 1
3 8 −6

]
=
[

10+ 9 −4+ 24 2− 18
−5+ 12 2+ 32 −1− 24

]
=
[

19 20 −16
7 34 −25

]
= C.

When an attempt is made to form the product B A, we discover that the dimensions are
not compatible in this order because the rows of B are three-dimensional vectors and the
columns of A are two-dimensional vectors. Hence the dot product of the j th row of B and
the kth column of A is not defined. �

If it happens that AB = B A, we say that A and B commute. Most often, even
when AB and B A are both defined, the products are not necessarily the same.

We now discuss how to use matrices to represent a linear system of equations.
The linear equations in (3) can be written as a matrix product. The coefficients akj
are stored in a matrix A (called the coefficient matrix) of dimension M × N , and the
unknowns x j are stored in a matrix X of dimension N ×1. The constants bk are stored
in a matrix B of dimension M × 1. It is conventional to use column matrices for both
X and B and write

(8) AX =

a11 a12 · · · a1 j · · · a1N
a21 a22 · · · a2 j · · · a2N
...

...
...

...

ak1 ak2 · · · akj · · · ak N
...

...
...

...

aM1 aM2 · · · aM j · · · aM N

x1
x2
...

x j
...

xN

=

b1
b2
...

b j
...

bM

= B.

The matrix multiplication AX = B in (8) is reminiscent of the dot product for
ordinary vectors, because each element bk in B is the result obtained by taking the dot
product of row k in matrix A with the column matrix X .

Example 3.6. Express the system of linear equations (5) in Example 3.4 as a matrix
product. Use matrix multiplication to verify that

[
4 3 3

]′ is the solution of (5):

(9)

0.125 0.200 0.400
0.375 0.500 0.600
0.500 0.300 0.000

x1
x2
x3

 =
2.3

4.8
2.9

 .

To verify that
[
4 3 3

]′ is the solution of (5), we must show that A
[
4 3 3

]′ =[
2.3 4.8 2.9

]′:0.125 0.200 0.400
0.375 0.500 0.600
0.500 0.300 0.000

4
3
3

 =
0.5+ 0.6+ 1.2

1.5+ 1.5+ 1.8
2.0+ 0.9+ 0.0

 =
2.3

4.8
2.9

 . �

112 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Some Special Matrices

The M × N matrix whose elements are all zero is called the zero matrix of dimen-
sion M × N and is denoted by

(10) 0 = [0]M×N .

When the dimension is clear, we use 0 to denote the zero matrix.
The identity matrix of order N is the square matrix given by

(11) I N = [δi j]N×N where δi j =
{

1 when i = j ,

0 when i �= j .

It is the multiplicative identity, as illustrated in the next example.

Example 3.7. Let A be a 2 × 3 matrix. Then I2 A = AI3 = A. Multiplication of A on
the left by I2 results in[

1 0
0 1

] [
a11 a12 a13
a21 a22 a23

]
=
[

a11 + 0 a12 + 0 a13 + 0
a21 + 0 a22 + 0 a23 + 0

]
= A.

Multiplication of A on the right by I3 results in

[
a11 a12 a13
a21 a22 a23

]1 0 0
0 1 0
0 0 1

 = [a11 + 0+ 0 0+ a12 + 0 0+ 0+ a13
a21 + 0+ 0 0+ a22 + 0 0+ 0+ a23

]
= A. �

Some properties of matrix multiplication are given in the following theorem.

Theorem 3.3 (Matrix Multiplication). Suppose that c is a scalar and that A, B,
and C are matrices such that the indicated sums and products are defined; then

(12) (AB)C = A(BC) associativity of matrix multiplication
(13) I A = AI = A identity matrix
(14) A(B + C) = AB + AC left distributive property
(15) (A+ B)C = AC + BC right distributive property
(16) c(AB) = (c A)B = A(cB) scalar associative property

Inverse of a Nonsingular Matrix

The concept of an inverse applies to matrices, but special attention must be given. An
N × N matrix A is called nonsingular or invertible if there exists an N × N matrix B
such that

(17) AB = B A = I .

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 113

If no such matrix B can be found, A is said to be singular. When B can be found
and (17) holds, we say that B is the inverse of A and usually write B = A−1 and use
the familiar relation:

(18) AA−1 = A−1 A if A is nonsingular.

It is easy to show that at most one matrix B can be found that satisfies relation (17).
Suppose that C is also an inverse of A (i.e., AC = C A = I). Then properties (12)
and (13) can be used to obtain

C = I C = (B A)C = B(AC) = B I = B.

Determinants

The determinant of a square matrix A is a scalar quantity (real number) and is denoted
by det(A) or |A|. If A is a N × N matrix

A =

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aN N

 ,

then it is customary to write

det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aN N

∣∣∣∣∣∣∣∣∣ .
Although the notation for a determinant may look like a matrix, its properties are com-
pletely different. For one, the determinant is a scalar quantity (real number). The
definition of det(A) found in most linear algebra textbooks is not tractable for com-
putation when N > 3. We review how to compute determinants using the cofactor
expansion method. Evaluation of higher-order determinants is done using Gaussian
elimination and is mentioned in the body of Program 3.3.

If A = [ai j] is a 1 × 1 matrix, we define det(A) = a11. If A = [ai j]N×N , where
N ≥ 2, then let M i j be the determinant of the N − 1× N − 1 submatrix of A obtained
by deleting the i th row and j th column of A. The determinant M i j is said to be the
minor of ai j . The cofactor Ai j of ai j is defined as Ai j = (−1)i+ j M i j . Then the
determinant of an N × N matrix A is given by

(19) det(A) =
N∑

j=1

ai j Ai j (i th row expansion)

114 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

or

(20) det(A) =
N∑

i=1

ai j Ai j (j th column expansion).

Applying formula (19), with i = 1, to the 2× 2 matrix

A =
[

a11 a12
a21 a22

]
,

we see that det A = a11a22 − a12a21. The following example illustrates how to use
formulas (19) and (20) to recursively reduce the calculation of the determinant of an
N × N matrix to the calculation of a number of 2× 2 determinants.

Example 3.8. Use formula (19) with i = 1 and formula (20) with j = 2 to calculate the
determinant of the matrix

A =
 2 3 8
−4 5 −1

7 −6 9

 .

Using formula (19) with i = 1, we obtain

det A = (2)

∣∣∣∣ 5 −1
−6 9

∣∣∣∣− (3)

∣∣∣∣−4 −1
7 9

∣∣∣∣+ (8)

∣∣∣∣−4 5
7 −6

∣∣∣∣
= (2)(45− 6)− (3)(−36+ 7)+ (8)(24− 35)

= 77.

Using formula (20) with j = 2, we obtain

det(A) = −(3)

∣∣∣∣−4 −1
7 9

∣∣∣∣+ (5)

∣∣∣∣2 8
7 9

∣∣∣∣− (−6)

∣∣∣∣ 2 8
−4 −1

∣∣∣∣
= 77. �

The following theorem gives sufficient conditions for the existence and uniqueness
of solutions of the linear system AX = B for square coefficient matrices.

Theorem 3.4. Assume that A is an N × N matrix. The following statements are
equivalent.

(21) Given any N × 1 matrix B, the linear system AX = B has a unique solution.

(22) The matrix A is nonsingular (i.e., A−1 exists).

(23) The system of equations AX = 0 has the unique solution X = 0.

(24) det(A) �= 0.

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 115

Theorems 3.3 and 3.4 help relate matrix algebra to ordinary algebra. If state-
ment (21) is true, then statement (22) together with properties (12) and (13) give the
following line of reasoning:

(25) AX = B implies A−1 AX = A−1 B, which implies X = A−1 B.

Example 3.9. Use the inverse matrix

A−1 = 1

5

[
4 −1
−7 3

]
and the reasoning in (25) to solve the linear system AX = B:

AX =
[

3 1
7 4

] [
x1
x2

]
=
[

2
5

]
= B.

Using (25), we get

X = A−1 B = 1

5

[
4 −1

−7 3

] [
2
5

]
= 1

5

[
3
1

]
=
[

0.6
0.2

]
. �

Remark. In practice we avoid, if possible, the direct numerical calculation of the in-
verse of a nonsingular matrix or the determinant of a square matrix. These concepts
are used as theoretical “tools” to establish the existence and uniqueness of solutions or
as a means to express the solution of a linear system algebraically (as in Example 3.9).

Plane Rotations

Suppose that A is a 3×3 matrix and U = [x y z
]′ is a 3×1 matrix; then the product

V = AU is another 3 × 1 matrix. This is an example of a linear transformation, and
applications are found in the area of computer graphics. The matrix U is equivalent
to the positional vector U = (x, y, z), which represents the coordinates of a point in
three-dimensional space. Consider three special matrices:

Rx (α) =
1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 ,(26)

Ry(β) =
 cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

 ,(27)

Rz(γ) =
cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

 .(28)

116 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Table 3.1 Coordinates of the Vertices of a Cube under Successive Rotations

U V = Rz (π/4) U W = Ry (π/6) Rz (π/4) U

(0, 0, 0)′ (0.000000, 0.000000, 0)′ (0.000000, 0.000000, 0.000000)′
(1, 0, 0)′ (0.707107, 0.707107, 0)′ (0.612372, 0.707107,−0.353553)′
(0, 1, 0)′ (−0.707107, 0.707107, 0)′ (−0.612372, 0.707107, 0.353553)′
(0, 0, 1)′ (0.000000, 0.000000, 1)′ (0.500000, 0.000000, 0.866025)′
(1, 1, 0)′ (0.000000, 1.414214, 0)′ (0.000000, 1.414214, 0.000000)′
(1, 0, 1)′ (0.707107, 0.707107, 1)′ (1.112372, 0.707107, 0.512472)′
(0, 1, 1)′ (−0.707107, 0.707107, 1)′ (−0.112372, 0.707107, 1.219579)′
(1, 1, 1)′ (0.000000, 1.414214, 1)′ (0.500000, 1.414214, 0.866025)′

These matrices Rx (α), Ry(β), and Rz(γ) are used to rotate points about the x-, y-,
and z-axes through the angles α, β, and γ , respectively. The inverses are Rx (−α),
Ry(−β), and Rz(−γ) and they rotate space about the x-, y-, and z-axes through the
angles −α,−β, and −γ , respectively. The next example illustrates the situation, and
further investigations are left for the reader.

Example 3.10. A unit cube is situated in the first octant with one vertex at the origin.
First, rotate the cube through an angle π/4 about the z-axis; then rotate this image through
an angle π/6 about the y-axis. Find the images of all eight vertices of the cube.

The first rotation is given by the transformation

V = Rz

(π

4

)
U =

cos(π/4) − sin(π/4) 0
sin(π/4) cos(π/4) 0

0 0 1

x
y
z

=
0.707107 −0.707107 0.000000

0.707107 0.707107 0.000000
0.000000 0.000000 1.000000

x
y
z

 .

Then the second rotation is given by

W = Ry

(π

6

)
V =

 cos(π/6) 0 sin(π/6)

0 1 0
− sin(π/6) 0 cos(π/6)

 V

=
 0.866025 0.000000 0.500000

0.000000 1.000000 0.000000
−0.500000 0.000000 0.866025

 V .

The composition of the two rotations is

W = Ry

(π

6

)
Rz

(π

4

)
U =

 0.612372 −0.612372 0.500000
0.707107 0.707107 0.000000
−0.353553 0.353553 0.866025

x
y
z

 .

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 117

z

x

(a) (b) (c)

y
yx

z

yx

z

Figure 3.2 (a) The original starting cube. (b) V = Rz(π/4)U . Rotation about
the z-axis. (c) W = Ry(π/6)V . Rotation about the y-axis.

Numerical computations for the coordinates of the vertices of the starting cube are given in
Table 3.1 (as positional vectors), and the images of these cubes are shown in Figure 3.2(a)
through (c). �

MATLAB

The MATLAB functions det(A) and inv(A) calculate the determinant and inverse
(if A is invertible), respectively, of a square matrix A.

Example 3.11. Use MATLAB to solve the linear system in Example 3.6. Use the inverse
matrix method described in (25).

First we verify that A is nonsingular by showing that det(A) �= 0 (Theorem 3.4).

>>A=[0.125 0.200 0.400;0.375 0.500 0.600;0.500 0.300 0.000];
>>det(A)
ans=

-0.0175

Following the reasoning in (25), the solution of AX = B is X = A−1 B.

>>X=inv(A)*[2.3 4.8 2.9]’
X=

4.0000
3.0000
3.0000

We can check our solution by verifying that AX = B.

>>B=A*X
B=

2.3000
4.8000
2.9000 �

118 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Exercises for Properties of Vectors and Matrices

The reader is encouraged to carry out the following exercises by hand and with MATLAB.

1. Find AB and B A for the following matrices:

A =
[−3 2

1 4

]
, B =

[
5 0
2 −6

]
.

2. Find AB and B A for the following matrices.

A =
[

1 −2 3
2 0 5

]
, B =

 3 0
−1 5

3 −2

 .

3. Let A, B,and C be given by

A =
[

3 1
0 4

]
, B =

[
1 2

−2 −6

]
, C =

[
2 −5
3 4

]
.

(a) Find (AB)C and A(BC).
(b) Find A(B + C) and AB + AC .
(c) Find (A+ B)C and AC + BC.
(d) Find (AB)′ and B′A′.

4. We use the notation A2 = AA. Find A2 and B2 for the following matrices:

A =
[−1 −7

5 2

]
, B =

 2 0 6
−1 5 −4

3 −5 2

5. Find the determinant of the following matrices, if it exists.

(a)
[−1 −7

5 2

]
(b)

 2 0 6
−1 5 −4

3 −5 2

(c)

1 2
3 4
0 0

 (d)

1 2 3 4
0 2 4 6
0 0 5 4
0 0 0 7

6. Show that Rx (α)Rx (−α) = I by direct multiplication of the matrices Rx (α) and

Rx (−α) (see formula (26)).

7. (a) Show that

Rx (α)Ry(β) =
 cos(β) 0 sin(β)

sin(β) sin(α) cos(α) − cos(β) sin(α)

− cos(α) sin(β) sin(α) cos(β) cos(α)

(see formulas (26) and (27)).

SEC. 3.2 PROPERTIES OF VECTORS AND MATRICES 119

(b) Show that

Ry(β)Rx (α) =
 cos(β) sin(β) sin(α) cos(α) sin(β)

0 cos(α) − sin(α)

− sin(α) cos(β) sin(α) cos(β) cos(α)

 .

8. If A and B are nonsingular N×N matrices and C = AB, show that C−1 = B−1 A−1.
Hint. Use the associative property of matrix multiplication.

9. Prove statements (13) and (16) of Theorem 3.3.

10. Let A be an M × N matrix and X an N × 1 matrix.
(a) How many multiplications are needed to calculate AX?
(b) How many additions are needed to calculate AX?

11. Let A be an M × N matrix, and let B and C be N × P matrices. Prove the left
distributive law for matrix multiplication: A(B + C) = AB + AC .

12. Let A and B be M × N matrices, and let C be a N × P matrix. Prove the right
distributive law for matrix multiplication: (A+ B)C = AC + BC.

13. Find X X ′ and X ′X, where X = [1 −1 2
]
. Note. X ′ is the transpose of X .

14. Let A be a M×N matrix and B a N× P matrix. Prove that (AB)′ = B′A′. Hint. Let
C = AB and show, using the definition of matrix multiplication, that the (i, j)th entry
of C ′ equals the (i, j)th entry of B′A′.

15. Use the result of Exercise 14 and the associative property of matrix multiplication to
show that (ABC)′ = C ′B′A′.

Algorithms and Programs

The first column of Table 3.1 contains the coordinates of the vertices of a unit cube situated
in the first octant with one vertex at the origin. Note that all eight vertices can be stored in
a matrix U of dimension 8 × 3, where each row represents the coordinates of one of the
vertices. It follows from Exercise 14 that the product of U and the transpose of Rz(π/4)

will produce a matrix of dimension 8 × 3 (representing the second column of Table 3.1,
where each row represents the transformation of the corresponding row in U). Combining
this idea with Exercise 15, it follows that the coordinates of the vertices of a cube under
any number of successive rotations can be represented by a matrix product.

1. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of π/6 about the y-axis; then rotate this image through an
angle of π/4 about the z-axis. Find the images of all eight vertices of the starting
cube. Compare this result with the result in Example 3.10.

120 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

z

x

(a) (b) (c)

y

y

x

z

yx

z

Figure 3.3 (a) The original starting cube. (b) V = Ry(π/6)U . Rotation about
the y-axis. (c) W = Rz(π/4)V . Rotation about the z-axis.

What is different? Explain your answer using the fact that, in general, matrix mul-
tiplication is not commutative (see Figure 3.3(a) to (c)). Use the plot3 command to
plot each of the three cubes.

2. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of π/12 about the x-axis; then rotate this image through
an angle of π/6 about the z-axis. Find the images of all eight vertices of the starting
cube. Use the plot3 command to plot each of the three cubes.

3. The tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) is first ro-
tated through an angle of 0.15 radian about the y-axis, then through an angle of
−1.5 radians about the z-axis, and finally through an angle of 2.7 radians about the
x-axis. Find the images of all four vertices. Use the plot3 command to plot each of
the four images.

3.3 Upper-Triangular Linear Systems

We will now develop the back-substitution algorithm, which is useful for solving a lin-
ear system of equations that has an upper-triangular coefficient matrix. This algorithm
will be incorporated in the algorithm for solving a general linear system in Section 3.4.

Definition 3.2. An N × N matrix A = [ai j] is called upper triangular provided that
the elements satisfy ai j = 0 whenever i > j . The N × N matrix A = [ai j] is called
lower triangular provided that ai j = 0 whenever i < j . �

We will develop a method for constructing the solution to upper-triangular linear
systems of equations and leave the investigation of lower-triangular systems to the
reader. If A is an upper-triangular matrix, then AX = B is said to be an upper-

SEC. 3.3 UPPER-TRIANGULAR LINEAR SYSTEMS 121

triangular system of linear equations and has the form

(1)

a11x1+a12x2+ a13x3 + · · ·+ a1N−1xN−1 + a1N xN = b1

a22x2+ a23x3 + · · ·+ a2N−1xN−1 + a2N xN = b2

a33x3 + · · ·+ a3N−1xN−1 + a3N xN = b3

...
...

aN−1N−1xN−1 + aN−1N xN = bN−1

aN N xN = bN .

Theorem 3.5 (Back Substitution). Suppose that AX = B is an upper-triangular
system with the form given in (1). If

(2) akk �= 0 for k = 1, 2, . . . , N ,

then there exists a unique solution to (1).

Constructive Proof. The solution is easy to find. The last equation involves only xN ,
so we solve it first:

(3) xN = bN

aN N
.

Now xN is known and it can be used in the next-to-last equation:

(4) xN−1 = bN−1 − aN−1N xN

aN−1N−1
.

Now xN and xN−1 are used to find xN−2:

(5) xN−2 = bN−2 − aN−2N−1xN−1 − aN−2N xN

aN−2N−2
.

Once the values xN , xN−1, . . . , xk+1 are known, the general step is

(6) xk =
bk −∑N

j=k+1 akj x j

akk
for k = N − 1, N − 2, . . . , 1.

The uniqueness of the solution is easy to see. The N th equation implies that
bN /aN N is the only possible value of xN . Then finite induction is used to establish
that xN−1, xN−2, . . . , x1 are unique. •
Example 3.12. Use back substitution to solve the linear system

4x1 − x2 + 2x3 + 3x4 = 20

−2x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = 4

3x4 = 6.

122 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Solving for x4 in the last equation yields

x4 = 6

3
= 2.

Using x4 = 2 in the third equation, we obtain

x3 = 4− 5(2)

6
= −1.

Now x3 = −1 and x4 = 2 are used to find x2 in the second equation:

x2 = −7− 7(−1)+ 4(2)

−2
= −4.

Finally, x1 is obtained using the first equation:

x1 = 20+ 1(−4)− 2(−1)− 3(2)

4
= 3. �

The condition that akk �= 0 is essential because equation (6) involves division
by akk . If this requirement is not fulfilled, either no solution exists or infinitely many
solutions exist.

Example 3.13. Show that there is no solution to the linear system

(7)

4x1 − x2 + 2x3 + 3x4 = 20

0x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = 4

3x4 = 6.

Using the last equation in (7), we must have x4 = 2, which is substituted into the second
and third equations to obtain

(8)
7x3 − 8 = −7

6x3 + 10 = 4.

The first equation in (8) implies that x3 = 1/7, and the second equation implies that
x3 = −1. This contradiction leads to the conclusion that there is no solution to the lin-
ear system (7). �

Example 3.14. Show that there are infinitely many solutions to

(9)

4x1 − x2 + 2x3 + 3x4 = 20

0x2 + 7x3 + 0x4 = −7

6x3 + 5x4 = 4

3x4 = 6.

SEC. 3.3 UPPER-TRIANGULAR LINEAR SYSTEMS 123

Using the last equation in (9), we must have x4 = 2, which is substituted into the second
and third equations to get x3 = −1, which checks out in both equations. But only two
values x3 and x4 have been obtained from the second through fourth equations, and when
they are substituted into the first equation of (9), the result is

(10) x2 = 4x1 − 16,

which has infinitely many solutions; hence (9) has infinitely many solutions. If we choose a
value of x1 in (10), then the value of x2 is uniquely determined. For example, if we include
the equation x1 = 2 in the system (9), then from (10) we compute x2 = −8. �

Theorem 3.4 states that the linear system AX = B, where A is an N × N matrix,
has a unique solution if and only if det(A) �= 0. The following theorem states that if
any entry on the main diagonal of an upper- or lower-triangular matrix is zero, then
det(A) = 0. Thus, by inspecting the coefficient matrices in the previous three exam-
ples, it is clear that the system in Example 3.12 has a unique solution, and the systems
in Examples 3.13 and 3.14 do not have unique solutions. The proof of Theorem 3.6
can be found in most introductory linear algebra textbooks.

Theorem 3.6. If the N × N matrix A = [ai j] is either upper or lower triangular, then

(11) det(A) = a11a22 · · · aN N =
N∏

i=1

aii .

The value of the determinant for the coefficient matrix in Example 3.12 is det A =
4(−2)(6)(3) = −144. The values of the determinants of the coefficient matrices in
Examples 3.13 and 3.14 are both 4(0)(6)(3) = 0.

The following program will solve the upper-triangular system (1) by the method
of back substitution, provided that akk �= 0 for k = 1, 2, . . . , N .

Program 3.1 (Back Substitution). To solve the upper-triangular system AX = B
by the method of back substitution. Proceed with the method only if all the diagonal
elements are nonzero. First compute xN = bN /aN N and then use the rule

xk =
bk −∑N

j=k+1 akj x j

akk
for k = N − 1, N − 2, . . . , 1.

function X=backsub(A,B)

%Input - A is an n x n upper-triangular nonsingular matrix
% - B is an n x 1 matrix
%Output - X is the solution to the linear system AX = B

%Find the dimension of B and initialize X
n=length(B);
X=zeros(n,1);

124 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

X(n)=B(n)/A(n,n);

for k=n-1:-1:1
X(k)=(B(k)-A(k,k+1:n)*X(k+1:n))/A(k,k);

end

Exercises for Upper-Triangular Linear Systems

In Exercises 1 through 3, solve the upper-triangular system and find the value of the deter-
minant of the coefficient matrix.

1. 3x1 − 2x2 + x3 − x4 = 8

4x2 − x3 + 2x4 = −3

2x3 + 3x4 = 11

5x4 = 15

2. 5x1 − 3x2 − 7x3 + x4 = −14

11x2 + 9x3 + 5x4 = 22

3x3 − 13x4 = −11

7x4 = 14

3. 4x1 − x2 + 2x3 + 2x4 − x5 = 4

−2x2 + 6x3 + 2x4 + 7x5 = 0

x3 − x4 − 2x5 = 3

− 2x4 − x5 = 10

3x5 = 6

4. (a) Consider the two upper-triangular matrices

A =
a11 a12 a13

0 a22 a23
0 0 a33

 and B =
b11 b12 b13

0 b22 b23
0 0 b33

 .

Show that their product C = AB is also upper triangular.
(b) Let A and B be two N × N upper-triangular matrices. Show that their product

is also upper triangular.

5. Solve the lower-triangular system AX = B and find det(A).

2x1 = 6

−x1 + 4x2 = 5

3x1 − 2x2 − x3 = 4

x1 − 2x2 + 6x3 + 3x4 = 2

6. Solve the lower-triangular system AX = B and find det(A).

5x1 = −10

x1 + 3x2 = 4

3x1 + 4x2 + 2x3 = 2

−x1 + 3x2 − 6x3 − x4 = 5

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 125

7. Show that back substitution requires N divisions, (N 2 − N)/2 multiplications, and
(N 2 − N)/2 additions or subtractions. Hint. You can use the formula

M∑
k=1

k = M(M + 1)/2.

Algorithms and Programs

1. Use Program 3.1 to solve the system UX = B, where

U = [ui j]10×10 and ui j =
{

cos(i j) i ≤ j,

0 i > j.

and B = [bi1]10×1 and bi1 = tan(i).

2. Forward-substitution algorithm. A linear system AX = B is called lower triangular
provided that ai j = 0 when i < j . Construct a program forsub, analogous to
Program 3.1, to solve the following lower-triangular system. Remark. This program
will be used in Section 3.5.

a11x1 = b1

a21x1 + a22x2 = b2

a31x1 + a32x2 + a33x3 = b3

...
...

...
...

aN−1 1x1 + aN−1 2x2 + aN−1 3x3 + · · · + aN−1 N−1xN−1 = bN−1

aN 1x1 + aN 2x2 + aN 3x3 + · · · + aN N−1xN−1 + aN N xN = bN

3. Use forsub to solve the system LX = B, where

L = [li j]20×20 and li j =
{

i + j i ≥ j,

0 i < j,
and B = [bi1]20×1 and bi1 = i .

3.4 Gaussian Elimination and Pivoting

In this section we develop a scheme for solving a general system AX = B of N
equations and N unknowns. The goal is to construct an equivalent upper-triangular
system UX = Y that can be solved by the method of Section 3.3.

Two linear systems of dimension N × N are said to be equivalent provided that
their solution sets are the same. Theorems from linear algebra show that when certain
transformations are applied to a given system, the solution sets do not change.

126 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Theorem 3.7 (Elementary Transformations). The following operations applied to
a linear system yield an equivalent system:

(1) Interchanges: The order of two equations can be changed.

(2) Scaling: Multiplying an equation by a nonzero constant.

(3) Replacement: An equation can be replaced by the sum of itself and
a nonzero multiple of any other equation.

It is common to use (3) by replacing an equation with the difference of that equa-
tion and a multiple of another equation. These concepts are illustrated in the next
example.

Example 3.15. Find the parabola y = A+ Bx+Cx2 that passes through the three points
(1, 1), (2,−1), and (3, 1).

For each point we obtain an equation relating the value of x to the value of y. The
result is the linear system

(4)

A + B + C = 1 at (1, 1)

A + 2B + 4C = −1 at (2,−1)

A + 3B + 9C = 1 at (3, 1).

The variable A is eliminated from the second and third equations by subtracting the
first equation from them. This is an application of the replacement transformation (3), and
the resulting equivalent linear system is

(5)

A + B + C = 1

B + 3C = −2

2B + 8C = 0.

The variable B is eliminated from the third equation in (5) by subtracting from it two times
the second equation. We arrive at the equivalent upper-triangular system:

(6)

A + B + C = 1

B + 3C = −2

2C = 4.

The back-substitution algorithm is now used to find the coefficients C = 4/2 = 2, B =
−2 − 3(2) = −8, and A = 1 − (−8) − 2 = 7, and the equation of the parabola is
y = 7− 8x + 2x2. �

It is efficient to store all the coefficients of the linear system AX = B in an array
of dimension N × (N + 1). The coefficients of B are stored in column N + 1 of the
array (i.e., ak N+1 = bk). Each row contains all the coefficients necessary to represent
an equation in the linear system. The augmented matrix is denoted [A|B] and the

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 127

linear system is represented as follows:

(7) [A|B] =

a11 a12 · · · a1N b1
a21 a22 · · · a2N b2
...

...
...

...

aN1 aN2 · · · aN N bN

 .

The system AX = B, with augmented matrix given in (7), can be solved by per-
forming row operations on the augmented matrix [A|B]. The variables xk are place-
holders for the coefficients and can be omitted until the end of the calculation.

Theorem 3.8 (Elementary Row Operations). The following operations applied to
the augmented matrix (7) yield an equivalent linear system.

(8) Interchanges: The order of two rows can be changed.

(9) Scaling: Multiplying a row by a nonzero constant.

(10) Replacement: The row can be replaced by the sum of that row and
a nonzero multiple of any other row; that is:
rowr = rowr −mr p × rowp.

It is common to use (10) by replacing a row with the difference of that row and a
multiple of another row.

Definition 3.3. The number arr in the coefficient matrix A that is used to eliminate
akr , where k = r + 1, r + 2, . . . , N , is called the r th pivotal element, and the r th row
is called the pivot row. �

The following example illustrates how to use the operations in Theorem 3.8 to
obtain an equivalent upper-triangular system UX = Y from a linear system AX = B,
where A is an N × N matrix.

Example 3.16. Express the following system in augmented matrix form and find an
equivalent upper-triangular system and the solution.

x1 + 2x2 + x3 + 4x4 = 13

2x1 + 0x2 + 4x3 + 3x4 = 28

4x1 + 2x2 + 2x3 + x4 = 20

−3x1 + x2 + 3x3 + 2x4 = 6.

The augmented matrix is

pivot→
m21 = 2
m31 = 4
m41 = −3

1 2 1 4 13
2 0 4 3 28
4 2 2 1 20
−3 1 3 2 6

 .

128 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

The first row is used to eliminate elements in the first column below the diagonal.
We refer to the first row as the pivotal row and the element a11 = 1 is called the pivotal
element. The values mk1 are the multiples of row 1 that are to be subtracted from row k for
k = 2, 3, 4. The result after elimination is

pivot→
m32 = 1.5
m42 = −1.75

1 2 1 4 13
0 −4 2 −5 2
0 −6 −2 −15 −32
0 7 6 14 45

 .

The second row is used to eliminate elements in the second column that lie below the
diagonal. The second row is the pivotal row and the values mk2 are the multiples of row 2
that are to be subtracted from row k for k = 3, 4. The result after elimination is

pivot→
m43 = −1.9

1 2 1 4 13
0 −4 2 −5 2
0 0 −5 −7.5 −35
0 0 9.5 5.25 48.5

 .

Finally, the multiple m43 = −1.9 of the third row is subtracted from the fourth row, and
the result is the upper-triangular system

(11)

1 2 1 4 13
0 −4 2 −5 2
0 0 −5 −7.5 −35
0 0 0 −9 −18

 .

The back-substitution algorithm can be used to solve (11), and we get

x4 = 2, x3 = 4, x2 = −1, x1 = 3. �

The process described above is called Gaussian elimination and must be modified
so that it can be used in most circumstances. If akk = 0, row k cannot be used to
eliminate the elements in column k, and row k must be interchanged with some row
below the diagonal to obtain a nonzero pivot element. If this cannot be done, then the
coefficient matrix of the system of linear equations is singular, and the system does not
have a unique solution.

Theorem 3.9 (Gaussian Elimination with Back Substitution). If A is an N × N
nonsingular matrix, then there exists a system UX = Y , equivalent to AX = B, where
U is an upper-triangular matrix with ukk �= 0. After U and Y are constructed, back
substitution can be used to solve UX = Y for X .

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 129

Proof. We will use the augmented matrix with B stored in column N + 1:

AX =

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N

a(1)
21 a(1)

22 a(1)
23 · · · a(1)

2N

a(1)
31 a(1)

32 a(1)
33 · · · a(1)

3N

...
...

...
...

a(1)
N1 a(1)

N2 a(1)
N3 · · · a(1)

N N

x1

x2

x3

...

xN

=

a(1)
1 N+1

a(1)
2 N+1

a(1)
3 N+1

...

a(1)
N N+1

= B.

Then we will construct an equivalent upper-triangular system UX = Y :

UX =

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N

0 a(2)
22 a(2)

23 · · · a(2)
2N

0 0 a(3)
33 · · · a(3)

3N

...
...

...
...

0 0 0 · · · a(N)
N N

x1

x2

x3

...

xN

=

a(1)
1 N+1

a(2)
2 N+1

a(3)
3 N+1

...

a(N)
N N+1

= Y .

Step 1. Store the coefficients in the augmented matrix. The superscript on a(1)
rc

means that this is the first time that a number is stored in location (r, c):

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

a(1)
21 a(1)

22 a(1)
23 · · · a(1)

2N a(1)
2 N+1

a(1)
31 a(1)

32 a(1)
33 · · · a(1)

3N a(1)
3 N+1

...
...

...
...

...

a(1)
N1 a(1)

N2 a(1)
N3 · · · a(1)

N N a(1)
N N+1

.

Step 2. If necessary, switch rows so that a(1)
11 �= 0; then eliminate x1 in rows 2

through N . In this process, mr1 is the multiple of row 1 that is subtracted from row r .

for r = 2 : N

mr1 = a(1)
r1 /a(1)

11 ;

a(2)
r1 = 0;

for c = 2 : N + 1
a(2)

rc = a(1)
rc − mr1 ∗ a(1)

1c ;
end

end

130 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

The new elements are written a(2)
rc to indicate that this is the second time that a

number has been stored in the matrix at location (r, c). The result after step 2 is

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

0 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

0 a(2)
32 a(2)

33 · · · a(2)
3N a(2)

3 N+1

...
...

...
...

...

0 a(2)
N2 a(2)

N3 · · · a(2)
N N a(2)

N N+1

.

Step 3. If necessary, switch the second row with some row below it so that
a(2)

22 �= 0; then eliminate x2 in rows 3 through N . In this process, mr2 is the multi-
ple of row 2 that is subtracted from row r .

for r = 3 : N

mr2 = a(2)
r2 /a(2)

22 ;

a(3)
r2 = 0;

for c = 3 : N + 1
a(3)

rc = a(2)
rc − mr2 ∗ a(2)

2c ;
end

end

The new elements are written a(3)
rc to indicate that this is the third time that a num-

ber has been stored in the matrix at location (r, c). The result after step 3 is

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

0 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

0 0 a(3)
33 · · · a(3)

3N a(3)
3 N+1

...
...

...
...

...

0 0 a(3)
N3 · · · a(3)

N N a(3)
N N+1

.

Step p + 1. This is the general step. If necessary, switch row p with some row
beneath it so that a(p)

pp �= 0; then eliminate x p in rows p + 1 through N . Here mr p is
the multiple of row p that is subtracted from row r .

for r = p + 1 : N

mr p = a(p)
r p /a(p)

pp ;

a(p+1)
r p = 0;

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 131

for c = p + 1 : N + 1

a(p+1)
rc = a(p)

rc − mr p ∗ a(p)
pc ;

end
end

The final result after xN−1 has been eliminated from row N is

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

0 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

0 0 a(3)
33 · · · a(3)

3N a(3)
3 N+1

...
...

...
...

...

0 0 0 · · · a(N)
N N a(N)

N N+1

.

The upper-triangularization process is now complete.
Since A is nonsingular, when row operations are performed the successive matrices

are also nonsingular. This guarantees that a(k)
kk �= 0 for all k in the construction process.

Hence back substitution can be used to solve UX = Y for X , and the theorem is proved.
•

Pivoting to Avoid a(p)
pp = 0

If a(p)
pp = 0, row p cannot be used to eliminate the elements in column p below the

main diagonal. It is necessary to find row k, where a(p)
kp �= 0 and k > p, and then in-

terchange row p and row k so that a nonzero pivot element is obtained. This process is
called pivoting, and the criterion for deciding which row to choose is called a pivoting
strategy. The trivial pivoting strategy is as follows. If a(p)

pp �= 0, do not switch rows.

If a(p)
pp = 0, locate the first row below p in which a(p)

kp �= 0 and switch rows k and p.

This will result in a new element a(p)
pp �= 0, which is a nonzero pivot element.

Pivoting to Reduce Error

Because the computer uses fixed-precision arithmetic, it is possible that a small error
will be introduced each time that an arithmetic operation is performed. The following
example illustrates how use of the trivial pivoting strategy in Gaussian elimination can
lead to significant error in the solution of a linear system of equations.

132 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Example 3.17. The values x1 = x2 = 1.000 are the solutions to

(12)
1.133x1 + 5.281x2 = 6.414

24.14x1 − 1.210x2 = 22.93.

Use four-digit arithmetic (see Exercises 6 and 7 in Section 1.3) and Gaussian elimination
with trivial pivoting to find a computed approximate solution to the system.

The multiple m21 = 24.14/1.133 = 21.31 of row 1 is to be subtracted from row 2 to
obtain the upper-triangular system. Using four digits in the calculations, we obtain the new
coefficients

a(2)
22 = −1.210− 21.31(5.281) = −1.210− 112.5 = −113.7

a(2)
23 = 22.93− 21.31(6.414) = 22.93− 136.7 = −113.8.

The computed upper-triangular system is

1.133x1 + 5.281x2 = 6.414

−113.7x2 = −113.8.

Back substitution is used to compute x2 = −113.8/(−113.7) = 1.001, and x1 = (6.414−
5.281(1.001))/(1.133) = (6.414− 5.286)/1.133 = 0.9956. �

The error in the solution of the linear system (12) is due to the magnitude of the
multiplier m21 = 21.31. In the next example the magnitude of the multiplier m21 is
reduced by first interchanging the first and second equations in the linear system (12)
and then using the trivial pivoting strategy in Gaussian elimination to solve the system.

Example 3.18. Use four-digit arithmetic and Gaussian elimination with trivial pivoting
to solve the linear system

24.14x1 − 1.210x2 = 22.93

1.133x1 + 5.281x2 = 6.414.

This time m21 = 1.133/24.14 = 0.04693 is the multiple of row 1 that is to be subtracted
from row 2. The new coefficients are

a(2)
22 = 5.281− 0.04693(−1.210) = 5.281+ 0.05679 = 5.338

a(2)
23 = 6.414− 0.04693(22.93) = 6.414− 1.076 = 5.338.

The computed upper-triangular system is

24.14x1 − 1.210x2 = 22.93

5.338x2 = 5.338.

Back substitution is used to compute x2 = 5.338/5.338 = 1.000, and x1 = (22.93 +
1.210(1.000))/24.14 = 1.000. �

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 133

The purpose of a pivoting strategy is to move the entry of greatest magnitude to
the main diagonal and then use it to eliminate the remaining entries in the column. If
there is more than one nonzero element in column p that lies on or below the main
diagonal, then there is a choice to determine which rows to interchange. The partial
pivoting strategy, illustrated in Example 3.18, is the most common one and is used in
Program 3.2. To reduce the propagation of error, it is suggested that one check the
magnitude of all the elements in column p that lie on or below the main diagonal.
Locate row k in which the element that has the largest absolute value lies, that is,

|akp| = max{|app|, |ap+1p|, . . . , |aN−1p|, |aN p|},
and then switch row p with row k if k > p. Now, each of the multipliers mr p for
r = p + 1, . . . , N will be less than or equal to 1 in absolute value. This process will
usually keep the relative magnitudes of the elements of the matrix U in Theorem 3.9
the same as those in the original coefficient matrix A. Usually, the choice of the larger
pivot element in partial pivoting will result in a smaller error being propagated.

In Section 3.5 we will find that it takes a total of (4N 3 + 9N 2 − 7N)/6 arithmetic
operations to solve an N × N system. When N = 20, the total number of arithmetic
operations that must be performed is 5910, and the propagation of error in the compu-
tations could result in an erroneous answer. The technique of scaled partial pivoting
or equilibrating can be used to further reduce the effect of error propagation. In scaled
partial pivoting we search all the elements in column p that lie on or below the main
diagonal for the one that is largest relative to the entries in its row. First search rows p
through N for the largest element in magnitude in each row, say sr :

(13) sr = max{|ar p|, |ar p+1|, . . . , |ar N |} for r = p, p + 1, . . . , N .

The pivotal row k is determined by finding

(14)
|akp|

sk
= max

{ |app|
sp

,
|ap+1p|

sp+1
, . . . ,

|aN p|
sN

}
.

Now interchange row p and k, unless p = k. Again, this pivoting process is designed
to keep the relative magnitudes of the elements in the matrix U in Theorem 3.9 the
same as those in the original coefficient matrix A.

Ill Conditioning

A matrix A is called ill conditioned if there exists a matrix B for which small pertur-
bations in the coefficients of A or B will produce large changes in X = A−1 B. The
system AX = B is said to be ill conditioned when A is ill conditioned. In this case,
numerical methods for computing an approximate solution are prone to have more
error.

One circumstance involving ill conditioning occurs when A is “nearly singular”
and the determinant of A is close to zero. Ill conditioning can also occur in systems

134 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

y

x

1.2
2x + 3y = 3.4

1.0

0.8

0.6

0.4

0.2

0.0
0.5 1.0 1.5 2.0

(0.8, 0.6)

x + 2y = 2

Figure 3.4 A region where two
equations are “almost satisfied.”

of two equations when two lines are nearly parallel (or in three equations when three
planes are nearly parallel). A consequence of ill conditioning is that substitution of
erroneous values may appear to be genuine solutions. For example, consider the two
equations

(15)
x + 2y − 2.00 = 0

2x + 3y − 3.40 = 0.

Substitution of x0 = 1.00 and y0 = 0.48 into these equations “almost produces zeros”:

1+ 2(0.48)− 2.00 = 1.96− 2.00 = −0.04 ≈ 0

2+ 3(0.48)− 3.40 = 3.44− 3.40 = 0.04 ≈ 0.

Here the discrepancy from 0 is only ±0.04. However, the true solution to this lin-
ear system is x = 0.8 and y = 0.6, so the errors in the approximate solution are
x − x0 = 0.80− 1.00 = −0.20 and y − y0 = 0.60− 0.48 = 0.12. Thus, merely sub-
stituting values into a set of equations is not a reliable test for accuracy. The rhombus-
shaped region in Figure 3.4 represents a set where both equations in (15) are “almost
satisfied”:

R = {(x, y) : |x + 2y − 2.00| < 0.1 and |2x + 3y − 3.40| < 0.2}.
There are points in R that are far away from the solution point (0.8, 0.6) and yet

produce small values when substituted into the equations in (15). If it is suspected
that a linear system is ill conditioned, computations should be carried out in multiple-
precision arithmetic. The interested reader should research the topic of condition num-
ber of a matrix to get more information on this phenomenon.

Ill conditioning has more drastic consequences when several equations are in-
volved. Consider the problem of finding the cubic polynomial y = c1x3 + c2x2 +
c3x+c4 that passes through the four points (2, 8), (3, 27), (4, 64), and (5, 125) (clearly,

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 135

y = x3 is the desired cubic polynomial). In Chapter 5 we will introduce the method
of least squares. Applying the method of least squares to find the coefficients requires
that the following linear system be solved:

20,514 4,424 978 224
4,424 978 224 54

978 224 54 14
224 54 14 4

c1
c2
c3
c4

 =

20,514
4,424

978
224

 .

A computer that carried nine digits of precision was used to compute the coefficients
and obtained

c1 = 1.000004, c2 = −0.000038, c3 = 0.000126, and c4 = −0.000131.

Although this computation is close to the true solution, c1 = 1 and c2 = c3 = c4 = 0, it
shows how easy it is for error to creep into the solution. Furthermore, suppose that the
coefficient a11 = 20,514 in the upper-left corner of the coefficient matrix is changed
to the value 20,515 and the perturbed system is solved. Values obtained with the same
computer were

c1 = 0.642857, c2 = 3.75000, c3 = −12.3928, and c4 = 12.7500,

which is a worthless answer. Ill conditioning is not easy to detect. If the system is
solved a second time with slightly perturbed coefficients and an answer that differs
significantly from the first one is discovered, then it is realized that ill conditioning
is present. Sensitivity analysis is a topic normally introduced in advanced numerical
analysis texts.

MATLAB

In Program 3.2 the MATLAB statement [A B] is used to construct the augmented
matrix for the linear system AX = B, and the max command is used to determine
the pivot element in partial pivoting. Once the equivalent triangulated matrix [U |Y]
is obtained it is separated into U and Y , and Program 3.1 is used to carry out back
substitution (backsub(U,Y)). The use of these commands and processes is illustrated
in the following example.

Example 3.19. (a) Use MATLAB to construct the augmented matrix for the linear system
in Example 3.16; (b) use the max command to find the element of greatest magnitude in the
first column of the coefficient matrix A; and (c) break the augmented matrix in (11) into
the coefficient matrix U and constant matrix Y of the upper-triangular system UX = Y .
(a)
>> A=[1 2 1 4;2 0 4 3;4 2 2 1;-3 1 3 2];
>> B=[13 28 20 6]’;
>> Aug=[A B]

136 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Aug=
1 2 1 4 13
2 0 4 3 28
4 2 2 1 20
-3 1 3 2 6

(b) In the following MATLAB display, a is the element of greatest magnitude in the first
column of A and j is the row number.

>>[a,j]=max{abs(A(1:4,1))}
a=

4
j=

3

(c) Let Augup = [U |Y] be the upper-triangular matrix in (11).

>> Augup=[1 2 1 4 13;0 -4 2 -5 2;0 0 -5 -7.5 -35;0 0 0 -9 -18];
>> U=Augup(1:4,1:4)
U=

1.0000 2.0000 1.0000 4.0000
0 -4.0000 2.0000 -5.0000
0 0 -5.0000 -7.5000
0 0 0 -9.0000

>> Y=Augup(1:4,5)
Y=

13
2

-35
-18 �

Program 3.2 (Upper Triangularization Followed by Back Substitution). To
construct the solution to AX = B, by first reducing the augmented matrix [A|B] to
upper-triangular form and then performing back substitution.

function X = uptrbk(A,B)

%Input - A is an N x N nonsingular matrix
% - B is an N x 1 matrix
%Output - X is an N x 1 matrix containing the solution to AX=B.

%Initialize X and the temporary storage matrix C
[N N]=size(A);
X=zeros(N,1);
C=zeros(1,N+1);

%Form the augmented matrix:Aug=[A|B]
Aug=[A B];

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 137

for p=1:N-1
%Partial pivoting for column p
[Y,j]=max(abs(Aug(p:N,p)));
%Interchange row p and j
C=Aug(p,:);
Aug(p,:)=Aug(j+p-1,:);
Aug(j+p-1,:)=C;

if Aug(p,p)==0
’A was singular. No unique solution’
break

end

%Elimination process for column p
for k=p+1:N

m=Aug(k,p)/Aug(p,p);
Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1);

end
end

%Back Substitution on [U|Y] using Program 3.1
X=backsub(Aug(1:N,1:N),Aug(1:N,N+1));

Exercises for Gaussian Elimination and Pivoting

In Exercises 1 through 4, show that AX = B is equivalent to the upper-triangular system
UX = Y and find the solution.

1. 2x1 + 4x2 − 6x3 = −4 2x1 + 4x2 − 6x3 = −4

x1 + 5x2 + 3x3 = 10 3x2 + 6x3 = 12

x1 + 3x2 + 2x3 = 5 3x3 = 3

2. x1 + x2 + 6x3 = 7 x1 + x2 + 6x3 = 7

−x1 + 2x2 + 9x3 = 2 3x2 + 15x3 = 9

x1 − 2x2 + 3x3 = 10 12x3 = 12

3. 2x1 − 2x2 + 5x3 = 6 2x1 − 2x2 + 5x3 = 6

2x1 + 3x2 + x3 = 13 5x2 − 4x3 = 7

− x1 + 4x2 − 4x3 = 3 0.9x3 = 1.8

4. − 5x1 + 2x2 − x3 = −1 −5x1 + 2x2 − x3 = −1

x1 + 0x2 + 3x3 = 5 0.4x2 + 2.8x3 = 4.8

3x1 + x2 + 6x3 = 17 − 10x3 = −10

138 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

5. Find the parabola y = A + Bx + Cx2 that passes through (1, 4), (2, 7), and (3, 14).

6. Find the parabola y = A + Bx + Cx2 that passes through (1, 6), (2, 5), and (3, 2).

7. Find the cubic y = A + Bx + Cx2 + Dx3 that passes through (0, 0), (1, 1), (2, 2),
and (3, 2).

In Exercises 8 through 10, show that AX = B is equivalent to the upper-triangular system
UX = Y and find the solution.

8. 4x1 + 8x2 + 4x3 + 0x4 = 8 4x1 + 8x2 + 4x3 + 0x4 = 8

x1 + 5x2 + 4x3 − 3x4 = −4 3x2 + 3x3 − 3x4 = −6

x1 + 4x2 + 7x3 + 2x4 = 10 4x3 + 4x4 = 12

x1 + 3x2 + 0x3 − 2x4 = −4 x4 = 2

9. 2x1 + 4x2 − 4x3 + 0x4 = 12 2x1 + 4x2 − 4x3 + 0x4 = 12

x1 + 5x2 − 5x3 − 3x4 = 18 3x2 − 3x3 − 3x4 = 12

2x1 + 3x2 + x3 + 3x4 = 8 4x3 + 2x4 = 0

x1 + 4x2 − 2x3 + 2x4 = 8 3x4 = −6

10. x1 + 2x2 + 0x3 − x4 = 9 x1 + 2x2 + 0x3 − x4 = 9

2x1 + 3x2 − x3 + 0x4 = 9 −x2 − x3 + 2x4 = −9

0x1 + 4x2 + 2x3 − 5x4 = 26 −2x3 + 3x4 = −10

5x1 + 5x2 + 2x3 − 4x4 = 32 1.5x4 = −3

11. Find the solution to the following linear system.

x1 + 2x2 = 7

2x1 + 3x2 − x3 = 9

4x2 + 2x3 + 3x4 = 10

2x3 − 4x4 = 12

12. Find the solution to the following linear system.

x1 + x2 = 5

2x1 − x2 + 5x3 = −9

3x2 − 4x3 + 2x4 = 19

2x3 + 6x4 = 2

13. The Rockmore Corp. is considering the purchase of a new computer and will choose
either the DoGood 174 or the MightDo 11. They test both computers’ ability to solve
the linear system

34x + 55y − 21 = 0

55x + 89y − 34 = 0.

The DoGood 174 computer gives x = −0.11 and y = 0.45, and its check for accuracy

SEC. 3.4 GAUSSIAN ELIMINATION AND PIVOTING 139

is found by substitution:

34(−0.11)+ 55(0.45)− 21 = 0.01

55(−0.11)+ 89(0.45)− 34 = 0.00.

The MightDo 11 computer gives x = −0.99 and y = 1.01, and its check for accuracy
is found by substitution:

34(−0.99)+ 55(1.01)− 21 = 0.89

55(−0.99)+ 89(1.01)− 34 = 1.44.

Which computer gave the better answer? Why?

14. Solve, using four-digit rounding arithmetic, the following linear systems using (i) Gaus-
sian elimination with partial pivoting, and (ii) Gaussian elimination with scaled partial
pivoting.

(a) 2x1 − 3x2 + 100x3 = 1

x1 + 10x2 − 0.001x3 = 0

3x1 − 100x2 + 0.01x3 = 0

(b) x1 + 20x2 − x3 + 0.001x4 = 0

2x1 − 5x2 + 30x3 − 0.1x4 = 1

5x1 + x2 − 100x3 − 10x4 = 0

2x1 − 100x2 − x3 + x4 = 0

15. The Hilbert matrix is a classical ill-conditioned matrix and small changes in its coef-
ficients will produce a large change in the solution to the perturbed system.

(a) Find the exact solution of AX = B (leave all numbers as fractions and do exact
arithmetic) using the Hilbert matrix of dimension 4× 4:

A =

1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 , B =

1
0
0
0

 .

(b) Now solve AX = B using four-digit rounding arithmetic:

A =

1.0000 0.5000 0.3333 0.2500
0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

 , B =

1
0
0
0

 .

Note. The coefficient matrix in part (b) is an approximation to the coefficient
matrix in part (a).

140 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Algorithms and Programs

1. Many applications involve matrices with many zeros. Of practical importance are
tridiagonal systems (see Exercises 11 and 12) of the form

d1x1 + c1x2 = b1

a1x1 + d2x2 + c2x3 = b2

a2x2 + d3x3 + c3x4 = b3

. . . .

. . . .

. . . .

aN−2xN−2 + dN−1xN−1 + cN−1xN = bN−1

aN−1xN−1 + dN xN = bN .

Construct a program that will solve a tridiagonal system. You may assume that row
interchanges are not needed and that row k can be used to eliminate xk in row k + 1.

2. Use Program 3.2 to find the sixth-degree polynomial y = a1 + a2x + a3x2 + a4x3 +
a5x4 + a6x5 + a7x6 that passes through (0, 1), (1, 3), (2, 2), (3, 1), (4, 3), (5, 2),
and (6, 1). Use the plot command to plot the polynomial and the given points on the
same graph. Explain any discrepancies in your graph.

3. Use Program 3.2 to solve the linear system AX = B, where A = [ai j]N×N and
ai j = i j−1, and B = [bi j]N×1, where b11 = N and bi1 = (i N − 1)/(i − 1) for i ≥ 2.
Use N = 3, 7, and 11. The exact solution is X = [1 1 · · · 1 1

]′. Explain any
deviations from the exact solution.

4. Construct a program that changes the pivoting strategy in Program 3.2 to scaled partial
pivoting.

5. Use your scaled partial pivoting program from Problem 4 to solve the system given
in Problem 3 for N = 11. Explain any improvements in the solutions.

6. Modify Program 3.2 so that it will efficiently solve M linear systems with the same
coefficient matrix A but different column matrices B. The M linear systems look like

AX1 = B1, AX2 = B2, . . . , AX M = BM .

7. The following discussion is presented for matrices of dimension 3 × 3, but the con-
cepts apply to matrices of dimension N ×N . If A is nonsingular, then A−1 exists and
AA−1 = I . Let C1, C2, and C3 be the columns of A−1 and E1, E2, and E3 be the
columns of I . The equation AA−1 = I can be represented as

A
[
C1 C2 C3

] = [E1 E2 E3
]
.

This matrix product is equivalent to the three linear systems

AC1 = E1, AC2 = E2, and AC3 = E3.

SEC. 3.5 TRIANGULAR FACTORIZATION 141

Thus finding A−1 is equivalent to solving the three linear systems.
Using Program 3.2 or your program from Problem 6, find the inverse of each of the

following matrices. Check your answer by computing the product AA−1 and also by
using the command inv(A). Explain any differences.

(a)

2 0 1
3 2 5
1 −1 0

 (b)

16 −120 240 −140

−120 1200 −2700 1680
240 −2700 6480 −4200
−140 1680 −4200 2800

3.5 Triangular Factorization

In Section 3.3 we saw how easy it is to solve an upper-triangular system. Now we
introduce the concept of factorization of a given matrix A into the product of a lower-
triangular matrix L that has 1’s along the main diagonal and an upper-triangular ma-
trix U with nonzero diagonal elements. For ease of notation we illustrate the concepts
with matrices of dimension 4 × 4, but they apply to an arbitrary system of dimension
N × N .

Definition 3.4. The nonsingular matrix A has a triangular factorization if it can
be expressed as the product of a lower-triangular matrix L and an upper-triangular
matrix U :

(1) A = LU .

In matrix form, this is written as
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

1 0 0 0
m21 1 0 0
m31 m32 1 0
m41 m42 m43 1

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

 . �

The condition that A is nonsingular implies that ukk �= 0 for all k. The notation
for the entries in L is mi j , and the reason for the choice of mi j instead of li j will be
pointed out soon.

Solution of a Linear System

Suppose that the coefficient matrix A for the linear system AX = B has a triangular
factorization (1); then the solution to

(2) LUX = B

142 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

can be obtained by defining Y = UX and then solving two systems:

(3) first solve LY = B for Y ; then solve UX = Y for X .

In equation form, we must first solve the lower-triangular system

(4)

y1 = b1

m21 y1 + y2 = b2

m31 y1 + m32 y2 + y3 = b3

m41 y1 + m42 y2 + m43 y3 + y4 = b4

to obtain y1, y2, y3, and y4 and use them in solving the upper-triangular system

(5)

u11x1 + u12x2 + u13x3 + u14x4 = y1

u22x2 + u23x3 + u24x4 = y2

u33x3 + u34x4 = y3

u44x4 = y4.

Example 3.20. Solve

x1 + 2x2 + 4x3 + x4 = 21

2x1 + 8x2 + 6x3 + 4x4 = 52

3x1 + 10x2 + 8x3 + 8x4 = 79

4x1 + 12x2 + 10x3 + 6x4 = 82.

Use the triangular factorization method and the fact that

A =

1 2 4 1
2 8 6 4
3 10 8 8
4 12 10 6

 =

1 0 0 0
2 1 0 0
3 1 1 0
4 1 2 1

1 2 4 1
0 4 −2 2
0 0 −2 3
0 0 0 −6

 = LU .

Use the forward-substitution method to solve LY = B:

(6)

y1 = 21

2y1 + y2 = 52

3y1 + y2 + y3 = 79

4y1 + y2 + 2y3 + y4 = 82.

Compute the values y1 = 21, y2 = 52 − 2(21) = 10, y3 = 79 − 3(21) − 10 = 6, and
y4 = 82− 4(21)− 10− 2(6) = −24, or Y = [21 10 6 −24

]′. Next write the system
UX = Y :

(7)

x1 + 2x2 + 4x3 + x4 = 21

4x2 − 2x3 + 2x4 = 10

−2x3 + 3x4 = 6

−6x4 = −24.

SEC. 3.5 TRIANGULAR FACTORIZATION 143

Now use back substitution and compute the solution x4 = −24/(−6) = 4, x3 = (6 −
3(4))/(−2) = 3, x2 = (10− 2(4)+ 2(3))/4 = 2, and x1 = 21− 4− 4(3)− 2(2) = 1, or
X = [1 2 3 4

]′. �

Triangular Factorization

We now discuss how to obtain the triangular factorization. If row interchanges are not
necessary when using Gaussian elimination, the multipliers mi j are the subdiagonal
entries in L.

Example 3.21. Use Gaussian elimination to construct the triangular factorization of the
matrix

A =
 4 3 −1
−2 −4 5

1 2 6

 .

The matrix L will be constructed from an identity matrix placed at the left. For each row
operation used to construct the upper-triangular matrix, the multipliers mi j will be put in
their proper places at the left. Start with

A =
1 0 0

0 1 0
0 0 1

 4 3 −1
−2 −4 5

1 2 6

 .

Row 1 is used to eliminate the elements of A in column 1 below a11. The multiples m21 =
−0.5 and m31 = 0.25 of row 1 are subtracted from rows 2 and 3, respectively. These
multipliers are put in the matrix at the left and the result is

A =
 1 0 0
−0.5 1 0

0.25 0 1

4 3 −1
0 −2.5 4.5
0 1.25 6.25

 .

Row 2 is used to eliminate the elements in column 2 below the diagonal of the second
factor of A in the above product. The multiple m32 = −0.5 of the second row is subtracted
from row 3, and the multiplier is entered in the matrix at the left and we have the desired
triangular factorization of A.

�(8) A =
 1 0 0
−0.5 1 0

0.25 −0.5 1

4 3 −1
0 −2.5 4.5
0 0 8.5

 .

Theorem 3.10 (Direct Factorization A = LU: No Row Interchanges). Suppose
that Gaussian elimination, without row interchanges, can be performed successfully to
solve the general linear system AX = B. Then the matrix A can be factored as the
product of a lower-triangular matrix L and an upper-triangular matrix U :

A = LU .

144 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Furthermore, L can be constructed to have 1’s on its diagonal and U will have nonzero
diagonal elements. After finding L and U , the solution X is computed in two steps:

1. Solve LY = B for Y using forward substitution.
2. Solve UX = Y for X using back substitution.

Proof. We will show that, when the Gaussian elimination process is followed and
B is stored in column N + 1 of the augmented matrix, the result after the upper-
triangularization step is the equivalent upper-triangular system UX = Y . The matrices
L, U, B, and Y will have the form

L =

1 0 0 0

m21 1 0 · · · 0

m31 m32 1 · · · 0

...
...

...
...

m N1 m N2 m N3 · · · 1

, B =

a(1)
1 N+1

a(2)
2 N+1

a(3)
3 N+1

...

a(N)
N N+1

U =

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N

0 a(2)
22 a(2)

23 · · · a(2)
2N

0 0 a(3)
33 · · · a(3)

3N

...
...

...
...

0 0 0 · · · a(N)
N N

, Y =

a(1)
1 N+1

a(2)
2 N+1

a(3)
3 N+1

...

a(N)
N N+1

.

Remark. To find just L and U , the (N + 1)st column is not needed.
Step 1. Store the coefficients in the augmented matrix. The superscript on a(1)

rc
means that this is the first time that a number is stored in location (r, c).

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

a(1)
21 a(1)

22 a(1)
23 · · · a(1)

2N a(1)
2 N+1

a(1)
31 a(1)

32 a(1)
33 · · · a(1)

3N a(1)
3 N+1

...
...

...
...

...

a(1)
N1 a(1)

N2 a(1)
N3 · · · a(1)

N N a(1)
N N+1

Step 2. Eliminate x1 in rows 2 through N and store the multiplier mr1, used to

eliminate x1 in row r , in the matrix at location (r, 1).

SEC. 3.5 TRIANGULAR FACTORIZATION 145

for r = 2 : N

mr1 = a(1)
r1 /a(1)

11 ;
ar1 = mr1;
for c = 2 : N + 1

a(2)
rc = a(1)

rc − mr1 ∗ a(1)
1c ;

end
end

The new elements are written a(2)
rc to indicate that this is the second time that a

number has been stored in the matrix at location (r, c). The result after step 2 is

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

m21 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

m31 a(2)
32 a(2)

33 · · · a(2)
3N a(2)

3 N+1

...
...

...
...

...

m N1 a(2)
N2 a(2)

N3 · · · a(2)
N N a(2)

N N+1

Step 3. Eliminate x2 in rows 3 through N and store the multiplier mr2, used to

eliminate x2 in row r , in the matrix at location (r, 2).

for r = 3 : N

mr2 = a(2)
r2 /a(2)

22 ;
ar2 = mr2;
for c = 3 : N + 1

a(3)
rc = a(2)

rc − mr2 ∗ a(2)
2c ;

end
end

The new elements are written a(3)
rc to indicate that this is the third time that a num-

ber has been stored in the matrix at the location (r, c).

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

m21 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

m31 m32 a(3)
33 · · · a(3)

3N a(3)
3 N+1

...
...

...
...

...

m N1 m N2 a(3)
N3 · · · a(3)

N N a(3)
N N+1

Step p + 1 . This is the general step. Eliminate x p in rows p + 1 through N and

store the multipliers at the location (r, p).

146 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

for r = p + 1 : N

mr p = a(p)
r p /a(p)

pp ;
ar p = mr p;
for c = p + 1 : N + 1

a(p+1)
rc = a(p)

rc − mr p ∗ a(p)
pc ;

end
end

The final result after xN−1 has been eliminated from row N is

a(1)
11 a(1)

12 a(1)
13 · · · a(1)

1N a(1)
1 N+1

m21 a(2)
22 a(2)

23 · · · a(2)
2N a(2)

2 N+1

m31 m32 a(3)
33 · · · a(3)

3N a(3)
3 N+1

...
...

...
...

...

m N1 m N2 m N3 · · · a(N)
N N a(N)

N N+1

The upper-triangular process is now complete. Notice that one array is used to store

the elements of both L and U . The 1’s of L are not stored, nor are the 0’s of L and
U that lie above and below the diagonal, respectively. Only the essential coefficients
needed to reconstruct L and U are stored!

We must now verify that the product LU = A. Suppose that D = LU and
consider the case when r ≤ c. Then drc is

(9) drc = mr1a(1)
1c + mr2a(2)

2c + · · · + mrr−1a(r−1)
r−1c + a(r)

rc .

Using the replacement equations in steps 1 through p+1 = r , we obtain the following
substitutions:

(10)

mr1a(1)
1c = a(1)

rc − a(2)
rc ,

mr2a(2)
2c = a(2)

rc − a(3)
rc ,

...

mrr−1a(r−1)
r−1c = a(r−1)

rc − a(r)
rc .

When the substitutions in (10) are used in (9), the result is

drc = a(1)
rc − a(2)

rc + a(2)
rc − a(3)

rc + · · · + a(r−1)
rc − a(r)

rc + a(r)
rc = a(1)

rc .

The other case, r > c, is similar to prove. •

SEC. 3.5 TRIANGULAR FACTORIZATION 147

Computational Complexity
The process for triangularizing is the same for both the Gaussian elimination and tri-
angular factorization methods. We can count the operations if we look at the first N
columns of the augmented matrix in Theorem 3.10. The outer loop of step p + 1 re-
quires N − p = N − (p+ 1)+ 1 divisions to compute the multipliers mr p. Inside the
loops, but for the first N columns only, a total of (N − p)(N − p) multiplications and
the same number of subtractions are required to compute the new row elements a(p+1)

rc .
This process is carried out for p = 1, 2, . . . , N − 1. Thus the triangular factorization
portion of A = LU requires

(11)
N−1∑
p=1

(N − p)(N − p + 1) = N 3 − N

3
multiplications and divisions

and

(12)
N−1∑
p=1

(N − p)(N − p) = 2N 3 − 3N 2 + N

6
subtractions.

To establish (11), we use the summation formulas

M∑
k=1

k = M(M + 1)

2
and

M∑
k=1

k2 = M(M + 1)(2M + 1)

6
.

Using the change of variables k = N − p, we rewrite (11) as

N−1∑
p=1

(N − p)(N − p + 1) =
N−1∑
p=1

(N − p)+
N−1∑
p=1

(N − p)2

=
N−1∑
k=1

k +
N−1∑
k=1

k2

= (N − 1)N

2
+ (N − 1)(N)(2N − 1)

6

= N 3 − N

3
.

Once the triangular factorization A = LU has been obtained, the solution to the
lower-triangular system LY = B will require 0 + 1 + · · · + N − 1 = (N 2 − N)/2
multiplications and subtractions; no divisions are required because the diagonal ele-
ments of L are 1’s. Then the solution of the upper-triangular system UX = Y requires
1 + 2 + · · · + N = (N 2 + N)/2 multiplications and divisions and (N 2 − N)/2 sub-
tractions. Therefore, finding the solution to LUX = B requires

N 2 multiplications and divisions, and N 2 − N subtractions.

148 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

We see that the bulk of the calculations lies in the triangularization portion of the
solution. If the linear system is to be solved many times, with the same coefficient
matrix A but with different column matrices B, it is not necessary to triangularize the
matrix each time if the factors are saved. This is the reason the triangular factorization
method is usually chosen over the elimination method. However, if only one linear
system is solved, the two methods are the same, except that the triangular factorization
method stores the multipliers.

Permutation Matrices

The A = LU factorization in Theorem 3.10 assumes that there are no row inter-
changes. It is possible that a nonsingular matrix A cannot be factored directly as
A = LU .

Example 3.22. Show that the following matrix cannot be factored directly as A = LU :

A =
 1 2 6

4 8 −1
−2 3 5

 .

Suppose that A has a direct factorization LU ; then

(13)

 1 2 6
4 8 −1
−2 3 5

 =
 1 0 0

m21 1 0
m31 m32 1

u11 u12 u13
0 u22 u23
0 0 u33

 .

The matrices L and U on the right-hand side of (13) can be multiplied and each element
of the product compared with the corresponding element of the matrix A. In the first
column, 1 = 1u11, then 4 = m21u11 = m21, and finally, −2 = m31u11 = m31. In
the second column, 2 = 1u12, then 8 = m21u12 = (4)(2) + u22 implies that u22 = 0;
and finally, 3 = m31u12 + m32u22 = (−2)(2) + m32(0) = −4, which is a contradiction.
Therefore, A does not have a LU factorization. �

A permutation of the first N positive integers 1, 2, . . . , N is an arrangement k1, k2,
. . ., kN of these integers in a definite order. For example, 1, 4, 2, 3, 5 is a permutation of
the five integers 1, 2, 3, 4, 5. The standard base vectors Ei = [0 0 · · · 0 1i 0 · · · 0],
for i = 1, 2, . . . , N , are used in the next definition.

Definition 3.5. An N×N permutation matrix P is a matrix with precisely one entry
whose value is 1 in each column and row, and all of whose other entries are 0. The
rows of P are a permutation of the rows of the identity matrix and can be written as

(14) P = [E′k1
E′k2

· · · E′kN

]′
.

SEC. 3.5 TRIANGULAR FACTORIZATION 149

The elements of P = [pi j
]

have the form

pi j =
{

1 j = ki ,

0 otherwise.

For example, the following 4× 4 matrix is a permutation matrix,

�(15) P =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 = [E′2 E′1 E′4 E′3
]′

.

Theorem 3.11. Suppose that P = [E′k1
E′k2

· · · E′kN

]′
is a permutation matrix.

The product P A is a new matrix whose rows consist of the rows of A rearranged in
the order rowk1 A, rowk2 A, . . . , rowkN A.

Example 3.23. Let A be a 4×4 matrix and let P be the permutation matrix given in (15);
then PA is the matrix whose rows consist of the rows of A rearranged in the order row2 A,
row1 A, row4 A, row3 A.

Computing the product, we have
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =

a21 a22 a23 a24
a11 a12 a13 a14
a41 a42 a43 a44
a31 a32 a33 a34

 . �

Theorem 3.12. If P is a permutation matrix, then it is nonsingular and P−1 = P ′.

Theorem 3.13. If A is a nonsingular matrix, then there exists a permutation matrix
P so that PA has a triangular factorization

(16) PA = LU .

The proofs can be found in advanced linear algebra texts.

Example 3.24. If rows 2 and 3 of the matrix in Example 3.22 are interchanged, then the
resulting matrix PA has a triangular factorization.

The permutation matrix that switches rows 2 and 3 is P = [E′1 E′3 E′2
]′. Comput-

ing the product PA, we obtain

PA =
1 0 0

0 0 1
0 1 0

 1 2 6
4 8 −1

−2 3 5

 =
 1 2 6
−2 3 5

4 8 −1

 .

150 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Now Gaussian elimination without row interchanges can be used:

pivot→
m21 = −2
m31 = 4

 1 2 6
−2 3 5

4 8 −1

 .

After x2 has been eliminated from column 2, row 3, we have

pivot→
m32 = 0

1 2 6
0 7 17
0 0 −25

 = U . �

Extending the Gaussian Elimination Process

The following theorem is an extension of Theorem 3.10, which includes the cases
when row interchanges are required. Thus triangular factorization can be used to find
the solution to any linear system AX = B, where A is nonsingular.

Theorem 3.14 (Indirect Factorization: PA = LU). Let A be a given N × N
matrix. Assume that Gaussian elimination can be performed successfully to solve the
general linear system AX = B, but that row interchanges are required. Then there
exists a permutation matrix P so that the product PA can be factored as the product of
a lower-triangular matrix L and an upper-triangular matrix U :

PA = LU .

Furthermore, L can be constructed to have 1’s on its main diagonal and U will have
nonzero diagonal elements. The solution X is found in four steps:

1. Construct the matrices L, U , and P .

2. Compute the column vector PB.

3. Solve LY = PB for Y using forward substitution.

4. Solve UX = Y for X using back substitution.

Remark. Suppose that AX = B is to be solved for a fixed matrix A and several differ-
ent column matrices B. Then step 1 is performed only once and steps 2 through 4 are
used to find the solution X that corresponds to B. Steps 2 through 4 are a computation-
ally efficient way to construct the solution X and require O(N 2) operations instead of
the O(N 3) operations required by Gaussian elimination.

SEC. 3.5 TRIANGULAR FACTORIZATION 151

MATLAB

The MATLAB command [L,U,P]=lu(A) creates the lower-triangular matrix L, the
upper-triangular matrix U (from the triangular factorization of A), and the permutation
matrix P from Theorem 3.14.

Example 3.25. Use the MATLAB command [L,U,P]=lu(A) on the matrix A in Ex-
ample 3.22. Verify that A = P−1 LU (equivalent to showing that PA = LU).

>>A=[1 2 6 ;4 8 -1;-2 3 -5];
>>[L,U,P]=lu(A)

L=
1.0000 0 0
-0.5000 1.0000 0
0.2500 0 1.0000

U=
4.0000 8.0000 -1.0000
0 7.0000 4.5000
0 0 6.2500

P=
0 1 0
0 0 1
1 0 0

>>inv(P)*L*U
1 2 6
4 8 -1
-2 3 5 �

As indicated previously, the triangular factorization method is often chosen over
the elimination method. In addition, it is used in the inv(A) and det(A) commands in
MATLAB. For example, from the study of linear algebra we know that the determinant
of a nonsingular matrix A equals (−1)q det U , where U is the upper-triangular matrix
from the triangular factorization of A and q is the number of row interchanges required
to obtain P from the identity matrix I . Since U is an upper-triangular matrix, we
know that the determinant of U is just the product of the elements on its main diagonal
(Theorem 3.6). The reader should verify in Example 3.25 that

det(A) = 175 = (−1)2(175) = (−1)2 det(U).

The following program implements the process described in the proof of Theo-
rem 3.10. It is an extension of Program 3.2 and uses partial pivoting. The interchang-
ing of rows due to partial pivoting is recorded in the matrix R. The matrix R is then
used in the forward substitution step to find the matrix Y .

152 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Program 3.3 (PA = LU: Factorization with Pivoting). To construct the solution
to the linear system AX = B, where A is a nonsingular matrix.

function X = lufact(A,B)

%Input - A is an N x N matrix
% - B is an N x 1 matrix
%Output - X is an N x 1 matrix containing the solution to AX = B.

%Initialize X, Y, the temporary storage matrix C, and the row
% permutation information matrix R

[N,N]=size(A);
X=zeros(N,1);
Y=zeros(N,1);
C=zeros(1,N);
R=1:N;

for p=1:N-1
%Find the pivot row for column p

[max1,j]=max(abs(A(p:N,p)));
%Interchange row p and j

C=A(p,:);
A(p,:)=A(j+p-1,:);
A(j+p-1,:)=C;
d=R(p);
R(p)=R(j+p-1);
R(j+p-1)=d;

if A(p,p)==0
’A is singular. No unique solution’
break

end

%Calculate multiplier and place in subdiagonal portion of A
for k=p+1:N

mult=A(k,p)/A(p,p);
A(k,p) = mult;
A(k,p+1:N)=A(k,p+1:N)-mult*A(p,p+1:N);

end
end

%Solve for Y
Y(1) = B(R(1));
for k=2:N

Y(k)= B(R(k))-A(k,1:k-1)*Y(1:k-1);
end

%Solve for X
X(N)=Y(N)/A(N,N);

SEC. 3.5 TRIANGULAR FACTORIZATION 153

for k=N-1:-1:1
X(k)=(Y(k)-A(k,k+1:N)*X(k+1:N))/A(k,k);

end

Exercises for Triangular Factorization

1. Solve LY = B, UX = Y , and verify that B = AX for (a) B = [−4 10 5
]′ and

(b) B = [20 49 32
]′, where A = LU is2 4 −6

1 5 3
1 3 2

 =
 1 0 0

1/2 1 0
1/2 1/3 1

2 4 −6
0 3 6
0 0 3

 .

2. Solve LY = B, UX = Y , and verify that B = AX for (a) B = [7 2 10
]′ and

(b) B = [23 35 7
]′, where A = LU is 1 1 6

−1 2 9
1 −2 3

 =
 1 0 0
−1 1 0

1 −1 1

1 1 6
0 3 15
0 0 12

 .

3. Find the triangular factorization A = LU for the matrices

(a)

−5 2 −1
1 0 3
3 1 6

 (b)

 1 0 3
3 1 6
−5 2 −1

4. Find the triangular factorization A = LU for the matrices

(a)

4 2 1
2 5 −2
1 −2 7

 (b)

1 −2 7
4 2 1
2 5 −2

5. Solve LY = B, UX = Y , and verify that B = AX for (a) B = [8 −4 10 −4

]′
and (b) B = [28 13 23 4

]′, where A = LU is
4 8 4 0
1 5 4 −3
1 4 7 2
1 3 0 −2

 =

1 0 0 0
1
4 1 0 0
1
4

2
3 1 0

1
4

1
3 − 1

2 1

4 8 4 0
0 3 3 −3
0 0 4 4
0 0 0 1

 .

6. Find the triangular factorization A = LU for the matrix
1 1 0 4
2 −1 5 0
5 2 1 2
−3 0 2 6

 .

7. Establish the formula in (12).

154 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

8. Show that a triangular factorization is unique in the following sense: If A is nonsin-
gular and L1U1 = A = L2U2, then L1 = L2 and U1 = U2.

9. Prove the case r > c at the end of Theorem 3.10.

10. (a) Verify Theorem 3.12 by showing that P P ′ = I = P ′P for the permutation
matrix

P =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

(b) Prove Theorem 3.12. Hint. Use the definition of matrix multiplication and the
fact that each row and column of P and P ′ contains exactly one 1.

11. Prove that the inverse of a nonsingular N × N upper-triangular matrix is an upper-
triangular matrix.

Algorithms and Programs

1. Use Program 3.3 to solve the system AX = B, where

A =

1 3 5 7
2 −1 3 5
0 0 2 5

−2 −6 −3 1

 and B =

1
2
3
4

 .

Use the [L,U,P]=lu(A) command in MATLAB to check your answer.

2. Use Program 3.3 to solve the linear system AX = B, where A = [ai j]N×N and
ai j = i j−1, and B = [bi j]N×1, where b11 = N and bi1 = (i N − 1)/(i − 1) for i ≥ 2.
Use N = 3, 7, and 11. The exact solution is X = [

1 1 · · · 1 1
]′. Explain any

deviations from the exact solution.

3. Modify Program 3.3 so that it will compute A−1 by repeatedly solving N linear sys-
tems

AC J = E J for J = 1, 2, . . . , N .

Then

A
[
C1 C2 . . . C N

] = [E1 E2 · · · EN
]

and

A−1 = [C1 C2 · · · C N
]
.

Make sure that you compute the LU factorization only once!

SEC. 3.5 TRIANGULAR FACTORIZATION 155

R1

R3

I1 I2

I3

R6

R2

R4 R5

E2E1 −

+

−

+

Figure 3.5 The electrical network
for Exercise 4.

4. Kirchhoff’s voltage law says that the sum of the voltage drops around any closed path
in the network in a given direction is zero. When this principle is applied to the circuit
shown in Figure 3.5, we obtain the following linear system of equations:

(1)

(R1 + R3 + R4)I1 + R3 I2 + R4 I3 = E1

R3 I1 + (R2 + R3 + R5)I2 − R5 I3 = E2

R4 I1 − R5 I2 + (R4 + R5 + R6)I3 = 0.

Use Program 3.3 to solve for the current I1, I2, and I3 if
(a) R1 = 1, R2 = 1, R3 = 2, R4 = 1, R5 = 2, R6 = 4, and E1 = 23, E2 = 29
(b) R1 = 1, R2 = 0.75, R3 = 1, R4 = 2, R5 = 1, R6 = 4, and E1 = 12,

E2 = 21.5
(c) R1 = 1, R2 = 2, R3 = 4, R4 = 3, R5 = 1, R6 = 5, and E1 = 41, E2 = 38

5. In calculus the following integral would be found by the technique of partial fractions:∫
x2 + x + 1

(x − 1)(x − 2)(x − 3)2(x2 + 1)
dx .

This would require finding the coefficients Ai , for i = 1, 2, . . . , 6, in the expression

x2 + x + 1

(x − 1)(x − 2)(x − 3)2(x2 + 1)

= A1

x − 1
+ A2

x − 2
+ A3

(x − 3)2
+ A4

x − 3
+ A5x + A6

x2 + 1
.

Use Program 3.3 to find the partial fraction coefficients.

6. Use Program 3.3 to solve the linear system AX = B, where A is generated using the
MATLAB command A=rand(10,10) and B=[1 2 3 ... 10]’. Remember to ver-
ify that A is nonsingular (det(A)�= 0) before using Program 3.3. Check the accuracy
of your answer by forming the matrix difference AX − B and examining how close

156 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

the elements are to zero (an accurate answer would produce AX − B = 0). Repeat
this process using a coefficient matrix A generated by the command A=rand(20,20)
and B=[1 2 3 ... 20]’. Explain any apparent differences in the accuracy of Pro-
gram 3.3 on these two systems.

7. In (8) of Section 3.1 we defined the concept of linear combination in N -dimensional
space. For example, the vector (4,−3), which is equivalent to the matrix

[
4 −3

]′,
could be written as a linear combination of

[
1 0

]′ and
[
0 1

]′:[
4
−3

]
= 4

[
1
0

]
+ (−3)

[
0
1

]
.

Use Program 3.3 to show that the matrix
[
1 3 5 7 9

]′ can be written as a linear
combination of

0
4
−2

3
−1

 ,

2
0
0
4
4

 ,

3
2
0
5
1

 ,

5
6

−3
0
2

 , and

1
4

−2
7
0

 .

Explain why any matrix
[
x1 x2 x3 x4 x5

]′ can be written as a linear combina-
tion of these matrices.

3.6 Iterative Methods for Linear Systems

The goal of this section is to extend some of the iterative methods introduced in Chap-
ter 2 to higher dimensions. We consider an extension of fixed-point iteration that ap-
plies to systems of linear equations.

Jacobi Iteration
Example 3.26. Consider the system of equations

(1)

4x − y + z = 7

4x − 8y + z = −21

−2x + y + 5z = 15.

These equations can be written in the form

(2)

x = 7+ y − z

4

y = 21+ 4x + z

8

z = 15+ 2x − y

5
.

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 157

Table 3.2 Convergent Jacobi Iteration for the Linear
System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
3 1.9625 3.925 2.9625
4 1.99062500 3.97656250 3.00000000
5 1.99414063 3.99531250 3.00093750
...

...
...

...

15 1.99999993 3.99999985 2.99999993
...

...
...

...

19 2.00000000 4.00000000 3.00000000

This suggests the following Jacobi iterative process:

(3)

xk+1 = 7+ yk − zk

4

yk+1 = 21+ 4xk + zk

8

zk+1 = 15+ 2xk − yk

5
.

Let us show that if we start with P0 = (x0, y0, z0) = (1, 2, 2), then the iteration in (3)
appears to converge to the solution (2, 4, 3).

Substitute x0 = 1, y0 = 2, and z0 = 2 into the right-hand side of each equation in (3)
to obtain the new values

x1 = 7+ 2− 2

4
= 1.75

y1 = 21+ 4+ 2

8
= 3.375

z1 = 15+ 2− 2

5
= 3.00.

The new point P1 = (1.75, 3.375, 3.00) is closer to (2, 4, 3) than P0. Iteration us-
ing (3) generates a sequence of points {Pk} that converges to the solution (2, 4, 3) (see
Table 3.2). �

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000, 4.00000000, 3.00000000).

Linear systems with as many as 100,000 variables often arise in the solution of
partial differential equations. The coefficient matrices for these systems are sparse;

158 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

that is, a large percentage of the entries of the coefficient matrix are zero. If there
is a pattern to the nonzero entries (i.e., tridiagonal systems), then an iterative process
provides an efficient method for solving these large systems.

Sometimes the Jacobi method does not work. Let us experiment and see that a
rearrangement of the original linear system can result in a system of iteration equations
that will produce a divergent sequence of points.

Example 3.27. Let the linear system (1) be rearranged as follows:

(4)

−2x + y + 5z = 15

4x − 8y + z = −21

4x − y + z = 7.

These equations can be written in the form

(5)

x = −15+ y + 5z

3

y = 21+ 4x + z

8
z = 7− 4x + y.

This suggests the following Jacobi iterative process:

(6)

xk+1 = −15+ yk + 5zk

3

yk+1 = 21+ 4xk + zk

8
zk+1 = 7− 4xk + yk .

See that if we start with P0 = (x0, y0, z0) = (1, 2, 2), then the iteration using (6) will
diverge away from the solution (2, 4, 3).

Substitute x0 = 1, y0 = 2, and z0 = 2 into the right-hand side of each equation in (6)
to obtain the new values x1, y1, and z1:

x1 = −15+ 2+ 10

2
= −1.5

y1 = 21+ 4+ 2

8
= 3.375

z1 = 7− 4+ 2 = 5.00.

The new point P1 = (−1.5, 3.375, 5.00) is farther away from the solution (2, 4, 3) than P0.
Iteration using the equations in (6) produces a divergent sequence (see Table 3.3). �

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 159

Table 3.3 Divergent Jacobi Iteration for the Linear
System (4)

k xk yk zk

0 1.0 2.0 2.0
1 −1.5 3.375 5.0
2 6.6875 2.5 16.375
3 34.6875 8.015625 −17.25
4 −46.617188 17.8125 −123.73438
5 −307.929688 −36.150391 211.28125
6 502.62793 −124.929688 1202.56836
...

...
...

...

Gauss-Seidel Iteration
Sometimes the convergence can be speeded up. Observe that the Jacobi iterative pro-
cess (3) yields three sequences {xk}, {yk}, and {zk} that converge to 2, 4, and 3, respec-
tively (see Table 3.2). Since xk+1 is expected to be a better approximation to x than xk ,
it seems reasonable that xk+1 could be used in place of xk in the computation of yk+1.
Similarly, xk+1 and yk+1 might be used in the computation of zk+1. The next example
shows what happens when this is applied to the equations in Example 3.26.

Example 3.28. Consider the system of equations given in (1) and the Gauss-Seidel itera-
tive process suggested by (2):

(7)

xk+1 = 7+ yk − zk

4

yk+1 = 21+ 4xk+1 + zk

8

zk+1 = 15+ 2xk+1 − yk+1

5
.

See that if we start with P0 = (x0, y0, z0) = (1, 2, 2), then iteration using (7) will converge
to the solution (2, 4, 3).

Substitute y0 = 2 and z0 = 2 into the first equation of (7) and obtain

x1 = 7+ 2− 2

4
= 1.75.

Then substitute x1 = 1.75 and z0 = 2 into the second equation and get

y1 = 21+ 4(1.75)+ 2

8
= 3.75.

Finally, substitute x1 = 1.75 and y1 = 3.75 into the third equation to get

z1 = 15+ 2(1.75)− 3.75

5
= 2.95.

160 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Table 3.4 Convergent Gauss-Seidel Iteration for the
System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
3 1.995625 3.99609375 2.99903125
...

...
...

...

8 1.99999983 3.99999988 2.99999996
9 1.99999998 3.99999999 3.00000000

10 2.00000000 4.00000000 3.00000000

The new point P1 = (1.75, 3.75, 2.95) is closer to (2, 4, 3) than P0 and is better than the
value given in Example 3.26. Iteration using (7) generates a sequence {Pk} that converges
to (2, 4, 3) (see Table 3.4). �

In view of Examples 3.26 and 3.27, it is necessary to have some criterion to de-
termine whether the Jacobi iteration will converge. Hence we make the following
definition.

Definition 3.6. A matrix A of dimension N × N is said to be strictly diagonally
dominant provided that

�(8) |akk | >
N∑

j=1
j �=k

|akj | for k = 1, 2, . . . , N .

This means that in each row of the matrix the magnitude of the element on the
main diagonal must exceed the sum of the magnitudes of all other elements in the row.
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagonally
dominant because

In row 1: |4| > | − 1| + |1|
In row 2: | − 8| > |4| + |1|
In row 3: |5| > | − 2| + |1|.

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matrix A
for the linear system (1) is strictly diagonally dominant.

The coefficient matrix A of the linear system (4) in Example 3.27 is not strictly

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 161

diagonally dominant because

In row 1: | − 2| < |1| + |5|
In row 2: | − 8| > |4| + |1|
In row 3: |1| < |4| + | − 1|.

Rows 1 and 3 do not satisfy relation (8) in Definition 3.6; therefore, the coefficient
matrix A for the linear system (4) is not strictly diagonally dominant.

We now generalize the Jacobi and Gauss-Seidel iteration processes. Suppose that
the given linear system is

(9)

a11x1 + a12x2 + · · · + a1 j x j + · · · + a1N xN = b1

a21x1 + a22x2 + · · · + a2 j x j + · · · + a2N xN = b2

...
...

...
...

...

a j1x1 + a j2x2 + · · · + a j j x j + · · · + a j N xN = b j

...
...

...
...

...

aN1x1 + aN2x2 + · · · + aN j x j + · · · + aN N xN = bN .

Let the kth point be Pk = (x (k)
1 , x (k)

2 , . . . , x (k)
j , . . . , x (k)

N); then the next point is

Pk+1 = (x (k+1)
1 , x (k+1)

2 , . . . , x (k+1)
j , . . . , x (k+1)

N). The superscript (k) on the coor-
dinates of Pk enables us to identify the coordinates that belong to this point. The
iteration formulas use row j of (9) to solve for x (k+1)

j in terms of a linear combination

of the previous values x (k)
1 , x (k)

2 , . . . , x (k)
j , . . . , x (k)

N :

Jacobi iteration:

(10) x (k+1)
j = b j − a j1x (k)

1 − · · · − a j j−1x (k)
j−1 − a j j+1x (k)

j+1 − · · · − a j N x (k)
N

a j j

for j = 1, 2, . . . , N .
Jacobi iteration uses all old coordinates to generate all new coordinates, whereas

Gauss-Seidel iteration uses the new coordinates as they become available:

Gauss-Seidel iteration:

(11) x (k+1)
j = b j − a j1x (k+1)

1 − · · · − a j j−1x (k+1)
j−1 − a j j+1x (k)

j+1 − · · · − a j N x (k)
N

a j j

for j = 1, 2, . . . , N .
The following theorem gives a sufficient condition for Jacobi iteration to converge.

162 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Theorem 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dominant
matrix. Then AX = B has a unique solution X = P . Iteration using formula (10)
will produce a sequence of vectors {Pk} that will converge to P for any choice of the
starting vector P0.

Proof. The proof can be found in advanced texts on numerical analysis. •
It can be proved that the Gauss-Seidel method will also converge when the ma-

trix A is strictly diagonally dominant. In many cases the Gauss-Seidel method will
converge faster than the Jacobi method; hence it is usually preferred (compare Exam-
ples 3.26 and 3.28). It is important to understand the slight modification of formula
(10) that has been made to obtain formula (11). In some cases the Jacobi method will
converge even though the Gauss-Seidel method will not.

Convergence

A measure of the closeness between vectors is needed so that we can determine if
{Pk} is converging to P . The Euclidean distance (see Section 3.1) between P =
(x1, x2, . . . , xN) and Q = (y1, y2, . . . , yN) is

(12) ‖P − Q‖ =
 N∑

j=1

(x j − y j)
2

1/2

.

Its disadvantage is that it requires considerable computing effort. Hence we introduce
a different norm, ‖X‖1:

(13) ‖X‖1 =
N∑

j=1

|x j |.

The following result ensures that ‖X‖1 has the mathematical structure of a metric
and hence is suitable to use as a generalized “distance formula.” From the study of
linear algebra we know that on a finite-dimensional vector space all norms are equiv-
alent; that is, if two vectors are close in the ‖∗‖1 norm, then they are also close in the
Euclidean norm ‖∗‖.

Theorem 3.16. Let X and Y be N -dimensional vectors and c be a scalar. Then the
function ‖X‖1 has the following properties:

‖X‖1 ≥ 0,(14)

‖X‖1 = 0 if and only if X = 0,(15)

‖cX‖1 = |c| ‖X‖1 ,(16)

‖X + Y‖1 ≤ ‖X‖1 + ‖Y‖1 .(17)

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 163

Proof. We prove (17) and leave the others as exercises. For each j , the triangle
inequality for real numbers states that |x j + y j | ≤ |x j | + |y j |. Summing these yields
inequality (17):

‖X + Y‖1 =
N∑

j=1

|x j + y j | ≤
N∑

j=1

|x j | +
N∑

j=1

|y j | = ‖X‖1 + ‖Y‖1 .

The norm given by (13) can be used to define the distance between points. •

Definition 3.7. Suppose that X and Y are two points in N -dimensional space. We
define the distance between X and Y in the ‖∗‖1 norm as

‖X − Y‖1 =
N∑

j=1

|x j − y j |. �

Example 3.29. Determine the Euclidean distance and ‖∗‖1 distance between the points
P = (2, 4, 3) and Q = (1.75, 3.75, 2.95).

The Euclidean distance is

‖P − Q‖ = ((2− 1.75)2 + (4− 3.75)2 + (3− 2.95)2)1/2 = 0.3570.

The ‖∗‖1 distance is

‖P − Q‖1 = |2− 1.75| + |4− 3.75| + |3− 2.95| = 0.55.

The ‖∗‖1 is easier to compute and use for determining convergence in N -dimensional
space. �

The MATLAB command A(j,[1:j-1,j+1:N]) is used in Program 3.4. This
effectively selects all elements in the j th row of A, except the element in the j th
column (i.e., A(j,j)). This notation is used to simplify the Jacobi iteration (10) step
in Program 3.4.

In both Programs 3.4 and 3.5 we have used the MATLAB command norm, which
is the Euclidean norm. The ‖∗‖1 can also be used and the reader is encouraged to
check the Help menu in MATLAB or one of the reference works for information on
the norm command.

Program 3.4 (Jacobi Iteration). To solve the linear system AX = B by starting
with an initial guess X = P0 and generating a sequence {Pk} that converges to the
solution. A sufficient condition for the method to be applicable is that A is strictly
diagonally dominant.

function X=jacobi(A,B,P,delta, max1)

% Input - A is an N x N nonsingular matrix

164 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

% - B is an N x 1 matrix
% - P is an N x 1 matrix; the initial guess
% - delta is the tolerance for P
% - max1 is the maximum number of iterations
% Output - X is an N x 1 matrix: the Jacobi approximation to
% the solution of AX = B

N = length(B);

for k=1:max1
for j=1:N

X(j)=(B(j)-A(j,[1:j-1,j+1:N])*P([1:j-1,j+1:N]))/A(j,j);
end
err=abs(norm(X’-P));
relerr=err/(norm(X)+eps);
P=X’;

if(err<delta)|(relerr<delta)
break

end
end
X=X’;

Program 3.5 (Gauss-Seidel Iteration). To solve the linear system AX = B
by starting with the initial guess X = P0 and generating a sequence {Pk} that
converges to the solution. A sufficient condition for the method to be applicable is
that A is strictly diagonally dominant.

function X=gseid(A,B,P,delta, max1)

% Input - A is an N x N nonsingular matrix
% - B is an N x 1 matrix
% - P is an N x 1 matrix; the initial guess
% - delta is the tolerance for P
% - max1 is the maximum number of iterations
% Output - X is an N x 1 matrix: the Gauss-Seidel
% approximation to the solution of AX = B

N = length(B);

for k=1:max1
for j=1:N

if j==1
X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1);

elseif j==N
X(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))’)/A(N,N);

else
%X contains the kth approximations and P the (k-1)st

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 165

X(j)=(B(j)-A(j,1:j-1)*X(1:j-1)’
-A(j,j+1:N)*P(j+1:N))/A(j,j);

end
end
err=abs(norm(X’-P));
relerr=err/(norm(X)+eps);
P=X’;

if(err<delta)|(relerr<delta)
break

end
end
X=X’;

Exercises for Iterative Methods for Linear Systems

In Exercises 1 through 8:
(a) Start with P0 = 0 and use Jacobi iteration to find Pk for k = 1, 2, 3. Will Jacobi
iteration converge to the solution?
(b) Start with P0 = 0 and use Gauss-Seidel iteration to find Pk for k = 1, 2, 3. Will
Gauss-Seidel iteration converge to the solution?

1. 4x − y = 15

x + 5y = 9

2. 8x − 3y = 10

− x + 4y = 6

3. − x + 3y = 1

6x − 2y = 2

4. 2x + 3y = 1

7x − 2y = 1

5. 5x − y + z = 10

2x + 8y − z = 11

− x + y + 4z = 3

6. 2x + 8y − z = 11

5x − y + z = 10

− x + y + 4z = 3

7. x − 5y − z = −8

4x + y − z = 13

2x − y − 6z = −2

8. 4x + y − z = 13

x − 5y − z = −8

2x − y − 6z = −2

9. Let X = (x1, x2, . . . , xN). Prove that the ‖∗‖1 norm

‖X‖1 =
N∑

k=1

|xk |

satisfies the three properties (14)–(16).

166 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

10. Let X = (x1, x2, . . . , xN). Prove that the Euclidean norm

‖X‖ =
(

N∑
k=1

(xk)
2

)1/2

satisfies the four properties given in (14)–(17).

11. Let X = (x1, x2, . . . , xN). Prove that the ‖∗‖∞ norm

‖X‖∞ = max
1≤k≤N

|xk |

satisfies the four properties given in (14)–(17).

Algorithms and Programs

1. Use both Programs 3.4 and 3.5 to solve the linear systems in Exercises 1 through 8.
Use the format long command and delta = 10−9.

2. In Theorem 3.14 the condition that A be strictly diagonally dominant is a sufficient but
not necessary condition. Use both Programs 3.4 and 3.5 and several different initial
guesses for P0 on the following linear system. Note. The Jacobi iteration appears to
converge, while the Gauss-Seidel iteration diverges.

x + z = 2

− x + y = 0

x + 2y − 3z = 0

3. Consider the following tridiagonal linear system, and assume that the coefficient ma-
trix is strictly diagonally dominant.

d1x1 + c1x2 = b1

a1x1 + d2x2 + c2x3 = b2

a2x2 + d3x3 + c3x4 = b3

. . . .

. . . .

. . . .

aN−2xN−2 + dN−1xN−1 + cN−1xN = bN−1

aN−1xN−1 + dN xN = bN .

(i) Write an iterative algorithm, following (9)–(11), that will solve this system. Your
algorithm should efficiently use the “sparseness” of the coefficient matrix.
(ii) Construct a MATLAB program based on your algorithm in and solve the following
tridiagonal systems.

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 167

(a) 4m1 + m2 = 3

m1 + 4m2 + m3 = 3

m2 + 4m3 + m4 = 3

m3 + 4m4 + m5 = 3

...
...

...
...

m48 + 4m49 + m50 = 3

m49 + 4m50 = 3

(b) 4m1 + m2 = 1

m1 + 4m2 + m3 = 2

m2 + 4m3 + m4 = 1

m3 + 4m4 + m5 = 2

...
...

...
...

m48 + 4m49 + m50 = 1

m49 + 4m50 = 2

4. Use Gauss-Seidel iteration to solve the following band system.

12x1 − 2x2 + x3 = 5

− 2x1 + 12x2 − 2x3 + x4 = 5

x1 − 2x2 + 12x3 − 2x4 + x5 = 5

x2 − 2x3 + 12x4 − 2x5 + x6 = 5

...
...

...
...

...
...

x46 − 2x47 + 12x48 − 2x49 + x50 = 5

x47 − 2x48 + 12x49 − 2x50 = 5

x48 − 2x49 + 12x50 = 5

5. In Programs 3.4 and 3.5 the relative error between consecutive iterates is used as a
stopping criterion. The problems with using this criterion exclusively were discussed
in Section 2.3. The linear system AX = B can be rewritten as AX − B = 0. If Xk

is the kth iterate from a Jacobi or Gauss-Seidel iteration procedure, then the norm of
the residual AXk − B is, in general, a more appropriate stopping criterion.

Modify Programs 3.4 and 3.5 to use the residual as a stopping criterion. Use the
modified programs to solve the band system in Problem 4.

3.7 Iteration for Nonlinear Systems:
Seidel and Newton’s Methods (Optional)

Iterative techniques will now be discussed that extend the methods of Chapter 2 and
Section 3.6 to the case of systems of nonlinear functions. Consider the functions

(1)
f1(x, y) = x2 − 2x − y + 0.5

f2(x, y) = x2 + 4y2 − 4.

We seek a method of solution for the system of nonlinear equations

(2) f1(x, y) = 0 and f2(x, y) = 0.

168 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

0.5

1.0

−0.5

−1.0

1−1−2 2
x

y

x2 + 4y2 = 4

y = x2 − 2x + 0.5

Figure 3.6 The graphs for the nonlinear system y = x2 − 2x +
0.5 and x2 + 4y2 = 4.

The equations f1(x, y) = 0 and f2(x, y) = 0 implicitly define curves in the xy-
plane. Hence a solution of the system (2) is a point (p, q) where the two curves cross
(i.e., both f1(p, q) = 0 and f2(p, q) = 0). The curves for the system in (1) are well
known:

(3)
x2 − 2x + 0.5 = 0 is the graph of a parabola,

x2 + 4y2 − 4 = 0 is the graph of an ellipse.

The graphs in Figure 3.6 show that there are two solution points and that they are in
the vicinity of (−0.2, 1.0) and (1.9, 0.3).

The first technique is fixed-point iteration. A method must be devised for generat-
ing a sequence {(pk, qk)} that converges to the solution (p, q). The first equation in (3)
can be used to solve directly for x . However, a multiple of y can be added to each side
of the second equation to get x2 + 4y2 − 8y − 4 = −8y. The choice of adding −8y is
crucial and will be explained later. We now have an equivalent system of equations:

(4)
x = x2 − y + 0.5

2

y = −x2 − 4y2 + 8y + 4

8
.

These two equations are used to write the recursive formulas. Start with an initial point
(p0, q0), and then compute the sequence {(pk+1, qk+1)} using

(5)
pk+1 = g1(pk, qk) = p2

k − qk + 0.5

2

qk+1 = g2(pk, qk) = −p2
k − 4q2

k + 8qk + 4

8
.

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 169

Table 3.5 Fixed-Point Iteration Using the Formulas in (5)

Case (i): Start with (0, 1) Case (ii): Start with (2, 0)

k pk qk k pk qk

0 0.00 1.00 0 2.00 0.00
1 −0.25 1.00 1 2.25 0.00
2 −0.21875 0.9921875 2 2.78125 −0.1328125
3 −0.2221680 0.9939880 3 4.184082 −0.6085510
4 −0.2223147 0.9938121 4 9.307547 −2.4820360
5 −0.2221941 0.9938029 5 44.80623 −15.891091
6 −0.2222163 0.9938095 6 1,011.995 −392.60426
7 −0.2222147 0.9938083 7 512,263.2 −205,477.82
8 −0.2222145 0.9938084 This sequence is diverging.
9 −0.2222146 0.9938084

Case (i): If we use the starting value (p0, q0) = (0, 1), then

p1 = 02 − 1+ 0.5

2
= −0.25 and q1 = −02 − 4(1)2 + 8(1)+ 4

8
= 1.0.

Iteration will generate the sequence in case (i) of Table 3.5. In this case the sequence
converges to the solution that lies near the starting value (0, 1).

Case (ii): If we use the starting value (p0, q0) = (2, 0), then

p1 = 22 − 0+ 0.5

2
= 2.25 and q1 = −22 − 4(0)2 + 8(0)+ 4

8
= 0.0.

Iteration will generate the sequence in case (ii) of Table 3.5. In this case the sequence
diverges away from the solution.

Iteration using formulas (5) cannot be used to find the second solution (1.900677,

0.3112186). To find this point, a different pair of iteration formulas are needed. Start
with equation (3) and add −2x to the first equation and −11y to the second equation
and get

x2 − 4x − y + 0.5 = −2x and x2 + 4y2 − 11y − 4 = −11y.

These equations can then be used to obtain the iteration formulas

(6)
pk+1 = g1(pk, qk) = −p2

k + 4pk + qk − 0.5

2

qk+1 = g2(pk, qk) = −p2
k − 4q2

k + 11qk + 4

11
.

Table 3.6 shows how to use (6) to find the second solution.

170 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Table 3.6 Fixed-Point Iteration Using the
Formulas in (6)

k pk qk

0 2.00 0.00
1 1.75 0.0
2 1.71875 0.0852273
3 1.753063 0.1776676
4 1.808345 0.2504410
8 1.903595 0.3160782

12 1.900924 0.3112267
16 1.900652 0.3111994
20 1.900677 0.3112196
24 1.900677 0.3112186

Theory

We want to determine why equations (6) were suitable for finding the solution near
(1.9, 0.3) and equations (5) were not. In Section 2.1 the size of the derivative at the
fixed point was the necessary idea. When functions of several variables are used, the
partial derivatives must be used. The generalization of “the derivative” for systems
of functions of several variables is the Jacobian matrix. We will consider only a few
introductory ideas regarding this topic. More details can be found in any textbook on
advanced calculus.

Definition 3.8. Assume that f1(x, y) and f2(x, y) are functions of the independent
variables x and y; then their Jacobian matrix J(x, y) is

(7)

∂ f1

∂x

∂ f1

∂y

∂ f2

∂x

∂ f2

∂y

 .

Similarly, if f1(x, y, z), f2(x, y, z), and f3(x, y, z) are functions of the independent
variables x, y, and z, then their 3× 3 Jacobian matrix J(x, y, z) is defined as follows:

�(8)

∂ f1

∂x

∂ f1

∂y

∂ f1

∂z

∂ f2

∂x

∂ f2

∂y

∂ f2

∂z

∂ f3

∂x

∂ f3

∂y

∂ f3

∂z

.

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 171

Example 3.30. Find the Jacobian matrix J(x, y, z) of order 3 × 3 at the point (1, 3, 2)

for the three functions

f1(x, y, z) = x3 − y2 + y − z4 + z2

f2(x, y, z) = xy + yz + xz

f3(x, y, z) = y

xz
.

The Jacobian matrix is

J(x, y, z) =

∂ f1

∂x

∂ f1

∂y

∂ f1

∂z

∂ f2

∂x

∂ f2

∂y

∂ f2

∂z

∂ f3

∂x

∂ f3

∂y

∂ f3

∂z
.

=
 3x2 −2y + 1 −4z3 + 2z

y + z x + z y + x
−y

x2z

1

xz

−y

xz2

 .

Thus the Jacobian evaluated at the point (1, 3, 2) is the 3× 3 matrix

J(1, 3, 2) =
 3 −5 −28

5 3 4
− 3

2
1
2 − 3

4

 . �

Generalized Differential

For a function of several variables, the differential is used to show how changes of the
independent variables affect the change in the dependent variables. Suppose that we
have

(9) u = f1(x, y, z), v = f2(x, y, z), and w = f3(x, y, z).

Suppose that the values of the functions in (9) are known at the point (x0, y0, z0)

and we wish to predict their value at a nearby point (x, y, z). Let du, dv, and dw

denote differential changes in the dependent variables and dx, dy, and dz denote dif-
ferential changes in the independent variables. These changes obey the relationships

(10)

du = ∂ f1

∂x
(x0, y0, z0) dx + ∂ f1

∂y
(x0, y0, z0) dy + ∂ f1

∂z
(x0, y0, z0) dz,

dv = ∂ f2

∂x
(x0, y0, z0) dx + ∂ f2

∂y
(x0, y0, z0) dy + ∂ f2

∂z
(x0, y0, z0) dz,

dw = ∂ f3

∂x
(x0, y0, z0) dx + ∂ f3

∂y
(x0, y0, z0) dy + ∂ f3

∂z
(x0, y0, z0) dz.

172 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

If vector notation is used, (10) can be compactly written by using the Jacobian
matrix. The function changes are d F and the changes in the variables are denoted d X .

(11) d F =
du

dv

dw

 = J (x0, y0, z0)

dx
dy
dz

 = J (x0, y0, z0) d X .

Example 3.31. Use the Jacobian matrix to find the differential changes (du, dv, dw)

when the independent variables change from (1, 3, 2) to (1.02, 2.97, 2.01) for the system
of functions

u = f1(x, y, z) = x3 − y2 + y − z4 + z2

v = f2(x, y, z) = xy + yz + xz

w = f3(x, y, z) = y

xz
.

Use equation (11) with J(1, 3, 2) of Example 3.30 and the differential changes
(dx, dy, dz) = (0.02,−0.03, 0.01) to obtaindu

dv

dw

 =
 3 −5 −28

5 3 4
− 3

2
1
2 − 3

4

 0.02
−0.03

0.01

 =
 −0.07

0.05
−0.0525

 .

Notice that the function values at (1.02, 2.97, 2.01) are close to the linear approxima-
tions obtained by adding the differentials du = −0.07, dv = 0.05, and dw = −0.0525 to
the corresponding function values f1(1, 3, 2) = −17, f2(1, 3, 2) = 11, and f3(1, 3, 2) =
1.5; that is,

f1(1.02, 2.97, 2.01) = −17.072 ≈ −17.07 = f1(1, 3, 2)+ du

f2(1.02, 2.97, 2.01) = 11.0493 ≈ 11.05 = f2(1, 3, 2)+ dv

f3(1.02, 2.97, 2.01) = 1.44864 ≈ 1.4475 = f3(1, 3, 2)+ dw.

�

Convergence near Fixed Points
The extensions of the definitions and theorems in Section 2.1 to the case of two and
three dimensions are now given. The notation for N -dimensional functions has not
been used. The reader can easily find these extensions in many books on numerical
analysis.

Definition 3.9. A fixed point for the system of two equations

(12) x = g1(x, y) and y = g2(x, y)

is a point (p, q) such that p = g1(p, q) and q = g2(p, q). Similarly, in three dimen-
sions a fixed point for the system

(13) x = g1(x, y, z), y = g2(x, y, z), and z = g3(x, y, z)

is a point (p, q, r) such that p = g1(p, q, r), q = g2(p, q, r), and r = g3(p, q, r). �

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 173

Definition 3.10. For the functions (12), fixed-point iteration is

(14) pk+1 = g1(pk, qk) and qk+1 = g2(pk, qk)

for k = 0, 1, Similarly, for the functions (13), fixed-point iteration is

(15)

pk+1 = g1(pk, qk, rk)

qk+1 = g2(pk, qk, rk)

rk+1 = g3(pk, qk, rk)

for k = 0, 1, �

Theorem 3.17 (Fixed-Point Iteration). Assume that the functions in (12) and (13)
and their first partial derivatives are continuous on a region that contains the fixed point
(p, q) or (p, q, r), respectively. If the starting point is chosen sufficiently close to the
fixed point, then one of the following cases applies.

Case (i): Two dimensions. If (p0, q0) is sufficiently close to (p, q) and if

(16)

∣∣∣∣∂g1

∂x
(p, q)

∣∣∣∣+ ∣∣∣∣∂g1

∂y
(p, q)

∣∣∣∣ < 1,∣∣∣∣∂g2

∂x
(p, q)

∣∣∣∣+ ∣∣∣∣∂g2

∂y
(p, q)

∣∣∣∣ < 1,

then the iteration in (14) converges to the fixed point (p, q).
Case (ii): Three dimensions. If (p0, q0, r0) is sufficiently close to (p, q, r) and if

(17)

∣∣∣∣∂g1

∂x
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g1

∂y
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g1

∂z
(p, q, r)

∣∣∣∣ < 1,∣∣∣∣∂g2

∂x
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g2

∂y
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g2

∂z
(p, q, r)

∣∣∣∣ < 1,∣∣∣∣∂g3

∂x
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g3

∂y
(p, q, r)

∣∣∣∣+ ∣∣∣∣∂g3

∂z
(p, q, r)

∣∣∣∣ < 1,

then the iteration in (15) converges to the fixed point (p, q, r).

If conditions (16) or (17) are not met, the iteration might diverge. This will usually
be the case if the sum of the magnitudes of the partial derivatives is much larger than 1.
Theorem 3.17 can be used to show why the iteration (5) converged to the fixed point
near (−0.2, 1.0). The partial derivatives are

∂

∂x
g1(x, y) = x,

∂

∂y
g1(x, y) = −1

2
,

∂

∂x
g2(x, y) = − x

4
,

∂

∂y
g2(x, y) = −y + 1.

174 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Indeed, for all (x, y) satisfying −0.5 < x < 0.5 and 0.5 < y < 1.5, the partial
derivatives satisfy∣∣∣∣ ∂

∂x
g1(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g1(x, y)

∣∣∣∣ = |x | + | − 0.5| < 1,∣∣∣∣ ∂

∂x
g2(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g2(x, y)

∣∣∣∣ = | − x |
4

+ | − y + 1| < 0.625 < 1.

Therefore, the partial derivative conditions in (16) are met and Theorem 3.17 implies
that fixed-point iteration will converge to (p, q) ≈ (−0.2222146, 0.9938084). Notice
that near the other fixed point (1.90068, 0.31122) the partial derivatives do not meet
the conditions in (16); hence convergence is not guaranteed. That is,∣∣∣∣ ∂

∂x
g1(1.90068, 0.31122)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g1(1.90068, 0.31122)

∣∣∣∣ = 2.40068 > 1,∣∣∣∣ ∂

∂x
g2(1.90068, 0.31122)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g2(1.90068, 0.31122)

∣∣∣∣ = 1.16395 > 1.

Seidel Iteration
An improvement, analogous to the Gauss-Seidel method for linear systems, of fixed-
point iteration can be made. Suppose that pk+1 is used in the calculation of qk+1
(in three dimensions both pk+1 and qk+1 are used to compute rk+1). When these
modifications are incorporated in formulas (14) and (15), the method is called Seidel
iteration:

(18) pk+1 = g1(pk, qk) and qk+1 = g2(pk+1, qk)

and

(19)

pk+1 = g1(pk, qk, rk)

qk+1 = g2(pk+1, qk, rk)

rk+1 = g3(pk+1, qk+1, rk).

Program 3.6 will implement Seidel iteration for nonlinear systems. Implementa-
tion of fixed-point iteration is left for the reader.

Newton’s Method for Nonlinear Systems
We now outline the derivation of Newton’s method in two dimensions. Newton’s
method can easily be extended to higher dimensions.

Consider the system

(20)
u = f1(x, y)

v = f2(x, y),

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 175

which can be considered a transformation from the xy-plane to the uv-plane. We are
interested in the behavior of this transformation near the point (x0, y0) whose image
is the point (u0, v0). If the two functions have continuous partial derivatives, then the
differential can be used to write a system of linear approximations that is valid near the
point (x0, y0):

(21)
u − u0 ≈ ∂

∂x
f1(x0, y0)(x − x0)+ ∂

∂y
f1(x0, y0)(y − y0),

v − v0 ≈ ∂

∂x
f2(x0, y0)(x − x0)+ ∂

∂y
f2(x0, y0)(y − y0).

The system (21) is a local linear transformation that relates small changes in the
independent variables to small changes in the dependent variable. When the Jacobian
matrix J(x0, y0) is used, this relationship is easier to visualize:

(22)

[
u − u0
v − v0

]
=

∂

∂x
f1(x0, y0)

∂

∂y
f1(x0, y0)

∂

∂x
f2(x0, y0)

∂

∂y
f2(x0, y0)

[

x − x0
y − y0

]
.

If the system in (20) is written as a vector function V = F(X), the Jacobian
J(x, y) is the two-dimensional analog of the derivative, because (22) can be written as

(23) �F ≈ J(x0, y0) �X .

We now use (23) to derive Newton’s method in two dimensions.
Consider the system (20) with u and v set equal to zero:

(24)
0 = f1(x, y)

0 = f2(x, y).

Suppose that (p, q) is a solution of (24); that is,

(25)
0 = f1(p, q)

0 = f2(p, q).

To develop Newton’s method for solving (24), we need to consider small changes
in the functions near the point (p0, q0):

(26)
�u = u − u0, �p = x − p0.

�v = v − v0, �q = y − q0.

Set (x, y) = (p, q) in (20) and use (25) to see that (u, v) = (0, 0). Hence the changes
in the dependent variables are

(27)
u − u0 = f1(p, q)− f1(p0, q0) = 0− f1(p0, q0)

v − v0 = f2(p, q)− f2(p0, q0) = 0− f2(p0, q0).

176 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Use the result of (27) in (22) to get the linear transformation

(28)

∂

∂x
f1(p0, q0)

∂

∂y
f1(p0, q0)

∂

∂x
f2(p0, q0)

∂

∂y
f2(p0, q0)

[
�p
�q

]
≈ −

[
f1(p0, q0)

f2(p0, q0)

]
.

If the Jacobian J(p0, q0) in (28) is nonsingular, we can solve for �P = [�p �q
]′ =[

p q
]′ − [p0 q0

]′ as follows:

(29) �P ≈ −J(p0, q0)
−1 F(p0, q0).

Then the next approximation P1 to the solution P = [p q
]′ is

(30) P1 = P0 +�P = P0 − J(p0, q0)
−1 F(p0, q0).

Notice that (30) is the generalization of Newton’s method for the one-variable case;
that is, p1 = p0 − f (p0)/ f ′(p0).

Outline of Newton’s Method

Suppose that Pk has been obtained.

Step 1. Evaluate the function

F(Pk) =
[

f1(pk, qk)

f2(pk, qk)

]
.

Step 2. Evaluate the Jacobian

J(Pk) =

∂

∂x
f1(pk, qk)

∂

∂y
f1(pk, qk)

∂

∂x
f2(pk, qk)

∂

∂y
f2(pk, qk)

 .

Step 3. Solve the linear system

J(Pk)�P = −F(Pk) for �P .

Step 4. Compute the next point:

Pk+1 = Pk +�P .

Now, repeat the process.

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 177

Example 3.32. Consider the nonlinear system

0 = x2 − 2x − y + 0.5

0 = x2 + 4y2 − 4.

Use Newton’s method with the starting value (p0, q0) = (2.00, 0.25) and compute (p1, q1),
(p2, q2), and (p3, q3).

The function vector and Jacobian matrix are

F(x, y) =
[

x2 − 2x − y + 0.5
x2 + 4y2 − 4

]
, J(x, y) =

[
2x − 2 −1

2x 8y

]
.

At the point (2.00, 0.25) they take on the values

F(2.00, 0.25) =
[

0.25
0.25

]
, J(2.00, 0.25) =

[
2.0 −1.0
4.0 2.0

]
.

The differentials �p and �q are solutions of the linear system

[
2.0 −1.0
4.0 2.0

] [
�p
�q

]
= −

[
0.25
0.25

]
.

A straightforward calculation reveals that

�P =
[
�p
�q

]
=
[−0.09375

0.0625

]
.

The next point in the iteration is

P1 = P0 +�P =
[

2.00
0.25

]
+
[−0.09375

0.0625

]
=
[

1.90625
0.3125

]
.

Similarly, the next two points are

P2 =
[

1.900691
0.311213

]
and P3 =

[
1.900677
0.311219

]
.

The coordinates of P3 are accurate to six decimal places. Calculations for finding P2 and
P3 are summarized in Table 3.7. �

178 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Table 3.7 Function Values, Jacobian Matrices, and Differentials Required for Each
Iteration in Newton’s Solution to Example 3.32

Pk

Solution of the linear system
J (Pk)�P = −F(Pk) Pk +�P[

2.00
0.25

] [
2.0 −1.0
4.0 2.0

] [−0.09375
0.0625

]
= −

[
0.25
0.25

] [
1.90625
0.3125

]
[

1.90625
0.3125

] [
1.8125 −1.0
3.8125 2.5

] [−0.005559
−0.001287

]
= −

[
0.008789
0.024414

] [
1.900691
0.311213

]
[

1.900691
0.311213

] [
1.801381 −1.000000
3.801381 2.489700

] [−0.000014
0.000006

]
= −

[
0.000031
0.000038

] [
1.900677
0.311219

]

Implementation of Newton’s method can require the determination of several par-
tial derivatives. It is permissible to use numerical approximations for the values of
these partial derivatives, but care must be taken to determine the proper step size. In
higher dimensions it is necessary to use the methods for solving linear systems intro-
duced earlier in this chapter to solve for �P .

MATLAB

Programs 3.6 (Nonlinear Seidel Iteration) and 3.7 (Newton-Raphson Method) will re-
quire saving the nonlinear system X = G(X), and the nonlinear system F(X) = 0
and its Jacobian matrix, J F, respectively, as M-files. As an example, consider saving
the nonlinear system in Example 3.32 and the related Jacobian matrix as the M-files
F.m and JF.m, respectively.

function Z=F(X) function W=JF(X)
x=X(1);y=X(2); x=X(1);y=X(2);
Z=zeros(1,2); W=[2*x-2 -1;2*x 8*y];
Z(1)=x^2-2*x-y+0.5;
Z(2)=x^2+4y^2-4;

The functions may be evaluated using the standard MATLAB commands.

>>A=feval(’F’,[2.00 0.25])
A=

0.2500 0.2500

>>V=JF([2.00 0.25])
B=

2 -1
4 2

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 179

Program 3.6 (Nonlinear Seidel Iteration). To solve the nonlinear fixed-point
system X = G(X), given one initial approximation P0, and generating a sequence
{Pk} that converges to the solution P .

function [P,iter] = seidel(G,P,delta, max1)

%Input - G is the nonlinear system saved in the M-file G.m
% - P is the initial guess at the solution
% - delta is the error bound
% - max1 is the number of iterations
%Output - P is the Seidel approximation to the solution
% - iter is the number of iterations required

N=length(P);

for k=1:max1
X=P;

% X is the kth approximation to the solution
for j=1:N

A=feval(’G’,X);
% Update the terms of X as they are calculated
X(j)=A(j);

end

err=abs(norm(X-P));
relerr=err/(norm(X)+eps);
P=X;
iter=k;
if(err<delta)|(relerr<delta)

break
end

end

In the following program the MATLAB command A\B is used to solve the linear
system AX = B (see Q=P-(J\Y’)’). Programs developed earlier in this chapter could
be used in place of this MATLAB command. The choice of an appropriate program
to solve the linear system would depend on the size and characteristics of the Jacobian
matrix.

Program 3.7 (Newton-Raphson Method). To solve the nonlinear system
F(X) = 0, given one initial approximation P0 and generating a sequence {Pk}
that converges to the solution P .

function [P,iter,err]=newdim(F,JF,P,delta,epsilon,max1)

%Input - F is the system saved as the M-file F.m
% - JF is the Jacobian of F saved as the M-file JF.M
% - P is the initial approximation to the solution

180 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

% - delta is the tolerance for P
% - epsilon is the tolerance for F(P)
% - max1 is the maximum number of iterations
%Output - P is the approximation to the solution
% - iter is the number of iterations required
% - err is the error estimate for P

Y=feval(F,P);

for k=1:max1
J=feval(JF,P);
Q=P-(J\Y’)’;
Z=feval(F,Q);
err=norm(Q-P);
relerr=err/(norm(Q)+eps);
P=Q;
Y=Z;
iter=k;
if (err<delta)|(relerr<delta)|(abs(Y)<epsilon)

break
end

end

Exercises for Iteration for Nonlinear Systems

1. Find (analytically) the fixed point(s) for each of the following systems.
(a) x = g1(x, y) = x − y2

y = g2(x, y) = −x + 6y

(b) x = g1(x, y) = (x2 − y2 − x − 3)/3

y = g2(x, y) = (−x + y − 1)/3

(c) x = g1(x, y) = sin(y)

y = g2(x, y) = −6x + y

(d) x = g1(x, y, z) = 9− 3y − 2z

y = g2(x, y, z) = 2− x + z

z = g3(x, y, z) = −9+ 3x + 4y − z

2. Find (analytically) the zero(s) for each of the following systems. Evaluate the Jaco-
bian of each system at each zero.
(a) 0 = f1(x, y) = 2x + y − 6

0 = f2(x, y) = x + 2y

(b) 0 = f1(x, y) = 3x2 + 2y − 4

0 = f2(x, y) = 2x + 2y − 3

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 181

x

y

−1 1

−1

1

2

−2

2 3

Figure 3.7 The hyperbola and
circle for Exercise 5.

(c) 0 = f1(x, y) = 2x − 4 cos(y)

0 = f2(x, y) = 4x sin(y)

(d) 0 = f1(x, y, z) = x2 + y2 − z

0 = f2(x, y, z) = x2 + y2 + z2 − 1

0 = f3(x, y, z) = x + y

3. Find a region in the xy-plane such that if (p0, q0) is in the region then fixed-point
iteration is guaranteed to converge (use an argument similar to the one that followed
Theorem 3.17) for the system:

x = g1(x, y) = (x2 − y2 − x − 3)/3

y = g2(x, y) = (x + y + 1)/3.

4. Rewrite the following linear system in fixed-point form. Find bounds on x , y, and z
such that fixed-point iteration is sure to converge for any initial guess (p0, q0, r0) that
satisfies the boundary conditions.

6x + y + z = 1

x + 4y + z = 2

x + y + 5z = 0

5. For the given nonlinear system (see Figure 3.7), use the initial approximation (p0, q0) =
(1.1, 2.0), and compute the next three approximations to the fixed point using (a) fixed-
point iteration and equations (14) and (b) Seidel iteration using equations (18).

x = g1(x, y) = 8x − 4x2 + y2 + 1

8
(hyperbola)

y = g2(x, y) = 2x − x2 + 4y − y2 + 3

4
(circle).

182 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

0.5−0.5−1.5 −1.0−2.0

1

x

2

−1

−2

−3

y

Figure 3.8 The cubic and parabola
for Exercise 6.

6. For the following nonlinear system (see Figure 3.8), use the initial approximation
(p0, q0) = (−0.3,−1.3), and compute the next three approximations to the fixed
point using (a) fixed-point iteration and equations (14) and (b) Seidel iteration using
equations (18).

x = g1(x, y) = y − x3 + 3x2 + 3x

7
(cubic)

y = g2(x, y) = y2 + 2y − x − 2

2
(parabola).

7. Consider the nonlinear system

0 = f1(x, y) = x2 − y − 0.2

0 = f2(x, y) = y2 − x − 0.3.

These parabolas intersect in two points as shown in Figure 3.9.
(a) Start with (p0, q0) = (1.2, 1.2) and apply Newton’s method to compute (p1, q1)

and (p2, q2).
(b) Start with (p0, q0) = (−0.2,−0.2) and apply Newton’s method to compute

(p1, q1) and (p2, q2).

8. Consider the nonlinear system shown in Figure 3.10.

0 = f1(x, y) = x2 + y2 − 2

0 = f2(x, y) = xy − 1.

(a) Verify that the solutions are (1, 1) and (−1,−1).
(b) What difficulties might arise if we try to use Newton’s method to find the solu-

tions?

9. Show that Jacobi iteration for a 3 × 3 linear system is a special case of fixed-point
iteration (15). Furthermore, verify that if the coefficient matrix from a 3 × 3 linear
system is strictly diagonally dominant, then condition (17) is satisfied.

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 183

1−1−2

1

2
x

2

−1

−2

y

Figure 3.9 The parabolas for
Exercise 7.

1−1−2

1

2
x

2

−1

−2

y

Figure 3.10 The circle and hyper-
bola for Exercise 8.

10. Show that Newton’s method for two equations can be written in fixed-point iteration
form

x = g1(x, y), y = g2(x, y),

where g1(x, y) and g2(x, y) are given by

g1(x, y) = x −
f1(x, y)

∂

∂y
f2(x, y)− f2(x, y)

∂

∂y
f1(x, y)

det(J(x, y))

g2(x, y) = y −
f2(x, y)

∂

∂x
f1(x, y)− f1(x, y)

∂

∂x
f2(x, y)

det(J(x, y))
.

11. Fixed-point iteration is used to solve the nonlinear system (12). Use the following
steps to prove that conditions in (16) are sufficient to guarantee that {(pk, qk)} con-
verges to (p, q). Assume that there is a constant K with 0 < K < 1 so that∣∣∣∣ ∂

∂x
g1(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g1(x, y)

∣∣∣∣ < K

and ∣∣∣∣ ∂

∂x
g2(x, y)

∣∣∣∣+ ∣∣∣∣ ∂

∂y
g2(x, y)

∣∣∣∣ < K

for all (x, y) in the rectangle R = {(x, y) : a < x < b, c < y < d}. Also assume
that a < p0 < b and c < q0 < d. Define

ek = p − pk, Ek = q − qk, and rk = max{|ek |, |Ek |}.

184 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Use the following form of the mean value theorem applied to functions of two vari-
ables:

ek+1 = ∂

∂x
g1(a

∗
k , qk)ek + ∂

∂y
g1(p, c∗k)Ek

Ek+1 = ∂

∂x
g2(b

∗
k , qk)ek + ∂

∂y
g2(p, d∗k)Ek,

where a∗k and b∗k lie in [a, b] and c∗k and d∗k lie in [c, d]. Prove the following:
(a) |e1| ≤ Kr0 and |E1| ≤ Kr0

(b) |e2| ≤ Kr1 ≤ K 2r0 and |E2| ≤ Kr1 ≤ K 2r0

(c) |ek | ≤ Krk−1 ≤ K kr0 and |Ek | ≤ Krk−1 ≤ K kr0

(d) limn→∞ pk = p and limn→∞ qk = q

12. As noted earlier, the Jacobian matrix of system (20) is the two-dimensional analog
of the derivative. Write system (20) as a vector function V = F(X), and let J(F)

be the Jacobian matrix of this system. Given two nonlinear systems V = F(X) and
V = G(X) and the real number c, prove:
(a) J(cF(X)) = c J(F(X))

(b) J(F(X)+ G(X)) = J(F(X))+ J(G(X))

Algorithms and Programs

1. Use Program 3.6 to approximate the fixed points of the systems in Exercises 5 and 6.
Answers should be accurate to 10 decimal places.

2. Use Program 3.7 to approximate the zeros of the systems in Exercises 7 and 8. An-
swers should be accurate to 10 decimal places.

3. Construct a program to find the fixed points of a system using fixed-point iteration.
Use the program to approximate the fixed points of the systems in Exercises 5 and 6.
Answers should be accurate to eight decimal places.

4. Use Program 3.7 to approximate the zeros of the following systems. Answers should
be accurate to 10 decimal places.
(a) 0 = x2 − x + y2 + z2 − 5

0 = x2 + y2 − y + z2 − 4

0 = x2 + y2 + z2 + z − 6

(b) 0 = x2 − x + 2y2 + yz − 10

0 = 5x − 6y + z

0 = z − x2 − y2

(c) 0 = (x + 1)2 + (y + 1)2 − z

0 = (x − 1)2 + y2 − z

0 = 4x2 + 2y2 + z2 − 16

SEC. 3.7 ITERATION FOR NONLINEAR SYSTEMS 185

(d) 0 = 9x2 + 36y2 + 4z2 − 36

0 = x2 − 2y2 − 20z

0 = 16x − x3 − 2y2 − 16z2

5. We wish to solve the nonlinear system

0 = 7x3 − 10x − y − 1

0 = 8y3 − 11y + x − 1.

Use MATLAB to sketch the graphs of both curves on the same coordinate system.
Use the graph to verify that there are nine points where the graphs intersect. Using
the graph, estimate the points of intersection. Use these estimates and Program 3.7 to
approximate the points of intersection to nine decimal places.

6. The system in Problem 5 can be rewritten in fixed-point form:

x = 7x3 − y − 1

10

y = 8y3 + x − 1

11
.

Do some computer experimentation. Discover that, no matter what starting value
is used, only one of the nine solutions can be found using fixed-point iteration (on
this particular fixed-point form). Are there other fixed-point forms of the system in
Problem 5 that could be used to find other solutions of the system?

4
Interpolation and
Polynomial Approximation

The computational procedures used in computer software for the evaluation of a li-
brary function, such as sin(x), cos(x), or ex , involve polynomial appproximation. The
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximation is suitable for a first course in
numerical analysis, and we consider them in this chapter. Suppose that the function
f (x) = ex is to be approximated by a polynomial of degree n = 2 over the interval
[−1, 1]. The Taylor polynomial is shown in Figure 4.1(a) and can be contrasted with

0.50.0−0.5−1.0 1.0
x

2.5

2.0

1.5

1.0

0.5

y

y = p(x)

y = ex

(a)

0.50.0−0.5−1.0 1.0
x

2.5

2.0

1.5

1.0

0.5

y

y = q(x)

y = ex

(b)

Figure 4.1 (a) The Taylor polynomial p(x) = 1.000000 + 1.000000x +
0.500000x2, which approximates f (x) = ex over [−1, 1]. (b) The Chebyshev
approximation q(x) = 1.000000 + 1.129772x + 0.532042x2 for f (x) = ex over
[−1, 1].

186

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187

y

x

6
y = p(x)

5

4

3

2

1

1 2 3 4 5

Figure 4.2 The graph of the col-
location polynomial that passes
through (1, 2), (2, 1), (3, 5), (4, 6),
and (5, 1).

the Chebyshev approximation in Figure 4.1(b). The maximum error for the Taylor ap-
proximation is 0.218282, whereas the maximum error for the Chebyshev polynomial
is 0.056468. In this chapter we develop the basic theory needed to investigate these
matters.

An associated problem involves construction of the collocation polynomial. Given
n + 1 points in the plane (no two of which are aligned vertically), the collocation
polynomial is the unique polynomial of degree ≤ n that passes through the points. In
cases where data are known to a high degree of precision, the collocation polynomial
is sometimes used to find a polynomial that passes through the given data points. A va-
riety of methods can be used to construct the collocation polynomial: solving a linear
system for its coefficients, the use of Lagrange coefficient polynomials, and the con-
struction of a divided differences table and the coefficients of the Newton polynomial.
All three techniques are important for a practitioner of numerical analysis to know.
For example, the collocation polynomial of degree n = 4 that passes through the five
points (1, 2), (2, 1), (3, 5), (4, 6), and (5, 1) is

P(x) = 5x4 − 82x3 + 427x2 − 806x + 504

24
,

and a graph showing both the points and the polynomial is given in Figure 4.2.

4.1 Taylor Series and Calculation of Functions

Limit processes are the basis of calculus. For example, the derivative

f ′(x) = lim
h→0

f (x + h)− f (x)

h

is the limit of the difference quotient where both the numerator and the denominator
go to zero. A Taylor series illustrates another type of limit process. In this case an

188 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 4.1 Taylor Series Expansions for Some Common Functions

sin(x)= x − x3

3! +
x5

5! −
x7

7! + · · · for all x

cos(x)= 1− x2

2! +
x4

4! −
x6

6! + · · · for all x

ex = 1+ x + x2

2! +
x3

3! +
x4

4! + · · · for all x

ln(1+ x)= x − x2

2
+ x3

3
− x4

4
+ · · · −1 ≤ x ≤ 1

arctan(x)= x − x3

3
+ x5

5
− x7

7
+ · · · −1 ≤ x ≤ 1

(1+ x)p = 1+ px+ p(p − 1)

2! x2+ p(p − 1)(p − 2)

3! x3+· · · for |x | < 1

infinite number of terms is added together by taking the limit of certain partial sums.
An important application is their use to represent the elementary functions: sin(x),
cos(x), ex , ln(x), etc. Table 4.1 gives several of the common Taylor series expansions.
The partial sums can be accumulated until an approximation to the function is obtained
that has the accuracy specified. Series solutions are used in the areas of engineering
and physics.

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 4.1 to
compute the number e = e1, which is the base of the natural logarithm and exponential
functions. Here we choose x = 1 and use the series

e1 = 1+ 1

1! +
12

2! +
13

3! +
14

4! + · · · +
1k

k! + · · · .

The definition for the sum of an infinite series in Section 1.1 requires that the partial
sums SN tend to a limit. The values of these sums are given in Table 4.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. If enough
terms are added, then an accurate approximation will be obtained. This needs to be
made precise. What degree should be chosen for the polynomial, and how do we
calculate the coefficients for the powers of x in the polynomial? Theorem 4.1 answers
these questions.

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 189

Table 4.2 Partial Sums Sn Used to
Determine e

n Sn = 1+ 1
1! +

1
2! + · · · +

1
n!

0 1.0
1 2.0
2 2.5
3 2.666666666666 . . .

4 2.708333333333 . . .

5 2.716666666666 . . .

6 2.718055555555 . . .

7 2.718253968254 . . .

8 2.718278769841 . . .

9 2.718281525573 . . .

10 2.718281801146 . . .

11 2.718281826199 . . .

12 2.718281828286 . . .

13 2.718281828447 . . .

14 2.718281828458 . . .

15 2.718281828459 . . .

Theorem 4.1 (Taylor Polynomial Approximation). Assume that f ∈ C N+1[a, b]
and x0 ∈ [a, b] is a fixed value. If x ∈ [a, b], then

(1) f (x) = PN (x)+ EN (x),

where PN (x) is a polynomial that can be used to approximate f (x):

(2) f (x) ≈ PN (x) =
N∑

k=0

f (k)(x0)

k! (x − x0)
k .

The error term EN (x) has the form

(3) EN (x) = f (N+1)(c)

(N + 1)! (x − x0)
N+1

for some value c = c(x) that lies between x and x0.

Proof. The proof is left as an exercise. •
Relation (2) indicates how the coefficients of the Taylor polynomial are calculated.

Although the error term (3) involves a similar expression, notice that f (N+1)(c) is to be
evaluated at an undetermined number c that depends on the value of x . For this reason
we do not try to evaluate EN (x): it is used to determine a bound for the accuracy of
the approximation.

190 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Example 4.1. Show why 15 terms are all that are needed to obtain the 13-digit approxi-
mation e = 2.718281828459 in Table 4.2.

Expand f (x) = ex in a Taylor polynomial of degree 15 using the fixed value x0 = 0
and involving the powers (x − 0)k = xk . The derivatives required are f ′(x) = f ′′(x) =
· · · = f (16) = ex . The first 15 derivatives are used to calculate the coefficients ak = e0/k!
and are used to write

(4) P15(x) = 1+ x + x2

2! +
x3

3! + · · · +
x15

15! .

Setting x = 1 in (4) gives the partial sum S15 = P15(1). The remainder term is needed to
show the accuracy of the approximation:

(5) E15(x) = f (16)(c)x16

16! .

Since we chose x0 = 0 and x = 1, the value c lies between them (i.e., 0 < c < 1), which
implies that ec < e1. Notice that the partial sums in Table 4.2 are bounded above by 3.
Combining these two inequalities yields ec < 3, which is used in the following calculation

|E15(1)| = | f (16)(c)|
16! ≤ ec

16! <
3

16! < 1.433844× 10−13.

Therefore, all the digits in the approximation e ≈ 2.718281828459 are correct, because the
actual error (whatever it is) must be less than 2 in the thirteenth decimal place. �

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text on
calculus for more details. For illustration, we again use the function f (x) = ex and
the value x0 = 0. From elementary calculus we know that the slope of the curve
y = ex at the point (x, ex) is f ′(x) = ex . Hence the slope at the point (0, 1) is
f ′(0) = 1. Therefore, the tangent line to the curve at the point (0, 1) is y = 1 + x .
This is the same formula that would be obtained if we used N = 1 in Theorem 4.1;
that is, P1(x) = f (0) + f ′(0)x/1! = 1 + x . Therefore, P1(x) is the equation of the
tangent line to the curve. The graphs are shown in Figure 4.3.

Observe that the approximation ex ≈ 1+ x is good near the center x0 = 0 and that
the distance between the curves grows as x moves away from 0. Notice that the slopes
of the curves agree at (0, 1). In calculus we learned that the second derivative indicates
whether a curve is concave up or down. The study of curvature1 shows that if two
curves y = f (x) and y = g(x) have the property that f (x0) = g(x0), f ′(x0) = g′(x0),
and f ′′(x0) = g′′(x0) then they have the same curvature at x0. This property would be
desirable for a polynomial function that approximates f (x). Corollary 4.1 shows that
the Taylor polynomial has this property for N ≥ 2.

1The curvature K of a graph y = f (x) at (x0, y0) is defined by K = | f ′′(x0)|/(1+[f ′(x0)]2)3/2.

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 191

1−1
−1

−2 2
x

5

4

3

2

1

y

y = P1(x)

y = ex

Figure 4.3 The graphs of y = ex

and y = P1(x) = 1+ x .

Corollary 4.1. If PN (x) is the Taylor polynomial of degree N given in Theorem 4.1,
then

(6) P(k)
N (x0) = f (k)(x0) for k = 0, 1, . . . , N .

Proof. Set x = x0 in equations (2) and (3), and the result is PN (x0) = f (x0). Thus
statement (6) is true for k = 0. Now differentiate the right-hand side of (2) and get

(7) P ′N (x) =
N∑

k=1

f (k)(x0)

(k − 1)! (x − x0)
k−1 =

N−1∑
k=0

f (k+1)(x0)

k! (x − x0)
k .

Set x = x0 in (7) to obtain P ′N (x0) = f ′(x0). Thus statement (6) is true for k = 1.
Successive differentiations of (7) will establish the other identities in (6). The details
are left as an exercise. •

Applying Corollary 4.1, we see that y = P2(x) has the properties f (x0) = P2(x0),
f ′(x0) = P ′2(x0), and f ′′ (x0) = P ′′2 (x0); hence the graphs have the same curvature
at x0. For example, consider f (x) = ex and P2(x) = 1 + x + x2/2. The graphs are
shown in Figure 4.4 and it is seen that they curve up in the same fashion at (0, 1).

In the theory of approximation, one seeks to find an accurate polynomial approx-
imation to the analytic function2 f (x) over [a, b]. This is one technique used in de-
veloping computer software. The accuracy of a Taylor polynomial is increased when
we choose N large. The accuracy of any given polynomial will generally decrease as
the value of x moves away from the center x0. Hence we must choose N large enough
and restrict the maximum value of |x− x0| so that the error does not exceed a specified
bound. If we choose the interval width to be 2R and x0 in the center (i.e., |x−x0| < R),

2The function f (x) is analytic at x0 if it has continuous derivatives of all orders and can be
represented as a Taylor series in an interval about x0.

192 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

1−1−2 2
x

10

8

6

4

2

y

y = P2(x)

y = P2(x)

y = ex

y = ex

Figure 4.4 The graphs of y = ex and y = P2(x) = 1 +
x + x2/2.

Table 4.3 Values for the Error Bound |error| < eR RN+1/(N + 1)! Using the
Approximation ex ≈ PN (x) for |x | ≤ R

R = 2.0,
|x | ≤ 2.0

R = 1.5,
|x | ≤ 1.5

R = 1.0,
|x | ≤ 1.0

R = 0.5,
|x | ≤ 0.5

ex ≈ P5(x) 0.65680499 0.07090172 0.00377539 0.00003578
ex ≈ P6(x) 0.18765857 0.01519323 0.00053934 0.00000256
ex ≈ P7(x) 0.04691464 0.00284873 0.00006742 0.00000016
ex ≈ P8(x) 0.01042548 0.00047479 0.00000749 0.00000001

the absolute value of the error satisfies the relation

(8) |error| = |EN (x)| ≤ M RN+1

(N + 1)! ,

where M ≤ max{| f (N+1)(z)| : x0− R ≤ z ≤ x0+ R}. If the derivatives are uniformly
bounded, the error bound in (8) is proportional to RN+1/(N + 1)! and decreases for
fixed R, when N gets large or, for fixed N , when R goes to 0. Table 4.3 shows how the
choices of these two parameters affect the accuracy of the approximation ex ≈ PN (x)

over the interval |x | ≤ R. The error is smallest when N is largest and R smallest.
Graphs for P2, P3, and P4 are given in Figure 4.5.

Example 4.2. Establish the error bounds for the approximation ex ≈ P8(x) on each of
the intervals |x | ≤ 1.0 and |x | ≤ 0.5.

If |x | ≤ 1.0, then letting R = 1.0 and | f (9)(c)| = |ec| ≤ e1.0 = M in (8) implies that

|error| = |E8(x)| ≤ e1.0(1.0)9

9! ≈ 0.00000749.

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 193

1−1−2 2
x

10

8

6

4

2

y

y = P2(x)

y = P4(x)

y = P3(x)

y = ex

Figure 4.5 The graphs of y = ex , y = P2(x), y = P3(x),
and y = P4(x).

0.5−0.5−1.0 1.0
x

3 × 10−7

2 × 10−7

1 × 10−7

0.0

y

y = E9(x)

Figure 4.6 The graph of the error
y = E9(x) = ex − P9(x).

If |x | ≤ 0.5, then letting R = 0.5 and | f (9)(c)| = |ec| ≤ e0.5 = M in (8) implies that

|error| = |E8(x)| ≤ e0.5(0.5)9

9! ≈ 0.00000001. �

Example 4.3. If f (x) = ex , show that N = 9 is the smallest integer, so that the |error| =
|EN (x)| ≤ 0.0000005 for x in [−1, 1]. Hence P9(x) can be used to compute approximate
values of ex that will be accurate in the sixth decimal place.

We need to find the smallest integer N so that

|error| = |EN (x)| ≤ ec(1)N+1

(N + 1)! < 0.0000005.

In Example 4.2 we saw that N = 8 was too small, so we try N = 9 and discover
that |EN (x)| ≤ e1(1)9+1/(9 + 1)! ≤ 0.000000749. This value is slightly larger than

194 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

desired; hence we would be likely to choose N = 10. But we used ec ≤ e1 as a crude
estimate in finding the error bound. Hence 0.000000749 is a little larger than the actual
error. Figure 4.6 shows a graph of E9(x) = ex − P9(x). Notice that the maximum vertical
range is about 3× 10−7 and occurs at the right endpoint (1, E9(1)). Indeed, the maximum
error on the interval is E9(1) = 2.718281828− 2.718281526 ≈ 3.024× 10−7. Therefore,
N = 9 is justified. �

Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example, the function

(9) f (x) = (x − 1)8.

The evaluation of f will require the use of an exponential function. Or the binomial
formula can be used to expand f (x) in powers of x :

(10)
f (x) =

8∑
k=0

(
8

k

)
x8−k(−1)k

= x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x + 1.

Horner’s method (see Section 1.1), which is also called nested multiplication, can
now be used to evaluate the polynomial in (10). When applied to formula (10), nested
multiplication permits us to write

(11) f (x) = (((((((x − 8)x + 28)x − 56)x + 70)x − 56)x + 28)x − 8)x + 1.

To evaluate f (x) now requires seven multiplications and eight additions or sub-
tractions. The necessity of using an exponential function to evaluate the polynomial
has now been eliminated.

We end this section with the theorem that relates the Taylor series in Table 4.1 and
the Taylor polynomials of Theorem 4.1.

Theorem 4.2 (Taylor Series). Assume that f (x) is analytic on an interval (a, b)

containing x0. Suppose that the Taylor polynomials (2) tend to a limit

(12) S(x) = lim
N→∞ PN (x) = lim

N→∞

N∑
k=0

f (k)(x0)

k! (x − x0)
k;

then f (x) has the Taylor series expansion

(13) f (x) =
∞∑

k=0

f (k)(x0)

k! (x − x0)
k .

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 195

Proof. This follows directly from the definition of convergence of series in Sec-
tion 1.1. The limit condition is often stated by saying that the error term must go
to zero as N goes to infinity. Therefore, a necessary and sufficient condition for (13)
to hold is that

(14) lim
N→∞ EN (x) = lim

N→∞
f (N+1)(c)(x − x0)

N+1

(N + 1)! = 0,

where c depends on N and x . •

Exercises for Taylor Series and Calculation of Functions

1. Let f (x) = sin(x) and apply Theorem 4.1.
(a) Use x0 = 0 and find P5(x), P7(x), and P9(x).
(b) Show that if |x | ≤ 1, then the approximation

sin(x) ≈ x − x3

3! +
x5

5! −
x7

7! +
x9

9!
has the error bound |E9(x)| < 1/10! ≤ 2.75574× 10−7.

(c) Use x0 = π/4 and find P5(x), which involves powers of (x − π/4).

2. Let f (x) = cos(x) and apply Theorem 4.1.
(a) Use x0 = 0 and find P4(x), P6(x), and P8(x).
(b) Show that if |x | ≤ 1, then the approximation

cos(x) ≈ 1− x2

2! +
x4

4! −
x6

6! +
x8

8!
has the error bound |E8(x)| < 1/9! ≤ 2.75574× 10−6.

(c) Use x0 = π/4 and find P4(x), which involves powers of (x − π/4).

3. Does f (x) = x1/2 have a Taylor series expansion about x0 = 0? Justify your answer.
Does the function f (x) = x1/2 have a Taylor series expansion about x0 = 1? Justify
your answer.

4. (a) Find a Taylor polynomial of degree N = 5 for f (x) = 1/(1 + x) expanded
about x0 = 0.

(b) Find the error term E5(x) for the polynomial in part (a).

5. Find the Taylor polynomial of degree N = 3 for f (x) = e−x2/2 expanded about
x0 = 0.

6. Find the Taylor polynomial of degree N = 3, P3(x), for f (x) = x3 − 2x2 + 2x
expanded about x0 = 1. Show that f (x) = P3(x).

196 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

7. (a) Find the Taylor polynomial of degree N = 5 for f (x) = x1/2 expanded about
x0 = 4.

(b) Find the Taylor polynomial of degree N = 5 for f (x) = x1/2 expanded about
x0 = 9.

(c) Determine which of the polynomials in parts (a) and (b) best approximates
(6.5)1/2.

8. Use f (x) = (2+ x)1/2 and apply Theorem 4.1.
(a) Find the Taylor polynomial P3(x) expanded about x0 = 2.
(b) Use P3(x) to find an approximation to 31/2.
(c) Find the maximum value of | f (4)(c)| on the interval 1 ≤ c ≤ 3 and find a bound

for |E3(x)|.
9. Determine the degree of the Taylor polynomial PN (x) expanded about x0 = 0 that

should be used to approximate e0.1 so that the error is less than 10−6.

10. Determine the degree of the Taylor polynomial PN (x) expanded about x0 = π that
should be used to approximate cos(33π/32) so that the error is less than 10−6.

11. (a) Find the Taylor polynomial of degree N = 4 for F(x) = ∫ x
−1 cos(t2) dt ex-

panded about x0 = 0.
(b) Use the Taylor polynomial to approximate F(0.1).
(c) Find a bound on the error to the approximation in part (b).

12. (a) Use the geometric series

1

1+ x2
= 1− x2 + x4 − x6 + x8 − · · · for |x | < 1,

and integrate both sides term by term to obtain

arctan(x) = x − x3

3
+ x5

5
− x7

7
+ · · · for |x | < 1.

(b) Use π/6 = arctan(3−1/2) and the series in part (a) to show that

π = 31/2 × 2

(
1− 3−1

3
+ 3−2

5
− 3−3

7
+ 3−4

9
− · · ·

)
.

(c) Use the series in part (b) to compute π accurate to eight digits.

Fact. π ≈ 3.141592653589793284

13. Use f (x) = ln(1+ x) and x0 = 0, and apply Theorem 4.1.
(a) Show that f (k)(x) = (−1)k−1((k − 1)!)/(1+ x)k .
(b) Show that the Taylor polynomial of degree N is

PN (x) = x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)N−1x N

N
.

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 197

(c) Show that the error term for PN (x) is

EN (x) = (−1)N x N+1

(N + 1)(1+ c)N+1
.

(d) Evaluate P3(0.5), P6(0.5), and P9(0.5). Compare with ln(1.5).
(e) Show that if 0.0 ≤ x ≤ 0.5, then the approximation

ln(x) ≈ x − x2

2
+ x3

3
− · · · + x7

7
− x8

8
+ x9

9

has the error bound |E9| ≤ 0.00009765

14. Binomial series. Let f (x) = (1+ x)p and x0 = 0.
(a) Show that f (k)(x) = p(p − 1) · · · (p − k + 1)(1+ x)p−k .
(b) Show that the Taylor polynomial of degree N is

PN (x) = 1+ px + p(p − 1)x2

2! + · · · + p(p − 1) · · · (p − N + 1)x N

N ! .

(c) Show that

EN (x) = p(p − 1) · · · (p − N)x N+1/((1+ c)N+1−p(N + 1)!).

(d) Set p = 1/2 and compute P2(0.5), P4(0.5), and P6(0.5). Compare with
(1.5)1/2.

(e) Show that if 0.0 ≤ x ≤ 0.5, then the approximation

(1+ x)1/2 ≈ 1+ x

2
− x2

8
+ x3

16
− 5x4

128
+ 7x5

256

has the error bound |E5| ≤ (0.5)6(21/1024) = 0.0003204
(f) Show that if p = N is a positive integer, then

PN (x) = 1+ N x + N (N − 1)x2

2! + · · · + N x N−1 + x N .

Notice that this is the familiar binomial expansion.

15. Find c such that |E4| < 10−6 whenever |x − x0| < c.
(a) Let f (x) = cos(x) and x0 = 0.
(b) Let f (x) = sin(x) and x0 = π/2.
(c) Let f (x) = ex and x0 = 0.

16. (a) Suppose that y = f (x) is an even function (i.e., f (−x) = f (x) for all x in the
domain of f). What can be said about PN (x)?

(b) Suppose that y = f (x) is an odd function (i.e., f (−x) = − f (x) for all x in the
domain of f). What can be said about PN (x)?

198 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

17. Let y = f (x) be a polynomial of degree N . If f (x0) > 0 and f ′(x0), . . . , f (N)(x0) ≥
0, show that all the real roots of f are less than x0. Hint. Expand f in a Taylor
polynomial of degree N about x0.

18. Let f (x) = ex . Use Theorem 4.1 to find PN (x), for N = 1, 2, 3, . . . , expanded
about x0 = 0. Show that every real root of PN (x) has multiplicity less than or equal
to 1. Note. If p is a root of multiplicity M of the polynomial P(x), then p is a root of
multiplicity M − 1 of P ′(x).

19. Finish the proof of Corollary 4.1 by writing down the expression for P(k)
N (x) and

showing that

P(k)
N (x0) = f (k)(x0) for k = 2, 3, . . . , N .

Exercises 20 and 21 form a proof of Taylor’s theorem.

20. Let g(t) and its derivatives g(k)(t), for k = 1, 2, . . . , N + 1, be continuous on the
interval (a, b), which contains x0. Suppose that there exist two distinct points x and
x0 such that g(x) = 0, and g(x0) = g′(x0) = . . . g(N)(x0) = 0. Prove that there
exists a value c that lies between x0 and x such that g(N+1)(c) = 0.

Remark. Note that g(t) is a function of t , and the values x and x0 are to be treated
as constants with respect to the variable t .

Hint. Use Rolle’s theorem (Theorem 1.5, Section 1.1) on the interval with endpoints
x0 and x to find the number c1 such that g′(c1) = 0. Then use Rolle’s theorem applied
to the function g′(t) on the interval with end points x0 and c1 to find the number c2
such that g′′(c2) = 0. Inductively repeat the process until the number cN+1 is found
such that g(N+1)(cN+1) = 0.

21. Use the result of Exercise 20 and the special function

g(t) = f (t)− PN (t)− EN (x)
(t − x0)

N+1

(x − x0)N+1
,

where PN (x) is the Taylor polynomial of degree N , to prove that the error term
EN (x) = f (x)− PN (x) has the form

EN (x) = f (N+1)(c)
(x − x0)

N+1

(N + 1)! .

Hint. Find g(N+1)(t) and evaluate it at t = c.

Algorithms and Programs

The matrix nature of MATLAB allows us quickly to evaluate functions at a large number
of values. If X=[-1 0 1], then sin(X) will produce [sin(-1) sin(0) sin(1)]. Sim-
ilarly, if X=-1:0.1:1, then Y=sin(X) will produce a matrix Y of the same dimension as X
with the appropriate values of sine. These two row matrices can be displayed in the form

SEC. 4.2 INTRODUCTION TO INTERPOLATION 199

of a table by defining the matrix D = [X’ Y’] (Note. The matrices X and Y must be of the
same length.)

1. (a) Use the plot command to plot sin(x), P5(x), P7(x), and P9(x) from Exercise
1 on the same graph using the interval −1 ≤ x ≤ 1.

(b) Create a table with columns that consist of sin(x), P5(x), P7(x), and P9(x)

evaluated at 10 equally spaced values of x from the interval [−1, 1].
2. (a) Use the plot command to plot cos(x), P4(x), P6(x), and P8(x) from Exercise

2 on the same graph using the interval −1 ≤ x ≤ 1.
(b) Create a table with columns that consist of cos(x), P4(x), P6(x), and P8(x)

evaluated at 19 equally spaced values of x from the interval [−1, 1].

4.2 Introduction to Interpolation

In Section 4.1 we saw how a Taylor polynomial can be used to approximate the func-
tion f (x). The information needed to construct the Taylor polynomial is the value
of f and its derivatives at x0. A shortcoming is that the higher-order derivatives must
be known, and often they are either not available or they are hard to compute.

Suppose that the function y = f (x) is known at the N + 1 points (x0, y0), . . . ,

(xN , yN), where the values xk are spread out over the interval [a, b] and satisfy

a ≤ x0 < x1 < · · · < xN ≤ b and yk = f (xk).

A polynomial P(x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values xk and yk are needed. Hence
the higher-order derivatives are not necessary. The polynomial P(x) can be used to
approximate f (x) over the entire interval [a, b]. However, if the error function E(x) =
f (x) − P(x) is required, then we will need to know f (N+1)(x) and a bound for its
magnitude, that is,

M = max{| f (N+1)(x)| : a ≤ x ≤ b}.
Situations in statistical and scientific analysis arise where the function y = f (x)

is available only at N + 1 tabulated points (xk, yk), and a method is needed to approx-
imate f (x) at nontabulated abscissas. If there is a significant amount of error in the
tabulated values, then the methods of curve fitting in Chapter 5 should be considered.
On the other hand, if the points (xk, yk) are known to a high degree of accuracy, then
the polynomial curve y = P(x) that passes through them can be considered. When
x0 < x < xN , the approximation P(x) is called an interpolated value. If either
x < x0 or xN < x , then P(x) is called an extrapolated value. Polynomials are used to
design software algorithms to approximate functions, for numerical differentiation, for
numerical integration, and for making computer-drawn curves that must pass through
specified points.

200 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

y

x

2.0

y = P(x)

(4, P(4))
(5.5, P(5.5))

1.5

1.0

0.5

0.0
654321

Figure 4.7 (a) The approximating
polynomial P(x) can be used for inter-
polation at the point (4, P(4)) and ex-
trapolation at the point (5.5, P(5.5)).

y

x

2.0

y = P(x) (4, P(4))

The tangent line
has slope P ′(4).

1.5

1.0

0.5

0.0
654321

Figure 4.7 (b) The approximating
polynomial P(x) is differentiated and
P ′(x) is used to find the slope at the in-
terpolation point (4, P(4)).

Let us briefly mention how to evaluate the polynomial P(x):

(1) P(x) = aN x N + aN−1x N−1 + · · · + a2x2 + a1x + a0.

Horner’s method of synthetic division is an efficient way to evaluate P(x). The deriva-
tive P ′(x) is

(2) P ′(x) = NaN x N−1 + (N − 1)aN−1x N−2 + · · · + 2a2x + a1

and the indefinite integral I (x) = ∫ P(x) dx , which satisfies I ′(x) = P(x), is

(3) I (x) = aN x N+1

N + 1
+ aN−1x N

N
+ · · · + a2x3

3
+ a1x2

2
+ a0x + C,

where C is the constant of integration. Algorithm 4.1 (end of Section 4.2) shows how
to adapt Horner’s method to P ′(x) and I (x).

Example 4.4. The polynomial P(x) = −0.02x3 + 0.2x2 − 0.4x + 1.28 passes through
the four points (1, 1.06), (2, 1.12), (3, 1.34), and (5, 1.78). Find (a) P(4), (b) P ′(4),
(c)
∫ 4

1 P(x)dx , and (d) P(5.5). Finally, (e) show how to find the coefficients of P(x).
Use Algorithm 4.1(i)–(iii) (this is equivalent to the process in Table 1.2) with x = 4.

b3 = a3 = −0.02(a)

b2 = a2 + b3x = 0.2+ (−0.02)(4) = 0.12

b1 = a1 + b2x = −0.4+ (0.12)(4) = 0.08

b0 = a0 + b1x = 1.28+ (0.08)(4) = 1.60.

SEC. 4.2 INTRODUCTION TO INTERPOLATION 201

y

x

2.0

y = P(x)
1.5

1.0

0.5

0.0
654321

Figure 4.8 The approximating
polynomial P(x) is integrated and
its antiderivative is used to find the
area under the curve for 1 ≤ x ≤ 4.

The interpolated value is P(4) = 1.60 (see Figure 4.7(a)).

d2 = 3a3 = −0.06(b)

d1 = 2a2 + d2x = 0.4+ (−0.06)(4) = 0.16

d0 = a1 + d1x = −0.4+ (0.16)(4) = 0.24.

The numerical derivative is P ′(4) = 0.24 (see Figure 4.7(b)).

i4 = a3

4
= −0.005(c)

i3 = a2

3
+ i4x = 0.06666667+ (−0.005)(4) = 0.04666667

i2 = a1

2
+ i3x = −0.2+ (0.04666667)(4) = −0.01333333

i1 = a0 + i2x = 1.28+ (−0.01333333)(4) = 1.22666667

i0 = 0+ i1x = 0+ (1.22666667)(4) = 4.90666667.

Hence I (4) = 4.90666667. Similarly, I (1) = 1.14166667. Therefore,
∫ 4

1 P(x) dx =
I (4)− I (1) = 3.765 (see Figure 4.8).
(d) Use Algorithm 4.1(i) with x = 5.5.

b3 = a3 = −0.02

b2 = a2 + b3x = 0.2+ (−0.02)(5.5) = 0.09

b1 = a1 + b2x = −0.4+ (0.09)(5.5) = 0.095

b0 = a0 + b1x = 1.28+ (0.095)(5.5) = 1.8025.

The extrapolated value is P(5.5) = 1.8025 (see Figure 4.7(a)).

202 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 4.4 Values of the Taylor Polynomial T (x) of Degree 5, the
Function ln(1+ x), and the Error ln(1+ x)− T (x) on [0, 1]

x
Taylor polynomial,

T (x)

Function,
ln(1+ x)

Error,
ln(1+ x)− T (x)

0.0 0.00000000 0.00000000 0.00000000
0.2 0.18233067 0.18232156 −0.00000911
0.4 0.33698133 0.33647224 −0.00050909
0.6 0.47515200 0.47000363 −0.00514837
0.8 0.61380267 0.58778666 −0.02601601
1.0 0.78333333 0.69314718 −0.09018615

(e) The methods of Chapter 3 can be used to find the coefficients. Assume that P(x) =
A + Bx + Cx2 + Dx3; then at each value x = 1, 2, 3, and 5 we get a linear equation
involving A, B, C , and D.

(4)

At x = 1 : A + 1B + 1C + 1D = 1.06

At x = 2 : A + 2B + 4C + 8D = 1.12

At x = 3 : A + 3B + 9C + 27D = 1.34

At x = 5 : A + 5B + 25C + 125D = 1.78

The solution to (4) is A = 1.28, B = −0.4, C = 0.2, and D = −0.2. �

This method for finding the coefficients is mathematically sound, but sometimes
the matrix is difficult to solve accurately. In this chapter we design algorithms specifi-
cally for polynomials.

Let us return to the topic of using a polynomial to calculate approximations to a
known function. In Section 4.1 we saw that the fifth-degree Taylor polynomial for
f (x) = ln(1+ x) is

(5) T (x) = x − x2

2
+ x3

3
− x4

4
+ x5

5
.

If T (x) is used to approximate ln(1 + x) on the interval [0, 1], then the error is 0 at
x = 0 and is largest when x = 1 (see Table 4.4). Indeed, the error between T (1) and
the correct value ln(2) is 13%. We seek a polynomial of degree 5 that will approximate
ln(1 + x) better over the interval [0, 1]. The polynomial P(x) in Example 4.5 is an
interpolating polynomial and will approximate ln(1 + x) with an error no bigger than
0.00002385 over the interval [0, 1].
Example 4.5. Consider the function f (x) = ln(1+ x) and the polynomial

P(x) = 0.02957206x5 − 0.12895295x4 + 0.28249626x3

− 0.48907554x2 + 0.99910735x

SEC. 4.2 INTRODUCTION TO INTERPOLATION 203

Table 4.5 Values of the Approximating Polynomial P(x) of Example 4.5, the Function
f (x) = ln(1+ x), and the Error E(x) on [−0.1, 1.1]

x
Approximating polynomial,

P(x)

Function,
f (x) = ln(1+ x)

Error,
E(x) = f (x)− P(x)

−0.1 −0.10509718 −0.10536052 −0.00026334
0.0 0.00000000 0.00000000 0.00000000
0.1 0.09528988 0.09531018 0.00002030
0.2 0.18232156 0.18232156 0.00000000
0.3 0.26237015 0.26236426 −0.00000589
0.4 0.33647224 0.33647224 0.00000000
0.5 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 −0.00000467
0.8 0.58778666 0.58778666 0.00000000
0.9 0.64184118 0.64185389 0.00001271
1.0 0.69314718 0.69314718 0.00000000
1.1 0.74206529 0.74193734 −0.00012795

y

x

0.6 y = ln(1 + x)

0.4

0.2

0.0 1.00.80.60.40.2

Figure 4.9 The graph of y =
P(x), which “lies on top” of the
graph y = ln(1+ x).

based on the six nodes xk = k/5 for k = 0, 1, 2, 3, 4, and 5. The following are empirical
descriptions of the approximation P(x) ≈ ln(1+ x).

1. P(xk) = f (xk) at each node (see Table 4.5).

2. The maximum error on the interval [−0.1, 1.1] occurs at x = −0.1 and |error| ≤
0.00026334 for −0.1 ≤ x ≤ 1.1 (see Figure 4.10). Hence the graph of y = P(x)

would appear identical to that of y = ln (1+ x) (see Figure 4.9).

3. The maximum error on the interval [0, 1] occurs at x = 0.06472456 and |error| ≤
0.00002385 for 0 ≤ x ≤ 1 (see Figure 4.10).

204 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

y

x

y = E(x)0.00002

−0.00002

−0.00004

0.2 0.4 0.6 0.8 1.0

Figure 4.10 The graph of the error y = E(x) =
ln(1+ x)− P(x).

Remark. At a node xk we have f (xk) = P(xk). Hence E(xk) = 0 at a node. The graph
of E(x) = f (x) − P(x) looks like a vibrating string, with the nodes being the abscissa,
where there is no displacement. �

Algorithm 4.1 (Polynomial Calculus). To evaluate the polynomial P(x), its
derivative P ′(x), and its integral

∫
P(x) dx by performing synthetic division.

INPUT N {Degree of P(x)}
INPUT A(0), A(1), . . . , A(N) {Coefficients of P(x)}
INPUT C {Constant of integration}
INPUT X {Independent variable}

(i) Algorithm to Evaluate P(x)

B(N) := A(N)

FOR K = N − 1 DOWNTO 0 DO
B(K) := A(K)+ B(K + 1) ∗ X

PRINT “The value P(x) is”, B(0)

Space-saving version:
Poly := A(N)

FOR K = N − 1 DOWNTO 0 DO
Poly := A(K)+ Poly ∗ X

PRINT “The value P(x) is”, Poly

(ii) Algorithm to Evaluate P ′(x)

D(N − 1) := N ∗ A(N)

FOR K = N − 1 DOWNTO 1 DO
D(K − 1) := K ∗ A(K)+ D(K) ∗ X

PRINT “The value P ′(x) is”, D(0)

Space-saving version:
Deriv := N ∗ A(N)

FOR K = N − 1 DOWNTO 1 DO
Deriv := K ∗ A(K)+ Deriv ∗ X

PRINT “The value P ′(x) is”, Deriv

(iii) Algorithm to Evaluate I (x)

I (N + 1) := A(N)/(N + 1)

FOR K = N DOWNTO 1 DO
I (K) := A(K − 1)/K + I (K + 1) ∗ X

I (0) := C + I (1) ∗ X
PRINT “The value I (x) is”, I (0)

Space-saving version:
Integ := A(N)/(N + 1)

FOR K = N DOWNTO 1 DO
Integ := A(K − 1)/K + Integ ∗ X

Integ := C + Integ ∗ X
PRINT “The value I (x) is”, Integ

SEC. 4.2 INTRODUCTION TO INTERPOLATION 205

Exercises for Introduction to Interpolation

1. Consider P(x) = −0.02x3 + 0.1x2 − 0.2x + 1.66, which passes through the four
points (1, 1.54), (2, 1.5), (3, 1.42), and (5, 0.66).
(a) Find P(4).
(b) Find P ′(4).
(c) Find the definite integral of P(x) taken over [1, 4].
(d) Find the extrapolated value P(5.5).
(e) Show how to find the coefficients of P(x).

2. Consider P(x) = −0.04x3 + 0.14x2 − 0.16x + 2.08, which passes through the four
points (0, 2.08), (1, 2.02), (2, 2.00), and (4, 1.12).
(a) Find P(3).
(b) Find P ′(3).
(c) Find the definite integral of P(x) taken over [0, 3].
(d) Find the extrapolated value P(4.5).
(e) Show how to find the coefficients of P(x).

3. Consider P(x) = −0.0292166667x3 + 0.275x2 −0.570833333x + 1.375, which
passes through the four points (1, 1.05), (2, 1.10), (3, 1.35), and (5, 1.75).
(a) Show that the ordinates 1.05, 1.10, 1.35, and 1.75 differ from those of Exam-

ple 4.4 by less than 1.8%, yet the coefficients of x3 and x differ by more than
42%.

(b) Find P(4) and compare with Example 4.4.
(c) Find P ′(4) and compare with Example 4.4.
(d) Find the definite integral of P(x) taken over [1, 4] and compare with Exam-

ple 4.4.
(e) Find the extrapolated value P(5.5) and compare with Example 4.4.
Remark. Part (a) shows that the computation of the coefficients of an interpolating
polynomial is an ill-conditioned problem.

Algorithms and Programs

1. Write a program in MATLAB that will implement Algorithm 4.1. The program
should accept the coefficients of the polynomial P(x) = aN x N + aN−1x N−1+ · · · +
a2x2 + a1x + a0 as an 1× N matrix: P = [aN aN−1 · · · a2 a1 a0

]
.

2. For each of the given functions, the fifth-degree polynomial P(x) passes through
the six points (0, f (0)), (0.2, f (0.2)), (0.4, f (0.4)), (0.6, f (0.6)), (0.8, f (0.8)),
(1, f (1)). The six coefficients of P(x) are a0, a1, . . . , a5, where

P(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0.

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

(i) Find the coefficients of P(x) by solving the 6× 6 system of linear equations

a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 = f (x j)

using x j = (j − 1)/5 and j = 1, 2, 3, 4, 5, 6 for the six unknowns {ak}5k=0.
(ii) Use your MATLAB program from Problem 1 to compute the interpolated val-

ues P(0.3), P(0.4), and P(0.5) and compare with f (0.3), f (0.4), and f (0.5),
respectively.

(iii) Use your MATLAB program to compute the extrapolated values P(−0.1) and
P(1.1) and compare with f (−0.1) and f (1.1), respectively.

(iv) Use your MATLAB program to find the integral of P(x) taken over [0, 1]
and compare with the integral of f (x) taken over [0, 1]. Plot f (x) and P(x)

over [0, 1] on the same graph.
(v) Make a table of values for P(xk), f (xk), and E(xk) = f (xk) − P(xk), where

xk = k/100 for k = 0, 1, . . . , 100.
(a) f (x) = ex

(b) f (x) = sin(x)

(c) f (x) = (x + 1)(x+1)

3. A portion of an amusement park ride is to be modeled using three polynomials. The
first section is to be a first-degree polynomial, P1(x), that covers a horizontal dis-
tance of 100 feet, starts at a height of 110 feet, and ends at a height of 60 feet. The
third section is also to be a first-degree polynomial, Q1(x), that covers a horizontal
distance of 50 feet, starts at a height of 65 feet, and ends at a height of 70 feet. The
middle section is to be a polynomial, P(x) (of smallest possible degree), that covers
a horizontal distance of 150 feet.
(a) Find expressions for P(x), P1(x), and Q1(x) such that P(100) = P1(100),

P ′(100) = P ′1(100), P(250) = Q1(250), and P ′(250) = Q′1(250) and the
curvature of P(x) equals the curvature of P1(x) at x = 100 and equals the
curvature of Q1(x) at x = 250.

(b) Plot the graphs of P1(x), P(x), and Q1(x) on the same coordinate system.
(c) Use Algorithm 4.1(iii) to find the average height of the ride over the given hori-

zontal distance.

4.3 Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted aver-
age of known function values at neighboring points. Linear interpolation uses a line
segment that passes through two points. The slope between (x0, y0) and (x1, y1) is
m = (y1− y0)/(x1− x0), and the point-slope formula for the line y = m(x − x0)+ y0
can be rearranged as

(1) y = P(x) = y0 + (y1 − y0)
x − x0

x1 − x0
.

SEC. 4.3 LAGRANGE APPROXIMATION 207

When formula (1) is expanded, the result is a polynomial of degree ≤ 1. Evaluation of
P(x) at x0 and x1 produces y0 and y1, respectively:

(2)
P(x0) = y0 + (y1 − y0)(0) = y0,

P(x1) = y0 + (y1 − y0)(1) = y1.

The French mathematician Joseph Louis Lagrange used a slightly different method to
find this polynomial. He noticed that it could be written as

(3) y = P1(x) = y0
x − x1

x0 − x1
+ y1

x − x0

x1 − x0
.

Each term on the right side of (3) involves a linear factor; hence the sum is a polynomial
of degree ≤ 1. The quotients in (3) are denoted by

(4) L1,0(x) = x − x1

x0 − x1
and L1,1(x) = x − x0

x1 − x0
.

Computation reveals that L1,0(x0) = 1, L1,0(x1) = 0, L1,1(x0) = 0, and L1,1(x1) = 1
so that the polynomial P1(x) in (3) also passes through the two given points:

(5) P1(x0) = y0 + y1(0) = y0 and P1(x1) = y0(0)+ y1 = y1.

The terms L1,0(x) and L1,1(x) in (4) are called Lagrange coefficient polynomials
based on the nodes x0 and x1. Using this notation, (3) can be written in summation
form

(6) P1(x) =
1∑

k=0

yk L1,k(x).

Suppose that the ordinates yk are computed with the formula yk = f (xk). If P1(x) is
used to approximate f (x) over the interval [x0, x1], we call the process interpolation.
If x < x0 (or x1 < x), then using P1(x) is called extrapolation. The next example
illustrates these concepts.

Example 4.6. Consider the graph y = f (x) = cos(x) over [0.0, 1.2].
(a) Use the nodes x0 = 0.0 and x1 = 1.2 to construct a linear interpolation polyno-

mial P1(x).

(b) Use the nodes x0 = 0.2 and x1 = 1.0 to construct a linear approximating polyno-
mial Q1(x).

(a) Using (3) with the abscissas x0 = 0.0 and x1 = 1.2 and the ordinates y0 =
cos(0.0) = 1.000000 and y1 = cos(1.2) = 0.362358 produces

P1(x) = 1.000000
x − 1.2

0.0− 1.2
+ 0.362358

x − 0.0

1.2− 0.0
= −0.833333(x − 1.2)+ 0.301965(x − 0.0).

208 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

y

x

y = P1(x)

y = f (x)
1.0

0.8

0.6

0.4

0.2

1.21.00.80.6

(a)

0.40.20.0 1.21.00.80.60.40.20.0

y

x

y = Q1(x)

y = f (x)
1.0

0.8

0.6

0.4

0.2

(b)

Figure 4.11 (a) The linear approximation y = P1(x) where the nodes x0 = 0.0
and x1 = 1.2 are the endpoints of the interval [a, b]. (b) The linear approximation
y = Q1(x) where the nodes x0 = 0.2 and x1 = 1.0 lie inside the interval [a, b].

(b) When the nodes x0 = 0.2 and x1 = 1.0 with y0 = cos(0.2) = 0.980067 and
y1 = cos(1.0) = 0.540302 are used, the result is

Q1(x) = 0.980067
x − 1.0

0.2− 1.0
+ 0.540302

x − 0.2

1.0− 0.2
= −1.225083(x − 1.0)+ 0.675378(x − 0.2).

Figure 4.11(a) and (b) show the graph of y = cos(x) and compare it with y = P1(x) and
y = Q1(x), respectively. Numerical computations are given in Table 4.6 and reveal that
Q1(x) has less error at the points xk that satisfy 0.1 ≤ xk ≤ 1.1. The largest tabulated
error, f (0.6)− P1(0.6) = 0.144157, is reduced to f (0.6)− Q1(0.6) = 0.065151 by using
Q1(x). �

The generalization of (6) is the construction of a polynomial PN (x) of degree at
most N that passes through the N + 1 points (x0, y0), (x1, y1), . . . , (xN , yN) and has
the form

(7) PN (x) =
N∑

k=0

yk L N ,k(x),

where L N ,k is the Lagrange coefficient polynomial based on these nodes:

(8) L N ,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xN)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN)
.

It is understood that the terms (x − xk) and (xk − xk) do not appear on the right side of

SEC. 4.3 LAGRANGE APPROXIMATION 209

Table 4.6 Comparison of f (x) = cos(x) and the Linear Approximations P1(x) and Q1(x)

xk f (xk) = cos(xk) P1(xk) f (xk)− P1(xk) Q1(xk) f (xk)− Q1(xk)

0.0 1.000000 1.000000 0.000000 1.090008 −0.090008
0.1 0.995004 0.946863 0.048141 1.035037 −0.040033
0.2 0.980067 0.893726 0.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 0.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.574905 0.121802 0.650243 0.046463
0.9 0.621610 0.521768 0.099842 0.595273 0.026337
1.0 0.540302 0.468631 0.071671 0.540302 0.000000
1.1 0.453596 0.415495 0.038102 0.485332 −0.031736
1.2 0.362358 0.362358 0.000000 0.430361 −0.068003

equation (8). It is appropriate to introduce the product notation for (8), and we write

(9) L N ,k(x) =

∏N
j=0
j �=k

(x − x j)∏N
j=0
j �=k

(xk − x j)
.

Here the notation in (9) indicates that in the numerator the product of the linear
factors (x − x j) is to be formed, but the factor (x − xk) is to be left out (or skipped).
A similar construction occurs in the denominator.

A straightforward calculation shows that for each fixed k, the Lagrange coefficient
polynomial L N ,k(x) has the property

(10) L N ,k(x j) = 1 when j = k and L N ,k(x j) = 0 when j �= k.

Then direct substitution of these values into (7) is used to show that the polynomial
curve y = PN (x) goes through (x j , y j):

(11)
PN (x j) = y0L N ,0(x j)+ · · · + y j L N , j (x j)+ · · · + yN L N ,N (x j)

= y0(0)+ · · · + y j (1)+ · · · + yN (0) = y j .

To show that PN (x) is unique, we invoke the fundamental theorem of algebra,
which states that a nonzero polynomial T (x) of degree ≤ N has at most N roots. In
other words, if T (x) is zero at N + 1 distinct abscissas, it is identically zero. Suppose
that PN (x) is not unique and that there exists another polynomial QN (x) of degree
≤ N that also passes through the N+1 points. Form the difference polynomial T (x) =

210 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

0.6 1.2 1.8
x

1.0

0.5

−0.5

y

y = P2(x)

y = f (x)

(a)

0.4 0.8 1.2 1.6 2
x

1.0

0.5

−0.5

y

y = P3(x)

y = f (x)

(b)

Figure 4.12 (a) The quadratic approximation polynomial y = P2(x) based on the
nodes x0 = 0.0, x1 = 0.6, and x2 = 1.2. (b) The cubic approximation polynomial
y = P3(x) based on the nodes x0 = 0.0, x1 = 0.4, x2 = 0.8, and x3 = 1.2.

PN (x)− QN (x). Observe that the polynomial T (x) has degree ≤ N and that T (x j) =
PN (x j) − QN (x j) = y j − y j = 0, for j = 0, 1, . . . , N . Therefore, T (x) ≡ 0 and it
follows that QN (x) = PN (x).

When (7) is expanded, the result is similar to (3). The Lagrange quadratic interpo-
lating polynomial through the three points (x0, y0), (x1, y1), and (x2, y2) is

(12) P2(x) = y0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ y1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+ y2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

The Lagrange cubic interpolating polynomial through the four points (x0, y0), (x1, y1),
(x2, y2), and (x3, y3) is

(13)
P3(x) = y0

(x − x1)(x − x2)(x − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
+ y1

(x − x0)(x − x2)(x − x3)

(x1 − x0)(x1 − x2)(x1 − x3)

+ y2
(x − x0)(x − x1)(x − x3)

(x2 − x0)(x2 − x1)(x2 − x3)
+ y3

(x − x0)(x − x1)(x − x2)

(x3 − x0)(x3 − x1)(x3 − x2)
.

Example 4.7. Consider y = f (x) = cos(x) over [0.0, 1.2].
(a) Use the three nodes x0 = 0.0, x1 = 0.6, and x2 = 1.2 to construct a quadratic

interpolation polynomial P2(x).

(b) Use the four nodes x0 = 0.0, x1 = 0.4, x2 = 0.8, and x3 = 1.2 to construct a cubic
interpolation polynomial P3(x).

(a) Using x0 = 0.0, x1 = 0.6, x2 = 1.2 and y0 = cos(0.0) = 1, y1 = cos(0.6) =

SEC. 4.3 LAGRANGE APPROXIMATION 211

0.825336, and y2 = cos(1.2) = 0.362358 in equation (12) produces

P2(x) = 1.0
(x − 0.6)(x − 1.2)

(0.0− 0.6)(0.0− 1.2)
+ 0.825336

(x − 0.0)(x − 1.2)

(0.6− 0.0)(0.6− 1.2)

+ 0.362358
(x − 0.0)(x − 0.6)

(1.2− 0.0)(1.2− 0.6)

= 1.388889(x − 0.6)(x − 1.2)− 2.292599(x − 0.0)(x − 1.2)

+ 0.503275(x − 0.0)(x − 0.6).

(b) Using x0 = 0.0, x1 = 0.4, x2 = 0.8, x3 = 1.2 and y0 = cos(0.0) = 1.0, y1 =
cos(0.4) = 0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(1.2) = 0.362358 in
equation (13) produces

P3(x) = 1.000000
(x − 0.4)(x − 0.8)(x − 1.2)

(0.0− 0.4)(0.0− 0.8)(0.0− 1.2)

+ 0.921061
(x − 0.0)(x − 0.8)(x − 1.2)

(0.4− 0.0)(0.4− 0.8)(0.4− 1.2)

+ 0.696707
(x − 0.0)(x − 0.4)(x − 1.2)

(0.8− 0.0)(0.8− 0.4)(0.8− 1.2)

+ 0.362358
(x − 0.0)(x − 0.4)(x − 0.8)

(1.2− 0.0)(1.2− 0.4)(1.2− 0.8)

= −2.604167(x − 0.4)(x − 0.8)(x − 1.2)

+ 7.195789(x − 0.0)(x − 0.8)(x − 1.2)

− 5.443021(x − 0.0)(x − 0.4)(x − 1.2)

+ 0.943641(x − 0.0)(x − 0.4)(x − 0.8).

The graphs of y = cos(x) and the polynomials y = P2(x) and y = P3(x) are shown in
Figure 4.12(a) and (b), respectively. �

Error Terms and Error Bounds

It is important to understand the nature of the error term when the Lagrange polynomial
is used to approximate a continuous function f (x). It is similar to the error term for
the Taylor polynomial, except that the factor (x − x0)

N+1 is replaced with the product
(x − x0)(x − x1) · · · (x − xN). This is expected because interpolation is exact at each
of the N + 1 nodes xk , where we have EN (xk) = f (xk)− PN (xk) = yk − yk = 0 for
k = 0, 1, 2, . . . , N .

Theorem 4.3 (Lagrange Polynomial Approximation). Assume that f ∈ C N+1[a, b]
and that x0, x1, . . . , xN ∈ [a, b] are N + 1 nodes. If x ∈ [a, b], then

(14) f (x) = PN (x)+ EN (x),

212 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

where PN (x) is a polynomial that can be used to approximate f (x):

(15) f (x) ≈ PN (x) =
N∑

k=0

f (xk)L N ,k(x).

The error term EN (x) has the form

(16) EN (x) = (x − x0)(x − x1) · · · (x − xN) f (N+1)(c)

(N + 1)!
for some value c = c(x) that lies in the interval [a, b].
Proof. As an example of the general method, we establish (16) when N = 1. The
general case is discussed in the exercises. Start by defining the special function g(t) as
follows:

(17) g(t) = f (t)− P1(t)− E1(x)
(t − x0)(t − x1)

(x − x0)(x − x1)
.

Notice that x , x0, and x1 are constants with respect to the variable t and that g(t)
evaluates to be zero at these three values; that is,

g(x) = f (x)− P1(x)− E1(x)
(x − x0)(x − x1)

(x − x0)(x − x1)
= f (x)− P1(x)− E1(x) = 0,

g(x0) = f (x0)− P1(x0)− E1(x)
(x0 − x0)(x0 − x1)

(x − x0)(x − x1)
= f (x0)− P1(x0) = 0,

g(x1) = f (x1)− P1(x1)− E1(x)
(x1 − x0)(x1 − x1)

(x − x0)(x − x1)
= f (x1)− P1 (x1) = 0.

Suppose that x lies in the open interval (x0, x1). Applying Rolle’s theorem to g(t)
on the interval [x0, x] produces a value d0, with x0 < d0 < x , such that

(18) g′(d0) = 0.

A second application of Rolle’s theorem to g(t) on [x, x1] will produce a value d1,
with x < d1 < x1, such that

(19) g′(d1) = 0.

Equations (18) and (19) show that the function g′(t) is zero at t = d0 and t = d1.
A third use of Rolle’s theorem, but this time applied to g′(t) over [d0, d1], produces a
value c for which

(20) g(2)(c) = 0.

SEC. 4.3 LAGRANGE APPROXIMATION 213

Now go back to (17) and compute the derivatives g′(t) and g′′(t):

g′(t) = f ′(t)− P ′1(t)− E1(x)
(t − x0)+ (t − x1)

(x − x0)(x − x1)
,(21)

g′′(t) = f ′′(t)− 0− E1(x)
2

(x − x0)(x − x1)
.(22)

In (22) we have used the fact the P1(t) is a polynomial of degree N = 1; hence its
second derivative is P ′′1 (t) ≡ 0. Evaluation of (22) at the point t = c and using (20)
yields

(23) 0 = f ′′(c)− E1(x)
2

(x − x0)(x − x1)
.

Solving (23) for E1(x) results in the desired form (16) for the remainder:

(24) E1(x) = (x − x0)(x − x1) f (2)(c)

2! ,

and the proof is complete. •
The next result addresses the special case when the nodes for the Lagrange poly-

nomial are equally spaced xk = x0 + hk, for k = 0, 1, . . . , N , and the polynomial
PN (x) is used only for interpolation inside the interval [x0, xN].
Theorem 4.4 (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).
Assume that f (x) is defined on [a, b], which contains equally spaced nodes xk =
x0 + hk. Additionally, assume that f (x) and the derivatives of f (x), up to the order
N + 1, are continuous and bounded on the special subintervals [x0, x1], [x0, x2], and
[x0, x3], respectively; that is,

(25) | f (N+1)(x)| ≤ MN+1 for x0 ≤ x ≤ xN ,

for N = 1, 2, 3. The error terms (16) corresponding to the cases N = 1, 2, and 3 have
the following useful bounds on their magnitude:

|E1(x)| ≤ h2 M2

8
valid for x ∈ [x0, x1],(26)

|E2(x)| ≤ h3 M3

9
√

3
valid for x ∈ [x0, x2],(27)

|E3(x)| ≤ h4 M4

24
valid for x ∈ [x0, x3].(28)

Proof. We establish (26) and leave the others for the reader. Using the change of
variables x − x0 = t and x − x1 = t − h, the error term E1(x) can be written as

(29) E1(x) = E1(x0 + t) = (t2 − ht) f (2)(c)

2! for 0 ≤ t ≤ h.

214 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

The bound for the derivative for this case is

(30) | f (2)(c)| ≤ M2 for x0 ≤ c ≤ x1.

Now determine a bound for the expression (t2 − ht) in the numerator of (29); call
this term �(t) = t2 − ht . Since �′(t) = 2t − h, there is one critical point t = h/2
that is the solution to �′(t) = 0. The extreme values of �(t) over [0, h] occur either
at an end point �(0) = 0, �(h) = 0 or at the critical point �(h/2) = −h2/4. Since
the latter value is the largest, we have established the bound

(31) |�(t)| = |t2 − ht | ≤ | − h2|
4

= h2

4
for 0 ≤ t ≤ h.

Using (30) and (31) to estimate the magnitude of the product in the numerator in (29)
results in

(32) |E1(x)| = |�(t)|| f (2)(c)|
2! ≤ h2 M2

8
,

and formula (26) is established. •

Comparison of Accuracy and O(hN+1)

The significance of Theorem 4.4 is to understand a simple relationship between the
size of the error terms for linear, quadratic, and cubic interpolation. In each case the
error bound |EN (x)| depends on h in two ways. First, hN+1 is explicitly present so
that |EN (x)| is proportional to hN+1. Second, the values MN+1 generally depend on
h and tend to | f (N+1)(x0)| as h goes to zero. Therefore, as h goes to zero, |EN (x)|
converges to zero with the same rapidity that hN+1 converges to zero. The notation
O(hN+1) is used when discussing this behavior. For example, the error bound (26)
can be expressed as

|E1(x)| = O(h2) valid for x ∈ [x0, x1].

The notation O(h2) stands in place of h2 M2/8 in relation (26) and is meant to convey
the idea that the bound for the error term is approximately a multiple of h2; that is,

|E1(x)| ≤ Ch2 ≈ O(h2).

As a consequence, if the derivatives of f (x) are uniformly bounded on the interval
[a, b] and |h| < 1, then choosing N large will make hN+1 small, and the higher-degree
approximating polynomial will have less error.

SEC. 4.3 LAGRANGE APPROXIMATION 215

0.2 0.4 0.6 0.8 1.0 1.2
x

0.008

0.004

−0.004

−0.008

y

y = E2(x)

(a)

0.2 0.4 0.6 0.8 1.0 1.2
x

0.0008

0.0004

−0.0004

−0.0008

y

y = E3(x)

(b)

Figure 4.13 (a) The error function E2(x) = cos(x) − P2(x). (b) The error function
E3(x) = cos(x)− P3(x).

Example 4.8. Consider y = f (x) = cos(x) over [0.0, 1.2]. Use formulas (26) through
(28) and determine the error bounds for the Lagrange polynomials P1(x), P2(x), and P3(x)

that were constructed in Examples 4.6 and 4.7.
First, determine the bounds M2, M3, and M4 for the derivatives | f (2)(x)|, | f (3)(x)|,

and | f (4)(x)|, respectively, taken over the interval [0.0, 1.2]:
| f (2)(x)| = |− cos(x)| ≤ |− cos(0.0)| = 1.000000 = M2,

| f (3)(x)| = | sin(x)| ≤ | sin(1.2)| = 0.932039 = M3,

| f (4)(x)| = | cos(x)| ≤ | cos(0.0)| = 1.000000 = M4.

For P1(x) the spacing of the nodes is h = 1.2, and its error bound is

(33) |E1(x)| ≤ h2 M2

8
≤ (1.2)2(1.000000)

8
= 0.180000.

For P2(x) the spacing of the nodes is h = 0.6, and its error bound is

(34) |E2(x)| ≤ h3 M3

9
√

3
≤ (0.6)3(0.932039)

9
√

3
= 0.012915.

For P3(x) the spacing of the nodes is h = 0.4, and its error bound is

�(35) |E3(x)| ≤ h4 M4

24
≤ (0.4)4(1.000000)

24
= 0.001067.

From Example 4.6 we saw that |E1(0.6)| = | cos(0.6)− P1(0.6)| = 0.144157, so
the bound 0.180000 in (33) is reasonable. The graphs of the error functions E2 (x) =
cos(x) − P2(x) and E3(x) = cos(x) − P3(x) are shown in Figure 4.13(a) and (b),

216 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 4.7 Comparison of f (x) = cos(x) and the Quadratic and Cubic Polynomial
Approximations P2(x) and P3(x)

xk f (xk) = cos(xk) P2(xk) E2(xk) P3(xk) E3(xk)

0.0 1.000000 1.000000 0.0 1.000000 0.0
0.1 0.995004 0.990911 0.004093 0.995835 −0.000831
0.2 0.980067 0.973813 0.006253 0.980921 −0.000855
0.3 0.955336 0.948707 0.006629 0.955812 −0.000476
0.4 0.921061 0.915592 0.005469 0.921061 0.0
0.5 0.877583 0.874468 0.003114 0.877221 0.000361
0.6 0.825336 0.825336 0.0 0.824847 0.00089
0.7 0.764842 0.768194 −0.003352 0.764491 0.000351
0.8 0.696707 0.703044 −0.006338 0.696707 0.0
0.9 0.621610 0.629886 −0.008276 0.622048 −0.000438
1.0 0.540302 0.548719 −0.008416 0.541068 −0.000765
1.1 0.453596 0.459542 −0.005946 0.454320 −0.000724
1.2 0.362358 0.362358 0.0 0.362358 0.0

respectively, and numerical computations are given in Table 4.7. Using values in the
table, we find that |E2(1.0)| = | cos(1.0) − P2(1.0)| = 0.008416 and |E3(0.2)| =
| cos(0.2) − P3(0.2)| = 0.000855, which is in reasonable agreement with the bounds
0.012915 and 0.001607 given in (34) and (35), respectively.

MATLAB
The following program finds the collocation polynomial through a given set of points
by constructing a vector whose entries are the coefficients of the Lagrange interpola-
tory polynomial. The program uses the commands poly and conv. The poly com-
mand creates a vector whose entries are the coefficients of a polynomial with specified
roots. The conv commands produces a vector whose entries are the coefficients of a
polynomial that is the product of two other polynomials.

Example 4.9. Find the product of two first-degree polynomials, P(x) and Q(x), with
roots 2 and 3, respectively.

>>P=poly(2)
P=

1 -2
>>Q=poly(3)
Q=

1 -3
>>conv(P,Q)
ans=

1 -5 6

Thus the product of P(x) and Q(x) is x2 − 5x + 6. �

SEC. 4.3 LAGRANGE APPROXIMATION 217

Program 4.1 (Lagrange Approximation). To evaluate the Lagrange polynomial
P (x) =∑N

k=0 yk L N ,k(x) based on N + 1 points (xk, yk) for k = 0, 1, . . . , N .

function [C,L]=lagran(X,Y)

%Input - X is a vector that contains a list of abscissas
% - Y is a vector that contains a list of ordinates
%Output - C is a matrix that contains the coefficients of
% the Lagrange interpolatory polynomial
% - L is a matrix that contains the Lagrange
% coefficient polynomials

w=length(X);
n=w-1;
L=zeros(w,w);

%Form the Lagrange coefficient polynomials
for k=1:n+1

V=1;
for j=1:n+1
if k∼=j
V=conv(V,poly(X(j)))/(X(k)-X(j));
end

end
L(k,:)=V;

end

%Determine the coefficients of the Lagrange interpolating
%polynomial

C=Y*L;

Exercises for Lagrange Approximation

1. Find Lagrange polynomials that approximate f (x) = x3.
(a) Find the linear interpolation polynomial P1(x) using the nodes x0 = −1 and

x1 = 0.
(b) Find the quadratic interpolation polynomial P2(x) using the nodes x0 = −1,

x1 = 0, and x2 = 1.
(c) Find the cubic interpolation polynomial P3(x) using the nodes x0 = −1, x1 = 0,

x2 = 1, and x3 = 2.
(d) Find the linear interpolation polynomial P1(x) using the nodes x0 = 1 and

x1 = 2.
(e) Find the quadratic interpolation polynomial P2(x) using the nodes x0 = 0,

x1 = 1, and x2 = 2.

218 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

2. Let f (x) = x + 2/x .
(a) Use quadratic Lagrange interpolation based on the nodes x0 = 1, x1 = 2, and

x2 = 2.5 to approximate f (1.5) and f (1.2).
(b) Use cubic Lagrange interpolation based on the nodes x0 = 0.5, x1 = 1, x2 = 2,

and x3 = 2.5 to approximate f (1.5) and f (1.2).

3. Let f (x) = 2 sin(πx/6), where x is in radians.
(a) Use quadratic Lagrange interpolation based on the nodes x0 = 0, x1 = 1, and

x2 = 3 to approximate f (2) and f (2.4).
(b) Use cubic Lagrange interpolation based on the nodes x0 = 0, x1 = 1, x2 = 3,

and x3 = 5 to approximate f (2) and f (2.4).

4. Let f (x) = 2 sin(πx/6), where x is in radians.
(a) Use quadratic Lagrange interpolation based on the nodes x0 = 0, x1 = 1, and

x2 = 3 to approximate f (4) and f (3.5).
(b) Use cubic Lagrange interpolation based on the nodes x0 = 0, x1 = 1, x2 = 3,

and x3 = 5 to approximate f (4) and f (3.5).

5. Write down the error term E3(x) for cubic Lagrange interpolation to f (x), where
interpolation is to be exact at the four nodes x0 = −1, x1 = 0, x2 = 3, and x4 = 4
and f (x) is given by
(a) f (x) = 4x3 − 3x + 2
(b) f (x) = x4 − 2x3

(c) f (x) = x5 − 5x4

6. Let f (x) = xx .
(a) Find the quadratic Lagrange polynomial P2(x) using the nodes x0 = 1, x1 =

1.25, and x2 = 1.5.
(b) Use the polynomial from part (a) to estimate the average value of f (x) over the

interval [1, 1.5].
(c) Use expression (27) of Theorem 4.4 to obtain a bound on the error in approxi-

mating f (x) with P2(x).

7. Consider the Lagrange coefficient polynomials L2,k(x) that are used for quadratic
interpolation at the nodes x0, x1, and x2. Define g(x) = L2,0(x) + L2,1(x) +
L2,2(x)− 1.
(a) Show that g is a polynomial of degree ≤ 2.
(b) Show that g(xk) = 0 for k = 0, 1, 2.
(c) Show that g(x) = 0 for all x . Hint. Use the fundamental theorem of algebra.

8. Let L N ,0(x), L N ,1(x), . . . , and L N ,N (x) be the Lagrange coefficient polynomials
based on the N + 1 nodes x0, x1, . . . , and xN . Show that

∑N
k=0 L N ,k(x) = 1 for any

real number x .

9. Let f (x) be a polynomial of degree ≤ N . Let PN (x) be the Lagrange polynomial of
degree ≤ N based on the N + 1 nodes x0, x1, . . . , xN . Show that f (x) = PN (x) for
all x . Hint. Show that the error term EN (x) is identically zero.

SEC. 4.3 LAGRANGE APPROXIMATION 219

10. Consider the function f (x) = sin(x) on the interval [0, 1]. Use Theorem 4.4 to
determine the step size h so that
(a) linear Lagrange interpolation has an accuracy of 10−6 (i.e., find h such that

|E1(x)| < 5× 10−7).
(b) quadratic Lagrange interpolation has an accuracy of 10−6 (i.e., find h such that

|E2(x)| < 5× 10−7).
(c) cubic Lagrange interpolation has an accuracy of 10−6 (i.e., find h such that

|E3(x)| < 5× 10−7).

11. Start with equation (16) and N = 2, and prove inequality (27). Let x1 = x0 + h,
x2 = x0 + 2h. Prove that if x0 ≤ x ≤ x2, then

|x − x0||x − x1||x − x2| ≤ 2h3

3× 31/2
.

Hint. Use the substitutions t = x − x1, t + h = x − x0, and t − h = x − x2 and the
function v(t) = t3 − th2 on the interval −h ≤ t ≤ h. Set v′(t) = 0 and solve for t in
terms of h.

12. Linear interpolation in two dimensions. Consider the polynomial z = P(x, y) = A+
Bx+Cy that passes through the three points (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2).
Then A, B, and C are the solution values for the linear system of equations

A + Bx0 + Cy0 = z0

A + Bx1 + Cy1 = z1

A + Bx2 + Cy2 = z2.

(a) Find A, B, and C so that z = P(x, y) passes through the points (1, 1, 5),
(2, 1, 3), and (1, 2, 9).

(b) Find A, B, and C so that z = P(x, y) passes through the points (1, 1, 2.5),
(2, 1, 0), and (1, 2, 4).

(c) Find A, B, and C so that z = P(x, y) passes through the points (2, 1, 5),
(1, 3, 7), and (3, 2, 4).

(d) Can values A, B, and C be found so that z = P(x, y) passes through the points
(1, 2, 5), (3, 2, 7), and (1, 2, 0)? Why?

13. Use Theorem 1.7, the generalized Rolle’s theorem, and the special function

g(t) = f (t)− PN (t)− En(x)
(t − x0)(t − x1) · · · (t − xN)

(x − x0)(x − x1) · · · (x − xN)
,

where PN (x) is the Lagrange polynomial of degree N , to prove that the error term
EN (x) = f (x)− PN (x) has the form

EN (x) = (x − x0)(x − x1) · · · (x − xN)
f (N+1)(c)

(N + 1)! .

Hint. Find g(N+1)(t) and then evaluate it at t = c.

220 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Algorithms and Programs

1. Use Program 4.1 to find the coefficients of the interpolatory polynomials in Prob-
lem 2(i) (a), (b), and (c) in the Algorithms and Programs in Section 4.2. Plot the
graphs of each function and the associated interpolatory polynomial on the same co-
ordinate system.

2. The measured temperatures during a 5-hour period in a suburb of Los Angeles on
November 8 are given in the following table.
(a) Use Program 4.1 to construct a Lagrange interpolatory polynomial for the data

in the table.
(b) Use Algorithm 4.1(iii) to estimate the average temperature during the given

5-hour period.
(c) Graph the data in the table and the polynomial from part (a) on the same coordi-

nate system. Discuss the possible error that can result from using the polynomial
in part (a) to estimate the average temperature.

Time, P.M. Degrees Fahrenheit

1 66

2 66

3 65

4 64

5 63

6 63

4.4 Newton Polynomials

It is sometimes useful to find several approximating polynomials P1(x), P2(x), . . . ,
PN (x) and then choose the one that suits our needs. If the Lagrange polynomials
are used, there is no constructive relationship between PN−1(x) and PN (x). Each
polynomial has to be constructed individually, and the work required to compute the
higher-degree polynomials involves many computations. We take a new approach and
construct Newton polynomials that have the recursive pattern

P1(x) = a0 + a1(x − x0),(1)

P2(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1),(2)

SEC. 4.4 NEWTON POLYNOMIALS 221

P3(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)(3)

+ a3(x − x0)(x − x1)(x − x2),

...

PN (x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)(4)

+ a3(x − x0)(x − x1)(x − x2)

+ a4(x − x0)(x − x1)(x − x2)(x − x3)+ · · ·
+ aN (x − x0) · · · (x − xN−1).

Here the polynomial PN (x) is obtained from PN−1(x) using the recursive relationship

(5) PN (x) = PN−1(x)+ aN (x − x0)(x − x1)(x − x2) · · · (x − xN−1).

The polynomial (4) is said to be a Newton polynomial with N centers x0, x1,
. . . , xN−1. It involves sums of products of linear factors up to

aN (x − x0)(x − x1)(x − x2) · · · (x − xN−1),

so PN (x) will simply be an ordinary polynomial of degree ≤ N .

Example 4.10. Given the centers x0 = 1, x1 = 3, x2 = 4, and x3 = 4.5 and the
coefficients a0 = 5, a1 = −2, a2 = 0.5, a3 = −0.1, and a4 = 0.003, find P1(x), P2(x),
P3(x), and P4(x) and evaluate Pk(2.5) for k = 1, 2, 3, 4.

Using formulas (1) through (4), we have

P1(x) = 5− 2(x − 1),

P2(x) = 5− 2(x − 1)+ 0.5(x − 1)(x − 3),

P3(x) = P2(x)− 0.1(x − 1)(x − 3)(x − 4),

P4(x) = P3(x)+ 0.003(x − 1)(x − 3)(x − 4)(x − 4.5).

Evaluating the polynomials at x = 2.5 results in

P1(2.5) = 5− 2(1.5) = 2,

P2(2.5) = P1(2.5)+ 0.5(1.5)(−0.5) = 1.625,

P3(2.5) = P2(2.5)− 0.1(1.5)(−0.5)(−1.5) = 1.5125,

P4(2.5) = P3(2.5)+ 0.003(1.5)(−0.5)(−1.5)(−2.0) = 1.50575. �

Nested Multiplication
If N is fixed and the polynomial PN (x) is evaluated many times, then nested multi-
plication should be used. The process is similar to nested multiplication for ordinary
polynomials, except that the centers xk must be subtracted from the independent vari-
able x . The nested multiplication form for P3(x) is

(6) P3(x) = ((a3(x − x2)+ a2)(x − x1)+ a1)(x − x0)+ a0.

222 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

To evaluate P3(x) for a given value of x , start with the innermost grouping and form
successively the quantities

(7)

S3 = a3,

S2 = S3(x − x2)+ a2,

S1 = S2(x − x1)+ a1,

S0 = S1(x − x0)+ a0.

The quantity S0 is now P3(x).

Example 4.11. Compute P3(2.5) in Example 4.10 using nested multiplication.
Using (6), we write

P3(x) = ((−0.1(x − 4)+ 0.5)(x − 3)− 2)(x − 1)+ 5.

The values in (7) are

S3 = −0.1,

S2 = −0.1(2.5− 4)+ 0.5 = 0.65,

S1 = 0.65(2.5− 3)− 2 = −2.325,

S0 = −2.325(2.5− 1)+ 5 = 1.5125.

Therefore, P3(2.5) = 1.5125. �

Polynomial Approximation, Nodes, and Centers

Suppose that we want to find the coefficients ak for all the polynomials P1(x), . . . ,
PN (x) that approximate a given function f (x). Then Pk(x) will be based on the centers
x0, x1, . . . , xk and have the nodes x0, x1, . . . , xk+1. For the polynomial P1(x) the
coefficients a0 and a1 have a familiar meaning. In this case

(8) P1(x0) = f (x0) and P1(x1) = f (x1).

Using (1) and (8) to solve for a0, we find that

(9) f (x0) = P1(x0) = a0 + a1(x0 − x0) = a0.

Hence a0 = f (x0). Next, using (1), (8), and (9), we have

f (x1) = P1(x1) = a0 + a1(x1 − x0) = f (x0)+ a1(x1 − x0),

which can be solved for a1, and we get

(10) a1 = f (x1)− f (x0)

x1 − x0
.

SEC. 4.4 NEWTON POLYNOMIALS 223

Hence a1 is the slope of the secant line passing through the two points (x0, f (x0))

and (x1, f (x1)).
The coefficients a0 and a1 are the same for both P1(x) and P2(x). Evaluating (2)

at the node x2, we find that

(11) f (x2) = P2(x2) = a0 + a1(x2 − x0)+ a2(x2 − x0)(x2 − x1).

The values for a0 and a1 in (9) and (10) can be used in (11) to obtain

a2 = f (x2)− a0 − a1(x2 − x0)

(x2 − x0)(x2 − x1)

=
(

f (x2)− f (x0)

x2 − x0
− f (x1)− f (x0)

x1 − x0

)/
(x2 − x1).

For computational purposes we prefer to write this last quantity as

(12) a2 =
(

f (x2)− f (x1)

x2 − x1
− f (x1)− f (x0)

x1 − x0

)/
(x2 − x0).

The two formulas for a2 can be shown to be equivalent by writing the quotients
over the common denominator (x2 − x1)(x2 − x0)(x1 − x0). The details are left for
the reader. The numerator in (12) is the difference between the first-order divided
differences. In order to proceed, we need to introduce the idea of divided differences.

Definition 4.1. The divided differences for a function f (x) are defined as follows:

(13)

f [xk] = f (xk),

f [xk−1, xk] = f [xk] − f [xk−1]
xk − xk−1

,

f [xk−2, xk−1, xk] = f [xk−1, xk] − f [xk−2, xk−1]
xk − xk−2

,

f [xk−3, xk−2, xk−1, xk] = f [xk−2, xk−1, xk] − f [xk−3, xk−2, xk−1]
xk − xk−3

.

The recursive rule for constructing higher-order divided differences is

(14) f [xk− j , xk− j+1, . . . , xk] = f [xk− j+1, . . . , xk] − f [xk− j , . . . , xk−1]
xk − xk− j

and is used to construct the divided differences in Table 4.8. �

The coefficients ak of PN (x) depend on the values f (x j), for j = 0, 1, . . . , k. The
next theorem shows that ak can be computed using divided differences:

(15) ak = f [x0, x1, . . . , xk].

224 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 4.8 Divided-Difference Table for y = f (x)

xk f [xk] f [,] f [, ,] f [, , ,] f [, , , ,]
x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
x4 f [x4] f [x3, x4] f [x2, x3, x4] f [x1, x2, x3, x4 f [x0, x1, x2, x3, x4]

Theorem 4.5 (Newton Polynomial). Suppose that x0, x1, . . . , xN are N +1 distinct
numbers in [a, b]. There exists a unique polynomial PN (x) of degree at most N with
the property that

f (x j) = PN (x j) for j = 0, 1, . . . , N .

The Newton form of this polynomial is

(16) PN (x) = a0 + a1(x − x0)+ · · · + aN (x − x0)(x − x1) · · · (x − xN−1),

where ak = f [x0, x1, . . . , xk], for k = 0, 1, . . . , N .

Remark. If {(x j , y j)}Nj=0 is a set of points whose abscissas are distinct, the values
f (x j) = y j can be used to construct the unique polynomial of degree ≤ N that passes
through the N + 1 points.

Corollary 4.2 (Newton Approximation). Assume that PN (x) is the Newton poly-
nomial given in Theorem 4.5 and is used to approximate the function f (x), that is,

(17) f (x) = PN (x)+ EN (x).

If f ∈ C N+1[a, b], then for each x ∈ [a, b] there corresponds a number c = c(x) in
(a, b), so that the error term has the form

(18) EN (x) = (x − x0)(x − x1) · · · (x − xN) f (N+1)(c)

(N + 1)! .

Remark. The error term EN (x) is the same as the one for Lagrange interpolation, which
was introduced in equation (16) of Section 4.3.

It is of interest to start with a known function f (x) that is a polynomial of degree N
and compute its divided-difference table. In this case we know that f (N+1)(x) = 0
for all x , and calculation will reveal that the (N + 1)st divided difference is zero.
This will happen because the divided difference (14) is proportional to a numerical
approximation for the j th derivative.

SEC. 4.4 NEWTON POLYNOMIALS 225

Table 4.9 Divided-Difference Table Used for Constructing the Newton Polynomial P3(x)

in Example 4.12.

xk f [xk]

First
divided

difference

Second
divided

difference

Third
divided

difference

Fourth
divided

difference

Fifth
divided

difference

x0 = 1 −3
x1 = 2 0 3
x2 = 3 15 15 6
x3 = 4 48 33 9 1
x4 = 5 105 57 12 1 0
x5 = 6 192 87 15 1 0 0

Table 4.10 Divided-Difference Table Used for Constructing the Newton Polynomials
Pk(x) in Example 4.13

xk f [xk] f [,] f [, ,] f [, , ,] f [, , , ,]
x0 = 0.0 1.0000000

x1 = 1.0 0.5403023 −0.4596977

x2 = 2.0 −0.4161468 −0.9564491 −0.2483757

x3 = 3.0 −0.9899925 −0.5738457 0.1913017 0.1465592

x4 = 4.0 −0.6536436 0.3363499 0.4550973 0.0879318 −0.0146568

Example 4.12. Let f (x) = x3 − 4x . Construct the divided-difference table based on the
nodes x0 = 1, x1 = 2, . . . , x5 = 6, and find the Newton polynomial P3(x) based on x0, x1,
x2, and x3.

See Table 4.9. �

The coefficients a0 = −3, a1 = 3, a2 = 6, and a3 = 1 of P3(x) appear on the
diagonal of the divided-difference table. The centers x0 = 1, x1 = 2, and x2 = 3 are
the values in the first column. Using formula (3), we write

P3(x) = −3+ 3(x − 1)+ 6(x − 1)(x − 2)+ (x − 1)(x − 2)(x − 3).

Example 4.13. Construct a divided-difference table for f (x) = cos(x) based on the five
points (k, cos(k)), for k = 0, 1, 2, 3, 4. Use it to find the coefficients ak and the four
Newton interpolating polynomials Pk(x), for k = 1, 2, 3, 4.

For simplicity we round off the values to seven decimal places, which are displayed
in Table 4.10. The nodes x0, x1, x2, x3 and the diagonal elements a0, a1, a2, a3, a4 in

226 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

1 2 3
x

1.0

0.5

−0.5

−1.0

y

y = P1(x)

y = cos(x)

Figure 4.14 (a) The graphs of
y = cos(x) and the linear Newton
polynomial y = P1(x) based on the
nodes x0 = 0.0 and x1 = 1.0.

1 2 3
x

1.0

0.5

−0.5

−1.0

y

y = P2(x)
y = cos(x)

Figure 4.14 (b) The graphs of
y = cos(x) and the quadratic New-
ton polynomial y = P2(x) based on
the nodes x0 = 0.0, x1 = 1.0, and
x2 = 2.0.

Table 4.10 are used in formula (16), and we write down the first four Newton polynomials:

P1(x) = 1.0000000− 0.4596977(x − 0.0),

P2(x) = 1.0000000− 0.4596977(x − 0.0)− 0.2483757(x − 0.0)(x − 1.0),

P3(x) = 1.0000000− 0.4596977(x − 0.0)− 0.2483757(x − 0.0)(x − 1.0)

+ 0.1465592(x − 0.0)(x − 1.0)(x − 2.0),

P4(x) = 1.0000000− 0.4596977(x − 0.0)− 0.2483757(x − 0.0)(x − 1.0)

+ 0.1465592(x − 0.0)(x − 1.0)(x − 2.0)

− 0.0146568(x − 0.0)(x − 1.0)(x − 2.0)(x − 3.0).

The following sample calculation shows how to find the coefficient a2.

f [x0, x1] = f [x1] − f [x0]
x1 − x0

= 0.5403023− 10000000

1.0− 0.0
= −0.4596977,

f [x1, x2] = f [x2] − f [x1]
x2 − x1

= −0.4161468− 0.5403023

2.0− 1.0
= −0.9564491,

a2 = f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

= −0.9564491+ 0.4596977

2.0− 0.0
= −0.2483757.

The graphs of y = cos(x) and y = P1(x), y = P2(x), and y = P3(x) are shown in
Figure 4.14(a), (b), and (c), respectively.

For computational purposes the divided differences in Table 4.8 need to be stored in an
array which is chosen to be D(k, j), so that

(19) D(k, j) = f [xk− j , xk− j+1, . . . , xk] for j ≤ k.

SEC. 4.4 NEWTON POLYNOMIALS 227

1 2 3
x

1.0

0.5

−0.5

−1.0

y

y = P3(x) y = cos(x)

Figure 4.14 (c) The graphs of
y = cos(x) and the cubic Newton
polynomial y = P2(x) based on the
nodes x0 = 0.0, x1 = 1.0, x2 = 2.0,
and x3 = 3.0.

Relation (14) is used to obtain the formula to recursively compute the entries in the array:

(20) D(k, j) = D(k, j − 1)− D(k − 1, j − 1)

xk − xk− j
.

Notice that the value ak in (15) is the diagonal element ak = D(k, k). The algorithm for
computing the divided differences and evaluating PN (x) is now given. We remark that
Problem 2 in Algorithms and Programs investigates how to modify the algorithm so that
the values {ak} are computed using a one-dimensional array. �

Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the
Newton polynomial of degree ≤ N that passes through (xk, yk) = (xk, f (xk)) for
k = 0, 1, . . . , N :

(21)
P(x) = d0,0 + d1,1(x − x0)+ d2,2(x − x0)(x − x1)

+ · · · + dN ,N (x − x0)(x − x1) · · · (x − xN−1),

where

dk,0 = yk and dk, j = dk, j−1 − dk−1, j−1

xk − xk− j
.

function [C,D]=newpoly(X,Y)
%Input - X is a vector that contains a list of abscissas
% - Y is a vector that contains a list of ordinates
%Output - C is a vector that contains the coefficients
% of the Newton intepolatory polynomial
% - D is the divided-difference table

n=length(X);
D=zeros(n,n);
D(:,1)=Y’;

% Use formula (20) to form the divided-difference table

228 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

for j=2:n
for k=j:n

D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1));
end

end

%Determine the coefficients of the Newton interpolating
%polynomial
C=D(n,n);
for k=(n-1):-1:1

C=conv(C,poly(X(k)));
m=length(C);
C(m)=C(m)+D(k,k);

end

Exercises for Newton Polynomials

In Exercises 1 through 4, use the centers x0, x1, x2, and x3 and the coefficients a0, a1, a2, a3,
and a4 to find the Newton polynomials P1(x), P2(x), P3(x), and P4(x), and evaluate them
at the value x = c. Hint. Use equations (1) through (4) and the techniques of Example 4.9.

1. a0 = 4 a1 = −1 a2 = 0.4 a3 = 0.01 a4 = −0.002

x0 = 1 x1 = 3 x2 = 4 x3 = 4.5 c = 2.5

2. a0 = 5 a1 = −2 a2 = 0.5 a3 = −0.1 a4 = 0.003

x0 = 0 x1 = 1 x2 = 2 x3 = 3 c = 2.5

3. a0 = 7 a1 = 3 a2 = 0.1 a3 = 0.05 a4 = −0.04

x0 = −1 x1 = 0 x2 = 1 x3 = 4 c = 3

4. a0 = −2 a1 = 4 a2 = −0.04 a3 = 0.06 a4 = 0.005

x0 = −3 x1 = −1 x2 = 1 x3 = 4 c = 2

In Exercises 5 through 8:

(a) Compute the divided-difference table for the tabulated function.

(b) Write down the Newton polynomials P1(x), P2(x), P3(x), and P4(x).

(c) Evaluate the Newton polynomials in part (b) at the given values of x .

(d) Compare the values in part (c) with the actual function value f (x).

SEC. 4.4 NEWTON POLYNOMIALS 229

5. f (x) = x1/2

x = 4.5, 7.5

k xk f (xk)

0 4.0 2.00000
1 5.0 2.23607
2 6.0 2.44949
3 7.0 2.64575
4 8.0 2.82843

6. f (x) = 3.6/x

x = 2.5, 3.5

k xk f (xk)

0 1.0 3.60
1 2.0 1.80
2 3.0 1.20
3 4.0 0.90
4 5.0 0.72

7. f (x) = 3 sin2(πx/6)

x = 1.5, 3.5

k xk f (xk)

0 0.0 0.00
1 1.0 0.75
2 2.0 2.25
3 3.0 3.00
4 4.0 2.25

8. f (x) = e−x

x = 0.5, 1.5

k xk f (xk)

0 0.0 1.00000
1 1.0 0.36788
2 2.0 0.13534
3 3.0 0.04979
4 4.0 0.01832

9. Consider the M + 1 points (x0, y0), . . . , (xM , yM).

(a) If the (N + 1)st divided differences are zero, then show that the (N + 2)nd up
to the M th divided differences are zero.

(b) If the (N + 1)st divided differences are zero, then show that there exists a poly-
nomial PN (x) of degree N such that

PN (xk) = yk for k = 0, 1, . . . , M .

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial PN (x) that
goes through the M + 1 points (N < M).

10.
xk yk

0 −2
1 2
2 4
3 4
4 2
5 −2

11.
xk yk

1 8
2 17
3 24
4 29
5 32
6 33

12.
xk yk

0 5
1 5
2 3
3 5
4 17
5 45
6 95

230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

13. Use Corollary 4.2 to find a bound on the maximum error (|E2(x)|) on the inter-
val [0, π], when the Newton interpolatory polynomial P2(x) is used to approximate
f (x) = cos(πx) at the centers x0 = 0, x1 = π/2, and x2 = π .

Algorithms and Programs

1. Use Program 4.2 and repeat Problem 2 in Algorithms and Programs from Section 4.3.

2. In Program 4.2 the matrix D is used to store the divided-difference table.
(a) Verify that the following modification of Program 4.2 is an equivalent way to

compute the Newton interpolatory polynomial.

for k=0:N
A(k)=Y(k);

end
for j=1:N

for k=N:-1:j
A(k)=(A(k)-A(k-1))/(X(k)-X(k-j));

end
end

(b) Repeat Problem 1 using this modification of Program 4.2

4.5 Chebyshev Polynomials (Optional)
We now turn our attention to polynomial interpolation for f (x) over [−1, 1] based
on the nodes −1 ≤ x0 < x1 < · · · < xN ≤ 1. Both the Lagrange and Newton
polynomials satisfy

f (x) = PN (x)+ EN (x),

where

(1) EN (x) = Q(x)
f (N+1)(c)

(N + 1)!
and Q(x) is the polynomial of degree N + 1:

(2) Q(x) = (x − x0)(x − x1) · · · (x − xN).

Using the relationship

|EN (x)| ≤ |Q(x)|max−1≤x≤1{| f (N+1)(x)|}
(N + 1)! ,

our task is to follow Chebyshev’s derivation on how to select the set of nodes {xk}Nk=0
that minimizes max−1≤x≤1{|Q(x)|}. This leads us to a discussion of Chebyshev poly-
nomials and some of their properties. To begin, the first eight Chebyshev polynomials
are listed in Table 4.11.

SEC. 4.5 CHEBYSHEV POLYNOMIALS 231

Table 4.11 Chebyshev Polynomials
T0(x) through T7(x)

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x
T6(x) = 32x6 − 48x4 + 18x2 − 1
T7(x) = 64x7 − 112x5 + 56x3 − 7x

Properties of Chebyshev Polynomials
Property 1. Recurrence Relation

Chebyshev polynomials can be generated in the following way. Set T0(x) = 1 and
T1(x) = x and use the recurrence relation

(3) Tk(x) = 2xTk−1(x)− Tk−2(x) for k = 2, 3,

Property 2. Leading Coefficient

The coefficient of x N in TN (x) is 2N−1 when N ≥ 1.

Property 3. Symmetry

When N = 2M , T2M (x) is an even function, that is,

(4) T2M (−x) = T2M (x).

When N = 2M + 1, T2M+1(x) is an odd function, that is,

(5) T2M+1(−x) = −T2M+1(x).

Property 4. Trigonometric Representation on [−1, 1]
(6) TN (x) = cos(N arccos(x)) for −1 ≤ x ≤ 1.

Property 5. Distinct Zeros in [−1, 1]
TN (x) has N distinct zeros xk that lie in the interval [−1, 1] (see Figure 4.15):

(7) xk = cos

(
(2k + 1)π

2N

)
for k = 0, 1, . . . , N − 1.

These values are called the Chebyshev abscissas (nodes).

232 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

0.5−0.5−1.0 1.0
x

0.5

1.0

−0.5

y

y = T3(x)

y = T4(x)

y = T1(x)

y = T0(x)

y = T2(x)

Figure 4.15 The graphs of the
Chebyshev polynomials T0(x),
T1(x), . . . , T4(x) over [−1, 1].

Property 6. Extreme Values

(8) |TN (x)| ≤ 1 for −1 ≤ x ≤ 1.

Property 1 is often used as the definition for higher-order Chebyshev polynomials.
Let us show that T3(x) = 2xT2(x)− T1(x). Using the expressions for T1(x) and T2(x)

in Table 4.11, we obtain

2xT2(x)− T1(x) = 2x(2x2 − 1)− x = 4x3 − 3x = T3(x).

Property 2 is proved by observing that the recurrence relation doubles the leading
coefficient of TN−1(x) to get the leading coefficient of TN (x).

Property 3 is established by showing that T2M (x) involves only even powers of x
and T2M+1(x) involves only odd powers of x . The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(kθ) = cos(2θ) cos((k − 2)θ)− sin(2θ) sin((k − 2)θ).

Substitute cos(2θ) = 2 cos2(θ)− 1 and sin(2θ) = 2 sin(θ) cos(θ) and get

cos(kθ) = 2 cos(θ)(cos(θ) cos((k − 2)θ)− sin(θ) sin((k − 2)θ))− cos((k − 2)θ),

which is simplified as

cos(kθ) = 2 cos(θ) cos((k − 1)θ)− cos((k − 2)θ).

Finally, substitute θ = arccos(x) and obtain

(9) 2x cos((k − 1) arccos(x))− cos((k − 2) arccos(x))

= cos(k arccos(x)) for −1 ≤ x ≤ 1.

SEC. 4.5 CHEBYSHEV POLYNOMIALS 233

The first two Chebyshev polynomials are T0(x) = cos(0 arccos(x)) = 1 and
T1(x) = cos(1 arccos(x)) = x . Now assume that Tk(x) = cos(k arccos(x)) for k = 2,
3, . . . , N − 1. Formula (3) is used with (9) to establish the general case:

TN (x) = 2xTN−1(x)− TN−2(x)

= 2x cos((N − 1) arccos(x))− cos((N − 2) arccos(x))

= cos(N arccos(x)) for −1 ≤ x ≤ 1.

Properties 5 and 6 are consequences of property 4.

Minimax
The Russian mathematician Chebyshev studied how to minimize the upper bound for
|EN (x)|. One upper bound can be formed by taking the product of the maximum value
of |Q(x)| over all x in [−1, 1] and the maximum value | f (N+1)(x)/(N + 1)!| over
all x in [−1, 1]. To minimize the factor max{|Q(x)|}, Chebyshev discovered that x0,
x1, . . . , xN should be chosen so that Q(x) = (1/2N)TN+1(x).

Theorem 4.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (2), and thus among all possible choices for the distinct nodes {xk}Nk=0in [−1, 1],
the polynomial T (x) = TN+1(x)/2N is the unique choice that has the property

max
−1≤x≤1

{|T (x)|} ≤ max
−1≤x≤1

{|Q(x)|}.

Moreover,

(10) max
−1≤x≤1

{|T (x)|} = 1

2N
.

The consequence of this result can be stated by saying that for Lagrange interpola-
tion f (x) = PN (x)+ EN (x) on [−1, 1], the minimum value of the error bound

(max{|Q(x)|})(max{| f (N+1)(x)/(N + 1)!|})
is achieved when the nodes {xk} are the Chebyshev abscissas of TN+1(x). As an il-
lustration, we look at the Lagrange coefficient polynomials that are used in forming
P3(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
the Lagrange polynomial of degree N = 3 has the form

(11) P3(x) = f (x0)L3,0(x)+ f (x1)L3,1(x)+ f (x2)L3,2(x)+ f (x3)L3,3(x).

Equally Spaced Nodes
If f (x) is approximated by a polynomial of degree at most N = 3 on [−1, 1], the
equally spaced nodes x0 = −1, x1 = −1/3, x2 = 1/3, and x3 = 1 are easy to
use for calculations. Substitution of these values into formula (8) of Section 4.3 and
simplifying will produce the coefficient polynomials L3,k(x) in Table 4.12.

234 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Table 4.12 Lagrange Coefficient Polynomials Used to Form P3(x)

Based on Equally Spaced Nodes xk = −1+ 2k/3

L3,0(x) = −0.06250000+ 0.06250000x + 0.56250000x2 − 0.56250000x3

L3,1(x) = 0.56250000− 1.68750000x − 0.56250000x2 + 1.68750000x3

L3,2(x) = 0.56250000+ 1.68750000x − 0.56250000x2 − 1.68750000x3

L3,3(x) = −0.06250000− 0.06250000x + 0.56250000x2 + 0.56250000x3

Table 4.13 Coefficient Polynomials Used to Form P3(x) Based on the
Chebyshev Nodes xk = cos((7− 2k)π/8)

C0(x) = −0.10355339+ 0.11208538x + 0.70710678x2 − 0.76536686x3

C1(x) = 0.60355339− 1.57716102x − 0.70710678x2 + 1.84775906x3

C2(x) = 0.60355339+ 1.57716102x − 0.70710678x2 − 1.84775906x3

C3(x) = −0.10355339− 0.11208538x + 0.70710678x2 + 0.76536686x3

Chebyshev Nodes

When f (x) is to be approximated by a polynomial of degree at most N = 3, using
the Chebyshev nodes x0 = cos(7π/8), x1 = cos(5π/8), x2 = cos(3π/8), and x3 =
cos(π/8), the coefficient polynomials are tedious to find (but this can be done by a
computer). The results after simplification are shown in Table 4.13.

Example 4.14. Compare the Lagrange polynomials of degree N = 3 for f (x) = ex that
are obtained by using the coefficient polynomials in Tables 4.12 and 4.13, respectively.

Using equally spaced nodes, we get the polynomial

P(x) = 0.99519577+ 0.99904923x + 0.54788486x2 + 0.17615196x3.

This is obtained by finding the function values

f (x0) = e(−1) = 0.36787944, f (x1) = e(−1/3) = 0.71653131,

f (x2) = e(1/3) = 1.39561243, f (x3) = e(1) = 2.71828183,

and using the coefficient polynomials L3,k(x) in Table 4.12, and forming the linear combi-
nation

P(x) = 0.36787944L3,0(x)+ 0.71653131L3,1(x)+ 1.39561243L3,2(x)

+ 2.71828183L3,3(x).

Similarly, when the Chebyshev nodes are used, we obtain

V (x) = 0.99461532+ 0.99893323x + 0.54290072x2 + 0.17517569x3.

SEC. 4.5 CHEBYSHEV POLYNOMIALS 235

0.5−0.5−1.0 1.0
x

0.005

−0.005

−0.010

y

y = ex − P(x)

(a)

0.5−0.5−1.0 1.0
x

0.005

−0.005

−0.010

y

y = ex − V(x)

(b)

Figure 4.16 (a) The error function y = ex−P(x) for Lagrange approximation over [−1, 1].
(b) The error function y = ex − V (x) for Lagrange approximation over [−1, 1].

Notice that the coefficients are different from those of P(x). This is a consequence of using
different nodes and function values:

f (x0) = e−0.92387953 = 0.39697597,

f (x1) = e−0.38268343 = 0.68202877,

f (x2) = e0.38268343 = 1.46621380,

f (x3) = e0.92387953 = 2.51904417.

Then the alternative set of coefficient polynomials Ck(x) in Table 4.13 is used to form the
linear combination

V (x)= 0.39697597C0(x)+ 0.68202877C1(x)+ 1.46621380C2(x)+ 2.51904417C3(x).

For a comparison of the accuracy of P(x) and V (x), the error functions are graphed
in Figure 4.16(a) and (b), respectively. The maximum error |ex − P(x)| occurs at x =
0.75490129, and

|ex − P(x)| ≤ 0.00998481 for −1 ≤ x ≤ 1.

The maximum error |ex − V (x)| occurs at x = 1, and we get

|ex − V (x)| ≤ 0.00665687 for −1 ≤ x ≤ 1.

Notice that the maximum error in V (x) is about two-thirds the maximum error in P(x).
Also, the error is spread out more evenly over the interval. �

236 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Runge Phenomenon
We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to f (x) over the interval [−1, 1] based on equally
spaced nodes. Does the error EN (x) = f (x)− PN (x) tend to zero as N increases? For
functions like sin(x) or ex , where all the derivatives are bounded by the same constant
M , the answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence {PN (x)} does not converge. If f (x) = 1/(1+12x2),
the maximum of the error term EN (x) grows when N → ∞. This nonconvergence
is called the Runge phenomenon. The Lagrange polynomial of degree 10 based on
11 equally spaced nodes for this function is shown in Figure 4.17(a). Wild oscilla-
tions occur near the end of the interval. If the number of nodes is increased, then the
oscillations become larger. This problem occurs because the nodes are equally spaced!

If the Chebyshev nodes are used to construct an interpolating polynomial of de-
gree 10 to f (x) = 1/(1+ 12x2), the error is much smaller, as seen in Figure 14.17(b).
Under the condition that Chebyshev nodes be used, the error EN (x) will go to zero
as N → ∞. In general, if f (x) and f ′(x) are continuous on [−1, 1], then it can be
proved that Chebyshev interpolation will produce a sequence of polynomials {PN (x)}
that converges uniformly to f (x) over [−1, 1].

Transforming the Interval
Sometimes it is necessary to take a problem stated on an interval [a, b] and reformu-
late the problem on the interval [c, d] where the solution is known. If the approxima-
tion PN (x) to f (x) is to be obtained on the interval [a, b], then we change the variable
so that the problem is reformulated on [−1, 1]:

(12) x =
(

b − a

2

)
t + a + b

2
or t = 2

x − a

b − a
− 1,

where a ≤ x ≤ b and −1 ≤ t ≤ 1.
The required Chebyshev nodes of TN+1(t) on [−1, 1] are

(13) tk = cos

(
(2N + 1− 2k)

π

2N + 2

)
for k = 0, 1, . . . , N

and the interpolating nodes on [a, b] are obtained by using (12):

(14) xk = tk
b − a

2
+ a + b

2
for k = 0, 1, . . . , N .

Theorem 4.7 (Lagrange-Chebyshev Approximation Polynomial). Assume that
PN (x) is the Lagrange polynomial that is based on the Chebyshev nodes given in (14).
If f ∈ C N+1[a, b], then

(15) | f (x)− PN (x)| ≤ 2(b − a)N+1

4N+1(N + 1)! max
a≤x≤b

{| f (N+1)(x)|}.

SEC. 4.5 CHEBYSHEV POLYNOMIALS 237

−0.5 0.0 0.5−1.0 1.0
x

0.5

1.0

y

y = P10(x)

y = f (x) Figure 4.17 (a) The polynomial
approximation to y = 1/(1 + 12x2)

based on 11 equally spaced nodes
over [−1, 1].

y = P10(x)

−0.5 0.0 0.5−1.0 1.0
x

0.5

1.0

y

y = f (x)
Figure 4.17 (b) The polynomial
approximation to y = 1/(1 + 12x2)

based on 11 Chebyshev nodes over
[−1, 1].

Example 4.15. For f (x) = sin(x) on [0, π/4], find the Chebyshev nodes and the error
bound (15) for the Lagrange polynomial P5(x).

Formulas (12), (13), and (14) are used to find the nodes;

xk = cos

(
(11− 2k)π

12

)
π

8
+ π

8
for k = 0, 1, . . . , 5.

Using the bound | f (6)(x)| ≤ |− sin(π/4)| = 2−1/2 = M in (15), we get

| f (x)− PN (x)| ≤
(π

8

)6
(

2

6!
)

2−1/2 ≤ 0.00000720. �

238 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Orthogonal Property

In Example 4.14, the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can be
obtained by Lagrange interpolation based on the N + 1 nodes that are the N + 1 zeros
of TN+1(x). However, a direct approach to finding the approximation polynomial is
to express PN (x) as a linear combination of the polynomials Tk(x), which were given
in Table 4.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form

(16) PN (x) =
N∑

k=0

ck Tk(x) = c0T0(x)+ c1T1(x)+ · · · + cN TN (x).

The coefficients {ck} in (16) are easy to find. The technical proof requires the use
of the following orthogonality properties. Let

xk = cos

(
π

2k + 1

2N + 2

)
for k = 0, 1, . . . , N ;(17)

N∑
k=0

Ti (xk)Tj (xk) = 0 when i �= j ,(18)

N∑
k=0

Ti (xk)Tj (xk) = N + 1

2
when i = j �= 0,(19)

N∑
k=0

T0(xk)T0(xk) = N + 1.(20)

Property 4 and the identities (18) and (20) can be used to prove the following
theorem.

Theorem 4.8 (Chebyshev Approximation). The Chebyshev approximation polyno-
mial PN (x) of degree ≤ N for f (x) over [−1, 1] can be written as a sum of {Tj (x)}:

(21) f (x) ≈ PN (x) =
N∑

j=1

c j Tj (x).

The coefficients {c j } are computed with the formulas

(22) c0 = 1

N + 1

N∑
k=0

f (xk)T0(xk) = 1

N + 1

N∑
k=0

f (xk)

SEC. 4.5 CHEBYSHEV POLYNOMIALS 239

and

(23)

c j = 2

N + 1

N∑
k=0

f (xk)Tj (xk)

= 2

N + 1

N∑
k=0

f (xk) cos

(
jπ(2k + 1)

2N + 2

)
for j = 1, 2, . . . , N .

Example 4.16. Find the Chebyshev polynomial P3(x) that approximates the function
f (x) = ex over [−1, 1].

The coefficients are calculated using formulas (22) and (23), and the nodes xk =
cos(π(2k + 1)/8) for k = 0, 1, 2, 3.

c0 = 1

4

3∑
k=0

exk T0(xk) = 1

4

3∑
k=0

exk = 1.26606568,

c1 = 1

2

3∑
k=0

exk T1(xk) = 1

2

3∑
k=0

exk xk = 1.13031500,

c2 = 1

2

3∑
k=0

exk T2(xk) = 1

2

3∑
k=0

exk cos

(
2π

2k + 1

8

)
= 0.27145036,

c3 = 1

2

3∑
k=0

exk T3(xk) = 1

2

3∑
k=0

exk cos

(
3π

2k + 1

8

)
= 0.04379392.

Therefore, the Chebyshev polynomial P3(x) for ex is

(24)
P3(x) = 1.26606568T0(x)+ 1.13031500T1(x)

+ 0.27145036T2(x)+ 0.04379392T3(x).

If the Chebyshev polynomial (24) is expanded in powers of x , the result is

P3(x) = 0.99461532+ 0.99893324x + 0.54290072x2 + 0.17517568x3,

which is the same as the polynomial V (x) in Example 4.14. If the goal is to find the
Chebyshev polynomial, formulas (22) and (23) are preferred. �

MATLAB
The following program uses the eval command instead of the feval command used
in earlier programs. The eval command interprets a MATLAB text string as an ex-
pression or statement. For example, the following commands will quickly evaluate
cosine at the values x = k/10 for k = 0, 1, . . . , 5:
>> x=0:.1:.5;
>> eval(’cos(x)’)
ans =

1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

240 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Cheby-
shev interpolating polynomial of degree N over the interval [−1, 1], where

P(x) =
N∑

j=0

c j Tj (x)

is based on the nodes

xk = cos

(
(2k + 1)π

2N + 2

)
.

function [C,X,Y]=cheby(fun,n,a,b)

%Input - fun is the string function to be approximated
% - N is the degree of the Chebyshev interpolating
% polynomial
% - a is the left endpoint
% - b is the right endpoint
%Output - C is the coefficient list for the polynomial
% - X contains the abscissas
% - Y contains the ordinates
if nargin==2, a=-1;b=1;end
d=pi/(2*n+2);
C=zeros(1,n+1);

for k=1:n+1
X(k)=cos((2*k-1)*d);

end

X=(b-a)*X/2+(a+b)/2;
x=X;
Y=eval(fun);

for k =1:n+1
z=(2*k-1)*d;
for j=1:n+1

C(j)=C(j)+Y(k)*cos((j-1)*z);
end

end
C=2*C/(n+1);
C(1)=C(1)/2;

SEC. 4.5 CHEBYSHEV POLYNOMIALS 241

Exercises for Chebyshev Polynomials

1. Use property 1 and
(a) construct T4(x) from T3(x) and T2(x).
(b) construct T5(x) from T4(x) and T3(x).

2. Use property 1 and
(a) construct T6(x) from T5(x) and T4(x).
(b) construct T7(x) from T6(x) and T5(x).

3. Use mathematical induction to prove property 2.

4. Use mathematical induction to prove property 3.

5. Find the maximum and minimum values of T2(x) over the interval [−1, 1].
6. Find the maximum and minimum values of T3(x) over the interval [−1, 1].

Hint. T ′3(1/2) = 0 and T ′3(−1/2) = 0.

7. Find the maximum and minimum values of T4(x) over the interval [−1, 1].
Hint. T ′4(0) = 0, T ′4(2−1/2) = 0, and T ′4(−2−1/2) = 0.

8. Let f (x) = sin(x) on [−1, 1].
(a) Use the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev

polynomial approximation P3(x).
(b) Find the error bound for | sin(x)− P3(x)|.

9. Let f (x) = ln(x + 2) on [−1, 1].
(a) Use the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev

polynomial approximation P3(x).
(b) Find the error bound for | ln(x + 2)− P3(x)|.

10. The Lagrange polynomial of degree N = 2 has the form

f (x) = f (x0)L2,0(x)+ f (x1)L2,1(x)+ f (x2)L2,2(x).

If the Chebyshev nodes x0 = cos(5π/6), x1 = 0, and x2 = cos(π/6) are used, show
that the coefficient polynomials are

L2,0(x) = − x√
3
+ 2x2

3
,

L2,1(x) = 1− 4x2

3
,

L2,2(x) = x√
3
+ 2x2

3
.

11. Let f (x) = cos(x) on [−1, 1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshev

polynomial approximation P2(x).
(b) Find the error bound for | cos(x)− P2(x)|.

242 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

12. Let f (x) = ex on [−1, 1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshev

polynomial approximation P2(x).
(b) Find the error bound for |ex − P2(x)|.

In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange-Chebyshev
approximates to f (x) on [−1, 1]. Find their error bounds.

13. f (x) = sin(x) and N = 7; the Lagrange-Chebyshev polynomial is

sin(x) ≈ 0.99999998x − 0.16666599x2 + 0.00832995x5 − 0.00019297x7.

14. f (x) = cos(x) and N = 6; the Lagrange-Chebyshev polynomial is

cos(x) ≈ 1− 0.49999734x2 + 0.04164535x4 − 0.00134608x6.

15. f (x) = ex and N = 7; the Lagrange-Chebyshev polynomial is

ex ≈ 0.99999980+ 0.99999998x + 0.50000634x2

+ 0.16666737x3 + 0.04163504x4 + 0.00832984x5

+ 0.00143925x6 + 0.00020399x7.

16. Prove equation (18).

17. Prove equation (19).

Algorithms and Programs

In Problems 1 through 6, use Program 4.3 to compute the coefficients {ck} for the Cheby-
shev polynomial approximation PN (x) to f (x) over [−1, 1], when (a) N = 4, (b) N = 5,
(c) N = 6, and (d) N = 7. In each case, plot f (x) and PN (x) on the same coordinate
system.

1. f (x) = ex 2. f (x) = sin(x)

3. f (x) = cos(x) 4. f (x) = ln(x + 2)

5. f (x) = (x + 2)1/2 6. f (x) = (x + 2)(x+2)

7. Use Program 4.3 (N = 5) to obtain an approximation for
∫ 1

0 cos(x2) dx .

4.6 Padé Approximations

In this section we introduce the notion of rational approximations for functions. The
function f (x) will be approximated over a small portion of its domain. For example,
if f (x) = cos(x), it is sufficient to have a formula to generate approximations on the

SEC. 4.6 PADÉ APPROXIMATIONS 243

interval [0, π/2]. Then trigonometric identities can be used to compute cos(x) for any
value x that lies outside [0, π/2].

A rational approximation to f (x) on [a, b] is the quotient of two polynomials
PN (x) and QM (x) of degrees N and M , respectively. We use the notation RN ,M (x) to
denote this quotient:

(1) RN ,M (x) = PN (x)

QM (x)
for a ≤ x ≤ b.

Our goal is to make the maximum error as small as possible. For a given amount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, b] than a polynomial approximation. Our development is
an introduction and will be limited to Padé approximations.

The method of Padé requires that f (x) and its derivative be continuous at x = 0.
There are two reasons for the arbitrary choice of x = 0. First, it makes the manipula-
tions simpler. Second, a change of variable can be used to shift the calculations over to
an interval that contains zero. The polynomials used in (1) are

(2) PN (x) = p0 + p1x + p2x2 + · · · + pN x N

and

(3) QM (x) = 1+ q1x + q2x2 + · · · + qM x M .

The polynomials in (2) and (3) are constructed so that f (x) and RN ,M (x) agree at
x = 0 and their derivatives up to N + M agree at x = 0. In the case Q0(x) = 1, the
approximation is just the Maclaurin expansion for f (x). For a fixed value of N + M
the error is smallest when PN (x) and QM (x) have the same degree or when PN (x) has
degree one higher than QM (x).

Notice that the constant coefficient of QM is q0 = 1. This is permissible, because
it cannot be 0 and RN ,M (x) is not changed when both PN (x) and QM (x) are divided
by the same constant. Hence the rational function RN ,M (x) has N + M + 1 unknown
coefficients. Assume that f (x) is analytic and has the Maclaurin expansion

(4) f (x) = a0 + a1x + a2x2 + · · · + ak xk + · · · ,

and form the difference f (x)QM (x)− PN (x) = Z(x):

(5)

 ∞∑
j=0

a j x j

 M∑
j=0

q j x j

− N∑
j=0

p j x j =
∞∑

j=N+M+1

c j x j .

The lower index j = M + N + 1 in the summation on the right side of (5) is chosen
because the first N + M derivatives of f (x) and RN ,M (x) are to agree at x = 0.

244 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

When the left side of (5) is multiplied out and the coefficients of the powers of x j

are set equal to zero for k = 0, 1, . . . , N + M , the result is a system of N + M + 1
linear equations:

a0 − p0 = 0

q1a0 + a1 − p1 = 0

q2a0 + q1a1 + a2 − p2 = 0(6)

q3a0 + q2a1 + q1a2 + a3 − p3 = 0

qM aN−M + qM−1aN−M+1 + · · · + aN − pN = 0

and

(7)

qM aN−M+1 + qM−1aN−M+2 + · · · + q1aN + aN+1 = 0

qM aN−M+2 + qM−1aN−M+3 + · · · + q1aN+1 + aN+2 = 0

...
...

qM aN + qM−1aN+1 + · · · + q1aN+M−1 + aN+M = 0.

Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M . The M equations
in (7) involve only the unknowns q1, q2, . . . , qM and must be solved first. Then the
equations in (6) are used successively to find p0, p1, . . . , pN .

Example 4.17. Establish the Padé approximation

(8) cos(x) ≈ R4,4(x) = 15,120− 6900x2 + 313x4

15,120+ 660x2 + 13x4
.

See Figure 4.18 for the graphs of cos(x) and R4,4(x) over [−5, 5].
If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine

unknowns. Instead, notice that both cos(x) and R4,4(x) are even functions and involve
powers of x2. We can simplify the computations if we start with f (x) = cos(x1/2):

(9) f (x) = 1− 1

2
x + 1

24
x2 − 1

720
x3 + 1

40,320
x4 − · · · .

In this case, equation (5) becomes(
1− 1

2
x + 1

24
x2 − 1

720
x3 + 1

40,320
x4 − · · ·

)(
1+ q1x + q2x2

)
− p0− p1x− p2x2

= 0+ 0x + 0x2 + 0x3 + 0x4 + c5x5 + c6x6 + · · · .

When the coefficients of the first five powers of x are compared, we get the following

SEC. 4.6 PADÉ APPROXIMATIONS 245

y = R4,4(x)

y = cos(x)

−1 1 2 3 4 5−2−3−4−5
x

0.5

1.0

−0.5

−1.0

y

Figure 4.18 The graph of y = cos(x) and its Padé
approximation R4,4(x).

system of linear equations:

1− p0 = 0

−1

2
+ q1 − p1 = 0

1

24
− 1

2
q1 + q2 − p2 = 0(10)

− 1

720
+ 1

24
q1 − 1

2
q2 = 0

1

40,320
− 1

720
q1 + 1

24
q2 = 0.

The last two equations in (10) must be solved first. They can be rewritten in a form that is
easy to solve:

q1 − 12q2 = 1

30
and − q1 + 30q2 = −1

56
.

First find q2 by adding the equations; then find q1:

(11)
q2 = 1

18

(
1

30
− 1

56

)
= 13

15,120
,

q1 = 1

30
+ 156

15,120
= 11

252
.

Now the first three equations of (10) are used. It is obvious that p0 = 1, and we can
use q1 and q2 in (11) to solve for p1 and p2:

(12)
p1 = −1

2
+ 11

252
= −115

252
,

p2 = 1

24
− 11

504
+ 13

15,120
= 313

15,120
.

246 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Now use the coefficients in (11) and (12) to form the rational approximation to f (x):

(13) f (x) ≈ 1− 115x/252+ 313x2/15,120

1+ 11x/252+ 13x2/15,120
.

Since cos(x) = f (x2), we can substitute x2 for x in equation (13) and the result is the
formula for R4,4(x) in (8). �

Continued Fraction Form

The Padé approximation R4,4(x) in Example 4.17 requires a minimum of 12 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven by
the use of continued fractions. This is accomplished by starting with (8) and finding
the quotient and its polynomial remainder.

R4,4(x) = 15,120/313− (6900/313)x2 + x4

15,120/13+ (660/13)x2 + x4

= 313

13
−
(

296,280

169

)(
12,600/823+ x2

15,120/13+ (600/13)x2 + x4

)
.

The process is carried out once more using the term in the previous remainder. The
result is

R4,4(x) = 313

13
− 296,280/169

15,120/13+ (660/13)x2 + x4

12,600/823+ x2

= 313

13
− 296,280/169

379,380

10,699
+ x2 + 420,078,960/677,329

12,600/823+ x2

.

The fractions are converted to decimal form for computational purposes and we obtain

(14) R4,4(x) = 24.07692308

− 1753.13609467

35.45938873+ x2 + 620.19928277/(15.30984204+ x2)
.

SEC. 4.6 PADÉ APPROXIMATIONS 247

y = ER(x)

−0.5 0.0

(a)

0.5 1.0−1.0
x

−1 × 10 −7

−2 × 10 −7

−3 × 10 −7

y = EP(x)

(b)

−0.5 0.0 0.5 1.0−1.0
x

0.000005

0.000010

0.000015

0.000020

0.000025

Figure 4.19 (a) The graph of the error ER(x) = cos(x) − R4,4(x) for the Padé ap-
proximation R4,4(x). (b) The graph of the error EP (x) = cos(x)− P6(x) for the Taylor
approximation P6(x).

To evaluate (14), first compute and store x2, then proceed from the bottom right term
in the denominator and tally the operations: addition, division, addition, addition, divi-
sion, and subtraction. Hence it takes a total of seven arithmetic operations to evaluate
R4,4(x) in continued fraction form in (14).

We can compare R4,4(x) with the Taylor polynomial P6(x) of degree N = 6,
which requires seven arithmetic operations to evaluate when it is written in the nested
form

(15)
P6(x) = 1+ x2

(
−1

2
+ x2

(
1

24
− 1

720
x2
))

= 1+ x2(−0.5+ x2(0.0416666667− 0.0013888889x2)).

The graphs of ER(x) = cos(x) − R4,4(x) and EP(x) = cos(x) − P6(x) over [−1, 1]
are shown in Figure 4.19(a) and (b), respectively. The largest errors occur at the
endpoints and are ER(1) = −0.0000003599 and EP(1) = 0.0000245281, respec-
tively. The magnitude of the largest error for R4,4(x) is about 1.467% of the error
for P6(x). The Padé approximation outperforms the Taylor approximation better on
smaller intervals, and over [−0.1, 0.1] we find that ER(0.1) = −0.0000000004 and
EP(0.1) = 0.0000000966, so the magnitude of the error for R4,4(x) is about 0.384%
of the magnitude of the error for P6(x).

248 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Exercises for Padé Approximations

1. Establish the Padé approximation:

ex ≈ R1,1(x) = 2+ x

2− x
.

2. (a) Find the Padé approximation R1,1(x) for f (x) = ln(1+ x)/x . Hint. Start with
the Maclaurin expansion:

f (x) = 1− x

2
+ x2

3
− · · · .

(b) Use the result in part (a) to establish the approximation

ln(1+ x) ≈ R2,1(x) = 6x + x2

6+ 4x
.

3. (a) Find R1,1(x) for f (x) = tan(x1/2)/x1/2. Hint. Start with the Maclaurin expan-
sion:

f (x) = 1+ x

3
+ 2x2

15
+ · · · .

(b) Use the result in part (a) to establish the approximation

tan(x) ≈ R3,2(x) = 15x − x3

15− 6x2
.

4. (a) Find R1,1(x) for f (x) = arctan(x1/2)/x1/2. Hint. Start with the Maclaurin
expansion:

f (x) = 1− x

3
+ x2

5
− · · · .

(b) Use the result in part (a) to establish the approximation

arctan(x) ≈ R3,2(x) = 15x + 4x3

15+ 9x2
.

(c) Express the rational function R3,2(x) in part (b) in continued fraction form.

5. (a) Establish the Padé approximation:

ex ≈ R2,2(x) = 12+ 6x + x2

12− 6x + x2
.

(b) Express the rational function R2,2(x) in part (a) in continued fraction form.

SEC. 4.6 PADÉ APPROXIMATIONS 249

6. (a) Find the Padé approximation R2,2(x) for f (x) = ln(1+ x)/x . Hint. Start with
the Maclaurin expansion:

f (x) = 1− x

2
+ x2

3
− x3

4
+ x4

5
− · · · .

(b) Use the result in part (a) to establish

ln(1+ x) ≈ R3,2(x) = 30x + 21x2 + x3

30+ 36x + 9x2
.

(c) Express the rational function R3,2(x) in part (b) in continued fraction form.

7. (a) Find R2,2(x) for f (x) = tan(x1/2)/x1/2. Hint. Start with the Maclaurin expan-
sion:

f (x) = 1+ x

3
+ 2x2

15
+ 17x3

315
+ 62x4

2835
+ · · · .

(b) Use the result in part (a) to establish

tan(x) ≈ R5,4(x) = 945x − 105x3 + x5

945− 420x2 + 15x4
.

(c) Express the rational function R5,4(x) in part (b) in continued fraction form.

8. (a) Find R2,2(x) for f (x) = arctan(x1/2)/x1/2. Hint. Start with the Maclaurin
expansion:

f (x) = 1− x

3
+ x2

5
− x3

7
+ x4

9
− · · · .

(b) Use the result in part (a) to establish

arctan(x) ≈ R5,4(x) = 945x + 735x3 + 64x5

945+ 1050x2 + 225x4
.

(c) Express the rational function R5,4(x) in part (b) in continued fraction form.

9. Establish the Padé approximation:

ex ≈ R3,3(x) = 120+ 60x + 12x2 + x3

120− 60x + 12x2 − x3
.

10. Establish the Padé approximation:

ex ≈ R4,4(x) = 1680+ 840x + 180x2 + 20x3 + x4

1680− 840x + 180x2 − 20x3 + x4
.

250 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION

Algorithms and Programs

1. Compare the following approximations to f (x) = ex .

Taylor: T4(x) = 1+ x + x2

2
+ x3

6
+ x4

24

Padé: R2,2(x) = 12+ 6x + x2

12− 6x + x2

(a) Plot f (x), T4(x), and R2,2(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f (x) is approximated with

T4(x) and R2,2(x), respectively, over the interval [−1, 1].
2. Compare the following approximations to f (x) = ln(1+ x).

Taylor: T5(x) = x − x2

2
+ x3

3
− x4

4
+ x5

5

Padé: R3,2(x) = 30x + 21x2 + x3

30+ 36x + 9x2

(a) Plot f (x), T5(x), and R3,2(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f (x) is approximated with

T5(x) and R3,2(x), respectively, over the interval [−1, 1].
3. Compare the following approximations to f (x) = tan(x).

Taylor: T9(x) = x + x3

3
+ 2x5

15
+ 17x7

315
+ 62x9

2835

Padé: R5,4(x) = 945x − 105x3 + x5

945− 420x2 + 15x4

(a) Plot f (x), T9(x), and R5,4(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f (x) is approximated with

T9(x) and R5,4(x), respectively, over the interval [−1, 1].
4. Compare the following Padé approximations to f (x) = sin(x) over the interval
[−1.2, 1.2].

R5,4(x) = 166,320x − 22,260x3 + 551x5

15(11,088+ 364x2 + 5x4)

R7,6(x) = 11,511,339,840x − 1,640,635,920x2 + 52,785,432x5 − 479,249x7

7(1,644,477,120+ 39,702,960x2 + 453,960x4 + 2623x6)

(a) Plot f (x), R5,4(x), and R7,6(x) on the same coordinate system.
(b) Determine the maximum error that occurs when f (x) is approximated with

R5,4(x) and R7,6(x), respectively, over the interval [−1.2, 1.2].

SEC. 4.6 PADÉ APPROXIMATIONS 251

5. (a) Use equations (6) and (7) to derive R6,6(x) and R8,8(x) for f (x) = cos(x) over
the interval [−1.2, 1.2].

(b) Plot f (x), R6,6(x), and R8,8(x) on the same coordinate system.
(c) Determine the maximum error that occurs when f (x) is approximated with

R6,6(x) and R8,8(x), respectively, over the interval [−1.2, 1.2].

5

Curve Fitting

Applications of numerical techniques in science and engineering often involve curve
fitting of experimental data. For example, in 1601 the German astronomer Johannes
Kepler formulated the third law of planetary motion, T = Cx3/2, where x is the dis-
tance to the sun measured in millions of kilometers, T is the orbital period measured
in days, and C is a constant. The observed data pairs (x, T) for the first four planets,
Mercury, Venus, Earth, and Mars, are (58, 88), (108, 225), (150, 365), and (228, 687),
and the coefficient C obtained from the method of least squares is C = 0.199769. The
curve T = 0.199769x3/2 and the data points are shown in Figure 5.1.

T

x

750

T = 0.199769 x3/2500

250

50 100 150 200

Figure 5.1 The least-squares fit
T = 0.199769x3/2 for the first four
planets using Kepler’s third law of
planetary motion.

252

SEC. 5.1 LEAST-SQUARES LINE 253

5.1 Least-Squares Line

In science and engineering it is often the case that an experiment produces a set of
data points (x1, y1), . . . , (xN , yN), where the abscissas {xk} are distinct. One goal of
numerical methods is to determine a formula y = f (x) that relates these variables.
Usually, a class of allowable formulas is chosen and then coefficients must be deter-
mined. There are many different possibilities for the type of function that can be used.
Often there is an underlying mathematical model, based on the physical situation, that
will determine the form of the function. In this section we emphasize the class of linear
functions of the form

(1) y = f (x) = Ax + B.

In Chapter 4 we saw how to construct a polynomial that passes through a set of
points. If all the numerical values {xk}, {yk} are known to several significant digits of
accuracy, then polynomial interpolation can be used successfully; otherwise, it can-
not. Some experiments are devised using specialized equipment so that the data points
will have at least five digits of accuracy. However, many experiments are done with
equipment that is reliable only to three or fewer digits of accuracy. Often, there is an
experimental error in the measurements, and although three digits are recorded for the
values {xk} and {yk}, it is realized that the true value f (xk) satisfies

(2) f (xk) = yk + ek,

where ek is the measurement error.
How do we find the best linear approximation of the form (1) that goes near (not

always through) the points? To answer this question, we need to discuss the errors
(also called deviations or residuals):

(3) ek = f (xk)− yk for 1 ≤ k ≤ N .

There are several norms that can be used with the residuals in (3) to measure how
far the curve y = f (x) lies from the data.

Maximum error: E∞(f) = max
1≤k≤N

{| f (xk)− yk |},(4)

Average error: E1(f) = 1

N

N∑
k=1

| f (xk)− yk |,(5)

Root-mean-square
error:

E2(f) =
(

1

N

N∑
k=1

| f (xk)− yk |2
)1/2

.(6)

The next example shows how to apply these norms when a function and a set of
points are given.

254 CHAP. 5 CURVE FITTING

Table 5.1 Calculations for Finding E1(f) and E2(f) for
Example 5.1

xk yk f (xk) = 8.6− 1.6xk |ek | e2
k

−1 10.0 10.2 0.2 0.04
0 9.0 8.6 0.4 0.16
1 7.0 7.0 0.0 0.00
2 5.0 5.4 0.4 0.16
3 4.0 3.8 0.2 0.04
4 3.0 2.2 0.8 0.64
5 0.0 0.6 0.6 0.36
6 −1.0 −1.0 0.0 0.00

2.6 1.40

Example 5.1. Compare the maximum error, average error, and rms error for the linear
approximation y = f (x) = 8.6 − 1.6x to the data points (−1, 10), (0, 9), (1, 7), (2, 5),
(3, 4), (4, 3), (5, 0), and (6,−1).

The errors are found using the values for f (xk) and ek given in Table 5.1.

E∞(f) = max{0.2, 0.4, 0.0, 0.4, 0.2, 0.8, 0.6, 0.0} = 0.8,(7)

E1(f) = 1

8
(2.6) = 0.325,(8)

E2(f) =
(

1.4

8

)1/2

≈ 0.41833.(9)

We can see that the maximum error is largest, and if one point is badly in error, its
value determines E∞(f). The average error E1(f) simply averages the absolute value of
the error at the various points. It is often used because it is easy to compute. The error
E2(f) is often used when the statistical nature of the errors is considered.

A best-fitting line is found by minimizing one of the quantities in equations (4) through
(6). Hence there are three best-fitting lines that we could find. The third norm E2(f) is the
traditional choice because it is much easier to minimize computationally. �

Finding the Least-Squares Line

Let {(xk, yk)}Nk=1 be a set of N points, where the abscissas {xk} are distinct. The least-
squares line y = f (x) = Ax+B is the line that minimizes the root-mean-square error
E2(f).

The quantity E2(f) will be a minimum if and only if the quantity N (E2(f))2 =∑N
k=1(Axk + B − yk)

2 is a minimum. The latter is visualized geometrically by mini-
mizing the sum of the squares of the vertical distances from the points to the line. The
next result explains this process.

SEC. 5.1 LEAST-SQUARES LINE 255

y

x
x1 x2 xk xN − 1 xN

(xN , yN)(xk, yk)

(x1, y1) (xk, Axk + B)

Figure 5.2 The vertical distances
between the points {(xk, yk)} and
the least-squares line y = Ax + B.

Theorem 5.1 (Least-Squares Line). Suppose that {(xk, yk)}Nk=1 are N points, where
the abscissas {xk}Nk=1 are distinct. The coefficients of the least-squares line

y = Ax + B

are the solution to the following linear system, known as the normal equations:

(10)

(
N∑

k=1

x2
k

)
A +

(
N∑

k=1

xk

)
B =

N∑
k=1

xk yk,(
N∑

k=1

xk

)
A + N B =

N∑
k=1

yk .

Proof. Geometrically, we start with the line y = Ax + B. The vertical distance dk
from the point (xk, yk) to the point (xk, Axk + B) on the line is dk = |Axk + B − yk |
(see Figure 5.2). We must minimize the sum of the squares of the vertical distances dk :

(11) E(A, B) =
N∑

k=1

(Axk + B − yk)
2 =

N∑
k=1

d2
k .

The minimum value of E(A, B) is determined by setting the partial derivatives
∂ E/∂ A and ∂ E/∂ B equal to zero and solving these equations for A and B. Notice that
{xk} and {yk} are constants in equation (11) and that A and B are the variables! Hold
B fixed, differentiate E(A, B) with respect to A, and get

(12)
∂ E(A, B)

∂ A
=

N∑
k=1

2(Axk + B − yk)(xk) = 2
N∑

k=1

(Ax2
k + Bxk − xk yk).

256 CHAP. 5 CURVE FITTING

Table 5.2 Obtaining the Coefficients for
Normal Equations

xk yk x2
k xk yk

−1 10 1 −10
0 9 0 0
1 7 1 7
2 5 4 10
3 4 9 12
4 3 16 12
5 0 25 0
6 −1 36 −6

20 37 92 25

Now hold A fixed and differentiate E(A, B) with respect to B and get

(13)
∂ E(A, B)

∂ B
=

N∑
k=1

2(Axk + B − yk) = 2
N∑

k=1

(Axk + B − yk).

Setting the partial derivatives equal to zero in (12) and (13), use the distributive
properties of summation to obtain

(14) 0 =
N∑

k=1

(Ax2
k + Bxk − xk yk) = A

N∑
k=1

x2
k + B

N∑
k=1

xk −
N∑

k=1

xk yk,

(15) 0 =
N∑

k=1

(Axk + B − yk) = A
N∑

k=1

xk + N B −
N∑

k=1

yk .

Equations (14) and (15) can be rearranged in the standard form for a system and
result in the normal equations (10). The solution to this system can be obtained by one
of the techniques for solving a linear system from Chapter 3. However, the method
employed in Program 5.1 translates the data points so that a well-conditioned matrix is
employed (see the Exercises). •
Example 5.2. Find the least-squares line for the data points given in Example 5.1.

The sums required for the normal equations (10) are easily obtained using the values
in Table 5.2. The linear system involving A and B is

92A + 20B = 25

20A + 8B = 37.

SEC. 5.1 LEAST-SQUARES LINE 257

y = Ax + B

−1 1 2 3 4 5

6
x

2

4

6

8

10

y

Figure 5.3 The least-squares line
y = −1.6071429x + 8.6428571.

The solution of the linear system is A ≈ −1.6071429 and B ≈ 8.6428571. Therefore, the
least-squares line is (see Figure 5.3)

y = −1.6071429x + 8.6428571 �

Power Fit y = Ax M

Some situations involve f (x) = Ax M , where M is a known constant. The example of
planetary motion given in Figure 5.1 is an example. In these cases there is only one
parameter A to be determined.

Theorem 5.2 (Power Fit). Suppose that {(xk, yk)}Nk=1 are N points, where the ab-
scissas are distinct. The coefficient A of the least-squares power curve y = Ax M is
given by

(16) A =
(

N∑
k=1

x M
k yk

)/(
N∑

k=1

x2M
k

)
.

Using the least-squares technique, we seek a minimum of the function E(A):

(17) E(A) =
N∑

k=1

(Ax M
k − yk)

2.

In this case it will suffice to solve E ′(A) = 0. The derivative is

(18) E ′(A) = 2
N∑

k=1

(Ax M
k − yk)(x M

k) = 2
N∑

k=1

(Ax2M
k − x M

k yk).

258 CHAP. 5 CURVE FITTING

Table 5.3 Obtaining the Coefficient for a Power Fit

Time, tk Distance, dk dk t2
k t4

k

0.200 0.1960 0.00784 0.0016
0.400 0.7850 0.12560 0.0256
0.600 1.7665 0.63594 0.1296
0.800 3.1405 2.00992 0.4096
1.000 4.9075 4.90750 1.0000

7.68680 1.5664

Hence the coefficient A is the solution of the equation

(19) 0 = A
N∑

k=1

x2M
k −

N∑
k=1

x M
k yk,

which reduces to the formula in equation (16).

Example 5.3. Students collected the experimental data in Table 5.3. The relation is
d = 1

2 gt2, where d is distance in meters and t is time in seconds. Find the gravitational
constant g.

The values in Table 5.3 are used to find the summations required in formula (16), where
the power used is M = 2.

The coefficient is A = 7.68680/1.5664 = 4.9073, and we get d = 4.9073t2 and
g = 2A = 9.7146 m/sec2. �

The following program for constructing a least-squares line is computationally sta-
ble: it gives reliable results in cases when the normal equations (10) are ill conditioned.
The reader is asked to develop the algorithm for this program in Exercises 4 through 7.

Program 5.1 (Least-Squares Line). To construct the least-squares line y = Ax +
B that fits the N data points (x1, y1), . . . , (xN , yN).

function [A,B]=lsline(X,Y)

%Input - X is the 1xn abscissa vector
% - Y is the 1xn ordinate vector
%Output - A is the coefficient of x in Ax + B
% - B is the constant coefficient in Ax + B

xmean=mean(X);
ymean=mean(Y);
sumx2=(X-xmean)*(X-xmean)’;
sumxy=(Y-ymean)*(X-xmean)’;

SEC. 5.1 LEAST-SQUARES LINE 259

A=sumxy/sumx2;
B=ymean-A*xmean;

Exercises for Least-Squares Line

In Exercises 1 and 2, find the least-squares line y = f (x) = Ax + B for the data and
calculate E2(f)

1. (a)
xk yk f (xk)

−2 1 1.2
−1 2 1.9

0 3 2.6
1 3 3.3
2 4 4.0

(b)
xk yk f (xk)

−6 7 7.0
−2 5 4.6

0 3 3.4
2 2 2.2
6 0 −0.2

(c)
xk yk f (xk)

−4 −3 −3.0
−1 −1 −0.9

0 0 −0.2
2 1 1.2
3 2 1.9

2. (a)
xk yk f (xk)

−4 1.2 0.44
−2 2.8 3.34

0 6.2 6.24
2 7.8 9.14
4 13.2 12.04

(b)
xk yk f (xk)

−6 −5.3 −6.00
−2 −3.5 −2.84

0 −1.7 −1.26
2 0.2 0.32
6 4.0 3.48

(c)
xk yk f (xk)

−8 6.8 7.32
−2 5.0 3.81

0 2.2 2.64
4 0.5 0.30
6 −1.3 −0.87

3. Find the power fit y = Ax , where M = 1, which is a line through the origin, for the
data and calculate E2(f).

260 CHAP. 5 CURVE FITTING

(a)
xk yk f (xk)

−4 −3 −2.8
−1 −1 −0.7

0 0 0.0
2 1 1.4
3 2 2.1

(b)
xk yk f (xk)

3 1.6 1.722
4 2.4 2.296
5 2.9 2.870
6 3.4 3.444
8 4.6 4.592

(c)
xk yk f (xk)

1 1.6 1.58
2 2.8 3.16
3 4.7 4.74
4 6.4 6.32
5 8.0 7.90

4. Define the means x and y for the points {(xk, yk)}Nk=1 by

x = 1

N

N∑
k=1

xk and y = 1

N

N∑
k=1

yk .

Show that the point (x, y) lies on the least-squares line determined by the given set of
points.

5. Show that the solution of the system in (10) is given by

A = 1

D

(
N

N∑
k=1

xk yk −
N∑

k=1

xk

N∑
k=1

yk

)
,

B = 1

D

(
N∑

k=1

x2
k

N∑
k=1

yk −
N∑

k=1

xk

N∑
k=1

xk yk

)
,

where

D = N
N∑

k=1

x2
k −

(
N∑

k=1

xk

)2

.

Hint. Use Gaussian elimination on the system in (10).

6. Show that the value of D in Exercise 5 is nonzero.
Hint. Show that D = N

∑N
k=1 (xk − x)2.

7. Show that the coefficients A and B for the least-squares line can be computed as
follows. First compute the means x and y in Exercise 4, and then perform the calcu-
lations:

C =
N∑

k=1

(xk − x)2, A = 1

C

N∑
k=1

(xk − x)(yk − y), B = y − Ax .

SEC. 5.1 LEAST-SQUARES LINE 261

Hint. Use Xk = xk − x, Yk = yk − y and first find the line Y = AX .

8. Find the power fits y = Ax2 and y = Bx3 for the following data and use E2(f) to
determine which curve fits best.

(a)
xk yk

2.0 5.1
2.3 7.5
2.6 10.6
2.9 14.4
3.2 19.0

(b)
xk yk

2.0 5.9
2.3 8.3
2.6 10.7
2.9 13.7
3.2 17.0

9. Find the power fits y = A/x and y = B/x2 for the following data and use E2(f) to
determine which curve fits best.

(a)
xk yk

0.5 7.1
0.8 4.4
1.1 3.2
1.8 1.9
4.0 0.9

(b)
xk yk

0.7 8.1
0.9 4.9
1.1 3.3
1.6 1.6
3.0 0.5

10. (a) Derive the normal equation for finding the least-squares linear fit through the
origin y = Ax .

(b) Derive the normal equation for finding the least-squares power fit y = Ax2.

(c) Derive the normal equations for finding the least-squares parabola y = Ax2+B.

11. Consider the construction of a least-squares line for each of the sets of data points
determined by SN = {(k/N , (k/N)2)}Nk=1, where N = 2, 3, 4, Note that for
each value of N , the points in SN all lie on the graph of f (x) = x2 over the closed
interval [0, 1]. Let x N and yN be the means for the given data points (see Exercise
4). Let x̂ be the mean of the values of x in the interval [0, 1], and let ŷ be the mean
(average) value of f (x) = x2 over the interval [0, 1].
(a) Show limN→∞ x N = x̂ .

(b) Show limN→∞ yN = ŷ.

12. Consider the construction of a least-squares line for each of the sets of data points:

SN =
{
((b − a)

k

N
+ a, f ((b − a)

k

N
+ a))

}N

k=1

for N = 2, 3, 4, Assume that y = f (x) is an integrable function over the closed
interval [a, b]. Repeat parts (a) and (b) from Exercise 11.

262 CHAP. 5 CURVE FITTING

Algorithms and Programs

1. Hooke’s law states that F = kx , where F is the force (in ounces) used to stretch
a spring and x is the increase in its length (in inches). Use Program 5.1 to find an
approximation to the spring constant k for the following data.

(a)
xk Fk

0.2 3.6
0.4 7.3
0.6 10.9
0.8 14.5
1.0 18.2

(b)
xk Fk

0.2 5.3
0.4 10.6
0.6 15.9
0.8 21.2
1.0 26.4

2. Write a program to find the gravitational constant g for the following sets of data. Use
the power fit that was shown in Example 5.3.

(a)
Time, tk Distance, dk

0.200 0.1960
0.400 0.7835
0.600 1.7630
0.800 3.1345
1.000 4.8975

(b)
Time, tk Distance, dk

0.200 0.1965
0.400 0.7855
0.600 1.7675
0.800 3.1420
1.000 4.9095

3. The following data give the distances of the nine planets from the sun and their side-
real period in days.

Planet
Distance from
sun (km ×106)

Sidereal period
(days)

Mercury 57.59 87.99
Venus 108.11 224.70
Earth 149.57 365.26
Mars 227.84 686.98
Jupiter 778.14 4,332.4
Saturn 1427.0 10,759
Uranus 2870.3 30,684
Neptune 4499.9 60,188
Pluto 5909.0 90,710

Modify your program from Problem 2 to calculate E2(f). Use it to find the power fit
of the form y = Cx3/2 for (a) the first four planets and (b) all nine planets.

4. (a) Find the least-squares line for the data points {(xk, yk)}50
k=1, where xk = (0.1)k

and yk = xk + cos(k1/2).
(b) Calculate E2(f).
(c) Plot the set of data points and the least-squares line on the same coordinate

system.

SEC. 5.2 METHODS OF CURVE FITTING 263

5.2 Methods of Curve Fitting

Data Linearization Method for y = CeAx

Suppose that we are given the points (x1, y1), (x2, y2), . . . , (xN , yN) and want to fit an
exponential curve of the form

(1) y = CeAx .

The first step is to take the logarithm of both sides:

(2) ln(y) = Ax + ln(C).

Then introduce the change of variables:

(3) Y = ln(y), X = x, and B = ln(C).

This results in a linear relation between the new variables X and Y :

(4) Y = AX + B.

The original points (xk, yk) in the xy-plane are transformed into the points (Xk, Yk) =
(xk, ln(yk)) in the XY -plane. This process is called data linearization. Then the least-
squares line (4) is fit to the points {(Xk, Yk)}. The normal equations for finding A and
B are

(5)

(
N∑

k=1

X2
k

)
A +

(
N∑

k=1

Xk

)
B =

N∑
k=1

XkYk,

(
N∑

k=1

Xk

)
A + N B =

N∑
k=1

Yk .

After A and B have been found, the parameter C in equation (1) is computed:

(6) C = eB .

Example 5.4. Use the data linearization method and find the exponential fit y = CeAx

for the five data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0), and (4, 7.5).
Apply the transformation (3) to the original points and obtain

{(Xk, Yk)} = {(0, ln(1.5), (1, ln(2.5)), (2, ln(3.5)), (3, ln(5.0)), (4, ln(7.5))}
= {(0, 0.40547), (1, 0.91629), (2, 1.25276), (3, 1.60944), (4, 2.01490)}.

(7)

264 CHAP. 5 CURVE FITTING

Y = AX + B

10 2 3 4
X

0.5

1.0

1.5

2.0

Y

Figure 5.4 The transformed data
points {(Xk, Yk)}.

Table 5.4 Obtaining Coefficients of the Normal Equations for the Transformed Data Points
{(Xk, Yk)}

xk yk Xk Yk = ln(yk) X2
k XkYk

0.0 1.5 0.0 0.405465 0.0 0.000000
1.0 2.5 1.0 0.916291 1.0 0.916291
2.0 3.5 2.0 1.252763 4.0 2.505526
3.0 5.0 3.0 1.609438 9.0 4.828314
4.0 7.5 4.0 2.014903 16.0 8.059612

10.0 6.198860 30.0 16.309743
=∑ Xk =∑ Yk =∑ X2

k =∑ XkYk

These transformed points are shown in Figure 5.4 and exhibit a linearized form. The equa-
tion of the least-squares line Y = AX + B for the points (7) in Figure 5.4 is

(8) Y = 0.391202X + 0.457367.

Calculation of the coefficients for the normal equations in (5) is shown in Table 5.4.
The resulting linear system (5) for determining A and B is

(9)
30A + 10B = 16.309742

10A + 5B = 6.198860.

The solution is A = 0.3912023 and B = 0.457367. Then C is obtained with the calculation
C = e0.457367 = 1.579910, and these values for A and C are substituted into equation (1)
to obtain the exponential fit (see Figure 5.5):

�(10) y = 1.579910e0.3912023x (fit by data linearization).

SEC. 5.2 METHODS OF CURVE FITTING 265

y = CeAx

10 2 3 4
x

2

4

6

8

y

Figure 5.5 The exponential fit
y = 1.579910e0.3912023x obtained by
using the data linearization method.

Nonlinear Least-Squares Method for y = CeAx

Suppose that we are given the points (x1, y1), (x2, y2), . . . , (xN , yN) and want to fit an
exponential curve:

(11) y = CeAx .

The nonlinear least-squares procedure requires that we find a minimum of

(12) E(A, C) =
N∑

k=1

(CeAxk − yk)
2.

The partial derivatives of E(A, C) with respect to A and C are

(13)
∂ E

∂ A
= 2

N∑
k=1

(CeAxk − yk)(CxkeAxk)

and

(14)
∂ E

∂C
= 2

N∑
k=1

(CeAxk − yk)(e
Axk).

When the partial derivatives in (13) and (14) are set equal to zero and then simplified,
the resulting normal equations are

(15)

C
N∑

k=1

xke2Axk −
N∑

k=1

xk ykeAxk = 0,

C
N∑

k=1

eAxk −
N∑

k=1

ykeAxk = 0.

266 CHAP. 5 CURVE FITTING

The equations in (15) are nonlinear in the unknowns A and C and can be solved using
Newton’s method. This is a time-consuming computation and the iteration involved
requires good starting values for A and C . Many software packages have a built-in
minimization subroutine for functions of several variables that can be used to minimize
E(A, C) directly, For example, the Nelder-Mead simplex algorithm can be used to
minimize (12) directly and bypass the need for equations (13) through (15).

Example 5.5. Use the least-squares method and determine the exponential fit y = CeAx

for the five data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0), and (4, 7.5).
For this solution we must minimize the quantity E(A, C), which is

E(A, C) = (C − 1.5)2 + (CeA − 2.5)2 + (Ce2A − 3.5)2

+ (Ce3A − 5.0)2 + (Ce4A − 7.5)2.
(16)

We use the fmins command in MATLAB to approximate the values of A and C that mini-
mize E(A, C). First we define E(A, C) as an M-file in MATLAB.

function z=E(u)
A=u(1);
C=u(2);
z=(C-1.5).^2+(C.*exp(A)-2.5).^2+(C.*exp(2*A)-3.5).^2+...

(C.*exp(3*A)-5.0).^2+(C.*exp(4*A)-7.5).^2;

Using the fmins command in the MATLAB Command Window and the initial values
A = 1.0 and C = 1.0, we find

>>fmins(’E’,[1 1])
ans =

0.38357046980073 1.61089952247928

Thus the exponential fit to the five data points is

(17) y = 1.6108995e0.3835705 (fit by nonlinear least squares).

A comparison of the solutions using data linearization and nonlinear least squares is
given in Table 5.5. There is a slight difference in the coefficients. For the purpose of
interpolation it can be seen that the approximations differ by no more than 2% over the
interval [0, 4] (see Table 5.5 and Figure 5.6). If there is a normal distribution of the errors
in the data, (17) is usually the preferred choice. When extrapolation is made beyond the
range of the data, the two solutions will diverge and the discrepancy increases to about 6%
when x = 10. �

Transformations for Data Linearization

The technique of data linearization has been used by scientists to fit curves such as
y = Ce(Ax), y = A ln(x) + B, and y = A/x + B. Once the curve has been chosen,
a suitable transformation of the variables must be found so that a linear relation is

SEC. 5.2 METHODS OF CURVE FITTING 267

Table 5.5 Comparison of the Two Exponential Fits

xk yk 1.5799e0.39120x 1.6109e0.38357x

0.0 1.5 1.5799 1.6109
1.0 2.5 2.3363 2.3640
2.0 3.5 3.4548 3.4692
3.0 5.0 5.1088 5.0911
4.0 7.5 7.5548 7.4713

5.0 11.1716 10.9644
6.0 16.5202 16.0904
7.0 24.4293 23.6130
8.0 36.1250 34.6527
9.0 53.4202 50.8535

10.0 78.9955 74.6287

40 62 8 10
x

20

40

60

80

y

Figure 5.6 A graphical compari-
son of the two exponential curves.

obtained. For example, the reader can verify that y = D/(x + C) is transformed
into a linear problem Y = AX + B by using the change of variables (and constants)
X = xy, Y = y, C = −1/A, and D = −B/A. Graphs of several cases of the
possibilities for the curves are shown in Figure 5.7, and other useful transformations
are given in Table 5.6.

Linear Least Squares

The linear least-squares problem is stated as follows. Suppose that N data points
{(xk, yk)} and a set of M linear independent functions { f j (x)} are given. We want

268 CHAP. 5 CURVE FITTING

A
x

A = −3, B = 4y = + B;
D

x + C
−1

4

−1
2

D = −1, C =

3
2

A = 2, B =

y =
1

Ax + B
A = 2, B = −3y =; ;

x
A + Bx

A =y = ; , B = 1

1
2

2
5

A = , C =

y = A ln(x) + B; A = −2, B = 2y = A ln(x) + B;

y = CeAx;
1
3

3
2

A = , C =y = CxA;A = −1, C = 3y = CeAx;

1
(Ax + B)2 A = 4, B = −3y = ; C = 12, D = 1y = Cxe−Dx;

L
1 + CeAx L = 5, C = 20, A = −2y = ;

Figure 5.7 Possibilities for the curves used in “data linearization.”

SEC. 5.2 METHODS OF CURVE FITTING 269

Table 5.6 Change of Variable(s) for Data Linearization

Function, y = f (x) Linearized form, Y = AX + B Change of variable(s) and constants

y = A

x
+ B y = A

1

x
+ B X = 1

x
, Y = y

y = D

x + C
y + −1

C
(xy)+ D

C
X = xy, Y = y

C = −1

A
, D = −B

A

y = 1

Ax + B

1

y
= Ax + B X = x, Y = 1

y

y = x

Ax + B

1

y
= A

1

x
+ B X = 1

x
, Y = 1

y

y = A ln(x)+ B y = A ln(x)+ B X = ln(x), Y = y

y = CeAx ln(y) = Ax + ln(C) X = x, Y = ln(y)

C = eB

y = Cx A ln(y) = A ln(x)+ ln(C) X = ln(x), Y = ln(y)

C = eB

y = (Ax + B)−2 y−1/2 = Ax + B X = x, Y = y−1/2

y = Cxe−Dx ln
(y

x

)
= −Dx + ln(C) X = x, Y = ln

(y

x

)
C = eB , D = −A

y = L

1+ CeAx
ln

(
L

y
− 1

)
= Ax + ln(C) X = x, Y = ln

(
L

y
− 1

)
C = eB and L is a constant
that must be given

to find M coefficients {c j } so that the function f (x) given by the linear combination

(18) f (x) =
M∑

j=1

c j f j (x)

will minimize the sum of the squares of the errors:

(19) E(c1, c2, . . . , cM) =
N∑

k=1

(f (xk)− yk)
2 =

N∑
k=1

 M∑
j=1

c j f j (xk)

− yk

2

.

270 CHAP. 5 CURVE FITTING

For E to be minimized it is necessary that each partial derivative be zero (i.e.,
∂ E/∂ci = 0 for i = 1, 2, . . . , M), and this results in the system of equations

(20)
N∑

k=1

 M∑
j=1

c j f j (xk)

− yk

 (fi (xk)) = 0 for i = 1, 2, . . . , M .

Interchanging the order of the summations in (20) will produce an M × M system
of linear equations where the unknowns are the coefficients {c j }. They are called the
normal equations:

(21)
M∑

j=1

(
N∑

k=1

fi (xk) f j (xk)

)
c j =

N∑
k=1

fi (xk)yk for i = 1, 2, . . . , M .

Matrix Formulation
Although (21) is easily recognized as a system of M linear equations in M unknowns,
one must be clever so that wasted computations are not performed when writing the
system in matrix notation. The key is to write down the matrices F and F′ as follows:

F =

f1(x1) f2(x1) · · · fM (x1)

f1(x2) f2(x2) · · · fM (x2)

f1(x3) f2(x3) · · · fM (x3)
...

...
...

f1(xN) f2(xN) · · · fM (xN)

 ,

F′ =

f1(x1) f1(x2) f1(x3) · · · f1(xN)

f2(x1) f2(x2) f2(x3) · · · f2(xN)
...

...
...

...

fM (x1) fM (x2) fM (x3) · · · fM (xN)

 .

Consider the product of F′ and the column matrix Y :

(22) F′Y =

f1(x1) f1(x2) f1(x3) · · · f1(xN)

f2(x1) f2(x2) f2(x3) · · · f2(xN)
...

...
...

...

fM (x1) fM (x2) fM (x3) · · · fM (xN)

y1
y2
...

yN

 .

The element in the i th row of the product F′Y in (22) is the same as the i th element in
the column matrix in equation (21); that is,

(23)
N∑

k=1

fi (xk)yk = rowi F′ · [y1 y2 · · · yN
]′

.

SEC. 5.2 METHODS OF CURVE FITTING 271

Now consider the product F′F, which is an M × M matrix:

F′F

=

f1(x1) f1(x2) f1(x3) · · · f1(xN)

f2(x1) f2(x2) f2(x3) · · · f2(xN)
...

...
...

...

fM (x1) fM (x2) fM (x3) · · · fM (xN)

f1(x1) f2(x1) · · · fM (x1)

f1(x2) f2(x2) · · · fM (x2)

f1(x3) f2(x3) · · · fM (x3)
...

...
...

f1(xN) f2(xN) · · · fM (xN)

.

The element in the i th row and j th column of F′F is the coefficient of c j in the
i th row in equation (21); that is,

(24)
N∑

k=1

fi (xk) f j (xk) = fi (x1) f j (x1)+ fi (x2) f j (x2)+ · · · + fi (xN) f j (xN).

When M is small, a computationally efficient way to calculate the linear least-squares
coefficients for (18) is to store the matrix F, compute F′F, and F′Y and then solve
the linear system

(25) F′FC = F′Y for the coefficient matrix C.

Polynomial Fitting
When the foregoing method is adapted to using the functions { f j (x) = x j−1} and the
index of summation ranges from j = 1 to j = M + 1, the function f (x) will be a
polynomial of degree M :

(26) f (x) = c1 + c2x + c3x2 + · · · + cM+1x M .

We now show how to find the least-squares parabola, and the extension to a poly-
nomial of higher degree is easily made and is left for the reader.

Theorem 5.3 (Least-Squares Parabola). Suppose that {(xk, yk)}Nk=1 are N points,
where the abscissas are distinct. The coefficients of the least-squares parabola

(27) y = f (x) = Ax2 + Bx + C

are the solution values A, B, and C of the linear system

(28)

(
N∑

k=1

x4
k

)
A +

(
N∑

k=1

x3
k

)
B +

(
N∑

k=1

x2
k

)
C =

N∑
k=1

yk x2
k ,

(
N∑

k=1

x3
k

)
A +

(
N∑

k=1

x2
k

)
B +

(
N∑

k=1

xk

)
C =

N∑
k=1

yk xk,(
N∑

k=1

x2
k

)
A +

(
N∑

k=1

xk

)
B + NC =

N∑
k=1

yk .

272 CHAP. 5 CURVE FITTING

Table 5.7 Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6

xk yk x2
k x3

k x4
k xk yk x2

k yk

−3 3 9 −27 81 −9 27
0 1 0 0 0 0 0
2 1 4 8 16 2 4
4 3 16 64 256 12 48

3 8 29 45 353 5 79

Proof. The coefficients A, B, and C will minimize the quantity:

(29) E(A, B, C) =
N∑

k=1

(Ax2
k + Bxk + C − yk)

2.

The partial derivatives ∂ E/∂ A, ∂ E/∂ B, and ∂ E/∂C must all be zero. This results in

(30)

0 = ∂ E(A, B, C)

∂ A
= 2

N∑
k=1

(Ax2
k + Bxk + C − yk)

1(x2
k),

0 = ∂ E(A, B, C)

∂ B
= 2

N∑
k=1

(Ax2
k + Bxk + C − yk)

1(xk),

0 = ∂ E(A, B, C)

∂C
= 2

N∑
k=1

(Ax2
k + Bxk + C − yk)

1(1).

Using the distributive property of addition, we can move the values A, B, and C
outside the summations in (30) to obtain the normal equations that are given in (28). •
Example 5.6. Find the least-squares parabola for the four points (−3, 3), (0, 1), (2, 1),
and (4, 3).

The entries in Table 5.7 are used to compute the summations required in the linear
system (28).

The linear system (28) for finding A, B, and C becomes

353A + 45B + 29C = 79

45A + 29B + 3C = 5

29A + 3B + 4C = 8.

The solution to the linear system is A = 585/3278, B = −631/3278, and C = 1394/1639,
and the desired parabola is (see Figure 5.8)

y = 585

3278
x2 − 631

3278
x + 1394

1639
= 0.178462x2 − 0.192495x + 0.850519. �

SEC. 5.2 METHODS OF CURVE FITTING 273

y

x

y = Ax2 + Bx + C

1

2

3

4321−1 0−2−3
Figure 5.8 The least-squares
parabola for Example 5.6.

Polynomial Wiggle

It is tempting to use a least-squares polynomial to fit data that are nonlinear. But
if the data do not exhibit a polynomial nature, the resulting curve may exhibit large
oscillations. This phenomenon, called polynomial wiggle, becomes more pronounced
with higher-degree polynomials. For this reason we seldom use a polynomial of degree
6 or above unless it is known that the true function we are working with is a polynomial.

For example, let f (x) = 1.44/x2 + 0.24x be used to generate the six data points
(0.25, 23.1), (1.0, 1.68), (1.5, 1.0), (2.0, 0.84), (2.4, 0.826), and (5.0, 1.2576). The
result of curve fitting with the least-squares polynomials

P2(x) = 22.93− 16.96x + 2.553x2,

P3(x) = 33.04− 46.51x + 19.51x2 − 2.296x3,

P4(x) = 39.92− 80.93x + 58.39x2 − 17.15x3 + 1.680x4,

and

P5(x) = 46.02− 118.1x + 119.4x2 − 57.51x3 + 13.03x4 − 1.085x5

is shown in Figure 5.9(a) through (d). Notice that P3(x), P4(x), and P5(x) exhibit a
large wiggle in the interval [2, 5]. Even though P5(x) goes through the six points, it
produces the worst fit. If we must fit a polynomial to these data, P2(x) should be the
choice.

The following program uses the matrix F with entries f j (x) = x j−1
k from equa-

tion (18).

274 CHAP. 5 CURVE FITTING

y

x

30

20

10
0

−10
−20

4 5321

y = P2 (x)

(a)

y = f (x)

y

x

30

20

10
0

−10
−20

4 5321

y = P3 (x)

(b)

y = f (x)

y

x

30

20

10
0

−10
−20

4 5321

y = P4 (x)

(c)

y = f (x)

y

x

30

20

10
0

−10
−20

4 5321

y = P5 (x)

(d)

y = f (x)

Figure 5.9 (a) Using P2(x) to fit data. (b) Using P3(x) to fit data. (c) Using P4(x) to
fit data. (d) Using P5(x) to fit data.

Program 5.2 (Least-Squares Polynomial). To construct the least-squares poly-
nomial of degree M of the form

PM (x) = c1 + c2x + c3x2 + · · · + cM x M−1 + cM+1x M

that fits the N data points {(xk, yk)}Nk=1.

function C = lspoly(X,Y,M)

%Input - X is the 1xn abscissa vector
% - Y is the 1xn ordinate vector
% - M is the degree of the least-squares polynomial
% Output - C is the coefficient list for the polynomial

n=length(X);
B=zeros(1:M+1);
F=zeros(n,M+1);

%Fill the columns of F with the powers of X
for k=1:M+1

F(:,k)=X’.^(k-1);
end

%Solve the linear system from (25)

SEC. 5.2 METHODS OF CURVE FITTING 275

A=F’*F;
B=F’*Y’;
C=A\B;
C=flipud(C);

Exercises for Methods of Curve Fitting

1. Find the least-squares parabola f (x) = Ax2 + Bx + C for each set of data.

(a)
xk yk

−3 15
−1 5

1 1
3 5

(b)
xk yk

−3 −1
−1 25

1 25
3 1

2. Find the least-squares parabola f (x) = Ax2 + Bx + C for each set of data.

(a)
xk yk

−2 −5.8
−1 1.1

0 3.8
1 3.3
2 −1.5

(b)
xk yk

−2 2.8
−1 2.1

0 3.25
1 6.0
2 11.5

(c)
xk yk

−2 10
−1 1

0 0
1 2
2 9

3. For the given set of data, find the least-squares curve:

(a) f (x) = CeAx , by using the change of variables X = x , Y = ln(y), and C = eB ,
from Table 5.6, to linearize the data points.

(b) f (x) = Cx A, by using the change of variables X = ln(x), Y = ln(y), and
C = eB , from Table 5.6, to linearize the data points.

(c) Use E2(f) to determine which curve gives the best fit.

xk yk

1 0.6
2 1.9
3 4.3
4 7.6
5 12.6

276 CHAP. 5 CURVE FITTING

4. For the given set of data, find the least-squares curve:

(a) f (x) = CeAx , by using the change of variables X = x , Y = ln(y), and C = eB ,
from Table 5.6, to linearize the data points.

(b) f (x) = 1/(Ax + B), by using the change of variables X = x and Y = 1/y,
from Table 5.6, to linearize the data points.

(c) Use E2(f) to determine which curve gives the best fit.

xk yk

−1 6.62
0 3.94
1 2.17
2 1.35
3 0.89

5. For each set of data, find the least-squares curve:

(a) f (x) = CeAx , by using the change of variables X = x , Y = ln(y), and C = eB ,
from Table 5.6, to linearize the data points.

(b) f (x) = (Ax + B)−2, by using the change of variables X = x and Y = y−1/2,
from Table 5.6, to linearize the data points.

(c) Use E2(f) to determine which curve gives the best fit.

(i)
xk yk

−1 13.45
0 3.01
1 0.67
2 0.15

(ii)
xk yk

−1 13.65
0 1.38
1 0.49
3 0.15

6. Logistic population growth. When the population P(t) is bounded by the limiting
value L , it follows a logistic curve and has the form P(t) = L/(1 + CeAt). Find A
and C for the following data, where L is a known value.

(a) (0, 200), (1, 400), (2, 650), (3, 850), (4, 950), and L = 1000.

(b) (0, 500), (1, 1000), (2, 1800), (3, 2800), (4, 3700), and L = 5000.

7. Use the data for the U.S. population and find the logistic curve P(t). Estimate the
population in the year 2000.

SEC. 5.2 METHODS OF CURVE FITTING 277

(a) Assume that L = 8× 108.

Year tk Pk

1800 −10 5.3
1850 −5 23.2
1900 0 76.1
1950 5 152.3

(b) Assume that L = 8× 108.

Year tk Pk

1900 0 76.1
1920 2 106.5
1940 4 132.6
1960 6 180.7
1980 8 226.5

In Exercises 8 through 15, carry out the indicated change of variables in Table 5.6, and
derive the linearized form for each of the following functions.

8. y = A

x
+ B 9. y = D

x + C

10. y = 1

Ax + B
11. y = x

A + Bx

12. y = A ln(x)+ B 13. y = Cx A

14. y = (Ax + B)−2 15. y = Cxe−Dx

16. (a) Follow the procedure outlined in the proof of Theorem 5.3 and derive the normal
equations for the least-squares curve f (x) = A cos(x)+ B sin(x).

(b) Use the results from part (a) to find the least-squares curve f (x) = A cos(x)+
B sin(x) for the following data:

xk yk

−3.0 −0.1385
−1.5 −2.1587

0.0 0.8330
1.5 2.2774
3.0 −0.5110

17. The least-squares plane z = Ax + By + C for the N points (x1, y1, z1), . . . ,
(xN , yN , zN) is obtained by minimizing

E(A, B, C) =
N∑

k=1

(Axk + Byk + C − zk)
2.

278 CHAP. 5 CURVE FITTING

Derive the normal equations:(
N∑

k=1

x2
k

)
A +

(
N∑

k=1

xk yk

)
B +

(
N∑

k=1

xk

)
C =

N∑
k=1

zk xk,(
N∑

k=1

xk yk

)
A +

(
N∑

k=1

y2
k

)
B +

(
N∑

k=1

yk

)
C =

N∑
k=1

zk yk,(
N∑

k=1

xk

)
A +

(
N∑

k=1

yk

)
B + NC =

N∑
k=1

zk .

18. Find the least-squares planes for the following data.
(a) (1, 1, 7), (1, 2, 9), (2, 1, 10), (2, 2, 11), (2, 3, 12)

(b) (1, 2, 6), (2, 3, 7), (1, 1, 8), (2, 2, 8), (2, 1, 9)

(c) (3, 1,−3), (2, 1,−1), (2, 2, 0), (1, 1, 1), (1, 2, 3)

19. Consider the following table of data:

xk yk

1.0 2.0
2.0 5.0
3.0 10.0
4.0 17.0
5.0 26.0

When the change of variables X = xy and Y = 1/y are used with the function
y = D/(x + C), the transformed least-squares fit is

y = −17.719403

x − 5.476617
.

When the change of variables X = x and Y = 1/y are used with the function y =
1/(Ax + B), the transformed least-squares fit is

y = 1

−0.1064253x + 0.4987330
.

Determine which fit is best and why one of the solutions is completely absurd.

Algorithms and Programs

1. The temperature cycle in a suburb of Los Angeles on November 8 is given in the
accompanying table. There are 24 data points.
(a) Follow the procedure outlined in Example 5.5 (use the fmins command) to find

the least-squares curve of the form f (x) = A cos(Bx)+C sin(Dx)+ E for the
given set of data.

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 279

(b) Determine E2(f).
(c) Plot the data and the least-squares curve from part (a) on the same coordinate

system.

Time, p.m. Degrees Time, a.m. Degrees

1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60

10 60 10 64
11 59 11 67
Midnight 58 Noon 68

5.3 Interpolation by Spline Functions

Polynomial interpolation for a set of N + 1 points {(xk, yk)}Nk=0 is frequently unsatis-
factory. As discussed in Section 5.2, a polynomial of degree N can have N −1 relative
maxima and minima, and the graph can wiggle in order to pass through the points.
Another method is to piece together the graphs of lower-degree polynomials Sk(x) and
interpolate between the successive nodes (xk, yk) and (xk+1, yk+1) (see Figure 5.10).

x
xk + 1 xN − 1

(xN , yN)

(xk , yk)

(xk + 1, yk + 1)
(x2, y2)

(x1, y1)

(x0 , y0)
(xN − 1, yN − 1)

xNxkx2x1x0

Figure 5.10 Piecewise polynomial interpolation.

280 CHAP. 5 CURVE FITTING

x
xk + 1 xN − 1

(xN , yN)

(xk , yk)

(xk + 1, yk + 1)
(x2, y2)

(x1, y1)

(x0 , y0)
(xN − 1, yN − 1)

xNxkx2x1x0

Figure 5.11 Piecewise linear interpolation (a linear spline).

The two adjacent portions of the curve y = Sk(x) and y = Sk+1(x), which lie above
[xk, xk+1] and [xk+1, xk+2], respectively, pass through the common knot (xk+1, yk+1).
The two portions of the graph are tied together at the knot (xk+1, yk+1), and the set of
functions {Sk(x)} forms a piecewise polynomial curve, which is denoted by S(x).

Piecewise Linear Interpolation

The simplest polynomial to use, a polynomial of degree 1, produces a polygonal path
that consists of line segments that pass through the points. The Lagrange polynomial
from Section 4.3 is used to represent this piecewise linear curve:

(1) Sk(x) = yk
x − xk+1

xk − xk+1
+ yk+1

x − xk

xk+1 − xk
for xk ≤ x ≤ xk+1.

The resulting curve looks like a broken line (see Figure 5.11).
An equivalent expression can be obtained if we use the point-slope formula for a

line segment:
Sk(x) = yk + dk(x − xk),

where dk = (yk+1 − yk)/(xk+1 − xk). The resulting linear spline function can be
written in the form

(2) S(x) =

y0 + d0(x − x0) for x in [x0, x1],
y1 + d1(x − x1) for x in [x1, x2],

...
...

yk + dk(x − xk) for x in [xk, xk+1],
...

...

yN−1 + dN−1(x − xN−1) for x in [xN−1, xN].

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 281

The form of equation (2) is better than equation (1) for the explicit calculation of
S(x). It is assumed that the abscissas are ordered x0 < x1 < · · · < xN−1 < xN . For
a fixed value of x , the interval [xk, xk+1] containing x can be found by successively
computing the differences x − x1, . . . , x − xk, x − xk+1 until k + 1 is the smallest
integer such that x − xk+1 < 0. Hence we have found k so that xk ≤ x ≤ xk+1, and
the value of the spline function S(x) is

(3) S(x) = Sk(x) = yk + dk(x − xk) for xk ≤ x ≤ xk+1.

These techniques can be extended to higher-order polynomials. For example, if an
odd number of nodes x0, x1, . . . , x2M is given, then a piecewise quadratic polyno-
mial can be constructed on each subinterval [x2k, x2k+2], for k = 0, 1, . . . , M − 1.
A shortcoming of the resulting quadratic spline is that the curvature at the even nodes
x2k changes abruptly, and this can cause an undesired bend or distortion in the graph.
The second derivative of a quadratic spline is discontinuous at the even nodes. If we
use piecewise cubic polynomials, then both the first and second derivatives can be
made continuous.

Piecewise Cubic Splines

The fitting of a polynomial curve to a set of data points has applications in CAD
(computer-assisted design), CAM (computer-assisted manufacturing), and computer
graphics systems. An operator wants to draw a smooth curve through data points that
are not subject to error. Traditionally, it was common to use a french curve or an ar-
chitect’s spline and subjectively draw a curve that looks smooth when viewed by the
eye. Mathematically, it is possible to construct cubic functions Sk(x) on each inter-
val [xk, xk+1] so that the resulting piecewise curve y = S(x) and its first and second
derivatives are all continuous on the larger interval [x0, xN]. The continuity of S′(x)

means that the graph y = S(x) will not have sharp corners. The continuity of S′′(x)

means that the radius of curvature is defined at each point.

Definition 5.1. Suppose that {(xk, yk)}Nk=0 are N + 1 points, where a = x0 < x1 <

· · · < xN = b. The function S(x) is called a cubic spline if there exist N cubic
polynomials Sk(x) with coefficients sk,0, sk,1, sk,2, and sk,3 that satisfy the following
properties:

I. S(x) = Sk(x) = sk,0 + sk,1(x − xk)+ sk,2(x − xk)
2 + sk,3(x − xk)

3

for x ∈ [xk, xk+1] and k = 0, 1, . . . , N − 1.

II. S(xk) = yk for k = 0, 1, . . . , N .

III. Sk(xk+1) = Sk+1(xk+1) for k = 0, 1, . . . , N − 2.

IV. S′k(xk+1) = S′k+1(xk+1) for k = 0, 1, . . . , N − 2.

V. S′′k (xk+1) = S′′k+1(xk+1) for k = 0, 1, . . . , N − 2. �

282 CHAP. 5 CURVE FITTING

Property I states that S(x) consists of piecewise cubics. Property II states that the
piecewise cubics interpolate the given set of data points. Properties III and IV require
that the piecewise cubics represent a smooth continuous function. Property V states
that the second derivative of the resulting function is also continuous.

Existence of Cubic Splines
Let us try to determine if it is possible to construct a cubic spline that satisfies proper-
ties I through V. Each cubic polynomial Sk(x) has four unknown constants (sk,0, sk,1,
sk,2, and sk,3); hence there are 4N coefficients to be determined. Loosely speaking,
we have 4N degrees of freedom or conditions that must be specified. The data points
supply N + 1 conditions, and properties III, IV, and V each supply N − 1 conditions.
Hence, N + 1+ 3(N − 1) = 4N − 2 conditions are specified. This leaves us two ad-
ditional degrees of freedom. We will call them endpoint constraints: they will involve
either S′(x) or S′′(x) at x0 and xN and will be discussed later. We now proceed with
the construction.

Since S(x) is piecewise cubic, its second derivative S′′(x) is piecewise linear on
[x0, xN]. The linear Lagrange interpolation formula gives the following representation
for S′′(x) = S′′k (x):

(4) S′′k (x) = S′′(xk)
x − xk+1

xk − xk+1
+ S′′(xk+1)

x − xk

xk+1 − xk
.

Use mk = S′′(xk), mk+1 = S′′(xk+1), and hk = xk+1 − xk in (4) to get

(5) S′′k (x) = mk

hk
(xk+1 − x)+ mk+1

hk
(x − xk)

for xk ≤ x ≤ xk+1 and k = 0, 1, . . . , N − 1. Integrating (5) twice will introduce two
constants of integration, and the result can be manipulated so that it has the form

(6) Sk(x) = mk

6hk
(xk+1 − x)3 + mk+1

6hk
(x − xk)

3 + pk(xk+1 − x)+ qk(x − xk).

Substituting xk and xk+1 into equation (6) and using the values yk = Sk(xk) and
yk+1 = Sk(xk+1) yields the following equations that involve pk and qk , respectively:

(7) yk = mk

6
h2

k + pkhk and yk+1 = mk+1

6
h2

k + qkhk .

These two equations are easily solved for pk and qk , and when these values are sub-
stituted into equation (6), the result is the following expression for the cubic function
Sk(x):

Sk(x) = − mk

6hk
(xk+1 − x)3 + mk+1

6hk
(x − xk)

3

+
(

yk

hk
− mkhk

6

)
(xk+1 − x)+

(
yk+1

hk
− mk+1hk

6

)
(x − xk).

(8)

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 283

Notice that the representation (8) has been reduced to a form that involves only
the unknown coefficients {mk}. To find these values, we must use the derivative of (8),
which is

S′k(x) = − mk

2hk
(xk+1 − x)2 + mk+1

2hk
(x − xk)

2

−
(

yk

hk
− mkhk

6

)
+ yk+1

hk
− mk+1hk

hk
.

(9)

Evaluating (9) at xk and simplifying the result yield

(10) S′k(xk) = −mk

3
hk − mk+1

6
hk + dk, where dk = yk+1 − yk

hk
.

Similarly, we can replace k by k − 1 in (9) to get the expression for S′k−1(x) and
evaluate it at xk to obtain

(11) S′k−1(xk) = mk

3
hk−1 + mk−1

6
hk−1 + dk−1.

Now use property IV and equations (10) and (11) to obtain an important relation
involving mk−1, mk, and mk+1:

(12) hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk,

where uk = 6 (dk − dk−1) for k = 1, 2, . . . , N − 1.

Construction of Cubic Splines

Observe that the unknowns in (12) are the desired values {mk}, and the other terms
are constants obtained by performing simple arithmetic with the data points {(xk, yk)}.
Therefore, in reality, system (12) is an underdetermined system of N − 1 linear equa-
tions involving N + 1 unknowns. Hence two additional equations must be supplied.
They are used to eliminate m0 from the first equation and m N from the (N − 1)st
equation in system (12). The standard strategies for the endpoint constraints are sum-
marized in Table 5.8.

Consider strategy (v) in Table 5.8. If m0 is given, then h0m0 can be computed, and
the first equation (when k = 1) of (12) is

(13) 2(h0 + h1)m1 + h1m2 = u1 − h0m0.

284 CHAP. 5 CURVE FITTING

Table 5.8 Endpoint Constraints for a Cubic Spline

Description of the strategy Equations involving m0 and m N

(i) Clamped cubic spline: spec-
ify S′(x0), S′(xn)

(the “best choice” if the
derivatives are known)

m0 = 3

h0
(d0 − S′(x0))− m1

2

m N = 3

hN−1
(S′(xN)− dN−1)− m N−1

2

(ii) Natural cubic spline
(a “relaxed curve”)

m0 = 0, m N = 0

(iii) Extrapolate S′′(x) to the
endpoints

m0 = m1 − h0(m2 − m1)

h1
,

m N = m N−1 + hN−1(m N−1 − m N−2)

hN−2

(iv) S′′(x) is constant near the
endpoints

m0 = m1, m N = m N−1

(v) Specify S′′(X) at each
endpoint

m0 = S′′(x0), m N = S′′(xN)

Similarly, if m N is given, then hN−1m N can be computed, and the last equation (when
k = N − 1) of (12) is

(14) hN−2m N−2 + 2(hN−2 + hN−1)m N−1 = uN−1 − hN−1m N .

Equations (13) and (14) with (12) used for k = 2, 3, . . . , N − 2 form N − 1 linear
equations involving the coefficients m1, m2, . . . , m N−1.

Regardless of the particular strategy chosen in Table 5.8, we can rewrite equa-
tions 1 and N − 1 in (12) and obtain a tridiagonal linear system of the form HM = V ,
which involves m1, m2, . . . , m N−1:

(15)

b1 c1
a1 b2 c2

. . .

aN−3 bN−2 cN−2
aN−2 bN−1

m1
m2
...

m N−2
m N−1

 =

v1
v2
...

vN−2
vN−1

 .

The linear system in (15) is strictly diagonally dominant and has a unique solu-
tion (see Chapter 3 for details). After the coefficients {mk} are determined, the spline

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 285

coefficients {sk, j } for Sk(x) are computed using the formulas

(16)
sk,0 = yk, sk,1 = dk − hk(2mk + mk+1)

6
,

sk,2 = mk

2
, sk,3 = mk+1 − mk

6hk
.

Each cubic polynomial Sk(x) can be written in nested multiplication form for effi-
cient computation:

(17) Sk(x) = ((sk,3w + sk,2)w + sk,1)w + yk, where w = x − xk

and Sk(x) is used on the interval xk ≤ x ≤ xk+1.
Equations (12) together with a strategy from Table 5.8 can be used to construct a

cubic spline with distinctive properties at the endpoints. Specifically, the values for m0
and m N in Table 5.8 are used to customize the first and last equations in (12) and form
the system of N − 1 equations given in (15). Then the tridiagonal system is solved for
the remaining coefficients m1, m2, . . . , m N−1. Finally, the formulas in (16) are used to
determine the spline coefficients. For reference, we now state how the equations must
be prepared for each different type of spline.

Endpoint Constraints

The following five lemmas show the form of the tridiagonal linear system that must be
solved for each of the different endpoint constraints in Table 5.8.

Lemma 5.1 (Clamped Spline). There exists a unique cubic spline with the first
derivative boundary conditions S′(a) = d0 and S′(b) = dN .

Proof. Solve the linear system(
3

2
h0 + 2h1

)
m1 + h1m2 = u1 − 3(d0 − S′(x0))

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2

hN−2m N−2 +
(

2hN−2 + 3

2
hN−1

)
m N−1 = uN−1 − 3(S′(xN)− dN−1). •

Remark. The clamped spline involves slope at the ends. This spline can be visualized
as the curve obtained when a flexible elastic rod is forced to pass through the data
points, and the rod is clamped at each end with a fixed slope. This spline would be
useful to a draftsman for drawing a smooth curve through several points.

Lemma 5.2 (Natural Spline). There exists a unique cubic spline with the free
boundary conditions S′′(a) = 0 and S′′(b) = 0.

286 CHAP. 5 CURVE FITTING

Proof. Solve the linear system

2(h0 + h1)m1 + h1m2 = u1

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2.

hN−2m N−2 + 2(hN−2 + hN−1)m N−1 = uN−1. •

Remark. The natural spline is the curve obtained by forcing a flexible elastic rod
through the data points but letting the slope at the ends be free to equilibrate to the
position that minimizes the oscillatory behavior of the curve. It is useful for fitting a
curve to experimental data that are significant to several significant digits.

Lemma 5.3 (Extrapolated Spline). There exists a unique cubic spline that uses
extrapolation from the interior nodes at x1 and x2 to determine S′′(a) and extrapolation
from the nodes at xN−1 and xN−2 to determine S′′(b).

Proof. Solve the linear system(
3h0 + 2h1 + h2

0

h1

)
m1 +

(
h1 − h2

0

h1

)
m2 = u1

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2(
hN−2 −

h2
N−1

hN−2

)
m N−2 +

(
2hN−2 + 3hN−1 +

h2
N−1

hN−2

)
m N−1 = uN−1. •

Remark. The extrapolated spline is equivalent to assuming that the end cubic is an
extension of the adjacent cubic; that is, the spline forms a single cubic curve over the
interval [x0, x2] and another single cubic over the interval [xN−2, xN].

Lemma 5.4 (Parabolically Terminated Spline). There exists a unique cubic spline
that uses S′′′(x) ≡ 0 on the interval [x0, x1] and S′′′(x) ≡ 0 on [xN−1, xN].
Proof. Solve the linear system

(3h0 + 2h1)m1 + h1m2 = u1

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2

hN−2m N−2 + (2hN−2 + 3hN−1)m N−1 = uN−1. •

Remark. The assumption that S′′(x) ≡ 0 on the interval [x0, x1] forces the cubic to
degenerate to a quadratic over [x0, x1], and a similar situation occurs over [xN−1, xN].

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 287

Lemma 5.5 (Endpoint Curvature-Adjusted Spline). There exists a unique cubic
spline with the second derivative boundary conditions S′′(a) and S′′(b) specified.

Proof. Solve the linear system

2(h0 + h1)m1 + h1m2 = u1 − h0S′′(x0)

hk−1mk−1 + 2(hk−1 + hk)mk + hkmk+1 = uk for k = 2, 3, . . . , N − 2

hN−2m N−2 + 2(hN−2 + hN−1)m N−1 = uN−1 − hN−1S′′(xN). •

Remark. Imposing values for S′′(a) and S′′(b) permits the practitioner to adjust the
curvature at each endpoint.

The next five examples illustrate the behavior of the various splines. It is possible
to mix the end conditions to obtain an even wider variety of possibilities, but we leave
these variations to the reader to investigate.

Example 5.7. Find the clamped cubic spline that passes through (0, 0), (1, 0.5), (2, 2.0),
and (3, 1.5) with the first derivative boundary conditions S′(0) = 0.2 and S′(3) = −1.

First, compute the quantities

h0 = h1 = h2 = 1

d0 = (y1 − y0)/h0 = (0.5− 0.0)/1 = 0.5

d1 = (y2 − y1)/h1 = (2.0− 0.5)/1 = 1.5

d2 = (y3 − y2)/h2 = (1.5− 2.0)/1 = −0.5

u1 = 6(d1 − d0) = 6(1.5− 0.5) = 6.0

u2 = 6(d2 − d1) = 6(−0.5− 1.5) = −12.0.

Then use Lemma 5.1 and obtain the equations(
3

2
+ 2

)
m1 + m2 = 6.0− 3(0.5− 0.2) = 5.1,

m1 +
(

2+ 3

2

)
m2 = −12.0− 3(−1.0− (−0.5)) = −10.5.

When these equations are simplified and put in matrix notation, we have[
3.5 1.0
1.0 3.5

] [
m1
m2

]
=
[

5.1
−10.5

]
.

It is a straightforward task to compute the solution m1 = 2.25 and m2 = −3.72. Now
apply the equations in (i) of Table 5.8 to determine the coefficients m0 and m3:

m0 = 3(0.5− 0.2)− 2.52

2
= −0.36,

m3 = 3(−1.0+ 0.5)− −3.72

2
= 0.36.

288 CHAP. 5 CURVE FITTING

y

x

0.5

1.0

1.5

2.0

3.02.52.01.51.00.5

Figure 5.12 The clamped cubic
spline with derivative boundary condi-
tions: S′(0) = 0.2 and S′(3) = −1.

y

x

0.5

1.0

1.5

2.0

3.02.52.01.51.00.5

Figure 5.13 The natural cubic spline
with S′′(0) = 0 and S′′(3) = 0.

Next, the values m0 = −0.36, m1 = 2.25, m2 = −3.72, and m3 = 0.36 are substituted
into equations (16) to find the spline coefficients. The solution is

(18)

S0(x) = 0.48x3 − 0.18x2 + 0.2x for 0 ≤ x ≤ 1,

S1(x) = −1.04(x − 1)3 + 1.26(x − 1)2

+ 1.28(x − 1)+ 0.5 for 1 ≤ x ≤ 2,

S2(x) = 0.68(x − 2)3 − 1.86(x − 2)2

+ 0.68(x − 2)+ 2.0 for 2 ≤ x ≤ 3.

This clamped cubic spline is shown in Figure 5.12. �

Example 5.8. Find the natural cubic spline that passes through (0, 0.0), (1, 0.5), (2, 2.0),
and (3, 1.5) with the free boundary conditions S′′(x) = 0 and S′′(3) = 0.

Use the same values {hk}, {dk}, and {uk} that were computed in Example 5.7. Then
use Lemma 5.2 and obtain the equations

2(1+ 1)m1 + m2 = 6.0,

m1 + 2(1+ 1)m2 = −12.0.

The matrix form of this linear system is[
4.0 1.0
1.0 4.0

] [
m1
m2

]
=
[

6.0
−12.0

]
.

It is easy to find the solution m1 = 2.4 and m2 = −3.6. Since m0= S′′(0) = 0 and

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 289

m3 = S′′(3) = 0, when equations (16) are used to find the spline coefficients, the result is

(19)

S0(x) = 0.4x3 + 0.1x for 0 ≤ x ≤ 1,

S1(x) = −(x − 1)3 + 1.2(x − 1)2

+ 1.3(x − 1)+ 0.5 for 1 ≤ x ≤ 2,

S2(x) = 0.6(x − 2)3 − 1.8(x − 2)2

+ 0.7(x − 2)+ 2.0 for 2 ≤ x ≤ 3.

This natural cubic spline is shown in Figure 5.13. �

Example 5.9. Find the extrapolated cubic spline through (0, 0.0), (1, 0.5), (2, 2.0), and
(3, 1.5).

Use the values {hk}, {dk}, and {uk} from Example 5.7 with Lemma 5.3 and obtain the
linear system

(3+ 2+ 1)m1 + (1− 1)m2 = 6.0,

(1− 1)m1 + (2+ 3+ 1)m2 = −12.0.

The matrix form is [
6.0 0.0
0.0 6.0

] [
m1
m2

]
=
[

6.0
−12.0

]
,

and it is trivial to obtain m1 = 1.0 and m2 = −2.0. Now apply the equations in (iii) of
Table 5.8 to compute m0 and m3:

m0 = 1.0− (−2.0− 1.0) = 4.0,

m3 = −2.0+ (−2.0− 1.0) = −5.0.

Finally, the values for {mk} are substituted in equations (16) to find the spline coefficients.
The solution is

(20)

S0(x) = −0.5x3 + 2.0x2 − x for 0 ≤ x ≤ 1,

S1(x) = −0.5(x − 1)3 + 0.5(x − 1)2

+ 1.5(x − 1)+ 0.5 for 1 ≤ x ≤ 2,

S2(x) = −0.5(x − 2)3 − (x − 2)2

+ (x − 2)+ 2.0 for 2 ≤ x ≤ 3.

The extrapolated cubic spline is shown in Figure 5.14. �

Example 5.10. Find the parabolically terminated cubic spline through (0, 0.0), (1, 0.5),
(2, 2.0), and (3, 1.5).

Use {hk}, {dk}, and {uk} from Example 5.7 and then apply Lemma 5.4 to obtain

(3+ 2)m1 + m2 = 6.0,

m1 + (2+ 3)m2 = −12.0.

290 CHAP. 5 CURVE FITTING

y

x

0.5

1.0

1.5

2.0

3.02.52.01.51.00.5
Figure 5.14 The extrapolated cu-
bic spline.

y

x

0.5

1.0

1.5

2.0

3.02.52.01.51.00.5
Figure 5.15 The parabolically
terminated cubic spline.

The matrix form is [
5.0 1.0
1.0 5.0

] [
m1
m2

]
=
[

6.0
−12.0

]
,

and the solution is m1 = 1.75 and m2 = −2.75. Since S′′(x) ≡ 0 on the subinterval at
each end, formulas (iv) in Table 5.8 imply that we have m0 = m1 = 1.75 and m3 = m2 =
−2.75. Then the values for {mk} are substituted in equations (16) to get the solution

(21)

S0(x) = 0.875x2 − 0.375x for 0 ≤ x ≤ 1,

S1(x) = −0.75(x − 1)3 + 0.875(x − 1)2

+ 1.375(x − 1)+ 0.5 for 1 ≤ x ≤ 2,

S2(x) = −1.375(x − 2)2 + 0.875(x − 2)+ 2.0 for 2 ≤ x ≤ 3.

This parabolically terminated cubic spline is shown in Figure 5.15. �

Example 5.11. Find the curvature-adjusted cubic spline through (0, 0.0), (1, 0.5),
(2, 2.0), and (3, 1.5) with the second derivative boundary conditions S′′(0) = −0.3 and
S′′(3) = 3.3.

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 291

y

x

0.5

1.0

1.5

2.0

3.02.52.01.51.00.5

Figure 5.16 The curvature ad-
justed cubic spline with S′′(0) =
−0.3 and S′′(3) = 3.3.

Use {hk}, {dk}, and {uk} from Example 5.7 and then apply Lemma 5.5 to obtain

2(1+ 1)m1 + m2 = 6.0− (−0.3) = 6.3,

m1 + 2(1+ 1)m2 = −12.0− (3.3) = −15.3.

The matrix form is [
4.0 1.0
1.0 4.0

] [
m1
m2

]
=
[

6.3
−15.3

]
,

and the solution is m1 = 2.7 and m2 = −4.5. The given boundary conditions are used
to determine m0 = S′′(0) = −0.3 and m3 = S′′(3) = 3.3. Substitution of {mk} in
equations (16) produces the solution

(22)

S0(x) = 0.5x3 − 0.15x2 + 0.15x for 0 ≤ x ≤ 1,

S1(x) = −1.2(x − 1)3 + 1.35(x − 1)2

+ 1.35(x − 1)+ 0.5 for 1 ≤ x ≤ 2,

S2(x) = 1.3(x − 2)3 − 2.25(x − 2)2

+ 0.45(x − 2)+ 2.0 for 2 ≤ x ≤ 3.

This curvature-adjusted cubic spline is shown in Figure 5.16. �

Suitability of Cubic Splines

A practical feature of splines is the minimum of the oscillatory behavior that they
possess. Consequently, among all functions f (x) that are twice continuously differen-
tiable on [a, b] and interpolate a given set of data points {(xk, yk)}Nk=0, the cubic spline
has less wiggle. The next result explains this phenomenon.

292 CHAP. 5 CURVE FITTING

Theorem 5.4 (Minimum Property of Cubic Splines). Assume that f ∈ C2[a, b]
and S(x) is the unique cubic spline interpolant for f (x) that passes through the points
{(xk, f (xk))}Nk=0 and satisfies the clamped end conditions S′(a) = f ′(a) and S′(b) =
f ′(b). Then

(23)
∫ b

a
(S′′(x))2 dx ≤

∫ b

a
(f ′′(x))2 dx .

Proof. Use integration by parts and the end conditions to obtain∫ b

a
S′′(x)(f ′′(x)− S′′(x)) dx

= S′′(x)(f ′(x)− S′(x))

∣∣∣x=b

x=a
−
∫ b

a
S′′′(x)(f ′(x)− S′(x)) dx

= 0− 0−
∫ b

a
S′′′(x)(f ′(x)− S′(x)) dx .

Since S′′′(x) = 6sk,3 on the subinterval [xk, xk+1], it follows that∫ xk+1

xk

S′′′(x)(f ′(x)− S′(x)) dx = 6sk,3(f (x)− S(x))

∣∣∣x=xk+1

x=xk
= 0

for k = 0, 1, . . . , N − 1. Hence
∫ b

a S′′(x)(f ′′(x)− S′′(x)) dx = 0, and it follows that

(24)
∫ b

a
S′′(x) f ′′(x) dx =

∫ b

a
(S′′(x))2 dx .

Since 0 ≤ (f ′′(x)− S′′(x))2, we get the integral relationship

0 ≤
∫ b

a
(f ′′(x)− S′′(x))2 dx

=
∫ b

a
(f ′′(x))2 dx − 2

∫ b

a
f ′′(x)S′′(x) dx +

∫ b

a
(S′′(x))2 dx .

(25)

Now the result in (24) is substituted into (25) and the result is

0 ≤
∫ b

a
(f ′′(x))2 dx −

∫ b

a
(S′′(x))2 dx .

This is easily rewritten to obtain the relation (23), and the result is proved. •
The following program constructs a clamped cubic spline interpolant for the data

points {(xk, yk)}Nk=0. The coefficients, in descending order, of Sk(x), for k = 0, 1,
. . . , N − 1, are found in the (k − 1)st row of the output matrix S. In the exercises the
reader will be asked to modify the program for the other endpoint constraints listed in
Table 5.8 and described in Lemmas 5.2 through 5.5.

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 293

Program 5.3 (Clamped Cubic Spline). To construct and evaluate a clamped cubic
spline interpolant S(x) for the N + 1 data points {(xk, yk)}Nk=0.

function S=csfit(X,Y,dx0,dxn)

%Input - X is the 1xn abscissa vector
% - Y is the 1xn ordinate vector
% - dx0 = S’(x0) first derivative boundary condition
% - dxn = S’(xn) first derivative boundary condition
%Output - S: rows of S are the coefficients, in descending
% order, for the cubic interpolants

N=length(X)-1;
H=diff(X);
D=diff(Y)./H;
A=H(2:N-1);
B=2*(H(1:N-1)+H(2:N));
C=H(2:N);
U=6*diff(D);

%Clamped spline endpoint constraints
B(1)=B(1)-H(1)/2;
U(1)=U(1)-3*(D(1)-dx0);
B(N-1)=B(N-1)-H(N)/2;
U(N-1)=U(N-1)-3*(dxn-D(N));

for k=2:N-1
temp=A(k-1)/B(k-1);
B(k)=B(k)-temp*C(k-1);
U(k)=U(k)-temp*U(k-1);

end

M(N)=U(N-1)/B(N-1);

for k=N-2:-1:1
M(k+1)=(U(k)-C(k)*M(k+2))/B(k);

end

M(1)=3*(D(1)-dx0)/H(1)-M(2)/2;
M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;

for k=0:N-1
S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));
S(k+1,2)=M(k+1)/2;
S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6;
S(k+1,4)=Y(k+1);

end

294 CHAP. 5 CURVE FITTING

Example 5.12. Find the clamped cubic spline that passes through (0, 0.0), (1, 0.5),
(2, 2.0), and (3, 1.5) with the first derivative boundary conditions S′(0) = 0.2 and S′(3) =
−1.

In MATLAB:

>>X=[0 1 2 3]; Y=[0 0.5 2.0 1.5];dx0=0.2; dxn=-1;
>>S=csfit(X,Y,dx0,dxn)
S =

0.4800 -0.1800 0.2000 0
-1.0400 1.2600 1.2800 0.5000
0.6800 -1.8600 0.6800 2.0000

Notice that the rows of S are precisely the coefficients of the cubic spline interpolants in
equation (18) in Example 5.7. The following commands show how to plot the cubic spline
interpolant using the polyval command. The resulting graph is the same as Figure 5.12.

>>x1=0:.01:1; y1=polyval(S(1,:),x1-X(1));
>>x2=1:.01:2; y2=polyval(S(2,:),x2-X(2));
>>x3=2:.01:3; y3=polyval(S(3,:),x3-X(3));
>>plot(x1,y1,x2,y2,x3,y3,X,Y,’.’) �

Exercises for Interpolation by Spline Functions

1. Consider the polynomial S(x) = a0 + a1x + a2x2 + a3x3.
(a) Show that the conditions S(1) = 1, S′(1) = 0, S(2) = 2, and S′(2) = 0 produce

the system of equations

a0 + a1 + a2 + a3 = 1

a1 + 2a2 + 3a3 = 0

a0 + 2a1 + 4a2 + 8a3 = 2

a1 + 4a2 + 12a3 = 0.

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

2. Consider the polynomial S(x) = a0 + a1x + a2x2 + a3x3.
(a) Show that the conditions S(1) = 3, S′(1) = −4, S(2) = 1, and S′(2) = 2

produce the system of equations

a0 + a1 + a2 + a3 = 3

a1 + 2a2 + 3a3 = −4

a0 + 2a1 + 4a2 + 8a3 = 1

a1 + 4a2 + 12a3 = 2.

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

SEC. 5.3 INTERPOLATION BY SPLINE FUNCTIONS 295

3. Determine which of the following functions are cubic splines. Hint. Which, if any, of
the five parts of Definition 5.1 does a given function f (x) not satisfy?

(a) f (x) =
{

19
2 − 81

4 x + 15x2 − 13
4 x3 for 1 ≤ x ≤ 2

−77
2 + 207

4 x − 21x2 + 11
4 x3 for 2 ≤ x ≤ 3

(b) f (x) =
{

11− 24x + 18x2 − 4x3 for 1 ≤ x ≤ 2

−54+ 72x − 30x2 + 4x3 for 2 ≤ x ≤ 3

(c) f (x) =
{

18− 75
2 x + 26x2 − 11

2 x3 for 1 ≤ x ≤ 2

−70+ 189
2 x − 40x2 + 11

2 x3 for 2 ≤ x ≤ 3

(d) f (x) =
{

13− 31x + 23x2 − 5x3 for 1 ≤ x ≤ 2

−35+ 51x − 22x2 + 3x3 for 2 ≤ x ≤ 3

4. Find the clamped cubic spline that passes through the points (−3, 2), (−2, 0), (1, 3),
and (4, 1) with the first derivative boundary conditions S′(−3) = −1 and S′(4) = 1.

5. Find the natural cubic spline that passes through the points (−3, 2), (−2, 0), (1, 3),
and (4, 1) with the free boundary conditions S′′(−3) = 0 and S′′(4) = 0.

6. Find the extrapolated cubic spline that passes through the points (−3, 2), (−2, 0),
(1, 3), and (4, 1).

7. Find the parabolically terminated cubic spline that passes through the points (−3, 2),
(−2, 0), (1, 3), and (4, 1).

8. Find the curvature-adjusted cubic spline that passes through the points (−3, 2),
(−2, 0), (1, 3), and (4, 1) with the second derivative boundary conditions S′′(−3) =
−1 and S′′(4) = 2.

9. (a) Find the clamped cubic spline that passes through the points {(xk, f (xk))}3k=0,
on the graph of f (x) = x + 2/x , using the nodes x0 = 1/2, x1 = 1, x2 = 3/2,
and x3 = 2. Use the first derivative boundary conditions S′(x0) = f ′(x0) and
S′(x3) = f ′(x3). Graph f and the clamped cubic spline interpolant on the same
coordinate system.

(b) Find the natural cubic spline that passes through the points {(xk, f (xk))}3k=0, on
the graph of f (x) = x + 2/x , using the nodes x0 = 1/2, x1 = 1, x2 = 3/2, and
x3 = 2. Use the free boundary conditions S′′(x0) = 0 and S′′(x3) = 0. Graph
f and the natural cubic spline interpolant on the same coordinate system.

10. (a) Find the clamped cubic spline that passes through the points {(xk, f (xk))}3k=0,
on the graph of f (x) = cos(x2), using the nodes x0 = 0, x1 = √

π/2, x2 =√
3π/2, and x3 = √5π/2. Use the first derivative boundary conditions S′(x0) =

f ′(x0) and S′(x3) = f ′(x3). Graph f and the clamped cubic spline interpolant
on the same coordinate system.

(b) Find the natural cubic spline that passes through the points {(xk, f (xk))}3k=0,
on the graph of f (x) = cos(x2), using the nodes x0 = 0, x1 = √

π/2, x2 =√
3π/2, and x3 = √5π/2. Use the free boundary conditions S′′(x0) = 0 and

296 CHAP. 5 CURVE FITTING

S′′(x3) = 0. Graph f and the natural cubic spline interpolant on the same
coordinate system.

11. Use the substitutions
xk+1 − x = hk + (xk − x)

and
(xk+1 − x)3 = h3

k + 3h2
k(xk − x)+ 3hk(xk − x)2 + (xk − x)3

to show that when equation (8) is expanded into powers of (xk − x), the coefficients
are those given in equations (16).

12. Consider each cubic function Sk(x) over the interval [xk, xk+1].
(a) Give a formula for

∫ xk+1
xk

Sk(x) dx .

Then evaluate
∫ x3

x0
S(x) dx in part (a) of

(b) Exercise 9 (c) Exercise 10

13. Show how strategy (i) in Table 5.8 and system (12) are combined to obtain the equa-
tions in Lemma 5.1.

14. Show how strategy (iii) in Table 5.8 and system (12) are combined to obtain the
equation in Lemma 5.3.

15. (a) Using the nodes x0 = −2 and x1 = 0, show that f (x) = x3 − x is its own
clamped cubic spline on the interval [−2, 0].

(b) Using the nodes x0 = −2, x1 = 0, and x2 = 2, show that f (x) = x3 − x is
its own clamped cubic spline on the interval [−2, 2]. Note. f has an inflection
point at x1.

(c) Use the results from parts (a) and (b) to show that any third-degree polynomial,
f (x) = a0 + a1x + a2x2 + a3x3, is its own clamped cubic spline on any closed
interval [a, b].

(d) What, if anything, can be said about the other four types of cubic splines de-
scribed in Lemmas 5.2 through 5.5?

Algorithms and Programs

1. The distance dk that a car traveled at time tk is given in the follwoing table. Use
Program 5.3 with the first derivative boundary conditions S′(0) = 0 and S′(8) = 98,
and find the clamped cubic spline for the points.

Time, tk 0 2 4 6 8

Distance, dk 0 40 160 300 480

2. Modify Program 5.3 to find the (a) natural, (b) extrapolated, (c) parabolically termi-
nated, or (d) endpoint curvature-adjusted cubic splines for a given set of points.

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 297

3. Use your programs from Problem 2 to find the five different cubic splines for the
points (0, 1), (1, 0), (2, 0), (3, 1), (4, 2), (5, 2), and (6, 1), where S′(0) = −0.6,
S′(6) = −1.8, S′′(0) = 1, and S′′(6) = −1. Plot the five cubic splines and the points
on the same coordinate system.

4. Use your programs from Problem 2 to find the five different cubic splines for the
points (0, 0), (1, 4), (2, 8), (3, 9), (4, 9), (5, 8), and (6, 6), where S′(0) = 1,
S′(6) = −2, S′′(0) = 1, and S′′(6) = −1. Plot the five cubic splines and the points
on the same coordinate system.

5. The accompanying table gives the hourly temperature readings (Fahrenheit) during
a 12-hour period in a suburb of Los Angeles. Find the natural cubic spline for the
data. Graph the natural cubic spline and the data on the same coordinate system. Use
the natural cubic spline and the results of part (a) of Exercise 12 to approximate the
average temperature during the 12-hour period.

Time, a.m. Degrees Time, a.m. Degrees

1 58 7 57
2 58 8 58
3 58 9 60
4 58 10 64
5 57 11 67
6 57 Noon 68

6. Approximate the graph of f (x) = x − cos(x3) over the interval [−3, 3] using a
clamped cubic spline.

5.4 Fourier Series and Trigonometric Polynomials

Scientists and engineers often study physical phenomena, such as light and sound, that
have a periodic character. They are described by functions g(x) that are periodic,

(1) g(x + P) = g(x) for all x .

The number P is called a period of the function.
It will suffice to consider functions that have period 2π . If g(x) has period P , then

f (x) = g(Px/2π) will be periodic with period 2π . This is verified by the observation
that

(2) f (x + 2π) = g

(
Px

2π
+ P

)
= g

(
Px

2π

)
= f (x).

Henceforth in this section we shall assume that f (x) is a function that is periodic with
period 2π , that is,

(3) f (x + 2π) = f (x) for all x .

298 CHAP. 5 CURVE FITTING

x

y

y = f (x)

0

Figure 5.17 A continuous function f (x) with period 2π .

x

y

y = f (x)

a = t0 t1 t2 tk − 2 tk − 1 tk = b…

…

Figure 5.18 A piecewise continuous function over [a, b].

The graph y = f (x) is obtained by repeating the portion of the graph in any interval
of length 2π , as shown in Figure 5.17.

Examples of functions with period 2π are sin(j x) and cos(j x), where j is an
integer. This raises the following question: Can a periodic function be represented
by the sum of terms involving a j cos(j x) and b j sin(j x)? We will soon see that the
answer is yes in all interesting cases.

Definition 5.2. The function f (x) is said to be piecewise continuous on [a, b] if
there exist values t0, t1, . . . , tK with a = t0 < t1 < · · · < tK = b such that f (x) is
continuous on each open interval ti−1 < x < ti for i = 1, 2, . . . , K , and f (x) has left-
and right-hand limits at each of the points ti . The situation is illustrated in Figure 5.18.

�

Definition 5.3. Assume that f (x) is periodic with period 2π and that f (x) is piece-
wise continuous on [-π , π]. The Fourier series S(x) for f (x) is

(4) S(x) = a0

2
+

∞∑
j=1

(a j cos(j x)+ b j sin(j x)),

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 299

where the coefficients a j and b j are computed with Euler’s formulas:

(5) a j = 1

π

∫ π

−π

f (x) cos(j x) dx for j = 0, 1, . . .

and

�(6) b j = 1

π

∫ π

−π

f (x) sin(j x) dx for j = 1, 2,

The factor 1
2 in the constant term a0/2 in the Fourier series (4) has been introduced

for convenience so that a0 could be obtained from the general formula (5) by setting
j = 0. Convergence of the Fourier series is discussed in the next result.

Theorem 5.5 (Fourier Expansion). Assume that S(x) is the Fourier series for f (x)

over [−π, π]. If f ′(x) is piecewise continuous on [−π, π] and has both a left- and
right-hand derivative at each point in this interval, then S(x) is convergent for all x ∈
[−π, π]. The relation

S(x) = f (x)

holds at all points x ∈ [−π, π], where f (x) is continuous. If x = a is a point of
discontinuity of f , then

S(a) = f (a−)+ f (a+)

2
,

where f (a−) and f (a+) denote the left- and right-hand limits, respectively. With this
understanding, we obtain the Fourier expansion:

(7) f (x) = a0

2
+

∞∑
j=1

(a j cos(j x)+ b j sin(j x)).

A brief outline of the derivation of formulas (5) and (6) is given at the end of the
subsection.

Example 5.13. Show that the function f (x) = x/2 for −π < x < π , extended periodi-
cally by the equation f (x + 2π) = f (x), has the Fourier series representation

f (x) =
∞∑
j=1

(−1) j+1

j
sin(j x) = sin(x)− sin(2x)

2
+ sin(3x)

3
− · · · .

Using Euler’s formulas and integration by parts, we get

a j = 1

π

∫ π

−π

x

2
cos(j x) dx = x sin(j x)

2π j
+ cos(j x)

2π j2

∣∣∣π−π
= 0

300 CHAP. 5 CURVE FITTING

y

x

y = S2(x)

y = S3(x)
y = S4(x)

y = f (x)1.5

1.0

0.5

−0.5

−1.0

−1.5

321−1−2−3

Figure 5.19 The function f (x) = x/2 over [−π, π] and its trigono-
metric approximations S2(x), S3(x), and S4(x).

for j = 1, 2, 3, . . . , and

b j = 1

π

∫ π

−π

x

2
sin(j x) dx = −x cos(j x)

2π j
+ sin(j x)

2π j2

∣∣∣π−π
= (−1) j+1

j

for j = 1, 2, 3, The coefficient a0 is obtained by a separate calculation:

a0 = 1

π

∫ π

−π

x

2
dx = x2

4π

∣∣∣π−π
= 0.

These calculations show that all the coefficients of the cosine functions are zero. The
graph of f (x) and the partial sums

S2(x) = sin(x)− sin(2x)

2
,

S3(x) = sin(x)− sin(2x)

2
+ sin(3x)

3
,

and

S4(x) = sin(x)− sin(2x)

2
+ sin(3x)

3
− sin(4x)

4

are shown in Figure 5.19. �

We now state some general properties of Fourier series. The proofs are left as
exercises.

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 301

Theorem 5.6 (Cosine Series). Suppose that f (x) is an even function; that is, sup-
pose that f (−x) = f (x) holds for all x . If f (x) has period 2π and if f (x) and f ′(x)

are piecewise continuous, then the Fourier series for f (x) involves only cosine terms:

(8) f (x) = a0

2
+

∞∑
j=1

a j cos(j x),

where

(9) a j = 2

π

∫ π

0
f (x) cos(j x) dx for j = 0, 1,

Theorem 5.7 (Sine Series). Suppose that f (x) is an odd function; that is, f (−x) =
− f (x) holds for all x . If f (x) has period 2π and if f (x) and f ′(x) are piecewise
continuous, then the Fourier series for f (x) involves only the sine terms:

(10) f (x) =
∞∑
j=1

b j sin(j x),

where

(11) b j = 2

π

∫ π

0
f (x) sin(j x) dx for j = 1, 2,

Example 5.14. Show that the function f (x) = |x | for −π < x < π , extended periodi-
cally by the equation f (x + 2π) = f (x), has the Fourier cosine representation

f (x) = π

2
− 4

π

∞∑
j=1

cos((2 j − 1)x)

(2 j − 1)2

= π

2
− 4

π

(
cos(x)+ cos(3x)

32
+ cos(5x)

52
+ · · ·

)
.

(12)

The function f (x) is an even function, so we can use Theorem 5.6 and need only to
compute the coefficients {a j }:

a j = 2

π

∫ π

0
x cos(j x) dx = 2x sin(j x)

π j
+ 2 cos(j x)

π j2

∣∣∣π
0

= 2 cos(jπ)− 2

π j2
= 2((−1) j − 1)

π j2
for j = 1, 2, 3,

Since ((−1) j − 1) = 0 when j is even, the cosine series will involve only the odd terms.
The odd coefficients have the pattern

a1 = −4

π
, a3 = −4

π32
, a5 = −4

π52
,

302 CHAP. 5 CURVE FITTING

The coefficient a0 is obtained by the separate calculation

a0 = 2

π

∫ π

0
x dx = x2

π

∣∣∣π
0
= π.

Therefore, we have found the desired coefficients in (12). �

Proof of Euler’s Formulas for Theorem 5.5. The following heuristic argument as-
sumes the existence and convergence of the Fourier series representation. To deter-
mine a0, we can integrate both sides of (7) and get∫ π

−π

f (x) dx =
∫ π

−π

a0

2
+

∞∑
j=1

(a j cos(j x)+ b j sin(j x))

 dx

=
∫ π

−π

a0

2
dx +

∞∑
j=1

a j

∫ π

−π

cos(j x) dx +
∞∑
j=1

b j

∫ π

−π

sin(j x) dx

= πa0 + 0+ 0.

(13)

Justification for switching the order of integration and summation requires a detailed
treatment of uniform convergence and can be found in advanced texts. Hence we have
shown that

(14) a0 = 1

π

∫ π

−π

f (x) dx .

To determine am , we let m > 0 be a fixed integer, multiply both sides of (7) by
cos(mx), and integrate both sides to obtain

∫ π

−π

f (x) cos(mx) dx = a0

2

∫ π

−π

cos(mx) dx +
∞∑
j=1

a j

∫ π

−π

cos(j x) cos(mx) dx

+
∞∑
j=1

b j

∫ π

−π

sin(j x) cos(mx) dx .

(15)

Equation (15) can be simplified by using the orthogonal properties of the trigonometric
functions, which are now stated. The value of the first term on the right-hand side
of (15) is

(16)
a0

2

∫ π

−π

cos(mx) dx = a0 sin(mx)

2m

∣∣∣π−π
= 0.

The value of the term involving cos(j x) cos(mx) is found by using the trigonometric
identity

(17) cos(j x) cos(mx) = 1

2
cos((j + m)x)+ 1

2
cos((j − m)x).

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 303

When j �= m, then (17) is used to get

a j

∫ π

−π

cos(j x) cos(mx) dx = 1

2
a j

∫ π

−π

cos((j + m)x) dx

+ 1

2
a j

∫ π

−π

cos((j − m)x) dx = 0+ 0 = 0.

(18)

When j = m, the value of the integral is

(19) am

∫ π

−π

cos(j x) cos(mx) dx = amπ.

The value of the term on the right side of (15) involving sin(j x) cos(mx) is found
by using the trigonometric identity

(20) sin(j x) cos(mx) = 1

2
sin((j + m)x)+ 1

2
sin((j − m)x).

For all values of j and m in (20), we obtain

b j

∫ π

−π

sin(j x) cos(mx) dx = 1

2
b j

∫ π

−π

sin((j + m)x) dx

+ 1

2
b j

∫ π

−π

sin((j − m)x) dx = 0+ 0 = 0.

(21)

Therefore, using the results of (16), (18), (19), and (21) in equation (15), we conclude
that

(22) πam =
∫ π

−π

f (x) cos(mx) dx, for m = 1, 2,

Therefore, Euler’s formula (5) is established. Euler’s formula (6) is proved
similarly. •

Trigonometric Polynomial Approximation

Definition 5.4. A series of the form

(23) TM (x) = a0

2
+

M∑
j=1

(a j cos(j x)+ b j sin(j x))

is called a trigonometric polynomial of order M . �

304 CHAP. 5 CURVE FITTING

Theorem 5.8 (Discrete Fourier Series). Suppose that {(x j , y j)}Nj=0 are N+1 points,
where y j = f (x j), and the abscissas are equally spaced:

(24) x j = −π + 2 jπ

N
for j = 0, 1, . . . , N .

If f (x) is periodic with period 2π and 2M < N , then there exists a trigonometric
polynomial TM (x) of the form (23) that minimizes the quantity

(25)
N∑

k=1

(f (xk)− TM (xk))
2.

The coefficients a j and b j of this polynomial are computed with the formulas

(26) a j = 2

N

N∑
k=1

f (xk) cos(j xk) for j = 0, 1, . . . , M ,

and

(27) b j = 2

N

N∑
k=1

f (xk) sin(j xk) for j = 1, 2, . . . , M .

Although formulas (26) and (27) are defined with the least-squares procedure, they
can also be viewed as numerical approximations to the integrals in Euler’s formulas (5)
and (6). Euler’s formulas give the coefficients for the Fourier series of a continuous
function, whereas formulas (26) and (27) give the trigonometric polynomial coeffi-
cients for curve fitting to data points. The next example uses data points generated by
the function f (x) = x/2 at discrete points. When more points are used, the trigono-
metric polynomial coefficients get closer to the Fourier series coefficients.

Example 5.15. Use the 12 equally spaced points xk = −π + kπ/6, for k = 1, 2, . . . , 12,
and find the trigonometric polynomial approximation for M = 5 to the 12 data points
{(xk, f (xk))}12

k=1, where f (x) = x/2. Also compare the results when 60 and 360 points
are used and with the first five terms of the Fourier series expansion for f (x) that is given
in Example 5.13.

Since the periodic extension is assumed, at a point of discontinuity, the function value
f (π) must be computed using the formula

(28) f (π) = f (π−)+ f (π+)

2
= π/2− π/2

2
= 0.

The function f (x) is an odd function; hence the coefficients for the cosine terms are all
zero (i.e., a j = 0 for all j). The trigonometric polynomial of degree M = 5 involves only
the sine terms, and when formula (27) is used with (28), we get

T5 (x) = 0.9770486 sin(x)− 0.4534498 sin(2x)+ 0.26179938 sin(3x)

− 0.1511499 sin(4x)+ 0.0701489 sin(5x).
(29)

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 305

y

x

y = T5(x)1.5

1.0

0.5

−0.5

−1.0

−1.5

321−1−2−3

Figure 5.20 The trigonometric polynomial T5(x) of degree
M = 5, based on 12 data points that lie on the line y = x/2.

Table 5.9 Comparison of Trigonometric Polynomial Coefficients for
Approximations to f (x) = x/2 over [−π, π]

Trigonometric polynomial coefficients
Fourier series
coefficients12 points 60 points 360 points

b1 0.97704862 0.99908598 0.99997462 1.0
b2 −0.45344984 −0.49817096 −0.49994923 −0.5
b3 0.26179939 0.33058726 0.33325718 0.33333333
b4 −0.15114995 −0.24633386 −0.24989845 −0.25
b5 0.07014893 0.19540972 0.19987306 0.2

The graph of T5(x) is shown in Figure 5.20.
The coefficients of the fifth-degree trigonometric polynomial change slightly when the

number of interpolation points increases to 60 and 360. As the number of points increases,
they get closer to the coefficients of the Fourier series expansion of f (x). The results are
compared in Table 5.9. �

The following program constructs matrices A and B that contain the coefficients a j
and b j , respectively, of the trigonometric polynomial (23) of order M .

306 CHAP. 5 CURVE FITTING

Program 5.4 (Trigonometric Polynomials). To construct the trigonometric poly-
nomial of order M of the form

P(x) = a0

2
+

M∑
j=1

(a j cos(j x)+ b j sin(j x))

based on the N equally spaced values xk = −π +2πk/N , for k = 1, 2, . . . , N . The
construction is possible provided that 2M + 1 ≤ N .

function [A,B]=tpcoeff(X,Y,M)

%Input - X is a vector of equally spaced abscissas in [-pi,pi]
% - Y is a vector of ordinates
% - M is the degree of the trigonometric polynomial
%Output - A is a vector containing the coefficients of cos(jx)
% - B is a vector containing the coefficients of sin(jx)

N=length(X)-1;
max1=fix((N-1)/2);

if M>max1
M=max1;

end

A=zeros(1,M+1);
B=zeros(1,M+1);
Yends=(Y(1)+Y(N+1))/2;
Y(1)=Yends;
Y(N+1)=Yends;
A(1)=sum(Y);

for j=1:M
A(j+1)=cos(j*X)*Y’;
B(j+1)=sin(j*X)*Y’;

end

A=2*A/N;
B=2*B/N;
A(1)=A(1)/2;

The following short program will evaluate the trigonometric polynomial P(x) of
order M from Program 5.4 at a particular value of x .

function z=tp(A,B,x,M)

z=A(1);
for j= 1:M

z=z+A(j+1)*cos(j*x)+B(j+1)*sin(j*x);
end

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 307

For example, the following sequence of commands in the MATLAB command
window will produce a graph analogous to Figure 5.20.

>>x=-pi:.01:pi;
>>y=tp(A,B,x,M);
>>plot(x,y,X,Y,’o’)

Exercises for Fourier Series and Trigonometric Polynomials

In Exercises 1 through 5, find the Fourier series representation of the given function.
Hint. Follow the procedures outlined in Examples 5.13 and 5.14. Graph each function
and the partial sums S2(x), S3(x), and S4(x) of its Fourier series representation on the
same coordinate system (see Figure 5.19).

1. f (x) =
{
−1 for −π < x < 0

1 for 0 < x < π
2. f (x) =

π

2
+ x for −π ≤ x < 0

π

2
− x for 0 ≤ x < π

3. f (x) =
{

0 for −π ≤ x < 0

x for 0 ≤ x < π
4. f (x) =

−1 for π

2 < x < π

1 for −π
2 < x < π

2

−1 for −π < x < −π
2

5. f (x) =

−π − x for −π ≤ x < −π/2

x for −π/2 ≤ x < π/2

π − x for π/2 ≤ x < π

6. In Exercise 1, set x = π/2 and show that

π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · .

7. In Exercise 2, set x = 0 and show that

π2

8
= 1+ 1

32
+ 1

52
+ 1

72
+ · · · .

8. Find the Fourier cosine series representation for the periodic function whose defini-
tion on one period is f (x) = x2/4 where −π ≤ x < π .

9. Suppose that f (x) is a periodic function with period 2P; that is, f (x + 2P) = f (x)

for all x . By making an appropriate substitution, show that Euler’s formulas (5) and

308 CHAP. 5 CURVE FITTING

(6) for f are

a0 = 1

P

∫ P

−P
f (x) dx

a j = 1

P

∫ P

−P
f (x) cos

(
jπx

P

)
dx for j = 1, 2, . . .

b j = 1

P

∫ P

−P
f (x) sin

(
jπx

P

)
dx for j = 1, 2,

In Exercises 10 through 12, use the results of Exercise 9 to find the Fourier series rep-
resentation of the given function. Graph f (x), S4(x), and S6(x) on the same coordinate
system.

10. f (x) =
{

0 for −2 ≤ x < 0

1 for 0 ≤ x < 2
11. f (x) =

−1 for −3 ≤ x < −1

x for −1 ≤ x < 1

1 for 1 ≤ x < 3

12. f (x) = −x2 + 9 for − 3 ≤ x < 3

13. Prove Theorem 5.6.

14. Prove Theorem 5.7.

Algorithms and Programs

1. Use Program 5.4 with N = 12 points and follow Example 5.15 to find the trigono-
metric polynomial of degree M = 5 for the equally spaced points {(xk, f (xk))}12

k=1,
where f (x) is the function in (a) Exercise 1, (b) Exercise 2, (c) Exercise 3, and
(d) Exercise 4. In each case, produce a graph of f (x), T5(x), and {(xk, f (xk))}12

k=1
on the same coordinate system.

2. Use Program 5.4 to find the coefficients of T5(x) in Example 5.15 when first 60 and
then 360 equally spaced points are used.

3. Modify Program 5.4 so that it will find the trigonometric polynomial of period 2P =
b − a when the data points are equally spaced over the interval [a, b].

4. Use your modification of Program 5.4 to find T5(x) for (a) f (x) in Exercise 10, using
12 equally spaced data points, and (b) f (x) in Exercise 12, using 60 equally spaced
data points. In each case, graph T5(x) and the data points on the same coordinate
system.

5. The temperature cycle (Fahrenheit) in a suburb of Los Angeles on November 8 is
given in Table 5.10. There are 24 data points.
(a) Find the trigonometric polynomial T7(x).
(b) Graph T7(x) and the 24 data points on the same coordinate system.
(c) Repeat parts (a) and (b) using temperatures from your locale.

SEC. 5.4 FOURIER SERIES AND TRIGONOMETRIC POLYNOMIALS 309

Table 5.10 Data for Problem 5

Time, p.m. Degrees Time, a.m. Degrees

1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60

10 60 10 64
11 59 11 67
Midnight 58 Noon 68

Table 5.11 Data for Problem 6

Calendar date Average degrees

Jan. 1 −14
Jan. 29 −9
Feb. 26 2
Mar. 26 15
Apr. 23 35
May 21 52
June 18 62
July 16 63
Aug. 13 58
Sept. 10 50
Oct. 8 34
Nov. 5 12
Dec. 3 −5

6. The yearly temperature cycle (Fahrenheit) for Fairbanks, Alaska, is given in Ta-
ble 5.11. There are 13 equally spaced data points, which correspond to a measurement
every 28 days.
(a) Find the trigonometric polynomial T6(x).
(b) Graph T6(x) and the 13 data points on the same coordinate system.

310 CHAP. 5 CURVE FITTING

5.5 Bézier Curves

Pierre Bézier at Renault and Paul de Casteljau at Citroën independently developed the
Bézier curve for CAD/CAM operations, in the 1970s. These parametrically defined
polynomials are a class of approximating splines. Bézier curves are the basis of the
entire Adobe PostScript drawing model that is used in the software products Adobe
Illustrator, Macromedia Freehand, and Fontographer. Bézier curves continue to be the
primary method of representing curves and surfaces in computer graphics (CAD/CAM,
computer-aided geometric design).

In Casteljau’s original development, Bézier curves were defined implicitly by a re-
cursive algorithm (see Property 1 below). The development of the properties of Bézier
curves will be facilitated by defining them explicitly in terms of Bernstein polynomials.

Definition 5.5. Bernstein polynomials of degree N are defined by

Bi,N (t) =
(

N

i

)
t i (1− t)N−i ,

for i = 0, 1, 2, . . . , N , where

(
N

i

)
= N !

i ! (N − i)! . �

In general, there are N + 1 Bernstein polynomials of degree N . For example, the
Bernstein polynomials of degrees 1, 2, and 3 are

B0,1(t) = 1− t, B1,1(t) = t;(1)

B0,2(t) = (1− t)2, B1,2(t) = 2t (1− t), B2,2(t) = t2; and(2)

B0,3(t) = (1− t)3, B1,3(t) = 3t (1− t)2, B2,3(t) = 3t2(1− t), B3,3(t) = t3;(3)

respectively.

Properties of Bernstein Polynomials

Property 1. Recurrence Relation

Bernstein polynomials can be generated in the following way. Set B0,0(t) = 1 and
Bi,N (t) = 0 for i < 0 or i > N , and use the recurrence relation

(4) Bi,N (t) = (1− t)Bi,N−1(t)+ t Bi−1,N−1(t) for i = 1, 2, 3, . . . , N − 1.

Property 2. Nonnegative on [0, 1]
The Bernstein polynomials are nonnegative over the interval [0, 1] (see Figure 5.21).

SEC. 5.5 BÉZIER CURVES 311

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B0,3(t) B3,3(t)

B1,3(t) B2,3(t)

t

Figure 5.21 Bernstein polynomials of degree three.

Property 3. The Bernstein polynomials form a partition of unity

(5)
N∑

i=0

Bi,N (t) = 1

Substituting x = t and y = 1− t into the binomial theorem

(x + y)N =
N∑

i=0

(
N

i

)
xi yN−i

yields
N∑

i=0

(
N

i

)
xi yN−i = (t + (1− t))N = 1N = 1.

Property 4. Derivatives

(6)
d

dt
Bi,N (t) = N (Bi−1,N−1(t)− Bi,N−1(t))

Formula (6) is established by taking the derivative of the Bernstein polynomial in Def-
inition 5.5.

d

dt
Bi,N (t) = d

dt

(
N

i

)
t i (1− t)N−i

= i N !
i ! (N − i)! t

i−1(1− t)N−i − (N − i)N !
i ! (N − i)! t

i (1− t)N−i−1

312 CHAP. 5 CURVE FITTING

= N (N − 1)!
(i − 1)! (N − i)! t

i−1(1− t)N−i − N (N − 1)!
i ! (N − i − 1)! t

i (1− t)N−i−1

= N

(
(N − 1)!

(i − 1)! (N − i)! t
i−1(1− t)N−i − (N − 1)!

i ! (N − i − 1)! t
i (1− t)N−i−1

)
= N

(
Bi−1,N−1(t)− Bi,N−1(t)

)
Property 5. Basis

The Bernstein polynomials of order N (Bi,N (t) for i = 0, 1, . . . , N) form a basis of
the space of all polynomials of degree less than or equal to N .

Property 5 states than any polynomial of degree less than or equal to N can be
written uniquely as a linear combination of the Bernstein polynomials of order N . The
concept of a basis of a vector space is introduced in Chapter 11.

Given a set of control points, {Pi }Ni=0, a Bézier curve of degree N is now defined
as a weighted sum of the Bernstein polynomials of degree N .

Definition 5.6. Given a set of control points {Pi }Ni=0, where Pi = (xi , yi), a Bézier
curve of degree N is

(7) P(t) =
N∑

i=0

Pi Bi,N (t),

where Bi,N (t), for i = 0, 1, . . . , N , are the Bernstein polynomials of degree N , and
t ∈ [0, 1]. �

In formula (7) the control points are ordered pairs representing x- and y-coordinates
in the plane. Without ambiguity the control points can be treated as vectors and the
corresponding Bernstein polynomials as scalars. Thus formula (7) can be represented
parametrically as P(t) = (x(t), y(t)), where

(8) x(t) =
N∑

i=0

xi Bi,N (t) and y(t) =
N∑

i=0

yi Bi,N (t),

and 0 ≤ t ≤ 1. The function P(t) is said to be a vector-valued function, or equivalently,
the range of the function is a set of points in the xy-plane.

Example 5.16. Find the Bézier curve which has the control points (2, 2), (1, 1.5), (3.5, 0),
and (4, 1).

Substituting the x- and y-coordinates of the control points and N = 3 into formula (8)
yields

x(t) = 2B0,3(t)+ 1B1,3(t)+ 3.5B2,3(t)+ 4B3,3(t)(9)

y(t) = 2B0,3(t)+ 1.5B1,3(t)+ 0B2,3(t)+ 1B3,3(t).(10)

SEC. 5.5 BÉZIER CURVES 313

2

1.5

1

0.5

0
0 0.5 1 1.5 2 3 42.5 3.5 4.5

x

y

P0

P1

P2

P3

Figure 5.22 Bézier curve of degree three and convex
hull of control points.

Substituting the Bernstein polynomials of degree three, found in formula (3), into formulas
(9) and(10) yields

x(t) = 2(1− t)3 + 3t (1− t)2 + 10.5t2(1− t)+ 4t3(11)

y(t) = 2(1− t)3 + 4.5t (1− t)2 + t3.(12)

Simplifying formulas (11) and (12) yields

P(t) = (2− 3t + 10.5t2 − 5.5t3, 2− 1.5t − 3t2 + 3.5t3),

where 0 ≤ t ≤ 1. �

The functions x(t) and y(t) in formulas (11) and (12) are polynomials and are
continuous and differentiable over the interval 0 ≤ t ≤ 1. Thus the graph of the Bézier
curve P(t) is a continuous and differentiable curve in the xy-plane (see Figure 5.22),
where 0 ≤ t ≤ 1. Note. P(0) = (2, 2) and P(1) = (4, 1). The graph of the curve starts
at the first control point (2, 2) and ends at the last control point (4, 1).

Properties of Bézier Curves

Property 1. The points P0 and P1 are on the curve P(t)

Substituting t = 0 into Definition 5.5 yields

Bi,N (0) =
{

1 for i = 0

0 for i �= 0.

314 CHAP. 5 CURVE FITTING

Similarly, Bi,N (1) = 1 for i = N and is zero for i = 0, 1, . . . , N − 1. Substituting
these results into Definition 5.6 yields

P(0) =
N∑

i=0

Pi Bi,N (0) = P0 and P(1) =
N∑

i=0

Pi Bi,N (1) = PN .

Thus the first and last points in the sequence of control points, {Pi }Ni=0, are the end-
points of the Bézier curve. Note. The remaining control points are not necessarily on
the curve.

In Example 5.16 there were four control points and the resulting components x(t)
and y(t) were third-degree polynomials. In general, when there are N + 1 control
points the resulting components will be polynomials of degree N . Since polynomials
are continuous and have continuous derivatives of all orders, it follows that the Bézier
curve in Definition 5.6 will be continuous and have derivatives of all orders.

Property 2. P(t) is continuous and has derivatives of all orders on the interval [0, 1]
The derivative of P(t), with respect to t , is

P′(t) = d

dt

N∑
i=0

Pi Bi,N (t)

=
N∑

i=0

Pi
d

dt
Bi,N (t)

=
N∑

i=0

Pi N (Bi−1,N−1(t)− Bi,N−1(t))

(Property 4 of Bernstein polynomials). Setting t = 0 and substituting Bi,N (0) = 1
for i = 0 and Bi,N (0) = 0 for i ≥ 1 (Definition 5.5) into the right-hand side of the
expression for P ′(t) and simplifying yields

P′(0) =
N∑

i=0

Pi N (Bi−1,N−1(0)− Bi,N−1(0)) = N (P1 − P0).

Similarly, P′(1) = N (PN − PN−1). In other words, the tangent lines to a Bézier curve
at the endpoints are parallel to the lines through the endpoints and the adjacent control
points. The property is illustrated in Figure 5.23.

Property 3. P′(0) = N(P1 − P0) and P′(1) = N(PN − PN−1)

The final property is based on the concept of a convex set. A subset C of the xy-plane
is said to be a convex set, provided that all the points on the line segment joining any

SEC. 5.5 BÉZIER CURVES 315

two points in C are also elements of the set C . For example, a line segment or a circle
and its interior are convex sets, while a circle without its interior is not a convex set.
The convex set concept extends naturally to higher-dimension spaces.

Definition 5.7. The convex hull of a set C is the intersection of all convex sets
containing C . �

Figure 5.22 shows the convex hull (the indicated quadrilateral and its interior) of
the control points for the Bézier curve from Example 5.16. In the xy-plane the convex
hull of a set of points, {Pi }Ni=0, may be visualized by placing pins at each point and
placing a rubber band around the resulting configuration.

A sum
∑N

i=0 mi Pi is said to be a convex combination of the points {Pi }Ni=0, pro-

vided that the set of coefficients m0, m1, . . . , m N are nonnegative and
∑N

i=0 mi = 1.
A convex combination of points must necessarily be a subset of the convex hull of the
set of points. It follows from properties 2 and 3 of the Bernstein polynomials that the
Bézier curve in formula (7) is a convex combination of the control points. Therefore,
the graph of the curve must lie in the convex hull of the control points.

Property 4. The Bézier curve lies in the convex hull of its set of control points

The properties indicate that the graph of a Bézier curve of degree N is a continu-
ous curve, bounded by the convex hull of the set of control points, {Pi }Ni=0, and that the
curve begins and ends at points P0 and PN , respectively. Bézier observed that the graph
is sequentially pulled toward each of the remaining control points P1, P2, . . . , PN−1.
For example, if the control points P1 and PN−1 are replaced by the control points
Q1 and QN−1, which are farther away (but in the same direction) from the respec-
tive endpoints, then the resulting Bézier curve will more closely approximate the tan-
gent line near the endpoints. Figure 5.23 illustrates the pulling and tangent effects
using the Bézier curve P(t) from Example 5.16 and the curve Q(t) with control points
(2, 2), (0, 1), (3,−1), and (4, 1). Clearly, Q1, P1, and P0 = Q0, and Q2, P2, and
P3 = Q3 are collinear, respectively.

The effectiveness of Bézier curves lies in the ease with which the shape of the
curve can be modified (mouse, keyboard, or other graphical interface) by making small
adjustments to the control points. Figure 5.24 shows four Bézier curves, of different
degrees, with the corresponding sets of control points sequentially connected to form
polygonal paths. The reader should observe that the polygonal paths provide a rough
sketch of the resulting Bézier curves. Changing the coordinates of any one control
point, say Pk , will change the shape of the entire curve over the parameter interval
0 ≤ t ≤ 1. The changes in the shape of the curve will be somewhat localized, since the
Bernstein polynomial Bk,N , corresponding to the control point Pk (formula (7)) , has
a maximum at the parameter value t = k/N . Thus the majority of the change in the
shape of the graph of the Bézier curve will occur near the point P(k/N). Consequently,
creating a curve of a specified shaped requires a relatively small number of changes to
the original set of control points.

316 CHAP. 5 CURVE FITTING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2

1.5

1

0.5

0

−0.5

−1

Q(t)

P(t)Q1

P1

P0 = Q0

P3 = Q3

P2

Q2

x

y

Figure 5.23 P(t), Q(t) and control points.

Figure 5.24 Bézier curves and polygonal paths.

SEC. 5.5 BÉZIER CURVES 317

4
3.5

3
2.5

2
1.5

1
0.5

0
�10 �5 0 5 10 15 20

x

y

Figure 5.25 Composite Bźier curves.

In practice, curves are produced using a sequence of Bézier curves sharing com-
mon endpoints. This process is analogous to that used in the creation of cubic splines.
In that case it was necessary to use a sequence of cubic polynomials to avoid the os-
cillatory behavior of polynomials of high degree. Property 4 shows that the oscillatory
behavior of higher-degree polynomials is not a problem with Bézier curves. Since
changing one control point changes the shape of a Bézier curve, it is simpler to break
the process into a series of Bézier curves and minimize the number of changes in the
control points.

Example 5.17. Find the composite Bézier curve for the four sets of control points

{(−9, 0), (−8, 1), (−8, 2.5), (−4, 2.5)}, {(−4, 2.5), (−3, 3.5), (−1, 4), (0, 4)}
{(0, 4), (2, 4), (3, 4), (5, 2)}, {(5, 2), (6, 2), (20, 3), (18, 0)}

Following the process outlined in Example 5.16 yields

P1(t) = (−9+ 3t − 3t2 + 5t3, 3t + 1.5t2 − 2t3)

P2(t) = (−4+ 3t + 3t2 − 2t3, 2.5+ 3t − 1.5t2)

P3(t) = (6t − 3t2 + 2t3, 4− 2t3)

P4(t) = (5+ 3t + 39t2 − 29t3, 2+ 3t2 − 5t3).

The graph of the composite Bézier curve and corresponding control points is shown in
Figure 5.25. �

The Bézier curves in Example 5.17 do not meet smoothly at the common endpoints.
To have two Bézier curves P(t) and Q(t) meet smoothly would require that PN = Q0
and P′(PN) = Q′(Q0). Property 3 indicates that it is sufficient to require that the
control points PN−1, PN = Q0, and Q1 be collinear. To illustrate, consider the Bézier
curves P(t) and Q(t) of degree three with the control point sets

{(0, 3), (1, 5), (2, 1), (3, 3)} and {(3, 3), (4, 5), (5, 1), (6, 3)},

318 CHAP. 5 CURVE FITTING

5

4.5

4

3.5

3

2.5

2

1.5

1
0 1 2 3 4 5 6

P(t)

Q1

P3 � Q0

Q(t)

P2

x

y

Figure 5.26 Matching derivatives at Bézier curves
at common endpoints.

respectively. Clearly, the control points (2, 1), (3, 3), and (4, 5) are collinear. Again,
following the process outlined in Example 5.16:

P(t) = (3t, 3+ 6t − 18t2 + 12t3)(13)

Q(t) = (3+ 3t, 3+ 6t − 18t2 + 12t3)(14)

and
P′(t) = (3, 6− 36t + 36t2) and Q′(t) = (3, 6− 36t + 36t2).

Substituting t = 1 and t = 0 into P′(t) and Q′(t), respectively, yields

P′(1) = (3, 6) = Q′(0)

The graphs of P(t) and Q(t) and the smoothness at the common endpoint are shown in
Figure 5.26.

The plot command is used to graph parametric curves in MATLAB. The Bézier
curve in Example 5.16 can be plotted as follows:

t=0:.01:1;
x=2-3*t+10.5*t.^2-5.5*t.^3;
y=2-1.5*t-3*t.^2+3.5*t.^3;
plot(x,y)

Exercises for Bézier Curves

1. Expand completely the Bernstein polynomials B2,4(t), B3,5(t), and B5,7(t).

2. Use Definition 5.5 to prove formula (4).

SEC. 5.5 BÉZIER CURVES 319

3. Show that the Bernstein polynomials are nonnegative over the interval [0, 1].
4. Verify formula (5) for the case N = 3 by carrying out the sum

∑3
i=0 Bi,3(t).

5. Use formula (6) to evaluate
d

dt
B3,5(t) at t = 1/3 and t = 2/3.

6. Prove that Bi,N (t) takes on its maximum value, over the interval [0, 1], at t = i/N .

7. Use Definition 5.5 to establish the formula t Bi,N (t) = i + 1

N + 1
Bi+1,N+1(t).

8. Find the Bézier curve of degree N for each set of control points.
(a) N = 3; {(1, 3), (3,−1), (2, 4), (3, 0)}
(b) N = 4; {(−2, 3), (−1, 3), (3, 5), (3, 4), (2, 3)}
(c) N = 5; {(1, 1), (2, 2), (3, 4), (4, 4), (5, 2), (6, 1)}

9. Find the Bézier curve of degree three with the control points (1, 1), (2, 3), (3, 5), and
(4, 7). Explain why, in general, N + 1 collinear control points will produce a linear
Bézier curve.

10. Show P′(1) = N (PN − PN−1).

11. Show that
(a) P′′(0) = N (N − 1)(P2 − 2P1 + P0)

(b) P′′(1) = N (N − 1)(PN − 2PN−1 + PN−2)

12. Determine the convex hull of each set of points.
(a) {(1, 1), (3, 0), (5,−1), (7,−2)}
(b) {(−4, 2), (0, 2), (−3, 5), (2, 5), (1, 2)}
(c) {(0, 0), (0, 1), (1/4, 1/4), (0, 1/2)}

Algorithms and Programs

1. Write a MATLAB program to generate and plot a Bézier curve. Construct the pro-
gram so that it accepts sets of control points as N × 2 matrices. The first and second
columns of the matrix should correspond to the x- and y-coordinates of the control
points. The program should be able to handle the cases N = 3, 4, and 5.

2. Use the program in Problem 1 to plot the Bézier curves from Exercise 8.

3. Write a MATLAB program to generate and plot a composite Bézier curve. Use the
program to generate and plot the composite Bézier curve for the three sets of control
points: {(0, 0), (1, 2), (1, 1), (3, 0)},
{(3, 0), (4,−1), (5,−2), (6, 1), (7, 0)}, and {(7, 0), (4,−3), (2,−1), (0, 0)}.

4. Use the programs from Problem 1 and 3 to create
(a) an infinity symbol: ∞.
(b) a lowercase beta: β.

6

Numerical Differentiation

Formulas for numerical derivatives are important in developing algorithms for solv-
ing boundary value problems for ordinary differential equations and partial differen-
tial equations (see Chapters 9 and 10). Standard examples of numerical differenti-
ation often use known functions so that the numerical approximation can be com-
pared with the exact answer. For illustration, we use the Bessel function J1(x), whose
tabulated values can be found in standard reference books. Eight equally spaced
points over [0, 7] are (0, 0.0000), (1, 0.4400), (2, 0.5767), (3, 0.3391), (4,−0.0660),

y

x

−0.4

(a)

−0.2

0.6

0.4

0.2

1 2 3 5 6 7

y

x

−0.4

(b)

−0.2

0.6

0.4

0.2

1 2 3 5 6 7

Figure 6.1 (a) The tangent to p2(x) at (2, 0.5767) with slope p′2(2) = −0.0505.
(b) The tangent to p4(x) at (2, 0.5767) with slope p′4(2) = −0.0618.

320

SEC. 6.1 APPROXIMATING THE DERIVATIVE 321

(5,−0.3276), (6,−0.2767), and (7,−0.004). The underlying principle is differentia-
tion of an interpolation polynomial. Let us focus our attention on finding J ′1(2). The
interpolation polynomial p2(x) = −0.0710+ 0.6982x − 0.1872x2 passes through the
three points (1, 0.4400), (2, 0.5767), and (3, 0.3391) and is used to obtain J ′1(2) ≈
p′2(2) = −0.0505. This quadratic polynomial p2(x) and its tangent line at (2, J1(2))

are shown in Figure 6.1(a). If five interpolation points are used, a better approximation
can be determined. The polynomial p4(x) = 0.4986x+0.011x2−0.0813x3+0.0116x4

passes through (0, 0.0000), (1, 0.4400), (2, 0.5767), (3, 0.3391), and (4,−0.0660)

and is used to obtain J ′1(2) ≈ p′4(2) = −0.0618. The quartic polynomial p4(x) and its
tangent line at (2, J1(2)) are shown in Figure 6.1(b). The true value for the derivative
is J ′1(2) = −0.0645, and the errors in p2(x) and p4(x) are −0.0140 and −0.0026,
respectively. In this chapter we develop the introductory theory needed to investigate
the accuracy of numerical differentiation.

6.1 Approximating the Derivative

Limit of the Difference Quotient

We now turn our attention to the numerical process for approximating the derivative
of f (x):

(1) f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

The method seems straightforward; choose a sequence {hk} so that hk → 0 and com-
pute the limit of the sequence

(2) Dk = f (x + hk)− f (x)

hk
for k = 1, 2, . . . , n,

The reader may notice that we will only compute a finite number of terms D1, D2, . . .,
DN in the sequence (2), and it appears that we should use DN for our answer. The
following question is often posed: Why compute D1, D2, . . . , DN−1? Equivalently,
we could ask: What value hN should be chosen so that DN is a good approximation to
the derivative f ′(x)? To answer this question, we must look at an example to see why
there is no simple solution.

For example, consider the function f (x) = ex and use the step sizes h = 1,
1/2, and 1/4 to construct the secant lines between the points (0, 1) and (h, f (h)),
respectively. As h gets small, the secant line approaches the tangent line as shown in
Figure 6.2. Although Figure 6.2 gives a good visualization of the process described
in (1), we must make numerical computations with h = 0.00001 to get an acceptable
numerical answer, and for this value of h the graphs of the tangent line and secant line
would be indistinguishable.

322 CHAP. 6 NUMERICAL DIFFERENTIATION

y

x

2.5

2.0

1.5

1.0

0.5

0.250.00 0.50 0.75 1.00

y = f (x)

Figure 6.2 Several secant lines for
y = ex .

Table 6.1 Finding the Difference Quotients Dk = (e1+hk − e)/hk

hk fk = f (1+ hk) fk − e Dk = (fk − e)/hk

h1= 0.1 3.004166024 0.285884196 2.858841960
h2= 0.01 2.745601015 0.027319187 2.731918700
h3= 0.001 2.721001470 0.002719642 2.719642000
h4= 0.0001 2.718553670 0.000271842 2.718420000
h5= 0.00001 2.718309011 0.000027183 2.718300000
h6= 10−6 2.718284547 0.000002719 2.719000000
h7= 10−7 2.718282100 0.000000272 2.720000000
h8= 10−8 2.718281856 0.000000028 2.800000000
h9= 10−9 2.718281831 0.000000003 3.000000000

h10= 10−10 2.718281828 0.000000000 0.000000000

Example 6.1. Let f (x) = ex and x = 1. Compute the difference quotients Dk using the
step sizes hk = 10−k for k = 1, 2, . . . , 10. Carry out nine decimal places in all calculations.

A table of the values f (1 + hk) and (f (1 + hk) − f (1))/hk that are used in the
computation of Dk is shown in Table 6.1. �

The largest value h1 = 0.1 does not produce a good approximation D1 ≈ f ′(1),
because the step size h1 is too large and the difference quotient is the slope of the secant
line through two points that are not close enough to each other. When formula (2) is
used with a fixed precision of nine decimal places, h9 produced the approximation
D9 = 3 and h10 produced D10 = 0. If hk is too small, then the computed function
values f (x + hk) and f (x) are very close together. The difference f (x + hk)− f (x)

can exhibit the problem of loss of significance due to the subtraction of quantities
that are nearly equal. The value h10 = 10−10 is so small that the stored values of
f (x+h10) and f (x) are the same, and hence the computed difference quotient is zero.

SEC. 6.1 APPROXIMATING THE DERIVATIVE 323

In Example 6.1 the mathematical value for the limit is f ′(1) ≈ 2.718281828. Observe
that the value h5 = 10−5 gives the best approximation, D5 = 2.7183.

Example 6.1 shows that it is not easy to find numerically the limit in equation (2).
The sequence starts to converge to e, and D5 is the closest; then the terms move away
from e. In Program 6.1 it is suggested that terms in the sequence {Dk} should be
computed until |DN+1−DN | ≥ |DN−DN−1|. This is an attempt to determine the best
approximation before the terms start to move away from the limit. When this criterion
is applied to Example 6.1, we have 0.0007 = |D6 − D5| > |D5 − D4| = 0.00012;
hence D5 is the answer we choose. We now proceed to develop formulas that give a
reasonable amount of accuracy for larger values of h.

Central-Difference Formulas
If the function f (x) can be evaluated at values that lie to the left and right of x , then
the best two-point formula will involve abscissas that are chosen symmetrically on both
sides of x .

Theorem 6.1 (Centered Formula of Order O(h2)). Assume that f ∈ C3[a, b] and
that x − h, x, x + h ∈ [a, b]. Then

(3) f ′(x) ≈ f (x + h)− f (x − h)

2h
.

Furthermore, there exists a number c = c(x) ∈ [a, b] such that

(4) f ′(x) = f (x + h)− f (x − h)

2h
+ Etrunc(f, h),

where

Etrunc(f, h) = −h2 f (3)(c)

6
= O(h2).

The term E(f, h) is called the truncation error.

Proof. Start with the second-degree Taylor expansions f (x) = P2(x)+ E2(x), about
x , for f (x + h) and f (x − h):

(5) f (x + h) = f (x)+ f ′(x)h + f (2)(x)h2

2! + f (3)(c1)h3

3!
and

(6) f (x − h) = f (x)− f ′(x)h + f (2)(x)h2

2! − f (3)(c2)h3

3! .

After (6) is subtracted from (5), the result is

(7) f (x + h)− f (x − h) = 2 f ′(x)h + ((f (3)(c1)+ f (3)(c2))h3

3! .

324 CHAP. 6 NUMERICAL DIFFERENTIATION

Since f (3)(x) is continuous, the intermediate value theorem can be used to find a
value c so that

(8)
f (3)(c1)+ f (3)(c2)

2
= f (3)(c).

This can be substituted into (7) and the terms rearranged to yield

(9) f ′(x) = f (x + h)− f (x − h)

2h
− f (3)(c)h2

3! .

The first term on the right side of (9) is the central-difference formula (3), the second
term is the truncation error, and the proof is complete. •

Suppose that the value of the third derivative f (3)(c) does not change too rapidly;
then the truncation error in (4) goes to zero in the same manner as h2, which is ex-
pressed by using the notation O(h2). When computer calculations are used, it is not
desirable to choose h too small. For this reason it is useful to have a formula for
approximating f ′(x) that has a truncation error term of the order O(h4).

Theorem 6.2 (Centered Formula of Order O(h4)). Assume that f ∈ C5[a, b] and
that x − 2h, x − h, x , x + h, x + 2h ∈ [a, b]. Then

(10) f ′(x) ≈ − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
.

Furthermore, there exists a number c = c(x) ∈ [a, b] such that

(11) f ′(x) = − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
+ Etrunc(f, h),

where

Etrunc(f, h) = h4 f (5)(c)

30
= O(h4).

Proof. One way to derive formula (10) is as follows. Start with the difference between
the fourth-degree Taylor expansions f (x) = P4(x)+ E4(x), about x , of f (x + h) and
f (x − h):

(12) f (x + h)− f (x − h) = 2 f ′(x)h + 2 f (3)(x)h3

3! + 2 f (5)(c1)h5

5! .

Then use the step size 2h, instead of h, and write down the following approximation:

(13) f (x + 2h)− f (x − 2h) = 4 f ′(x)h + 16 f (3)(x)h3

3! + 64 f (5)(c2)h5

5! .

SEC. 6.1 APPROXIMATING THE DERIVATIVE 325

Next multiply the terms in equation (12) by 8 and subtract (13) from it. The terms
involving f (3)(x) will be eliminated and we get

− f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

= 12 f ′(x)h + (16 f (5)(c1)− 64 f (5)(c2))h5

120
.

(14)

If f (5)(x) has one sign and if its magnitude does not change rapidly, we can find a
value c that lies in [x − 2h, x + 2h] so that

(15) 16 f (5)(c1)− 64 f (5)(c2) = −48 f (5)(c).

After (15) is substituted into (14) and the result is solved for f ′(x), we obtain

(16) f ′(x) = − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
+ f (5)(c)h4

30
.

The first term on the right side of (16) is the central-difference formula (10) and
the second term is the truncation error; the theorem is proved. •

Suppose that | f (5)(c)| is bounded for c ∈ [a, b]; then the truncation error in (11)
goes to zero in the same manner as h4, which is expressed with the notation O(h4).
Now we can make a comparison of the two formulas (3) and (10). Suppose that f (x)

has five continuous derivatives and that | f (3)(c)| and | f (5)(c)| are about the same.
Then the truncation error for the fourth-order formula (10) is O(h4) and will go to
zero faster than the truncation error O(h2) for the second-order formula (3). This
permits the use of a larger step size.

Example 6.2. Let f (x) = cos(x).

(a) Use formulas (3) and (10) with step sizes h = 0.1, 0.01, 0.001, and 0.0001, and cal-
culate approximations for f ′(0.8). Carry nine decimal places in all the calculations.

(b) Compare with the true value f ′(0.8) = − sin(0.8).
(a) Using formula (3) with h = 0.01, we get

f ′(0.8) ≈ f (0.81)− f (0.79)

0.02
≈ 0.689498433− 0.703845316

0.02
≈ −0.717344150.

Using formula (10) with h = 0.01, we get

f ′(0.8) ≈ − f (0.82)+ 8 f (0.81)− 8 f (0.79)+ f (0.78)

0.12

≈ −0.682221207+ 8(0.689498433)− 8(0.703845316)+ 0.710913538

0.12
≈ −0.717356108.

(b) The error in approximation for formulas (3) and (10) turns out to be−0.000011941 and
0.000000017, respectively. In this example, formula (10) gives a better approximation to
f ′(0.8) than formula (3) when h = 0.01. The error analysis will illuminate this example
and show why this happened . The other calculations are summarized in Table 6.2. �

326 CHAP. 6 NUMERICAL DIFFERENTIATION

Table 6.2 Numerical Differentiation Using Formulas (3) and (10)

Step Approximation by Error using Approximation by Error using
size formula (3) formula (3) formula (10) formula (10)

0.1 −0.716161095 −0.001194996 −0.717353703 −0.000002389
0.01 −0.717344150 −0.000011941 −0.717356108 0.000000017
0.001 −0.717356000 −0.000000091 −0.717356167 0.000000076
0.0001 −0.717360000 −0.000003909 −0.717360833 0.000004742

Error Analysis and Optimum Step Size
An important topic in the study of numerical differentiation is the effect of the com-
puter’s round-off error. Let us examine the formulas more closely. Assume that a
computer is used to make numerical computations and that

f (x0 − h) = y−1 + e−1 and f (x0 + h) = y1 + e1,

where f (x0− h) and f (x0+ h) are approximated by the numerical values y−1 and y1,
and e−1 and e1 are the associated round-off errors, respectively. The following result
indicates the complex nature of error analysis for numerical differentiation.

Corollary 6.1(a). Assume that f satisfies the hypotheses of Theorem 6.1 and use the
computational formula

(17) f ′(x0) ≈ y1 − y−1

2h
.

The error analysis is explained by the following equations:

(18) f ′(x0) = y1 − y−1

2h
+ E(f, h),

where

E(f, h) = Eround(f, h)+ Etrunc(f, h)

= e1 − e−1

2h
− h2 f (3)(c)

6
,

(19)

where the total error term E(f, h) has a part due to round-off error plus a part due to
truncation error.

Corollary 6.1(b). Assume that f satisfies the hypotheses of Theorem 6.1 and that nu-
merical computations are made. If |e−1| ≤ ε, |e1| ≤ ε, and M = maxa≤x≤b{| f (3)(x)|},
then

(20) |E(f, h)| ≤ ε

h
+ Mh2

6
,

SEC. 6.1 APPROXIMATING THE DERIVATIVE 327

and the value of h that minimizes the right-hand side of (20) is

(21) h =
(

3ε

M

)1/3

.

When h is small, the portion of (19) involving (e1 − e−1)/2h can be relatively
large. In Example 6.2, when h = 0.0001, this difficulty was encountered. The round-
off errors are

f (0.8001) = 0.696634970+ e1 where e1 ≈ −0.0000000003

f (0.7999) = 0.696778442+ e−1 where e−1 ≈ 0.0000000005.

The truncation error term is

−h2 f (3)(c)

6
≈ −(0.0001)2

(
sin(0.8)

6

)
≈ 0.000000001.

The error term E(f, h) in (19) can now be estimated:

E(f, h) ≈ −0.0000000003− 0.0000000005

0.0002
− 0.000000001

= −0.000004001.

Indeed, the computed numerical approximation for the derivative using h = 0.0001
is found by the calculation

f ′(0.8) ≈ f (0.8001)− f (0.7999)

0.0002
= 0.696634970− 0.696778442

0.0002
= −0.717360000,

and a loss of about four significant digits is evident. The error is −0.000003909 and
this is close to the predicted error, −0.000004001.

When formula (21) is applied to Example 6.2, we can use the bound | f (3)(x)| ≤
| sin(x)| ≤ 1 = M and the value ε = 0.5 × 10−9 for the magnitude of the round-
off error. The optimal value for h is easily calculated: h = (1.5 × 10−9/1)1/3 =
0.001144714. The step size h = 0.001 was closest to the optimal value 0.001144714
and it gave the best approximation to f ′(0.8) among the four choices involving for-
mula (3) (see Table 6.2 and Figure 6.3).

An error analysis of formula (10) is similar. Assume that a computer is used to
make numerical computations and that f (x0 + kh) = yk + ek .

Corollary 6.2(a). Assume that f satisfies the hypotheses of Theorem 6.2 and use the
computational formula

(22) f ′(x0) ≈ −y2 + 8y1 − 8y−1 + y−2

12h
.

328 CHAP. 6 NUMERICAL DIFFERENTIATION

Error bound

h
0.002 0.004

4 × 10 −6

2 × 10 −6

Figure 6.3 Finding the optimal
step size h = 0.001144714 when
formula (21) is applied to f (x) =
cos(x) in Example 6.2.

The error analysis is explained by the following equations:

(23) f ′(x0) = −y2 + 8y1 − 8y−1 + y−2

12h
+ E(f, h),

where

E(f, h) = Eround(f, h)+ Etrunc(f, h)

= −e2 + 8e1 − 8e−1 + e−2

12h
+ h4 f (5)(c)

30
,

(24)

where the total error term E(f, h) has a part due to round-off error plus a part due to
truncation error.

Corollary 6.2(b). Assume that f satisfies the hypotheses of Theorem 6.2 and that
numerical computations are made. If |ek | ≤ ε and M = maxa≤x≤b{| f (5)(x)|}, then

(25) |E(f, h)| ≤ 3ε

2h
+ Mh4

30
,

and the value of h that minimizes the right-hand side of (25) is

(26) h =
(

45ε

4M

)1/5

.

When formula (25) is applied to Example 6.2, we can use the bound | f (5)(x)| ≤
| sin(x)| ≤ 1 = M and the value ε = 0.5 × 10−9 for the magnitude of the round-
off error. The optimal value for h is easily calculated: h = (22.5 × 10−9/4)1/5 =
0.022388475. The step size h = 0.01 was closest to the optimal value 0.022388475,
and it gave the best approximation to f ′(0.8) among the four choices involving for-
mula (10) (see Table 6.2 and Figure 6.4).

SEC. 6.1 APPROXIMATING THE DERIVATIVE 329

Error bound

h
0.060.040.02

4 × 10 −7

2 × 10 −7

Figure 6.4 Finding the optimal step size
h = 0.022388475 when formula (26) is applied to
f (x) = cos(x) in Example 6.2.

We should not end the discussion of Example 6.2 without mentioning that numer-
ical differentiation formulas can be obtained by an alternative derivation. They can
be derived by differentiation of an interpolation polynomial. For example, the La-
grange form of the quadratic polynomial p2(x) that passes through the three points
(0.7, cos(0.7)), (0.8, cos(0.8)), and (0.9, cos(0.9)) is

p2(x) = 38.2421094(x − 0.8)(x − 0.9)− 69.6706709(x − 0.7)(x − 0.9)

+ 31.0804984(x − 0.7)(x − 0.8).

This polynomial can be expanded to obtain the usual form:

p2(x) = 1.046875165− 0.159260044x − 0.348063157x2.

A similar computation can be used to obtain the quartic polynomial p4(x) that passes
through the points (0.6, cos(0.6)), (0.7, cos(0.7)), (0.8, cos(0.8)), (0.9, cos(0.9)), and
(1.0, cos(1.0)):

p4(x) = 0.998452927+ 0.009638391x − 0.523291341x2

+ 0.026521229x3 + 0.028981100x4.

When these polynomials are differentiated, they produce p′2(0.8) = −0.716161095
and p′4(0.8) = −0.717353703, which agree with the values listed under h = 0.1 in
Table 6.2. The graphs of p2(x) and p4(x) and their tangent lines at (0.8, cos(0.8)) are
shown in Figure 6.5(a) and (b), respectively.

330 CHAP. 6 NUMERICAL DIFFERENTIATION

y

x

−1.0
(a)

−0.5

0.5

4321−1−2

y = p2(x)

y = cos(x)

y

x

−1.0
(b)

−0.5

0.5

4321−1−2

y = cos(x)

y = p4(x)

Figure 6.5 (a) The graph of y = cos(x) and the interpolating polynomial p2(x) used
to estimate f ′(0.8) ≈ p′2(0.8) = −0.716161095. (b) The graph of y = cos(x) and the
interpolating polynomial p4(x) used to estimate f ′(0.8) ≈ p′4(0.8) = −0.717353703.

Richardson’s Extrapolation

In this section we emphasize the relationship between formulas (3) and (10). Let
fk = f (xk) = f (x0 + kh), and use the notation D0(h) and D0(2h) to denote the
approximations to f ′(x0) that are obtained from (3) with step sizes h and 2h, respec-
tively:

(27) f ′(x0) ≈ D0(h)+ Ch2

and

(28) f ′(x0) ≈ D0(2h)+ 4Ch2.

If we multiply relation (27) by 4 and subtract relation (28) from this product, then the
terms involving C cancel and the result is

(29) 3 f ′(x0) ≈ 4D0(h)− D0(2h) = 4(f1 − f−1)

2h
− f2 − f−2

4h
.

Next solve for f ′(x0) in (29) and get

(30) f ′(x0) ≈ 4D0(h)− D0(2h)

3
= − f2 + 8 f1 − 8 f−1 + f−2

12h
.

The last expression in (30) is the central-difference formula (10).

Example 6.3. Let f (x) = cos(x). Use (27) and (28) with h = 0.01, and show how the
linear combination (4D0(h)− D0(2h))/3 in (30) can be used to obtain the approximation
to f ′(0.8) given in (10). Carry nine decimal places in all the calculations.

SEC. 6.1 APPROXIMATING THE DERIVATIVE 331

Use (27) and (28) with h = 0.01 to get

D0(h) ≈ f (0.81)− f (0.79)

0.02
≈ 0.689498433− 0.703845316

0.02
≈ −0.717344150

and

D0(2h) ≈ f (0.82)− f (0.78)

0.04
≈ 0.682221207− 0.710913538

0.04
≈ −0.717308275.

Now the linear combination in (30) is computed:

f ′(0.8) ≈ 4D0(h)− D0(2h)

3
≈ 4(−0.717344150)− (−0.717308275)

3
≈ −0.717356108.

This is exactly the same as the solution in Example 6.2 that used (10) directly to approxi-
mate f ′(0.8). �

The method of obtaining a formula for f ′(x0) of higher order from a formula of
lower order is called extrapolation. The proof requires that the error term for (3) can
be expanded in a series containing only even powers of h. We have already seen how
to use step sizes h and 2h to remove the term involving h2. To see how h4 is removed,
let D1(h) and D1(2h) denote the approximations to f ′(x0) of order O(h4) obtained
with formula (16) using step sizes h and 2h, respectively. Then

(31) f ′(x0) = − f2 + 8 f1 − 8 f−1 + f−2

24h
+ h4 f (5)(c1)

30
≈ D1(h)+ Ch4

and

(32) f ′(x0) = − f4 + 8 f2 − 8 f−2 + f−4

12h
+ 16h4 f (5)(c2)

30
≈ D1(2h)+ 16Ch4.

Suppose that f (5)(x) has one sign and does not change too rapidly; then the assump-
tion that f (5)(c1) ≈ f (5)(c2) can be used to eliminate the terms involving h4 in (31)
and (32), and the result is

(33) f ′(x0) ≈ 16D1(h)− D1(2h)

15
.

The general pattern for improving calculations is stated in the next result.

332 CHAP. 6 NUMERICAL DIFFERENTIATION

Theorem 6.3 (Richardson’s Extrapolation). Suppose that two approximations of
order O(h2k) for f ′(x0) are Dk−1(h) and Dk−1(2h) and that they satisfy

(34) f ′(x0) = Dk−1(h)+ c1h2k + c2h2k+2 + · · ·
and

(35) f ′(x0) = Dk−1(2h)+ 4kc1h2k + 4k+1c2h2k+2 + · · · .
Then an improved approximation has the form

(36) f ′(x0) = Dk(h)+ O(h2k+2) = 4k Dk−1(h)− Dk−1(2h)

4k − 1
+ O(h2k+2).

The following program implements the centered formula of order O(h2), equa-
tion (3), to approximate the derivative of a function at a given point. A sequence of
approximations {Dk} is generated, where the centered interval for Dk+1 is one-tenth as
long as the centered interval for Dk . The output is a matrix L=[H’ D’ E’], where H
is a vector containing the step sizes, D is a vector containing the approximations to the
derivative, and E is a vector containing the error bounds. Note. The function f needs
to be input as a string; that is, ’f’.

Program 6.1 (Differentiation Using Limits). To approximate f ′(x) numerically
by generating the sequence

f ′(x) ≈ Dk = f (x + 10−kh)− f (x − 10−kh)

2(10−kh)
for k = 0, . . . , n

until |Dn+1− Dn| ≥ |Dn − Dn−1| or |Dn − Dn−1| < tolerance, which is an attempt
to find the best approximation f ′(x) ≈ Dn .

function [L,n]=difflim(f,x,toler)

%Input - f is the function input as a string ’f’
% - x is the differentiation point
% - toler is the tolerance for the error
%Output-L=[H’ D’ E’]:
% H is the vector of step sizes
% D is the vector of approximate derivatives
% E is the vector of error bounds
% - n is the coordinate of the ‘‘best approximation’’

max1=15;
h=1;
H(1)=h;
D(1)=(feval(f,x+h)-feval(f,x-h))/(2*h);

SEC. 6.1 APPROXIMATING THE DERIVATIVE 333

E(1)=0;
R(1)=0;

for n=1:2
h=h/10;
H(n+1)=h;
D(n+1)=(feval(f,x+h)-feval(f,x-h))/(2*h);
E(n+1)=abs(D(n+1)-D(n));
R(n+1)=2*E(n+1)/(abs(D(n+1))+abs(D(n))+eps);

end

n=2;

while((E(n)>E(n+1))&(R(n)>toler))&n<max1
h=h/10;
H(n+2)=h;
D(n+2)=(feval(f,x+h)-feval(f,x-h))/(2*h);
E(n+2)=abs(D(n+2)-D(n+1));
R(n+2)=2*E(n+2)/(abs(D(n+2))+abs(D(n+1))+eps);
n=n+1;

end

n=length(D)-1;
L=[H’ D’ E’];

Program 6.2 implements Theorem 6.3 (Richardson’s extrapolation). Note that the
expression for the elements in row j is algebraically equivalent to formula (36).

Program 6.2 (Differentiation Using Extrapolation). To approximate f ′(x) nu-
merically by generating a table of approximations D(j, k) for k ≤ j , and using
f ′(x) ≈ D(n, n) as the final answer. The approximations D(j, k) are stored in a
lower-triangular matrix. The first column is

D(j, 0) = f (x + 2− j h)− f (x − 2− j h)

2− j+1h

and the elements in row j are

D(j, k) = D(j, k − 1)+ D(j, k − 1)− D(j − 1, k − 1)

4k − 1
for 1 ≤ k ≤ j .

function [D,err,relerr,n]=diffext(f,x,delta,toler)

%Input -f is the function input as a string ’f’
% - delta is the tolerance for the error
% - toler is the tolerance for the relative error
%Output - D is the matrix of approximate derivatives
% - err is the error bound

334 CHAP. 6 NUMERICAL DIFFERENTIATION

% - relerr is the relative error bound
% - n is the coordinate of the ‘‘best approximation’’

err=1;
relerr=1;
h=1;
j=1;
D(1,1)=(feval(f,x+h)-feval(f,x-h))/(2*h);

while relerr>toler & err>delta &j<12
h=h/2;
D(j+1,1)=(feval(f,x+h)-feval(f,x-h))/(2*h);
for k=1:j

D(j+1,k+1)=D(j+1,k)+(D(j+1,k)-D(j,k))/((4^k)-1);
end
err=abs(D(j+1,j+1)-D(j,j));
relerr=2*err/(abs(D(j+1,j+1))+abs(D(j,j))+eps);
j=j+1;

end
[n,n]=size(D);

Exercises for Approximating the Derivative

1. Let f (x) = sin(x), where x is measured in radians.

(a) Calculate approximations to f ′(0.8) using formula (3) with h = 0.1, h = 0.01,
and h = 0.001. Carry eight or nine decimal places.

(b) Compare with the value f ′(0.8) = cos(0.8).

(c) Compute bounds for the truncation error (4). Use

| f (3)(c)| ≤ cos(0.7) ≈ 0.764842187

for all cases.

2. Let f (x) = ex .

(a) Calculate approximations to f ′(2.3) using formula (3) with h = 0.1, h = 0.01,
and h = 0.001. Carry eight or nine decimal places.

(b) Compare with the value f ′(2.3) = e2.3.

(c) Compute bounds for the truncation error (4). Use

| f (3)(c)| ≤ e2.4 ≈ 11.02317638

for all cases.

SEC. 6.1 APPROXIMATING THE DERIVATIVE 335

3. Let f (x) = sin(x), where x is measured in radians.
(a) Calculate approximations to f ′(0.8) using formula (10) with h = 0.1 and h =

0.01, and compare with f ′(0.8) = cos(0.8).
(b) Use the extrapolation formula in (29) to compute the approximations to f ′(0.8)

in part (a).
(c) Compute bounds for the truncation error (11). Use

| f (5)(c)| ≤ cos(0.6) ≈ 0.825335615

for both cases.

4. Let f (x) = ex .
(a) Calculate approximations to f ′(2.3) using formula (10) with h = 0.1 and h =

0.01, and compare with f ′(2.3) = e2.3.
(b) Use the extrapolation formula in (29) to compute the approximations to f ′(2.3)

in part (a).
(c) Compute bounds for the truncation error (11). Use

| f (5)(c)| ≤ e2.5 ≈ 12.18249396

for both cases.

5. Compare the numerical differentiation formulas (3) and (10). Let f (x) = x3 and find
approximations for f ′(2).
(a) Use formula (3) with h = 0.05.
(b) Use formula (10) with h = 0.05.
(c) Compute bounds for the truncation errors (4) and (11).

6. (a) Use Taylor’s theorem to show that

f (x + h) = f (x)+ h f ′(x)+ h2 f (2)(c)

2
, where |c − x | < h.

(b) Use part (a) to show that the difference quotient in equation (2) has error of
order O(h) = −h f (2)(c)/2.

(c) Why is formula (3) better to use than formula (2)?

7. Partial differentiation formulas. The partial derivative fx (x, y) of f (x, y) with re-
spect to x is obtained by holding y fixed and differentiating with respect to x . Simi-
larly, fy(x, y) is found by holding x fixed and differentiating with respect to y. For-
mula (3) can be adapted to partial derivatives

(1)
fx (x, y) = f (x + h, y)− f (x − h, y)

2h
+ O(h2),

fy(x, y) = f (x, y + h)− f (x, y − h)

2h
+ O(h2).

(a) Let f (x, y) = xy/(x + y). Calculate approximations to fx (2, 3) and fy(2, 3)

using the formulas in (1) with h = 0.1, 0.01, and 0.001. Compare with the
values obtained by differentiating f (x, y) partially.

336 CHAP. 6 NUMERICAL DIFFERENTIATION

(b) Let z = f (x, y) = arctan(y/x), where z is in radians. Calculate approximations
to fx (3, 4) and fy(3, 4) using the formulas in (1) with h = 0.1, 0.01, and 0.001.
Compare with the values obtained by differentiating f (x, y) partially.

8. Complete the details that show how (33) is obtained from equations (31) and (32).

9. (a) Show that (21) is the value of h that minimizes the right-hand side of (20).
(b) Show that (26) is the value of h that minimizes the right-hand side of (25).

10. The voltage E = E(t) in an electrical circuit obeys the equation E(t) = L(d I/dt)+
RI (t), where R is resistance and L is inductance. Use L = 0.05 and R = 2 and
values for I (t) in the table following.

t I (t)

1.0 8.2277
1.1 7.2428
1.2 5.9908
1.3 4.5260
1.4 2.9122

(a) Find I ′(1.2) by numerical differentiation, and use it to compute E(1.2).
(b) Compare your answer with I (t) = 10e−t/10 sin(2t).

11. The distance D = D(t) traveled by an object is given in the table following.

t D(t)

8.0 17.453
9.0 21.460

10.0 25.752
11.0 30.301
12.0 35.084

(a) Find the velocity V (10) by numerical differentiation.
(b) Compare your answer with D(t) = −70+ 7t + 70e−t/10.

12. Let f (x) be given by the table following. The inherent round-off error has the bound
|ek | ≤ 5× 10−6. Use the rounded values in your calculations.

x f (x) = cos(x)

1.100 0.45360
1.190 0.37166
1.199 0.36329
1.200 0.36236
1.201 0.36143
1.210 0.35302
1.300 0.26750

SEC. 6.1 APPROXIMATING THE DERIVATIVE 337

(a) Find approximations for f ′(1.2) using formula (17) with h = 0.1, h = 0.01,
and h = 0.001.

(b) Compare with f ′(1.2) = − sin(1.2) ≈ −0.93204.
(c) Find the total error bound (19) for the three cases in part (a).

13. Let f (x) be given by the table following. The inherent round-off error has the bound
|ek | ≤ 5× 10−6. Use the rounded values in your calculations.

x f (x) = ln(x)

2.900 1.06471
2.990 1.09527
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.010 1.10194
3.100 1.13140

(a) Find approximations for f ′(3.0) using formula (17) with h = 0.1, h = 0.01,
and h = 0.001.

(b) Compare with f ′(3.0) = 1
3 ≈ 0.33333.

(c) Find the total error bound (19) for the three cases in part (a).

14. Suppose that a table of the function f (xk) is computed where the values are rounded
off to three decimal places and the inherent round-off error is 5×10−4. Also, assume
that | f (3)(c)| ≤ 1.5 and | f (5)(c)| ≤ 1.5.
(a) Find the best step size h for formula (17).
(b) Find the best step size h for formula (22).

15. Let f (x) be given by the table following. The inherent round-off error has the bound
|ek | ≤ 5× 10−6. Use the rounded values in your calculations.

x f (x) = cos(x)

1.000 0.54030
1.100 0.45360
1.198 0.36422
1.199 0.36329
1.200 0.36236
1.201 0.36143
1.202 0.36049
1.300 0.26750
1.400 0.16997

(a) Approximate f ′(1.2) using (22) with h = 0.1 and h = 0.001.
(b) Find the total error bound (24) for the two cases in part (a).

338 CHAP. 6 NUMERICAL DIFFERENTIATION

16. Let f (x) be given by the table following. The inherent round-off error has the bound
|ek | ≤ 5× 10−6. Use the rounded values in your calculations.

x f (x) = ln(x)

2.800 1.02962
2.900 1.06471
2.998 1.09795
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.002 1.09928
3.100 1.13140
3.200 1.16315

(a) Approximate f ′(3.0) using (22) with h = 0.1 and h = 0.001.

(b) Find the total error bound (24) for the two cases in part (a).

Algorithms and Programs

1. Use Program 6.1 to approximate the derivatives of each of the following functions
at the given value of x . Approximations should be accurate to 13 decimal places.
Note. It may be necessary to change the values of max1 and the initial value of h in
the program.

(a) f (x) = 60x45 − 32x33 + 233x5 − 47x2 − 77; x = 1/
√

3

(b) f (x) = tan

(
cos

(√
5+ sin(x)

1+ x2

))
; x = 1+√5

3

(c) f (x) = sin(cos(1/x)); x = 1/
√

2

(d) f (x) = sin(x3 − 7x2 + 6x + 8); x = 1−√5

2
(e) f (x) = xxx

; x = 0.0001

2. Modify Program 6.1 to implement the centered formula (10) of order O(h4). Use this
program to approximate the derivatives of the functions given in Problem 1. Again,
approximations should be accurate to 13 decimal places.

3. Use Program 6.2 to approximate the derivatives of the functions given in Problem 1.
Again, approximations should be accurate to 13 decimal places. Note. It may be
necessary to change the initial values of err, relerr, and h.

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 339

6.2 Numerical Differentiation Formulas

More Central-Difference Formulas

The formulas for f ′(x0) in the preceding section required that the function can be
computed at abscissas that lie on both sides of x , and they were referred to as central-
difference formulas. Taylor series can be used to obtain central-difference formulas for
the higher derivatives. The popular choices are those of order O(h2) and O(h4) and are
given in Tables 6.3 and 6.4. In these tables we use the convention that fk = f (x0+kh)

for k = −3, −2, −1, 0, 1, 2, 3.
For illustration, we will derive the formula for f ′′(x) of order O(h2) in Table 6.3.

Start with the Taylor expansions

(1) f (x + h) = f (x)+ h f ′(x)+ h2 f ′′(x)

2
+ h3 f (3)(x)

6
+ h4 f (4)(x)

24
+ · · ·

Table 6.3 Central-Difference Formulas of Order O(h2)

f ′(x0)≈ f1 − f−1

2h

f ′′(x0)≈ f1 − 2 f0 + f−1

h2

f (3)(x0)≈ f2 − 2 f1 + 2 f−1 − f−2

2h3

f (4)(x0)≈ f2 − 4 f1 + 6 f0 − 4 f−1 + f−2

h4

Table 6.4 Central-Difference Formulas of Order O(h4)

f ′(x0)≈ − f2 + 8 f1 − 8 f−1 + f−2

12h

f ′′(x0)≈ − f2 + 16 f1 − 30 f0 + 16 f−1 − f−2

12h2

f (3)(x0)≈ − f3 + 8 f2 − 13 f1 + 13 f−1 − 8 f−2 + f−3

8h3

f (4)(x0)≈ − f3 + 12 f2 − 39 f1 + 56 f0 − 39 f−1 + 12 f−2 − f−3

6h4

340 CHAP. 6 NUMERICAL DIFFERENTIATION

and

(2) f (x − h) = f (x)− h f ′(x)+ h2 f ′′(x)

2
− h3 f (3)(x)

6
+ h4 f (4)(x)

24
− · · · .

Adding equations (1) and (2) will eliminate the terms involving the odd derivatives
f ′(x), f (3)(x), f (5)(x), . . . :

(3) f (x + h)+ f (x − h) = 2 f (x)+ 2h2 f ′′(x)

2
+ 2h4 f (4)(x)

24
+ · · · .

Solving equation (3) for f ′′(x) yields

f ′′(x) = f (x + h)− 2 f (x)+ f (x − h)

h2
− 2h2 f (4)(x)

4!
− 2h4 f (6)(x)

6! − · · · − 2h2k−2 f (2k)(x)

(2k)! − · · · .
(4)

If the series in (4) is truncated at the fourth derivative, there exists a value c that
lies in [x − h, x + h], so that

(5) f ′′(x0) = f1 − 2 f0 + f−1

h2
− h2 f (4)(c)

12
.

This gives us the desired formula for approximating f ′′(x):

(6) f ′′(x0) ≈ f1 − 2 f0 + f−1

h2
.

Example 6.4. Let f (x) = cos(x).

(a) Use formula (6) with h = 0.1, 0.01, and 0.001 and find approximations to f ′′(0.8).
Carry nine decimal places in all calculations.

(b) Compare with the true value f ′′(0.8) = − cos(0.8).
(a) The calculation for h = 0.01 is

f ′′(0.8) ≈ f (0.81)− 2 f (0.80)+ f (0.79)

0.0001

≈ 0.689498433− 2(0.696706709)+ 0.703845316

0.0001
≈ −0.696690000.

(b) The error in this approximation is −0.000016709. The other calculations are summa-
rized in Table 6.5. The error analysis will illuminate this example and show why h = 0.01
was best. �

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 341

Table 6.5 Numerical Approximations to f ′′(x) for
Example 6.4

Step Approximation by Error using
size formula (6) formula (6)

h= 0.1 −0.696126300 −0.000580409
h= 0.01 −0.696690000 −0.000016709
h= 0.001 −0.696000000 −0.000706709

Error Analysis

Let fk = yk + ek , where ek is the error in computing f (xk), including noise in mea-
surement and round-off error. Then formula (6) can be written

(7) f ′′(x0) = y1 − 2y0 + y−1

h2
+ E(f, h).

The error term E(h, f) for the numerical derivative (7) will have a part due to round-
off error and a part due to truncation error:

(8) E(f, h) = e1 − 2e0 + e−1

h2
− h2 f (4)(c)

12
.

If it is assumed that each error ek is of the magnitude ε, with signs that accumulate
errors, and that | f (4)(x)| ≤ M , then we get the following error bound:

(9) |E(f, h)| ≤ 4ε

h2
+ Mh2

12
.

If h is small, then the contribution 4ε/h2 due to round-off error is large. When
h is large, the contribution Mh2/12 is large. The optimal step size will minimize the
quantity

(10) g(h) = 4ε

h2
+ Mh2

12
.

Setting g′(h) = 0 results in −8ε/h3 + Mh/6 = 0, which yields the equation
h4 = 48ε/M , from which we obtain the optimal value:

(11) h =
(

48ε

M

)1/4

.

When formula (11) is applied to Example 6.4, use the bound | f (4)(x)| ≤ | cos(x)| ≤
1 = M and the value ε = 0.5×10−9. The optimal step size is h = (24×10−9/1)1/4 =
0.01244666, and we see that h = 0.01 was closest to the optimal value.

342 CHAP. 6 NUMERICAL DIFFERENTIATION

Since the portion of the error due to round off is inversely proportional to the square
of h, this term grows when h gets small. This is sometimes referred to as the step-size
dilemma. One partial solution to this problem is to use a formula of higher order so
that a larger value of h will produce the desired accuracy. The formula for f ′′(x0) of
order O(h4) in Table 6.4 is

(12) f ′′(x0) = − f2 + 16 f1 − 30 f0 + 16 f−1 − f−2

12h2
+ E(f, h).

The error term for (12) has the form

(13) E(f, h) = 16ε

3h2
+ h4 f (6)(c)

90
,

where c lies in the interval [x − 2h, x + 2h]. A bound for |E(f, h)| is

(14) |E(f, h)| ≤ 16ε

3h2
+ h4 M

90
,

where | f (6)(x)| ≤ M . The optimal value for h is given by the formula

(15) h =
(

240ε

M

)1/6

.

Example 6.5. Let f (x) = cos(x).

(a) Use formula (12) with h = 1.0, 0.1, and 0.01 and find approximations to f ′′(0.8).
Carry nine decimal places in all the calculations.

(b) Compare with the true value f ′′(0.8) = − cos(0.8).

(c) Determine the optimal step size.
(a) The calculation for h = 0.1 is

f ′′(0.8)

≈ − f (1.0)+ 16 f (0.9)− 30 f (0.8)+ 16 f (0.7)− f (0.6)

0.12

≈ −0.540302306+ 9.945759488− 20.90120127+ 12.23747499− 0.825335615

0.12
≈ −0.696705958.

(b) The error in this approximation is −0.000000751. The other calculations are summa-
rized in Table 6.6.
(c) When formula (15) is applied, we can use the bound | f (6)(x)| ≤ | cos(x)| ≤ 1 = M and
the value ε = 0.5×10−9. These values give the optimal step size h = (120×10−9/1)1/6 =
0.070231219. �

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 343

Table 6.6 Numerical Approximations to f ′′(x) for
Example 6.5

Step Approximation by Error using
size formula (12) formula (12)

h= 1.0 −0.689625413 −0.007081296
h= 0.1 −0.696705958 −0.000000751
h= 0.01 −0.696690000 −0.000016709

Table 6.7 Forward- and Backward-Difference Formulas of
Order O(h2)

f ′(x0)≈ −3 f0 + 4 f1 − f2
2h

(
forward
difference

)
f ′(x0)≈ 3 f0 − 4 f−1 + f−2

2h

(
backward
difference

)
f ′′(x0)≈ 2 f0 − 5 f1 + 4 f2 − f3

h2

(
forward
difference

)
f ′′(x0)≈ 2 f0 − 5 f−1 + 4 f−2 − f−3

h2

(
backward
difference

)
f (3)(x0)≈ −5 f0 + 18 f1 − 24 f2 + 14 f3 − 3 f4

2h3

f (3)(x0)≈ 5 f0 − 18 f−1 + 24 f−2 − 14 f−3 + 3 f−4

2h3

f (4)(x0)≈ 3 f0 − 14 f1 + 26 f2 − 24 f3 + 11 f4 − 2 f5
h4

f (4)(x0)≈ 3 f0 − 14 f−1 + 26 f−2 − 24 f−3 + 11 f−4 − 2 f−5

h4

Generally, if numerical differentiation is performed, only about half the accuracy
of which the computer is capable is obtained. This severe loss of significant digits will
almost always occur unless we are fortunate to find a step size that is optimal. Hence
we must always proceed with caution when numerical differentiation is performed.
The difficulties are more pronounced when working with experimental data, where
the function values have been rounded to only a few digits. If a numerical derivative
must be obtained from data, we should consider curve fitting, by using least-squares
techniques, and differentiate the formula for the curve.

344 CHAP. 6 NUMERICAL DIFFERENTIATION

Differentiation of the Lagrange Polynomial

If the function must be evaluated at abscissas that lie on one side of x0, the central-
difference formulas cannot be used. Formulas for equally spaced abscissas that lie to
the right (or left) of x0 are called forward (or backward) -difference formulas. These
formulas can be derived by differentiation of the Lagrange interpolation polynomial.
Some of the common forward- and backward-difference formulas are given in Ta-
ble 6.7.

Example 6.6. Derive the formula

f ′′(x0) ≈ 2 f0 − 5 f1 + 4 f2 − f3

h2
.

Start with the Lagrange interpolation polynomial for f (t) based on the four points x0,
x1, x2, and x3.

f (t) ≈ f0
(t − x1)(t − x2)(t − x3)

(x0 − x1)(x0 − x2)(x0 − x3)
+ f1

(t − x0)(t − x2)(t − x3)

(x1 − x0)(x1 − x2)(x1 − x3)

+ f2
(t − x0)(t − x1)(t − x3)

(x2 − x0)(x2 − x1)(x2 − x3)
+ f3

(t − x0)(t − x1)(t − x2)

(x3 − x0)(x3 − x1)(x3 − x2)
.

Differentiate the products in the numerators twice and get

f ′′(t) ≈ f0
2((t − x1)+ (t − x2)+ (t − x3))

(x0 − x1)(x0 − x2)(x0 − x3)
+ f1

2((t − x0)+ (t − x2)+ (t − x3))

(x1 − x0)(x1 − x2)(x1 − x3)

+ f2
2((t − x0)+ (t − x1)+ (t − x3))

(x2 − x0)(x2 − x1)(x2 − x3)
+ f3

2((t − x0)+ (t − x1)+ (t − x2))

(x3 − x0)(x3 − x1)(x3 − x2)
.

Then substitution of t = x0 and the fact that xi − x j = (i − j)h produces

f ′′(x0) ≈ f0
2((x0 − x1)+ (x0 − x2)+ (x0 − x3))

(x0 − x1)(x0 − x2)(x0 − x3)

+ f1
2((x0 − x0)+ (x0 − x2)+ (x0 − x3))

(x1 − x0)(x1 − x2)(x1 − x3)

+ f2
2((x0 − x0)+ (x0 − x1)+ (x0 − x3))

(x2 − x0)(x2 − x1)(x2 − x3)

+ f3
2((x0 − x0)+ (x0 − x1)+ (x0 − x2))

(x3 − x0)(x3 − x1)(x3 − x2)

= f0
2((−h)+ (−2h)+ (−3h))

(−h)(−2h)(−3h)
+ f1

2((0)+ (−2h)+ (−3h))

(h)(−h)(−2h)

+ f2
2((0)+ (−h)+ (−3h))

(2h)(h)(−h)
+ f3

2((0)+ (−h)+ (−2h))

(3h)(2h)(h)

= f0
−12h

−6h3
+ f1

−10h

2h3
+ f2

−8h

−2h3
+ f3

−6h

6h3
= 2 f0 − 5 f1 + 4 f2 − f3

h2
,

and the formula is established. �

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 345

Example 6.7. Derive the formula

f ′′′(x0) ≈ −5 f0 + 18 f1 − 24 f2 + 14 f3 − 3 f4

2h3
.

Start with the Lagrange interpolation polynomial for f (t) based on the five points x0,
x1, x2, x3, and x4.

f (t) ≈ f0
(t − x1)(t − x2)(t − x3)(t − x4)

(x0 − x1)(x0 − x2)(x0 − x3)(x0 − x4)

+ f1
(t − x0)(t − x2)(t − x3)(t − x4)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)

+ f2
(t − x0)(t − x1)(t − x3)(t − x4)

(x2 − x0)(x2 − x1)(x2 − x3)(x2 − x4)

+ f3
(t − x0)(t − x1)(t − x2)(t − x4)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4)

+ f4
(t − x0)(t − x1)(t − x2)(t − x3)

(x4 − x0)(x4 − x1)(x4 − x2)(x4 − x3)

Differentiate the numerators three times, then use the substitution xi − x j = (i − j)h in the
denominators and get

f ′′′(t) ≈ f0
6((t − x1)+ (t − x2)+ (t − x3)+ (t − x4))

(−h)(−2h)(−3h)(−4h)

+ f1
6((t − x0)+ (t − x2)+ (t − x3)+ (t − x4))

(h)(−h)(−2h)(−3h)

+ f2
6((t − x0)+ (t − x1)+ (t − x3)+ (t − x4))

(2h)(h)(−h)(2h)

+ f3
6((t − x0)+ (t − x1)+ (t − x2)+ (t − x4))

(3h)(2h)(h)(−h)

+ f4
6((t − x0)+ (t − x1)+ (t − x2)+ (t − x3))

(4h)(3h)(2h)(h)
.

Then substitution of t = x0 in the form t − x j = x0 − x j = − jh produces

f ′′′(x0) ≈ f0
6((−h)+ (−2h)+ (−3h)+ (−4h))

24h4
+ f1

6((0)+ (−2h)+ (−3h)+ (−4h))

−6h4

+ f2
6((0)+ (−h)+ (−3h)+ (−4h))

4h4
+ f3

6((0)+ (−h)+ (−2h)+ (−4h))

−6h4

+ f4
6((0)+ (−h)+ (−2h)+ (−3h))

24h4

= f0
−60h

24h4
+ f1

54h

6h4
+ f2

−48h

4h4
+ f3

42h

6h4
+ f4

−36h

24h4

= −5 f0 + 18 f1 − 24 f2 + 14 f3 − 3 f4

2h3
,

and the formula is established. �

346 CHAP. 6 NUMERICAL DIFFERENTIATION

Differentiation of the Newton Polynomial
In this section we show the relationship between the three formulas of order O(h2) for
approximating f ′(x0), and a general algorithm is given for computing the numerical
derivative. In Section 4.3 we saw that the Newton polynomial P(t) of degree N = 2
that approximates f (t) using the nodes t0, t1, and t2 is

(16) P(t) = a0 + a1(t − t0)+ a2(t − t0)(t − t1),

where a0 = f (t0), a1 = (f (t1)− f (t0))/(t1 − t0), and

a2 =
f (t2)− f (t1)

t2 − t1
− f (t1)− f (t0)

t1 − t0
t2 − t0

.

The derivative of P(t) is

(17) P ′(t) = a1 + a2((t − t0)+ (t − t1)),

and when it is evaluated at t = t0, the result is

(18) P ′(t0) = a1 + a2(t0 − t1) ≈ f ′(t0).

Observe that the nodes {tk} do not need to be equally spaced for formulas (16)
through (18) to hold. Choosing the abscissas in different orders will produce different
formulas for approximating f ′(x).

Case (i): If t0 = x , t1 = x + h, and t2 = x + 2h, then

a1 = f (x + h)− f (x)

h
,

a2 = f (x)− 2 f (x + h)+ f (x + 2h)

2h2
.

When these values are substituted into (18), we get

P ′(x) = f (x + h)− f (x)

h
+ − f (x)+ 2 f (x + h)− f (x + 2h)

2h
.

This is simplified to obtain

(19) P ′(x) = −3 f (x)+ 4 f (x + h)− f (x + 2h)

2h
≈ f ′(x),

which is the second-order forward-difference formula for f ′(x).

Case (ii): If t0 = x , t1 = x + h, and t2 = x − h, then

a1 = f (x + h)− f (x)

h
,

a2 = f (x + h)− 2 f (x)+ f (x − h)

2h2
.

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 347

When these values are substituted into (18), we get

P ′(x) = f (x + h)− f (x)

h
+ − f (x + h)+ 2 f (x)− f (x − h)

2h
.

This is simplified to obtain

(20) P ′(x) = f (x + h)− f (x − h)

2h
≈ f ′(x),

which is the second-order central-difference formula for f ′(x).

Case (iii): If t0 = x , t1 = x − h, and t2 = x − 2h, then

a1 = f (x)− f (x − h)

h
,

a2 = f (x)− 2 f (x − h)+ f (x − 2h)

2h2
.

These values are substituted into (18) and simplified to get

(21) P ′(x) = 3 f (x)− 4 f (x − h)+ f (x − 2h)

2h
≈ f ′(x),

which is the second-order backward-difference formula for f ′(x).

The Newton polynomial P(t) of degree N that approximates f (t) using the nodes
t0, t1, . . . , tN is

P(t) = a0 + a1(t − t0)+ a2(t − t0)(t − t1)

+ a3(t − t0)(t − t1)(t − t2)+ · · · + aN (t − t0) · · · (t − tN−1).
(22)

The derivative of P(t) is

P ′(t) = a1 + a2((t − t0)+ (t − t1))

+ a3((t − t0)(t − t1)+ (t − t0)(t − t2)+ (t − t1)(t − t2))

+ · · · + aN

N−1∑
k=0

N−1∏
j=0
j �=k

(t − t j).
(23)

When P ′(t) is evaluated at t = t0, several of the terms in the summation are zero,
and P ′(t0) has the simpler form

P ′(t0) = a1 + a2(t0 − t1)+ a3(t0 − t1)(t0 − t2)+ · · ·
+ aN (t0 − t1)(t0 − t2)(t0 − t3) · · · (t0 − tN−1).

(24)

The kth partial sum on the right side of equation (24) is the derivative of the Newton
polynomial of degree k based on the first k nodes. If

|t0 − t1| ≤ |t0 − t2| ≤ · · · ≤ |t0 − tN |, and if {(t j , 0)}Nj=0

348 CHAP. 6 NUMERICAL DIFFERENTIATION

forms a set of N + 1 equally spaced points on the real axis, the kth partial sum is an
approximation to f ′(t0) of order O(hk−1).

Suppose that N = 5. If the five nodes are tk = x + hk for k = 0, 1, 2, 3, and 4,
then (24) is an equivalent way to compute the forward-difference formula for f ′(x) of
order O(h4). If the five nodes {tk} are chosen to be t0 = x , t1 = x + h, t2 = x − h,
t3 = x + 2h, and t4 = x − 2h, then (24) is the central-difference formula for f ′(x) of
order O(h4). When the five nodes are tk = x−kh, then (24) is the backward-difference
formula for f ′(x) of order O(h4).

The following program is an extension of Program 4.2 and can be used to imple-
ment formula (24). Note that the nodes do not need to be equally spaced. Also, it
computes the derivative at only one point f ′(x0).

Program 6.3 (Differentiation Based on N + 1 Nodes). To approximate f ′(x)

numerically by constructing the N th-degree Newton polynomial

P(x) = a0 + a1(x − x0)+ a2(x − x0)(x − x1)

+ a3(x − x0)(x − x1)(x − x2)+ · · · + aN (x − x0) · · · (x − xN−1)

and using f ′(x0) ≈ P ′(x0) as the final answer. The method must be used at x0.
The points can be rearranged {xk, x0, . . . , xk−1, xk+1, . . . , xN } to compute f ′(xk) ≈
P ′(xk).

function [A,df]=diffnew(X,Y)

%Input - X is the 1xn abscissa vector
% - Y is the 1xn ordinate vector
%Output - A is the 1xn vector containing the coefficients of
% the Nth-degree Newton polynomial
% - df is the approximate derivative

A=Y;
N=length(X);

for j=2:N
for k=N:-1:j

A(k)=(A(k)-A(k-1))/(X(k)-X(k-j+1));
end

end

x0=X(1);
df=A(2);
prod=1;
n1=length(A)-1;

for k=2:n1
prod=prod*(x0-X(k));
df=df+prod*A(k+1);

end

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 349

Exercises for Numerical Differentiation Formulas

1. Let f (x) = ln(x) and carry eight or nine decimal places.
(a) Use formula (6) with h = 0.05 to approximate f ′′(5).
(b) Use formula (6) with h = 0.01 to approximate f ′′(5).
(c) Use formula (12) with h = 0.1 to approximate f ′′(5).
(d) Which answer, (a), (b), or (c), is most accurate?

2. Let f (x) = cos(x) and carry eight or nine decimal places.
(a) Use formula (6) with h = 0.05 to approximate f ′′(1).
(b) Use formula (6) with h = 0.01 to approximate f ′′(1).
(c) Use formula (12) with h = 0.1 to approximate f ′′(1).
(d) Which answer, (a), (b), or (c), is most accurate?

3. Consider the table for f (x) = ln(x) rounded to four decimal places.

x f (x) = ln(x)

4.90 1.5892
4.95 1.5994
5.00 1.6094
5.05 1.6194
5.10 1.6292

(a) Use formula (6) with h = 0.05 to approximate f ′′(5).
(b) Use formula (6) with h = 0.01 to approximate f ′′(5).
(c) Use formula (12) with h = 0.05 to approximate f ′′(5).
(d) Which answer, (a), (b), or (c), is most accurate?

4. Consider the table for f (x) = cos(x) rounded to four decimal places.

x f (x) = cos(x)

0.90 0.6216
0.95 0.5817
1.00 0.5403
1.05 0.4976
1.10 0.4536

(a) Use formula (6) with h = 0.05 to approximate f ′′(1).
(b) Use formula (6) with h = 0.01 to approximate f ′′(1).
(c) Use formula (12) with h = 0.05 to approximate f ′′(1).
(d) Which answer, (a), (b), or (c), is most accurate?

5. Use the numerical differentiation formula (6) and h = 0.01 to approximate f ′′(1) for
the functions
(a) f (x) = x2 (b) f (x) = x4

350 CHAP. 6 NUMERICAL DIFFERENTIATION

6. Use the numerical differentiation formula (12) and h = 0.1 to approximate f ′′(1) for
the functions
(a) f (x) = x4 (b) f (x) = x6

7. Use the Taylor expansions for f (x + h), f (x − h), f (x + 2h), and f (x − 2h) and
derive the central-difference formula:

f (3)(x) ≈ f (x + 2h)− 2 f (x + h)+ 2 f (x − h)− f (x − 2h)

2h3
.

8. Use the Taylor expansions for f (x + h), f (x − h), f (x + 2h), and f (x − 2h) and
derive the central-difference formula:

f (4)(x) ≈ f (x + 2h)− 4 f (x + h)+ 6 f (x)− 4 f (x − h)+ f (x − 2h)

h4
.

9. Find the approximations to f ′(xk) of order O(h2) at each of the four points in the
tables.
(a)

x f (x)

0.0 0.989992
0.1 0.999135
0.2 0.998295
0.3 0.987480

(b)
x f (x)

0.0 0.141120
0.1 0.041581
0.2 −0.058374
0.3 −0.157746

10. Use the approximations

f ′
(

x + h

2

)
≈ f1 − f0

h
and f ′

(
x − h

2

)
≈ f0 − f−1

h

and derive the approximation

f ′′(x) ≈ f1 − 2 f0 + f−1

h2
.

11. Use formulas (16) through (18) and derive a formula for f ′(x) based on the abscissas
t0 = x , t1 = x + h, and t2 = x + 3h.

12. Use formulas (16) through (18) and derive a formula for f ′(x) based on the abscissas
t0 = x , t1 = x − h, and t2 = x + 2h.

13. The numerical solution of a certain differential equation requires an approximation to
f ′′(x)+ f ′(x) of order O(h2).
(a) Find the central-difference formula for f ′′(x) + f ′(x) by adding the formulas

for f ′(x) and f ′′(x) of order O(h2).
(b) Find the forward-difference formula for f ′′(x)+ f ′(x) by adding the formulas

for f ′(x) and f ′′(x) of order O(h2).
(c) What would happen if a formula for f ′(x) of order O(h4) were added to a

formula for f ′′(x) of order O(h2)?

SEC. 6.2 NUMERICAL DIFFERENTIATION FORMULAS 351

14. Critique the following argument. Taylor’s formula can be used to get the representa-
tions

f (x + h) = f (x)+ h f ′(x)+ h2 f ′′(x)

2
+ h3 f (3)(c)

6

and

f (x − h) = f (x)− h f ′(x)+ h2 f ′′(x)

2
− h3 f (3)(c)

6
.

Adding these quantities results in

f (x + h)+ f (x − h) = 2 f (x)+ h2 f ′′(x),

which can be solved to obtain an exact formula for f ′′(x):

f ′′(x) = f (x + h)− 2 f (x)+ f (x − h)

h2
.

Algorithms and Programs

1. Modify Program 6.3 so that it will calculate P ′(xM) for M = 1, 2, . . . , N + 1.

7

Numerical Integration

Numerical integration is a primary tool used by engineers and scientists to obtain ap-
proximate answers for definite integrals that cannot be solved analytically. In the area
of statistical thermodynamics, the Debye model for calculating the heat capacity of a
solid involves the following function;

�(x) =
∫ x

0

t3

et − 1
dt.

Since there is no analytic expression for �(x), numerical integration must be used to
obtain approximate values. For example, the value �(5) is the area under the curve

y

t

1.5

1.0

0.5

10 2 3 4 5 6 7

y = f (t)

Figure 7.1 The area under the
curve y = f (t) for 0 ≤ t ≤ 5.

352

SEC. 7.1 INTRODUCTION TO QUADRATURE 353

Table 7.1 Values of �(x)

x �(x)

1.0 0.2248052
2.0 1.1763426
3.0 2.5522185
4.0 3.8770542
5.0 4.8998922
6.0 5.5858554
7.0 6.0031690
8.0 6.2396238
9.0 6.3665739

10.0 6.4319219

y = f (t) = t3/(et − 1) for 0 ≤ t ≤ 5 (see Figure 7.1). The numerical approximation
for �(5) is

�(5) =
∫ 5

0

t3

et − 1
dt ≈ 4.8998922.

Each additional value of �(x) must be determined by another numerical integration.
Table 7.1 lists several of these approximations over the interval [1, 10].

The purpose of this chapter is to develop the basic principles of numerical inte-
gration. In Chapter 9, numerical integration formulas are used to derive the predictor-
corrector methods for solving differential equations.

7.1 Introduction to Quadrature

We now approach the subject of numerical integration. The goal is to approximate the
definite integral of f (x) over the interval [a, b] by evaluating f (x) at a finite number
of sample points.

Definition 7.1. Suppose that a = x0 < x1 < · · · < xM = b. A formula of the form

(1) Q[f] =
M∑

k=0

wk f (xk) = w0 f (x0)+ w1 f (x1)+ · · · + wM f (xM)

with the property that

(2)
∫ b

a
f (x) dx = Q[f] + E[f]

354 CHAP. 7 NUMERICAL INTEGRATION

is called a numerical integration or quadrature formula. The term E[f] is called the
truncation error for integration. The values {xk}Mk=0 are called the quadrature nodes,
and {wk}Mk=0 are called the weights. �

Depending on the application, the nodes {xk} are chosen in various ways. For the
trapezoidal rule, Simpson’s rule, and Boole’s rule, the nodes are chosen to be equally
spaced. For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certain
Legendre polynomials. When the integration formula is used to develop a predictor
formula for differential equations, all the nodes are chosen less than b. For all applica-
tions, it is necessary to know something about the accuracy of the numerical solution.

Definition 7.2. The degree of precision of a quadrature formula is the positive inte-
ger n such that E[Pi] = 0 for all polynomials Pi (x) of degree i ≤ n, but for which
E[Pn+1] �= 0 for some polynomial Pn+1(x) of degree n + 1. �

The form of E[Pi] can be anticipated by studying what happens when f (x) is a
polynomial. Consider the arbitrary polynomial

Pi (x) = ai x
i + ai−1xi−1 + · · · + a1x + a0

of degree i . If i ≤ n, then P(n+1)
i (x) ≡ 0 for all x , and P(n+1)

n+1 (x) = (n + 1)!an−1 for
all x . Thus it is not surprising that the general form for the truncation error term is

(3) E[f] = K f (n+1)(c),

where K is a suitably chosen constant and n is the degree of precision. The proof of
this general result can be found in advanced books on numerical integration.

The derivation of quadrature formulas is sometimes based on polynomial interpo-
lation. Recall that there exists a unique polynomial PM (x) of degree ≤ M passing
through the M + 1 equally spaced points {(xk, f (xk))}Mk=0. When this polynomial is
used to approximate f (x) over [a, b], and then the integral of f (x) is approximated
by the integral of PM (x), the resulting formula is called a Newton-Cotes quadrature
formula (see Figure 7.2). When the sample points x0 = a and xM = b are used,
it is called a closed Newton-Cotes formula. The next result gives the formulas when
approximating polynomials of degree M = 1, 2, 3, and 4 are used.

Theorem 7.1 (Closed Newton-Cotes Quadrature Formula). Assume that xk =
x0+ kh are equally spaced nodes and fk = f (xk). The first four closed Newton-Cotes

SEC. 7.1 INTRODUCTION TO QUADRATURE 355

0.50.0

1.5

1.0 1.5 2.0
x

1.0

0.5

y

y = f (x)

(a)

0.50.0

1.5

1.0 1.5 2.0
x

1.0

0.5

y

y = f (x)

(c)

0.50.0

1.5

1.0 1.5 2.0
x

1.0

0.5

y

y = f (x)

(b)

0.50.0

1.5

1.0 1.5 2.0
x

1.0

0.5

y

y = f (x)

(d)

Figure 7.2 (a) The trapezoidal rule integrates y = P1(x) over [x0, x1] = [0.0, 0.5].
(b) Simpson’s rule integrates y = P2(x) over [x0, x1] = [0.0, 1.0]. (c) Simpson’s 3

8 rule
integrates y = P3(x) over [x0, x3] = [0.0, 1.5]. (d) Boole’s rule integrates y = P4(x)

over [x0, x4] = [0.0, 2.0].

quadrature formulas are∫ x1

x0

f (x) dx ≈ h

2
(f0 + f1) (trapezoidal rule),(4) ∫ x2

x0

f (x) dx ≈ h

3
(f0 + 4 f1 + f2) (Simpson’s rule),(5) ∫ x3

x0

f (x) dx ≈ 3h

8
(f0 + 3 f1 + 3 f2 + f3) (Simpson’s 3

8 rule),(6) ∫ x4

x0

f (x) dx ≈ 2h

45
(7 f0 + 32 f1 + 12 f2 + 32 f3 + 7 f4)(7)

(Boole’s rule).

Corollary 7.1 (Newton-Cotes Precision). Assume that f (x) is sufficiently differen-
tiable; then E[f] for Newton-Cotes quadrature involves an appropriate higher deriva-
tive. The trapezoidal rule has degree of precision n = 1. If f ∈ C2[a, b], then

(8)
∫ x1

x0

f (x) dx = h

2
(f0 + f1)− h3

12
f (2)(c).

356 CHAP. 7 NUMERICAL INTEGRATION

Simpson’s rule has degree of precision n = 3. If f ∈ C4[a, b], then

(9)
∫ x2

x0

f (x) dx = h

3
(f0 + 4 f1 + f2)− h5

90
f (4)(c).

Simpson’s 3
8 rule has degree of precision n = 3. If f ∈ C4[a, b], then

(10)
∫ x3

x0

f (x) dx = 3h

8
(f0 + 3 f1 + 3 f2 + f3)− 3h5

80
f (4)(c).

Boole’s rule has degree of precision n = 5. If f ∈ C6[a, b], then

(11)
∫ x4

x0

f (x) dx = 2h

45
(7 f0 + 32 f1 + 12 f2 + 32 f3 + 7 f4)− 8h7

945
f (6)(c).

Proof of Theorem 7.1. Start with the Lagrange polynomial PM (x) based on x0, x1,
. . . , xM that can be used to approximate f (x):

(12) f (x) ≈ PM (x) =
M∑

k=0

fk L M,k(x),

where fk = f (xk) for k = 0, 1, . . . , M . An approximation for the integral is ob-
tained by replacing the integrand f (x) with the polynomial PM (x). This is the general
method for obtaining a Newton-Cotes integration formula:∫ xM

x0

f (x) dx ≈
∫ xM

x0

PM (x) dx

=
∫ xM

x0

(
M∑

k=0

fk L M,k(x)

)
dx =

M∑
k=0

(∫ xM

x0

fk L M,k(x) dx

)

=
M∑

k=0

(∫ xM

x0

L M,k(x) dx

)
fk =

M∑
k=0

wk fk .

(13)

The details for the general computations of the coefficients of wk in (13) are tedious.
We shall give a sample proof of Simpson’s rule, which is the case M = 2. This case
involves the approximating polynomial
(14)

P2(x) = f0
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ f1

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
+ f2

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
.

SEC. 7.1 INTRODUCTION TO QUADRATURE 357

Since f0, f1, and f2 are constants with respect to integration, the relations in (13) lead
to

∫ x2

x0

f (x) dx ≈ f0

∫ x2

x0

(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
dx + f1

∫ x2

x0

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
dx

+ f2

∫ x2

x0

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
dx .

(15)

We introduce the change of variable x = x0 + ht with dx = h dt to assist with
the evaluation of the integrals in (15). The new limits of integration are from t = 0 to
t = 2. The equal spacing of the nodes xk = x0 + kh leads to xk − x j = (k − j)h and
x − xk = h(t − k), which are used to simplify (15) and get

∫ x2

x0

f (x) dx ≈ f0

∫ 2

0

h(t − 1)h(t − 2)

(−h)(−2h)
h dt + f1

∫ 2

0

h(t − 0)h(t − 2)

(h)(−h)
h dt

+ f2

∫ 2

0

h(t − 0)h(t − 1)

(2h)(h)
h dt

= f0
h

2

∫ 2

0
(t2 − 3t + 2) dt − f1h

∫ 2

0
(t2 − 2t) dt + f2

h

2

∫ 2

0
(t2 − t) dt

= f0
h

2

(
t3

3
− 3t2

2
+ 2t

)∣∣∣∣∣
t=2

t=0

− f1h

(
t3

3
− t2

)∣∣∣∣∣
t=2

t=0

+ f2
h

2

(
t3

3
− t2

2

)∣∣∣∣∣
t=2

t=0

= f0
h

2

(
2

3

)
− f1h

(−4

3

)
+ f2

h

2

(
2

3

)
= h

3
(f0 + 4 f1 + f2),

(16)

and the proof is complete. We postpone a sample proof of Corollary 7.1 until Sec-
tion 7.2. •

Example 7.1. Consider the function f (x) = 1+ e−x sin(4x), the equally spaced quadra-
ture nodes x0 = 0.0, x1 = 0.5, x2 = 1.0, x3 = 1.5, and x4 = 2.0, and the correspond-
ing function values f0 = 1.00000, f1 = 1.55152, f2 = 0.72159, f3 = 0.93765, and
f4 = 1.13390. Apply the various quadrature formulas (4) through (7).

358 CHAP. 7 NUMERICAL INTEGRATION

The step size is h = 0.5, and the computations are∫ 0.5

0
f (x) dx ≈ 0.5

2
(1.00000+ 1.55152) = 0.63788∫ 1.0

0
f (x) dx ≈ 0.5

3
(1.00000+ 4(1.55152)+ 0.72159) = 1.32128∫ 1.5

0
f (x) dx ≈ 3(0.5)

8
(1.00000+ 3(1.55152)+ 3(0.72159)+ 0.93765)

= 1.64193∫ 2.0

0
f (x) dx ≈ 2(0.5)

45
(7(1.00000)+ 32(1.55152)+ 12(0.72159)

+ 32(0.93765)+ 7(1.13390)) = 2.29444. �

It is important to realize that the quadrature formulas (4) through (7) applied in the
illustration above give approximations for definite integrals over different intervals.
The graph of the curve y = f (x) and the areas under the Lagrange polynomials y =
P1(x), y = P2(x), y = P3(x), and y = P4(x) are shown in Figure 7.2(a) through (d),
respectively.

In Example 7.1 we applied the quadrature rules with h = 0.5. If the endpoints
of the interval [a, b] are held fixed, the step size must be adjusted for each rule. The
step sizes are h = b − a, h = (b − a)/2, h = (b − a)/3, and h = (b − a)/4 for the
trapezoidal rule, Simpson’s rule, Simpson’s 3

8 rule, and Boole’s rule, respectively. The
next example illustrates this point.

Example 7.2. Consider the integration of the function f (x) = 1 + e−x sin(4x) over the
fixed interval [a, b] = [0, 1]. Apply the various formulas (4) through (7).

For the trapezoidal rule, h = 1 and∫ 1

0
f (x) dx ≈ 1

2
(f (0)+ f (1))

= 1

2
(1.00000+ 0.72159) = 0.86079.

For Simpson’s rule, h = 1/2, and we get∫ 1

0
f (x) dx ≈ 1/2

3
(f (0)+ 4 f (1

2)+ f (1))

= 1

6
(1.00000+ 4(1.55152)+ 0.72159) = 1.32128.

For Simpson’s 3
8 rule, h = 1/3, and we obtain∫ 1

0
f (x) dx ≈ 3(1/3)

8
(f (0)+ 3 f (1

3)+ 3 f (2
3)+ f (1))

= 1

8
(1.00000+ 3(1.69642)+ 3(1.23447)+ 0.72159) = 1.31440.

SEC. 7.1 INTRODUCTION TO QUADRATURE 359

0.0

1.5

0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

y
y = f (x)

(a)

0.0

1.5

0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

y
y = f (x)

(b)

0.0

1.5

0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

y
y = f (x)

(c)

0.0

1.5

0.2 0.4 0.6 0.8 1.0
x

1.0

0.5

y
y = f (x)

(d)

Figure 7.3 (a) The trapezoidal rule used over [0, 1] yields the approximation 0.86079.
(b) Simpson’s rule used over [0, 1] yields the approximation 1.32128. (c) Simpson’s 3

8
rule used over [0, 1] yields the approximation 1.31440. (d) Boole’s rule used over [0, 1]
yields the approximation 1.30859.

For Boole’s rule, h = 1/4, and the result is∫ 1

0
f (x) dx ≈ 2(1/4)

45
(7 f (0)+ 32 f (1

4)+ 12 f (1
2)+ 32 f (3

4)+ 7 f (1))

= 1

90
(7(1.00000)+ 32(1.65534)+ 12(1.55152)

+ 32(1.06666)+ 7(0.72159)) = 1.30859.

The true value of the definite integral is∫ 1

0
f (x) dx = 21e − 4 cos(4)− sin(4)

17e
= 1.3082506046426 . . . ,

and the approximation 1.30859 from Boole’s rule is best. The area under each of the La-
grange polynomials P1(x), P2(x), P3(x), and P4(x) is shown in Figure 7.3(a) through (d),
respectively. �

To make a fair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our final example is concerned with comparing

360 CHAP. 7 NUMERICAL INTEGRATION

integration over a fixed interval [a, b] using exactly five function evaluations fk =
f (xk), for k = 0, 1, . . . , 4 for each method. When the trapezoidal rule is applied on
the four subintervals [x0, x1], [x1, x2], [x2, x3], and [x3, x4], it is called a composite
trapezoidal rule:∫ x4

x0

f (x) dx =
∫ x1

x0

f (x) dx +
∫ x2

x1

f (x) dx +
∫ x3

x2

f (x) dx +
∫ x4

x3

f (x) dx

≈ h

2
(f0 + f1)+ h

2
(f1 + f2)+ h

2
(f2 + f3)+ h

2
(f3 + f4)

= h

2
(f0 + 2 f1 + 2 f2 + 2 f3 + f4).

(17)

Simpson’s rule can also be used in this manner. When Simpson’s rule is applied on the
two subintervals [x0, x2] and [x2, x4], it is called a composite Simpson’s rule:∫ x4

x0

f (x) dx =
∫ x2

x0

f (x) dx +
∫ x4

x2

f (x) dx

≈ h

3
(f0 + 4 f1 + f2)+ h

3
(f2 + 4 f3 + f4)

= h

3
(f0 + 4 f1 + 2 f2 + 4 f3 + f4).

(18)

The next example compares the values obtained with (17), (18), and (7).

Example 7.3. Consider the integration of the function f (x) = 1 + e−x sin(4x) over
[a, b] = [0, 1]. Use exactly five function evaluations and compare the results from the
composite trapezoidal rule, composite Simpson rule, and Boole’s rule.

The uniform step size is h = 1/4. The composite trapezoidal rule (17) produces∫
1

0

f (x) dx ≈ 1/4

2
(f (0)+ 2 f (1

4)+ 2 f (1
2)+ 2 f (3

4)+ f (1))

= 1

8
(1.00000+ 2(1.65534)+ 2(1.55152)+ 2(1.06666)+ 0.72159)

= 1.28358.

Using the composite Simpson’s rule (18), we get∫
1

0

f (x) dx ≈ 1/4

3
(f (0)+ 4 f (1

4)+ 2 f (1
2)+ 4 f (3

4)+ f (1))

= 1

12
(1.00000+ 4(1.65534)+ 2(1.55152)+ 4(1.06666)+ 0.72159)

= 1.30938.

We have already seen the result of Boole’s rule in Example 7.2:∫ 1

0

f (x) dx ≈ 2(1/4)

45
(7 f (0)+ 32 f (1

4)+ 12 f (1
2)+ 32 f (3

4)+ 7 f (1))

= 1.30859.

SEC. 7.1 INTRODUCTION TO QUADRATURE 361

y

t

1.5

1.0

0.5

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

y = f (x) y = f (x)
y

t

1.5

1.0

0.5

(a) (b)

Figure 7.4 (a) The composite trapezoidal rule yields the approximation 1.28358.
(b) The composite Simpson rule yields the approximation 1.30938.

The true value of the integral is∫ 1

0
f (x) dx = 21e − 4 cos(4)− sin(4)

17e
= 1.3082506046426 . . . ,

and the approximation 1.30938 from Simpson’s rule is much better than the value 1.28358
obtained from the trapezoidal rule. Again, the approximation 1.30859 from Boole’s rule is
closest. Graphs for the areas under the trapezoids and parabolas are shown in Figure 7.4(a)
and (b), respectively. �

Example 7.4. Determine the degree of precision of Simpson’s 3
8 rule.

It will suffice to apply Simpson’s 3
8 rule over the interval [0, 3] with the five test func-

tions f (x) = 1, x , x2, x3, and x4. For the first four functions, Simpson’s 3
8 rule is exact.∫ 3

0
1 dx = 3 = 3

8
(1+ 3(1)+ 3(1)+ 1)∫ 3

0
x dx = 9

2
= 3

8
(0+ 3(1)+ 3(2)+ 3)∫ 3

0
x2 dx = 9 = 3

8
(0+ 3(1)+ 3(4)+ 9)∫ 3

0
x3 dx = 81

4
= 3

8
(0+ 3(1)+ 3(8)+ 27).

The function f (x) = x4 is the lowest power of x for which the rule is not exact.∫ 3

0
x4 dx = 243

5
≈ 99

2
= 3

8
(0+ 3(1)+ 3(16)+ 81).

Therefore, the degree of precision of Simpson’s 3
8 rule is n = 3. �

362 CHAP. 7 NUMERICAL INTEGRATION

Exercises for Introduction to Quadrature

1. Consider integration of f (x) over the fixed interval [a, b] = [0, 1]. Apply the various
quadrature formulas (4) through (7). The step sizes are h = 1, h = 1

2 , h = 1
3 , and

h = 1
4 for the trapezoidal rule, Simpson’s rule, Simpson’s 3

8 rule, and Boole’s rule,
respectively.
(a) f (x) = sin(πx)

(b) f (x) = 1+ e−x cos(4x)

(c) f (x) = sin(
√

x)

Remark. The true values of the definite integrals are (a) 2/π = 0.636619772367 . . . ,
(b) (18e − cos(4) + 4 sin(4))/(17e) = 1.007459631397 . . . , and (c) 2(sin(1) −
cos(1)) = 0.602337357879 Graphs of the functions are shown in Figure 7.5(a)
through (c), respectively.

2. Consider integration of f (x) over the fixed interval [a, b] = [0, 1]. Apply the various
quadrature formulas: the composite trapezoidal rule (17), the composite Simpson
rule (18), and Boole’s rule (7). Use five function evaluations at equally spaced nodes.
The uniform step size is h = 1

4 .
(a) f (x) = sin(πx)

(b) f (x) = 1+ e−x cos(4x)

(c) f (x) = sin(
√

x)

3. Consider a general interval [a, b]. Show that Simpson’s rule produces exact results
for the functions f (x) = x2 and f (x) = x3; that is,

(a)
∫ b

a x2 dx = b3

3
− a3

3
(b)

∫ b
a x3 dx = b4

4
− a4

4
4. Integrate the Lagrange interpolation polynomial

P1(x) = f0
x − x1

x0 − x1
+ f1

x − x0

x1 − x0

over the interval [x0, x1] and establish the trapezoidal rule.

y

x

1.0

0.5

0.0 0.5

(a)

1.0

y

x

2.0

1.0

0.0 0.5

(b)

1.0

y

x

1.0

0.5

0.0 0.5

(c)

1.0

Figure 7.5 (a) y = sin(πx), (b) y = 1+ e−x cos(4x), (c) y = sin(
√

x).

SEC. 7.1 INTRODUCTION TO QUADRATURE 363

5. Determine the degree of precision of the trapezoidal rule. It will suffice to apply the
trapezoidal rule over [0, 1] with the three test functions f (x) = 1, x , and x2.

6. Determine the degree of precision of Simpson’s rule. It will suffice to apply Simp-
son’s rule over [0, 2] with the five test functions f (x) = 1, x , x2, x3, and x4. Contrast
your result with the degree of precision of Simpson’s 3

8 rule.

7. Determine the degree of precision of Boole’s rule. It will suffice to apply Boole’s rule
over [0, 4] with the seven test functions f (x) = 1, x , x2, x3, x4, x5, and x6.

8. The intervals in Exercises 5, 6, and 7 and Example 7.4 were selected to simplify the
calculation of the quadrature nodes. But on any closed interval [a, b] over which
the function f is integrable, each of the four quadrature rules (4) through (7) has the
degree of precision determined in Exercises 5, 6, and 7 and Example 7.4, respectively.
A quadrature formula on the interval [a, b] can be obtained from a quadrature formula
on the interval [c, d] by making a change of variables with the linear function

x = g(t) = b − a

d − c
t + ad − bc

d − c
,

where dx = b − a

d − c
dt .

(a) Verify that x = g(t) is the line passing through the points (c, a) and (d, b).

(b) Verify that the trapezoidal rule has the same degree of precision on the interval
[a, b] as on the interval [0, 1].

(c) Verify that Simpson’s rule has the same degree of precision on the interval [a, b]
as on the interval [0, 2].

(d) Verify that Boole’s rule has the same degree of precision on the interval [a, b]
as on the interval [0, 4].

9. Derive Simpson’s 3
8 rule using Lagrange polynomial interpolation. Hint. After chang-

ing the variable, integrals similar to those in (16) are obtained:∫ x3

x0

f (x) dx ≈ − f0
h

6

∫ 3

0
(t − 1)(t − 2)(t − 3) dt + f1

h

2

∫ 3

0
(t − 0)(t − 2)(t − 3) dt

− f2
h

2

∫ 3

0
(t − 0)(t − 1)(t − 3) dt + f3

h

6

∫ 3

0
(t − 0)(t − 1)(t − 2) dt

= f0
h

6

(
−t4

4
+ 2t3 − 11t2

2
+ 6t

)∣∣∣∣∣
t=3

t=0

+ f1
h

2

(
t4

4
− 5t3

3
+ 3t2

)∣∣∣∣∣
t=3

t=0

+ f2
h

2

(
−t4

4
+ 4t3

3
− 3t2

2

)∣∣∣∣∣
t=3

t=0

+ f3
h

6

(
t4

4
− t3 + t2

)∣∣∣∣∣
t=3

t=0

.

10. Derive the closed Newton-Cotes quadrature formula, based on a Lagrange approxi-
mating polynomial of degree 5, using the six equally spaced nodes xk = x0 + kh,
where k = 0, 1, . . . , 5.

364 CHAP. 7 NUMERICAL INTEGRATION

11. In the proof of Theorem 7.1, Simpson’s rule was derived by integrating the second-
degree Lagrange polynomial based on the three equally spaced nodes x0, x1, and x2.
Derive Simpson’s rule by integrating the second-degree Newton polynomial based on
the three equally spaced nodes x0, x1, and x2.

7.2 Composite Trapezoidal and Simpson’s Rule

An intuitive method of finding the area under the curve y = f (x) over [a, b] is
by approximating that area with a series of trapezoids that lie above the intervals
{[xk, xk+1]}.

Theorem 7.2 (Composite Trapezoidal Rule). Suppose that the interval [a, b] is
subdivided into M subintervals [xk, xk+1] of width h = (b−a)/M by using the equally
spaced nodes xk = a + kh, for k = 0, 1, . . . , M . The composite trapezoidal rule for
M subintervals can be expressed in any of three equivalent ways:

(1a) T (f, h) = h

2

M∑
k=1

(f (xk−1)+ f (xk))

or

(1b) T (f, h) = h

2
(f0 + 2 f1 + 2 f2 + 2 f3 + · · · + 2 fM−2 + 2 fM−1 + fM)

or

(1c) T (f, h) = h

2
(f (a)+ f (b))+ h

M−1∑
k=1

f (xk).

This is an approximation to the integral of f (x) over [a, b], and we write

(2)
∫ b

a
f (x) dx ≈ T (f, h).

Proof. Apply the trapezoidal rule over each subinterval [xk−1, xk] (see Figure 7.6).
Use the additive property of the integral for subintervals:

(3)
∫ b

a
f (x) dx =

M∑
k=1

∫ xk

xk−1

f (x) dx ≈
M∑

k=1

h

2
(f (xk−1)+ f (xk)).

Since h/2 is a constant, the distributive law of addition can be applied to obtain (1a).
Formula (1b) is the expanded version of (1a). Formula (1c) shows how to group all the
intermediate terms in (1b) that are multiplied by 2. •

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 365

y

x

2

0 1 2 3 4 5 6

y = f (x)

1

3

Figure 7.6 Approximating the area
under the curve y = 2 + sin(2

√
x)

with the composite trapezoidal rule.

Approximating f (x) = 2+ sin(2
√

x) with piecewise linear polynomials results in
places where the approximation is close and places where it is not. To achieve accuracy,
the composite trapezoidal rule must be applied with many subintervals. In the next
example we have chosen to integrate this function numerically over the interval [1, 6].
Investigation of the integral over [0, 1] is left as an exercise.

Example 7.5. Consider f (x) = 2 + sin(2
√

x). Use the composite trapezoidal rule with
11 sample points to compute an approximation to the integral of f (x) taken over [1, 6].

To generate 11 sample points, we use M = 10 and h = (6 − 1)/10 = 1/2. Using
formula (1c), the computation is

T (f,
1

2
) = 1/2

2
(f (1)+ f (6))

+ 1

2
(f (3

2)+ f (2)+ f (5
2)+ f (3)+ f (7

2)+ f (4)+ f (9
2)+ f (5)+ f (11

2))

= 1

4
(2.90929743+ 1.01735756)

+ 1

2
(2.63815764+ 2.30807174+ 1.97931647+ 1.68305284+ 1.43530410

+ 1.24319750+ 1.10831775+ 1.02872220+ 1.00024140)

= 1

4
(3.92665499)+ 1

2
(14.42438165)

= 0.98166375+ 7.21219083 = 8.19385457. �

Theorem 7.3 (Composite Simpson Rule). Suppose that [a, b] is subdivided into
2M subintervals [xk, xk+1] of equal width h = (b−a)/(2M) by using xk = a+kh for
k = 0, 1, . . . , 2M . The composite Simpson rule for 2M subintervals can be expressed

366 CHAP. 7 NUMERICAL INTEGRATION

in any of three equivalent ways:

(4a) S(f, h) = h

3

M∑
k=1

(f (x2k−2)+ 4 f (x2k−1)+ f (x2k))

or

S(f, h) = h

3
(f0 + 4 f1 + 2 f2 + 4 f3

+ · · · + 2 f2M−2 + 4 f2M−1 + f2M)

(4b)

or

(4c) S(f, h) = h

3
(f (a)+ f (b))+ 2h

3

M−1∑
k=1

f (x2k)+ 4h

3

M∑
k=1

f (x2k−1).

This is an approximation to the integral of f (x) over [a, b], and we write

(5)
∫ b

a
f (x) dx ≈ S(f, h).

Proof. Apply Simpson’s rule over each subinterval [x2k−2, x2k] (see Figure 7.7). Use
the additive property of the integral for subintervals:

∫ b

a
f (x) dx =

M∑
k=1

∫ x2k

x2k−2

f (x) dx

≈
M∑

k=1

h

3
(f (x2k−2)+ 4 f (x2k−1)+ f (x2k)).

(6)

Since h/3 is a constant, the distributive law of addition can be applied to ob-
tain (4a). Formula (4b) is the expanded version of (4a). Formula (4c) groups all
the intermediate terms in (4b) that are multiplied by 2 and those that are multiplied
by 4. •

Approximating f (x) = 2 + sin(2
√

x) with piecewise quadratic polynomials pro-
duces places where the approximation is close and places where it is not. To achieve
accuracy the composite Simpson rule must be applied with several subintervals. In
the next example we have chosen to integrate this function numerically over [1, 6] and
leave investigation of the integral over [0, 1] as an exercise.

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 367

y

x

2

0 1 2 3 4 5 6

y = f (x)

1

3

Figure 7.7 Approximating the area
under the curve y = 2 + sin(2

√
x)

with the composite Simpson rule.

Example 7.6. Consider f (x) = 2+ sin(2
√

x). Use the composite Simpson rule with 11
sample points to compute an approximation to the integral of f (x) taken over [1, 6].

To generate 11 sample points, we must use M = 5 and h = (6− 1)/10 = 1/2. Using
formula (4c), the computation is

S(f,
1

2
) = 1

6
(f (1)+ f (6))+ 1

3
(f (2)+ f (3)+ f (4)+ f (5))

+ 2

3
(f (3

2)+ f (5
2)+ f (7

2)+ f (9
2)+ f (11

2))

= 1

6
(2.90929743+ 1.01735756)

+ 1

3
(2.30807174+ 1.68305284+ 1.24319750+ 1.02872220)

+ 2

3
(2.63815764+ 1.97931647+ 1.43530410+ 1.10831775+ 1.00024140)

= 1

6
(3.92665499)+ 1

3
(6.26304429)+ 2

3
(8.16133735)

= 0.65444250+ 2.08768143+ 5.44089157 = 8.18301550. �

Error Analysis

The significance of the next two results is to understand that the error terms ET (f, h)

and ES(f, h) for the composite trapezoidal rule and composite Simpson rule are of
the order O(h2) and O(h4), respectively. This shows that the error for Simpson’s
rule converges to zero faster than the error for the trapezoidal rule as the step size h
decreases to zero. In cases where the derivatives of f (x) are known, the formulas

ET (f, h) = −(b − a) f (2)(c)h2

12
and ES(f, h) = −(b − a) f (4)(c)h4

180

368 CHAP. 7 NUMERICAL INTEGRATION

can be used to estimate the number of subintervals required to achieve a specified
accuracy.

Corollary 7.2 (Trapezoidal Rule: Error Analysis). Suppose that [a, b] is subdi-
vided into M subintervals [xk, xk+1] of width h = (b − a)/M . The composite trape-
zoidal rule

(7) T (f, h) = h

2
(f (a)+ f (b))+ h

M−1∑
k=1

f (xk)

is an approximation to the integral

(8)
∫ b

a
f (x) dx = T (f, h)+ ET (f, h).

Furthermore, if f ∈ C2[a, b], there exists a value c with a < c < b so that the error
term ET (f, h) has the form

(9) ET (f, h) = −(b − a) f (2)(c)h2

12
= O(h2).

Proof. We first determine the error term when the rule is applied over [x0, x1]. Inte-
grating the Lagrange polynomial P1(x) and its remainder yields

(10)
∫ x1

x0

f (x) dx =
∫ x1

x0

P1(x) dx +
∫ x1

x0

(x − x0)(x − x1) f (2)(c(x))

2! dx .

The term (x − x0)(x − x1) does not change sign on [x0, x1], and f (2)(c(x)) is contin-
uous. Hence the second mean value theorem for integrals implies that there exists a
value c1 so that

(11)
∫ x1

x0

f (x) dx = h

2
(f0 + f1)+ f (2)(c1)

∫ x1

x0

(x − x0)(x − x1)

2! dx .

Use the change of variable x = x0 + ht in the integral on the right side of (11):∫ x1

x0

f (x) dx = h

2
(f0 + f1)+ f (2)(c1)

2

∫ 1

0
h(t − 0)h(t − 1)h dt

= h

2
(f0 + f1)+ f (2)(c1)h3

2

∫ 1

0
(t2 − t) dt

= h

2
(f0 + f1)− f (2)(c1)h3

12
.

(12)

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 369

Now we are ready to add up the error terms for all of the intervals [xk, xk+1]:∫ b

a
f (x) dx =

M∑
k=1

∫ xk

xk−1

f (x) dx

=
M∑

k=1

h

2
(f (xk−1)+ f (xk))− h3

12

M∑
k=1

f (2)(ck).

(13)

The first sum is the composite trapezoidal rule T (f, h). In the second term, one factor
of h is replaced with its equivalent h = (b − a)/M , and the result is∫ b

a
f (x) dx = T (f, h)− (b − a)h2

12

(
1

M

M∑
k=1

f (2)(ck)

)
.

The term in parentheses can be recognized as an average of values for the second
derivative and hence is replaced by f (2)(c). Therefore, we have established that∫ b

a
f (x) dx = T (f, h)− (b − a) f (2)(c)h2

12
,

and the proof of Corollary 7.2 is complete. •

Corollary 7.3 (Simpson’s Rule: Error Analysis). Suppose that [a, b] is subdivided
into 2M subintervals [xk, xk+1] of equal width h = (b − a)/(2M). The composite
Simpson rule

(14) S(f, h) = h

3
(f (a)+ f (b))+ 2h

3

M−1∑
k=1

f (x2k)+ 4h

3

M∑
k=1

f (x2k−1)

is an approximation to the integral

(15)
∫ b

a
f (x) dx = S(f, h)+ ES(f, h).

Furthermore, if f ∈ C4[a, b], there exists a value c with a < c < b so that the error
term ES(f, h) has the form

(16) ES(f, h) = −(b − a) f (4)(c)h4

180
= O(h4).

Example 7.7. Consider f (x) = 2 + sin(2
√

x). Investigate the error when the compos-
ite trapezoidal rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80,
and 160.

370 CHAP. 7 NUMERICAL INTEGRATION

Table 7.2 Composite Trapezoidal Rule for
f (x) = 2+ sin(2

√
x) over [1, 6]

M h T (f, h) ET (f, h) = O(h2)

10 0.5 8.19385457 −0.01037540
20 0.25 8.18604926 −0.00257006
40 0.125 8.18412019 −0.00064098
80 0.0625 8.18363936 −0.00016015

160 0.03125 8.18351924 −0.00004003

Table 7.2 shows the approximations T (f, h). The antiderivative of f (x) is

F(x) = 2x −√x cos(2
√

x)+ sin(2
√

x)

2
,

and the true value of the definite integral is∫ 6

1
f (x) dx = F(x)

∣∣∣x=6

x=1
= 8.1834792077.

This value was used to compute the values ET (f, h) = 8.1834792077 − T (f, h) in Ta-
ble 7.2. It is important to observe that when h is reduced by a factor of 1

2 the successive
errors ET (f, h) are diminished by approximately 1

4 . This confirms that the order is O(h2).
�

Example 7.8. Consider f (x) = 2+ sin(2
√

x). Investigate the error when the composite
Simpson rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80, and 160.

Table 7.3 shows the approximations S(f, h). The true value of the integral is
8.1834792077, which was used to compute the values ES(f, h) = 8.1834792077−S(f, h)

in Table 7.3. It is important to observe that when h is reduced by a factor of 1
2 , the suc-

cessive errors ES(f, h) are diminished by approximately 1
16 . This confirms that the order

is O(h4). �

Example 7.9. Find the number M and the step size h so that the error ET (f, h) for the
composite trapezoidal rule is less than 5×10−9 for the approximation

∫ 7
2 dx/x ≈ T (f, h).

The integrand is f (x) = 1/x and its first two derivatives are f ′(x) = −1/x2 and
f (2)(x) = 2/x3. The maximum value of | f (2)(x)| taken over [2, 7] occurs at the endpoint
x = 2, and thus we have the bound | f (2)(c)| ≤ | f (2)(2)| = 1

4 , for 2 ≤ c ≤ 7. This is used
with formula (9) to obtain

(17) |ET (f, h)| = | − (b − a) f (2)(c)h2|
12

≤ (7− 2) 1
4 h2

12
= 5h2

48
.

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 371

Table 7.3 Composite Simpson Rule for
f (x) = 2+ sin(2

√
x) over [1, 6]

M h S(f, h) ES(f, h) = O(h4)

5 0.5 8.18301549 0.00046371
10 0.25 8.18344750 0.00003171
20 0.125 8.18347717 0.00000204
40 0.0625 8.18347908 0.00000013
80 0.03125 8.18347920 0.00000001

The step size h and number M satisfy the relation h = 5/M , and this is used in (17) to get
the relation

(18) |ET (f, h)| ≤ 125

48M2
≤ 5× 10−9.

Now rewrite (18) so that it is easier to solve for M :

(19)
25

48
× 109 ≤ M2.

Solving (19), we find that 22821.77 ≤ M . Since M must be an integer, we choose M =
22,822, and the corresponding step size is h = 5/22,822 = 0.000219086846. When the
composite trapezoidal rule is implemented with this many function evaluations, there is a
possibility that the rounded-off function evaluations will produce a significant amount of
error. When the computation was performed, the result was

T

(
f,

5

22,822

)
= 1.252762969,

which compares favorably with the true value
∫ 7

2 dx/x = ln(x)|x=7
x=2 = 1.252762968. The

error is smaller than predicted because the bound 1
4 for | f (2)(c)|was used. Experimentation

shows that it takes about 10,001 function evaluations to achieve the desired accuracy of
5× 10−9, and when the calculation is performed with M = 10,000, the result is

T

(
f,

5

10,000

)
= 1.252762973. �

The composite trapezoidal rule usually requires a large number of function eval-
uations to achieve an accurate answer. This is contrasted in the next example with
Simpson’s rule, which will require significantly fewer evaluations.

372 CHAP. 7 NUMERICAL INTEGRATION

Example 7.10. Find the number M and the step size h so that the error ES(f, h) for the
composite Simpson rule is less than 5× 10−9 for the approximation

∫ 7
2 dx/x ≈ S(f, h).

The integrand is f (x) = 1/x , and f (4)(x) = 24/x5. The maximum value of | f (4)(c)|
taken over [2, 7] occurs at the endpoint x = 2, and thus we have the bound

| f (4)(c)| ≤ | f (4)(2)| = 3

4

for 2 ≤ c ≤ 7. This is used with formula (16) to obtain

(20) |ES(f, h)| = | − (b − a) f (4)(c)h4|
180

≤ (7− 2) 3
4 h4

180
= h4

48
.

The step size h and number M satisfy the relation h = 5/(2M), and this is used in (20) to
get the relation

(21) |ES(f, h)| ≤ 625

768M4
≤ 5× 10−9.

Now rewrite (21) so that it is easier to solve for M :

(22)
125

768
× 109 ≤ M4.

Solving (22), we find that 112.95 ≤ M . Since M must be an integer, we chose M = 113,
and the corresponding step size is h = 5/226 = 0.02212389381. When the composite
Simpson rule was performed, the result was

S

(
f,

5

226

)
= 1.252762969,

which agrees with
∫ 7

2 dx/x = ln(x)|x=7
x=2 = 1.252762968. Experimentation shows that it

takes about 129 function evaluations to achieve the desired accuracy of 5×10−9, and when
the calculation is performed with M = 64, the result is

S

(
f,

5

128

)
= 1.252762973. �

So we see that the composite Simpson rule using 229 evaluations of f (x) and
the composite trapezoidal rule using 22,823 evaluations of f (x) achieve the same ac-
curacy. In Example 7.10, Simpson’s rule required about 1

100 the number of function
evaluations.

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 373

Program 7.1 (Composite Trapezoidal Rule). To approximate the integral∫ b

a
f (x) dx ≈ h

2
(f (a)+ f (b))+ h

M−1∑
k=1

f (xk)

by sampling f (x) at the M + 1 equally spaced points xk = a + kh, for k = 0, 1, 2,
. . . , M . Notice that x0 = a and xM = b.

function s=traprl(f,a,b,M)

%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - M is the number of subintervals
%Output - s is the trapezoidal rule sum

h=(b-a)/M;
s=0;

for k=1:(M-1)
x=a+h*k;
s=s+feval(f,x);

end

s=h*(feval(f,a)+feval(f,b))/2+h*s;

Program 7.2 (Composite Simpson Rule). To approximate the integral∫ b

a
f (x) dx ≈ h

3
(f (a)+ f (b))+ 2h

3

M−1∑
k=1

f (x2k)+ 4h

3

M∑
k=1

f (x2k−1)

by sampling f (x) at the 2M + 1 equally spaced points xk = a + kh, for k = 0, 1,
2, . . . , 2M . Notice that x0 = a and x2M = b.

function s=simprl(f,a,b,M)

%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - M is the number of subintervals
% Output - s is the Simpson rule sum

h=(b-a)/(2*M);
s1=0;
s2=0;

for k=1:M
x=a+h*(2*k-1);
s1=s1+feval(f,x);

end
for k=1:(M-1)

374 CHAP. 7 NUMERICAL INTEGRATION

x=a+h*2*k;
s2=s2+feval(f,x);

end

s=h*(feval(f,a)+feval(f,b)+4*s1+2*s2)/3;

Exercises for Composite Trapezoidal and Simpson’s Rule

1. (i) Approximate each integral using the composite trapezoidal rule with M = 10.

(ii) Approximate each integral using the composite Simpson rule with M = 5.

(a)
∫ 1
−1(1+ x2)−1 dx (b)

∫ 1
0 (2+sin(2

√
x)) dx (c)

∫ 4
0.25 dx/

√
x

(d)
∫ 4

0 x2e−x dx (e)
∫ 2

0 2x cos(x) dx (f)
∫ π

0 sin(2x)e−x dx

2. Length of a curve. The arc length of the curve y = f (x) over the interval a ≤ x ≤ b
is

length =
∫ b

a

√
1+ (f ′(x)2) dx .

(i) Approximate the arc length of each function using the composite trapezoidal
rule with M = 10.

(ii) Approximate the arc length of each function using the composite Simpson rule
with M = 5.

(a) f (x) = x3 for 0 ≤ x ≤ 1

(b) f (x) = sin(x) for 0 ≤ x ≤ π/4

(c) f (x) = e−x for 0 ≤ x ≤ 1

3. Surface area. The solid of revolution obtained by rotating the region under the curve
y = f (x), where a ≤ x ≤ b, about the x-axis has surface area given by

area = 2π

∫ b

a
f (x)

√
1+ (f ′(x))2 dx .

(i) Approximate the surface area using the composite trapezoidal rule with M =
10.

(ii) Approximate the surface area using the composite Simpson rule with M = 5.

(a) f (x) = x3 for 0 ≤ x ≤ 1

(b) f (x) = sin(x) for 0 ≤ x ≤ π/4

(c) f (x) = e−x for 0 ≤ x ≤ 1

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 375

4. (a) Verify that the trapezoidal rule (M = 1, h = 1) is exact for polynomials of
degree ≤ 1 of the form f (x) = c1x + c0 over [0, 1].

(b) Use the integrand f (x) = c2x2 and verify that the error term for the trapezoidal
rule (M = 1, h = 1) over the interval [0, 1] is

ET (f, h) = −(b − a) f (2)(c)h2

12
.

5. (a) Verify that Simpson’s rule (M = 1, h = 1) is exact for polynomials of degree
≤ 3 of the form f (x) = c3x3 + c2x2 + c1x + c0 over [0, 2].

(b) Use the integrand f (x) = c4x4 and verify that the error term for Simpson’s rule
(M = 1, h = 1) over the interval [0, 2] is

ES(f, h) = −(b − a) f (4)(c)h4

180
.

6. Derive the trapezoidal rule (M = 1, h = 1) by using the method of undetermined
coefficients.
(a) Find the constants w0 and w1 so that

∫ 1
0 g(t) dt = w0g(0)+w1g(1) is exact for

the two functions g(t) = 1 and g(t) = t .
(b) Use the relation f (x0 + ht) = g(t) and the change of variable x = x0 + ht and

dx = h dt to translate the trapezoidal rule over [0, 1] to the interval [x0, x1].
Hint for part (a). You will get a linear system involving the two unknowns w0 and w1.

7. Derive Simpson’s rule (M = 1, h = 1) by using the method of undetermined coeffi-
cients.
(a) Find the constants w0, w1, and w2 so that

∫ 2
0 g(t) dt = w0g(0) + w1g(1) +

w2g(2) is exact for the three functions g(t) = 1, g(t) = t , and g(t) = t2.
(b) Use the relation f (x0 + ht) = g(t) and the change of variable x = x0 + ht and

dx = h dt to translate the trapezoidal rule over [0, 2] to the interval [x0, x2].
Hint for part (a). You will get a linear system involving the three unknowns w0, w1,
and w2.

8. Determine the number M and the interval width h so that the composite trapezoidal
rule for M subintervals can be used to compute the given integral with an accuracy of
5× 10−9.

(a)
∫ π/6

−π/6
cos(x) dx (b)

∫ 3

2

1

5− x
dx (c)

∫ 2

0
xe−x dx

Hint for part (c). f (2)(x) = (x − 2)e−x .

9. Determine the number M and the interval width h so that the composite Simpson rule
for 2M subintervals can be used to compute the given integral with an accuracy of
5× 10−9.

(a)
∫ π/6

−π/6
cos(x) dx (b)

∫ 3

2

1

5− x
dx (c)

∫ 2

0
xe−x dx

Hint for part (c). f (4)(x) = (x − 4)e−x .

376 CHAP. 7 NUMERICAL INTEGRATION

10. Consider the definite integral
∫ 0.1
−0.1 cos(x) dx = 2 sin(0.1) = 0.1996668333. The

following table gives approximations using the composite trapezoidal rule. Calculate
ET (f, h) = 0.199668− T (f, h) and confirm that the order is O(h2).

M h S(f, h) ET (f, h) = O(h2)

1 0.2 0.1990008
2 0.1 0.1995004
4 0.05 0.1996252
8 0.025 0.1996564

16 0.0125 0.1996642

11. Consider the definite integral
∫ 0.75
−0.75 cos(x) dx = 2 sin(0.75) = 1.363277520. The

following table gives approximations using the composite Simpson rule. Calculate
ES(f, h) = 1.3632775− S(f, h) and confirm that the order is O(h4).

M h S(f, h) ES(f, h) = O(h4)

1 0.75 1.3658444
2 0.375 1.3634298
4 0.1875 1.3632869
8 0.09375 1.3632781

12. Midpoint rule. The midpoint rule on [x0, x1] is∫ x1

x0

f (x) dx = 2h f (x0 + h)+ h3

3
f ′′(c), where h = x1 − x0

2
.

(a) Expand F(x), the antiderivative of f (x), in a Taylor series about x0 + h and
establish the midpoint rule on [x0, x1].

(b) Use part (a) and show that the composite midpoint rule for approximating the
integral of f (x) over [a, b] is

M(f, h) = h
N∑

k=1

f

(
a +

(
k − 1

2

)
h

)
, where h = b − a

N
.

This is an approximation to the integral of f (x) over [a, b], and we write∫ b

a
f (x) dx ≈ M(f, h).

(c) Show that the error term EM (f, h) for part (b) is

EM (f, h) = h3

3

N∑
k=1

f (2)(ck) = (b − a) f (2)(c)h2

3
= O(h2).

13. Use the midpoint rule with M = 10 to approximate the integrals in Exercise 1.

14. Prove Corollary 7.3.

SEC. 7.2 COMPOSITE TRAPEZOIDAL AND SIMPSON’S RULE 377

Algorithms and Programs

1. (a) For each integral in Exercise 1, compute M and the interval width h so that the
composite trapezoidal rule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.1 to approximate each integral.

(b) For each integral in Exercise 1, compute M and the interval width h so that the
composite Simpson’s rule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.2 to approximate each integral.

2. Use Program 7.2 to approximate the definite integrals in Exercise 2 with an accuracy
of 11 decimal places.

3. The composite trapezoidal rule can be adapted to integrate a function known only at
a set of points. Adapt Program 7.1 to approximate the integral of a function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program to approximate the integral of a function that

passes through the points
{(√

k2 + 1, k1/3
)}13

k=0
.

4. The composite Simpson’s rule can be adapted to integrate a function known only at
a set of points. Adapt Program 7.2 to approximate the integral of a function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program to approximate the integral of a function that

passes through the points
{(√

k2 + 1, k1/3
)}13

k=0
.

5. Modify Program 7.1 so that it uses the composite midpoint rule (Exercise 12) to
approximate the integral of f (x) over [a, b]. Use this program to approximate the
definite integrals in Exercise 1 with an accuracy of 11 decimal places.

6. Obtain approximations to each of the following definite integrals with an accuracy of
ten decimal places. Use any of the programs from this section.

(a)
∫ 1/4π

1/7π

sin(1/x) dx (b)
∫ 1/4π−10−5

1/5π+10−5

1

sin(1/x)
dx

7. The following example shows how Simpson’s rule can be used to approximate the
solution of an integral equation. The equation v(x) = x2+0.1

∫ 1
0 (x2+ t)v(t) dt is to

be solved using Simpson’s rule with h = 1/2. Let t0 = 0, t1 = 1/2, and t2 = 1; then∫ 1

0
(x2 + t)v(t) dt ≈ 1/2

3

(
(x2

n + 0)v0 + 4

(
x2

n +
1

2

)
v1 + (x2

n + 1)v2

)
.

Let

(1) v(xn) = x2
n + 0.1

(
1

6
((x2

n + 0)v0 + 4

(
x2

n +
1

2

)
v1 + (x2

n + 1)v2)

)
.

Substituting x0 = 0, x1 = 1/2, and x2 = 1 into equation (1) yields the system of

378 CHAP. 7 NUMERICAL INTEGRATION

linear equations

(2)

v0 = 0+ 1

60
((0)v0 + 2v1 + v2)

v1 = 1

4
+ 1

60

(
1

4
v0 + 3v1 + 5

4
v2

)
v2 = 1+ 1

60
(v0 + 6v1 + 2v2)

Substituting the solution of system (2) (v0 = 0.0273, v1 = 0.2866, v2 = 1.0646) into
equation (1) and simplifying yields the approximation

(3) v(x) ≈ 1.037305x2 + 0.027297.

(a) As a check, substitute the solution into the right-hand side of the integral equa-
tion, integrate and simplify the right-hand side, and compare the result with the
approximation in (3).

(b) Use the composite Simpson rule with h = 0.5 to approximate the solution of
the integral equation

v(x) = x2 + 0.1
∫ 1

0
(x2 + t)v(t) dt.

Use the procedure outlined in part (a) to check your solution.

7.3 Recursive Rules and Romberg Integration

In this section we show how to compute Simpson approximations with a special linear
combination of trapezoidal rules. The approximation will have greater accuracy if one
uses a larger number of subintervals. How many should we choose? The sequential
process helps answer this question by trying two subintervals, four subintervals, and
so on, until the desired accuracy is obtained. First, a sequence {T (J)} of trapezoidal
rule approximations must be generated. As the number of subintervals is doubled, the
number of function values is roughly doubled, because the function must be evaluated
at all the previous points and at the midpoints of the previous subintervals (see Fig-
ure 7.8). Theorem 7.4 explains how to eliminate redundant function evaluations and
additions.

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that J ≥ 1 and the points
{xk = a + kh} subdivide [a, b] into 2J = 2M subintervals of equal width h =
(b − a)/2J . The trapezoidal rules T (f, h) and T (f, 2h) obey the relationship

(1) T (f, h) = T (f, 2h)

2
+ h

M∑
k=1

f (x2k−1).

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 379

a b a b

y = f (x)

(a)

y = f (x)

(b)

a b a b

y = f (x)

(c)

y = f (x)

(d)

Figure 7.8 (a) T (0) is the area under 20 = 1 trapezoid. (b) T (1) is the area under
21 = 2 trapezoids. (c) T (2) is the area under 22 = 4 trapezoids. (d) T (3) is the area
under 23 = 8 trapezoids.

Definition 7.3 (Sequence of Trapezoidal Rules). Define T (0) = (h/2)(f (a) +
f (b)), which is the trapezoidal rule with step size h = b − a. Then for each J ≥ 1
define T (J) = T (f, h), where T (f, h) is the trapezoidal rule with step size h =
(b − a)/2J . �

Corollary 7.4 (Recursive Trapezoidal Rule). Start with T (0) = (h/2)(f (a) +
f (b)). Then a sequence of trapezoidal rules {T (J)} is generated by the recursive
formula

(2) T (J) = T (J − 1)

2
+ h

M∑
k=1

f (x2k−1) for J = 1, 2, . . . ,

where h = (b − a)/2J and {xk = a + kh}.
Proof. For the even nodes x0 < x2 < · · · < x2M−2 < x2M , we use the trapezoidal
rule with step size 2h:

(3) T (J − 1) = 2h

2
(f0 + 2 f2 + 2 f4 + · · · + 2 f2M−4 + 2 f2M−2 + f2M).

For all of the nodes x0 < x1 < x2 < · · · < x2M−1 < x2M , we use the trapezoidal rule

380 CHAP. 7 NUMERICAL INTEGRATION

with step size h:

(4) T (J) = h

2
(f0 + 2 f1 + 2 f2 + · · · + 2 f2M−2 + 2 f2M−1 + f2M).

Collecting the even and odd subscripts in (4) yields

(5) T (J) = h

2
(f0 + 2 f2 + · · · + 2 f2M−2 + f2M)+ h

M∑
k=1

f2k−1.

Substituting (3) into (5) results in T (J) = T (J − 1)/2+ h
∑M

k=1 f2k−1, and the proof
of the theorem is complete. •
Example 7.11. Use the sequential trapezoidal rule to compute the approximations T (0),
T (1), T (2), and T (3) for the integral

∫ 5
1 dx/x = ln(5)− ln(1) = 1.609437912.

Table 7.4 shows the nine values required to compute T (3) and the midpoints required
to compute T (1), T (2), and T (3). Details for obtaining the results are as follows:

When h = 4: T (0) = 4

2
(1.000000+ 0.200000) = 2.400000.

When h = 2: T (1) = T (0)

2
+ 2(0.333333)

= 1.200000+ 0.666666 = 1.866666.

When h = 1: T (2) = T (1)

2
+ 1(0.500000+ 0.250000)

= 0.933333+ 0.750000 = 1.683333.

When h = 1

2
: T (3) = T (2)

2
+ 1

2
(0.666667+ 0.400000

+ 0.285714+ 0.222222)

= 0.841667+ 0.787302 = 1.628968. �

Our next result shows an important relationship between the trapezoidal rule and
Simpson’s rule. When the trapezoidal rule is computed using step sizes 2h and h,
the result is T (f, 2h) and T (f, h), respectively. These values are combined to obtain
Simpson’s rule:

(6) S(f, h) = 4T (f, h)− T (f, 2h)

3
.

Theorem 7.5 (Recursive Simpson Rules). Suppose that {T (J)} is the sequence of
trapezoidal rules generated by Corollary 7.4. If J ≥ 1 and S(J) is Simpson’s rule for
2J subintervals of [a, b], then S(J) and the trapezoidal rules T (J − 1) and T (J) obey
the relationship

(7) S(J) = 4T (J)− T (J − 1)

3
for J = 1, 2,

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 381

Table 7.4 The Nine Points Used to Compute T (3) and the Midpoints Required to Compute
T (1), T (2), and T (3)

x f (x) = 1

x

Endpoints for
computing T (0)

Midpoints for
computing T (1)

Midpoints for
computing T (2)

Midpoints for
computing T (3)

1.0 1.000000 1.000000
1.5 0.666667 0.666667
2.0 0.500000 0.500000
2.5 0.400000 0.400000
3.0 0.333333 0.333333
3.5 0.285714 0.285714
4.0 0.250000 0.250000
4.5 0.222222 0.222222
5.0 0.200000 0.200000

Proof. The trapezoidal rule T (J) with step size h yields the approximation∫ b

a
f (x) dx ≈ h

2
(f0 + 2 f1 + 2 f2 + · · · + 2 f2M−2 + 2 f2M−1 + f2M)

= T (J).

(8)

The trapezoidal rule T (J − 1) with step size 2h produces

(9)
∫ b

a
f (x) dx ≈ h(f0 + 2 f2 + · · · + 2 f2M−2 + f2M) = T (J − 1).

Multiplying relation (8) by 4 yields

(10)
4
∫ b

a
f (x) dx ≈ h(2 f0 + 4 f1 + 4 f2 + · · · + 4 f2M−2 + 4 f2M−1 + 2 fM)

= 4T (J).

Now subtract (9) from (10) and the result is

(11)
3
∫ b

a
f (x) dx ≈ h(f0 + 4 f1 + 2 f2 + · · · + 2 f2M−2 + 4 f2M−1 + f2M)

= 4T (J)− T (J − 1).

This can be rearranged to obtain

(12)

∫ b

a
f (x) dx ≈ h

3
(f0 + 4 f1 + 2 f2 + · · · + 2 f2M−2 + 4 f2M−1 + f2M)

= 4T (J)− T (J − 1)

3
.

The middle term in (12) is Simpson’s rule S(J) = S(f, h) and hence the theorem is
proved. •

382 CHAP. 7 NUMERICAL INTEGRATION

Example 7.12. Use the sequential Simpson rule to compute the approximations S(1),
S(2), and S(3) for the integral of Example 7.11.

Using the results of Example 7.11 and formula (7) with J = 1, 2, and 3, we compute

S(1) = 4T (1)− T (0)

3
= 4(1.866666)− 2.400000

3
= 1.688888,

S(2) = 4T (2)− T (1)

3
= 4(1.683333)− 1.866666

3
= 1.622222,

S(3) = 4T (3)− T (2)

3
= 4(1.628968)− 1.683333

3
= 1.610846. �

In Section 7.1 the formula for Boole’s rule was given in Theorem 7.1. It was
obtained by integrating the Lagrange polynomial of degree 4 based on the nodes x0,
x1, x2, x3, and x4. An alternative method for establishing Boole’s rule is mentioned
in the exercises. When it is applied M times over 4M equally spaced subintervals of
[a, b] of step size h = (b − a)/(4M), we call it the composite Boole rule:

(13) B(f, h) = 2h

45

M∑
k=1

(7 f4k−4 + 32 f4k−3 + 12 f4k−2 + 32 f4k−1 + 7 f4k).

The next result gives the relationship between the sequential Boole and Simpson rules.

Theorem 7.6 (Recursive Boole Rules). Suppose that {S(J)} is the sequence of
Simpson’s rules generated by Theorem 7.5. If J ≥ 2 and B(J) is Boole’s rule for
2J subintervals of [a, b], then B(J) and Simpson’s rules S(J − 1) and S(J) obey the
relationship

(14) B(J) = 16S(J)− S(J − 1)

15
for J = 2, 3,

Proof. The proof is left as an exercise for the reader. •
Example 7.13. Use the sequential Boole rule to compute the approximations B(2) and
B(3) for the integral of Example 7.11.

Using the results of Example 7.12 and formula (14) with J = 2 and 3, we compute

B(2) = 16S(2)− S(1)

15
= 16(1.622222)− 1.688888

15
= 1.617778,

B(3) = 16S(3)− S(2)

15
= 16(1.610846)− 1.622222

15
= 1.610088. �

The reader may wonder what we are leading up to. We will now show that for-
mulas (7) and (14) are special cases of the process of Romberg integration. Let us
announce that the next level of approximation for the integral of Example 7.11 is

64B(3)− B(2)

63
= 64(1.610088)− 1.617778

63
= 1.609490,

and this answer gives an accuracy of five decimal places.

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 383

Romberg Integration
In Section 7.2 we saw that the error terms ET (f, h) and ES(f, h) for the composite
trapezoidal rule and composite Simpson rule are of order O(h2) and O(h4), respec-
tively. It is not difficult to show that the error term EB(f, h) for the composite Boole
rule is of the order O(h6). Thus we have the pattern∫ b

a
f (x) dx = T (f, h)+ O(h2),(15) ∫ b

a
f (x) dx = S(f, h)+ O(h4),(16) ∫ b

a
f (x) dx = B(f, h)+ O(h6).(17)

The pattern for the remainders in (15) through (17) is extended in the following
sense. Suppose that an approximation rule is used with step sizes h and 2h; then an al-
gebraic manipulation of the two answers is used to produce an improved answer. Each
successive level of improvement increases the order of the error term from O(h2N)

to O(h2N+2). This process, called Romberg integration, has its strengths and weak-
nesses.

The Newton-Cotes rules are seldom used past Boole’s rule. This is because the
nine-point Newton-Cotes quadrature rule involves negative weights, and all the rules
past the 10-point rule involve negative weights. This could introduce loss of signif-
icance error due to round off. The Romberg method has the advantages that all the
weights are positive and the equally spaced abscissas are easy to compute.

A computational weakness of Romberg integration is that twice as many function
evaluations are needed to decrease the error from O(h2N) to O(h2N+2). The use of the
sequential rules will help keep the number of computations down. The development
of Romberg integration relies on the theoretical assumption that, if f ∈ C N [a, b]
for all N , then the error term for the trapezoidal rule can be represented in a series
involving only even powers of h; that is,

(18)
∫ b

a
f (x) dx = T (f, h)+ ET (f, h),

where

(19) ET (f, h) = a1h2 + a2h4 + a3h6 + · · · .

Since only even powers of h can occur in (19), the Richardson improvement pro-
cess is used successively first to eliminate a1, next to eliminate a2, then to eliminate a3,
and so on. This process generates quadrature formulas whose error terms have even
orders O(h4), O(h6), O(h8), and so on. We shall show that the first improvement is
Simpson’s rule for 2M intervals. Start with T (f, 2h) and T (f, h) and the equations

(20)
∫ b

a
f (x) dx = T (f, 2h)+ a14h2 + a216h4 + a364h6 + · · ·

384 CHAP. 7 NUMERICAL INTEGRATION

and

(21)
∫ b

a
f (x) dx = T (f, h)+ a1h2 + a2h4 + a3h6 + · · · .

Multiply equation (21) by 4 and obtain

(22) 4
∫ b

a
f (x) dx = 4T (f, h)+ a14h2 + a24h4 + a34h6 + · · · .

Eliminate a1 by subtracting (20) from (22). The result is

(23) 3
∫ b

a
f (x) dx = 4T (f, h)− T (f, 2h)− a212h4 − a360h6 − · · · .

Now divide equation (23) by 3 and rename the coefficients in the series:

(24)
∫ b

a
f (x) dx = 4T (f, h)− T (f, 2h)

3
+ b1h4 + b2h6 + · · · .

As noted in (6), the first quantity on the right side of (24) is Simpson’s rule S(f, h).
This shows that ES(f, h) involves only even powers of h:

(25)
∫ b

a
f (x) dx = S(f, h)+ b1h4 + b2h6 + b3h8 + · · · .

To show that the second improvement is Boole’s rule, start with (25) and write
down the formula involving S(f, 2h):

(26)
∫ b

a
f (x) dx = S(f, 2h)+ b116h4 + b264h6 + b3256h8 + · · · .

When b1 is eliminated from (25) and (26), the result involves Boole’s rule:

∫ b

a
f (x) dx = 16S(f, h)− S(f, 2h)

15
− b248h6

15
− b3240h8

15
− · · ·

= B(f, h)− b248h6

15
− b3240h8

15
− · · · .

(27)

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 385

The general pattern for Romberg integration relies on Lemma 7.1.

Lemma 7.1 (Richardson’s Improvement for Romberg Integration). Given two
approximations R(2h, K − 1) and R(h, K − 1) for the quantity Q that satisfy

(28) Q = R(h, K − 1)+ c1h2K + c2h2K+2 + · · ·

and

(29) Q = R(2h, K − 1)+ c14K h2K + c24K+1h2K+2 + · · · ,

an improved approximation has the form

(30) Q = 4K R(h, K − 1)− R(2h, K − 1)

4K − 1
+ O(h2K+2).

Proof. The proof is straightforward and is left for the reader. •

Definition 7.4. Define the sequence {R(J, K) : J ≥ K }∞J=0 of quadrature formulas
for f (x) over [a, b] as follows:

�(31)

R(J, 0) = T (J) for J ≥ 0, is the sequential trapezoidal rule.

R(J, 1) = S(J) for J ≥ 1, is the sequential Simpson rule.

R(J, 2) = B(J) for J ≥ 2, is the sequential Boole’s rule.

The starting rules, {R(J, 0)}, are used to generate the first improvement, {R(J, 1)},
which in turn is used to generate the second improvement, {R(J, 2)}. We have already
seen the patterns

(32)
R(J, 1) = 41 R(J, 0)− R(J − 1, 0)

41 − 1
for J ≥ 1

R(J, 2) = 42 R(J, 1)− R(J − 1, 1)

42 − 1
for J ≥ 2,

which are the rules in (24) and (27) stated using the notation in (31). The general rule
for constructing improvements is

(33) R(J, K) = 4K R(J, K − 1)− R(J − 1, K − 1)

4K − 1
for J ≥ K .

386 CHAP. 7 NUMERICAL INTEGRATION

Table 7.5 Romberg Integration Tableau

J

R(J, 0)

Trapezoidal
rule

R(J, 1)

Simpson’s
rule

R(J, 2)

Boole’s
rule

R(J, 3)

Third
improvement

R(J, 4)

Fourth
improvement

0 R(0, 0)

1 R(1, 0) R(1, 1)

2 R(2, 0) R(2, 1) R(2, 2)

3 R(3, 0) R(3, 1) R(3, 2) R(3, 3)

4 R(4, 0) R(4, 1) R(4, 2) R(4, 3) R(4, 4)

Table 7.6 Romberg Integration Tableau for Example 7.14

J

R(J, 0)

Trapezoidal
rule

R(J, 1)

Simpson’s
rule

R(J, 2)

Boole’s
rule

R(J, 3)

Third
improvement

0 0.785398163397
1 1.726812656758 2.040617487878
2 1.960534166564 2.038441336499 2.038296259740
3 2.018793948078 2.038213875249 2.038198711166 2.038197162776
4 2.033347341805 2.038198473047 2.038197446234 2.038197426156
5 2.036984954990 2.038197492719 2.038197427363 2.038197427064

For computational purposes, the values R(J, K) are arranged in the Romberg integra-
tion tableau given in Table 7.5.

Example 7.14. Use Romberg integration to find approximations for the definite integral∫ π/2

0
(x2 + x + 1) cos(x) dx = −2+ π

2
+ π2

4
= 2.038197427067

The computations are given in Table 7.6. In each column the numbers are converging
to the value 2.038197427067 The values in the Simpson’s rule column converge faster
than the values in the trapezoidal rule column. For this example, convergence in columns
to the right is faster than the adjacent column to the left.

Convergence of the Romberg values in Table 7.6 is easier to see if we look at the error
terms E(J, K) = −2+π/2+π2/4−R(J, K). Suppose that the interval width is h = b−a
and that the higher derivatives of f (x) are of the same magnitude. The error in column K
of the Romberg table diminishes by about a factor of 1/22K+2 = 1/4K+1 as one progresses
down its rows. The errors E(J, 0) diminish by a factor of 1/4, the errors E(J, 1) diminish
by a factor of 1/16, and so on. This can be observed by inspecting the entries {E(J, K)} in
Table 7.7. �

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 387

Table 7.7 Romberg Error Tableau for Example 7.14

J h E(J, 0) = O(h2) E(J, 1) = O(h4) E(J, 2) = O(h6) E(J, 3) = O(h8)

0 b − a −1.252799263670

1
b − a

2
−0.311384770309 0.002420060811

2
b − a

4
−0.077663260503 0.000243909432 0.000098832673

3
b − a

8
−0.019403478989 0.000016448182 0.000001284099 −0.000000264291

4
b − a

16
−0.004850085262 0.000001045980 0.000000019167 −0.000000000912

5
b − a

32
−0.001212472077 0.000000065651 0.000000000296 −0.000000000003

Theorem 7.7 (Precision of Romberg Integration). Assume that f ∈ C2K+2[a, b].
Then the truncation error term for the Romberg approximation is given in the formula∫ b

a
f (x) dx = R(J, K)+ bK h2K+2 f (2K+2)(cJ,K)

= R(J, K)+ O(h2K+2),

(34)

where h = (b − a)/2J , bK is a constant that depends on K , and cJ,K ∈ [a, b].
Example 7.15. Apply Theorem 7.7 and show that∫ 2

0
10x9 dx = 1024 ≡ R(4, 4).

The integrand is f (x) = 10x9, and f (10)(x) ≡ 0. Thus the value K = 4 will make the
error term identically zero. A numerical computation will produce R(4, 4) = 1024. �

Program 7.3 (Recursive Trapezoidal Rule). To approximate∫ b

a
f (x) dx ≈ h

2

2J∑
k=1

(f (xk−1)+ f (xk))

by using the trapezoidal rule and successively increasing the number of subintervals
of [a, b]. The J th iteration samples f (x) at 2J + 1 equally spaced points.

function T=rctrap(f,a,b,n)
%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - n is the number of times for recursion

388 CHAP. 7 NUMERICAL INTEGRATION

%Output - T is the recursive trapezoidal rule list

M=1;
h=b-a;
T=zeros(1,n+1);
T(1)=h*(feval(f,a)+feval(f,b))/2;

for j=1:n
M=2*M;
h=h/2;
s=0;
for k=1:M/2

x=a+h*(2*k-1);
s=s+feval(f,x);

end
T(j+1)=T(j)/2+h*s;

end

Program 7.4 (Romberg Integration). To approximate the integral∫ b

a
f (x) dx ≈ R(J, J)

by generating a table of approximations R(J, K) for J ≥ K and using
R(J + 1, J + 1) as the final answer. The approximations R(J, K) are stored in
a special lower-triangular matrix. The elements R(J, 0) of column 0 are computed
using the sequential trapezoidal rule based on 2J subintervals of [a, b]; then R(J, K)

is computed using Romberg’s rule. The elements of row J are

R(J, K) = R(J, K − 1)+ R(J, K − 1)− R(J − 1, K − 1)

4K − 1
,

for 1 ≤ K ≤ J . The program is terminated in the (J + 1)st row when
|R(J, J)− R(J + 1, J + 1)| < tol.

function [R,quad,err,h]=romber(f,a,b,n,tol)

%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - n is the maximum number of rows in the table
% - tol is the tolerance
%Output - R is the Romberg table
% - quad is the quadrature value
% - err is the error estimate
% - h is the smallest step size used

M=1;

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 389

h=b-a;
err=1;
J=0;
R=zeros(4,4);
R(1,1)=h*(feval(f,a)+feval(f,b))/2;

while((err>tol)&(J<n))|(J<4)
J=J+1;
h=h/2;
s=0;
for p=1:M

x=a+h*(2*p-1);
s=s+feval(f,x);

end
R(J+1,1)=R(J,1)/2+h*s;
M=2*M;
for K=1:J

R(J+1,K+1)=R(J+1,K)+(R(J+1,K)-R(J,K))/(4^K-1);
end
err=abs(R(J,J)-R(J+1,K+1));

end
quad=R(J+1,J+1);

Exercises for Recursive Rules and Romberg Integration

1. For each of the following definite integrals, construct (by hand) a Romberg table
(Table 7.5) with three rows.

(a)
∫ 3

0

sin(2x)

1+ x2
dx = 0.4761463020 . . .

(b)
∫ 3

0
sin(4x)e−2x dx = 0.1997146621 . . .

(c)
∫ 1

0.04

1√
x

dx = 1.6

(d)
∫ 2

0

1

x2 + 1
10

dx = 4.4713993943 . . .

(e)
∫ 2

1/(2π)

sin

(
1

x

)
dx = 1.1140744942 . . .

(f)
∫ 2

0

√
4− x2 dx = π = 3.1415926535 . . .

390 CHAP. 7 NUMERICAL INTEGRATION

2. Assume that the sequential trapezoidal rule converges to L (i.e., limJ→∞ T (J) = L).
(a) Show that the sequential Simpson rule converges to L (i.e., limJ→∞ S(J) = L).
(b) Show that the sequential Boole rule converges to L (i.e., limJ→∞ B(J) = L).

3. (a) Verify that Boole’s rule (M = 1, h = 1) is exact for polynomials of degree ≤ 5
of the form f (x) = c5x5 + c4x4 + · · · + c1x + c0 over [0, 4].

(b) Use the integrand f (x) = c6x6 and verify that the error term for Boole’s rule
(M = 1, h = 1) over the interval [0, 4] is

EB(f, h) = −2(b − a) f (6)(c)h6

945
.

4. Derive Boole’s rule (M = 1, h = 1) by using the method of undetermined coeffi-
cients: Find the constants w0, w1, w2, w3, and w4 so that∫ 4

0
g(t) dt = w0g(0)+ w1g(1)+ w2g(2)+ w3g(3)+ w4g(4)

is exact for the five functions g(t) = 1, t , t2, t3, and t4. Hint. You will get the linear
system

w0 + w1 + w2 + w3 + w4 = 4

w1 + 2w2 + 3w3 + 4w4 = 8

w1 + 4w2 + 9w3 + 16w4 = 64

3
w1 + 8w2 + 27w3 + 64w4 = 64

w1 + 16w2 + 81w3 + 256w4 = 1024

5
.

5. Establish the relation B(J) = (16S(J) − S(J − 1))/15 for the case J = 2. Use the
following information:

S(1) = 2h

3
(f0 + 4 f2 + f4)

and

S(2) = h

3
(f0 + 4 f1 + 2 f2 + 4 f3 + f4).

6. Simpson’s 3
8 rule. Consider the trapezoidal rules over the closed interval [x0, x3]:

T (f, 3h) = (3h/2)(f0 + f3) with step size 3h, and T (f, h) = (h/2)(f0 + 2 f1 +
2 f2+ f3) with step size h. Show that the linear combination (9T (f, h)−T (f, 3h))/8
produces Simpson’s- 3

8 rule.

7. Use equations (25) and (26) to establish equation (27).

8. Use equations (28) and (29) to establish equation (30).

SEC. 7.3 RECURSIVE RULES AND ROMBERG INTEGRATION 391

9. Determine the smallest integer K for which

(a)
∫ 2

0 8x7 dx = 256 ≡ R(K , K).

(b)
∫ 2

0 11x10 dx = 2048 ≡ R(K , K).

10. Romberg integration was used to approximate the integrals (i)
∫ 1

0

√
x dx and (ii)∫ 1

0 2t2 dt , and the results are given in the following table:

Approximations for (i) Approximations for (ii)

R(0, 0)= 0.5000000 R(0, 0)= 1.0000000
R(1, 1)= 0.6380712 R(1, 1)= 0.6666667
R(2, 2)= 0.6577566 R(2, 2)= 0.6666667
R(3, 3)= 0.6636076 R(3, 3)= 0.6666667
R(4, 4)= 0.6655929 R(4, 4)= 0.6666667

(a) Use the change of variable x = t2 and dx = 2t dt and show that the two
integrals have the same numerical value.

(b) Discuss why convergence of the Romberg sequence is slower for integral (i) and
faster for integral (ii).

11. Romberg integration based on the midpoint rule. The composite midpoint rule is
competitive with the composite trapezoidal rule with respect to efficiency and the
speed of convergence. Use the following facts about the midpoint rule:

∫ b
a f (x) dx =

M(f, h)+ EM (f, h). The rule M(f, h) and the error term EM (f, h) are given by

M(f, h) = h
N∑

k=1

f

(
a +

(
k − 1

2

)
h

)
, where h = b − a

N
,

and

EM (f, h) = a1h2 + a2h4 + a3h6 + · · · .

(a) Start with

M(0) = (b − a) f

(
a + b

2

)
.

Develop the sequential midpoint rule for computing

M(J) = M(f, h J) = h J

2J∑
k=1

f

(
a +

(
k − 1

2

)
h J

)
,

where h J = b − a

2J
.

(b) Show how the sequential midpoint rule can be used in place of the sequential
trapezoidal rule in Romberg integration.

392 CHAP. 7 NUMERICAL INTEGRATION

Algorithms and Programs

1. Use Program 7.4 to approximate the definite integrals in Exercise 1 with an accuracy
of 11 decimal places.

2. Use Program 7.4 to approximate the following two definite integrals with an accuracy
of 10 decimal places. The exact value of each definite integral is π . Explain any
apparent differences in the rates of convergence of the two Romberg sequences.

(a)
∫ 2

0

√
4x − x2 dx (b)

∫ 1

0

4

1+ x2
dx

3. The normal probability density function is f (t) = (1/
√

2π)e−t2/2, and the cumula-
tive distribution is a function defined by �(x) = 1

2+(1/
√

2π)
∫ x

0 e−t2/2 dt . Compute
values for �(0.5), �(1.0), �(1.5), �(2.0), �(2.5), �(3.0), �(3.5), and �(4.0) that
have eight digits of accuracy.

4. Modify Program 7.3 so that it will stop when consecutive values T (K −1) and T (K)

for the sequential trapezoidal rule differ by less than 5× 10−6.

5. Modify Program 7.3 so that it will also compute values for the sequential Simpson
and Boole rules.

6. Modify Program 7.4 so that it uses the sequential midpoint rule to perform Romberg
integration (use the results of Exercise 11). Use your program to approximate the
following integrals with an accuracy of 10 decimal places.

(a)
∫ 1

0

sin(x)

x
dx (b)

∫ 1

−1

√
1− x2 dx

7. In Program 7.4 the approximations to a given definite integral are stored on the main
diagonal of a lower-triangular matrix. Modify Program 7.4 so that the rows of the
Romberg integration tableau are sequentially computed and stored in a n×1 matrix R;
hence it saves space. Test your program on the integrals in Exercise 1.

7.4 Adaptive Quadrature

The composite quadrature rules necessitate the use of equally spaced points. Typically,
a small step size h was used uniformly across the entire interval of integration to ensure
the overall accuracy. This does not take into account that some portions of the curve
may have large functional variations that require more attention than other portions of
the curve. It is useful to introduce a method that adjusts the step size to be smaller
over portions of the curve where a larger functional variation occurs. This technique is
called adaptive quadrature. The method is based on Simpson’s rule.

Simpson’s rule uses two subintervals over [ak, bk]:

(1) S(ak, bk) = h

3
(f (ak)+ 4 f (ck)+ f (bk)),

SEC. 7.4 ADAPTIVE QUADRATURE 393

where ck = 1
2 (ak + bk) is the center of [ak, bk] and h = (bk − ak)/2. Furthermore, if

f ∈ C4[ak, bk], then there exists a value d1 ∈ [ak, bk] so that

(2)
∫ bk

ak

f (x) dx = S(ak, bk)− h5 f (4)(d1)

90
.

Refinement

A composite Simpson rule using four subintervals of [ak, bk] can be performed by
bisecting this interval into two equal subintervals [ak1, bk1] and [ak2, bk2] and applying
formula (1) recursively over each piece. Only two additional evaluations of f (x) are
needed, and the result is

S(ak1, bk1)+ S(ak2, bk2) = h

6
(f (ak1)+ 4 f (ck1)+ f (bk1))

+ h

6
(f (ak2)+ 4 f (ck2)+ f (bk2)),

(3)

where ak1 = ak , bk1 = ak2 = ck , bk2 = bk , ck1 is the midpoint of [ak1, bk1], and ck2 is
the midpoint of [ak2, bk2]. In formula (3) the step size is h/2, which accounts for the
factors h/6 on the right side of the equation. Furthermore, if f ∈ C4[a, b], there exists
a value d2 ∈ [ak, bk] so that

(4)
∫ bk

ak

f (x) dx = S(ak1, bk1)+ S(ak2, bk2)− h5

16

f (4)(d2)

90
.

Assume that f (4)(d1) ≈ f (4)(d2); then the right sides of equations (2) and (4) are
used to obtain the relation

(5) S(ak, bk)− h5 f (4)(d2)

90
≈ S(ak1, bk1)+ S(ak2, bk2)− h5

16

f (4)(d2)

90
,

which can be written as

(6) −h5 f (4)(d2)

90
≈ 16

15
(S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)).

Then (6) is substituted in (4) to obtain the error estimate:∣∣∣∣∫ bk

ak

f (x) dx − S(ak1, bk1)− S(ak2, bk2)

∣∣∣∣
≈ 1

15
|S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)| .

(7)

Because of the assumption f (4)(d1) ≈ f (4)(d2), the fraction 1
15 is replaced with 1

10 on
the right side of (7) when implementing the method. This justifies the following test.

394 CHAP. 7 NUMERICAL INTEGRATION

Accuracy Test

Assume that the tolerance εk > 0 is specified for the interval [ak, bk]. If

(8)
1

10
|S(ak1, bk1)+ S(ak2, bk2)− S(ak, bk)| < εk,

we infer that

(9)

∣∣∣∣∫ bk

ak

f (x) dx − S(ak1, bk1)− S(ak2, bk2)

∣∣∣∣ < εk .

Thus the composite Simpson rule (3) is used to approximate the integral

(10)
∫ bk

ak

f (x) dx ≈ S(ak1, bk1)+ S(ak2, bk2),

and the error bound for this approximation over [ak, bk] is εk .
Adaptive quadrature is implemented by applying Simpson’s rules (1) and (3). Start

with {[a0, b0], ε0}, where ε0 is the tolerance for numerical quadrature over [a0, b0].
The interval is refined into subintervals labeled [a01, b01] and [a02, b02]. If the accu-
racy test (8) is passed, quadrature formula (3) is applied to [a0, b0] and we are done. If
the test in (8) fails, the two subintervals are relabeled [a1, b1] and [a2, b2], over which
we use the tolerances ε1 = 1

2ε0 and ε2 = 1
2ε0, respectively. Thus we have two in-

tervals with their associated tolerances to consider for further refinement and testing:
{[a1, b1], ε1} and {[a2, b2], ε2}, where ε1 + ε2 = ε0. If adaptive quadrature must be
continued, the smaller intervals must be refined and tested, each with its own associated
tolerance.

In the second step we first consider {[a1, b1], ε1} and refine the interval [a1, b1] into
[a11, b11] and [a12, b12]. If they pass the accuracy test (8) with the tolerance ε1, quadra-
ture formula (3) is applied to [a1, b1] and accuracy has been achieved over this interval.
If they fail the test in (8) with the tolerance ε1, each subinterval [a11, b11] and [a12, b12]
must be refined and tested in the third step with the reduced tolerance 1

2ε1. Moreover,
the second step involves looking at {[a2, b2], ε2} and refining [a2, b2] into [a21, b21]
and [a22, b22]. If they pass the accuracy test (8) with tolerance ε2, quadrature formula
(3) is applied to [a2, b2] and accuracy is achieved over this interval. If they fail the test
in (8) with the tolerance ε2, each subinterval [a21, b21] and [a22, b22] must be refined
and tested in the third step with the reduced tolerance 1

2ε2. Therefore, the second step
produces either three or four intervals, which we relabel consecutively. The three inter-
vals would be relabeled to produce {{[a1, b1], ε1}, {[a2, b2], ε2}, {[a3, b3], ε3}}, where
ε1 + ε2 + ε3 = ε0. In the case of four intervals, we would obtain {{[a1, b1], ε1},
{[a2, b2], ε2}, {[a3, b3], ε3}, {[a4, b4], ε4}}, where ε1 + ε2 + ε3 + ε4 = ε0.

If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The error term in (4) shows that each time a
refinement is made over a smaller subinterval there is a reduction of error by about

SEC. 7.4 ADAPTIVE QUADRATURE 395

Table 7.8 Adaptive Quadrature Computations for f (x) = 13(x − x2)e−3x/2

ak bk S(ak1, bk1)+ S(ak2, bk2)

Error bound on
the left side of (8)

Tolerance εk
for [ak , bk]

0.0 0.0625 0.02287184840 0.00000001522 0.00000015625
0.0625 0.125 0.05948686456 0.00000001316 0.00000015625
0.125 0.1875 0.08434213630 0.00000001137 0.00000015625
0.1875 0.25 0.09969871532 0.00000000981 0.00000015625
0.25 0.375 0.21672136781 0.00000025055 0.0000003125
0.375 0.5 0.20646391592 0.00000018402 0.0000003125
0.5 0.625 0.17150617231 0.00000013381 0.0000003125
0.625 0.75 0.12433363793 0.00000009611 0.0000003125
0.75 0.875 0.07324515141 0.00000006799 0.0000003125
0.875 1.0 0.02352883215 0.00000004718 0.0000003125
1.0 1.125 −0.02166038952 0.00000003192 0.0000003125
1.125 1.25 −0.06065079384 0.00000002084 0.0000003125
1.25 1.5 −0.21080823822 0.00000031714 0.000000625
1.5 2.0 −0.60550965007 0.00000003195 0.00000125
2.0 2.25 −0.31985720175 0.00000008106 0.000000625
2.25 2.5 −0.30061749228 0.00000008301 0.000000625
2.5 2.75 −0.27009962412 0.00000007071 0.000000625
2.75 3.0 −0.23474721177 0.00000005447 0.000000625
3.0 3.5 −0.36389799695 0.00000103699 0.00000125
3.5 4.0 −0.24313827772 0.00000041708 0.00000125

Totals −1.54878823413 0.00000296809 0.00001

a factor of 1
16 . Thus the process will terminate after a finite number of steps. The

bookkeeping for implementing the method includes a sentinel variable which indicates
if a particular subinterval has passed its accuracy test. To avoid unnecessary additional
evaluations of f (x), the function values can be included in a data list corresponding to
each subinterval. The details are shown in Program 7.6.

Example 7.16. Use adaptive quadrature to numerically approximate the value of the
definite integral

∫ 4
0 13(x − x2)e−3x/2 dx with the starting tolerance ε0 = 0.00001.

Implementation of the method revealed that 20 subintervals are needed. Table 7.8 lists
each interval [ak, bk], composite Simpson rule S(ak1, bk1)+S(ak2, bk2), the error bound for
this approximation, and the associated tolerance εk . The approximate value of the integral
is obtained by summing the Simpson rule approximations to get

(11)
∫ 4

0
13(x − x2)e−3x/2 dx ≈ −1.54878823413.

396 CHAP. 7 NUMERICAL INTEGRATION

y

x

y = f (x)
2.0

1 2 3 4

1.5

1.0

0.5

0.0

−0.5

−1.0

−1.5

Figure 7.9 The subintervals of [0, 4] used in adaptive
quadrature.

The true value of the integral is∫ 4

0
13(x − x2)e−3x/2 dx = 4108e−6 − 52

27

= −1.5487883725279481333.

(12)

Therefore, the error for adaptive quadrature is

(13) | − 1.54878837253− (−1.54878823413)| = 0.00000013840,

which is smaller than the specified tolerance ε0 = 0.00001. The adaptive method involves
20 subintervals of [0, 4], and 81 function evaluations were used. Figure 7.9 shows the graph
of y = f (x) and these 20 subintervals. The intervals are smaller where a larger functional
variation occurs near the origin.

In the refinement and testing process in the adaptive method, the first four intervals of
width 0.25 were bisected into eight subintervals of width 0.03125. If this uniform spacing
is continued throughout the interval [0, 4], M = 128 subintervals are required for the com-
posite Simpson rule, which yields the approximation −1.54878844029, which is in error
by the amount 0.00000006776. Although the composite Simpson method contains half the
error of the adaptive quadrature method, 176 more function evaluations are required. This
gain of accuracy is negligible; hence there is a considerable saving of computing effort with
the adaptive method. �

Program 7.5, srule, is a modification of Simpson’s rule from Section 7.1. The
output is a vector Z that contains the results of Simpson’s rule on the interval [a0, b0].
Program 7.6 calls srule as a subroutine to carry out Simpson’s rule on each of the
subintervals generated by the adaptive quadrature process.

SEC. 7.4 ADAPTIVE QUADRATURE 397

Program 7.5 (Simpson’s Rule). To approximate the integral∫ b0

a0
f (x) dx ≈ h

3
(f (a0)+ 4 f (c0)+ f (b0))

by using Simpson’s rule, where c0 = (a0+ b0)/2.

function Z=srule(f,a0,b0,tol0)

%Input - f is the integrand input as a string ’f’
% - a0 and b0 are upper and lower limits of integration
% - tol0 is the tolerance
% Output - Z is a 1x6 vector [a0 b0 S S2 err tol1]

h=(b0-a0)/2;
C=zeros(1,3);
C=feval(f,[a0 (a0+b0)/2 b0]);
S=h*(C(1)+4*C(2)+C(3))/3;
S2=S;
tol1=tol0;
err=tol0;
Z=[a0 b0 S S2 err tol1];

Program 7.6 produces a matrix SRmat, quad (adaptive quadrature approximation
to definite integral) and err (the error bound for the approximation). The rows of
SRmat consist of the endpoints, the Simpson’s rule approximation, and the error bound
on each subinterval generated by the adaptive quadrature process.

Program 7.6 (Adaptive Quadrature Using Simpson’s Rule). To approximate
the integral ∫ b

a
f (x) dx ≈

M∑
k=1

(f (x4k−4)+ 4 f (x4k−3)+ 2 f (x4k−2)

+ 4 f (x4k−1)+ f (x4k)).

The composite Simpson rule is applied to the 4M subintervals [x4k−4, x4k], where
[a, b] = [x0, x4M] and x4k−4+ j = x4k−4 + jhk , for each k = 1, . . . , M and j = 1,
. . . , 4.

function [SRmat,quad,err]=adapt(f,a,b,tol)

%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - tol is the tolerance
%Output - SRmat is the table of values
% - quad is the quadrature value

398 CHAP. 7 NUMERICAL INTEGRATION

% - err is the error estimate

%Initialize values
SRmat = zeros(30,6);
iterating=0;
done=1;
SRvec=zeros(1,6);
SRvec=srule(f,a,b,tol);
SRmat(1,1:6)=SRvec;
m=1;
state=iterating;

while(state==iterating)
n=m;
for j=n:-1:1

p=j;
SR0vec=SRmat(p,:);
err=SR0vec(5);
tol=SR0vec(6);
if (tol<=err)

%Bisect interval,apply Simpson’s rule
%recursively, and determine error
state=done;
SR1vec=SR0vec;
SR2vec=SR0vec;
a=SR0vec(1);
b=SR0vec(2);
c=(a+b)/2;
err=SR0vec(5);
tol=SR0vec(6);
tol2=tol/2;
SR1vec=srule(f,a,c,tol2);
SR2vec=srule(f,c,b,tol2);
err=abs(SR0vec(3)-SR1vec(3)-SR2vec(3))/10;

%Accuracy test
if (err<tol)

SRmat(p,:)=SR0vec;
SRmat(p,4)=SR1vec(3)+SR2vec(3);
SRmat(p,5)=err;

else
SRmat(p+1:m+1,:)=SRmat(p:m,:);
m=m+1;
SRmat(p,:)=SR1vec;
SRmat(p+1,:)=SR2vec;

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 399

state=iterating;
end

end
end

end

quad=sum(SRmat(:,4));
err=sum(abs(SRmat(:,5)));
SRmat=SRmat(1:m,1:6);

Algorithms and Programs

1. Use Program 7.6 to approximate the value of the definite integral. Use the starting
tolerance ε0 = 0.00001.

(a)
∫ 3

0

sin(2x)

1+ x5
dx (b)

∫ 3

0
sin(4x)e−2x dx (c)

∫ 1

0.04

1√
x

dx

(d)
∫ 2

0

1

x2 + 1
10

dx (e)
∫ 2

1/(2π)

sin

(
1

x

)
dx (f)

∫ 2

0

√
4x − x2 dx

2. For each of the definite integrals in Problem 1, construct a graph analogous to Fig-
ure 7.9. Hint. The first column of SRmat contains the endpoints (except for b) of the
subintervals from the adaptive quadrature process. If T=SRmat(:,1) and Z=zeros(length(T))’,
then plot(T,Z,’.’) will produce the subintervals (except for the right endpoint b).

3. Modify Program 7.6 so that Boole’s rule is used in each subinterval [ak, bk].
4. Use the modified program in Problem 3 to compute approximations and construct

graphs analogous to Figure 7.9 for the definite integrals in Problem 1.

7.5 Gauss-Legendre Integration (Optional)

We wish to find the area under the curve

y = f (x), −1 ≤ x ≤ 1.

What method gives the best answer if only two function evaluations are to be made?
We have already seen that the trapezoidal rule is a method for finding the area under
the curve and that it uses two function evaluations at the endpoints (−1, f (−1)), and
(1, f (1)). But if the graph of y = f (x) is concave down, the error in approximation
is the entire region that lies between the curve and the line segment joining the points;
another instance is shown in Figure 7.10(a).

If we can use nodes x1 and x2 that lie inside the interval [−1, 1], the line through
the two points (x1, f (x1)) and (x2, f (x2)) crosses the curve, and the area under the line

400 CHAP. 7 NUMERICAL INTEGRATION

x

y = f (x)

y

(a)

0−1 1 −1
x

y = f (x)

y

(b)

0 1x2x1

Figure 7.10 (a) Trapezoidal approximation using the abscissas −1 and 1. (b) Trapezoidal
approximation using the abscissas x1 and x2.

more closely approximates the area under the curve (see Figure 7.10(b)). The equation
of the line is

(1) y = f (x1)+ (x − x1)(f (x2)− f (x1))

x2 − x1

and the area of the trapezoid under the line is

(2) Atrap = 2x2

x2 − x1
f (x1)− 2x1

x2 − x1
f (x2).

Notice that the trapezoidal rule is a special case of (2). When we choose x1 = −1,
x2 = 1, and h = 2, then

T (f, h) = 2

2
f (x1)− −2

2
f (x2) = f (x1)+ f (x2) .

We shall use the method of undetermined coefficients to find the abscissas x1, x2
and weights w1, w2 so that the formula

(3)
∫ 1

−1
f (x) dx ≈ w1 f (x1)+ w2 f (x2)

is exact for cubic polynomials (i.e., f (x) = a3x3 + a2x2 + a1x + a0). Since four
coefficients w1, w2, x1, and x2 need to be determined in equation (3), we can select
four conditions to be satisfied. Using the fact that integration is additive, it will suffice
to require that (3) be exact for the four functions f (x) = 1, x , x2, x3. The four integral

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 401

conditions are

(4)

f (x) = 1 :
∫ 1

−1
1 dx = 2 = w1 + w2

f (x) = x :
∫ 1

−1
x dx = 0 = w1x1 + w2x2

f (x) = x2 :
∫ 1

−1
x2 dx = 2

3
= w1x2

1 + w2x2
2

f (x) = x3 :
∫ 1

−1
x3 dx = 0 = w1x3

1 + w2x3
2 .

Now solve the system of nonlinear equations

w1 + w2 = 2(5)

w1x1 = −w2x2(6)

w1x2
1 + w2x2

2 =
2

3
(7)

w1x3
1 = −w2x3

2(8)

We can divide (8) by (6) and the result is

(9) x2
1 = x2

2 or x1 = −x2.

Use (9) and divide (6) by x1 on the left and −x2 on the right to get

(10) w1 = w2.

Substituting (10) into (5) results in w1 + w2 = 2. Hence

(11) w1 = w2 = 1.

Now using (11) and (9) in (7), we write

(12) w1x2
1 + w2x2

2 = x2
2 + x2

2 =
2

3
or x2

2 =
1

3
.

Finally, from (12) and (9) we see that the nodes are

−x1 = x2 = 1/31/2 ≈ 0.5773502692.

We have found the nodes and weights that make up the two-point Gauss-Legendre
rule. Since the formula is exact for cubic equations, the error term will involve the
fourth derivative.

402 CHAP. 7 NUMERICAL INTEGRATION

Theorem 7.8 (Gauss-Legendre Two-Point Rule). If f is continuous on [−1, 1],
then

(13)
∫ 1

−1
f (x) dx ≈ G2(f) = f

(−1√
3

)
+ f

(
1√
3

)
.

The Gauss-Legendre rule G2(f) has degree of precision n = 3. If f ∈ C4[−1, 1],
then

(14)
∫ 1

−1
f (x) dx = f

(−1√
3

)
+ f

(
1√
3

)
+ E2(f),

where

(15) E2(f) = f (4)(c)

135
.

Example 7.17. Use the two-point Gauss-Legendre rule to approximate∫ 1

−1

dx

x + 2
= ln(3)− ln(1) ≈ 1.09861

and compare the result with the trapezoidal rule T (f, h) with h = 2 and Simpson’s rule
S(f, h) with h = 1.

Let G2(f) denote the two-point Gauss-Legendre rule; then

G2(f) = f (−0.57735)+ f (0.57735)

= 0.70291+ 0.38800 = 1.09091,

T (f, 2) = f (−1.00000)+ f (1.00000)

= 1.00000+ 0.33333 = 1.33333,

S(f, 1) = f (−1)+ 4 f (0)+ f (1)

3
= 1+ 2+ 1

3

3
= 1.11111.

The errors are 0.00770, −0.23472, and −0.01250, respectively, so the Gauss-Legendre
rule is seen to be best. Notice that the Gauss-Legendre rule required only two function
evaluations and Simpson’s rule required three. In this example the size of the error for
G2(f) is about 61% of the size of the error for S(f, 1). �

The general N -point Gauss-Legendre rule is exact for polynomial functions of
degree ≤ 2N − 1, and the numerical integration formula is

(16) G N (f) = wN ,1 f (xN ,1)+ wN ,2 f (xN ,2)+ · · · + wN ,N f (xN ,N).

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 403

Table 7.9 Gauss-Legendre Abscissas and Weights

∫ 1

−1
f (x) dx =

N∑
k=1

wN ,k f (xN ,k)+ EN (f)

N Abscissas, xN ,k Weights, wN ,k

Truncation error,
EN (f)

2 −0.5773502692 1.0000000000 f (4)(c)

1350.5773502692 1.0000000000

3 ±0.7745966692 0.5555555556 f (6)(c)

15,7500.0000000000 0.8888888888

4 ±0.8611363116 0.3478548451 f (8)(c)

3,472,875±0.3399810436 0.6521451549

5 ±0.9061798459 0.2369268851 f (10)(c)

1,237,732,650±0.5384693101 0.4786286705
0.0000000000 0.5688888888

6 ±0.9324695142 0.1713244924 f (12)(c)213(6!)4

(12!)313!±0.6612093865 0.3607615730
±0.2386191861 0.4679139346

7 ±0.9491079123 0.1294849662 f (14)(c)215(7!)4

(14!)315!±0.7415311856 0.2797053915
±0.4058451514 0.3818300505

0.0000000000 0.4179591837

8 ±0.9602898565 0.1012285363 f (16)(c)217(8!)4

(16!)317!±0.7966664774 0.2223810345
±0.5255324099 0.3137066459
±0.1834346425 0.3626837834

The abscissas xN ,k and weights wN ,k to be used have been tabulated and are easily
available; Table 7.9 gives the values up to eight points. Also included in the table is
the form of the error term EN (f) that corresponds to G N (f), and it can be used to
determine the accuracy of the Gauss-Legendre integration formula.

The values in Table 7.9 in general have no easy representation. This fact makes the
method less attractive for humans to use when hand calculations are required. But once
the values are stored in a computer it is easy to call them up when needed. The nodes
are actually roots of the Legendre polynomials, and the corresponding weights must
be obtained by solving a system of equations. For the three-point Gauss-Legendre rule
the nodes are −(0.6)1/2, 0, and (0.6)1/2, and the corresponding weights are 5/9, 8/9,
and 5/9.

404 CHAP. 7 NUMERICAL INTEGRATION

Theorem 7.9 (Gauss-Legendre Three-Point Rule). If f is continuous on [−1, 1],
then

(17)
∫ 1

−1
f (x) dx ≈ G3(f) = 5 f (−√3/5)+ 8 f (0)+ 5 f (

√
3/5)

9
.

The Gauss-Legendre rule G3(f) has degree of precision n = 5. If f ∈ C6[−1, 1],
then

(18)
∫ 1

−1
f (x) dx = 5 f (−√3/5)+ 8 f (0)+ 5 f (

√
3/5)

9
+ E3(f),

where

(19) E3(f) = f (6)(c)

15, 750
.

Example 7.18. Show that the three-point Gauss-Legendre rule is exact for∫ 1

−1
5x4 dx = 2 = G3(f).

Since the integrand is f (x) = 5x4 and f (6)(x) = 0, we can use (19) to see that
E3(f) = 0. But it is instructive to use (17) and do the calculations in this case.

G3(f) = 5(5)(0.6)2 + 0+ 5(5)(0.6)2

9
= 18

9
= 2. �

The next result shows how to change the variable of integration so that the Gauss-
Legendre rules can be used on the interval [a, b].
Theorem 7.10 (Gauss-Legendre Translation). Suppose that the abscissas {xN ,k}Nk=1
and weights {wN ,k}Nk=1 are given for the N -point Gauss-Legendre rule over [−1, 1]. To
apply the rule over the interval [a, b], use the change of variable

(20) t = a + b

2
+ b − a

2
x and dt = b − a

2
dx .

Then the relationship

(21)
∫ b

a
f (t) dt =

∫ 1

−1
f

(
a + b

2
+ b − a

2
x

)
b − a

2
dx

is used to obtain the quadrature formula

(22)
∫ b

a
f (t) dt = b − a

2

N∑
k=1

wN ,k f

(
a + b

2
+ b − a

2
xN ,k

)
.

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 405

Example 7.19. Use the three-point Gauss-Legendre rule to approximate∫ 5

1

dt

t
= ln(5)− ln(1) ≈ 1.609438

and compare the result with Boole’s rule B(2) with h = 1.
Here a = 1 and b = 5, so the rule in (22) yields

G3(f) = (2)
5 f (3− 2(0.6)1/2)+ 8 f (3+ 0)+ 5 f (3+ 2(0.6)1/2)

9

= (2)
3.446359+ 2.666667+ 1.099096

9
= 1.602694.

In Example 7.13 we saw that Boole’s rule gave B(2) = 1.617778. The errors are
0.006744 and −0.008340, respectively, so that the Gauss-Legendre rule is slightly better
in this case. Notice that the Gauss-Legendre rule requires three function evaluations and
Boole’s rule requires five. In this example the size of the two errors is about the same. �

Gauss-Legendre integration formulas are extremely accurate, and they should be
considered seriously when many integrals of a similar nature are to be evaluated. In
this case, proceed as follows. Pick a few representative integrals, including some with
the worst behavior that is likely to occur. Determine the number of sample points
N that is needed to obtain the required accuracy. Then fix the value N , and use the
Gauss-Legendre rule with N sample points for all the integrals.

For a given value of N , Program 7.7 requires that the abscissas and weights from
Table 7.9 be saved in 1 × N matrices A and W , respectively. This can be done in
the MATLAB command window or the matrices can be saved as M-files. It would
be expedient to save Table 7.9 in a 35 × 2 matrix G. The first column of G would
contain the abscissas and the second column the corresponding weights. Then, for a
given value of N , the matrices A and W would be submatrices of G. For example, if
N = 3, then A=G(3:5,1)’ and W=G(3:5,2)’.

Program 7.7 (Gauss-Legendre Quadrature). To approximate the integral∫ b

a
f (x) dx ≈ b − a

2

N∑
k=1

wN ,k f (tN ,k)

by sampling f (x) at the N unequally spaced points {tN ,k}Nk=1. The changes of vari-
able

t = a + b

2
+ b − a

2
x and dt = b − a

2
dx

are used. The abscissas {xN ,k}Nk=1 and the corresponding weights {wN ,k}Nk=1 must
be obtained from a table of known values.

function quad=gauss(f,a,b,A,W)

406 CHAP. 7 NUMERICAL INTEGRATION

%Input - f is the integrand input as a string ’f’
% - a and b are upper and lower limits of integration
% - A is the 1 x N vector of abscissas from Table 7.9
% - W is the 1 x N vector of weights from Table 7.9
%Output - quad is the quadrature value

N=length(A);
T=zeros(1,N);
T=((a+b)/2)+((b-a)/2)*A;
quad=((b-a)/2)*sum(W.*feval(f,T));

Exercises for Gauss-Legendre Integration

In Exercises 1 through 4, (a) show that the two integrals are equivalent and (b) calculate
G2(f).

1.
∫ 2

0
6t5 dt =

∫ 1

−1
6(x + 1)5 dx 2.

∫ 2

0
sin(t) dt =

∫ 1

−1
sin(x + 1) dx

3.
∫ 1

0

sin(t)

t
dt =

∫ 1

−1

sin((x + 1)/2)

x + 1
dx 4.

1√
2π

∫ 1

0
e−t2/2 dt = 1√

2π

∫ 1

−1

e−(x+1)2/8

2
dx

5.
1

π

∫ π

0
cos(0.6 sin(t)) dt = 0.5

∫ 1

−1
cos
(

0.6 sin
(
(x + 1)

π

2

))
dx

6. Use EN (f) in Table 7.9 and the change of variable given in Theorem 7.10 to find the
smallest integer N so that EN (f) = 0 for

(a)
∫ 2

0 8x7 dx = 256 = G N (f).

(b)
∫ 2

0 11x10 dx = 2048 = G N (f).

7. Find the roots of the following Legendre polynomials and compare them with the
abscissa in Table 7.9.
(a) P2(x) = (3x2 − 1)/2
(b) P3(x) = (5x3 − 3x)/2
(c) P4(x) = (35x4 − 30x2 + 3)/8

8. The truncation error term for the two-point Gauss-Legendre rule on the closed in-
terval [−1, 1] is f (4)(c1)/135. The truncation error for Simpson’s rule on [a, b] is
−h5 f (4)(c2)/90. Compare the truncation error terms when [a, b] = [−1, 1]. Which
method do you think is best? Why?

9. The three-point Gauss-Legendre rule is∫ 1

−1
f (x) dx ≈ 5 f (−(0.6)1/2)+ 8 f (0)+ 5 f ((0.6)1/2)

9
.

Show that the formula is exact for f (x) = 1, x , x2, x3, x4, x5. Hint. If f is an odd
function (i.e., f (−x) = f (x)), the integral of f over [−1, 1] is zero.

SEC. 7.5 GAUSS-LEGENDRE INTEGRATION (OPTIONAL) 407

10. The truncation error term for the three-point Gauss-Legendre rule on the interval
[−1, 1] is f (6)(c1)/15, 750. The truncation error term for Boole’s rule on [a, b] is
−8h7 f (6)(c2)/945. Compare the error terms when [a, b] = [−1, 1]. Which method
is better? Why?

11. Derive the three-point Gauss-Legendre rule using the following steps. Use the fact
that the abscissas are the roots of the Legendre polynomial of degree 3.

x1 = −(0.6)1/2, x2 = 0, x3 = (0.6)1/2.

Find the weights w1, w2, w3 so that the relation∫ 1

−1
f (x) dx ≈ w1 f (−(0.6)1/2)+ w2 f (0)+ w3 f ((0.6)1/2)

is exact for the functions f (x) = 1, x , and x2. Hint. First obtain and then solve the
linear system of equations

w1 + w2 + w3 = 2

−(0.6)1/2w1 + (0.6)1/2w3 = 0

0.6w1 + 0.6w3 = 2

3
.

12. In practice, if many integrals of a similar type are evaluated, a preliminary analysis is
made to determine the number of function evaluations required to obtain the desired
accuracy. Suppose that 17 function evaluations are to be made. Compare the Romberg
answer R(4, 4) with the Gauss- Legendre answer G17(f).

Algorithms and Programs

1. For each of the integrals in Exercises 1 through 5, use Program 7.7 to find G6(f),
G7(f), and G8(f).

2. (a) Modify Program 7.7 so that it will compute G1(f), G2(f), . . . , G8(f) and stop
when the relative error in the approximations G N−1(f) and G N (f) is less than
the preassigned value tol, that is,

2|G N−1(f)− G N (f)|
|G N−1(f)+ G N (f)| < tol.

Hint. As discussed at the end of the section, save Table 7.9 in an M-file G as a
35× 2 matrix G.

(b) Use your program from part (a) to approximate the integrals in Exercises 1
through 5 with an accuracy of five decimal places.

408 CHAP. 7 NUMERICAL INTEGRATION

3. (a) Use the six-point Gauss-Legendre rule to approximate the solution of the inte-
gral equation

v(x) = x2 + 0.1
∫ 3

0
(x2 + t)v(t) dt.

Substitute your approximate solution into the right-hand side of the integral
equation and simplify.

(b) Repeat part (a) using an eight-point Gauss-Legendre rule.

8
Numerical
Optimization

The two-dimensional wave equation is used in mechanical engineering to model vi-
brations in rectangular plates. If the plates have all four edges clamped, the sinusoidal
vibrations are described with a double Fourier series. Suppose that at a certain instant

0 1

1

2

3

2 3

z

(a) (b)

y

y

x
x

1

0

0
1

2

3

−1

1

2

3

Figure 8.1 (a) The displacement z = f (x, y) of a vibrating plate. (b) The contour plot
f (x, y) = C for a vibrating plate.

409

410 CHAP. 8 NUMERICAL OPTIMIZATION

of time the height z = f (x, y) over the point (x, y) is given by the function

z = f (x, y) = 0.02 sin(x) sin(y)− 0.03 sin(2x) sin(y)

+ 0.04 sin(x) sin(2y)+ 0.08 sin(2x) sin(2y).

Where are the points of maximum deflection located? Looking at the three-dimen-
sional graph and the companion contour plot in Figure 8.1(a) and (b), respectively, we
see that there are two local minima and two local maxima over the square 0 ≤ x ≤ π ,
0 ≤ y ≤ π . Numerical methods can be used to determine their approximate location:

f (0.8278, 2.3322) = −0.1200 and f (2.5351, 0.6298) = −0.0264

are the local minima, and

f (0.9241, 0.7640) = 0.0998 and f (2.3979, 2.2287) = 0.0853

are the local maxima.
In this chapter we give a brief introduction to some of the basic methods for locat-

ing extrema of functions of one or several variables.

8.1 Minimization of a Function of One Variable

Definition 8.1. The function f is said to have a local minimum value at x = p,
if there exists an open interval I containing p so that f (p) ≤ f (x) for all x ∈ I .
Similarly, f is said to have a local maximum value at x = p if f (x) ≤ f (p) for all
x ∈ I . If f has either a local minimum or maximum value at x = p, it is said to have
a local extremum at x = p. �

Definition 8.2. Assume that f (x) is defined on the interval I .

(i) If x1 < x2 implies that f (x1) < f (x2) for all x1, x2 ∈ I , then f is said to be
increasing on I .

(ii) If x1 < x2 implies that f (x1) > f (x2) for all x1, x2 ∈ I , then f is said to be
decreasing on I . �

Theorem 8.1. Suppose that f (x) is continuous on I = [a, b] and is differentiable on
(a, b).

(i) If f ′(x) > 0 for all x ∈ (a, b), then f (x) is increasing on I .

(ii) If f ′(x) < 0 for all x ∈ (a, b), then f (x) is decreasing on I .

Theorem 8.2. Assume that f (x) is defined on I = [a, b] and has a local extremum
at an interior point p ∈ (a, b). If f (x) is differentiable at x = p, then f ′(p) = 0.

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 411

Theorem 8.3 (First Derivative Test). Assume that f (x) is continuous on I = [a, b].
Furthermore, suppose that f ′(x) is defined for all x ∈ (a, b), except possibly at x = p.

(i) If f ′(x) < 0 on (a, p) and f ′(x) > 0 on (p, b), then f (p) is a local minimum.

(ii) If f ′(x) > 0 on (a, p) and f ′(x) < 0 on (p, b), then f (p) is a local maximum.

Theorem 8.4 (Second Derivative Test). Assume that f is continuous on [a, b] and
f ′ and f ′′ are defined on (a, b). Also, suppose that p ∈ (a, b) is a critical point where
f ′(p) = 0.

(i) If f ′′(p) > 0, then f (p) is a local minimum of f .

(ii) If f ′′(p) < 0, then f (p) is a local maximum of f .

(iii) If f ′′(p) = 0, then this test is inconclusive.

Example 8.1. Use the second derivative test to classify the local extrema of f (x) =
x3 + x2 − x + 1 on the interval [−2, 2].

The first derivative is f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), and the second
derivative is f ′′(x) = 6x + 2. There are two points where f ′(x) = 0 (i.e., x = 1/3, −1).

Case (i): At x = 1/3 we find that f ′(1/3) = 0 and f ′′(1/3) = 4 > 0, so that f (x) has
a local minimum at x = 1/3.

Case (ii): At x = −1 we find that f ′(−1) = 0 and f ′′(−1) = −4 < 0, so that f (x)

has a local maximum at x = −1. �

Bracketing Search Methods

Another approach for finding the minimum of f (x) in a given interval is to evaluate
the function many times and search for a local minimum. To reduce the number of
function evaluations it is important to have a good strategy for determining where f (x)

is to be evaluated. Two efficient bracketing methods are the golden ratio and fibonacci
searches. To use either bracketing method for finding the minimum of f (x), a special
condition must be met to ensure that there is a proper minimum in the given interval.

Definition 8.3. The function f (x) is unimodal on I = [a, b], if there exists a unique
number p ∈ I such that

(1) f (x) is decreasing on [a, p]
(2) f (x) is increasing on [p, b] �

Golden Ratio Search

If f (x) is known to be unimodal on [a, b], then it is possible to replace the interval
with a subinterval on which f (x) takes on its minimum value. One approach is to
select two interior points c < d. This results in a < c < d < b. The condition

412 CHAP. 8 NUMERICAL OPTIMIZATION

a c d b a c d b

p

y = f (x) y = f (x)

p

,
.

,
.

Figure 8.2 The decision process for the golden ratio search.

0 11 − r

1 − r r

r 0 11 − r r

0

r2

r 11 − r

1 − r2

Squeeze from the right and
the new interval is [0, r].

Squeeze from the left and
the new interval is [1 − r, 1].

Figure 8.3 The intervals involved in the golden ratio search.

that f (x) is unimodal guarantees that the function values f (c) and f (d) are less than
max{ f (a), f (b)}. We have two cases to consider (see Figure 8.2).

If f (c) ≤ f (d), the minimum must occur in the subinterval [a, d], and we replace
b with d and continue the search in the new subinterval [a, d]. If f (d) < f (c), the
minimum must occur in [c, b], and we replace a with c and continue the search in [c, b]

The interior points c and d are selected so that the resulting intervals [a, c] and
[d, b] are symmetrical; that is, b − d = c − a, where

c = a + (1− r)(b − a) = ra + (1− r)b,(3)

d = b − (1− r)(b − a) = (1− r)a + rb,(4)

and 1/2 < r < 1 (to preserve the ordering c < d).
We want the value of r to remain constant on each subinterval. Additionally, one of

the old interior points will be used as an interior point of the new subinterval, while the
other interior point will become an endpoint of the new subinterval (see Figure 8.3).
Thus, on each iteration only one new point will have to be found and only one new
function evaluation will have to be made. If f (c) ≤ f (d) and only one new function

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 413

evaluation is to be made, then we must have

d − a

b − a
= c − a

d − a
r(b − a)

b − a
= (1− r)(b − a)

r(b − a)

r

1
= 1− r

r
r2 + r − 1 = 0

r = −1±√5

2
.

Thus r = (−1 + √5)/2 (the golden ratio). Similarly, if f (d) < f (c), then r =
(−1+√5)/2.

The next example compares the root-finding method with the golden search method.

Example 8.2. Find the minimum of the unimodal function f (x) = x2 − sin(x) on the
interval [0, 1].

Solution by solving f ′(x) = 0. A root-finding method can be used to determine
where the derivative f ′(x) = 2x − cos(x) is zero. Since f ′(0) = −1 < 0 and f ′(1) =
1.4596977 > 0, then by the intermediate value theorem a root of f ′(x) lies in the interval
[0, 1]. The results of using the secant method with the initial values p0 = 0 and p1 = 1 are
given in Table 8.1.

The conclusion from applying the secant method is that f ′(0.4501836) = 0. The sec-
ond derivative is f ′′(x) = 2 + sin(x) and we compute f ′′(0.4501836) = 2.435131 >

0. Hence, by Theorem 8.4 (second derivative test), the minimum is f (0.4501836) =
−0.2324656.

Solution using the golden search. Let a0 = 0 and b0 = 1. Formulas (3) and (4) yield

c0 = 0+
(

1− −1+√5

2

)
(1− 0) = 3−√5

2
≈ 0.38919660,

d0 = 1−
(

1− −1+√5

2

)
(1− 0) = −1+√5

2
≈ 0.6180340.

We calculate f (c0) = −0.22684748 and f (d0) = −0.19746793. Since f (c0) < f (d0),
the new subinterval is [a0, d0] = [0.00000000, 0.6180340]. We let a1 = a0, b1 = d0,
d1 = c0 and use formula (3) to find c1:

c1 = a1 + (1− r)(b1 − a1)

= 0+
(

1− −1+√5

2

)
(0.6180340− 0)

≈ 0.2360680.

414 CHAP. 8 NUMERICAL OPTIMIZATION

Table 8.1 Secant Method for
Solving f ′(x) = 2x − cos(x) = 0

k pk 2pk − cos(pk)

0 0.0000000 −1.00000000
1 1.0000000 1.45969769
2 0.4065540 −0.10538092
3 0.4465123 −0.00893398
4 0.4502137 0.00007329
5 0.4501836 −0.00000005

Table 8.2 Golden Search for the Minimum of f (x) = x2 − sin(x)

k ak ck dk bk f (ck) f (dk)

0 0.0000000 0.3819660 0.6180340 1 −0.22684748 −0.19746793
1 0.0000000 0.2360680 0.3819660 0.6180340 −0.17815339 −0.22684748
2 0.2360680 0.3819660 0.4721360 0.6180340 −0.22684748 −0.23187724
3 0.3819660 0.4721360 0.5278640 0.6180340 −0.23187724 −0.22504882
4 0.3819660 0.4376941 0.4721360 0.5278640 −0.23227594 −0.23187724
5 0.3819660 0.4164079 0.4376941 0.4721360 −0.23108238 −0.23227594
6 0.4164079 0.4376941 0.4508497 0.4721360 −0.23227594 −0.23246503
...

...
...

...
...

...
...

21 0.4501574 0.4501730 0.4501827 0.4501983 −0.23246558 −0.23246558
22 0.4501730 0.4501827 0.4501886 0.4501983 −0.23246558 −0.23246558
23 0.4501827 0.4501886 0.4501923 0.4501983 −0.23246558 −0.23246558

Now compute and compare f (c1) and f (d1) to determine the new subinterval and continue
the iteration process. Some of the computations are shown in Table 8.2.

At the twenty-third iteration the interval has been narrowed down to [a23, b23] =
[0.4501827, 0.4501983]. This interval has width 0.0000156. However, the computed func-
tion values at the endpoints agree to eight decimal places (i.e., f (a23) ≈ −0.23246558 ≈
f (b23); hence the algorithm is terminated. A problem in using search methods is that the
function may be flat near the minimum, and this limits the accuracy that can be obtained.
The secant method was able to find the more accurate answer p5 = 0.4501836.

Although the golden ratio search is slower in this example, it has the desirable feature
that it can be applied in cases where f (x) is not differentiable. �

Fibonacci Search

In the golden ratio search two function evaluations are made at the first iteration and
then only one function evaluation is made for each subsequent iteration. The value of

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 415

r remains constant on each subinterval and the search is terminated at the kth subin-
terval, provided that |bk − ak | or | f (bk) − f (ak)| satisfies predefined tolerances. The
Fibonacci search method differs from the golden ratio method in that the value of r is
not constant on each subinterval. Additionally, the number of subintervals (iterations)
is predetermined and based on the specified tolerances.

The Fibonacci search is based on the sequence of Fibonacci numbers {Fk}∞k=0 de-
fined by the equations

F0 = 0, F1 = 1(5)

Fn = Fn−1 + Fn−2(6)

for n = 2, 3, Thus the Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21,
Assume we are given a function f (x) that is unimodal on the interval [a0, b0]. As

in the golden ratio search a value r0 (1/2 < r0 < 1) is selected so that both of the
interior points c0 and d0 will be used in the next subinterval and there will be only one
new function evaluation. Without loss of generality assume that f (c0) > f (d0). It
follows that a1 = a0, b1 = d0, and d1 = c0 (see Figure 8.4). If there is to be only one
new function evaluation, then we select r1 (1/2 < r1 < 1) for the subinterval [a1, b1],
such that

d0 − c0 = b1 − d1

(2r0 − 1)(b0 − a0) = (1− r1)(b1 − a1)

(2r0 − 1)(b0 − a0) = (1− r1)(r0(b0 − a0))

2r0 − 1 = (1− r1)r0

r1 = 1− r0

r0
.

Substituting r0 = Fn−1/Fn , n ≥ 4, into this last equation yields

r1 =
1− Fn−1

Fn
Fn−1
Fn

= Fn − Fn−1

Fn−1

= Fn−2

Fn−1

since, by equation (6), Fn = Fn−1 + Fn−2.
Reasoning inductively, it follows that the Fibonacci search can be begun with r0 =

Fn−1/Fn and continued using rk = Fn−1−k/Fn−k for k = 1, 2, . . . , n − 3. Note that
rn−3 = F2/F3 = 1/2, thus no new points can be added at this stage. Therefore, there
are a total of (n − 3)+ 1 = n − 2 steps in this process.

416 CHAP. 8 NUMERICAL OPTIMIZATION

1-r0

1-r1

2r0-1

a0

r1

a1 c1 d1 b1

c0 d0 b0

Figure 8.4 The Fibonacci search intervals
[a0, b0] and [a1, b1].

The (k + 1)st subinterval is obtained by reducing the length of the kth subinterval
by a factor of rk = Fn−1−k/Fn−k . The length of the last subinterval is

Fn−1 Fn−2 · · · F2

Fn Fn−1 · · · F3
(b0 − a0) = F2

Fn
(b0 − a0)

= 1

Fn
(b0 − a0) = b0 − a0

Fn
.

If the absissa of the minimum is to be found with a tolerance of ε, then we need to find
the smallest value of n such that

(7)
b0 − a0

Fn
< ε or Fn >

b0 − a0

ε
.

The interior points ck and dk of the kth subinterval [ak, bk] are found, as needed,
using the formulas

ck = ak +
(

1− Fn−k−1

Fn−k

)
(bk − ak)(8)

dk = ak + Fn−k−1

Fn−k
(bk − ak).(9)

Note. the value of n used in formulas (8) and (9) is found using inequality (7).
Each iteration requires the determination of two new interior points, one from the

previous iteration and the second from formula (8) or (9). When r0 = F2/F3 = 1/2,
the two interior points will be concurrent in the middle of the interval. To distinguish
the two interior points a small distinguishability constant, e, is introducted. Thus when
formula (8) or (9) is used, the coefficients of (bk − ak) are 1/2− e or 1/2+ e, respec-
tively.

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 417

Example 8.3. Find the minimum of the function f (x) = x2−sin(x) on the interval [0, 1]
using the Fibonacci search method. Use a tolerance of ε = 10−4 and the distinguishability
constant e = 0.01.

The smallest Fibonacci number satisfying

Fn >
b0 − a0

ε
= 1− 0

10−4
= 10,000,

is F21 = 10,946. Thus n = 21. Let a0 = 0 and b0 = 1. Formulas (8) and (9) yield

c0 = 0+
(

1− F20

F21

)
(1− 0) ≈ 0.3819660

d0 = 0+ F20

F21
(1− 0) ≈ 0.6180340.

We set a1 = a0, b1 = d0, and d1 = c0, since f (0.3819660) = −0.2268475 and
f (0.6180340) = −0.1974679 (f (d0) ≥ f (c0)). The new subinterval containing the ab-
scissa of the minimum of f is [a1, b1] = [0, 0.6180340]. Now use formula (8) to calculate
the interior point c1:

c1 = a1 +
(

1− F21−1−1

F21−1

)
(b1 − a1)

= 0+
(

1− F19

F20

)
(0.6180340− 0)

≈ 0.2360680.

Now compute and compare f (c1) and f (d1) to determine the new subinterval [a2, b2], and
continue the iteration process. Some of the computations are shown in Table 8.3.

At the seventeenth iteration the interval has been narrowed down to [a17, b17] =
[0.4501188, 0.4503928], where c17 = 0.4502101, d17 = 0.4503105, and f (d17) ≥ f (c17).
Thus [a18, b18] = [0.4501188, 0.4503015] and d18 = 0.4502101. At this stage the multi-
plier is r18 = 1− F2/F3 = 1− 1/2 = 1/2 and the distinguishability constant e = 0.01 is
used to calculate c18:

c18 = a18 + (0.5− 0.01)(b18 − a18)

= 0.4501188− 0.49(0.450315− 0.4501188)

≈ 0.4502083.

Since f (d18) ≥ f (c18), the final subinterval is [a19, b19] = [0.4501188, 0.4502101]. This
interval has width 0.0000913. We choose to report the abscissa of the minimum as the
midpoint of this interval. Therefore, the minimum value is f (0.4501645) = −0.2324656.

�

Both the Fibonacci and golden ratio search methods can be applied in cases where
f (x) is not differentiable. It should be noted that when n is small the Fibonacci method
is more efficient than the golden ratio method. However, for n large the two methods
are almost identical.

418 CHAP. 8 NUMERICAL OPTIMIZATION

Table 8.3 Fibonacci Search for the Minimum of f (x) = x2 − sin(x)

k ak ck dk bk

0 0.0000000 0.3819660 0.6180340 1.0000000
1 0.0000000 0.2360680 0.3819660 0.6180340
2 0.2360680 0.3819660 0.4721359 0.6180340
3 0.3819660 0.4721359 0.5278641 0.6180340
4 0.3819660 0.4376941 0.4721359 0.5278641
...

...
...

...
...

16 0.4499360 0.4501188 0.4502102 0.4503928
17 0.4501188 0.4502101 0.4503015 0.4503928
18 0.4501188 0.4502083 0.4502101 0.4503015

a p0 p b

y = f (x)

a p0p b

y = f (x)

Figure 8.5 Using f ′(x) to find the minimum value of the unimodal func-
tion f (x) on the interval [a, b].

Minimization Using Derivatives

Suppose that f (x) is unimodal over [a, b] and has a unique minimum at x = p. Also,
assume that f ′(x) is defined at all points in (a, b). Let the starting value p0 lie in
(a, b). If f ′(p0) < 0, the minimum point p lies to the right of p0. If f ′(p0) > 0, p
lies to the left of p0 (see Figure 8.5).

Bracketing the Minimum

Our first task is to obtain three test values,

(10) p0, p1 = p0 + h and p2 = p0 + 2h,

so that

(11) f (p0) > f (p1) and f (p1) < f (p2).

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 419

Suppose that f ′(p0) < 0; then p0 < p and the step size h should be chosen positive.
It is an easy task to find a value of h so that the three points in (10) satisfy (11). Start
with h = 1 in formula (10) (provided that a + 1 < b); if not, take h = 1/2, and so on.

Case (i): If (11) is satisfied we are done.

Case(ii): If f (p0) > f (p1) and f (p1) > f (p2), then p2 < p. We need
to check points that lie farther to the right. Double the step size and
repeat the process.

Case (iii): If f (p0) ≤ f (p1), we have jumped over p and h is too large. We
need to check values closer to p0. Reduce the step size by a factor of
1/2 and repeat the process.

When f ′(p0) > 0, the step size h should be chosen negative and then cases similar to
(i), (ii), and (iii) can be used.

Quadratic Approximation to Find p

Finally, we have three points (10) that satisfy (11). We will use quadratic interpolation
to find pmin, which is an approximation to p. The Lagrange polynomial based on the
nodes in (10) is

(12) Q(x) = y0(x − p1)(x − p2)

2h2
− y1(x − p0)(x − p2)

h2
+ y2(x − p0)(x − p1)

2h2
,

where yi = f (pi) for i = 0, 1, 2. The derivative of Q(x) is

(13) Q′(x) = y0(2x − p1 − p2)

2h2
− y1(2x − p0 − p2)

h2
+ y2(2x − p0 − p1)

2h2
.

Solving Q′(x) = 0 in the form Q′(p0 + hmin) yields

0 = y0(2(p0 + hmin)− p1 − p2)

2h2
− y1(4(p0 + hmin)− 2p0 − 2p2)

2h2

+ y2(2(p0 + hmin)− p0 − p1)

2h2
.

(14)

Multiply each term in (14) by 2h2 and collect terms involving hmin:

−hmin(2y0 − 4y1 + 2y2) = y0(2p0 − p1 − p2)

− y1(4p0 − 2p0 − 2p2)+ y2(2p0 − p0 − p1)

= y0(−3h)− y1(−4h)+ y2(−h).

This last quantity is easily solved for hmin:

(15) hmin = h(4y1 − 3y0 − y2)

4y1 − 2y0 − 2y2
.

420 CHAP. 8 NUMERICAL OPTIMIZATION

The value pmin = po + hmin is a better approximation to p than p0. Hence we can
replace p0 with pmin and repeat the two processes outlined above to determine a new
h and a new hmin. Continue the iteration until the desired accuracy is achieved. The
details are outlined in Program 8.3.

In this algorithm the derivative of the objective function f was used implicitly in
(13) to locate the minimum of the interpolatory quadratic. The reader should note that
Program 8.3 makes no explicit use of the derivative. We now consider an approach that
utilizes functional evaluations of both f and f ′.

Cubic Approximation to Find p

An alternative approach that uses both functional and derivative evaluations explicitly
is to find the minimum of a third-degree polynomial that interpolates the objective
function f at two points. Assume that f is unimodal and differentiable on [a, b], and
has a unique minimum at x = p. Let p0 = a. The mean value theorem is used to
estimate an initial step size h such that p1 is close to p:

h = 2(f (b)− f (a))

f ′(a)
.

Thus p1 = p0+h. The cubic is expressed in terms of p2, the abscissa of the minimum:

(16) P(x) = α

h3
(x − p2)

3 + β

h2
(x − p2)

2 + f (p2).

Note:

(17) P ′(x) = 3α

h3
(x − p2)

2 + 2β

h2
(x − p2).

The introduction of h = x1 − x0 in the denominators will make further calculations
less tiresome. It is required that P(p0) = f (p0), P(p1) = f (p1), P ′(p0) = f ′(p0),
and P ′(p1) = f ′(p1). To find p2 we define

(18) p2 = p0 + hγ

(see Figure 8.5) and use (16) and (17) to show that

F = f (p1)− f (p0) = α(3γ 2 − 3γ + 1)+ β(1− 2γ)(19)

G = f ′(p1)− f ′(p0) = 3α(1− 2γ)+ 2β(20)

h f ′(p0) = 3αγ 2 − 2βγ.(21)

The system represented by (19), (20), and (21) is solved for α:

(22) α = G − 2(F − f ′(p0)h).

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 421

Now β is eliminated from (20) and (21), yielding

(23) 3αγ 2 + (G − 3α)γ + h f ′(p0) = 0.

Solving (23) gives us

γ = −2h f ′(p0)

(G − 3α)±√(G − 3α)2 − 12αh f ′(p0)

(see Section 1.3, Exercise 12). In general, the quadratic term in (16) should dominate
and thus the value of α should be small. Since the smaller value of γ is desired, we let

(24) γ = −2h f ′(p0)

(G − 3α)+√(G − 3α)2 − 12αh f ′(p0)
.

The value of p2 is found by substituting the calculated value of γ into formula (18).
To continue the iteration process, let h = p2 − p1 and replace p0 and p1 with p1 and
p2, respectively, in formulas (18), (19), (20), (22), and (24). The algorithm outlined
above is not a bracketing method. Thus determining stopping criteria becomes more
problematic. One technique would be to require that | f ′(pk)| < ε, since f ′(p) = 0.

Example 8.4. Find the minimum of the function f (x) = x2−sin(x) on the interval [0, 1]
using the cubic search method.

The derivative of f is f ′(x) = 2x−cos(x). Substituting f (0) = 0, f (1) = 0.5852902,
and f ′(0) = −1 into h1 = 2(f (b)− f (a))/ f ′(a) yields h1 = −0.3170580. Thus

p1 = p0 + h1 = 0+ (−0.3170580) = −0.3170580

f (p1) = f (−0.3170580) = 0.4122984

f ′(p1) = f ′(−0.3170580) = −0.8496310.

Substituting h1, f (p0), f (p1), f ′(p0), and f ′(p1) into formulas (19), (20), (22), and (24)
yields

F = 0.4122984,

G = 0.1852484,

α = −0.0052323,

γ = −1.4202625.

Thus

p2 = p1 + h1γ = −0.3170580+ (−0.3170580)(−1.4202625) = 0.4503056.

Now set h2 = p2− p1 = 0.7673637 and continue the iteration process. The results in Table
8.4 were obtained using the stopping criterion f ′(pk) < 10−7. The value of the function at
p5 = 0.4501836 is f (p5) = −0.2324656 , which compares favorably with the minimum
value found by the secant method in Example 8.2. �

422 CHAP. 8 NUMERICAL OPTIMIZATION

Table 8.4 Cubic Search for the Minimum of
f (x) = x2 − sin(x)

k pk−1 hk pk

1 0.0000000 −0.3170580 −0.3170580
2 −0.3170580 0.7673637 0.4503056
3 0.4503056 0.0001217 0.4501810
4 0.4501810 0.0002433 0.4504272
5 0.4504272 0.0002436 0.4501836

Program 8.1 (Golden Search for a Minimum). To approximate the minimum of
f (x) numerically on the interval [a, b] by using a golden search. Proceed with the
method only if f (x) is a unimodal function on the interval [a, b].
function[S,E,G]=golden(f,a,b,delta,epsilon)

%Input - f is the object function input as a string ’f’
% - a and b are the endpoints of the interval
% - delta is the tolerance for the abscissas
% - epsilon is the tolerance for the ordinates
%Output - S=(p,yp) contains the abscissa p and
% the ordinate yp of the minimum
% - E=(dp,dy) contains the error bounds for p and yp
% - G is an n x 4 matrix: the kth row contains
% [ak ck dk bk]; the values of a, c, d, and b at the
% kth iteration

r1=(sqrt(5)-1)/2;
r2=r1^2;
h=b-a;
ya=feval(f,a);
yb=feval(f,b);
c=a+r2*h;
d=a+r1*h;
yc=feval(f,c);
yd=feval(f,d);
k=1;
A(k)=a;B(k)=b;C(k)=c;D(k)=d;

while(abs(yb-ya)>epsilon)|(h>delta)
k=k+1;
if(yc<yd)

b=d;
yb=yd;

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 423

d=c;
yd=yc;
h=b-a;
c=a+r2*h;
yc=feval(f,c);

else
a=c;
ya=yc;
c=d;
yc=yd;
h=b-a;
d=a+r1*h;
yd=feval(f,d);

end
A(k)=a;B(k)=b;C(k)=c;D(k)=d;

end

dp=abs(b-a);
dy=abs(yb-ya);
p=a;
yp=ya;

if(yb<ya)
p=b;
yp=yb;

end

G=[A’ C’ D’ B’];
S=[p yp];
E=[dp dy];

Program 8.2 uses the following MATLAB M-function to calculate Fibonacci num-
bers.

function y=fib(n)
fz(1)=1; fz(2)=1;
for k=3:n

fz(k)=fz(k-1)+fz(k-2);
end
y=fz(n);

Program 8.2 (Fibonacci Search for a Minimum). To numerically approximate
the minimum of f (x) on the interval [a, b] by using a Fibonacci search. Proceed
with the method only if f (x) is a unimodal function on the interval [a.b].
function X=fibonacci(f,a,b,tol,e)

%Input- f, the object function as a string

424 CHAP. 8 NUMERICAL OPTIMIZATION

% a, the left endpoint of the interval
% b, the right endpoint of the interval
% tol, length of uncertainty
% e, distinguishability constant
%Output-X, x and y coordinates of minimum

%Note: this function calls the m-file fib.m
%Determine n
i=1;
F=1;
while F<=(b-a)/tol

F=fib(i);
i=i+1;

end

%Initialize values
n=i-1;
A=zeros(1,n-2);B=zeros(1,n-2);
A(1)=a;
B(1)=b;
c=A(1)+(fib(n-2)/fib(n))*(B(1)-A(1));
d=A(1)+(fib(n-1)/fib(n))*(B(1)-A(1));
k=1;

%Compute Iterates
while k =n-3

if feval(f,c)>feval(f,d)
A(k+1)=c;
B(k+1)=B(k);
c=d;
d=A(k+1)+(fib(n-k-1)/fib(n-k))*(B(k+1)-A(k+1));

else
A(k+1)=A(k);
B(k+1)=d;
d=c;
c=A(k+1)+(fib(n-k-2)/fib(n-k))*(B(k+1)-A(k+1));

end
k=k+1;

end

%Last iteration using distinguishability constant e
if feval(f,c)>feval(f,d)

A(n-2)=c;
B(n-2)=B(n-3);
c=d;
d=A(n-2)+(0.5+e)*(B(n-2)-A(n-2));

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 425

else
A(n-2)=A(n-3);
B(n-2)=d;
d=c;
c=A(n-2)+(0.5-e)*(B(n-2)-A(n-2));

end

%Output: Use midpoint of last interval for abscissa
if feval(f,c)>feval(f,d)

a=c;b=B(n-2);
else

a=A(n-2);b=d;
end
X=[(a+b)/2 feval(f,(a+b)/2)];

Program 8.3 (Local Minimum Search Using Quadratic Interpolation). To find
a local minimum of the function f (x) over the interval [a, b], by starting with one
initial approximation p0 and then searching the intervals [a, p0] and [p0, b].
function[p,yp,dp,dy,P]=quadmin(f,a,b,delta,epsilon)

%Input - f is the object function input as a string ’f’
% - a and b are the endpoints of the interval
% - delta is the tolerance for the abscissas
% - epsilon is the tolerance for the ordinates
%Output - p is the abscissa of the minimum
% - yp is the ordinate of the minimum
% - dp is the error bound for p
% - dy is the error bound for yp
% - P is the vector of iterations

p0=a;
maxj=20;
maxk=30;
big=1e6;
err=1;
k=1;
P(k)=p0;
cond=0;
h=1;
if (abs(p0)>1e4),h=abs(p0)/1e4;end
while(k<maxk&err>epsilon&cond∼=5)

f1=(feval(f,p0+0.00001)-feval(f,p0-0.00001))/0.00002;
if(f1>0),h=-abs(h);end
p1=p0+h;
p2=p0+2*h;

426 CHAP. 8 NUMERICAL OPTIMIZATION

pmin=p0;
y0=feval(f,p0);
y1=feval(f,p1);
y2=feval(f,p2);
ymin=y0;
cond=0;
j=0;

%Determine h so that y1<y0&y1<y2
while(j<maxj&abs(h)>delta&cond==0)

if (y0<=y1),
p2=p1;
y2=y1;
h=h/2;
p1=p0+h;
y1=feval(f,p1);

else
if(y2<y1),

p1=p2;
y1=y2;
h=2*h;
p2=p0+2*h;
y2=feval(f,p2);

else
cond=-1;

end
end

j=j+1;
if(abs(h)>big|abs(p0)>big),cond=5;end
end
if(cond==5),

pmin=p1;
ymin=feval(f,p1);

else

%Quadratic interpolation to find yp
d=4*y1-2*y0-2*y2;
if(d<0),

hmin=h*(4*y1-3*y0-y2)/d;
else

hmin=h/3;
cond=4;

end
pmin=p0+hmin;
ymin=feval(f,pmin);

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 427

h=abs(h);
h0=abs(hmin);
h1=abs(hmin-h);
h2=abs(hmin-2*h);

%Determine magnitude of next h
if(h0<h),h=h0;end
if(h1<h),h=h1;end
if(h2<h),h=h2;end
if(h==0),h=hmin;end
if(h<delta),cond=1;end
if (abs(h)>big|abs(pmin)>big),cond=5;end

%Termination test for minimization
e0=abs(y0-ymin);
e1=abs(y1-ymin);
e2=abs(y2-ymin);
if(e0∼=0 & e0<err),err=e0;end
if(e1∼=0 & e1<err),err=e1;end
if(e2∼=0 & 2<err),err=e2;end
if(e0∼=0 & e1==0 & e2==0),error=0;end
if(err<epsilon),cond=2;end
p0=pmin;
k=k+1;
P(k)=p0;

end
if(cond==2&h<delta),cond=3;end

end
p=p0;
dp=h;
yp=feval(f,p);
dy=err;

Exercises for Minimization of a Function of One Variable

1. Use Theorem 8.1 to determine where each of the following functions is increasing
and where it is decreasing.

(a) f (x) = 2x3 − 9x2 + 12x − 5

(b) f (x) = x/(x + 1)

(c) f (x) = (x + 1)/x

(d) f (x) = xx

428 CHAP. 8 NUMERICAL OPTIMIZATION

2. Use Definition 8.3 to show that the following functions are unimodal on the given
intervals.
(a) f (x) = x2 − 2x + 1; [0, 4]
(b) f (x) = cos(x); [0, 4]
(c) f (x) = xx ; [0.1, 10]
(d) f (x) = −x(3− x)5/3; [0, 3]

3. Use Theorems 8.3 and 8.4, if possible, to find all local minima and maxima of each
of the following functions on the given interval.
(a) f (x) = 4x3 − 8x2 − 11x + 5; [0, 2]
(b) f (x) = x + 3/x2; [0.5, 3]
(c) f (x) = (x + 2.5)/(4− x2); [−1.9, 1.9]
(d) f (x) = ex/x2; [0.5, 3]
(e) f (x) = − sin(x)− sin(3x)/3; [0, 2]
(f) f (x) = −2 sin(x)+ sin(2x)− 2 sin(3x)/3; [1, 3]

4. Find the point on the parabola y = x2 that is closest to the point (3, 1).

5. Find the point on the curve y = sin(x) that is closest to the point (2, 1).

6. Find the point(s) on the circle x2 + y2 = 25 that is farthest from the chord AB if
A = (3, 4) and B = (−1,

√
24).

7. Use the golden ratio search and five-digit rounding arithmetic to find [ak, bk] for
k = 0, 1, 2, for each of the following functions. Note. Each function is unimodal on
the given interval.

(a) f (x) = ex + 2x + x2

2 ; [−2.4,−1.6]
(b) f (x) = − sin(x)− x + x2

2 ; [0.8, 1.6]
(c) f (x) = x2

2 − 4x − x cos(x); [0.5, 2.5]
(d) f (x) = x3 − 5x2 + 23; [1, 5]

8. Use the Fibonacci search and five-digit rounding arithmetic to find [ak, bk] for k =
0, 1, 2, for each of the functions in Exercise 7. In each case assume that F10 is the
smallest Fibonacci number satisfying a given tolerance ε.

9. Carry out two iterations of the quadratic approximation method, using five-digit round-
ing arithmetic, for each of the functions in Exercise 7.

10. Use the cubic search method and five-digit rounding arithmetic to find p1 and p2 for
each of the functions in Exercise 7.

11. The golden ratio search is applied to a function on the given interval. Determine the
length of the kth subinterval.
(a) [0, 1], k = 4
(b) [−2.3,−1.6], k = 5
(c) [−4.6, 3.5], k = 10

SEC. 8.1 MINIMIZATION OF A FUNCTION OF ONE VARIABLE 429

12. For each interval and value of ε find the smallest Fibonacci number Fn satisfying
inequality (7).
(a) [−0.1, 3.4], ε = 10−4

(b) [−2.3, 5.3], ε = 10−6

(c) [3.33, 3.99], ε = 10−8

13. Algebraically establish the identity

1− Fn−k−1

Fn−k
= Fn−k−2

Fn−k
.

14. Establish formulas (19), (20), and (21).

15. Establish formula (22).

16. Establish formula (23).

17. Dichotomous search method. The dichotomous search is another bracketing method
for determining the minimum of a unimodal function f on a closed interval [a0, b0]
without using derivatives. The values c0 and d0 are placed symmetrically at a dis-
tance ε from the midpoint of the interval, (a0 + b0)/2. Depending on the values
of f (c0) and f (d0) a new subinterval is obtained. The process is then repeated by
determining c1 and d1.
Input: ε, the distinguishability constant; and tol, the length of the final subinterval.
While bk − ak ≥ tol, let

ck = ak + bk

2
− ε and dk = ak + bk

2
+ ε.

If f (ck) < f (dk), let ak+1 = ak and bk+1 = dk . Otherwise, let ak+1 = ck and
bk+1 = bk . Let k = k + 1 and continue loop.
(a) Use the dichotomous search and five-digit rounding arithmetic to find [a1, b1]

and [a2, b2] for the function f (x) = ex+2x+x2/2 on the interval [−2.4,−1.6].
Use the distinguishability constant ε = 0.1.

(b) Show that the length of the kth subinterval is given by

bk − ak = 1

2k
(b0 − a0)+ 2ε

(
1− 1

2k

)
(c) For the function in part (a) determine the value of k such that

bk − ak < 10−4, where ε = 10−6.

18. Cubic bracketing search method. Assume that f is unimodal and differentiable on
the interval [a0, b0]. Again, we consider a search method that explicitly uses f ′. We
seek the abscissa of the minimum, pmin, of a cubic polynomial that agrees with f and
f ′ at the endpoints a0 and b0. Let

P(x) = α(x − a0)
3 + β(x − a0)

2 + γ (x − a0)+ ρ,

where P(a0) = f (a0), P(b0) = f (b0), P ′(a0) = f ′(a0), and P ′(b0) = f ′(b0). If
f (pmin) > 0, then set b1 = pmin and a1 = a0; else set a1 = pmin and b1 = b0.

430 CHAP. 8 NUMERICAL OPTIMIZATION

Continue the iteration process until the length of the kth subinterval is less than the
desired error: bk − ak < ε. As with the cubic search introduced in the text, it remains
to find explicit formulas for the coefficients α, β, γ , and ρ.

(a) Show that pmin = a0 + −β +√β2 − 3αγ
3α

.

(b) Show that ρ = P(a0) = f (a0) and γ = P ′(a0) = f ′(a0).

(c) Show that α = G − 2D

b0 − a0
and β = 3D − G, where F = f (b0)− f (a0)

b0 − a0
,

D = F − γ

b0 − a0
and G = f ′(b0)− f ′(a0)

b0 − a0
.

(d) Use the cubic bracketing search and five-digit rounding arithmetic to find [a1, b1]
and [a2, b2] for the function f (x) = ex + 2x + x2/2 on the interval [a0, b0] =
[−2.4,−1.6].

Algorithms and Programs

1. Use Program 8.1 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places.

2. Use Program 8.2 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places.

3. Use Program 8.3 to find the local minimum of each of the functions in Exercise 7
with an accuracy of six decimal places. Start with the midpoint of the given interval.

4. Use Program 8.1 and/or 8.3 to find all local maxima, with an accuracy of six decimal
places, of the function f (x) = cos2(x)− sin(x) on the interval [0, 2π]

5. Use Program 8.1 and/or 8.3 to find all the local maxima and minima, with an accuracy
of six decimal places of the following function in the interval [0, 2].

f (x) = x3 + x2 − 12x − 12

2x6 − 3x5 − 4x4 + 9x2 + 12x − 18

6. Write a MATLAB program for the cubic approximation method presented in Section
8.1. Use the program to find the local minimum of each of the functions in Exercise
7 with an accuracy of six decimal places.

7. Write a MATLAB program for the dichotomous search method in Exercise 17. Use
the program to find the local minimum of each of the functions in Exercise 7 with an
accuracy of six decimal places.

8. Use Program 8.1 and/or 8.3 to find all the local maxima and minima with an accuracy
of six decimal places, of the:
(a) extrapolated cubic spline that passes through (0.0, 0.0), (1.0, 0.5), (2.0, 2.0),

and (3.0, 1.5).
(b) parabolically terminated cubic spline that passes through (0.0, 0.0), (1.0, 0.5),

(2.0, 2.0), and (3.0, 1.5).

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 431

9. Use Program 8.1 and/or 8.3 to find all the local maxima and minima with an accu-
racy of six decimal places, of the trigonometric polynomial T7(x) from Section 5.4,
Algorithms and Programs, Problem 5(b).

8.2 Nelder-Mead and Powell’s Methods

The definitions in Section 8.1 extend naturally to functions of several variables. Sup-
pose that f (x1, x2, . . . , xN) is defined in the region

(1) R =
{

(x1, x2, . . . , xN) :
N∑

k=1

(xk − pk)
2 < r2

}
.

The function f (x1, x2, . . . , xN) has a local minimum at the point (p1, p2, . . . , pN)

provided that

(2) f (p1, p2, . . . , pN) ≤ f (x1, x2, . . . , xN)

for each point (x1, x2, . . . , xN) ∈ R. The function f (x1, x2, . . . , xN) has a local max-
imum at the point (p1, p2, . . . , pN) provided that

(3) f (p1, p2, . . . , pN) ≥ f (x1, x2, . . . , xN)

or each point (x1, x2, . . . , xN) ∈ R.
The introduction of minimization methods for multivariable functions will be simpi-

fied by considering functions of two independent variables, f (x, y). The graph of a
function of two independent variables can be interpreted geometrically as a surface
(see Figure 8.1). The second partial derivative test for an extreme value of a function
f (x, y) is an extension of Theorem 8.4.

Theorem 8.5 (Second Partial Derivative Test). Assume that f (x, y) and its first-
and second-order partial derivatives are continuous on a region R. Suppose that (p, q) ∈
R is a critical point where both fx (p, q) = 0 and fy(p, q) = 0. The higher-order par-
tial derivatives are used to determine the nature of the critical point.

(i) If fxx (p, q) fyy(p, q) − f 2
xy(p, q) > 0 and fxx (p, q) > 0, then f (p, q) is a

local minimum of f .

(ii) If fxx (p, q) fyy(p, q) − f 2
xy(p, q) > 0 and fxx (p, q) < 0, then f (p, q) is a

local maximum of f .

(iii) If fxx (p, q) fyy(p, q) − f 2
xy(p, q) < 0, then f (x, y) does not have a local ex-

tremum at (p, q).

(iv) If fxx (p, q) fyy(p, q)− f 2
xy(p, q) = 0, then this test is inconclusive.

432 CHAP. 8 NUMERICAL OPTIMIZATION

Example 8.5. Find the minimum of f (x, y) = x2 − 4x + y2 − y − xy.
The first-order partial derivative are

fx (x, y) = 2x − 4− y and fy(x, y) = 2y − 1− x .

Setting these partial derivatives equal to zero yields the linear system

(4)
2x − y = 4

−x + 2y = 1.

The solution to (4) is (x, y) = (3, 2). The second-order partial derivatives of f (x, y) are

fxx (x, y) = 2, fyy(x, y) = 2, and fxy(x, y) = −1.

It is easy to see that we have case (i) of Theorem 8.5, that is,

fxx (3, 2) fyy(3, 2)− f 2
xy(3, 2) = 3 > 0 and fxx (3, 2) = 2 > 0.

Hence, f (x, y) has a local minimum, f (3, 2) = −7, at the point (3, 2). �

Recall that the golden ratio and Fibonacci searches made no direct use of the
derivative of the objective function f (x). In both methods the objective function was
used to compare function values. Direct searches for minimums of multivariable objec-
tive functions, f (x1, x2, . . . , xN), share this characteristic. No implicit or explicit as-
sumptions are made regarding the differentiability of the multivariable objective func-
tion. Thus direct methods are particularly useful for nonsmooth (nondifferentiable)
objective functions.

Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has
been devised by Nelder and Mead. For two variables, a simplex is a triangle, and
the method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f (x, y) is largest, is rejected and replaced with a new
vertex. A new triangle is formed and the search is continued. The process generates
a sequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

The algorithm is stated using the term simplex (a generalized triangle in N di-
mensions) and will find the minimum of a function of N variables. It is effective and
computationally compact.

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 433

Initial Triangle BGW

Let f (x, y) be the function that is to be minimized. To start, we are given three vertices
of a triangle: V k = (xk, yk), k = 1, 2, 3. The function f (x, y) is then evaluated at each
of the three points: zk = f (xk, yk) for k = 1, 2, 3. The subscripts are then reordered
so that z1 ≤ z2 ≤ z3. We use the notation

(5) B = (x1, y1), G = (x2, y2), and W = (x3, y3)

to help remember that B is the best vertex, G is good (next to best), and W is the worst
vertex.

Midpoint of the Good Side

The construction process uses the midpoint of the line segment joining B and G . It is
found by averaging the coordinates:

(6) M = B + G
2

=
(

x1 + x2

2
,

y1 + y2

2

)
.

Reflection Using the Point R

The function decreases as we move along the side of the triangle from W to B, and it
decreases as we move along the side from W to G. Hence it is feasible that f (x, y)

takes on smaller values at points that lie away from W on the opposite side of the line
between B and G. We choose a test point R that is obtained by “reflecting” the triangle
through the side BG. To determine R, we first find the midpoint M of the side BG.
Then draw the line segment from W to M and call its length d. This last segment is
extended a distance d through M to locate the point R (see Figure 8.6). The vector
formula for R is

(7) R = M + (M −W) = 2M −W .

Expansion Using the Point E

If the function value at R is smaller than the function value at W , then we have moved
in the correct direction toward the minimum. Perhaps the minimum is just a bit farther
than the point R. So we extend the line segment through M and R to the point E.
This forms an expanded triangle BG E. The point E is found by moving an additional
distance d along the line joining M and R (see Figure 8.7). If the function value at E
is less than the function value at R, then we have found a better vertex than R. The
vector formula for E is

(8) E = R + (R − M) = 2R − M.

434 CHAP. 8 NUMERICAL OPTIMIZATION

B

d

d

M

R

G

W Figure 8.6 The triangle !BGW
and midpoint M and reflected point
R for the Nelder-Mead method.

B E

R
d

d

G

W

M

Figure 8.7 The triangle !BGW and point R and extended point E.

Contraction Using the Point C

If the function values at R and W are the same, another point must be tested. Perhaps
the function is smaller at M, but we cannot replace W with M because we must have
a triangle. Consider the two midpoints C1 and C2 of the line segments W M and M R,
respectively (see Figure 8.8). The point with the smaller function value is called C ,
and the new triangle is BGC. Note. The choice between C1 and C2 might seem
inappropriate for the two-dimensional case, but it is important in higher dimensions.

Shrink toward B

If the function value at C is not less than the value at W , the points G and W must be
shrunk toward B (see Figure 8.9). The point G is replaced with M, and W is replaced
with S, which is the midpoint of the line segment joining B with W .

Logical Decisions for Each Step

A computationally efficient algorithm should perform function evaluations only if
needed. In each step, a new vertex is found, which replaces W . As soon as it is

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 435

B

R

C2

C1

G

W

M

Figure 8.8 The contraction point
C1 or C2 for Nelder-Mead method.

B

M
S

W

G
Figure 8.9 Shrinking the triangle
toward B.

found, further investigation is not needed, and the iteration step is completed. The
logical details for two-dimensional cases are explained in Table 8.5.

Example 8.6. Use the Nelder-Mead algorithm to find the minimum of f (x, y) = x2 −
4x + y2 − y − xy. Start with the three vertices

V 1 = (0, 0), V 2 = (1.2, 0.0), V 3 = (0.0, 0.8).

The function f (x, y) takes on the values

f (0, 0) = 0.0, f (1.2, 0.0) = −3.36, f (0.0, 0.8) = −0.16.

The function values must be compared to determine B, G, and W ;

B = (1.2, 0.0), G = (0.0, 0.8), W = (0, 0).

The vertex W = (0, 0) will be replaced. The points M and R are

M = B + G
2

= (0.6, 0.4) and R = 2M −W = (1.2, 0.8).

The function value f (R) = f (1.2, 0.8) = −4.48 is less than f (G), so the situation is
case (i). Since f (R) ≤ f (B), we have moved in the right direction, and the vertex E must

436 CHAP. 8 NUMERICAL OPTIMIZATION

Table 8.5 Logical Decisions for the Nelder-Mead Algorithm

IF f (R) < f (G), THEN Perform Case (i) {either reflect or extend}
ELSE Perform Case (ii) {either contract or shrink}

BEGIN {Case (i).} BEGIN {Case (ii).}
IF f (B) < f (R) THEN IF f (R) < f (W) THEN

replace W with R replace W with R
ELSE Compute C = (W + M)/2

or C = (M + R)/2 and f (C)

Compute E and f (E) IF f (C) < f (W) THEN
IF f (E) < f (B) THEN replace W with C

replace W with E ELSE
ELSE Compute S and f (S)

replace W with R replace W with S
ENDIF replace G with M

ENDIF ENDIF
END {Case (i).} END {Case (ii).}

be constructed:

E = 2R − M = 2(1.2, 0.8)− (0.6, 0.4) = (1.8, 1.2).

The function value f (E) = f (1.8, 1.2) = −5.88 is less than f (B), and the new triangle
has vertices

V 1 = (1.8, 1.2), V 2 = (1.2, 0.0), V 3 = (0.0, 0.8).

The process continues and generates a sequence of triangles that converges down on the
solution point (3, 2) (see Figure 8.10). Table 8.6 gives the function values at vertices of the
triangle for several steps in the iteration. A computer implementation of the algorithm con-
tinued until the thirty-third step, where the best vertex was B = (2.99996456, 1.99983839)

and f (B) = −6.99999998. These values are approximations to f (3, 2) = −7 found in
Example 8.5. The reason that the iteration quit before (3, 2) was obtained is that the func-
tion is flat near the minimum. The function values f (B), f (G), and f (W) were checked
(see Table 8.6) and found to be the same (this is an example of round-off error), and the
algorithm was terminated. �

Powell’s Method

Let X0 be an initial guess at the location of the minimum of the function z = f (x1, x2,

. . . , xN). Assume that the partial derivatives of the function are not available. An
intuitively appealing approach to approximating a minimum of the function f is to
generate the next approximation X1 by proceeding successively to a minimum of f
along each of the N standard base vectors. The process generates the sequence of

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 437

Table 8.6 Function Values at Various Triangles for Example 8.6

k Best point Good point Worst point

1 f (1.2, 0.0)=−3.36 f (0.0, 0.8)= − 0.16 f (0.0, 0.0)= 0.00
2 f (1.8, 1.2)=−5.88 f (1.2, 0.0)= − 3.36 f (0.0, 0.8)= − 0.16
3 f (1.8, 1.2)=−5.88 f (3.0, 0.4)= − 4.44 f (1.2, 0.0)= − 3.36
4 f (3.6, 1.6)=−6.24 f (I.8, 1.2)= − 5.88 f (3.0, 0.4)= − 4.44
5 f (3.6, 1.6)=−6.24 f (2.4, 2.4)= − 6.24 f (1.8, 1.2)= − 5.88
6 f (2.4, 1.6)=−6.72 f (3.6, 1.6)= − 6.24 f (2.4, 2.4)= − 6.24
7 f (3.0, 1.8)=−6.96 f (2.4, 1.6)= − 6.72 f (2.4, 2.4)= − 6.24
8 f (3.0, 1.8)=−6.96 f (2.55, 2.05)= − 6.7725 f (2.4, 1.6)= − 6.72
9 f (3.0, 1.8)=−6.96 f (3.15, 2.25)= − 6.9525 f (2.55, 2.05)= − 6.7725

10 f (3.0, 1.8)=−6.96 f (2.8125, 2.0375)= − 6.95640625 f (3.15, 2.25)= − 6.9525

x

y

1 2 3

T2 T3

T4

T5

T6

T10

T9

T7

T8

T1

2

1

Figure 8.10 The sequence of triangles {Tk} converging to the point (3, 2) for the
Nelder-Mead method.

438 CHAP. 8 NUMERICAL OPTIMIZATION

points X0 = P0, P1, P2, . . . , PN = X1. Along each standard base vector the function
f is a function of one variable. Thus the minimization of f requires the application of
either the golden ratio or Fibonacci searches (Section 8.1) on an interval over which the
function is unimodal. The iteration is then repeated to generate a sequence of points
{Xk}∞k=0. Unfortunately, the method is, in general, inefficient due to the geometry of
multivariable functions. But the step from the point X0 to the point X1 is the first step
of Powell’s method.

The essence of Powell’s method is to add two steps to the process described in
the preceding paragraph. The vector PN − P0 represents, in some sense, the average
direction moved during each iteration. Thus the point X1 is determined to be the point
at which the minimum of the function f occurs along the vector PN−P0. As before, f
is a function of one variable along this vector and the minimization requires an appli-
cation of the golden ratio or Fibonacci searches. Finally, since the vector PN −P0 was
such a good direction, it replaces one of the direction vectors for the next iteration. The
iteration is then repeated using the new set of direction vectors to generate a sequence
of points {Xk}∞k=0. The process is outlined below.

Let X0 be an initial guess at the location of the minimum of the function z =
f (x1, x2, . . . , xN), {Ek = [0 0 · · · 0 1k 0 · · · 0] : k = 1, 2, . . . , N } be the set of stan-
dard base vectors,

(9) U = [U′1 U′2 · · · U′N] = [E′1 E′2 · · · E′N],
and i = 0.

(i) Set P0 = Xi .

(ii) For k = 1, 2, . . . , N find the value of γk that minimizes f (Pk−1+ γkUk) and set
Pk = Pk−1 + γkUk .

(iii) Set i = i + 1.

(iv) Set U j = U j+1 for j = 1, 2, . . . , N − 1. Set UN = PN − P0.

(v) Find the value of γ that minimizes f (P0 + γ UN). Set Xi = P0 + γ UN

(vi) Repeat steps (i) through (v).

Example 8.7. Use the process described in the preceding paragraph to find X1 and X2
for the function f (x, y) = cos(x)+ sin(y). Use the initial point X0 = (5.5, 2).

Let U =
[

1 0
0 1

]
and P0 = X0 = (5.5, 2). When i = 1 the function

f (P0 + γ1U1) = f ((5.5, 2)+ γ1(1, 0))

= f (5.5+ γ1, 2)

= cos(5.5+ γ1)+ sin(2)

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 439

has a minimum at γ1 = −2.3584042. Thus P1 = (3.1415958, 2). When i = 2 the function

f (P1 + γ2U2) = f ((3.1415958, 2)+ γ2(0, 1))

= f (3.1415982, 2+ γ2)

= cos(3.1415982)+ sin(2+ γ2)

has a minimum at γ2 = 2.7123803. Thus P2 = (3.1415958, 4.7123803). Set U′2 =
(P2 − P0)

′ and

U =
[

0 -2.3584042
1 2.7123803

]
.

The function

f (P0 + γ U2) = f ((5.5, 2)+ γ (−2.3584042, 2.7123803))

= f (5.5− 2.3584042γ, 2+ 2.7123903γ)

= cos(5.5− 2.3584042γ)+ sin(2+ 2.7123803γ)

has a minimum at γ = 0.9816697. Thus X1 = (3.1848261, 4.6626615).
Set P0 = X1. When i = 1 the function

f (P0 + γ1U1) = f ((3.1848261, 4.6626615)+ γ1(0, 1))

= f (3.1848261, 4.6626615+ γ1)

= cos(3.1848261)+ sin(4.6626615+ γ1)

has a minimum at γ1 = 0.0497117. Thus P1 = (3.1848261, 4.7123732). When i = 2 the
function

f (P1 + γ2U2) = f ((3.1848261, 4.7123732)+ γ2(−2.3584042, 2.7123809))

= f (3.1848261− 2.3584042γ2, 4.7123732+ 2.7123809γ2)

= cos(3.1848261− 2.3584042γ2)+ sin(4.7123732+ 2.7123809γ2)

has a minimum at γ2 = 0.0078820. Thus P2 = (3.1662373, 4.7337521). Set U′2 =
(P2 − P0)

′ and

U =
[

-2.3584042 -0.0185889
2.7123803 0.0710906

]
.

The function

f (P0 + γ U2) = f ((3.1848261, 4.6626615)+ γ (−0.0185889, 0.0710906))

= f (3.1848261− 0.0185889γ, 4.6626615+ 0.0710906γ)

= cos(3.1848261− 0.0185889γ)+ sin(4.6626615+ 0.0710906γ)

has a minimum at γ = 0.8035684. Thus X2 = (3.1698887, 4.7197876).
The function f (x, y) = cos(x) + sin(y) has a relative minimum at the point P =

(π, 3π/2). The graph of f is shown in Figure 8.11. Figure 8.12 shows a contour plot of
the function f and the relative positions of the points X0, X1, and X2. �

440 CHAP. 8 NUMERICAL OPTIMIZATION

0
1

2
3

4 0
6

7

x
y

1.5
1

0.5
0

�0.5
�1

�1.5

7
6

5
4

3
2

1
0

Figure 8.11 The graph of f (x, y) =
cos(x)+ sin(y).

7

6

5

4

3

2

1

0
10 2 3 4 5 6 7

x

y

x2 x1

x0

Figure 8.12 The contour graph of
f (x, y) = cos(x)+ sin(y).

In step (iv) of the previous process the first vector U1 was discarded and the av-
erage direction vector PN − P0 was added to the list of direction vectors. In fact, it
would be better to discard the vector Ur along which the greatest decrease in f oc-
curred. It seems reasonable that the vector Ur is a large component of the average
direction vector UN = PN − P0. Thus, as the number of iterations increase, the set
of direction vectors will tend to become linearly dependent. When the set becomes
linearly dependent one or more of the directions will be lost and it is likely that the
set of points {X}∞k=0 will not converge to the point at which the local minimum occurs.
Furthermore, in step (iv) it was assumed that the average direction vector represented
a good direction in which to continue the search. But that may not be the case.

Outline of Powell’s Method

(i) Set P0 = Xi .

(ii) For k = 1, 2, . . . , N find the value of γk that minimizes f (Pk−1+ γkUk) and set
Pk = Pk−1 + γkUk .

(iii) Set r and Ur equal to the maximum decrease in f and the direction of the maxi-
mum decrease, respectively, over all the direction vectors in step (ii).

(iv) Set i = i + 1.

(v) If f (2PN − P0) ≥ f (P0) or

2(f (P0)−2 f (PN)+ f (2PN−P0))(f (P0)− f (PN)−r)2 ≥ r(f (P0)− f (2PN−P0))
2,

then set Xi = PN and return to step (i). Otherwise, go to step (vi).

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 441

(vi) Set Ur = PN − P0.

(vii) Find the value of γ that minimizes f (P0 + γ Ur). Set Xi = P0 + γ Ur .

(viii) Repeat steps (i) through (vii).

If the conditions in step (v) are satisfied, then the set of direction vectors is left
unchanged. The first inequality in step (v) indicates that there is no further decrease
in the value of f in the average direction PN − P0. The second inequality indicates
that the decrease in the function f in the direction of greatest decrease Ur was not a
major part of the total decrease in f in step (ii). If the conditions in step (v) are not
satisfied, then the direction of greatest decrease Ur is replaced with the average direc-
tion from step (ii); PN − P0. In step (vii) the function is minimized in this direction.
Stopping criteria based on the magnitudes ‖Xi−Xi−1‖ or ‖ f (Xi)‖ are typically found
in steps (v) and (vii).

Program 8.4 requires that the object function f be saved as an M-file. The argu-
ment of f needs to be a 1 × N array. To illustrate, consider saving the function in
Example 8.7 as an M-file.

function z=f(V)
z=0;x=V(1);y=V(2);
z=cos(x)+sin(y);

Program 8.4 (Nelder-Mead’s Minimization Method). To approximate a local
minimum of f (x1, x2, . . . , xN), where f is a continuous function of N real vari-
ables, and given the N + 1 initial starting points V k = (vk,1, . . . , vk,N) for k = 0,
1, . . . , N .

function[V0,y0,dV,dy]=nelder(F,V,min1,max1,epsilon,show)

%Input - F is the object function input as a string ’F’
% - V is a 3 x n matrix containing starting simplex
% - min1 & max1 are minimum and maximum number
% of iterations
% - epsilon is the tolerance
% - show == 1 displays iterations (P and Q)
%Output - V0 is the vertex for the minimum
% - y0 is the function value F(V0)
% - dV is the size of the final simplex
% - dy is the error bound for the minimum
% - P is a matrix containing the vertex iterations
% - Q is an array containing the iterations for F(P)

if nargin==5,

442 CHAP. 8 NUMERICAL OPTIMIZATION

show=0;
end

[mm n]=size(V);

% Order the vertices
for j=1:n+1

Z=V(j,1:n);
Y(j)=feval(F,Z);

end

[mm lo]=min(Y);
[mm hi]=max(Y);
li=hi;
ho=lo;

for j=1:n+1
if(j∼=lo&j∼=hi&Y(j)<=Y(li))

li=j;
end
if(j∼=hi&j∼=lo&Y(j)>=Y(ho))

ho=j;
end

end

cnt=0;

% Start of Nelder-Mead algorithm
while(Y(hi)>Y(lo)+epsilon&cnt<max1)|cnt<min1

S=zeros(1,1:n);
for j=1:n+1

S=S+V(j,1:n);
end
M=(S-V(hi,1:n))/n;
R=2*M-V(hi,1:n);
yR=feval(F,R);
if(yR<Y(ho))

if(Y(li)<yR)
V(hi,1:n)=R;
Y(hi)=yR;

else
E=2*R-M;
yE=feval(F,E);
if(yE<Y(li))

V(hi,1:n)=E;
Y(hi)=yE;

else
V(hi,1:n)=R;

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 443

Y(hi)=yR;
end

end
else

if(yR<Y(hi))
V(hi,1:n)=R;
Y(hi)=yR;

end
C=(V(hi,1:n)+M)/2;
yC=feval(F,C);
C2=(M+R)/2;
yC2=feval(F,C2);
if(yC2<yC)

C=C2;
yC=yC2;

end
if(yC<Y(hi))

V(hi,1:n)=C;
Y(hi)=yC;

else
for j=1:n+1

if(j∼=lo)
V(j,1:n)=(V(j,1:n)+V(lo,1:n))/2;
Z=V(j,1:n);
Y(j)=feval(F,Z);

end
end

end
end
[mm lo]=min(Y);
[mm hi]=max(Y);
li=hi;
ho=lo;
for j=1:n+1

if(j∼=lo&j∼=hi&Y(j)<=Y(li))
li=j;

end
if(j∼=hi&j∼=lo&Y(j)>=Y(ho))

ho=j;
end

end
cnt=cnt+1;
P(cnt,:)=V(lo,:);

444 CHAP. 8 NUMERICAL OPTIMIZATION

Q(cnt)=Y(lo);
end
% End of Nelder-Mead algorithm

%Determine size of simplex
snorm=0;
for j=1:n+1

s=norm(V(j)-V(lo));
if(s>=snorm)

snorm=s;
end

end

Q=Q’;
V0=V(lo,1:n);
y0=Y(lo);
dV=snorm;
dy=abs(Y(hi)-Y(lo));
if (show==1)

disp(P);
disp(Q);

end

Exercises for Nelder-Mead and Powell’s Methods

1. Use Theorem 8.5 to find the local minimum of each of the following functions.
(a) f (x, y) = x3 + y3 − 3x − 3y + 5
(b) f (x, y) = x2 + y2 + x − 2y − xy + 1
(c) f (x, y) = x2 y + xy2 − 3xy
(d) f (x, y) = (x − y)/(x2 + y2 + 2)

(e) f (x, y) = 100(y − x2)2 + (1− x)2

(Rosenbrock’s parabolic valley, circa 1960)

2. Let B = (2,−3), G = (1, 1), and W = (5, 2). Find the points M, R, and E and
sketch the triangles that are involved.

3. Let B = (−1, 2), G = (−2,−5), and W = (3, 1). Find the points M, R, and E and
sketch the triangles that are involved.

4. Let B = (0, 0, 0), G = (1, 1, 0), P = (0, 0, 1), and W = (1, 0, 0).
(a) Sketch the tetrahedron BG PW .
(b) Find M = (B + G + P)/3.
(c) Find R = 2M −W and sketch the tetrahedron BG P R.
(d) Find E = 2R − M and sketch the tetrahedron BG P E.

SEC. 8.2 NELDER-MEAD AND POWELL’S METHODS 445

5. Let B = (0, 0, 0), G = (0, 2, 0), P = (0, 1, 1), and W = (2, 1, 0). Follow the
instructions in Exercise 4.

6. Follow the process in Example 8.7 and find X1 for f (x, y) = x3+ y3− 3x − 3y+ 5.
Use the initial point P0 = (1/2, 1/3).

7. Follow the process in Example 8.7 and find X1 for f (x, y) = x2 y + xy2 − 3xy. Use
the initial point P0 = (1/2, 1/3).

8. Give a vector proof that M = (B + G)/2 is the midpoint of the line segment joining
the points B and G.

9. Give a vector proof of equation (7).

10. Give a vector proof of equation (8).

11. Give a vector proof that the medians of any triangle intersect at a point that is two-
thirds of the distance from each vertex to the midpoint of the opposite side.

Algorithms and Programs

1. Use Program 8.4 to find the minimum of each of the functions in Exercise 1 with an
accuracy of eight decimal places. Use the following starting vertices:
(a) (1, 2), (2, 0), and (2, 2)

(b) (0, 0), (2, 0), and (2, 1)

(c) (0, 0), (2, 0), and (2, 1)

(d) (0, 0), (0, 1), and (1, 1)

(e) (0, 0), (1, 0), and (0, 2)

2. Use Program 8.4 to find the local minimum of each of the following functions with
an accuracy of eight decimal places.
(a) f (x, y, z) = 2x2 + 2y2 + z2 − 2xy + yz − 7y − 4z

Start with (1, 1, 1), (0, 1, 0), (1, 0, 1), and (0, 0, 1).
(b) f (x, y, z, u) = 2(x2+ y2+ z2+ u2)− x(y+ z− u)+ yz− 3x − 8y− 5z− 9u

Start the search near (1, 1, 1, 1).

(c) f (x, y, z, u) = xyzu + 1

x
+ 1

y
+ 1

z
+ 1

u
Start the search near (0.7, 0.7, 0.7, 0.7).

3. Write a MATLAB program to implement Powell’s method.

4. Use the program for Powell’s method (Problem 3) to find the local minimum of each
of functions in Problem 1 with an accuracy of seven decimal places. Use a starting
value near one of the given vertices.

5. Use the program for Powell’s method (Problem 3) to find the local minimum of each
of functions in Problem 2 with an accuracy of seven decimal places. Use the starting
values or start near a vertex given in Problem 2.

446 CHAP. 8 NUMERICAL OPTIMIZATION

6. Find the point on the surface z = x2 + y2 that is closest to the point (2, 3, 1) with an
accuracy of seven decimal places.

7. A company has five factories A, B, C, D, and E, located at the points (10, 10),
(30, 50), (16.667, 29), (0.555, 29.888), and (22.2221, 49.988), respectively, in the
xy-plane. Assume that the distance between two points represents the driving dis-
tance, in miles, between the factories. The company plans to build a warehouse at
some point in the plane. It is anticipated that during an average week there will be 10,
18, 20, 14, and 25 deliveries made to factories A, B, C, D, and E, respectively. Ideally,
to minimize the weekly mileage of delivery vehicles, where should the warehouse be
located?

8. In Problem 7, where should the warehouse be located if, due to zoning restrictions, it
must be located at a point on the curve y = x2?

8.3 Gradient and Newton’s Methods

Now we turn to the minimization of a function f (X) of N variables, where X =
(x1, x2, . . . , xN) and the partial derivatives of f are accessible.

Steepest Descent or Gradient Method

Definition 8.4. Let z = f (X) be a function of X such that ∂ f (X)/∂xk exists for
k = 1, 2, . . . , N . The gradient of f , denoted by ∇ f (X), is the vector

�(1) ∇ f (X) =
(

∂ f (X)

∂x1
,
∂ f (X)

∂x2
, . . . ,

∂ f (X)

∂xN

)
.

Example 8.8. Find the gradient of f (x, y) = x − y

x2 + y2 + 2
at the point (−3,−2).

Substituting x = −3 and y = −2 into

fx (x, y) = −x2 + 2xy + y2 + 2

(x2 + y2 + 2)2
and fy(x, y) = −x2 − 2xy + y2 − 2

(x2 + y2 + 2)2

yields

∇ f (−3,−2) = (fx (−3,−2), fy(−3,−2)) =
(

9

225
,− 19

225

)
. �

Recall that the gradient vector in (1) points locally in the direction of the greatest
rate of increase of f (X). Hence −∇ f (X) points locally in the direction of greatest
decrease. Start at the point P0 and search along the line through P0 in the direction
S0 = −∇ f (P0)/‖ − ∇ f (P0)‖. You will arrive at a point P1, where a local minimum
occurs when the point X is constrained to lie on the line X = P0 + γ S0. Since

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 447

partial derivatives are accessible, the minimization process should be executed using
the quadratic or cubic approximation methods in Section 8.1.

Next we compute−∇ f (P1) and move in the search direction S1 = −∇ f (P1)/‖−
∇ f (P1)‖. You will come to P2, where a local minimum occurs when X is constrained
to lie on the line X = P1+ γ S1. Iteration will produce a sequence, {Pk}∞k=0, of points
with the property f (P0) > f (P1) > · · · > f (Pk) > · · · . If limk→∞ Pk = P , then
f (P) will be a local minimum for f (X).

Outline of the Gradient Method

Suppose that Pk has been obtained.

(i) Evaluate the gradient vector ∇ f (Pk).

(ii) Compute the search direction Sk = −∇ f (Pk)/‖ − ∇ f (Pk)‖.
(iii) Perform a single parameter minimization of �(γ) = f (Pk+γ Sk) on the interval

[0, b], where b is large. This will produce a value γ = hmin where a local
minimum for �(γ) occurs. The relation �(hmin) = f (Pk + hminSk) shows that
this is a minimum for f (X) along the search line X = Pk + hminSk .

(iv) Construct the next point Pk+1 = Pk + hminSk .

(v) Perform the termination test for minimization; that is, are the function values
f (Pk) and f (Pk+1) sufficiently close and the distance ‖Pk+1 − Pk‖ small
enough?

Repeat the process.

Example 8.9. Use the gradient method to find P1 and P2 for the function f (x, y) =
x − y

x2 + y2 + 2
. Use the initial point P0 = (−3,−2).

When P0 = (−3,−2),

S0 = 1

‖ − ∇ f (P0)‖ (−∇ f (P0))

= 1

‖ − ∇ f (−3,−2)‖ (−∇ f (−3,−2))

= (−0.4280863, 0.9037378).

The function

f (P0 + γ S0) = f ((−3,−2)+ γ (−0.4280863, 0.9037378))

= f (−3− 0.4280863γ,−2+ 0.9037378γ)

= (−3− 0.4280863γ)− (−2+ 0.9037378γ)

(−3− 0.4280863γ)2 + (−2+ 0.9037378γ)2 + 2

448 CHAP. 8 NUMERICAL OPTIMIZATION

has a minimum at γ = hmin0 = 4.8186760 (Program 8.3, Quadratic Interpolation). Thus

P1 = P0 + hmin0 S0

= (−3,−2)+ 4.8186760(−0.4280863, 0.9037378)

= (−5.0628094, 2.3548199).

When P1 = (−5.0628094, 2.3548199),

S1 = 1

‖ − ∇ f (P1)‖ (−∇ f (P1))

= 1

‖ − ∇ f (−5.0628094, 2.3548199)‖ (−∇ f (−5.0628094, 2.3548199))

= (0.9991231,−0.0418690).

The function

f (P1 + γ S1) = f ((−5.0628094, 2.3548199)+ γ (0.9991231,−0.0418690))

= f (−5.0628094+ 0.9991231γ, 2.3545199− 0.0418690γ)

= (−5.0628094+ 0.9991231γ)− (2.3545199− 0.0418690γ)

(−5.0628094+ 0.9991231γ)2 + (2.3545199− 0.0418690γ)2 + 2

has a minimum at γ = hmin1 = 2.7708281 (Program 8.3, Quadratic Interpolation). Thus

P2 = P1 + hmin1 S0

= (−5.0628094, 2.3548199)+ 2.7708281(0.9991231,−0.0418690)

= (−2.2944111, 2.2388080).

The function f (x, y) = (x− y)/(x2+ y2+2) has a relative minimum at P = (−1, 1).
Figure 8.13 shows a contour plot of the function f and the relative positions of the points
P0, P1, P2, and P . Some additional computations are shown in Table 8.7. �

The previous discussion supports the analytic and geometric appeal of the gra-
dient method. The method is a natural extension of our geometric understanding of
the gradient. Unfortunately, convergence to a minimum of a function of N variables,
f (x1, x2, . . . , xN), can be slow. In general, the geometry of a minimum of a function
f will cause the value of hmin to be small. Subsequently, there will be a large number
of returns to the minimization step (step (iii)) of the gradient method.

Newton’s Method

The quadratic approximation method of Section 8.1 generated a sequence of second-
degree Lagrange polynomials. It was implicitly assumed that near the minimum, the
shape of the quadratics approximated the shape of the objective function y = f (x).
The resulting sequence of minimums of the quadratics produced a sequence converging

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 449

Table 8.7 Gradient Method for f (x, y) = (x − y)/(x2 + y2 + 2)

k xk yk f (xk , yk)

0 −3.0000000 −2.0000000 −0.0666667
1 −5.0628094 2.3548199 −0.2235760
2 −2.2944111 2.2388080 −0.3692574
3 −1.3879337 1.3859313 −0.4743948
4 −1.0726050 1.0724933 −0.4987762
5 −1.0035351 1.0035334 −0.4999969
6 −1.0000091 1.0000091 −0.5000000
7 −1.0000000 1.0000000 −0.5000000

6

4

2

0

�2

�4

�6
�6 �4 �2 0 2 4 6

x

y

P1 P2

P(�1,1)P3

P0

Figure 8.13 The countour graph of
f (x, y) = (x − y)/(x2 + y2 + 2) and
the gradient method.

to the minimum of the objective function f . Newton’s method extends this process to
functions of N independent variables: z = f (x1, x2, . . . , xN). Starting at an initial
point P0, a sequence of second-degree polynomials in N variables will be constructed
recursively. If the objective function is well-behaved and the initial point is near the
actual minimum, then the sequence of minimums of the quadratics will converge to the
minimum of the objective function.

The process will use both the first- and second-order partial derivatives of the ob-
jective function. Recall that the gradient method used only the first partial derivatives.
It is to be expected that Newton’s method will be more efficient than the gradient
method.

450 CHAP. 8 NUMERICAL OPTIMIZATION

Definition 8.5. Let z = f (X) be a function of X such that ∂2 f (X)
∂xi ∂x j

exists for i, j =
1, 2, . . . N . The Hessian matrix for f at X , denoted by H f (X), is the N × N matrix

(2) H f (X) =
[

∂2 f (X)

∂xi∂x j

]
N×N

,

where i, j = 1, 2, . . . , N . �

It is appropriate to think of the Hessian matrix of a function f as representing the
second derivative of the function (precisely the case when N = 1). It is not difficult to
show that the Hessian matrix of a function f equals the Jacobian matrix (see Section
3.7) of the gradient of f ;

(3) H f (X) = J∇ f (X).

Example 8.10. Find the Hessian matrix at the point (−3,−2) of the function f (x, y) =
(x − y)/(x2 + y2 + 2).

From Example 8.8,

fx (x, y) = −x2 + 2xy + y2 + 2

(x2 + y2 + 2)2
and fy(x, y) = −x2 − 2xy + y2 − 2

(x2 + y2 + 2)2
.

The second partials are

fxx (x, y) = 2(x3 − 3x2 y − 3x(y2 + 2)+ y(y2 + 2))

(x2 + y2 + 2)3
,

fxy(x, y) = 2(x3 + 3x2 y + x(2− 3y2)− y(y2 + 2))

(x2 + y2 + 2)3
,

fyx (x, y) = 2(x3 + 3x2 y + x(2− 3y2)− y(y2 + 2))

(x2 + y2 + 2)3
,

fyy(x, y) = −2(2x + x3 − 6y − 3x2 y − 3xy2 + y3)

(x2 + y2 + 2)3
.

Evaluating the Hessian matrix

H f (x, y) =
[

fxx (x, y) fxy(x, y)

fyx (x, y) fyy(x, y)

]
at (x, y) = (−3,−2) yields

H f (−3,−2) = 1

3375

[
138 −78
−78 −122

]
. �

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 451

Definition 8.6. The Taylor polynomial of degree two for f (X) centered at A is

�(4) Q(X) = f (A)+ ∇ f (A) · (X − A)+ 1

2
(X − A)H f (A)(X − A)′.

Mathematical descriptions of Taylor polynomials of degree m can be found in most
vector or advanced calculus textbooks.

Example 8.11. Calculate the second-degree Taylor polynomial of f (x, y) = (x−y)/(x2+
y2 + 2) centered at the point A = (−3,−2). Treat the gradient of f as a 1× 2 matrix.

From Examples 8.8 and 8.10,

∇ f (−3,−2) = [fx (−3,−2), fy(−3,−2)] =
[

9

225
,− 19

225

]
,

H f (−3,−2) = 1

3375

[
138 −78
−78 −122

]
,

respectively. Thus

Q(x, y) = − 1

15
+ 1

225
[9 −19] · [x + 3 y + 2]

+ 1

2
[x + 3 y + 2]

(
1

3375

)[
138 −78
−78 −122

]
[x + 3 y + 2]′

= 69x2 − 61y2 + 393x − 763y − 78xy − 481

3375
.

Without ambiguity the matrix notation is dropped from the resultant 1× 1 matrix. �

Assume that the first and second partial derivatives of z = f (x1, x2, . . . , xN) exist
and are continuous in a region containing the point P0, and that there is a minimum at
the point P . Substituting P0 for A in formula (4) yields

(5) Q(X) = f (P0)+ ∇ f (P0) · (X − P0)+ 1

2
(X − P0)H f (P0)(X − P0)

′,

a second-degree polynomial in N variables; where X = [x1 x2 · · · xN]. A minimum
of Q(X) occurs where

(6) ∇Q(X) = 0

or

(7) ∇ f (P0)+ (X − P0)(H f (P0))
′ = 0.

If P0 is close to the point P (where a minimum of f occurs), then H f (P0) is invertible
and equation (7) can be solved for X :

(8) X = P0 − ∇ f (P0)((H f (P0))
−1)′.

452 CHAP. 8 NUMERICAL OPTIMIZATION

Substituting P1 for X in formula (8) yields

(9) P1 = P0 −∇ f (P0)((H f (P0))
−1)′.

When Pk−1 is used in place of P0 in formula (9), the following general rule is estab-
lished:

(10) Pk = Pk−1 − ∇ f (Pk−1)((H f (Pk−1))
−1)′.

In equation (7) the inverse of the Hessian matrix was used to solve for X . It would
be better to solve the system of linear equations represented by equation (7) with one
of the methods from Chapter 3. In general, the methods in Chapter 3 are more reliable
and efficient. The reader should realize that the inverse is primarily a theoretical tool
and the computation and use of inverses is inherently inefficient.

Example 8.12. Use formula (10) to find P1 and P2 for the function f (x, y) = (x −
y)/(x2 + y2 + 2). Use the initial point P0 = [−0.3 0.2].

If P0 = [−0.3 0.2], then

∇ f (P0) =
[
0.4033591 −0.4254006

]
,

H f (P0) =
[

0.4476594 −0.1955793
−0.1955793 0.3801897

]
,

(H f (P0))
−1 =

[
2.8814429 1.4822882
1.4822882 3.3927931

]
.

Substituting P0, ∇ f (P0), and (H f (P0))
−1 into formula (10) yields

P1 =
[−0.3 0.2

]− [0.4033591 −0.4254006
] [2.8814429 1.4822882

1.4822882 3.3927931

]
= [−0.8316899 1.0454017

]
.

If P1 =
[−0.8316899 1.0454017

]
, then

∇ f (P1) =
[
0.0462373 0.0097785

]
,

H f (P1) =
[

0.3027529 −0.0212462
−0.0212462 0.2513046

]
,

(H f (P1))
−1 =

[
3.3227373 0.2809163
−0.2809163 4.0029851

]
.

Substituting P1, ∇ f (P1), and (H f (P1))
−1 into formula (10) yields

P2 =
[−0.8316899 1.0454017

]
− [0.0462373 0.0097785

] [3.3227373 0.2809163
−0.2809163 4.0029851

]
= [−0.9880713 0.9932699

]
.

The process appears to be converging to the point P = [−1 1], where the minimum occurs
for the function f . At the fifth interation P5 = [−1 1]. �

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 453

It should be noted that formula (9) is equivalent (take the transpose of both sides)
to formula (30) in the optional Section 3.7. Formula (10) is also equivalent to step (iv)
in the outline of Newton’s method in Section 3.7. Thus Program 3.7 (Newton-Raphson
method) can be used to produce the sequence {Pk}∞k=0 (without using inverse matrices)
that converges to P .

Newton’s method requires a good initial point if there is to be convergence. This
is similar to the situation for the Newton-Raphson method for approximating a root
of f (x) = 0. Unlike earlier examples, the initial point in Example 8.12 was not
P0 = [−3 − 2]. In fact, as the reader can easily verify, Newton’s method diverges for
that particular initial point.

Newton’s method can be modified by treating the expression

−∇ f (Pk−1)((H f (Pk−1))
−1)′

in formula (10) as a search direction. This is analogous to the use of the search di-
rection Sk in the gradient method. As with the gradient method a single parameter
minimization (line search) is implemented in the search direction. In general, this
modified Newton’s method will be more reliable than Newton’s method.

Outline of Modified Newton’s Method

Suppose that Pk has been obtained.

(i) Compute the search direction Sk = −∇ f (Pk−1)((H f (Pk−1))
−1)′.

(ii) Perform a single parameter minimization of �(γ) = f (Pk+γ Sk) on the interval
[0, b], where b is large. This will produce a value γ = hmin where a local
minimum for �(γ) occurs. The relation �(hmin) = f (Pk + hminSk) shows that
this is a minimum for f (X) along the search line X = Pk + hminSk .

(iii) Construct the next point, Pk+1 = Pk + hminSk .

(iv) Perform the termination test for minimization; that is, are the function values
f (Pk) and f (Pk+1) sufficiently close and the distance ‖Pk+1 − Pk‖ small
enough?

Repeat the process.
The methods in this section require that the gradient and Hessian of a function

z = f (x1, x2, . . . , xN) be saved as M-files (a method to save f as an M-file was shown
in Section 8.2). To illustrate, consider the function f (x, y) = x2 + y2 − xy − 4x − y.
Appropriate M-files for the gradient and Hessian, respectively, are

function z=G(V)
z=zeros(1,2);
x=V(1);y=V(2);
g=[2x-4-y 2*y-1-x];

454 CHAP. 8 NUMERICAL OPTIMIZATION

z=-(1/norm(g))*g;

function z=H(V)
z=zeros(2,2);
x=V(1);y=V(2);
z=[2 -1;-1 2];

Program 8.5 (Steepest Descent or Gradient Method). To approximate a local
minimum of f (X) numerically, where f is a continuous function of N real variables
and X = (x1, x2, . . . , xN), by starting with one point P0 and using the gradient
method.

function[P0,y0,err]=grads(F,G,P0,max1,delta,epsilon,show)

%Input - F is the object function input as a string ’F’
% - G =-(1/norm(grad F))*grad F; the search direction
% input as a string ’G’
% - P0 is the initial starting point
% - max1 is the maximum number of iterations
% - delta is the tolerance for hmin in the single
% parameter minimization in the search direction
% - epsilon is the tolerance for the error in y0
% - show; if show==1 the iterations are displayed
%Output - P0 is the point for the minimum
% - y0 is the function value F(P0)
% - err is the error bound for y0
% - P is a vector containing the iterations

if nargin==5,show=0;end
[mm n]=]size(P0);
maxj=10; big=1e8; h=1;
P=zeros(maxj,n+1);
len=norm(P0);
y0=feval(F,P0);
if (len>e4),h=len/1e4;end
err=1;cnt=0;cond=0;
P(cnt+1,:)=[P0 y0];

while(cnt<max1&cond∼=5&(h>delta|err>epsilon))
%Compute search direction
S=feval(G,P0);

%Start single parameter quadratic minimization
P1=P0+h*S;
P2=P0+2*h*S;
y1=feval(F,P1);
y2=feval(F,P2);

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 455

cond=0;j=0;

while(j<maxj&cond==0)
len=norm(P0);
if (y0<y1)
P2=P1;
y2=y1;
h=h/2;
P1=P0+h*S;
y1=feval(F,P1);

else
if(y2<y1)

P1=P2;
y1=y2;
h=2*h;
P2=P0+2*h*S;
y2=feval(F,P2);

else
cond=-1;

end
end
j=j+1;
if(h<delta),cond=1;end
if(abs(h)>big|len>big),cond=5;end

end

if(cond==5)
Pmin=P1;
ymin=y1;

else
d=4*y1-2*y0-2*y2;
if(d<0)

hmin=h*(4*y1-3*y0-y2)/d;
else

cond=4;
hmin=h/3;

end

%Construct the next point
Pmin=P0+hmin*S;
ymin=feval(F,Pmin);

%Determine magnitude of next h
h0=abs(hmin);
h1=abs(hmin-h);

456 CHAP. 8 NUMERICAL OPTIMIZATION

h2=abs(hmin-2*h);
if(h0<h),h=h0;end
if(h1<h),h=h1;end
if(h2<h),h=h2;end
if(h==0),h=hmin;end
if(h<delta),cond=1;end

%Termination test for minimization
e0=abs(y0-ymin);
e1=abs(y1-ymin);
e2=abs(y2-ymin);
if(e0∼=0&e0<err),err=e0;end
if(e1∼=0&e1<err),err=e1;end
if(e2∼=0&e2<err),err=e2;end
if(e0==0&e1==0&e2==0),err=0;end
if(err<epsilon),cond=2;end
if(cond==2&h<delta),cond=3;end

end
cnt=cnt+1;
P(cnt+1,:)=[Pmin ymin];
P0=Pmin;
y0=ymin;
end
if(show==1)

disp(P);
end

Exercises for Gradient and Newton’s Methods

1. Find the gradient of each function at the given point.
(a) f (x, y) = x2 + y3 − 3x − 3y + 5 at (−1, 2)

(b) f (x, y) = 100(y − x2)2 + (1− x)2 at (1/2, 4/3)

(Rosenbrock’s parabolic valley, circa 1960)
(c) f (x, y, z) = cos(xy)− sin(xz) at (0, π, π/2)

2. Use the gradient method to find P1 and P2 for the functions and initial points in
Exercise 1.

3. Find the Hessian matrix for the functions and initial points in Exercise 1.

4. Calculate the second-degree Taylor polynomial for the functions in Exercise 1, cen-
tered at the given initial points.

5. Use formula (10) to find P1 and P2 for the functions and initial points in Exercise 1.

6. Use the modified Newton’s method to find P1 for the functions and initial points in
Exercise 1.

SEC. 8.3 GRADIENT AND NEWTON’S METHODS 457

7. Verify that formula (3) is true for the function in Example 8.10.

8. Establish formula (7) for the case N = 2 (i.e., z = f (x1, x2)).

9. Derive formula (8) from formula (7).

Algorithms and Programs

1. Use Program 8.5 to find the minimum of each of the functions in Exercise 1(a)
and 1(b) with an accuracy of eight decimal places. Use the initial point P0 =
(0.3, 0.4).

2. In Program 8.5 the x- and y-coordinates of the iterations are stored in the first two
columns of the matrix P , respectively. Modify Program 8.5 so that it will plot the x-
and y-coordinates of the iterations on the same coordinate system. Hint. Incorporate
the command plot(P(:,1),P(:,2),’.’) into your program. Use this program on
the functions in Exercise 1(a) and 1(b). Use the initial point P0 = (−0.2, 0.3).

3. Write a MATLAB program for Newton’s method (formula (10)). Use the program to
find the minimum of each of the functions in Exercise 1(a) and 1(b) with an accuracy
of eight decimal places. Use the initial point P0 = (0.3, 0.4).

4. Write a MATLAB program for the modified Newton’s method.

5. Use the program for the modified Newton’s method (Problem 4) to find the local
minimum of each of the following functions with an accuracy of eight decimal places.
(a) f (x, y, z) = 2x2 + 2y2 + z2 − 2xy + yz − 7y − 4z with P0 = (0.5, 0.4, 0.5)

(b) f (x, y, z, u) = 2(x2+ y2+ z2+ u2)− x(y+ z− u)+ yz− 3x − 8y− 5z− 9u
with P0 = (1, 1, 1, 1)

(c) f (x, y, z, u) = xyzu + 1

x
+ 1

y
+ 1

z
+ 1

u
with P0 = (0.7, 0.7, 0.7, 0.7)

6. Use Program 8.5 to find the local minimum of each of the functions in Problem 5
with an accuracy of eight decimal places. Use a starting value near one of the given
vertices.

7. Find the point, with an accuracy of seven decimal places, on the surface z = x2 + y2

that is closest to the point (2, 3, 1).

8. A company has five factories, A, B, C, D, and E, located at the points (10, 10),
(30, 50), (16.667, 29), (0.555, 29.888), and (22, 2221, 49.988), respectively, in the
xy-plane. Assume that the distance between two points represents the driving dis-
tance, in miles, between the factories. The company plans to build a warehouse at
some point in the plane. It is anticipated that during an average week there will be
10, 18, 20, 14, and 25 deliveries made to factories A, B, C, D, and E, respectively.
Ideally, to minimize the weekly mileage of delivery vehicles, where in the xy-plane
should the warehouse be located?

9. In Problem 8, where should the warehouse be located if due to zoning restrictions, it
must be located at a point on the curve y = x2?

9

Solution of Differential Equations

Differential equations are commonly used for mathematical modeling in science and
engineering. Often, there is no known analytic solution and numerical approximations
are required. As an illustration, we consider population dynamics and a nonlinear
system that is a modification of the Lotka-Volterra equations:

x ′ = f (t, x, y) = x − xy − 1

10
x2 and y′ = g(t, x, y) = xy − y − 1

20
y2,

with the initial condition x(0) = 2 and y(0) = 1 for 0 ≤ t ≤ 30. Although the
numerical solution is a list of numbers, it is helpful to plot the polygonal path joining

x

y

0.5

0.0

1.0

1.5

0.5 1.0 1.5 2.0

Figure 9.1 The trajectory for a
nonlinear system of differential
equations x ′ = f (t, x, y) and
y′ = g(t, x, y).

458

SEC. 9.1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 459

the approximation points {(xk, yk)} and plot the trajectory shown in Figure 9.1. In this
chapter we present the standard methods for solving ordinary differential equations,
systems of differential equations, and boundary value problems.

9.1 Introduction to Differential Equations

Consider the equation

(1)
dy

dt
= 1− e−t .

It is a differential equation because it involves the derivative dy/dt of the “unknown
function” y = y(t). Only the independent variable t appears on the right side of
equation (1): hence a solution is an antiderivative of 1 − e−t . The rules of integration
can be used to find y(t):

(2) y(t) = t + e−t + C,

where C is the constant of integration. All the functions in (2) are solutions of (1)
because they satisfy the requirement that y′(t) = 1 − e−t . They form the family of
curves in Figure 9.2.

Integration was the technique used to find the explicit formula for the functions
in (2), and Figure 9.2 emphasizes that there is one degree of freedom involved in the
solution, that is, the constant of integration C . By varying the value of C , we “move the
solution curve” up or down, and a particular curve can be found that will pass through
any desired point. The secrets of the world are seldom observed as explicit formulas.
Instead, we usually measure how a change in one variable affects another variable.

t

y

4

3

2

1

−2 −1
−1

1 2 3 4 5

C = 2 C = 1 C = 0

C = −1

C = −2

Figure 9.2 The solution curves y(t) = t + e−t + C .

460 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

When this is translated into a mathematical model, the result is an equation involving
the rate of change of the unknown function and the independent and/or dependent
variable.

Consider the temperature y(t) of a cooling object. It might be conjectured that the
rate of change of the temperature of the body is related to the temperature difference
between its temperature and that of the surrounding medium. Experimental evidence
verifies this conjecture. Newton’s law of cooling asserts that the rate of change is
directly proportional to the difference in these temperatures. If A is the temperature of
the surrounding medium and y(t) is the temperature of the body at time t , then

(3)
dy

dt
= −k(y − A),

where k is a positive constant. The negative sign is required because dy/dt will be neg-
ative when the temperature of the body is greater than the temperature of the medium.

If the temperature of the object is known at time t = 0, we call this an initial
condition and include this information in the statement of the problem. Usually, we
are asked to solve

(4)
dy

dt
= −k(y − A) with y(0) = y0.

The technique of separation of variables can be used to find the solution

(5) y = A + (y0 − A)e−kt .

For each choice of y0, the solution curve will be different, and there is no simple
way to move one curve around to get another one. The initial value is a point where the
desired solution is “nailed down.” Several solution curves are shown in Figure 9.3, and
it can be observed that as t gets large the temperature of the object approaches room
temperature. If y0 < A, the body is warming instead of cooling.

Initial Value Problem

Definition 9.1. A solution to the initial value problem (I.V.P.)

(6) y′ = f (t, y) with y(t0) = y0

on an interval [t0, b] is a differentiable function y = y(t) such that

(7) y(t0) = y0 and y′(t) = f (t, y(t)) for all t ∈ [t0, b].

Notice that the solution curve y = y(t) must pass through the initial point (t0, y0). �

SEC. 9.1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 461

y

t

1

A = 2

3

0 1 2 3 4 5

Figure 9.3 The solution curves
y = A + (y0 − A)e−kt for Newton’s
law of cooling (and warming).

Geometric Interpretation

At each point (t, y) in the rectangular region R = {(t, y) : a ≤ t ≤ b, c ≤ y ≤ d},
the slope of a solution curve y = y(t) can be found using the implicit formula m =
f (t, y(t)). Hence the values mi, j = f (ti , y j) can be computed throughout the rectan-
gle, and each value mi, j represents the slope of the line tangent to a solution curve that
passes through the point (ti , y j).

A slope field or direction field is a graph that indicates the slopes {mi, j } over the
region. It can be used to visualize how a solution curve “fits” the slope constraint. To
move along a solution curve, one must start at the initial point and check the slope
field to determine in which direction to move. Then take a small step from t0 to t0 + h
horizontally and move the appropriate vertical distance h f (t0, y0) so that the resulting
displacement has the required slope. The next point on the solution curve is (t1, y1).
Repeat the process to continue your journey along the curve. Since a finite number of
steps will be used, the method will produce an approximation to the solution.

Example 9.1. The slope field for y′ = (t − y)/2 over the rectangle R = {(t, y) : 0 ≤ t ≤
5, 0 ≤ y ≤ 4} is shown in Figure 9.4. The solution curves with the following initial values
are shown:
1. For y(0) = 1, the solution is y(t) = 3e−t/2 − 2+ t .

2. For y(0) = 4, the solution is y(t) = 6e−t/2 − 2+ t . �

Definition 9.2. Given the rectangle R = {(t, y) : a ≤ t ≤ b, c ≤ y ≤ d}, assume
that f (t, y) is continuous on R. The function f is said to satisfy a Lipschitz condition
in the variable y on R provided that a constant L > 0 exists with the property that

(8) | f (t, y1)− f (t, y2)| ≤ L |y1 − y2|
whenever (t, y1), (t, y2) ∈ R. The constant L is called a Lipschitz constant for f . �

462 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t
1 2 3 4 5

1

0

2

3

4

Figure 9.4 The slope field for the
differential equation y′ = f (x, y) =
(t − y)/2.

Theorem 9.1. Suppose that f (t, y) is defined on the region R. If there exists a
constant L > 0 so that

(9) | fy(t, y)| ≤ L for all (t, y) ∈ R,

then f satisfies a Lipschitz condition in the variable y with Lipschitz constant L over
the rectangle R.

Proof. Fix t and use the mean value theorem to get c1 with y1 < c1 < y2 so that

| f (t, y1)− f (t, y2)| = | fy(t, c1)(y1 − y2)|
= | fy(t, c1)||y1 − y2| ≤ L|y1 − y2|. •

Theorem 9.2 (Existence and Uniqueness). Assume that f (t, y) is continuous in a
region R = {(t, y) : t0 ≤ t ≤ b, c ≤ y ≤ d}. If f satisfies a Lipschitz condition on R
in the variable y and (t0, y0) ∈ R, then the initial value problem (6), y′ = f (t, y) with
y(t0) = y0, has a unique solution y = y(t) on some subinterval t0 ≤ t ≤ t0 + δ.

Let us apply Theorems 9.1 and 9.2 to the function f (t, y) = (t− y)/2. The partial
derivative is fy(t, y) = −1/2. Hence | fy(t, y)| ≤ 1

2 and, according to Theorem 9.1,
the Lipschitz constant is L = 1

2 . Therefore, by Theorem 9.2 the I.V.P. has a unique
solution.

Sketches of the slope field and solution curves can be constructed by using the
meshgrid and quiver commands in MATLAB. The following M-file will generate a
graph analogous to Figure 9.4. In general, care must be taken to avoid points (t, y) at
which y′ is undefined.

SEC. 9.1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 463

[t,y]=meshgrid(1:5,4:-1:1);
dt=ones(5,4);
dy=(t-y)/2;
quiver(t,y,dt,dy);
hold on
x=0:.01:5;
z1=3*exp(-x/2)-2+x;
z2=6*exp(-x/2)-2+x;
plot(x,z1,x,z2)
hold off

Exercises for Introduction to Differential Equations

In Exercises 1 through 5:

(a) Show that y(t) is the solution to the differential equation by substituting y(t) and
y′(t) into the differential equation y′(t) = f (t, y(t)).

(b) Use Theorem 9.1 to find a Lipschitz constant L for the rectangle R = {(t, y) : 0 ≤
t ≤ 3, 0 ≤ y ≤ 5}.

1. y′ = t2 − y, y(t) = Ce−t + t2 − 2t + 2

2. y′ = 3y + 3t , y(t) = Ce3t − t − 1
3

3. y′ = −t y, y(t) = Ce−t2/2

4. y′ = e−2t − 2y, y(t) = Ce−2t + te−2t

5. y′ = 2t y2, y(t) = 1/(C − t2)

In Exercises 6 through 9, construct a graph of the slope field mi, j = f (ti , y j) over the
rectangle R = {(t, y) : 0 < t ≤ 4, 0 < y ≤ 4} and the indicated solution curves on the
same coordinate system.

6. y′ = −t/y, y(t) = (C − t2)1/2 for C = 1, 2, 4, 9

7. y′ = t/y, y(t) = (C + t2)1/2 for C = −4, −1, 1, 4

8. y′ = 1/y, y(t) = (C + 2t)1/2 for C = −4, −2, 0, 2

9. y′ = y2, y(t) = 1/(C − t) for C = 1, 2, 3, 4

10. Here is an example of an initial value problem that has “two solutions”: y′ = 3
2 y1/3

with y(0) = 0.

(a) Verify that y(t) = 0 for t ≥ 0 is a solution.

(b) Verify that y(t) = t3/2 for t ≥ 0 is a solution.

(c) Does this violate Theorem 9.2? Why?

464 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

11. Consider the initial value problem

y′ = (1− y2)1/2 y(0) = 0

(a) Verify that y(t) = sin(t) is a solution on [0, π/4].
(b) Determine the largest interval over which the solution exists.

12. Show that the definite integral
∫ b

a f (t) dt can be computed by solving the initial value
problem

y′ = f (t) for a ≤ t ≤ b with y(a) = 0.

In Exercises 13 through 15, find the solution to the I.V.P.

13. y′ = 3t2 + sin(t), y(0) = 2

14. y′ = 1

1+ t2
, y(0) = 0

15. y′ = e−t2/2, y(0) = 0. Hint. This answer must be expressed as a certain integral.

16. Consider the first-order differential equation

y′(t)+ p(t)y(t) = q(t).

Show that the general solution y(t) can be found by using two special integrals. First
define F(t) as follows:

F(t) = e
∫

p(t) dt .

Second, define y(t) as follows:

y(t) = 1

F(t)

(∫
F(t)q(t) dt + C

)
.

Hint. Differentiate the product F(t)y(t).

17. Consider the decay of a radioactive substance. If y(t) is the amount of substance
present at time t , then y(t) decreases and experiments have verified that the rate of
change of y(t) is proportional to the amount of undecayed material. Hence the I.V.P.
for the decay of a radioactive substance is

y′ = −ky with y(0) = y0.

(a) Show that the solution is y(t) = y0e−kt .
(b) The half-life of a radioactive substance is the time required for half of an initial

amount to decay. The half-life of 14C is 5730 years. Find the formula y(t) that
gives the amount of 14C present at time t . Hint. Find k so that y(5730) = 0.5y0.

(c) A piece of wood is analyzed and the amount of 14C present is 0.712 of the
amount that was present when the tree was alive. How old is the sample of
wood?

(d) At a certain instant, 10 mg of a radioactive substance is present. After 23 sec-
onds, only 1 mg is present. What is the half-life of the substance?

SEC. 9.2 EULER’S METHOD 465

In Exercises 18 and 19, derive an equation for the I.V.P. and find its solution.

18. Annual ticket sales for a new professional soccer league are projected to grow at a
rate proportional to the difference between sales at time t and an upper bound of $300
million. Assume that annual ticket sales are initially $0 and must be $40 million after
3 years (or the league folds). Based on these assumptions, how long will it take for
annual ticket sales to reach $220 million?

19. The interior volume of a new library is 5 millon cubic feet. The ventilation system
introduces fresh air into the library at the rate of 45,000 cubic feet per minute. Before
the ventilation system is turned on, the percents of carbon dioxide in the interior of
the library and in the exterior fresh air are measured at 0.4% and 0.5%, respectively.
Determine the percentage of carbon dioxide in the library 2 hours after the ventilation
system is started.

9.2 Euler’s Method

The reader should be convinced that not all initial value problems can be solved ex-
plicitly, and often it is impossible to find a formula for the solution y(t); for example,
there is no “closed-form expression” for the solution to y′ = t3 + y2 with y(0) = 0.
Hence for engineering and scientific purposes it is necessary to have methods for ap-
proximating the solution. If a solution with many significant digits is required, then
more computing effort and a sophisticated algorithm must be used.

The first approach, called Euler’s method, serves to illustrate the concepts involved
in the advanced methods. It has limited use because of the larger error that is accumu-
lated as the process proceeds. However, it is important to study because the error
analysis is easier to understand.

Let [a, b] be the interval over which we want to find the solution to the well-posed
I.V.P. y′ = f (t, y) with y(a) = y0. In actuality, we will not find a differentiable
function that satisfies the I.V.P. Instead, a set of points {(tk, yk)} is generated, and the
points are used for an approximation (i.e., y(tk) ≈ yk). How can we proceed to
construct a “set of points” that will “satisfy a differential equation approximately”?
First we choose the abscissas for the points. For convenience we subdivide the interval
[a, b] into M equal subintervals and select the mesh points

(1) tk = a + kh for k = 0, 1, . . . , M where h = b − a

M
.

The value h is called the step size. We now proceed to solve approximately

(2) y′ = f (t, y) over [t0, tM] with y(t0) = y0.

466 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Assume that y(t), y′(t), and y′′(t) are continuous and use Taylor’s theorem to
expand y(t) about t = t0. For each value t there exists a value c1 that lies between t0
and t so that

(3) y(t) = y(t0)+ y′(t0)(t − t0)+ y′′(c1)(t − t0)2

2
.

When y′(t0) = f (t0, y(t0)) and h = t1 − t0 are substituted in equation (3), the
result is an expression for y(t1):

(4) y(t1) = y(t0)+ h f (t0, y(t0))+ y′′(c1)
h2

2
.

If the step size h is chosen small enough, then we may neglect the second-order
term (involving h2) and get

(5) y1 = y0 + h f (t0, y0),

which is Euler’s approximation.
The process is repeated and generates a sequence of points that approximates the

solution curve y = y(t). The general step for Euler’s method is

(6) tk+1 = tk + h, yk+1 = yk + h f (tk, yk) for k = 0, 1, . . . , M − 1.

Example 9.2. Use Euler’s method to solve approximately the initial value problem

(7) y′ = Ry over [0, 1] with y(0) = y0 and R constant.

The step size must be chosen, and then the second formula in (6) can be determined
for computing the ordinates. This formula is sometimes called a difference equation, and
in this case it is

(8) yk+1 = yk(1+ h R) for k = 0, 1, . . . , M − 1.

If we trace the solution values recursively, we see that

(9)

y1 = y0(1+ h R)

y2 = y1(1+ h R) = y0(1+ h R)2

...

yM = yM−1(1+ h R) = y0(1+ h R)M .

For most problems there is no explicit formula for determining the solution points, and
each new point must be computed successively from the previous point. However, for the
initial value problem (7) we are fortunate; Euler’s method has the explicit solution

(10) tk = kh yk = y0(1+ h R)k for k = 0, 1, . . . , M .

Formula (10) can be viewed as the “compound interest” formula, and the Euler ap-
proximation gives the future value of a deposit. �

SEC. 9.2 EULER’S METHOD 467

Table 9.1 Compound Interest in Example 9.3

Step
size, h

Number of
iterations, M Approximation to y(5), yM

1 5 1000

(
1+ 0.1

1

)5

= 1610.51

1
12 60 1000

(
1+ 0.1

12

)60

= 1645.31

1
360 1800 1000

(
1+ 0.1

360

)1800

= 1648.61

Example 9.3. Suppose that $1000 is deposited and earns 10% interest compounded con-
tinuously over 5 years. What is the value at the end of 5 years?

We choose to use Euler approximations with h = 1, 1
12 , and 1

360 to approximate y(5)

for the I.V.P.:
y′ = 0.1y over [0, 5] with y(0) = 1000.

Formula (10) with R = 0.1 produces Table 9.1. �

Think about the different values y5, y60, and y1800 that are used to determine the
future value after 5 years. These values are obtained using different step sizes and
reflect different amounts of computing effort to obtain an approximation to y(5). The
solution to the I.V.P. is y(5) = 1000e0.5 = 1648.72. If we did not use the closed-form
solution (10), then it would have required 1800 iterations of Euler’s method to obtain
y1800, and we still have only five digits of accuracy in the answer!

If bankers had to approximate the solution to the I.V.P. (7), they would choose Eu-
ler’s method because of the explicit formula in (10). The more sophisticated methods
for approximating solutions do not have an explicit formula for finding yk , but they
will require less computing effort.

Geometric Description

If you start at the point (t0, y0) and compute the value of the slope m0 = f (t0, y0)

and move horizontally the amount h and vertically h f (t0, y0), then you are moving
along the tangent line to y(t) and will end up at the point (t1, y1) (see Figure 9.5).
Notice that (t1, y1) is not on the desired solution curve! But this is the approximation
that we are generating. Hence we must use (t1, y1) as though it were correct and
proceed by computing the slope m1 = f (t1, y1) and using it to obtain the next vertical
displacement h f (t1, y1) to locate (t2, y2), and so on.

468 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t
0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0

Euler

y = y(t)

Figure 9.5 Euler’s approximations
yk−1 = yk + h f (tk, yk).

Step Size versus Error

The methods we introduce for approximating the solution of an initial value problem
are called difference methods or discrete variable methods. The solution is approx-
imated at a set of discrete points called a grid (or mesh) of points. An elementary
single-step method has the form yk+1 = yk + h�(tk, yk) for some function � called
an increment function.

When using any discrete variable method to solve an initial value problem approx-
imately, there are two sources of error: discretization and round off.

Definition 9.3. Assume that {(tk, yk)}Mk=0 is the set of discrete approximations and
that y = y(t) is the unique solution to the initial value problem.

The global discretization error ek is defined by

(11) ek = y(tk)− yk for k = 0, 1, . . . , M .

It is the difference between the unique solution and the solution obtained by the discrete
variable method.

The local discretization error εk+1 is defined by

(12) εk+1 = y(tk+1)− yk − h�(tk, yk) for k = 0, 1, . . . , M − 1.

It is the error committed in the single step from tk to tk+1. �

When we obtained equation (6) for Euler’s method, the neglected term for each
step was y(2)(ck)(h2/2). If this was the only error at each step, then at the end of the
interval [a, b], after M steps have been made, the accumulated error would be

M∑
k=1

y(2)(ck)
h2

2
≈ My(2)(c)

h2

2
= hM

2
y(2)(c)h = (b − a)y(2)(c)

2
h = O(h1).

SEC. 9.2 EULER’S METHOD 469

There could be more error, but this estimate predominates. A detailed discussion on
this topic can be found in advanced texts on numerical methods for differential equa-
tions.

Theorem 9.3 (Precision of Euler’s Method). Assume that y(t) is the solution to
the I.V.P. given in (2). If y(t) ∈ C2[t0, b] and {(tk, yk)}Mk=0 is the sequence of approxi-
mations generated by Euler’s method, then

(13)
|ek | = |y(tk)− yk | = O(h),

|εk+1| = |y(tk+1)− yk − h f (tk, yk)| = O(h2).

The error at the end of the interval is called the final global error (F.G.E.):

(14) E (y(b), h) = |y(b)− yM | = O(h).

Remark. The final global error E(y(b), h) is used to study the behavior of the error for
various step sizes. It can be used to give us an idea of how much computing effort must
be done to obtain an accurate approximation.

Examples 9.4 and 9.5 illustrate the concepts in Theorem 9.3. If approximations are
computed using the step sizes h and h/2, we should have

(15) E(y(b), h) ≈ Ch

for the larger step size, and

(16) E

(
y(b),

h

2

)
≈ C

h

2
= 1

2
Ch ≈ 1

2
E(y(b), h).

Hence the idea in Theorem 9.3 is that if the step size in Euler’s method is reduced by a
factor of 1

2 , we can expect that the overall F.G.E. will be reduced by a factor of 1
2 .

Example 9.4. Use Euler’s method to solve the I.V.P.

y′ = t − y

2
on [0, 3] with y(0) = 1.

Compare solutions for h = 1, 1
2 , 1

4 , and 1
8 .

Figure 9.6 shows graphs of the four Euler solutions and the exact solution curve y(t) =
3e−t/2 − 2 + t . Table 9.2 gives the values for the four solutions at selected abscissas. For
the step size h = 0.25, the calculations are

y1 = 1.0+ 0.25

(
0.0− 1.0

2

)
= 0.875,

y2 = 0.875+ 0.25

(
0.25− 0.875

2

)
= 0.796875, etc.

This iteration continues until we arrive at the last step:

y(3) ≈ y12 = 1.440573+ 0.25

(
2.75− 1.440573

2

)
= 1.604252. �

470 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t
0.0

0.5

1.0

1.5

0.5 1.0 1.5 2.0 2.5 3.0

h = 1/4
h = 1/2

h = 1

y = y(t)

Figure 9.6 Comparison of Euler solutions with different
step sizes for y′ = (t − y)/2 over [0, 3] with the initial
condition y(0) = 1.

Example 9.5. Compare the F.G.E. when Euler’s method is used to solve the I.V.P.

y′ = t − y

2
over [0, 3] with y(0) = 1,

using step sizes 1, 1
2 , . . . , 1

64 .
Table 9.3 gives the F.G.E. for several step sizes and shows that the error in the approx-

imation to y(3) decreases by about 1
2 when the step size is reduced by a factor of 1

2 . For
the smaller step sizes the conclusion of Theorem 9.3 is easy to see:

E(y(3), h) = y(3)− yM = O(h1) ≈ Ch, where C = 0.256. �

Program 9.1 (Euler’s Method). To approximate the solution of the initial value
problem y′ = f (t, y) with y(a) = y0 over [a, b] by computing

yk+1 = yk + h f (tk, yk) for k = 0, 1, . . . , M − 1.

function E=euler(f,a,b,ya,M)

%Input - f is the function entered as a string ’f’
% - a and b are the left and right endpoints
% - ya is the initial condition y(a)
% - M is the number of steps
%Output - E=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h=(b-a)/M;
T=zeros(1,M+1);
Y=zeros(1,M+1);

SEC. 9.2 EULER’S METHOD 471

Table 9.2 Comparison of Euler Solutions with Different Step Sizes for y′ = (t − y)/2
over [0, 3] with y(0) = 1

yk

tk h = 1 h = 1
2 h = 1

4 h = 1
8 y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0
0.125 0.9375 0.943239
0.25 0.875 0.886719 0.897491
0.375 0.846924 0.862087
0.50 0.75 0.796875 0.817429 0.836402
0.75 0.759766 0.786802 0.811868
1.00 0.5 0.6875 0.758545 0.790158 0.819592
1.50 0.765625 0.846386 0.882855 0.917100
2.00 0.75 0.949219 1.030827 1.068222 1.103638
2.50 1.211914 1.289227 1.325176 1.359514
3.00 1.375 1.533936 1.604252 1.637429 1.669390

Table 9.3 Relation between Step Size and F.G.E. for Euler Solutions to
y′ = (t − y)/2 over [0, 3] with y(0) = 1

Step
size, h

Number of
steps, M

Approximation
to y(3), yM

F.G.E.
Error at t = 3,

y(3)− yM

O(h) ≈ Ch
where

C = 0.256

1 3 1.375 0.294390 0.256

1
2 6 1.533936 0.135454 0.128

1
4 12 1.604252 0.065138 0.064

1
8 24 1.637429 0.031961 0.032

1
16 48 1.653557 0.015833 0.016

1
32 96 1.661510 0.007880 0.008

1
64 192 1.665459 0.003931 0.004

472 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

T=a:h:b;
Y(1)=ya;
for j=1:M

Y(j+1)=Y(j)+h*feval(f,T(j),Y(j));
end
E=[T’ Y’];

Exercises for Euler’s Method

In Exercises 1 through 5 solve the differential equations by the Euler method.

(a) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four
steps by hand calculation.

(b) Compare the exact solution y(0.4) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. Logistic population growth. The population curve P(t) for the United States is
assumed to obey the differential equation for a logistic curve P ′ = a P − bP2. Let t
denote the year past 1900, and let the step size be h = 10. The values a = 0.02 and
b = 0.00004 produce a model for the population. Using hand calculations, find the
Euler approximations to P(t) and fill in the following table. Round off each value Pk

to the nearest tenth.

Year tk

P(tk)

Actual
Pk

Euler approximation

1900 0.0 76.1 76.1
1910 10.0 92.4 89.0
1920 20.0 106.5
1930 30.0 123.1
1940 40.0 132.6 138.2
1950 50.0 152.3
1960 60.0 180.7
1970 70.0 204.9 202.8
1980 80.0 226.5

SEC. 9.2 EULER’S METHOD 473

7. Show that when Euler’s method is used to solve the I.V.P.

y′ = f (t) over [a, b] with y(a) = y0 = 0

the result is

y(b) ≈
M−1∑
k=0

f (tk)h,

which is a Riemann sum that approximates the definite integral of f (t) taken over the
interval [a, b].

8. Show that Euler’s method fails to approximate the solution y(t) = t3/2 of the I.V.P.

y′ = f (t, y) = 1.5y1/3 with y(0) = 0.

Justify your answer. What difficulties were encountered?

9. Can Euler’s method be used to solve the I.V.P.

y′ = 1+ y2 over [0, 3] with y(0) = 0?

Hint. The exact solution curve is y(t) = tan(t).

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by the Euler method.

(a) Let h = 0.1 and do 20 steps with Program 9.1. Then let h = 0.05 and do 40 steps
with Program 9.1.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix E from Program 9.1 contains the x and y coordinates of
the approximations. The command plot(E(:,1),E(:,2)) will produce a graph
analogous to Figure 9.6.

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. Consider y′ = 0.12y over [0, 5] with y(0) = 1000.
(a) Apply formula (10) to find Euler’s approximation to y(5) using the step sizes

h = 1, 1
12 , and 1

360 .
(b) What is the limit in part (a) when h goes to zero?

474 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

7. Exponential population growth. The population of a certain species grows at a rate
that is proportional to the current population and obeys the I.V.P.

y′ = 0.02y over [0, 5] with y(0) = 5000.

(a) Apply formula (10) to find Euler’s approximation to y(5) using the step sizes
h = 1, 1

12 , and 1
360 .

(b) What is the limit in part (a) when h goes to zero?

8. A skydiver jumps from a plane, and up to the moment he opens the parachute the
air resistance is proportional to v3/2 (v represents velocity). Assume that the time
interval is [0, 6] and that the differential equation for the downward direction is

v′ = 32− 0.032v3/2 over [0, 6] with v(0) = 0.

Use Euler’s method with h = 0.05 and estimate v(6).

9. Epidemic model. The mathematical model for epidemics is described as follows.
Assume that there is a community of L members that contains P infected individuals
and Q uninfected individuals. Let y(t) denote the number of infected individuals at
time t . For a mild illness, such as the common cold, everyone continues to be active,
and the epidemic spreads from those who are infected to those uninfected. Since
there are P Q possible contacts between these two groups, the rate of change of y(t)
is proportional to P Q. Hence the problem can be stated as the I.V.P.

y′ = ky(L − y) with y(0) = y0.

(a) Use L = 25,000, k = 0.00003, and h = 0.2 with the initial condition y(0) =
250, and use Program 9.1 to compute Euler’s approximate solution over [0, 60].

(b) Plot the graph of the approximate solution from part (a).
(c) Estimate the average number of individuals infected by finding the average of

the ordinates from Euler’s method in part (a).
(d) Estimate the average number of individuals infected by fitting a curve to the data

from part (a) and using Theorem 1.10 (mean value theorem for integrals).

10. Consider the first-order integro-ordinary differential equation

y′ = 1.3y − 0.25y2 − 0.0001y
∫ t

0
y(τ) dτ.

(a) Use Euler’s method with h = 0.2, and y(0) = 250 over the interval [0, 20], and
the trapezoidal rule to find an approximate solution to the equation. Hint. The
general step for Euler’s method (6) is

yk+1 = yk + h(1.3yk − 0.25y2
k − 0.0001yk

∫ tk

0
y(τ) dτ).

If the trapezoidal rule is used to approximate the integral, then this expression
becomes

yk+1 = yk + h(1.3yk − 0.25y2
k − 0.0001yk Tk(h)),

SEC. 9.3 HEUN’S METHOD 475

where T0(h) = 0 and

Tk(h) = Tk−1(h)+ h

2
(yk−1 + yk) for k = 0, 1, . . . , 99.

(b) Repeat part (a) using the initial values y(0) = 200 and y(0) = 300.
(c) Plot the approximate solutions from parts (a) and (b) on the same coordinate

system.

9.3 Heun’s Method

The next approach, Heun’s method, introduces a new idea for constructing an algo-
rithm to solve the I.V.P.

(1) y′(t) = f (t, y(t)) over [a, b] with y(t0) = y0.

To obtain the solution point (t1, y1), we can use the fundamental theorem of calculus
and integrate y′(t) over [t0, t1] to get

(2)
∫ t1

t0
f (t, y(t)) dt =

∫ t1

t0
y′(t) dt = y(t1)− y(t0),

where the antiderivative of y′(t) is the desired function y(t). When equation (2) is
solved for y(t1), the result is

(3) y(t1) = y(t0)+
∫ t1

t0
f (t, y(t)) dt.

Now a numerical integration method can be used to approximate the definite inte-
gral in (3). If the trapezoidal rule is used with the step size h = t1 − t0, then the result
is

(4) y(t1) ≈ y(t0)+ h

2
(f (t0, y(t0))+ f (t1, y(t1))).

Notice that the formula on the right-hand side of (4) involves the yet to be deter-
mined value y(t1). To proceed, we use an estimate for y(t1). Euler’s solution will
suffice for this purpose. After it is substituted into (4), the resulting formula for finding
(t1, y1) is called Heun’s method:

(5) y1 = y (t0)+ h

2
(f (t0, y0)+ f (t1, y0 + h f (t0, y0))).

The process is repeated and generates a sequence of points that approximates the
solution curve y = y(t). At each step, Euler’s method is used as a prediction, and then

476 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

h
2

p1 = y0 + hf (t0, y0)

t

y = y(t)

(t0, y0)

(t1, p1)

(t1, y1)

(t1, y(t1))

y

t0 t1

(a) Derivative predictor:

y1 − y0 = (f0 + f1)

t

z = f (t, y(t))

z

t0 t1

(b) Integral corrector:

(t0, f0)

(t1, f1)

Figure 9.7 The graphs y = y(t) and z = f (t, y(t)) in the derivation of Heun’s method.

the trapezoidal rule is used to make a correction to obtain the final value. The general
step for Heun’s method is

(6)
pk+1 = yk + h f (tk, yk), tk+1 = tk + h,

yk+1 = yk + h

2
(f (tk, yk)+ f (tk+1, pk+1)).

Notice the role played by differentiation and integration in Heun’s method. Draw
the line tangent to the solution curve y = y(t) at the point (t0, y0) and use it to find the
predicted point (t1, p1). Now look at the graph z = f (t, y(t)) and consider the points
(t0, f0) and (t1, f1), where f0 = f (t0, y0) and f1 = f (t1, p1). The area of the trape-
zoid with vertices (t0, f0) and (t1, f1) is an approximation to the integral in (3), which
is used to obtain the final value in equation (5). The graphs are shown in Figure 9.7.

Step Size versus Error
The error term for the trapezoidal rule used to approximate the integral in (3) is

(7) −y(2)(ck)
h3

12
.

If the only error at each step is that given in (7), after M steps the accumulated error
for Heun’s method would be

(8) −
M∑

k=1

y(2)(ck)
h3

12
≈ b − a

12
y(2)(c)h2 = O(h2).

SEC. 9.3 HEUN’S METHOD 477

The next theorem is important, because it states the relationship between F.G.E.
and step size. It is used to give us an idea of how much computing effort must be done
to obtain an accurate approximation using Heun’s method.

Theorem 9.4 (Precision of Heun’s Method). Assume that y(t) is the solution to
the I.V.P. (1). If y(t) ∈ C3[t0, b] and {(tk, yk)}Mk=0 is the sequence of approximations
generated by Heun’s method, then

(9)
|ek | = |y(tk)− yk | = O(h2),

|εk+1| = |y(tk+1)− yk − h�(tk, yk)| = O(h3),

where �(tk, yk) = yk + (h/2)(f (tk, yk)+ f (tk+1, yk + h f (tk, yk))).
In particular, the final global error (F.G.E.) at the end of the interval will satisfy

(10) E(y(b), h) = |y(b)− yM | = O(h2).

Examples 9.6 and 9.7 illustrate Theorem 9.4. If approximations are computed
using the step sizes h and h/2, we should have

(11) E(y(b), h) ≈ Ch2

for the larger step size, and

(12) E

(
y(b),

h

2

)
≈ C

h2

4
= 1

4
Ch2 ≈ 1

4
E(y(b), h).

Hence the idea in Theorem 9.4 is that if the step size in Heun’s method is reduced by a
factor of 1

2 we can expect that the overall F.G.E. will be reduced by a factor of 1
4 .

Example 9.6. Use Heun’s method to solve the I.V.P.

y′ = t − y

2
on [0, 3] with y(0) = 1.

Compare solutions for h = 1, 1
2 , 1

4 , and 1
8 .

Figure 9.8 shows the graphs of the first two Heun solutions and the exact solution curve
y(t) = 3e−t/2−2+ t . Table 9.4 gives the values for the four solutions at selected abscissas.
For the step size h = 0.25, a sample calculation is

f (t0, y0) = 0− 1

2
= −0.5

p1 = 1.0+ 0.25(−0.5) = 0.875,

f (t1, p1) = 0.25− 0.875

2
= −0.3125,

y1 = 1.0+ 0.125(−0.5− 0.3125) = 0.8984375.

This iteration continues until we arrive at the last step:

y(3) ≈ y12 = 1.511508+ 0.125(0.619246+ 0.666840) = 1.672269. �

478 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t

0.5

1.0

0.50.0 1.0 1.5 2.0

h = 1
h = 1/2

y = y(t)

Figure 9.8 Comparison of Heun solutions with different
step sizes for y′ = (t − y)/2 over [0, 2] with the initial
condition y(0) = 1.

Table 9.4 Comparison of Heun Solutions with Different Step Sizes for y′ = (t − y)/2 over
[0, 3] with y(0) = 1

yk

tk h = 1 h = 1
2 h = 1

4 h = 1
8 y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0
0.125 0.943359 0.943239
0.25 0.898438 0.897717 0.897491
0.375 0.862406 0.862087
0.50 0.84375 0.838074 0.836801 0.836402
0.75 0.814081 0.812395 0.811868
1.00 0.875 0.831055 0.822196 0.820213 0.819592
1.50 0.930511 0.920143 0.917825 0.917100
2.00 1.171875 1.117587 1.106800 1.104392 1.103638
2.50 1.373115 1.362593 1.360248 1.359514
3.00 1.732422 1.682121 1.672269 1.670076 1.669390

Example 9.7. Compare the F.G.E. when Heun’s method is used to solve

y′ = t − y

2
over [0, 3] with y(0) = 1,

using step sizes 1, 1
2 , . . . , 1

64 .

SEC. 9.3 HEUN’S METHOD 479

Table 9.5 Relation between Step Size and F.G.E. for Heun Solutions to
y′ = (t − y)/2 over [0, 3] with y(0) = 1

Step
size, h

Number of
steps, M

Approximation
to y(3), yM

F.G.E.
Error at t = 3,

y(3)− yM

O(h2) ≈ Ch2

where
C = −0.0432

1 3 1.732422 −0.063032 −0.043200

1
2 6 1.682121 −0.012731 −0.010800

1
4 12 1.672269 −0.002879 −0.002700

1
8 24 1.670076 −0.000686 −0.000675

1
16 48 1.669558 −0.000168 −0.000169

1
32 96 1.669432 −0.000042 −0.000042

1
64 192 1.669401 −0.000011 −0.000011

Table 9.5 gives the F.G.E. and shows that the error in the approximation to y(3) de-
creases by about 1

4 when the step size is reduced by a factor of 1
2 :

E(y(3), h) = y(3)− yM = O(h2) ≈ Ch2, where C = −0.0432. �

Program 9.2 (Heun’s Method). To approximate the solution of the initial value
problem y′ = f (t, y) with y(a) = y0 over [a, b] by computing

yk+1 = yk + h

2
(f (tk, yk)+ f (tk+1, yk + h f (tk, yk)))

for k = 0, 1, . . . , M − 1.

function H=heun(f,a,b,ya,M)

%Input - f is the function entered as a string ’f’
% - a and b are the left and right endpoints
% - ya is the initial condition y(a)
% - M is the number of steps
%Output - H=[T’Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h=(b-a)/M;
T=zeros(1,M+1);
Y=zeros(1,M+1);

480 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

T=a:h:b;
Y(1)=ya;
for j=1:M

k1=feval(f,T(j),Y(j));
k2=feval(f,T(j+1),Y(j)+h*k1);
Y(j+1)=Y(j)+(h/2)*(k1+k2);

end
H=[T’Y’];

Exercises for Heun’s Method

In Exercises 1 through 5, solve the differential equations by Heun’s method.

(a) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four
steps by hand calculation.

(b) Compare the exact solution y(0.4) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

Notice that Heun’s method will generate an approximation to y(1) even though the
solution curve is not defined at t = 1.

6. Show that when Heun’s method is used to solve the I.V.P. y′ = f (t) over [a, b] with
y(a) = y0 = 0 the result is

y(b) = h

2

M−1∑
k=0

(f (tk)+ f (tk+1)),

which is the trapezoidal rule approximation for the definite integral of f (t) taken over
the interval [a, b].

7. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Heun’s method. If Heun’s method is used with step size h,
then we have

y(b) ≈ yh + Ch2.

If Heun’s method is used with step size 2h, we have

y(b) ≈ y2h + 4Ch2.

SEC. 9.3 HEUN’S METHOD 481

The terms involving Ch2 can be eliminated to obtain an improved approximation for
y(b), and the result is

y(b) ≈ 4yh − y2h

3
.

The improvement scheme can be used with the values in Example 9.7 to obtain better
approximations to y(3). Find the missing entries in the table below.

h yh (4yh − y2h)/3

1 1.732422

1/2 1.682121 1.665354

1/4 1.672269

1/8 1.670076

1/16 1.669558 1.669385

1/32 1.669432

1/64 1.669401

8. Show that Heun’s method fails to approximate the solution y(t) = t3/2 of the I.V.P.

y′ = f (t, y) = 1.5y1/3 with y(0) = 0.

Justify your answer. What difficulties were encountered?

Algorithms and Programs

In Problems 1 through 5 solve the differential equations by Heun’s method.

(a) Let h = 0.1 and do 20 steps with Program 9.2. Then let h = 0.05 and do 40 steps
with Program 9.2.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(a) Does the F.G.E. in part (a) behave as expected when h is halved?

(a) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix H from Program 9.2 contains the x- and y-coordinates of
the approximations. The command plot(H(:,1),H(:,2)) will produce a graph
analogous to Figure 9.8.

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

482 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. Consider a projectile that is fired straight up and falls straight down. If air resistance
is proportional to the velocity, the I.V.P. for the velocity v(t) is

v′ = −32− K

M
v with v(0) = v0,

where v0 is the initial velocity, M is the mass, and K the coefficient of air resistance.
Suppose that v0 = 160 ft/sec and K/M = 0.1. Use Heun’s method with h = 0.5 to
solve

v′ = −32− 0.1v over [0, 30] with v(0) = 160.

Graph your computer solution and the exact solution v(t) = 480e−t/10 − 320 on the
same coordinate system. Observe that the limiting velocity is −320 ft/sec.

7. In psychology, the Wever-Fechner law for stimulus-response states that the rate of
change d R/d S of the reaction R is inversely proportional to the stimulus. The thresh-
old value is the lowest level of the stimulus that can be detected consistently. The
I.V.P. for this model is

R′ = k

S
with R(S0) = 0.

Suppose that S0 = 0.1 and R(0.1) = 0. Use Heun’s method with h = 0.1 to solve

R′ = 1

S
over [0.1, 5.1] with R(0.1) = 0.

8. (a) Write a program to implement the Richardson improvement method discussed
in Exercise 7.

(b) Use your program to approximate y(2) for each of the differential equations
in Problems 1 through 5 over the interval [0, 2]. Use the initial step size h =
0.05. The program should terminate when the absolute value of the difference
between two consecutive Richardson improvements is < 10−6.

9.4 Taylor Series Method

The Taylor series method is of general applicability, and it is the standard to which we
compare the accuracy of the various other numerical methods for solving an I.V.P. It
can be devised to have any specified degree of accuracy. We start by reformulating
Taylor’s theorem in a form that is suitable for solving differential equations.

Theorem 9.5 (Taylor’s Theorem). Assume that y(t) ∈ C N+1[t0, b] and that y(t)
has a Taylor series expansion of order N about the fixed value t = tk ∈ [t0, b]:
(1) y(tk + h) = y(tk)+ hTN (tk, y(tk))+ O(hN+1),

SEC. 9.4 TAYLOR SERIES METHOD 483

where

(2) TN (tk, y(tk)) =
N∑

j=1

y(j)(tk)

j ! h j−1

and y(j)(t) = f (j−1)(t, y(t)) denotes the (j − 1)st total derivative of the function f
with respect to t . The formulas for the derivatives can be computed recursively:

(3)

y′(t) = f

y′′(t) = ft + fy y′ = ft + fy f

y(3)(t) = ft t + 2 fty y′ + fy y′′ + fyy(y′)2

= ft t + 2 fty f + fyy f 2 + fy(ft + fy f)

y(4)(t) = ft t t + 3 ft t y y′ + 3 ftyy(y′)2 + 3 fty y′′

+ fy y′′′ + 3 fyy y′y′′ + fyyy(y′)3

= (ft t t + 3 ft t y f + 3 ftyy f 2 + fyyy f 3)+ fy(ft t + 2 fty f + fyy f 2)

+ 3(ft + fy f)(fty + fyy f)+ f 2
y (ft + fy f)

and, in general,

(4) y(N)(t) = P(N−1) f (t, y(t)),

where P is the derivative operator

P =
(

∂

∂t
+ f

∂

∂y

)
.

The approximate numerical solution to the I.V.P. y′(t) = f (t, y) over [t0, tM]
is derived by using formula (1) on each subinterval [tk, tk+1]. The general step for
Taylor’s method of order N is

(5) yk+1 = yk + d1h + d2h2

2! + d3h3

3! + · · · + dN hN

N ! ,

where d j = y(j)(tk) for j = 1, 2, . . . , N at each step k = 0, 1, . . . , M − 1.
The Taylor method of order N has the property that the final global error (F.G.E.)

is of the order O(hN+1); hence N can be chosen as large as necessary to make this
error as small as desired. If the order N is fixed, it is theoretically possible to a priori
determine the step size h so that the F.G.E. will be as small as desired. However, in
practice we usually compute two sets of approximations using step sizes h and h/2 and
compare the results.

484 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Theorem 9.6 (Precision of Taylor’s Method of Order N). Assume that y(t) is
the solution to the I.V.P. If y(t) ∈ C N+1[t0, b] and {(tk, yk)}Mk=0 is the sequence of
approximations generated by Taylor’s method of order N , then

(6)
|ek | = |y(tk)− yk | = O(hN),

|εk+1| = |y(tk+1)− yk − hTN (tk, yk)| = O(hN+1).

In particular, the F.G.E. at the end of the interval will satisfy

(7) E(y(b), h) = |y(b)− yM | = O(hN).

Examples 9.8 and 9.9 illustrate Theorem 9.6 for the case N = 4. If approximations
are computed using the step sizes h and h/2, we should have

(8) E(y(b), h) ≈ Ch4

for the larger step size, and

(9) E

(
y(b),

h

2

)
≈ C

h4

16
= 1

16
Ch4 ≈ 1

16
E (y (b) , h) .

Hence the idea in Theorem 9.6 is that if the step size in the Taylor method of order 4 is
reduced by a factor of 1

2 , the overall F.G.E. will be reduced by about 1
16 .

Example 9.8. Use the Taylor method of order N = 4 to solve y′ = (t − y)/2 on [0, 3]
with y(0) = 1. Compare solutions for h = 1, 1

2 , 1
4 , and 1

8 .
The derivatives of y(t) must first be determined. Recall that the solution y(t) is a

function of t , and differentiate the formula y′(t) = f (t, y(t)) with respect to t to get
y(2)(t). Then continue the process to obtain the higher derivatives.

y′(t) = t − y

2
,

y(2)(t) = d

dt

(
t − y

2

)
= 1− y′

2
= 1− (t − y)/2

2
= 2− t + y

4
,

y(3)(t) = d

dt

(
2− t + y

4

)
= 0− 1+ y′

4
= −1+ (t − y)/2

4
= −2+ t − y

8
,

y(4)(t) = d

dt

(−2+ t − y

8

)
= −0+ 1− y′

8
= 1− (t − y)/2

8
= 2− t + y

16
.

To find y1, the derivatives given above must be evaluated at the point (t0, y0) = (0, 1).

SEC. 9.4 TAYLOR SERIES METHOD 485

Calculation reveals that

d1 = y′(0) = 0.0− 1.0

2
= −0.5,

d2 = y(2)(0) = 2.0− 0.0+ 1.0

4
= 0.75,

d3 = y(3)(0) = −2.0+ 0.0− 1.0

8
= −0.375,

d4 = y(4)(0) = 2.0− 0.0+ 1.0

16
= 0.1875.

Next the derivatives {d j } are substituted into (5) with h = 0.25, and nested multiplication
is used to compute the value y1:

y1 = 1.0+ 0.25

(
−0.5+ 0.25

(
0.75

2
+ 0.25

(−0.375

6
+ 0.25

(
0.1875

24

))))
= 0.8974915.

The computed solution point is (t1, y1) = (0.25, 0.8974915).
To determine y2, the derivatives {d j } must now be evaluated at the point (t1, y1) =

(0.25, 0.8974915). The calculations are starting to require a considerable amount of com-
putational effort and are tedious to do by hand. Calculation reveals that

d1 = y′(0.25) = 0.25− 0.8974915

2
= −0.3237458,

d2 = y(2)(0.25) = 2.0− 0.25+ 0.8974915

4
= 0.6618729,

d3 = y(3)(0.25) = −2.0+ 0.25− 0.8974915

8
= −0.3309364,

d4 = y(4)(0.25) = 2.0− 0.25+ 0.8974915

16
= 0.1654682.

Now these derivatives {d j } are substituted into (5) with h = 0.25, and nested multiplication
is used to compute the value y2:

y2 = 0.8974915+ 0.25

(
−0.3237458

+ 0.25

(
0.6618729

2
+ 0.25

(−0.3309364

6
+ 0.25

(
0.1654682

24

))))
= 0.8364037.

The solution point is (t2, y2) = (0.50, 0.8364037). Table 9.6 gives solution values at
selected abscissas using various step sizes. �

486 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.6 Comparison of the Taylor Solutions of Order N = 4 for y′ = (t − y)/2
over [0, 3] with y(0) = 1

yk

tk h = 1 h = 1
2 h = 1

4 h = 1
8 y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
0.375 0.8620874 0.8620874
0.50 0.8364258 0.8364037 0.8364024 0.8364023
0.75 0.8118696 0.8118679 0.8118678
1.00 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
1.50 0.9171423 0.9171021 0.9170998 0.9170997
2.00 1.1045125 1.1036826 1.1036408 1.1036385 1.1036383
2.50 1.3595575 1.3595168 1.3595145 1.3595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Table 9.7 Relation between Step Size and F.G.E. for the Taylor Solutions to
y′ = (t − y)/2 over [0, 3]

Step
size, h

Number of
steps, M

Approximation
to y(3), yM

F.G.E.
Error at t = 3,

y(3)− yM

O(h2) ≈ Ch4

where
C = −0.000614

1 3 1.6701860 −0.0007955 −0.0006140

1
2 6 1.6694308 −0.0000403 −0.0000384

1
4 12 1.6693928 −0.0000023 −0.0000024

1
8 24 1.6693906 −0.0000001 −0.0000001

Example 9.9. Compare the F.G.E. for the Taylor solutions to y′ = (t − y)/2 over [0, 3]
with y(0) = 1 given in Example 9.8.

Table 9.7 gives the F.G.E. for these step sizes and shows that the error in the approxi-
mation y(3) decreases by about 1

16 when the step size is reduced by a factor of 1
2 :

E(y(3), h) = y(3)− yM = O(h4) ≈ Ch4, where C = −0.000614. �

The following program requires that the derivatives y′, y′′, y′′′, and y′′′′ be saved
in an M-file named df. For example, the following M-file would save the derivatives

SEC. 9.4 TAYLOR SERIES METHOD 487

from Example 9.8 in the format required by Program 9.3.

function z=df(t,y)
z=[(t-y)/2 (2-t+y)/4 (-2+t-y)/8 (2-t+y)/16];

Program 9.3 (Taylor’s Method of Order 4). To approximate the solution of the
initial value problem y′ = f (t, y) with y(a) = y0 over [a, b] by evaluating y′′, y′′′,
and y′′′′ and using the Taylor polynomial at each step.

function T4=taylor(df,a,b,ya,M)

%Input - df=[y’ y’’ y’’’ y’’’’] entered as a string ’df’
% where y’=f(t,y)
% - a and b are the left and right endpoints
% - ya is the initial condition y(a)
% - M is the number of steps
%Output - T4=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

h=(b-a)/M;
T=zeros(1,M+1);
Y=zeros(1,M+1);
T=a:h:b;
Y(1)=ya;
for j=1:M

D=feval(df,T(j),Y(j));
Y(j+1)=Y(j)+h*(D(1)+h*(D(2)/2+h*(D(3)/6+h*D(4)/24)));

end
T4=[T’ Y’];

Exercises for Taylor Series Method

In Exercises 1 through 5, solve the differential equations by Taylor’s method of order N =
4.

(a) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four
steps by hand calculation.

(b) Compare the exact solution y(0.4) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

488 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Taylor’s method. If Taylor’s method of order N = 4 is
used with step size h, then y(b) ≈ yh + Ch4. If Taylor’s method of order N = 4 is
used with step size 2h, then y(b) ≈ y2h + 16Ch4. The terms involving Ch4 can be
eliminated to obtain an improved approximation for y(b):

y(b) ≈ 16yh − y2h

15
.

This improvement scheme can be used with the values in Example 9.9 to obtain better
approximations to y(3). Find the missing entries in the table below.

h yh (16yh − y2h)/15

1.0 1.6701860

0.5 1.6694308

0.25 1.6693928

0.125 1.6693906

7. Show that when Taylor’s method of order N is used with step sizes h and h/2, then
the overall F.G.E. will be reduced by a factor of about 2−N for the smaller step size.

8. Show that Taylor’s method fails to approximate the solution y(t) = t3/2 of the I.V.P.
y′ = f (t, y) = 1.5y1/3 with y(0) = 0. Justify your answer. What difficulties were
encountered?

9. (a) Verify that the solution to the I.V.P. y′ = y2, y(0) = 1 over the interval [0, 1) is
y(t) = 1/(1− t).

(b) Verify that the solution to the I.V.P. y′ = 1 + y2, y(0) = 1 over the interval
[0, π/4) is y(t) = tan(t + π/4).

(c) Use the results of parts (a) and (b) to argue that the solution to the I.V.P. y′ =
t2 + y2, y(0) = 1 has a vertical asymptote between π/4 and 1. (Its location is
near t = 0.96981.)

10. Consider the I.V.P. y′ = 1+ y2, y(0) = 1.

(a) Find an expression for y(2)(t), y(3)(t), and y(4)(t).

(b) Evaluate the derivatives at t = 0, and use them to find the first five terms in the
Maclaurin expansion for tan(t).

SEC. 9.5 RUNGE-KUTTA METHODS 489

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by Taylor’s method of order N =
4.

(a) Let h = 0.1 and do 20 steps with Program 9.3. Then let h = 0.05 and do 40 steps
with Program 9.3.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix T4 from Program 9.3 contains the x- and y-coordinates of
the approximations. The command plot(T4(:,1),T4(:,2)) will produce a graph
analogous to Figure 9.6.

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. (a) Write a program to implement the Richardson improvement method discussed
in Exercise 6.

(b) Use your program from part (a) to approximate y(0.8) for the I.V.P. y′ = t2+y2,
y(0) = 1 over [0, 0.8]. The true solution at t = 0.8 is known to be y(0.8) =
5.8486168. Start with the step size h = 0.05. The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 10−6.

7. (a) Modify Program 9.3 to carry out Taylor’s method of order N = 3.
(b) Use your program from part (a) to solve the I.V.P. y′ = t2 + y2, y(0) = 1 over

[0, 0.8]. Find approximate solutions for the step sizes h = 0.05, 0.025, 0.0125,
and 0.00625. Plot the four approximations on the same coordinate system.

9.5 Runge-Kutta Methods

The Taylor methods in the preceding section have the desirable feature that the F.G.E.
is of order O(hN), and N can be chosen large so that this error is small. However, the
shortcomings of the Taylor methods are the a priori determination of N and the com-
putation of the higher derivatives, which can be very complicated. Each Runge-Kutta
method is derived from an appropriate Taylor method in such a way that the F.G.E. is of
order O(hN). A trade-off is made to perform several function evaluations at each step
and eliminate the necessity to compute the higher derivatives. These methods can be

490 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

constructed for any order N . The Runge-Kutta method of order N = 4 is most popular.
It is a good choice for common purposes because it is quite accurate, stable, and easy
to program. Most authorities proclaim that it is not necessary to go to a higher-order
method because the increased accuracy is offset by additional computational effort. If
more accuracy is required, then either a smaller step size or an adaptive method should
be used.

The fourth-order Runge-Kutta method (RK4) simulates the accuracy of the Taylor
series method of order N = 4. The method is based on computing yk+1 as follows:

(1) yk+1 = yk + w1k1 + w2k2 + w3k3 + w4k4,

where k1, k2, k3, and k4 have the form

(2)

k1 = h f (tk, yk),

k2 = h f (tk + a1h, yk + b1k1),

k3 = h f (tk + a2h, yk + b2k1 + b3k2),

k4 = h f (tk + a3h, yk + b4k1 + b5k2 + b6k3).

By matching coefficients with those of the Taylor series method of order N = 4 so that
the local truncation error is of order O(h5), Runge and Kutta were able to obtain the
following system of equations:

(3)

b1 = a1,

b2 + b3 = a2,

b4 + b5 + b6 = a3,

w1 + w2 + w3 + w4 = 1,

w2a1 + w3a2 + w4a3 = 1

2
,

w2a2
1 + w3a2

2 + w4a2
3 =

1

3
,

w2a3
1 + w3a3

2 + w4a3
3 =

1

4
,

w3a1b3 + w4(a1b5 + a2b6) = 1

6
,

w3a1a2b3 + w4a3(a1b5 + a2b6) = 1

8
,

w3a2
1b3 + w4(a

2
1b5 + a2

2b6) = 1

12
,

w4a1b3b6 = 1

24
.

The system involves 11 equations in 13 unknowns. Two additional conditions must be
supplied to solve the system. The most useful choice is

(4) a1 = 1

2
and b2 = 0.

SEC. 9.5 RUNGE-KUTTA METHODS 491

Then the solution for the remaining variables is

(5)
a2 = 1

2
, a3 = 1, b1 = 1

2
, b3 = 1

2
, b4 = 0, b5 = 0, b6 = 1,

w1 = 1

6
, w2 = 1

3
, w3 = 1

3
, w4 = 1

6
.

The values in (4) and (5) are substituted into (2) and (1) to obtain the formula for
the standard Runge-Kutta method of order N = 4, which is stated as follows. Start
with the initial point (t0, y0) and generate the sequence of approximations using

(6) yk+1 = yk + h(f1 + 2 f2 + 2 f3 + f4)

6
,

where

(7)

f1 = f (tk, yk),

f2 = f

(
tk + h

2
, yk + h

2
f1

)
,

f3 = f

(
tk + h

2
, yk + h

2
f2

)
,

f4 = f (tk + h, yk + h f3).

Discussion about the Method
The complete development of the equations in (7) is beyond the scope of this book and
can be found in advanced texts, but we can get some insights. Consider the graph of
the solution curve y = y(t) over the first subinterval [t0, t1]. The function values in
(7) are approximations for slopes to this curve. Here f1 is the slope at the left, f2 and
f3 are two estimates for the slope in the middle, and f4 is the slope at the right (see
Figure 9.9(a)). The next point (t1, y1) is obtained by integrating the slope function

(8) y(t1)− y(t0) =
∫ t1

t0
f (t, y(t)) dt.

If Simpson’s rule is applied with step size h/2, the approximation to the integral
in (8) is

(9)
∫ t1

t0
f (t, y(t)) dt ≈ h

6
(f (t0, y(t0))+ 4 f (t1/2, y(t1/2))+ f (t1, y(t1))),

where t1/2 is the midpoint of the interval. Three function values are needed; hence we
make the obvious choice f (t0, y (t0)) = f1 and f (t1, y(t1)) ≈ f4. For the value in the
middle we chose the average of f2 and f3:

f (t1/2, y(t1/2)) ≈ f2 + f3

2
.

492 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t

m1 = f1

m2 = f3

m3 = f4

m4 = f4
(t0, y0)

y = y(t) (t1, y(t1))

t0 t1/2 t1

(a) Predicted slopes mj to the

 solution curve y = y(t)

z

t

(t0, f1)
(t1/2, f2)

(t1/2, f3)
(t1, f4)

t0 t1/2 t1

(b) Integral approximation:

h
6

y(t1) − y0 = (f1 + 2f2 + 2f3 + f4)

Figure 9.9 The graphs y = y(t) and z = f (t, y(t)) in the discussion of the Runge-Kutta
method of order N = 4.

These values are substituted into (9), which is used in equation (8) to get y1:

(10) y1 = y0 + h

6

(
f1 + 4(f2 + f3)

2
+ f4

)
.

When this formula is simplified, it is seen to be equation (6) with k = 0. The graph
for the integral in (9) is shown in Figure 9.9(b).

Step Size versus Error
The error term for Simpson’s rule with step size h/2 is

(11) −y(4)(c1)
h5

2880
.

If the only error at each step is that given in (11), after M steps the accumulated error
for the RK4 method would be

(12) −
M∑

k=1

y(4)(ck)
h5

2880
≈ b − a

5760
y(4)(c)h4 ≈ O(h4).

The next theorem states the relationship between F.G.E. and step size. It is used
to give us an idea of how much computing effort must be done when using the RK4
method.

SEC. 9.5 RUNGE-KUTTA METHODS 493

Theorem 9.7 (Precision of the Runge-Kutta Method). Assume that y(t) is the
solution to the I.V.P. If y(t) ∈ C5[t0, b] and {(tk, yk)}Mk=0 is the sequence of approxi-
mations generated by the Runge-Kutta method of order 4, then

(13)
|ek | = |y(tk)− yk | = O(h4),

|εk+1| = |y(tk+1)− yk − hTN (tk, yk)| = O(h5).

In particular, the F.G.E. at the end of the interval will satisfy

(14) E(y(b), h) = |y(b)− yM | = O(h4).

Examples 9.10 and 9.11 illustrate Theorem 9.7. If approximations are computed
using the step sizes h and h/2, we should have

(15) E(y(b), h) ≈ Ch4

for the larger step size, and

(16) E

(
y(b),

h

2

)
≈ C

h4

16
= 1

16
Ch4 ≈ 1

16
E(y(b), h).

Hence the idea in Theorem 9.7 is that if the step size in the RK4 method is reduced by
a factor of 1

2 we can expect that the overall F.G.E. will be reduced by a factor of 1
16 .

Example 9.10. Use the RK4 method to solve the I.V.P. y′ = (t − y)/2 on [0, 3] with
y(0) = 1. Compare solutions for h = 1, 1

2 , 1
4 , and 1

8 .
Table 9.8 gives the solution values at selected abscissas. For the step size h = 0.25, a

sample calculation is

f1 = 0.0− 1.0

2
= −0.5,

f2 = 0.125− (1+ 0.25(0.5)(−0.5))

2
= −0.40625,

f3 = 0.125− (1+ 0.25(0.5)(−0.40625))

2
= −0.4121094,

f4 = 0.25− (1+ 0.25(−0.4121094))

2
= −0.3234863,

y1 = 1.0+ 0.25

(−0.5+ 2(−0.40625)+ 2(−0.4121094)− 0.3234863

6

)
= 0.8974915. �

Example 9.11. Compare the F.G.E. when the RK4 method is used to solve y′ = (t− y)/2
over [0, 3] with y(0) = 1 using step sizes 1, 1

2 , 1
4 , and 1

8 .

494 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.8 Comparison of the RK4 Solutions with Different Step Sizes for y′ = (t − y)/2
over [0, 3] with y(0) = 1

yk

tk h = 1 h = 1
2 h = 1

4 h = 1
8 y(tk) Exact

0 1.0 1.0 1.0 1.0 1.0
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
0.375 0.8620874 0.8620874
0.50 0.8364258 0.8364037 0.8364024 0.8364023
0.75 0.8118696 0.8118679 0.8118678
1.00 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
1.50 0.9171423 0.9171021 0.9170998 0.9170997
2.00 1.1045125 1.1036826 1.1036408 1.1036385 1.1036383
2.50 1.3595575 1.3595168 1.3595145 1.3595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Table 9.9 Relation between Step Size and F.G.E. for the RK4 Solutions to
y′ = (t − y)/2 over [0, 3] with y(0) = 1

Step
size, h

Number of
steps, M

Approximation
to y(3), yM

F.G.E.
Error at t = 3,

y(3)− yM

O(h4) ≈ Ch4

where
C = −0.000614

1 3 1.6701860 −0.0007955 −0.0006140

1
2 6 1.6694308 −0.0000403 −0.0000384

1
4 12 1.6693928 −0.0000023 −0.0000024

1
8 24 1.6693906 −0.0000001 −0.0000001

Table 9.9 gives the F.G.E. for the various step sizes and shows that the error in the
approximation to y(3) decreases by about 1

16 when the step size is reduced by a factor
of 1/2.

E(y(3), h) = y(3)− yM = O(h4) ≈ Ch4 where C = −0.000614. �

A comparison of Examples 9.10 and 9.11 and Examples 9.8 and 9.9 shows what is
meant by the statement “The RK4 method simulates the Taylor series method of order
N = 4.” For these examples, the two methods generate identical solution sets {(tk, yk)}
over the given interval. The advantage of the RK4 method is obvious; no formulas for
the higher derivatives need to be computed nor do they have to be in the program.

SEC. 9.5 RUNGE-KUTTA METHODS 495

It is not easy to determine the accuracy to which a Runge-Kutta solution has been
computed. We could estimate the size of y(4)(c) and use formula (12). Another way
is to repeat the algorithm using a smaller step size and compare results. A third way is
to adaptively determine the step size, which is done in Program 9.5. In Section 9.6 we
will see how to change the step size for a multistep method.

Runge-Kutta Methods of Order N = 2

The second-order Runge-Kutta method (denoted RK2) simulates the accuracy of the
Taylor series method of order 2. Although this method is not as good to use as the
RK4 method, its proof is easier to understand and illustrates the principles involved.
To start, we write down the Taylor series formula for y(t + h):

(17) y(t + h) = y(t)+ hy′(t)+ 1

2
h2 y′′(t)+ CT h3 + · · · ,

where CT is a constant involving the third derivative of y(t) and the other terms in the
series involve powers of h j for j > 3.

The derivatives y′(t) and y′′(t) in equation (17) must be expressed in terms of
f (t, y) and its partial derivatives. Recall that

(18) y′(t) = f (t, y).

The chain rule for differentiating a function of two variables can be used to differ-
entiate (18) with respect to t , and the result is

y′′(t) = ft (t, y)+ fy(t, y)y′(t).

Using (18), this can be written

(19) y′′(t) = ft (t, y)+ fy(t, y) f (t, y).

The derivatives (18) and (19) are substituted in (17) to give the Taylor expression
for y(t + h):

y(t + h) = y(t)+ h f (t, y)+ 1

2
h2 ft (t, y)

+ 1

2
h2 fy(t, y) f (t, y)+ CT h3 + · · · .

(20)

Now consider the Runge-Kutta method of order N = 2, which uses a linear com-
bination of two function values to express y(t + h):

(21) y(t + h) = y(t)+ Ah f0 + Bh f1,

496 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

where

(22)
f0 = f (t, y),

f1 = f (t + Ph, y + Qh f0).

Next the Taylor polynomial approximation for a function of two independent vari-
ables is used to expand f (t, y) (see the Exercises). This gives the following represen-
tation for f1:

(23) f1 = f (t, y)+ Ph ft (t, y)+ Qh fy(t, y) f (t, y)+ CP h2 + · · · ,
where CP involves the second-order partial derivatives of f (t, y). Then (23) is used
in (21) to get the RK2 expression for y(t + h):

y(t + h) = y(t)+ (A + B)h f (t, y)+ B Ph2 ft (t, y)

+ B Qh2 fy(t, y) f (t, y)+ BCP h3 + · · · .(24)

A comparison of similar terms in equations (20) and (24) will produce the follow-
ing conclusions:

h f (t, y) = (A + B)h f (t, y) implies that 1 = A + B,

1

2
h2 ft (t, y) = B Ph2 ft (t, y) implies that

1

2
= B P ,

1

2
h2 fy(t, y) f (t, y) = B Qh2 fy(t, y) f (t, y) implies that

1

2
= B Q.

Hence, if we require that A, B, P , and Q satisfy the relations

(25) A + B = 1 B P = 1

2
B Q = 1

2
,

then the RK2 method in (24) will have the same order of accuracy as the Taylor’s
method in (20).

Since there are only three equations in four unknowns, the system of equations (25)
is underdetermined, and we are permitted to choose one of the coefficients. There are
several special choices that have been studied in the literature; we mention two of them.

Case (i): Choose A = 1
2 . This choice leads to B = 1

2 , P = 1, and Q = 1. If
equation (21) is written with these parameters, the formula is

(26) y(t + h) = y(t)+ h

2
(f (t, y)+ f (t + h, y + h f (t, y))).

When this scheme is used to generate {(tk, yk)}, the result is Heun’s method.
Case (ii): Choose A = 0. This choice leads to B = 1, P = 1

2 , and Q = 1
2 . If

equation (21) is written with these parameters, the formula is

(27) y(t + h) = y(t)+ h f

(
t + h

2
, y + h

2
f (t, y)

)
.

When this scheme is used to generate {(tk, yk)}, it is called the modified Euler-Cauchy
method.

SEC. 9.5 RUNGE-KUTTA METHODS 497

Runge-Kutta-Fehlberg Method (RKF45)

One way to guarantee accuracy in the solution of an I.V.P. is to solve the problem twice
using step sizes h and h/2 and compare answers at the mesh points corresponding to
the larger step size. But this requires a significant amount of computation for the
smaller step size and must be repeated if it is determined that the agreement is not
good enough.

The Runge-Kutta-Fehlberg method (denoted RKF45) is one way to try to resolve
this problem. It has a procedure to determine if the proper step size h is being used. At
each step, two different approximations for the solution are made and compared. If the
two answers are in close agreement, the approximation is accepted. If the two answers
do not agree to a specified accuracy, the step size is reduced. If the answers agree to
more significant digits than required, the step size is increased.

Each step requires the use of the following six values:

(28)

k1 = h f (tk, yk),

k2 = h f

(
tk + 1

4
h, yk + 1

4
k1

)
,

k3 = h f

(
tk + 3

8
h, yk + 3

32
k1 + 9

32
k2

)
,

k4 = h f

(
tk + 12

13
h, yk + 1932

2197
k1 − 7200

2197
k2 + 7296

2197
k3

)
,

k5 = h f

(
tk + h, yk + 439

216
k1 − 8k2 + 3680

513
k3 − 845

4104
k4

)
,

k6 = h f

(
tk + 1

2
h, yk − 8

27
k1 + 2k2 − 3544

2565
k3 + 1859

4104
k4 − 11

40
k5

)
.

Then an approximation to the solution of the I.V.P. is made using a Runge-Kutta
method of order 4:

(29) yk+1 = yk + 25

216
k1 + 1408

2565
k3 + 2197

4101
k4 − 1

5
k5,

where the four function values f1, f3, f4, and f5 are used. Notice that f2 is not used
in formula (29). A better value for the solution is determined using a Runge-Kutta
method of order 5:

(30) zk+1 = yk + 16

135
k1 + 6656

12,825
k3 + 28,561

56,430
k4 − 9

50
k5 + 2

55
k6.

The optimal step size sh can be determined by multiplying the scalar s times the
current step size h. The scalar s is

(31) s =
(

tol h

2|zk+1 − yk+1|
)1/4

≈ 0.84

(
tol h

|zk+1 − yk+1|
)1/4

498 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.10 RKF45 Solution to y′ = 1+ y2, y(0) = 0

k tk

RK45 approximation
yk

True solution,
y(tk) = tan(tk)

Error
y(tk)− yk

0 0.0 0.0000000 0.0000000 0.0000000
1 0.2 0.2027100 0.2027100 0.0000000
2 0.4 0.4227933 0.4227931 −0.0000002
3 0.6 0.6841376 0.6841368 −0.0000008
4 0.8 1.0296434 1.0296386 −0.0000048
5 1.0 1.5574398 1.5774077 −0.0000321
6 1.1 1.9648085 1.9647597 −0.0000488
7 1.2 2.5722408 2.5721516 −0.0000892
8 1.3 3.6023295 3.6021024 −0.0002271
9 1.35 4.4555714 4.4552218 −0.0003496

10 1.4 5.7985045 5.7978837 −0.0006208

where tol is the specified error control tolerance.
The derivation of formula (31) can be found in advanced books on numerical anal-

ysis. It is important to learn that a fixed step size is not the best strategy even though
it would give a nicer-appearing table of values. If values are needed that are not in the
table, polynomial interpolation should be used.

Example 9.12. Compare RKF45 and RK4 solutions to the I.V.P.

y′ = 1+ y2 with y(0) = 0 on [0, 1.4].

An RKF45 program was used with the value tol = 2 × 10−5 for the error control
tolerance. It changed the step size automatically and generated the 10 approximations to
the solution in Table 9.10. An RK4 program was used with the a priori step size of h = 0.1,
which required the computer to generate 14 approximations at the equally spaced points in
Table 9.11. The approximations at the right endpoint are

y(1.4) ≈ y10 = 5.7985045 and y(1.4) ≈ y14 = 5.7919748

and the errors are

E10 = −0.0006208 and E14 = 0.0059089

for the RKF45 and RK4 methods, respectively. The RKF45 method has the smaller
error. �

SEC. 9.5 RUNGE-KUTTA METHODS 499

Table 9.11 RK4 Solution to y′ = 1+ y2, y(0) = 0

k tk

RK4 approximation
yk

True solution,
y(tk) = tan(tk)

Error
y(tk)− yk

0 0.0 0.0000000 0.0000000 0.0000000
1 0.1 0.1003346 0.1003347 0.0000001
2 0.2 0.2027099 0.2027100 0.0000001
3 0.3 0.3093360 0.3093362 0.0000002
4 0.4 0.4227930 0.4227932 0.0000002
5 0.5 0.5463023 0.5463025 0.0000002
6 0.6 0.6841368 0.6841368 0.0000000
7 0.7 0.8422886 0.8422884 −0.0000002
8 0.8 1.0296391 1.0296386 −0.0000005
9 0.9 1.2601588 1.2601582 −0.0000006

10 1.0 1.5574064 1.5574077 0.0000013
11 1.1 1.9647466 1.9647597 0.0000131
12 1.2 2.5720718 2.5721516 0.0000798
13 1.3 3.6015634 3.6021024 0.0005390
14 1.4 5.7919748 5.7978837 0.0059089

Program 9.4 (Runge-Kutta Method of Order 4). To approximate the solution
of the initial value problem y′ = f (t, y) with y(a) = y0 over [a, b] by using the
formula

yk+1 = yk + h

6
(k1 + 2k2 + 2k3 + k4).

function R=rk4(f,a,b,ya,M)

%Input - f is the function entered as a string ’f’
% - a and b are the left and right endpoints
% - ya is the initial condition y(a)
% - M is the number of steps
%Output - R=[T’ Y’] where T is the vector of abscissas
% and Y is the vector of ordinates

h=(b-a)/M;
T=zeros(1,M+1);
Y=zeros(1,M+1);
T=a:h:b;
Y(1)=ya;
for j=1:M

k1=h*feval(f,T(j),Y(j));
k2=h*feval(f,T(j)+h/2,Y(j)+k1/2);
k3=h*feval(f,T(j)+h/2,Y(j)+k2/2);
k4=h*feval(f,T(j)+h,Y(j)+k3);

500 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Y(j+1)=Y(j)+(k1+2*k2+2*k3+k4)/6;
end
R=[T’ Y’];

The following program implements the Runge-Kutta-Fehlberg Method (RKF45)
described in (28) through (31).

Program 9.5 (Runge-Kutta-Fehlberg Method (RKF45)). To approximate the
solution of the initial value problem y′ = f (t, y) with y(a) = y0 over [a, b] with
an error control and step-size method.

function R=rkf45(f,a,b,ya,M,tol)
%Input - f is the function entered as a string ’f’
% - a and b are the left and right endpoints
% - ya is the initial condition y(a)
% - M is the number of steps
% - tol is the tolerance
%Output - R=[T’ Y’] where T is the vector of abscissas
% and Y is the vector of ordinates

%Enter the coefficients necessary to calculate the
%values in (28) and (29)
a2=1/4;b2=1/4;a3=3/8;b3=3/32;c3=9/32;a4=12/13;
b4=1932/2197;c4=-7200/2197;d4=7296/2197;a5=1;
b5=439/216;c5=-8;d5=3680/513;e5=-845/4104;a6=1/2;
b6=-8/27;c6=2;d6=-3544/2565;e6=1859/4104;
f6=-11/40;r1=1/360;r3=-128/4275;r4=-2197/75240;r5=1/50;
r6=2/55;n1=25/216;n3=1408/2565;n4=2197/4104;n5=-1/5;

big=1e15;
h=(b-a)/M;
hmin=h/64;
hmax=64*h;
max1=200;
Y(1)=ya;
T(1)=a;
j=1;
br=b-0.00001*abs(b);

while (T(j)<b)
if ((T(j)+h)>br)

h=b-T(j);
end

%Calculation of values in (28) and (29)
k1=h*feval(f,T(j),Y(j));
y2=Y(j)+b2*k1;

SEC. 9.5 RUNGE-KUTTA METHODS 501

if big<abs(y2)break,end
k2=h*feval(f,T(j)+a2*h,y2);
y3=Y(j)+b3*k1+c3*k2;
if big<abs(y3)break,end
k3=h*feval(f,T(j)+a3*h,y3);
y4=Y(j)+b4*k1+c4*k2+d4*k3;
if big<abs(y4)break,end
k4=h*feval(f,Y(j)+a4*h,y4);
y5=Y(j)+b5*k1+c5*k2+d5*k3+e5*k4;
if big<abs(y5)break,end
k5=h*feval(f,T(j)+a5*h,y5);
y6=Y(j)+b6*k1+c6*k2+d6*k3+e6*k4+f6*k5;
if big<abs(y6)break,end
k6=h*feval(f,Y(j)+a6*h,y6);

err=abs(r1*k1+r3*k3+r4*k4+r5*k5+r6*k6);
ynew=Y(j)+n1*k1+n3*k3+n4*k4+n5*k5;

%Error and step size control
if((err<tol)|(h<2*hmin))

Y(j+1)=ynew;
if((T(j)+h)>br)

T(j+1)=b;
else

T(j+1)=T(j)+h;
end
j=j+1;

end
if (err==0)

s=0;
else

s=0.84*(tol*h/err)^(0.25);
end
if((s<0.75)&(h>2*hmin))

h=h/2;
end
if((s>1.50)&(2*h<hmax))
h=2*h;
end
if((big<abs(Y(j)))|(max1==j)),break,end
M=j;
if (b>T(j))

M=j+1;
else

M=j;

502 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

end
end
R=[T’ Y’];

Exercises for Runge-Kutta Methods

In Exercises 1 through 5, solve the differential equations by the Runge-Kutta method of
order N = 4.

(a) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four
steps by hand calculation.

(b) Compare the exact solution y(0.4) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

6. Show that when the Runge-Kutta method of order N = 4 is used to solve the I.V.P.
y′ = f (t) over [a, b] with y(a) = 0 the result is

y(b) ≈ h

6

M−1∑
k=0

(f (tk)+ 4 f (tk+1/2)+ f (tk+1)),

where h = (b − a)/M , and tk = a + kh, and tk+1/2 = a +
(

k + 1
2

)
h, which is

Simpson’s approximation (with step size h/2) for the definite integral of f (t) taken
over the interval [a, b].

7. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with the Runge-Kutta method. If the Runge-Kutta method of
order N = 4 is used with step size h, we have

y(b) ≈ yh + Ch4.

If the Runge-Kutta method of order N = 4 is used with step size 2h, we have

y(b) ≈ y2h + 16Ch4.

The terms involving Ch4 can be eliminated to obtain an improved approximation for
y(b), and the result is

y(b) ≈ 16yh − y2h

15
.

This improvement scheme can be used with the values in Example 9.11 to obtain
better approximations to y(3). Find the missing entries in the following table.

SEC. 9.5 RUNGE-KUTTA METHODS 503

h yh (16yh − y2h)/15

1 1.6701860

1
2 1.6694308

1
4 1.6693928

1
8 1.6693906

For Exercises 8 and 9, the Taylor polynomial of degree N = 2 for a function f (t, y) of two
variables t and y expanded about the point (a, b) is

P2(t, y) = f (a, b)+ ft (a, b)(t − a)+ fy(a, b)(y − b)

+ ft t (a, b)(t − a)2

2
+ fty(a, b)(t − a)(y − b)+ fyy(a, b)(y − b)2

2
.

8. (a) Find the Taylor polynomial of degree N = 2 for f (t, y) = y/t expanded
about (1, 1).

(b) Find P2(1.05, 1.1) and compare with f (1.05, 1.1).

9. (a) Find the Taylor polynomial of degree N = 2 for f (t, y) = (1 + t − y)1/2

expanded about (0, 0).
(b) Find P2(0.04, 0.08) and compare with f (0.04, 0.08).

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by the Runge-Kutta method of
order N = 4.

(a) Let h = 0.1 and do 20 steps with Program 9.4. Then let h = 0.05 and do 40 steps
with Program 9.4.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix R from Program 9.4 contains the x- and y-coordinates of
the approximations. The command plot(R(:,1),R(:,2)) will produce a graph
analogous to Figure 9.6.

1. y′ = t2 − y with y(0) = 1, y(t) = −e−t + t2 − 2t + 2

2. y′ = 3y + 3t with y(0) = 1, y(t) = 4
3 e3t − t − 1

3

3. y′ = −t y with y(0) = 1, y(t) = e−t2/2

4. y′ = e−2t − 2y with y(0) = 1
10 , y(t) = 1

10 e−2t + te−2t

504 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

5. y′ = 2t y2 with y(0) = 1, y(t) = 1/(1− t2)

In Problems 6 and 7, solve the differential equations by the Runge-Kutta-Fehlberg method.

(a) Use Program 9.5 with initial step size h = 0.1 and tol = 10−7.

(b) Compare the exact solution y(b) with the approximation.

(c) Plot the approximation and the exact solution on the same coordinate system.

6. y′ = 9te3t , y(0) = 0 over [0, 3], y(t) = 3te3t − e3t + 1

7. y′ = 2 tan−1(t), y(0) = 0 over [0, 1], y(t) = 2t tan−1(t)− ln(1+ t2)

8. In a chemical reaction, one molecule of A combines with one molecule of B to form
one molecule of the chemical C. It is found that the concentration y(t) of C at time t
is the solution to the I.V.P.

y′ = k(a − y)(b − y) with y(0) = 0,

where k is a positive constant and a and b are the initial concentrations of A and
B, respectively. Suppose that k = 0.01, a = 70 millimoles/liter, and b = 50 mil-
limoles/liter. Use the Runge-Kutta method of order N = 4 with h = 0.5 to find
the solution over [0, 20]. Remark. You can compare your computer solution with the
exact solution y(t) = 350(1− e−0.2t)/(7− 5e−0.2t). Observe that the limiting value
is 50 as t →+∞.

9. By solving an appropriate initial value problem, make a table of values of the function
f (t) given by the following integral:

f (x) = 1

2
+ 1√

2π

∫ x

0
e−t2/2 dt for 0 ≤ x ≤ 3.

Use the Runge-Kutta method of order N = 4 with h = 0.1 for your computations.
Your solution should agree with the values in the following table. Remark. This is a
good way to generate the table of areas for a standard normal distribution.

x f (x)

0.0 0.5
0.5 0.6914625
1.0 0.8413448
1.5 0.9331928
2.0 0.9772499
2.5 0.9937903
3.0 0.9986501

10. (a) Write a program to implement the Richardson improvement method discussed
in Exercise 7.

(b) Use your program from part (a) to approximate y(0.8) for the I.V.P. y′ = t2+y2,
y(0) = 1 over [0, 0.8]. The true solution at t = 0.8 is known to be y(0.8) =
5.8486168. Start with the step size h = 0.05. The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 10−7.

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 505

11. Consider the first-order integro-ordinary differential equation:

y′ = 1.3y − 0.25y2 − 0.0001y
∫ t

0
y(τ) dτ.

(a) Use the Runge-Kutta method of order 4 with h = 0.2 and y(0) = 250 over the
interval [0, 20], and the trapezoidal rule to find an approximate solution to the
equation (see Problem 10 in the Algorithms and Programs in Section 9.2).

(b) Repeat part (a) using the initial values y(0) = 200 and y(0) = 300.
(c) Plot the approximate solutions from parts (a) and (b) on the same coordinate

system.

9.6 Predictor-Corrector Methods

The methods of Euler, Heun, Taylor, and Runge-Kutta are called single-step methods
because they use only the information from one previous point to compute the succes-
sive point; that is, only the initial point (t0, y0) is used to compute (t1, y1), and in gen-
eral, yk is needed to compute yk+1. After several points have been found, it is feasible
to use several prior points in the calculation. For illustration, we develop the Adams-
Bashforth four-step method, which requires yk−3, yk−2, yk−1, and yk in the calculation
of yk+1. This method is not self-starting; four initial points, (t0, y0), (t1, y1), (t2, y2),
and (t3, y3), must be given in advance in order to generate the points {(tk, yk) : k ≥ 4}
(this can be done with one of the methods from the previous sections).

A desirable feature of a multistep method is that the local truncation error (L.T.E.)
can be determined and a correction term can be included, which improves the accuracy
of the answer at each step. Also, it is possible to determine if the step size is small
enough to obtain an accurate value for yk+1, yet large enough so that unnecessary and
time-consuming calculations are eliminated. Using the combinations of a predictor
and corrector requires only two function evaluations of f (t, y) per step.

Adams-Bashforth-Moulton Method

The Adams-Bashforth-Moulton predictor-corrector method is a multistep method de-
rived from the fundamental theorem of calculus:

(1) y(tk+1) = y(tk)+
∫ tk+1

tk
f (t, y(t)) dt.

The predictor uses the Lagrange polynomial approximation for f (t, y(t)) based
on the points (tk−3, fk−3), (tk−2, fk−2), (tk−1, fk−1), and (tk, fk). It is integrated over
the interval [tk, tk+1] in (1). This process produces the Adams-Bashforth predictor:

(2) pk+1 = yk + h

24
(−9 fk−3 + 37 fk−2 − 59 fk−1 + 55 fk).

506 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

z = f (t, y(t))

(a) The four nodes for the
 Adams-Bashforth predictor

 (extrapolation is used)

tk−3 tk−2 tk−1 tk tk+1

z = f (t, y(t))

(a) The four nodes for the
 Adams-Moulton corrector

 (interpolation is used)

tk−3 tk−2 tk−1 tk tk+1

Figure 9.10 Integration over [tk, tk−1] in the Adams-Bashforth method.

The corrector is developed similarly. The value pk+1 just computed can now be
used. A second Lagrange polynomial for f (t, y(t)) is constructed, which is based
on the points (tk−2, fk−2), (tk−1, fk−1), (tk, fk), and the new point (tk+1, fk+1) =
(tk+1, f (tk+1, pk+1)). This polynomial is then integrated over [tk, tk+1], producing
the Adams-Moulton corrector:

(3) yk+1 = yk + h

24
(fk−2 − 5 fk−1 + 19 fk + 9 fk+1).

Figure 9.10 shows the nodes for the Lagrange polynomials that are used in developing
formulas (2) and (3), respectively.

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor
and corrector are of the order O(h5). The L.T.E. for formulas (2) and (3) are

y(tk+1)− pk+1 = 251

720
y(5)(ck+1)h

5 (L.T.E. for the predictor),(4)

y(tk+1)− yk+1 = −19

720
y(5)(dk+1)h

5 (L.T.E. for the corrector).(5)

Suppose that h is small and y(5)(t) is nearly constant over the interval; then the
terms involving the fifth derivative in (4) and (5) can be eliminated, and the result is

(6) y(tk+1)− yk+1 ≈ −19

270
(yk+1 − pk+1).

The importance of the predictor-corrector method should now be evident. For-
mula (6) gives an approximate error estimate based on the two computed values pk+1
and yk+1 and does not use y(5)(t).

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 507

tk−3 tk−2 tk−1 tkOld mesh

tk−3/2 tk−1/2tk−1 tkNew mesh

Figure 9.11 Reduction of the step size to h/2 in an adaptive method.

Practical Considerations

The corrector (3) used the approximation fk+1 ≈ f (tk+1, pk+1) in the calculation
of yk+1. Since yk+1 is also an estimate for y(tk+1), it could be used in the corrector (3)
to generate a new approximation for fk+1, which in turn will generate a new value
for yk+1. However, when this iteration on the corrector is continued, it will converge
to a fixed point of (3) rather than the differential equation. It is more efficient to reduce
the step size if more accuracy is needed.

Formula (6) can be used to determine when to change the step size. Although
elaborate methods are available, we show how to reduce the step size to h/2 or increase
it to 2h. Let RelErr = 5× 10−6 be our relative error criterion, and let Small = 10−5.

If
19

270

|yk+1 − pk+1|
|yk+1| + Small

> RelErr, then set h = h

2
.(7)

If
19

270

|yk+1 − pk+1|
|yk+1| + Small

<
RelErr

100
, then set h = 2h.(8)

When the predicted and corrected values do not agree to five significant digits,
then (7) reduces the step size. If they agree to seven or more significant digits, then (8)
increases the step size. Fine-tuning of these parameters should be made to suit your
particular computer.

Reducing the step size requires four new starting values. Interpolation of f (t, y(t))
with a fourth-degree polynomial is used to supply the missing values that bisect the
intervals [tk−2, tk−1] and [tk−1, tk]. The four mesh points tk−3/2, tk−1, tk−1/2, and tk
used in the successive calculations are shown in Figure 9.11.

The interpolation formulas needed to obtain the new starting values for the step
size h/2 are

(9)
fk−1/2 = −5 fk−4 + 28 fk−3 − 70 fk−2 + 140 fk−1 + 35 fk

128
,

fk−3/2 = 3 fk−4 − 20 fk−3 + 90 fk−2 + 60 fk−1 − 5 fk

128
.

Increasing the step size is an easier task. Seven prior points are needed to double
the step size. The four new points are obtained by omitting every second one, as shown
in Figure 9.12.

508 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

tk−6 tk−4 tk−2tk−5 tk−3 tk−1 tk Old mesh

tk−2tk−4tk−6 tk New mesh

Figure 9.12 Increasing the step size to 2h in an adaptive method.

Milne-Simpson Method

Another popular predictor-corrector scheme is known as the Milne-Simpson method.
Its predictor is based on integration of f (t, y(t)) over the interval [tk−3, tk+1]:

(10) y(tk+1) = y(tk−3)+
∫ tk+1

tk−3

f (t, y(t)) dt.

The predictor uses the Lagrange polynomial approximation for f (t, y(t)) based
on the points (tk−3, fk−3), (tk−2, fk−2), (tk−1, fk−1), and (tk, fk). It is integrated over
the interval [tk−3, tk+1]. This produces the Milne predictor:

(11) pk+1 = yk−3 + 4h

3
(2 fk−2 − fk−1 + 2 fk).

The corrector is developed similarly. The value pk+1 can now be used. A sec-
ond Lagrange polynomial for f (t, y(t)) is constructed, which is based on the points
(tk−1, fk−1), (tk, fk), and the new point (tk+1, fk+1) = (tk+1, f (tk+1, pk+1)). The
polynomial is integrated over [tk−1, tk+1], and the result is the familiar Simpson’s rule:

(12) yk+1 = yk−1 + h

3
(fk−1 + 4 fk + fk+1).

Error Estimation and Correction

The error terms for the numerical integration formulas used to obtain both the predictor
and corrector are of the order O(h5). The L.T.E. for the formulas in (11) and (12) are

y(tk+1)− pk+1 = 28

90
y(5)(ck+1)h

5 (L.T.E. for the predictor),(13)

y(tk+1)− yk+1 = −1

90
y(5)(dk+1)h

5 (L.T.E. for the corrector).(14)

Suppose that h is small enough so that y(5)(t) is nearly constant over the interval
[tk−3, tk+1]. Then the terms involving the fifth derivative can be eliminated in (13) and
(14) and the result is

(15) y(tk+1)− pk+1 ≈ 28

29
(yk+1 − pk+1).

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 509

Formula (15) gives an error estimate for the predictor that is based on the two
computed values pk+1 and yk+1 and does not use y(5)(t). It can be used to improve the
predicted value. Under the assumption that the difference between the predicted and
corrected values at each step changes slowly, we can substitute pk and yk for pk+1 and
yk+1 in (15) and get the following modifier:

(16) mk+1 = pk+1 + 28
yk − pk

29
.

This modified value is used in place of pk+1 in the correction step, and equation (12)
becomes

(17) yk+1 = yk−1 + h

3
(fk−1 + 4 fk + f (tk+1, mk+1)).

Therefore, the improved (modified) Milne-Simpson method is

(18)

pk+1 = yk−3 + 4h

3
(2 fk−2 − fk−1 + 2 fk) (predictor)

mk+1 = pk+1 + 28
yk − pk

29
(modifier)

fk+1 = f (tk+1, mk+1)

yk+1 = yk−1 + h

3
(fk−1 + 4 fk + fk+1) (corrector).

Hamming’s method is another important method. We shall omit its derivation, but
furnish a program at the end of the section. As a final precaution we mention that all
the predictor-corrector methods have stability problems. Stability is an advanced topic
and the serious reader should research this subject.

Example 9.13. Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming meth-
ods with h = 1

8 and compute approximations for the solution of the I.V.P.

y′ = t − y

2
, y(0) = 1 over [0, 3].

A Runge-Kutta method was used to obtain the starting values

y1 = 0.94323919, y2 = 0.89749071, and y3 = 0.86208736.

Then a computer implementation of Programs 9.6 through 9.8 produced the values in Ta-
ble 9.12. The error for each entry in the table is given as a multiple of 10−8. In all entries
there are at least six digits of accuracy. In this example, the best answers were produced by
Hamming’s method. �

510 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.12 Comparison of the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming
Methods for Solving y′ = (t − y)/2, y(0) = 1

k

Adams-
Bashforth-
Moulton Error

Milne-
Simpson Error

Hamming’s
method Error

0.0 1.00000000 0E−8 1.00000000 0E−8 1.00000000 0E−8
0.5 0.83640227 8E−8 0.83640231 4E−8 0.83640234 1E−8
0.625 0.81984673 16E−8 0.81984687 2E−8 0.81984688 1E−8
0.75 0.81186762 22E−8 0.81186778 6E−8 0.81186783 1E−8
0.875 0.81194530 28E−8 0.81194555 3E−8 0.81194558 0E−8
1.0 0.81959166 32E−8 0.81959190 8E−8 0.81959198 0E−8
1.5 0.91709920 46E−8 0.91709957 9E−8 0.91709967 −1E−8
2.0 1.10363781 51E−8 1.10363822 10E−8 1.10363834 −2E−8
2.5 1.35951387 52E−8 1.35951429 10E−8 1.35951441 −2E−8
2.625 1.43243853 52E−8 1.43243899 6E−8 1.43243907 −2E−8
2.75 1.50851827 52E−8 1.50851869 10E−8 1.50851881 −2E−8
2.875 1.58756195 51E−8 1.58756240 6E−8 1.58756248 −2E−8
3.0 1.66938998 50E−8 1.66939038 10E−8 1.66939050 −2E−8

The Right Step

Our selection of methods has a purpose. First, their development is easy enough for a
first course; second, more advanced methods have a similar development; third, most
undergraduate problems can be solved by one of these methods. However, when a
predictor-corrector method is used to solve the I.V.P. y′ = f (t, y), where y(t0) = y0,
over a large interval, difficulties sometimes occur.

If fy(t, y) < 0 and the step size is too large, a predictor-corrector method might
be unstable. As a rule of thumb, stability exists when a small error is propagated
as a decreasing error, and instability exists when a small error is propagated as an
increasing error. When too large a step size is used over a large interval, instability will
result and is sometimes manifested by oscillations in the computed solution. They can
be attenuated by changing to a smaller step size. Formulas (7) through (9) suggest how
to modify the algorithm(s). When step-size control is included, the following error
estimate(s) should be used:

y (tk)− yk ≈ 19
pk − yk

270
(Adams-Bashforth-Moulton),(19)

y (tk)− yk ≈ pk − yk

29
(Milne-Simpson),(20)

y (tk)− yk ≈ 9
pk − yk

121
(Hamming).(21)

In all methods, the corrector step is a type of fixed-point iteration. It can be proved

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 511

that the step size h for the methods must satisfy the following conditions:

h # 2.66667

| fy(t, y)| (Adams-Bashforth-Moulton),(22)

h # 3.00000

| fy(t, y)| (Milne-Simpson),(23)

h # 2.66667

| fy(t, y)| (Hamming).(24)

The notation# in (22) through (24) means “much smaller than.” The next example
shows that more stringent inequalities should be used:

h <
0.75

| fy(t, y)| (Adams-Bashforth-Moulton),(25)

h <
0.45

| fy(t, y)| (Milne-Simpson),(26)

h <
0.69

| fy(t, y)| (Hamming).(27)

Inequalities (25)–(27) are found in advanced books on numerical analysis.

Example 9.14. Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming meth-
ods and compute approximations for the solution of

y′ = 30− 5y, y(0) = 1 over the interval [0, 10].

All three methods are of the order O(h4). When N = 120 steps was used for all three
methods, the maximum error for each method occurred at a different place:

y(0.41666667)− y5 ≈ −0.00277037 (Adams-Bashforth-Moulton),

y(0.33333333)− y4 ≈ −0.00139255 (Milne-Simpson),

y(0.33333333)− y4 ≈ −0.00104982 (Hamming).

At the right endpoints t = 10, the error was

y(10)− y120 ≈ 0.00000000 (Adams-Bashforth-Moulton),

y(10)− y120 ≈ 0.00001015 (Milne-Simpson),

y(10)− y120 ≈ 0.00000000 (Hamming).

Both the Adams-Bashforth-Moulton and Hamming methods gave approximate solutions
with eight digits of accuracy at the right endpoint. �

512 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

t
1 3 5 7 92 40

1

2

3

4

5

6

7

6 8 10

N = 65

N = 37

Figure 9.13 (a) The Adams-Bashforth-Moulton solution
to y′ = 30 − 5y with N = 37 steps produces oscilla-
tion. It is stabilized when N = 65 because h = 10/65 =
0.1538 ≈ 0.15 = 0.75/5 = 0.75/| fy(t, y)|.

y

t
1 3 5 7 92 40

1

2

3

4

5

6

7

6 8 10

N = 110

N = 93

Figure 9.13 (b) The Milne-Simpson solution to y′ = 30−
5y with N = 93 steps produces oscillation. It is stabilized
when N = 110 because h = 10/110 = 0.0909 ≈ 0.09 =
0.45/5 = 0.45/| fy(t, y)|.

It is instructive to see that if the step size is too large, the computed solution os-
cillates about the true solution. Figure 9.13 illustrates this phenomenon. The small
number of steps was determined experimentally so that the oscillations was about the
same magnitude. The large number of steps required to attenuate the oscillations were
determined with equations (25) through (27).

Each of the following three programs requires that the first four coordinates of T
and Y be initial starting values obtained by another method. Consider Example 9.13,

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 513

y

t
1 3 5 7 92 40

1

2

3

4

5

6

7

6 8 10

N = 70

N = 50

Figure 9.13 (c) Hamming’s solution to y′ = 30 − 5y
with N = 50 steps produces oscillation. It is stabilized
when N = 70 because h = 10/70 = 0.1428 ≈ 0.138 =
0.69/5 = 0.69/| fy(t, y)|.

where the step size was h = 1
8 and the interval was [0, 3]. The following string of

commands in the MATLAB command window will produce appropriate input vec-
tors T and Y.

>>T=zeros(1,25);
>>Y=zeros(1,25);
>>T=0:1/8:3;
>>Y(1:4)=[1 0.94323919 0.89749071 0.86208736];

Program 9.6 (Adams-Bashforth-Moulton Method). To approximate the solution
of the initial value problem y′ = f (t, y) with y(a) = y0 over [a, b] by using the
predictor

pk+1 = yk + h

24
(−9 fk−3 + 37 fk−2 − 59 fk−1 + 55 fk)

and the corrector

yk+1 = yk + h

24
(fk−2 − 5 fk−1 + 19 fk + 9 fk+1).

function A=abm(f,T,Y)

%Input - f is the function entered as a string ’f’
% - T is the vector of abscissas
% - Y is the vector of ordinates
%Remark. The first four coordinates of T and Y must
% have starting values obtained with RK4

514 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

%Output - A=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);
if n<5,break,end;
F=zeros(1,4);
F=feval(f,T(1:4),Y(1:4));
h=T(2)-T(1);

for k=4:n-1
%Predictor
p=Y(k)+(h/24)*(F*[-9 37 -59 55]’);
T(k+1)=T(1)+h*k;
F=[F(2) F(3) F(4) feval(f,T(k+1),p)];
%Corrector
Y(k+1)=Y(k)+(h/24)*(F*[1 -5 19 9]’);
F(4)=feval(f,T(k+1),Y(k+1));

end
A=[T’ Y’];

Program 9.7 (Milne-Simpson Method). To approximate the solution of the initial
value problem y′ = f (t, y) with y(a) = y0 over [a, b] by using the predictor

pk+1 = yk−3 + 4h

3
(2 fk−2 − fk−1 + 2 fk)

and the corrector

yk+1 = yk−1 + h

3
(fk−1 + 4 fk + fk+1).

function M=milne(f,T,Y)

%Input - f is the function entered as a string ’f’
% - T is the vector of abscissas
% - Y is the vector of ordinates
%Remark. The first four coordinates of T and Y must
% have starting values obtained with RK4
%Output - M=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);
if n<5,break,end;

F=zeros(1,4);
F=feval(f,T(1:4),Y(1:4));
h=T(2)-T(1);
pold=0;
yold=0;

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 515

for k=4:n-1
%Predictor
pnew=Y(k-3)+(4*h/3)*(F(2:4)*[2 -1 2]’);
%Modifier
pmod=pnew+28*(yold-pold)/29;
T(k+1)=T(1)+h*k;
F=[F(2) F(3) F(4) feval(f,T(k+1),pmod)];
%Corrector
Y(k+1)=Y(k-1)+(h/3)*(F(2:4)*[1 4 1]’);
pold=pnew;
yold=Y(k+1);
F(4)=feval(f,T(k+1),Y(k+1));

end
M=[T’ Y’];

Program 9.8 (Hamming Method). To approximate the solution of the initial value
problem y′ = f (t, y) with y(a) = y0 over [a, b] by using the predictor

pk+1 = yk−3 + 4h

3
(2 fk−2 − fk−1 + 2 fk)

and the corrector

yk+1 = −yk−2 + 9yk

8
+ 3h

8
(− fk−1 + 2 fk + fk+1).

function H=hamming(f,T,Y)

%Input - f is the function entered as a string ’f’
% - T is the vector of abscissas
% - Y is the vector of ordinates
%Remark. The first four coordinates of T and Y must
% have starting values obtained with RK4
%Output - H=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);
if n<5,break,end;

F=zeros(1,4);
F=feval(f,T(1:4),Y(1:4));
h=T(2)-T(1);
pold=0;
cold=0;

for k=4:n-1
%Predictor
pnew=Y(k-3)+(4*h/3)*(F(2:4)*[2 -1 2]’);

516 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

%Modifier
pmod=pnew+112*(cold-pold)/121;
T(k+1)=T(1)+h*k;
F=[F(2) F(3) F(4) feval(f,T(k+1),pmod)];
%Corrector
cnew=(9*Y(k)-Y(k-2)+3*h*(F(2:4)*[-1 2 1]’))/8;
Y(k+1)=cnew+9*(pnew-cnew)/121;
pold=pnew;
cold=cnew;
F(4)=feval(f,T(k+1),Y(k+1));

end
H=[T’ Y’];

Exercises for Predictor-Corrector Methods

In Exercises 1 through 3, use the Adams-Bashforth-Moulton method, the three starting
values y1, y2, and y3, and the step size h = 0.05 to calculate by hand the next two values
y4 and y5 for the I.V.P. Compare your solution with the exact solution y(t).

1. y′ = t2 − y, y(0) = 1 over [0, 5], y(t) = −e−t + t2 − 2t + 2

y(0.05) = 0.95127058
y(0.10) = 0.90516258
y(0.15) = 0.86179202

2. y′ = y + 3t − t2, y(0) = 1 over [0, 5], y(t) = 2et + t2 − t − 1

y(0.05) = 1.0550422
y(0.10) = 1.1203418
y(0.15) = 1.1961685

3. y′ = −t/y, y(1) = 1 over [1, 1.4], y(t) = (2− t2)1/2

y(1.05) = 0.94736477
y(1.10) = 0.88881944
y(1.15) = 0.82310388

In Exercises 4 through 6, use the Milne-Simpson method, the three starting values y1, y2,
and y3, and the step size h = 0.05 to calculate by hand the next two values y4 and y5 for
the I.V.P. Compare your solution with the exact solution y(t).

4. y′ = e−t − y, y(0) = 1 over [0, 5], y(t) = te−t + e−t

y(0.05) = 0.99879090
y(0.10) = 0.99532116
y(0.15) = 0.98981417

SEC. 9.6 PREDICTOR-CORRECTOR METHODS 517

5. y′ = 2t y2, y(0) = 1 over [0, 0.95], y(t) = 1/(1− t2)

y(0.05) = 1.0025063
y(0.10) = 1.0101010
y(0.15) = 1.0230179

6. y′ = 1+ y2, y(0) = 1 over [0, 0.75], y(t) = tan(t + π/4)

y(0.05) = 1.1053556
y(0.10) = 1.2230489
y(0.15) = 1.3560879

In Exercises 7 through 9, use the Hamming method, the three starting values y1, y2, and
y3, and the step size h = 0.05 to calculate by hand the next two values y4 and y5 for the
I.V.P. Compare your solution with the exact solution y(t).

7. y′ = 2y − y2, y(0) = 1 over [0, 5], y(t) = 1+ tanh(t)

y(0.05) = 1.0499584
y(0.10) = 1.0996680
y(0.15) = 1.1488850

8. y′ = (1− y2)1/2, y(0) = 0 over [0, 1.55], y(t) = sin(t)

y(0.05) = 0.049979169
y(0.10) = 0.099833417
y(0.15) = 0.14943813

9. y′ = y2 sin(t), y(0) = 1 over [0, 1.55], y(t) = sec(t)

y(0.05) = 1.0012513
y(0.10) = 1.0050209
y(0.15) = 1.0113564

Algorithms and Programs

1. (a) Use Program 9.6 to solve the differential equations in Exercises 1 through 3.
(b) Plot your approximation and the exact solution on the same coordinate system.

2. (a) Use Program 9.7 to solve the differential equations in Exercises 4 through 6.
(b) Plot your approximation and the exact solution on the same coordinate system.

3. (a) Use Program 9.8 to solve the differential equations in Exercises 7 through 9.
(b) Plot your approximation and the exact solution on the same coordinate system.

4. Produce a graph analogous to Figure 9.13 by using Program 9.6 with N = 37 and
N = 65 to solve the I.V.P.

y′ = 30− 5y, y(0) = 1 over [0, 10].
5. For the I.V.P. y′ = 45− 9y, y(1) = 0 over [1, 20]:

(a) Use inequality (22) to determine for which step sizes the Adams-Bashforth-
Moulton method might be unstable.

518 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

(b) Based on your results from part (a), select step sizes hs and hu for which the
Adams-Bashforth-Moulton method should be stable and unstable, respectively.
Use a Runge-Kutta method to generate three starting values y1, y2, and y3 for
each of the step sizes.

(c) Use Program 9.6 to generate two approximations, one for each step size, to the
I.V.P.

(d) Use your results from part (c) to produce a graph analogous to Figure 9.13. You
may find it necessary to experiment with several sets of step sizes.

9.7 Systems of Differential Equations

This section is an introduction to systems of differential equations. To illustrate the
concepts, we consider the initial value problem

(1)

dx

dt
= f (t, x, y)

dy

dt
= g(t, x, y)

with

{
x(t0) = x0,

y(t0) = y0.

A solution to (1) is a pair of differentiable functions x(t) and y(t) with the property
that when t, x(t), and y(t) are substituted in f (t, x, y) and g(t, x, y), the result is equal
to the derivative x ′(t) and y′(t), respectively; that is,

(2)
x ′(t) = f (t, x(t), y(t))

y′(t) = g(t, x(t), y(t))
with

{
x(t0) = x0,

y(t0) = y0.

For example, consider the system of differential equations

(3)

dx

dt
= x + 2y

dy

dt
= 3x + 2y

with

{
x(0) = 6,

y(0) = 4.

The solution to the I.V.P. (3) is

(4)
x(t) = 4e4t + 2e−t ,

y(t) = 6e4t − 2e−t .

This is verified by directly substituting x(t) and y(t) into the right-hand side of (3),
computing the derivatives of (4), and substituting them in the left side of (3) to get

16e4t − 2e−t = (4e4t + 2e−t)+ 2(6e4t − 2e−t),

24e4t + 2e−t = 3(4e4t + 2e−t)+ 2(6e4t − 2e−t).

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 519

Numerical Solutions

A numerical solution to (1) over the interval a ≤ t ≤ b is found by considering the
differentials

(5) dx = f (t, x, y) dt and dy = g(t, x, y) dt.

Euler’s method for solving the system is easy to formulate. The differentials dt =
tk+1 − tk , dx = xk+1 − xk , and dy = yk+1 − yk are substituted into (5) to get

(6)
xk+1 − xk ≈ f (tk, xk, yk)(tk+1 − tk),

yk+1 − yk ≈ g(tk, xk, yk)(tk+1 − tk).

The interval is divided into M subintervals of width h = (b − a)/M , and the mesh
points are tk+1 = tk + h. This is used in (6) to get the recursive formulas for Euler’s
method:

(7)

tk+1 = tk + h,

xk+1 = xk + h f (tk, xk, yk),

yk+1 = yk + hg(tk, xk, yk) for k = 0, 1, . . . , M − 1.

A higher-order method should be used to achieve a reasonable amount of accuracy.
For example, the Runge-Kutta formulas of order 4 are

(8)
xk+1 = xk + h

6
(f1 + 2 f2 + 2 f3 + f4),

yk+1 = yk + h

6
(g1 + 2g2 + 2g3 + g4),

where

f1 = f (tk, xk, yk), g1 = g(tk, xk, yk),

f2 = f

(
tk + h

2
, xk + h

2
f1, yk + h

2
g1

)
, g2 = g

(
tk + h

2
, xk + h

2
f1, yk + h

2
g1

)
,

f3 = f

(
tk + h

2
, xk + h

2
f2, yk + h

2
g2

)
, g3 = g

(
tk + h

2
, xk + h

2
f2, yk + h

2
g2

)
,

f4 = f (tk + h, xk + h f3, yk + hg3) , g4 = g (tk + h, xk + h f3, yk + hg3) .

Example 9.15. Use the Runge-Kutta method given in (8) and compute the numerical
solution to (3) over the interval [0.0, 0.2] using 10 subintervals and the step size h = 0.02.

For the first point we have t1 = 0.02, and the intermediate calculations required to

520 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.13 Runge-Kutta Solution to x ′(t) = x + 2y, y′(t) = 3x + 2y
with the Initial Values x(0) = 6 and y(0) = 4

k tk xk yk

0 0.00 6.00000000 4.00000000
1 0.02 6.29354551 4.53932490
2 0.04 6.61562213 5.11948599
3 0.06 6.96852528 5.74396525
4 0.08 7.35474319 6.41653305
5 0.10 7.77697287 7.14127221
6 0.12 8.23813750 7.92260406
7 0.14 8.74140523 8.76531667
8 0.16 9.29020955 9.67459538
9 0.18 9.88827138 10.6560560

10 0.20 10.5396230 11.7157807

compute x1 and y1 are

f1 = f (0.00, 6.0, 4.0) = 14.0 g1 = g(0.00, 6.0, 4.0) = 26.0

x0 + h

2
f1 = 6.14 y0 + h

2
g1 = 4.26

f2 = f (0.01, 6.14, 4.26) = 14.66 g2 = g(0.01, 6.14, 4.26) = 26.94

x0 + h

2
f2 = 6.1466 y0 + h

2
g2 = 4.2694

f3 = f (0.01, 6.1466, 4.2694) = 14.6854

g3 = f (0.01, 6.1466, 4.2694) = 26.9786

x0 + h f3 = 6.293708 y0 + hg3 = 4.539572

f4 = f (0.02, 6.293708, 4.539572) = 15.372852

g4 = f (0.02, 6.293708, 4.539572) = 27.960268.

These values are used in the final computation:

x1 = 6+ 0.02

6
(14.0+ 2(14.66)+ 2(14.6854)+ 15.372852) = 6.29354551,

y1 = 4+ 0.02

6
(26.0+ 2(26.94)+ 2(26.9786)+ 27.960268) = 4.53932490.

The calculations are summarized in Table 9.13. �

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 521

The numerical solutions contain a certain amount of error at each step. For the
example above, the error grows, and at the right end point t = 0.2 it reaches its maxi-
mum:

x(0.2)− x10 = 10.5396252− 10.5396230 = 0.0000022,

y(0.2)− y10 = 11.7157841− 11.7157807 = 0.0000034.

Higher-Order Differential Equations

Higher-order differential equations involve the higher derivatives x ′′(t), x ′′′(t), and so
on. They arise in mathematical models for problems in physics and engineering. For
example,

mx ′′(t)+ cx ′(t)+ kx(t) = g(t)

represents a mechanical system in which a spring with spring constant k restores a
displaced mass m. Damping is assumed to be proportional to the velocity, and the
function g(t) is an external force. It is often the case that the position x(t0) and velocity
x ′(t0) are known at a certain time t0.

By solving for the second derivative, we can write a second-order initial value
problem in the form

(9) x ′′(t) = f (t, x(t), x ′(t)) with x(t0) = x0 and x ′(t0) = y0.

The second-order differential equation can be reformulated as a system of two first-
order equations if we use the substitution

(10) x ′(t) = y(t).

Then x ′′(t) = y′(t) and the differential equation in (9) becomes a system:

(11)

dx

dt
= y

dy

dt
= f (t, x, y)

with

{
x(t0) = x0,

y(t0) = y0.

A numerical procedure such as the Runge-Kutta method can be used to solve (11)
and will generate two sequences {xk} and {yk}. The first sequence is the numerical
solution to (9). The next example can be interpreted as damped harmonic motion.

522 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.14 Runge-Kutta Solution to x ′′(t)+ 4x ′(t)+ 5x(t) = 0 with
the Initial Conditions x(0) = 3 and x ′(0) = −5

k tk xk x(tk)

0 0.0 3.00000000 3.00000000
1 0.1 2.52564583 2.52565822
2 0.2 2.10402783 2.10404686
3 0.3 1.73506269 1.73508427
4 0.4 1.41653369 1.41655509
5 0.5 1.14488509 1.14490455

10 1.0 0.33324302 0.33324661
20 2.0 −0.00620684 −0.00621162
30 3.0 −0.00701079 −0.00701204
40 4.0 −0.00091163 −0.00091170
48 4.8 −0.00004972 −0.00004969
49 4.9 −0.00002348 −0.00002345
50 5.0 −0.00000493 −0.00000490

Example 9.16. Consider the second-order initial value problem

x ′′(t)+ 4x ′(t)+ 5x(t) = 0 with x(0) = 3 and x ′(0) = −5.

(a) Write down the equivalent system of two first-order equations.

(b) Use the Runge-Kutta method to solve the reformulated problem over [0, 5] using
M = 50 subintervals of width h = 0.1.

(c) Compare the numerical solution with the true solution:

x(t) = 3e−2t cos(t)+ e−2t sin(t).

(a) The differential equation has the form

x ′′(t) = f (t, x(t), x ′(t)) = −4x ′(t)− 5x(t).

(b) Using the substitution in (10), we get the reformulated problem:

dx

dt
= y

dy

dt
= −5x − 4y

with

{
x(0) = 3,

y(0) = −5.

(c) Samples of the numerical computations are given in Table 9.14. The values {yk}
are extraneous and are not included. Instead, the true solution values {x(tk)} are included
for comparison. �

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 523

Exercises for Systems of Differential Equations

In Exercises 1 through 4, use h = 0.05 and

(a) Euler’s method (7) by hand to find (x1, y1) and (x2, y2).

(b) the Runge-Kutta method (8) by hand to find (x1, y1).

1. Solve the system x ′ = 2x+3y, y′ = 2x+y with the initial condition x(0) = −2.7 and
y(0) = 2.8 over the interval 0 ≤ t ≤ 1.0 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.14 and can be compared with the
analytic solution:

x(t) = −69

25
e−t + 3

50
e4t and y(t) = 69

25
e−t + 1

25
e4t .

2. Solve the system x ′ = 3x − y, y′ = 4x − y with the initial condition x(0) = 0.2 and
y(0) = 0.5 over the interval 0 ≤ t ≤ 2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.15 and can be compared with the
analytic solution:

x(t) = 1

5
et − 1

10
tet and y(t) = 1

2
et − 1

5
tet .

3. Solve the system x ′ = x − 4y, y′ = x + y with the initial condition x(0) = 2 and
y(0) = 3 over the interval 0 ≤ t ≤ 2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.16 and can be compared with the
analytic solution:

x(t) = −2et + 4et cos2(t)− 12et cos(t) sin(t)

y

x

3

2

1

21−1 0−2

Figure 9.14 The solution to the sys-
tem x ′ = 2x+3y and y′ = 2x+ y over
[0.0, 1.0].

y

x

0.8

0.6

0.4

0.2

0.0 0.1 0.2

Figure 9.15 The solution to the sys-
tem x ′ = 3x − y and y′ = 4x − y over
[0.0, 2.0].

524 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

and

y(t) = −3et + 6et cos2(t)+ 2et cos(t) sin(t).

4. Solve the system x ′ = y − 4x , y′ = x + y with the initial condition x(0) = 1 and
y(0) = 1 over the interval 0 ≤ t ≤ 1.2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.17 and can be compared with the
analytic solution:

x(t) = 3e−
√

29 t/2 − 3e
√

29 t/2

2
√

29e3t/2
+ e−

√
29 t/2 + e

√
29 t/2

2e3t/2

and

y(t) = −7e−
√

29 t/2 + 7e
√

29 t/2

2
√

29e3t/2
+ e−

√
29 t/2 + e

√
29 t/2

2e3t/2
.

In Exercises 5 through 8:

(a) Verify that the function x(t) is the solution.

(b) Reformulate the second-order differential equation as a system of two first-order
equations.

(c) Use h = 0.1 and Euler’s method by hand to find x1 and x2.

(d) Use h = 0.05 and the Runge-Kutta method by hand to find x1.

5. 2x ′′(t)− 5x ′(t)− 3x(t) = 45e2t with x(0) = 2 and x ′(0) = 1
x(t) = 4e−t/2 + 7e3t − 9e2t

6. x ′′(t)+ 6x ′(t)+ 9x(t) = 0 with x(0) = 4 and x ′(0) = −4
x(t) = 4e−3t + 8te−3t

y

x

5

−5

−10

−15

−20

10 20−10

Figure 9.16 The solution to the sys-
tem x ′ = x − 4y and y′ = x + y over
[0.0, 2.0].

y

x

4

3

2

1

0.0 0.2 0.4 0.6 0.8 1

Figure 9.17 The solution to the sys-
tem x ′ = y − 4x and y′ = x + y over
[0.0, 1.2].

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 525

7. x ′′(t)+ x(t) = 6 cos(t) with x(0) = 2 and x ′(0) = 3
x(t) = 2 cos(t)+ 3 sin(t)+ 3t sin(t)

8. x ′′(t)+ 3x ′(t) = 12 with x(0) = 5 and x ′(0) = 1
x(t) = 4+ 4t + e−3t

Algorithms and Programs

1. Write a program to solve a system of equations by the Runge -Kutta method of order
N = 4 (8).

In Problems 2 through 5, use your computer implementation of the Runge-Kutta method
for systems to solve each system using the step size h = 0.05. Plot your approximation
and the analytic solution on the same coordinate system.

2. x ′ = 2x + 3y, y′ = 2x + y, with x(0) = −2.7, y(0) = 2.8 over 0 ≤ t ≤ 1.0
x(t) = − 69

25 e−t + 3
50 e4t and y(t) = 69

25 e−t + 1
25 e4t

3. x ′ = 3x − y, y′ = 4x − y, with x(0) = 0.2, y(0) = 0.5 over 0 ≤ t ≤ 2
x(t) = 1

5 et − 1
10 tet and y(t) = 1

2 et − 1
5 tet

4. x ′ = x − 4y, y′ = x + y, with x(0) = 2, y(0) = 3 over 0 ≤ t ≤ 2
x(t) = −2et + 4et cos2(t)− 12et cos(t) sin(t)
y(t) = −3et + 6et cos2(t)+ 2et cos(t) sin(t)

5. x ′ = y − 4x , y′ = x + y, with x(0) = 1, y(0) = 1 over 0 ≤ t ≤ 1.2

x(t) = 3e−
√

29 t/2 − 3e
√

29 t/2

2
√

29 e3t/2
+ e−

√
29 t/2 + e

√
29 t/2

2e3t/2

y(t) = −7e−
√

29 t/2 + 7e
√

29 t/2

2
√

29 e3t/2
+ e−

√
29 t/2 + e

√
29 t/2

2e3t/2

In Problems 6 through 9:

(a) Reformulate the second-order differential equation as a system of two first-order
equations.

(b) Use your computer implementation of the Runge-Kutta method for systems to solve
each system over the interval [0, 2] with the step size h = 0.05.

(c) Plot your approximation and the analytic solution on the same coordinate system.

6. 2x ′′(t)− 5x ′(t)− 3x(t) = 45e2t with x(0) = 2 and x ′(0) = 1
x(t) = 4e−t/2 + 7e3t − 9e2t

7. x ′′(t)+ 6x ′(t)+ 9x(t) = 0 with x(0) = 4 and x ′(0) = −4
x(t) = 4e−3t + 8te−3t

8. x ′′(t)+ x(t) = 6 cos(t) with x(0) = 2 and x ′(0) = 3
x(t) = 2 cos(t)+ 3 sin(t)+ 3t sin(t)

526 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

9. x ′′(t)+ 3x ′(t) = 12 with x(0) = 5 and x ′(0) = 1
x(t) = 4+ 4t + e−3t

In Problems 10 through 19, use your computer implementation of the Runge-Kutta method
of order N = 4 to solve the given differential equation or system of equations. Plot each
approximation.

10. A certain resonant spring system with a periodic forcing function is modeled by

x ′′(t)+ 25x(t) = 8 sin(5t) with x(0) = 0 and x ′(0) = 0.

Use the Runge-Kutta method to solve the differential equation over the interval [0, 2]
using M = 40 steps and h = 0.05.

11. The mathematical model of a certain RLC electrical circuit is

Q′′(t)+ 20Q′(t)+ 125Q(t) = 9 sin(5t)

with Q(0) = 0 and Q′(0) = 0. Use the Runge-Kutta method to solve the differential
equation over the interval [0, 2] using M = 40 steps and h = 0.05. Remark. I (t) =
Q′(t) is the current at time t .

12. At time t , a pendulum makes an angle x(t) with the vertical axis. Assuming that there
is no friction, the equation of motion is

mlx ′′(t) = −mg sin(x(t)),

where m is the mass and l is the length of the string. Use the Runge-Kutta method
to solve the differential equation over the interval [0, 2] using M = 40 steps and
h = 0.05 if g = 32 ft/sec2 and
(a) l = 3.2 ft and x(0) = 0.3 and x ′(0) = 0.
(b) l = 0.8 ft and x(0) = 0.3 and x ′(0) = 0.

13. Predator-prey model. An example of a system of nonlinear differential equations
is the predator-prey problem. Let x(t) and y(t) denote the population of rabbits and
foxes, respectively, at time t . The predator-prey model asserts that x(t) and y(t)
satisfy

x ′(t) = Ax(t)− Bx(t)y(t),

y′(t) = Cx(t)y(t)− Dy(t).

A typical computer simulation might use the coefficients

A = 2, B = 0.02, C = 0.0002, D = 0.8.

Use the Runge-Kutta method to solve the system of differential equations over the
interval [0, 5] using M = 50 steps and h = 0.2 if
(a) x(0) = 3000 rabbits and y(0) = 120 foxes.
(b) x(0) = 5000 rabbits and y(0) = 100 foxes.

SEC. 9.7 SYSTEMS OF DIFFERENTIAL EQUATIONS 527

y

x

4

3

2

1

0 1 2 3 4

Figure 9.18 Solutions to the system
x ′ = x − xy and y′ = −y + xy.

y

x

1.0

0.6

0.2

0.2 0.4 0.6 0.8−0.2

Figure 9.19 Solutions to the system
x ′ = −3x − 2y − 2xy2 and y′ = 2x −
y + 2y3.

y

x

2.0

1.6

1.2

0.8

0.4

0.0 0.5 1.0 1.5 2.0

Figure 9.20 Solutions to the system
x ′ = y2 − x2 and y′ = 2xy.

y

x

1

2

21−1−2

Figure 9.21 Solutions to the system
x ′ = 1− y and y′ = x2 − y2.

14. Solve x ′ = x − xy, y′ = −y + xy with x(0) = 4 and y(0) = 1 over [0, 8] using
h = 0.1. The trajectories of this system form closed paths. The polygonal path
formed by the solution set is one of the curves shown in Figure 9.18.

15. Solve x ′ = −3x − 2y − 2xy2, y′ = 2x − y + 2y3 with x(0) = 0.8 and y(0) = 0.6
over [0, 4] using h = 0.1. For this system, the origin is classified as a spiral point that
is asymptotically stable. The polygonal path formed by the solution set is one of the
curves shown in Figure 9.19.

16. Solve x ′ = y2 − x2, y′ = 2xy with x(0) = 2.0 and y(0) = 0.1 over [0.0, 1.5]
using h = 0.05. For this system, there is an unstable saddle point at the origin. The
polygonal path formed by the solution set is one of the curves shown in Figure 9.20.

528 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

x

2.0

1.5

1.0

0.5

0.0 0.5 1.0 1.5 2.0

Figure 9.22 Solutions to the system
x ′ = x3 − 2xy2 and y′ = 2x2 y − y3.

y

x

1

2

3

4

5

1 2 3−1 0−2−3

Figure 9.23 Solutions to the system
x ′ = x2 − y2 and y′ = 2xy.

17. Solve x ′ = 1 − y, y′ = x2 − y2 with x(0) = −1.2 and y(0) = 0.0 over [0, 5] using
h = 0.1. The point (1, 1) is a spiral point that is asymptotically stable, and the point
(−1, 1) is an unstable saddle point. The polygonal path formed by the solution set is
one of the curves shown in Figure 9.21.

18. Solve x ′ = x3 − 2xy2, y′ = 2x2 y − y3 with x(0) = 1.0 and y(0) = 0.2 over
[0, 2] using h = 0.025. This system has an unstable critical point at the origin. The
polygonal path formed by the solution set is one of the curves shown in Figure 9.22.

19. Solve x ′ = x2 − y2, y′ = 2xy with x(0) = 2.0 and y(0) = 0.6 over [0.0, 1.6] using
h = 0.02. The origin is an unstable critical point. The polygonal path formed by the
solution set is one of the curves shown in Figure 9.23.

9.8 Boundary Value Problems

Another type of differential equation has the form

(1) x ′′ = f (t, x, x ′) for a ≤ t ≤ b,

with the boundary conditions

(2) x(a) = α and x(b) = β.

This is called a boundary value problem.
The conditions that guarantee that a solution to (1) exists should be checked be-

fore any numerical scheme is applied; otherwise, a list of meaningless output may be
generated. The general conditions are stated in the following theorem.

SEC. 9.8 BOUNDARY VALUE PROBLEMS 529

Theorem 9.8 (Boundary Value Problem). Assume that f (t, x, y) is continuous on
the region R = {(t, x, y) : a ≤ t ≤ b,−∞ < x < ∞,−∞ < y < ∞} and that
∂ f/∂x = fx (t, x, y) and ∂ f/∂y = fy(t, x, y) are continuous on R. If there exists a
constant M > 0 for which fx and fy satisfy

fx (t, x, y) > 0 for all (t, x, y) ∈ R and(3)

| fy(t, x, y)| ≤ M for all (t, x, y) ∈ R,(4)

then the boundary value problem

(5) x ′′ = f (t, x, x ′) with x(a) = α and x(b) = β

has a unique solution x = x(t) for a ≤ t ≤ b.

The notation y = x ′(t) has been used to distinguish the third variable of the func-
tion f (t, x, x ′). Finally, the special case of linear differential equations is worthy of
mention.

Corollary 9.1 (Linear Boundary Value Problem). Assume that f in Theorem 9.8
has the form f (t, x, y) = p(t)y + q(t)x + r(t) and that f and its partial derivatives
∂ f/∂x = q(t) and ∂ f/∂y = p(t) are continuous on R. If there exists a constant M > 0
for which p(t) and q(t) satisfy

q(t) > 0 for all t ∈ [a, b](6)

and

|p(t)| ≤ M = max
a≤t≤b

{|p(t)|},(7)

then the linear boundary value problem

(8) x ′′ = p(t)x ′(t)+ q (t) x(t)+ r(t) with x(a) = α and x(b) = β

has a unique solution x = x(t) over a ≤ t ≤ b.

Reduction to Two I.V.P.s: Linear Shooting Method

Finding the solution of a linear boundary problem is assisted by the linear structure of
the equation and the use of two special initial value problems. Suppose that u(t) is the
unique solution to the I.V.P.

(9) u′′ = p(t)u′(t)+ q(t)u(t)+ r(t) with u(a) = α and u′(a) = 0.

530 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Furthermore, suppose that v(t) is the unique solution to the I.V.P.

(10) v′′ = p(t)v′(t)+ q(t)v(t) with v(a) = 0 and v′(a) = 1.

Then the linear combination

(11) x(t) = u(t)+ Cv(t)

is a solution to x ′′ = p(t)x ′(t)+ q(t)x(t)+ r(t) as seen by the computation

x ′′ = u′′ + Cv′′ = p(t)u′(t)+ q(t)u(t)+ r(t)+ p(t)Cv′(t)+ q(t)Cv(t)

= p(t)(u′(t)+ Cv′(t))+ q(t)(u(t)+ Cv(t))+ r(t)

= p(t)x ′(t)+ q(t)x(t)+ r(t).

The solution x(t) in equation (11) takes on the boundary values

(12)
x(a) = u(a)+ Cv(a) = α + 0 = α,

x(b) = u(b)+ Cv(b).

Imposing the boundary condition x(b) = β in (12) produces C = (β − u(b))/v(b).
Therefore, if v(b) �= 0, the unique solution to (8) is

(13) x(t) = u(t)+ β − u(b)

v(b)
v(t).

Remark. If q fulfills the hypotheses of Corollary 9.1, this rules out the troublesome
solution v(t) ≡ 0, so that (13) is the form of the required solution. The details are left
for the reader to investigate in the exercises.

Example 9.17. Solve the boundary value problem

x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
x(t)+ 1

with x(0) = 1.25 and x(4) = −0.95 over the interval [0, 4].
The functions p, q, and r are p(t) = 2t/(1 + t2), q(t) = −2/(1 + t2), and

r(t) = 1, respectively. The Runge-Kutta method of order 4 with step size h = 0.2
is used to construct numerical solutions {u j } and {v j } to equations (9) and (10), respec-
tively. The approximations {u j } for u(t) are given in the first column of Table 9.15. Then
u(4) ≈ u20 = −2.893535 and v(4) ≈ v20 = 4 are used with (13) to construct

w j = b − u(4)

v(4)
v j = 0.485884v j .

SEC. 9.8 BOUNDARY VALUE PROBLEMS 531

Table 9.15 Approximate Solutions {x j } = {u j + w j } to the

Equation x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
+ 1

t j u j w j x j = u j + w j

0.0 1.250000 0.000000 1.250000
0.2 1.220131 0.097177 1.317308
0.4 1.132073 0.194353 1.326426
0.6 0.990122 0.291530 1.281652
0.8 0.800569 0.388707 1.189276
1.0 0.570844 0.485884 1.056728
1.2 0.308850 0.583061 0.891911
1.4 0.022522 0.680237 0.702759
1.6 −0.280424 0.777413 0.496989
1.8 −0.592609 0.874591 0.281982
2.0 −0.907039 0.971767 0.064728
2.2 −1.217121 1.068944 −0.148177
2.4 −1.516639 1.166121 −0.350518
2.6 −1.799740 1.263297 −0.536443
2.8 −2.060904 1.360474 −0.700430
3.0 −2.294916 1.457651 −0.837265
3.2 −2.496842 1.554828 −0.942014
3.4 −2.662004 1.652004 −1.010000
3.6 −2.785960 1.749181 −1.036779
3.8 −2.864481 1.846358 −1.018123
4.0 −2.893535 1.943535 −0.950000

Then the required approximate solution is {x j } = {u j + w j }. Sample computations are
given in Table 9.15, and Figure 9.24 shows their graphs. The reader can verify that v(t) = t
is the analytic solution for boundary value problem (10); that is,

v′′(t) = 2t

1+ t2
v′(t)− 2

1+ t2
v(t)

with the initial conditions v(0) = 0 and v′(0) = 1.
The approximations in Table 9.16 compare numerical solutions obtained with the linear

shooting method with the step sizes h = 0.2 and h = 0.1 and the analytic solution

x(t) = 1.25+ 0.4860896526t − 2.25t2 + 2t arctan(t)− 1

2
ln(1+ t2)+ 1

2
t2 ln(1+ t2).

A graph of the approximate solution when h = 0.2 is given in Figure 9.25. Included in
the table are columns for the error. Since the Runge-Kutta solutions have error of order
O(h4), the error in the solution with the smaller step size h = 0.1 is about 1

16 the error of
the solution with the large step size h = 0.2. �

Program 9.10 will call Program 9.9 to solve the initial value problems (9) and (10).
Program 9.9 approximates solutions of systems of differential equations using a mod-
ification of the Runge-Kutta method of order N = 4. Thus, it is necessary to save

532 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

y

y = w(t)

y = x(t)

y = u(t)

2

1

1 2 3 4
0

−1

−2

−3

t

Figure 9.24 The numerical approximations u(t) and w(t) used
to form x(t) = u(t)+ w(t), which is the solution to

x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
x(t)+ 1.

Table 9.16 Numerical Approximations for x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
x(t)+ 1

t j

x j
h = 0.2

x(t j)

exact
x(t j)−x j

error t j

x j
h = 0.1

x(t j)

exact
x(t j)−x j

error

0.0 1.250000 1.250000 0.000000 0.0 1.250000 1.250000 0.000000
0.1 1.291116 1.291117 0.000001

0.2 1.317308 1.317350 0.000042 0.2 1.317348 1.317350 0.000002
0.3 1.328986 1.328990 0.000004

0.4 1.326426 1.326505 0.000079 0.4 1.326500 1.326505 0.000005
0.5 1.310508 1.310514 0.000006

0.6 1.281652 1.281762 0.000110 0.6 1.281756 1.281762 0.000006
0.8 1.189276 1.189412 0.000136 0.8 1.189404 1.189412 0.000008
1.0 1.056728 1.056886 0.000158 1.0 1.056876 1.056886 0.000010
1.2 0.891911 0.892086 0.000175 1.2 0.892076 0.892086 0.000010
1.6 0.496989 0.497187 0.000198 1.6 0.497175 0.497187 0.000012
2.0 0.064728 0.064931 0.000203 2.0 0.064919 0.064931 0.000012
2.4 −0.350518 −0.350325 0.000193 2.4 −0.350337 −0.350325 0.000012
2.8 −0.700430 −0.700262 0.000168 2.8 −0.700273 −0.700262 0.000011
3.2 −0.942014 −0.941888 0.000126 3.2 −0.941895 −0.941888 0.000007
3.6 −1.036779 −1.036708 0.000071 3.6 −1.036713 −1.036708 0.000005
4.0 −0.950000 −0.950000 0.000000 4.0 −0.950000 −0.950000 0.000000

the equations (9) and (10) in the form of the system of equations (11) of Section 9.7.
As an illustration, consider the boundary value problem in Example 9.17. The follow-

SEC. 9.8 BOUNDARY VALUE PROBLEMS 533

y

t

y = x(t)

1.0

0.5

0.0

−0.5

−1.0

1 2 3 4

Figure 9.25 The graph of the numerical approximation for

x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
x(t)+ 1

(using h = 0.2).

ing M-file, named F1, will save the I.V.P. (9) in the form of a system of differential
equations.

function Z=F1(t,Z)
x=Z(1);y=Z(2);
Z=[y,2*t*y/(1+t^2)-2*x/(1+t^2)+1];

A similar M-file, named F2, will save the I.V.P. (10) (just let r(t) = 0 in F1) in the
appropriate form.

A plot of the approximation obtained from Program 9.10 can be constructed by
using the command plot(L(:,1), L(:,2)).

Program 9.9 (Runge-Kutta Method of Order N = 4 for Systems). To approxi-
mate the solution of the system of differential equations

x ′1(t) = f1(t, x1(t), . . . , xn(t))

...
...

x ′n(t) = fn(t, x1(t), . . . , xn(t))

with x1(a) = α1, . . . , xn(a) = αn over the interval [a, b].
function [T,Z]=rks4(F,a,b,Za,M)

%Input - F is the system input as a string ’F’
% - a and b are the endpoints of the interval
% - Za=[x(a) y(a)] are the initial conditions
% - M is the number of steps

534 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

%Output - T is the vector of steps
% - Z=[x1(t)...xn(t)]; where xk(t) is the approximation
% to the kth dependent variable

h=(b-a)/M;
T=zeros(1,M+1);
Z=zeros(M+1,length(Za));
T=a:h:b;
Z(1,:)=Za;

for j=1:M
k1=h*feval(F,T(j),Z(j,:));
k2=h*feval(F,T(j)+h/2,Z(j,:)+k1/2);
k3=h*feval(F,T(j)+h/2,Z(j,:)+k2/2);
k4=h*feval(F,T(j)+h,Z(j,:)+k3);
Z(j+1,:)=Z(j,:)+(k1+2*k2+2*k3+k4)/6;

end

Program 9.10 (Linear Shooting Method). To approximate the solution of the
boundary value problem x ′′ = p(t)x ′(t) + q(t)x(t) + r(t) with x(a) = α and
x(b) = β over the interval [a, b] by using the Runge-Kutta method of order N = 4.

function L=linsht(F1,F2,a,b,alpha,beta,M)

%Input - F1 and F2 are the systems of first-order equations
% representing the I.V.P.s (9) and (10), respectively;
% input as strings ’F1’, ’F2’
% - a and b are the endpoints of the interval
% - alpha = x(a) and beta = x(b); boundary conditions
% - M is the number of steps
%Output - L =[T’ X]; where T’ is the (M+1)x1 vector of
% abscissas and X is the (M+1)x1 vector of ordinates

%Solve the system F1
Za=[alpha,0];
[T,Z]=rks4(F1,a,b,Za,M);
U=Z(:,1);
%Solve the system F2
Za=[0,1];
[T,Z]=rks4(F2,a,b,Za,M);
V=Z(:,1);

%Calculate the solution to the boundary value problem
X=U+(beta-U(M+1))*V/V(M+1);
L=[T’ X];

SEC. 9.8 BOUNDARY VALUE PROBLEMS 535

Exercises for Boundary Value Problems

1. Verify that the function x(t) is the solution to the boundary value problem.
(a) x ′′ = (−2/t)x ′ + (2/t2)x + (10 cos(ln(t)))/t2 over [1, 3] with x(1) = 1 and

x(3) = −1.

x(t) = 4.335950689− 0.3359506908t3 − 3t2 cos(ln(t))+ t2 sin(ln(t))

t2

(b) x ′′ = −2x ′ − 2x + e−t + sin(2t) over [0, 4] with x(0) = 0.6 and x(4) = −0.1.

x(t) = 1

5
+ e−t − 1

5
e−t cos(t)− 2

5
cos2(t)

+ 3.670227413e−t sin(t)− 1

5
cos(t) sin(t)

(c) x ′′ = −4x ′ − 4x + 5 cos(4t)+ sin(2t) over [0, 2] with x(0) = 0.75 and x(2) =
0.25.

x(t) = − 1

40
+ 1.025e−2t − 1.915729975te−2t + 19

20
cos2(t)

− 6

5
cos4(t)− 4

5
cos(t) sin(t)+ 8

5
cos3(t) sin(t)

(d) x ′′ + (1/t)x ′ + (1− 1/(4t2))x = 0 over [1, 6] with x(1) = 1 and x(6) = 0.

x(t) = 0.2913843206 cos(t)+ 1.001299385 sin(t)√
t

(e) x ′′ − (1/t)x ′ + (1/t2)x = 1 over [0.5, 4.5] with x(0.5) = 1 and x(4.5) = 2.

x(t) = t2 − 0.2525826491t − 2.528442297t ln(t)

2. Does the boundary value problem in Exercise 1(e) satisfy the hypotheses of Corol-
lary 9.1? Explain.

3. If q fulfills the hypothesis of Corollary 9.1, show that v(t) ≡ 0 is the unique solution
to the boundary value problem

v′′ = p(t)v′(t)+ q(t)v(t) with v(a) = 0 and v(b) = 0.

Algorithms and Programs

1. (a) Use Programs 9.9 and 9.10 to solve each of the boundary value problems in
Exercise 1, using the step size h = 0.05.

(b) Graph your solution and the actual solution on the same coordinate system.

536 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

2. Construct programs analogous to Program 9.9 based on
(a) Heun’s method,
(b) the Adams-Bashforth-Moulton method, and
(c) Hamming’s method.

3. (a) Modify Program 9.10 to call each of your programs from Problem 2.
(b) Use your programs to solve each of the five boundary value problems in Exer-

cise 1 using the step size h = 0.05.
(c) Graph your solutions and the actual solution on the same coordinate system.

9.9 Finite-Difference Method

Methods involving difference quotient approximations for derivatives can be used for
solving certain second-order boundary value problems. Consider the linear equation

(1) x ′′ = p(t)x ′(t)+ q(t)x(t)+ r(t)

over [a, b] with x(a) = α and x(b) = β. Form a partition of [a, b] using the points
a = t0 < t1 < · · · < tN = b, where h = (b − a)/N and t j = a + jh for j = 0, 1,
. . . , N . The central-difference formulas discussed in Chapter 6 are used to approximate
the derivatives

x ′(t j) = x(t j+1)− x(t j−1)

2h
+ O(h2)(2)

and

x ′′(t j) = x(t j+1)− 2x(t j)+ x(t j−1)

h2
+ O(h2).(3)

To start the derivation, we replace each term x(t j) on the right side of (2) and (3)
with x j , and the resulting equations are substituted into (1) to obtain the relation

x j+1 − 2x j + x j−1

h2
+ O(h2) = p(t j)

(
x j+1 − x j−1

2h
+ O(h2)

)
+ q(t j)x j + r(t j).

(4)

Next, we drop the two terms O(h2) in (4) and introduce the notation p j = p(t j),
q j = q(t j), and r j = r(t j); this produces the difference equation

(5)
x j+1 − 2x j + x j−1

h2
= p j

x j+1 − x j−1

2h
+ q j x j + r j ,

which is used to compute numerical approximations to the differential equation (1).
This is carried out by multiplying each side of (5) by h2 and then collecting terms
involving x j−1, x j , and x j+1 and arranging them in a system of linear equations:

(6)

(−h

2
p j − 1

)
x j−1 + (2+ h2q j)x j +

(
h

2
p j − 1

)
x j+1 = −h2r j ,

SEC. 9.9 FINITE-DIFFERENCE METHOD 537

for j = 1, 2, . . . , N −1, where x0 = α and xN = β. The system in (6) has the familiar
tridiagonal form, which is more visible when displayed with matrix notation:

2+ h2q1
h
2 p1 − 1

−h
2 p2 − 1 2+ h2q2

h
2 p2 − 1 O

−h
2 p j − 1 2+ h2q j

h
2 p j − 1

O −h
2 pN−2 − 1 2+ h2qN−2

h
2 pN−2 − 1

−h
2 pN−1 − 1 2+ h2qN−1

x1

x2

x j

xN−2

xN−1

=

−h2r1 + e0

−h2r2

−h2r j

−h2rN−2

−h2rN−1 + eN

 ,

where

e0 =
(

h

2
p1 + 1

)
α and eN =

(−h

2
pN−1 + 1

)
β.

When computations with step size h are used, the numerical approximation to the
solution is a set of discrete points {(t j , x j)}; if the analytic solution x(t j) is known, we
can compare x j and x(t j).

Example 9.18. Solve the boundary value problem

x ′′(t) = 2t

1+ t2
x ′(t)− 2

1+ t2
x(t)+ 1

with x(0) = 1.25 and x(4) = −0.95 over the interval [0, 4].
The functions p, q, and r are p(t) = 2t/(1 + t2), q(t) = −2/(1 + t2), and r(t) = 1,

respectively. The finite-difference method is used to construct numerical solutions {x j } us-
ing the system of equations (6). Sample values of the approximations {x j,1}, {x j,2}, {x j,3},
and {x j,4} corresponding to the step sizes h1 = 0.2, h2 = 0.1, h3 = 0.05, and h4 = 0.025
are given in Table 9.17. Figure 9.26 shows the graph of the polygonal path formed from
{(t j , x j,1)} for the case h1 = 0.2. There are 41 terms in the sequence generated with
h2 = 0.1, and the sequence {x j,2} only includes every other term from these computations;
they correspond to the 21 values of {t j } given in Table 9.17. Similarly, the sequences {x j,3}
and {x j,4} are a portion of the values generated with step sizes h3 = 0.05 and h4 = 0.025,
respectively, and they correspond to the 21 values of {t j } in Table 9.17.

Next we compare numerical solutions in Table 9.17 with the analytic solution: x(t) =
1.25+0.486089652t−2.25t2+2t arctan(t)− 1

2 ln(1+ t2)+ 1
2 t2 ln(1+ t2). The numerical

538 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.17 Numerical Approximations for x ′′(t) = 2t
1+t2

x ′(t)− 2
1+t2

x(t)+ 1

t j

x j,1
h = 0.2

x j,2
h = 0.1

x j,3
h = 0.05

x j,4
h = 0.025

x(t j)

exact

0.0 1.250000 1.250000 1.250000 1.250000 1.250000
0.2 1.314503 1.316646 1.317174 1.317306 1.317350
0.4 1.320607 1.325045 1.326141 1.326414 1.326505
0.6 1.272755 1.279533 1.281206 1.281623 1.281762
0.8 1.177399 1.186438 1.188670 1.189227 1.189412
1.0 1.042106 1.053226 1.055973 1.056658 1.056886
1.2 0.874878 0.887823 0.891023 0.891821 0.892086
1.4 0.683712 0.698181 0.701758 0.702650 0.702947
1.6 0.476372 0.492027 0.495900 0.496865 0.497187
1.8 0.260264 0.276749 0.280828 0.281846 0.282184
2.0 0.042399 0.059343 0.063537 0.064583 0.064931
2.2 −0.170616 −0.153592 −0.149378 −0.148327 −0.147977
2.4 −0.372557 −0.355841 −0.351702 −0.350669 −0.350325
2.6 −0.557565 −0.541546 −0.537580 −0.536590 −0.536261
2.8 −0.720114 −0.705188 −0.701492 −0.700570 −0.700262
3.0 −0.854988 −0.841551 −0.838223 −0.837393 −0.837116
3.2 −0.957250 −0.945700 −0.942839 −0.942125 −0.941888
3.4 −1.022221 −1.012958 −1.010662 −1.010090 −1.009899
3.6 −1.045457 −1.038880 −1.037250 −1.036844 −1.036709
3.8 −1.022727 −1.019238 −1.018373 −1.018158 −1.018086
4.0 −0.950000 −0.950000 −0.950000 −0.950000 −0.950000

y

t

y = u(t)

1.0

0.5

0.0

−0.5

−1.0

1 2 3 4

Figure 9.26 The graph of the numerical approximation for
x(t) = u(t)+ w(t), which is the solution to

x ′′(t) = 2t
1+t2 x ′(t)− 2

1+t2 x(t)+ 1

(using h = 0.2).

SEC. 9.9 FINITE-DIFFERENCE METHOD 539

Table 9.18 Errors in Numerical Approximations Using the Finite-Difference Method

t j

x(t j)− x j,1
= e j,1

x(t j)− x j,2
= e j,2

x(t j)− x j,3
= e j,3

x(t j)− x j,4
= e j,4

h1 = 0.2 h2 = 0.1 h3 = 0.05 h4 = 0.025
0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.002847 0.000704 0.000176 0.000044
0.4 0.005898 0.001460 0.000364 0.000091
0.6 0.009007 0.002229 0.000556 0.000139
0.8 0.012013 0.002974 0.000742 0.000185
1.0 0.014780 0.003660 0.000913 0.000228
1.2 0.017208 0.004263 0.001063 0.000265
1.4 0.019235 0.004766 0.001189 0.000297
1.6 0.020815 0.005160 0.001287 0.000322
1.8 0.021920 0.005435 0.001356 0.000338
2.0 0.022533 0.005588 0.001394 0.000348
2.2 0.022639 0.005615 0.001401 0.000350
2.4 0.022232 0.005516 0.001377 0.000344
2.6 0.021304 0.005285 0.001319 0.000329
2.8 0.019852 0.004926 0.001230 0.000308
3.0 0.017872 0.004435 0.001107 0.000277
3.2 0.015362 0.003812 0.000951 0.000237
3.4 0.012322 0.003059 0.000763 0.000191
3.6 0.008749 0.002171 0.000541 0.000135
3.8 0.004641 0.001152 0.000287 0.000072
4.0 0.000000 0.000000 0.000000 0.000000

solutions can be shown to have error of order O(h2). Hence reducing the step size by a
factor of 1

2 results in the error being reduced by about 1
4 . A careful scrutiny of Table 9.18

will reveal that this is happening. For instance, at t j = 1.0 the errors incurred with step
sizes h1, h2, h3, and h4 are e j,1 = 0.014780, e j,2 = 0.003660, e j,3 = 0.000913, and e j,4 =
0.000228, respectively. Their successive ratios e j,2/e j,1 = 0.003660/0.014780 = 0.2476,
e j,3/e j,2 = 0.000913/0.003660 = 0.2495, and e j,4/e j,3 = 0.000228/0.000913 = 0.2497
are approaching 1

4 .
Finally, we show how Richardson’s improvement scheme can be used to extrapolate

the seemingly inaccurate sequences {x j,1}, {x j,2}, {x j,3}, and {x j,4} and obtain six digits
of precision. Eliminate the error terms O(h2) and O((h/2)2) in the approximations {x j,1}
and {x j,2} by generating the extrapolated sequence {z j,1} = {(4x j,2 − x j,1)/3}. Similarly,
the error terms O((h/2)2) and O((h/4)2) for {x j,2} and {x j,3} are eliminated by generat-
ing {z j,2} = {(4x j,3 − x j,2)/3}. It has been shown that the second level of Richardson’s
improvement scheme applies to the sequences {z j,1} and {z j,2}, so the third improvement
is {(16z j,2− z j,1)/15}. Let us illustrate the situation by finding the extrapolated values that

540 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

Table 9.19 Extrapolation of the Numerical Approximations {x j,1}, {x j,2}, {x j,3} Obtained
with the Finite-Difference Method

t j

4x j,2−x j,1

3
= z j,1

4x j,3−x j,2

3
= z j,2

16z j,2−z j,1

3

x(t j)

Exact
solution

0.0 1.250000 1.250000 1.250000 1.250000
0.2 1.317360 1.317351 1.317350 1.317350
0.4 1.326524 1.326506 1.326504 1.326505
0.6 1.281792 1.281764 1.281762 1.281762
0.8 1.189451 1.189414 1.189412 1.189412
1.0 1.056932 1.056889 1.056886 1.056886
1.2 0.892138 0.892090 0.892086 0.892086
1.4 0.703003 0.702951 0.702947 0.702948
1.6 0.497246 0.497191 0.497187 0.497187
1.8 0.282244 0.282188 0.282184 0.282184
2.0 0.064991 0.064935 0.064931 0.064931
2.2 −0.147918 −0.147973 −0.147977 −0.147977
2.4 −0.350268 −0.350322 −0.350325 −0.350325
2.6 −0.536207 −0.536258 −0.536261 −0.536261
2.8 −0.700213 −0.700259 −0.700263 −0.700262
3.0 −0.837072 −0.837113 −0.837116 −0.837116
3.2 −0.941850 −0.941885 −0.941888 −0.941888
3.4 −1.009870 −1.009898 −1.009899 −1.009899
3.6 −1.036688 −1.036707 −1.036708 −1.036708
3.8 −1.018075 −1.018085 −1.018086 −1.018086
4.0 −0.950000 −0.950000 −0.950000 −0.950000

correspond to t j = 1.0. The first extrapolated value is

4x j,2 − x j,1

3
= 4(1.053226)− 1.042106

3
= 1.056932 = z j,1.

The second extrapolated value is

4x j,3 − x j,2

3
= 4(1.055973)− 1.053226

3
= 1.056889 = z j,2.

Finally, the third extrapolation involves the terms z j,1 and z j,2:

16z j,2 − z j,1

15
= 16(1.056889)− 1.056932

15
= 1.056886.

This last computation contains six decimal places of accuracy. The values at the other
points are given in Table 9.19. �

Program 9.12 will call Program 9.11 to solve the tridiagonal system (6). Pro-
gram 9.12 requires that the coefficient functions p(t), q(t), and r(t) (boundary value
problem (1)) be saved in M-files p.m, q.m, and r.m, respectively.

SEC. 9.9 FINITE-DIFFERENCE METHOD 541

Program 9.11 (Tridiagonal Systems). To solve the tridiagonal system C X = B,
where C is a tridiagonal matrix.

function X=trisys(A,D,C,B)

%Input - A is the subdiagonal of the coefficient matrix
% - D is the main diagonal of the coefficient matrix
% - C is the superdiagonal of the coefficient matrix
% - B is the constant vector of the linear system
%Output - X is the solution vector

N=length(B);
for k=2:N

mult=A(k-1)/D(k-1);
D(k)=D(k)-mult*C(k-1);
B(k)=B(k)-mult*B(k-1);

end
X(N)=B(N)/D(N);
for k= N-1:-1:1

X(k)=(B(k)-C(k)*X(k+1))/D(k);
end

Program 9.12 (Finite-Difference Method). To approximate the solution of the
boundary value problem x ′′ = p(t)x ′(t) + q(t)x(t) + r(t) with x(a) = α and
x(b) = β over the interval [a, b] by using the finite-difference method of order
O(h2).
Remark. The mesh is a = t1 < · · · < tN+1 = b and the solution points are
{(t j , x j)}N+1

j=1 .

function F=findiff(p,q,r,a,b,alpha,beta,N)

%Input - p,q,and r are the coefficient functions of (1)
% input as strings; ’p’,’q’,’r’
% - a and b are the left and right endpoints
% - alpha=x(a) and beta=x(b)
% - N is the number of steps
%Output - F=[T’ X’]:where T’ is the 1xN vector of abscissas
% and X’ is the 1xN vector of ordinates

%Initialize vectors and h
T=zeros(1,N+1);
X=zeros(1,N-1);
Va=zeros(1,N-2);
Vb=zeros(1,N-1);
Vc=zeros(1,N-2);
Vd=zeros(1,N-1);
h=(b-a)/N;

542 CHAP. 9 SOLUTION OF DIFFERENTIAL EQUATIONS

%Calculate the constant vector B in AX=B
Vt=a+h:h:a+h*(N-1);
Vb=-h^2*feval(r,Vt);
Vb(1)=Vb(1)+(1+h/2*feval(p,Vt(1)))*alpha;
Vb(N-1)=Vb(N-1)+(1-h/2*feval(p,Vt(N-1)))*beta;

%Calculate the main diagonal of A in AX=B
Vd=2+h^2*feval(q,Vt);

%Calculate the superdiagonal of A in AX=B
Vta=Vt(1,2:N-1);
Va=-1-h/2*feval(p,Vta);

%Calculate the subdiagonal of A in AX=B
Vtc=Vt(1,1:N-2);
Vc=-1+h/2*feval(p,Vtc);

%Solve AX=B using trisys
X=trisys(Va,Vd,Vc,Vb);
T=[a,Vt,b];
X=[alpha,X,beta];
F=[T’ X’];

Exercises for Finite-Difference Method

In Exercises 1 through 3, use the finite-difference method to approximate x(a + 0.5).

(a) Let h1 = 0.5 and do one step by hand calculation. Then let h2 = 0.25 and do two
steps by hand calculation.

(b) Use extrapolation of the values in part (a) to obtain a better approximation (i.e.,
z j,1 = (4x j,2 − x j,1)/3).

(c) Compare your results from parts (a) and (b) with the exact value x(a + 0.5).

1. x ′′ = 2x ′ − x + t2 − 1 over [0, 1] with x(0) = 5 and x(1) = 10
x(t) = t2 + 4t + 5

2. x ′′ + (1/t)x ′ + (1− 1/(4t2))x = 0 over [1, 6] with x(1) = 1 and x(6) = 0

x(t) = 0.2913843206 cos(t)+ 1.001299385 sin(t)√
t

3. x ′′ − (1/t)x ′ + (1/t2)x = 1 over [0.5, 4.5] with x(0.5) = 1 and x(4.5) = 2
x(t) = t2 − 0.2525826491t − 2.528442297t ln(t)

4. Assume that p, q, and r are continuous over the interval [a, b] and that q(t) ≥ 0 for
a ≤ t ≤ b. If h satisfies 0 < h < 2/M , where M = maxa≤t≤b{|p(t)|}, prove that
the coefficient matrix of (6) is strictly diagonally dominant and that there is a unique
solution.

SEC. 9.9 FINITE-DIFFERENCE METHOD 543

5. Assume that p(t) ≡ C1 > 0 and q(t) ≡ C2 > 0. (a) Write out the tridiagonal linear
system for this situation. (b) Prove that the tridiagonal system is strictly diagonally
dominant and hence has a unique solution, provided that C1/C2 ≤ h.

Algorithms and Programs

1. Use Programs 9.11 and 9.12 to solve the given boundary problem using step sizes
h = 0.1 and h = 0.01. Plot your two approximate solutions and the actual solution
on the same coordinate system.
(a) x ′′ = 2x ′ − x + t2 − 1 over [0, 1] with x(0) = 5 and x(1) = 10

x(t) = t2 + 4t + 5
(b) x ′′ + (1/t)x ′ + (1− 1/(4t2))x = 0 over [1, 6] with x(1) = 1 and x(6) = 0

x(t) = 0.2913843206 cos(t)+ 1.001299385 sin(t)√
t

(c) x ′′ − (1/t)x ′ + (1/t2)x = 1 over [0.5, 4.5] with x(0.5) = 1 and x(4.5) = 2
x(t) = t2 − 0.2525826491t − 2.528442297t ln(t)

In Problems 2 through 7, use Programs 9.11 and 9.12 to solve the given boundary problem
using step sizes h = 0.2, h = 0.1, and h = 0.05. For each problem, graph the three
solutions on the same coordinate system.

2. x ′′ = (−2/t)x ′ + (2/t2)x + (10 cos(ln(t)))/t2 over [1, 3] with x(1) = 1 and x(3) =
−1

3. x ′′ = −5x ′ − 6x + te−2t + 3.9 cos(3t) over [0, 3] with x(0) = 0.95 and x(3) = 0.15

4. x ′′ = −4x ′ − 4x + 5 cos(4t)+ sin(2t) over [0, 2] with x(0) = 0.75 and x(2) = 0.25

5. x ′′ = −2x ′ − 2x + e−t + sin(2t) over [0, 4] with x(0) = 0.6 and x(4) = −0.1

6. x ′′ + (2/t)x ′ − (2/t2)x = sin(t)/t2 over [1, 6] with x(1) = −0.02 and x(6) = 0.02

7. x ′′ + (1/t)x ′ + (1 − 1/(4t2))x = √t cos(t) over [1, 6] with x(1) = 1.0 and x(6) =
−0.5

8. Construct a program that will call Programs 9.11 and 9.12 and carry out the extrapo-
lation process illustrated in Example 9.18 and Table 9.19.

9. For each of the given boundary value problems, use your program from Problem 8
and the step sizes h = 0.1, h = 0.05, and h = 0.025 to construct a table analogous
to Table 9.19. Plot your extrapolated solution and the actual solution on the same
coordinate system.
(a) x ′′ = 2x ′ − x + t2 − 1 over [0, 1] with x(0) = 5 and x(1) = 10

x(t) = t2 + 4t + 5
(b) x ′′ + (1/t)x ′ + (1− 1/(4t2))x = 0 over [1, 6] with x(1) = 1 and x(6) = 0

x(t) = 0.2913843206 cos(t)+ 1.001299385 sin(t)√
t

(c) x ′′ − (1/t)x ′ + (1/t2)x = 1 over [0.5, 4.5] with x(0.5) = 1 and x(4.5) = 2
x(t) = t2 − 0.2525826491t − 2.528442297t ln(t)

10
Solution of
Partial Differential Equations

Many problems in applied science, physics, and engineering are modeled mathemat-
ically with partial differential equations. A differential equation involving more than
one independent variable is called a partial differential equation (PDE). It is not nec-
essary to have taken a specialized course in PDEs to understand the rudimentary prin-
ciples involved in obtaining computer solutions. In this chapter we will study finite-
difference methods which are based on formulas for approximating the first and second
derivatives of a function. We start by classifying the three types of equations under
investigation and introduce a physical problem for each case. A partial differential
equation of the form

(1) A�xx + B�xy + C�yy = f (x, y, �, �x , �y),

where A, B, and C are constants, is called quasilinear. There are three types of quasi-
linear equations:

If B2 − 4AC < 0, the equation is called elliptic.(2)

If B2 − 4AC = 0, the equation is called parabolic.(3)

If B2 − 4AC > 0, the equation is called hyperbolic.(4)

As an example of a hyperbolic equation, we consider the one-dimensional model
for a vibrating string. The displacement u(x, t) is governed by the wave equation

(5) ρutt (x, y) = T uxx (x, t) for 0 < x < L and 0 < t <∞,

544

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 545

u

x
x x = Lx = 0

u = u (x, t)

Figure 10.1 The wave equation
models a vibrating string.

Insulation

Rod

x = 0
x = Lu(0, t) = c1

u(L, t) = c2

x Figure 10.2 The heat equation
models the temperature in an
insulated rod.

with the given initial position and velocity functions

(6)
u(x, 0) = f (x) for t = 0 and 0 ≤ x ≤ L ,

ut (x, 0) = g(x) for t = 0 and 0 < x < L ,

and the boundary values

(7)
u(0, t) = 0 for x = 0 and 0 ≤ t <∞,

u(L , t) = 0 for x = L and 0 ≤ t <∞.

The constant ρ is the mass of the string per unit length and T is the tension in the
string. A diagram of a string with fixed ends at the locations (0, 0) and (L , 0) is shown
in Figure 10.1.

As an example of a parabolic equation, we consider the one-dimensional model for
heat flow in an insulated rod of length L (see Figure 10.2). The heat equation, which
involves the temperature u(x, t) in the rod at the position x and time t , is

(8) κuxx (x, t) = σρut (x, t) for 0 < x < L and 0 < t <∞,

the initial temperature distribution at t = 0 is

(9) u(x, 0) = f (x) for t = 0 and 0 ≤ x ≤ L ,

and the boundary values at the ends of the rod are

(10)
u(0, t) = c1 for x = 0 and 0 ≤ t <∞,

u(L , t) = c2 for x = L and 0 ≤ t <∞.

546 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

y

x0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
Figure 10.3 Solution curves
u(x, y) = C to Laplace’s equation.

The constant κ is the coefficient of thermal conductivity, σ is the specific heat, and ρ

is the density of the material in the rod.
As an example of an elliptic equation, consider the potential function u(x, y),

which might represent a steady-state electrostatic potential or a steady-state temper-
ature distribution in a rectangular region in the plane. These situations are modeled
with Laplace’s equation in a rectangle:

(11) uxx (x, y)+ uyy(x, y) = 0 for 0 < x < 1 and 0 < y < 1,

with boundary conditions specified:

u(x, 0) = f1(x) for y = 0 and 0 ≤ x ≤ 1 (on the bottom),

u(x, 1) = f2(x) for y = 1 and 0 ≤ x ≤ 1 (on the top),

u(0, y) = f3(y) for x = 0 and 0 ≤ y ≤ 1 (on the left),

u(1, y) = f4(y) for x = 1 and 0 ≤ y ≤ 1 (on the right).

A contour plot for u(x, y) with boundary functions f1(x) = 0, f2(x) = sin(πx),
f3(y) = 0, and f4(y) = 0 over the square R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is
shown in Figure 10.3.

10.1 Hyperbolic Equations

Wave Equation

As an example of a hyperbolic partial differential equation, we consider the wave equa-
tion

(1) utt (x, t) = c2uxx (x, t) for 0 < x < a and 0 < t < b,

SEC. 10.1 HYPERBOLIC EQUATIONS 547

tm

tj+1

x2 xi−1 xi+1 xnxi xn−1x1

tj

tj−1

t1 Figure 10.4 The grid for solving
utt (x, t) = c2uxx (x, t) over R.

with the boundary conditions

u(0, t) = 0 and u(a, t) = 0 for 0 ≤ t ≤ b,

u(x, 0) = f (x) for 0 ≤ x ≤ a,(2)

ut (x, 0) = g(x) for 0 < x < a.

The wave equation models the displacement u of a vibrating elastic string with fixed
ends at x = 0 and x = a. Although analytic solutions to the wave equation can
be obtained with Fourier series, we use the problem as a prototype of a hyperbolic
equation.

Derivation of the Difference Equation

Partition the rectangle R = {(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤ b} into a grid consisting of
n−1 by m−1 rectangles with sides �x = h and �t = k, as shown in Figure 10.4. Start
at the bottom row, where t = t1 = 0 and the solution is known to be u(xi , t1) = f (xi).
We shall use a difference-equation method to compute approximations

{ui, j : i = 1, 2, . . . , n} in successive rows for j = 2, 3, . . . , m.

The true solution value at the grid points is u(xi , t j).
The central-difference formulas for approximating utt (x, t) and uxx (x, t) are

(3) utt (x, t) = u(x, t + k)− 2u(x, t)+ u(x, t − k)

k2
+ O(k2)

and

(4) uxx (x, t) = u(x + h, t)− 2u(x, t)+ u(x − h, t)

h2
+ O(h2).

548 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

r2 ui+1, j

ui, j−1

r2ui−1, j

(2 − 2r2)ui, j

−ui, j−1
Figure 10.5 The wave equation
stencil.

The grid spacing is uniform in every row: xi+1 = xi + h (and xi−1 = xi − h); and it is
uniform in every column: t j+1 = t j + k (and t j−1 = t j − k). Next, we drop the terms
O(k2) and O(h2) and use the approximation ui, j for u(xi , t j) in equations (3) and (4),
which in turn are substituted into (1); this produces the difference equation

(5)
ui, j+1 − 2ui, j + ui, j−1

k2
= c2 ui+1, j − 2ui, j + ui−1, j

h2
,

which approximates equation (1). For convenience, the substitution r = ck/h is intro-
duced in (5), and we obtain the relation

(6) ui, j+1 − 2ui, j + ui, j−1 = r2(ui+1, j − 2ui, j + ui−1, j).

Equation (6) is employed to find row j + 1 across the grid, assuming that approxima-
tions in both rows j and j − 1 are known:

(7) ui, j+1 = (2− 2r2)ui, j + r2(ui+1, j + ui−1, j)− ui, j−1,

for i = 2, 3, . . . , n− 1. The four known values on the right side of equation (7), which
are used to create the approximation ui, j+1, are shown in Figure 10.5.

Caution must be taken when using formula (7). If the error made at one stage of
the calculations is eventually dampened out, the method is called stable. To guarantee
stability in formula (7), it is necessary that r = ck/h ≤ 1. There are other schemes,
called implicit methods, that are more complicated to implement, but do not have sta-
bility restrictions for r .

Starting Values
Two starting rows of values corresponding to j = 1 and j = 2 must be supplied in
order to use formula (7) to compute the third row. Since the second row is not usually
given, the boundary function g(x) is used to help produce starting approximations in
the second row. Fix x = xi at the boundary and apply Taylor’s formula of order 1 for
expanding u(x, t) about (xi , 0). The value u(xi , k) satisfies

(8) u(xi , k) = u(xi , 0)+ ut (xi , 0)k + O(k2).

SEC. 10.1 HYPERBOLIC EQUATIONS 549

Then use u(xi , 0) = f (xi) = fi and ut (xi , 0) = g(xi) = gi in (8) to produce the
formula for computing the numerical approximations in the second row:

(9) ui,2 = fi + kgi for i = 2, 3, . . . , n − 1.

Usually, u(xi , t2) �= ui,2, and such errors introduced by formula (9) will propagate
throughout the grid and will not be dampened out when the scheme in (7) is imple-
mented. Hence it is prudent to use a very small step size for k so that the values for
ui,2 given in (9) do not contain a large amount of truncation error.

Often, the boundary function f (x) has a second derivative f ′′(x) over the interval.
In this case we have uxx (x, 0) = f ′′(x), and it is beneficial to use the Taylor formula
of order n = 2 to help construct the second row. To do this, we go back to the wave
equation and use the relationship between the second-order partial derivatives to obtain

(10) utt (xi , 0) = c2uxx (xi , 0) = c2 f ′′(xi) = c2 fi+1 − 2 fi + fi−1

h2
+ O(h2).

Recall that Taylor’s formula of order 2 is

(11) u(x, k) = u(x, 0)+ ut (x, 0)k + utt (x, 0)k2

2
+ O(k3).

Applying formula (11) at x = xi , together with (9) and (10), we get

(12) u(xi , k) = fi + kgi + c2k2

2h2
(fi+1 − 2 fi + fi−1)+ O(h2)O(k2)+ O(k3).

Using r = ck/h, formula (12) can be simplified to obtain a difference formula for the
improved numerical approximations in the second row:

(13) ui,2 = (1− r2) fi + kgi + r2

2
(fi+1 + fi−1)

for i = 2, 3, . . . , n − 1.

D’Alembert’s Solution

The French mathematician Jean Le Rond d’Alembert (1717–1783) discovered that

(14) u(x, t) = F(x + ct)+ G(x − ct)

is a solution to the wave equation (1) over the interval 0 ≤ x ≤ a, provided that
F ′, F ′′, G ′, and G ′′ all exist and F and G have period 2a and obey the relationships
F(−z) = −F(z), F(z + 2a) = F(z), G(−z) = −G(z), and G(z + 2a) = G(z) for

550 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

all z. We can check this out by direct substitution. The second-order partial derivatives
of the solution (14) are

utt (x, t) = c2 F ′′(x + ct)+ c2G ′′(x − ct),(15)

uxx (x, t) = F ′′(x + ct)+ G ′′(x − ct).(16)

Substitution of these quantities into (1) produces the desired relationship:

utt (x, t) = c2 F ′′(x + ct)+ c2G ′′(x − ct)

= c2(F ′′(x + ct)+ G ′′(x − ct))

= c2uxx (x, t).

The particular solution that has the boundary values u(x, 0) = f (x) and ut (x, 0) = 0
requires that F(x) = G(x) = f (x)/2 and is left for the reader to verify.

Two Exact Rows Given

The accuracy of the numerical approximations produced by the equations in (7) de-
pends on the truncation errors in the formulas used to convert the partial differential
equation into a difference equation. Although it is unlikely to know values of the exact
solution for the second row of the grid, if such knowledge were available, using the
increment k = ch along the t-axis will generate an exact solution at all the other points
throughout the grid.

Theorem 10.1. Assume that the two rows of values ui,1 = u(xi , 0) and ui,2 =
u(xi , k), for i = 1, 2, . . . , n, are the exact solutions to the wave equation (1). If the
step size k = h/c is chosen along the t-axis, then r = 1 and formula (7) becomes

(17) ui, j+1 = ui+1, j + ui−1, j − ui, j−1.

Furthermore, the finite-difference solutions produced by (17) throughout the grid are
exact solution values to the differential equation (neglecting computer round-off error).

Proof. Use d’Alembert’s solution and the relation ck = h. The calculation xi−ct j =
(i − 1)h − c(j − 1)k = (i − 1)h − (j − 1)h = (i − j)h and a similar one producing
xi +ct j = (i+ j−2)h are used in equation (14) to produce the following special form
of ui, j :

(18) ui, j = F((i − j)h)+ G((i + j − 2)h)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. Applying this formula to the terms

SEC. 10.1 HYPERBOLIC EQUATIONS 551

ui+1, j , ui−1, j , and ui, j−1 on the right side of (17) yields

ui+1, j + ui−1, j − ui, j−1

= F((i + 1− j)h)+ F((i − 1− j)h)

− F((i − (j − 1))h)+ G((i + 1+ j − 2)h)

+ G((i − 1+ j − 2)h)− G((i + j − 1− 2)h)

= F((i − (j + 1))h)+ G((i + j + 1− 2)h) = ui, j+1,

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. •
Warning. Theorem 10.1 does not guarantee that the numerical solutions are exact
when numerical calculations based on (9) and (13) are used to construct approxima-
tions ui,2 in the second row. Indeed, truncation error will be introduced if ui,2 �=
u(xi , k) for some i , where 1 ≤ i ≤ n. This is why we endeavor to obtain the best
possible values for the second row by using the second-order Taylor approximations in
equation (13).

Example 10.1. Use the finite-difference method to solve the wave equation for a vibrating
string:

(19) utt (x, t) = 4uxx (x, t) for 0 < x < 1 and 0 < t < 0.5,

with the boundary conditions

u(0, t) = 0 and u(1, t) = 0 for 0 ≤ t ≤ 0.5,

u(x, 0) = f (x) = sin(πx)+ sin(2πx) for 0 ≤ x ≤ 1,(20)

ut (x, 0) = g(x) = 0 for 0 ≤ x ≤ 1.

For convenience we choose h = 0.1 and k = 0.05. Since c = 2, this yields r =
ck/h = 2(0.05)/0.1 = 1. Since g(x) = 0 and r = 1, formula (13) for creating the second
row is

(21) ui,2 = fi−1 + fi+1

2
for i = 2, 3, . . . , 9.

Substituting r = 1 into equation (7) gives the simplified difference equation

(22) ui, j+1 = ui+1, j + ui−1, j − ui, j−1.

Applying formulas (21) and (22) successively to generate rows will produce the approxi-
mations to u(x, t) given in Table 10.1 for 0 < xi < 1 and 0 ≤ t j ≤ 0.50.

The numerical values in Table 10.1 agree to more than six decimal places of accuracy
with those obtained with the analytic solution

u(x, t) = sin(πx) cos(2π t)+ sin(2πx) cos(4π t).

552 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Table 10.1 Solution of the Wave Equation (19) with Boundary Conditions (20)

t j x2 x3 x4 x5 x6 x7 x8 x9 x10

0.00 0.896802 1.538842 1.760074 1.538842 1.000000 0.363271 −0.142040 −0.363271 −0.278768
0.05 0.769421 1.328438 1.538842 1.380037 0.951056 0.428980 0.000000 −0.210404 −0.181636
0.10 0.431636 0.769421 0.948401 0.951056 0.809017 0.587785 0.360616 0.181636 0.068364
0.15 0.000000 0.051599 0.181636 0.377381 0.587785 0.740653 0.769421 0.639384 0.363271
0.20 −0.380037 −0.587785 −0.519421 −0.181636 0.309017 0.769421 1.019421 0.951056 0.571020
0.25 −0.587785 −0.951056 −0.951056 −0.587785 0.000000 0.587785 0.951056 0.951056 0.587785
0.30 −0.571020 −0.951056 −1.019421 −0.769421 −0.309017 0.181636 0.519421 0.587785 0.380037
0.35 −0.363271 −0.639384 −0.769421 −0.740653 −0.587785 −0.377381 −0.181636 −0.051599 0.000000
0.40 −0.068364 −0.181636 −0.360616 −0.587785 −0.809017 −0.951056 −0.948401 −0.769421 −0.431636
0.45 0.181636 0.210404 0.000000 −0.428980 −0.951056 −1.380037 −1.538842 −1.328438 −0.769421
0.50 0.278768 0.363271 0.142040 −0.363271 −1.000000 −1.538842 −1.760074 −1.538842 −0.896802

u

x t

Figure 10.6 The vibrating string for equations (19) and (20).

A three-dimensional presentation of the data in Table 10.1 is given in Figure 10.6. �

Example 10.2. Use the finite-difference method to solve the wave equation for a vibrating
string:

(23) utt (x, t) = 4uxx (x, t) for 0 < x < 1 and 0 < t < 0.5,

with the boundary conditions

(24)

u(0, t) = 0 and u(1, t) = 0 for 0 ≤ t ≤ 1,

u(x, 0) = f (x) =
{

x for 0 ≤ x ≤ 3
5

1.5− 1.5x for 3
5 ≤ x ≤ 1,

ut (x, 0) = g(x) = 0 for 0 < x < 1.

For convenience we choose h = 0.1 and k = 0.05. Since c = 2, this again yields
r = 1. Applying formulas (21) and (22) successively to generate rows will produce the

SEC. 10.1 HYPERBOLIC EQUATIONS 553

Table 10.2 Solution of the Wave Equation (23) with Boundary Conditions (24)

t j x2 x3 x4 x5 x6 x7 x8 x9 x10

0.00 0.100 0.200 0.300 0.400 0.500 0.600 0.450 0.300 0.150
0.05 0.100 0.200 0.300 0.400 0.500 0.475 0.450 0.300 0.150
0.10 0.100 0.200 0.300 0.400 0.375 0.350 0.325 0.300 0.150
0.15 0.100 0.200 0.300 0.275 0.250 0.225 0.200 0.175 0.150
0.20 0.100 0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025
0.25 0.100 0.075 0.050 0.025 0.000 −0.025 −0.050 −0.075 −0.100
0.30 −0.025 −0.050 −0.075 −0.100 −0.125 −0.150 −0.175 −0.200 −0.100
0.35 −0.150 −0.175 −0.200 −0.225 −0.250 −0.275 −0.300 −0.200 −0.100
0.40 −0.150 −0.300 −0.325 −0.350 −0.375 −0.400 −0.300 −0.200 −0.100
0.45 −0.150 −0.300 −0.450 −0.475 −0.500 −0.400 −0.300 −0.200 −0.100
0.50 −0.150 −0.300 −0.450 −0.600 −0.500 −0.400 −0.300 −0.200 −0.100

u

x
t

Figure 10.7 The vibrating string for equations (23) and (24).

approximations to u(x, t) given in Table 10.2 for 0 ≤ xi ≤ 1 and 0 ≤ t j ≤ 0.50. A three-
dimensional presentation of the data in Table 10.2 is given in Figure 10.7. �

Program 10.1 approximates the solution of the wave equation ((1) and (2)). A three-
dimensional presentation of the output matrix U can be obtained by using the com-
mands mesh(U) or surf(U). Additionally, the command contour(U) will produce a
graph analogous to Figure 10.3, while the command contour3(U) will produce the
three-dimensional analogy of Figure 10.3.

554 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Program 10.1 (Finite-Difference Solution for the Wave Equation). To approx-
imate the solution of utt (x, t) = c2uxx (x, t) over R = {(x, t) : 0 ≤ x ≤ a, 0 ≤
t ≤ b} with u(0, t) = 0, u(a, t) = 0, for 0 ≤ t ≤ b, and u(x, 0) = f (x),
ut (x, 0) = g(x), for 0 ≤ x ≤ a.

function U = finedif(f,g,a,b,c,n,m)

%Input - f=u(x,0) as a string ’f’
% - g=ut(x,0) as a string ’g’
% - a and b right endpoints of [0,a] and [0,b]
% - c the constant in the wave equation
% - n and m number of grid points over [0,a] and [0,b]
%Output - U solution matrix; analogous to Table 10.1

%Initialize parameters and U
h=a/(n-1);
k=b/(m-1);
r=c*k/h;
r2=r^2;
r22=r^2/2;
s1=1-r^2;
s2=2-2*r^2;
U=zeros(n,m);

%Compute first and second rows
for i=2:n-1

U(i,1)=feval(f,h*(i-1));
U(i,2)=s1*feval(f,h*(i-1))+k*feval(g,h*(i-1)) ...

+r22*(feval(f,h*i)+feval(f,h*(i-2)));
end

%Compute remaining rows of U
for j=3:m,

for i=2:(n-1),
U(i,j) = s2*U(i,j-1)+r2*(U(i-1,j-1)+U(i+1,j-1))-U(i,j-2);

end
end

U=U’;

SEC. 10.1 HYPERBOLIC EQUATIONS 555

Exercises for Hyperbolic Equations

1. (a) Verify by direct substitution that u(x, t) = sin(nπx) cos(2nπ t) is a solution to
the wave equation utt (x, t) = 4uxx (x, t) for each positive integer n = 1, 2,

(b) Verify by direct substitution that u(x, t) = sin(nπx) cos(cnπ t) is a solution
to the wave equation utt (x, t) = c2uxx (x, t) for each positive integer n = 1,
2,

2. Assume that the initial position and velocity are u(x, 0) = f (x) and ut (x, 0) ≡ 0,
respectively. Show that the d’Alembert solution for this case is

u(x, t) = f (x + ct)+ f (x − ct)

2
.

3. Obtain a simplified form of the difference equation (7) in the case h = 2ck.

In Exercises 4 and 5, use the finite-difference method to calculate the first three rows of
the approximate solution for the given wave equation. Carry out your calculations by hand
(calculator).

4. utt (x, t) = 4uxx (x, t), for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.5, with the boundary conditions

u(0, t) = 0 and u(1, t) = 0 for 0 ≤ t ≤ 0.5,

u(x, 0) = f (x) = sin(πx) for 0 ≤ x ≤ 1,

ut (x, 0) = g(x) = 0 for 0 ≤ x ≤ 1.

Let h = 0.2, k = 0.1, and r = 1.

5. utt (x, t) = 4uxx (x, t), for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 0.5, with the boundary conditions

u(0, t) = 0 and u(1, t) = 0 for 0 ≤ t ≤ 0.5,

u(x, 0) = f (x) =

5x

2
for 0 ≤ x ≤ 3

5 ,

15− 15x

4
for 3

5 ≤ x ≤ 1,

ut (x, 0) = g(x) = 0 for 0 < x < 1.

Let h = 0.2, k = 0.1, and r = 1.

6. Assume that the initial position and velocity are u(x, 0) = f (x) and ut (x, 0) = g(x),
respectively. Show that the d’Alembert solution for this case is

u(x, t) = f (x + ct)+ f (x − ct)

2
+ 1

2c

∫ x+ct

x−ct
g(s) ds.

7. For the equation utt (x, t) = 9uxx (x, t), what relationship between h and k must occur
in order to produce the difference equation ui, j+1 = ui+1, j + ui−1, j − ui, j−1?

8. What difficulty might occur when trying to use the finite-difference method to solve
utt (x, t) = 4uxx (x, t) with the choice k = 0.02 and h = 0.03?

556 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Algorithms and Programs

In Problems 1 to 8, use Program 10.1 to solve the wave equation utt (x, t) = c2uxx (x, t),
for 0 ≤ x ≤ a and 0 ≤ t ≤ b, with the boundary conditions

u(0, t) = 0 and u(a, t) = 0 for 0 ≤ t ≤ b,

u(x, 0) = f (x) for 0 ≤ x ≤ a,

ut (x, 0) = g(x) for 0 ≤ x ≤ a,

for the given values. Use the surf and contour commands to plot your approximate
solutions.

1. Use a = 1, b = 1, c = 1, f (x) = sin(πx), and g(x) = 0. For convenience, choose
h = 0.1 and k = 0.1.

2. Use a = 1, b = 1, c = 1, f (x) = x − x2, and g(x) = 0. For convenience, choose
h = 0.1 and k = 0.1.

3. Use a = 1, b = 1, c = 1, f (x) =
{

2x for 0 ≤ x ≤ 1
2 ,

2− 2x for 1
2 ≤ x ≤ 1.

g(x) = 0, h = 0.1, and k = 0.1.

4. Use a = 1, b = 1, c = 2, f (x) = sin(πx), g(x) = 0, h = 0.1, and k = 0.05.

5. Use a = 1, b = 1, c = 2, f (x) = x − x2, g(x) = 0, h = 0.1, and k = 0.05.

6. Repeat Problem 3, but with c = 2 and k = 0.05.

7. Repeat Problem 1, but with f (x) = sin(2πx)+ sin(4πx).

8. Repeat Problem 1, but with c = 2, f (x) = sin(2πx)+ sin(4πx), and k = 0.05.

10.2 Parabolic Equations

Heat Equation

As an example of parabolic differential equations, we consider the one-dimensional
heat equation

(1) ut (x, t) = c2uxx (x, t) for 0 ≤ x < a and 0 < t < b,

with the initial condition

(2) u(x, 0) = f (x) for t = 0 and 0 ≤ x ≤ a,

and the boundary conditions

(3)
u(0, t) = g1(t) ≡ c1 for x = 0 and 0 ≤ t ≤ b,

u(a, t) = g2(t) ≡ c2 for x = a and 0 ≤ t ≤ b.

SEC. 10.2 PARABOLIC EQUATIONS 557

x1 x2 xi−1 xi xi+1 xn−1 xn

tm

tj+1

tj

t1 Figure 10.8 The grid for solving
ut (x, t) = c2uxx (x, t) over R.

The heat equation models the temperature in an insulated rod with ends held at con-
stant temperatures c1 and c2 and the initial temperature distribution along the rod be-
ing f (x). Although analytic solutions to the heat equation can be obtained with Fourier
series, we use the problem as a prototype of a parabolic equation for numerical solu-
tion.

Derivation of the Difference Equation

Assume that the rectangle R = {(x, t) : 0 ≤ x ≤ a, 0 ≤ t ≤ b} is subdivided into
n − 1 by m − 1 rectangles with sides �x = h and �t = k, as shown in Figure 10.8.
Start at the bottom row, where t = t1 = 0, and the solution is u(xi , t1) = f (xi). A
method for computing the approximations to u(x, t) at grid points in successive rows
{u(xi , t j) : i = 1, 2, . . . , n}, for j = 2, 3, . . . , m, will be developed.

The difference formulas used for ut (x, t) and uxx (x, t) are

(4) ut (x, t) = u(x, t + k)− u(x, t)

k
+ O(k)

and

(5) uxx (x, t) = u(x − h, t)− 2u(x, t)+ u(x + h, t)

h2
+ O(h2).

The grid spacing is uniform in every row: xi+1 = xi + h (and xi−1 = xi − h), and
it is uniform in every column: t j+1 = t j + k. Next, we drop the terms O(k) and O(h2)

and use the approximation ui, j for u(xi , t j) in equations (4) and (5), which are in turn
substituted into equation (1) to obtain

(6)
ui, j+1 − ui, j

k
= c2 ui−1, j − 2ui, j + ui+1, j

h2
,

558 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

rui−1, j

ui, j+1

(1 − 2r)ui, j

rui+1, j Figure 10.9 The forward-
difference stencil.

which approximates the solution to (1). For convenience, the substitution r = c2k/h2

is introduced in (6), and the result is the explicit forward-difference equation

(7) ui, j+1 = (1− 2r)ui, j + r(ui−1, j + ui+1, j).

Equation (7) is employed to create the (j + 1)th row across the grid, assuming that
approximations in the j th row are known. Notice that this formula explicitly gives the
value ui, j+1 in terms of ui−1, j , ui, j , and ui+1, j . The computational stencil representing
the situation in formula (7) is given in Figure 10.9.

The simplicity of formula (7) makes it appealing to use. However, it is important
to use numerical techniques that are stable. If any error made at one stage of the
calculations is eventually dampened out, the method is called stable. The explicit
forward-difference equation (7) is stable if and only if r is restricted to the interval
0 ≤ r ≤ 1

2 . This means that the step size k must satisfy k ≤ h2/(2c2). If this condition
is not fulfilled, errors committed in one line {ui, j } might be magnified in subsequent
lines {ui,p} for some p > j . The next example illustrates this point.

Example 10.3. Use the forward-difference method to solve the heat equation

(8) ut (x, t) = uxx (x, t) for 0 < x < 1 and 0 < t < 0.20,

with the initial condition

(9) u(x, 0) = f (x) = 4x − 4x2 for t = 0 and 0 ≤ x ≤ 1,

and the boundary conditions

(10)
u(0, t) = g1(t) ≡ 0 for x = 0 and 0 ≤ t ≤ 0.20,

u(1, t) = g2(t) ≡ 0 for x = 1 and 0 ≤ t ≤ 0.20.

For the first illustration, we use the step sizes �x = h = 0.2 and �t = k = 0.02 and
c = 1, so the ratio is r = 0.5. The grid will be n = 6 columns wide by m = 11 rows high.
In this case, formula (7) becomes

(11) ui, j+1 = ui−1, j + ui+1, j

2
.

SEC. 10.2 PARABOLIC EQUATIONS 559

Table 10.3 Using the Forward-difference Method with r = 0.5

x1 = 0.00 x2 = 0.20 x3 = 0.40 x4 = 0.60 x5 = 0.80 x6 = 1.00

t1 = 0.00 0.000000 0.640000 0.960000 0.960000 0.640000 0.000000
t2 = 0.02 0.000000 0.480000 0.800000 0.800000 0.480000 0.000000
t3 = 0.04 0.000000 0.400000 0.640000 0.640000 0.400000 0.000000
t4 = 0.06 0.000000 0.320000 0.520000 0.520000 0.320000 0.000000
t5 = 0.08 0.000000 0.260000 0.420000 0.420000 0.260000 0.000000
t6 = 0.10 0.000000 0.210000 0.340000 0.340000 0.210000 0.000000
t7 = 0.12 0.000000 0.170000 0.275000 0.275000 0.170000 0.000000
t8 = 0.14 0.000000 0.137500 0.222500 0.222500 0.137500 0.000000
t9 = 0.16 0.000000 0.111250 0.180000 0.180000 0.111250 0.000000

t10 = 0.18 0.000000 0.090000 0.145625 0.145625 0.090000 0.000000
t11 = 0.20 0.000000 0.072812 0.117813 0.117813 0.072812 0.000000

u

x

t

Figure 10.10 Using the forward-difference method with r = 0.5.

Formula (11) is stable for r = 0.5 and can be used successfully to generate reasonably
accurate approximations to u(x, t). Successive rows in the grid are given in Table 10.3.
A three-dimensional presentation of the data in Table 10.3 is given in Figure 10.10.

For our second illustration, we use the step sizes �x = h = 0.2 and �t = k = 1
30 ≈

0.033333, so that the ratio is r = 0.833333. In this case, formula (7) becomes

(12) ui, j+1 = −0.666665ui, j + 0.833333(ui−1, j + ui+1, j).

560 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Table 10.4 Using the Forward-difference Method with r = 0.833333

x1 = 0.00 x2 = 0.20 x3 = 0.40 x4 = 0.60 x5 = 0.80 x6 = 1.00

t1 = 0.000000 0.000000 0.640000 0.960000 0.960000 0.640000 0.000000
t2 = 0.033333 0.000000 0.373333 0.693333 0.693333 0.373333 0.000000
t3 = 0.066667 0.000000 0.328889 0.426667 0.426667 0.328889 0.000000
t4 = 0.100000 0.000000 0.136296 0.345185 0.345185 0.136296 0.000000
t5 = 0.133333 0.000000 0.196790 0.171111 0.171111 0.196790 0.000000
t6 = 0.166667 0.000000 0.011399 0.192510 0.192510 0.011399 0.000000
t7 = 0.200000 0.000000 0.152826 0.041584 0.041584 0.152826 0.000000
t8 = 0.233333 0.000000 −0.067230 0.134286 0.134286 −0.067230 0.000000
t9 = 0.266667 0.000000 0.156725 −0.033644 −0.033644 0.156725 0.000000

t10 = 0.300000 0.000000 −0.132520 0.124997 0.124997 −0.132520 0.000000
t11 = 0.333333 0.000000 0.192511 −0.089601 −0.089601 0.192511 0.000000

u

x

t

Figure 10.11 Using the forward-difference method with r =
0.833333.

Formula (12) is unstable in this case, because r > 1
2 , and errors committed at one row will

be magnified in successive rows. Numerical values that turn out to be imprecise approx-
imations to u(x, t), for 0 ≤ t ≤ 0.33333, are given in Table 10.4. A three-dimensional
presentation of the data in Table 10.4 is given in Figure 10.11. �

The difference equation (7) has accuracy of the order O(k)+ O(h2). Because the
term O(k) decreases linearly as k tends to zero, it is not surprising that it must be made

SEC. 10.2 PARABOLIC EQUATIONS 561

small to produce good approximations. However, the stability requirement introduces
further considerations. Suppose that the solutions over the grid are not sufficiently
accurate and that both the increments �x = h0 and �t = k0 must be reduced. For
simplicity, suppose that the new x increment is �x = h1 = h0/2. If the same ratio r
is used, k1 must satisfy

k1 = r(h1)
2

c2
= r(h0)

2

4c2
= k0

4
.

This results in a doubling and quadrupling of the number of grid points along the x-axis
and t-axis, respectively. Consequently, there must be an eightfold increase in the total
computational effort when reducing the grid size in this manner. This extra effort is
usually prohibitive and demands that we explore a more efficient method that does not
have stability restrictions. The method proposed will be implicit rather than explicit.
The apparent rise in the level of complexity will have the immediate payoff of being
unconditionally stable.

Crank-Nicholson Method
An implicit scheme, invented by John Crank and Phyllis Nicholson, is based on nu-
merical approximations for solutions of equation (1) at the point (x, t + k/2) that lies
between the rows in the grid. Specifically, the approximation used for ut (x, t + k/2)

is obtained from the central-difference formula,

(13) ut

(
x, t + k

2

)
= u(x, t + k)− u(x, t)

k
+ O(k2).

The approximation used for uxx (x, t + k/2) is the average of the approximations
uxx (x, t) and uxx (x, t + k), which has an accuracy of the order O(h2):

uxx

(
x, t + k

2

)
= 1

2h2
(u(x − h, t + k)− 2u(x, t + k)+ u(x + h, t + k)

+ u(x − h, t)− 2u(x, t)+ u(x + h, t))+ O(h2).

(14)

In a fashion similar to the previous derivation, we substitute (13) and (14) into (1) and
neglect the error terms O(h2) and O(k2). Then employing the notation ui, j = u(xi , t j)

will produce the difference equation

(15)
ui, j+1 − ui, j

k
= c2 ui−1, j+1 − 2ui, j+1 + ui+1, j+1 + ui−1, j − 2ui, j + ui+1, j

2h2
.

Also, the substitution r = c2k/h2 is used in (15). But this time we must solve for the
three “yet to be computed” values ui−1, j+1, ui, j+1, and ui+1, j+1. This is accomplished
by placing them all on the left side of the equation. Then rearrangement of the terms
in equation (15) results in the implicit difference formula

(16) − rui−1, j+1 + (2+ 2r)ui, j+1 − rui+1, j+1

= (2− 2r)ui, j + r(ui−1, j + ui+1, j).

562 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

ui−1, j+1 ui, j+1 ui+1, j+1

ui−1, j ui, j ui+1, j
Figure 10.12 The Crank-
Nicholson stencil.

for i = 2, 3, . . . , n − 1. The terms on the right-hand side of equation (16) are all
known. Hence the equations in (16) form a tridiagonal linear system AX = B. The
six points used in the Crank-Nicholson formula (16), together with the intermediate
grid point where the numerical approximations are based, are shown in Figure 10.12.

Implementation of formula (16) is sometimes done by using the ratio r = 1. In
this case the increment along the t-axis is �t = k = h2/c2, and the equations in (16)
simplify and become

(17) −ui−1, j+1 + 4ui, j+1 − ui+1, j+1 = ui−1, j + ui+1, j ,

for i = 2, 3, . . . , n−1. The boundary conditions are used in the first and last equations
(i.e., u1, j = u1, j+1 = c1 and un, j = un, j+1 = c2, respectively). Equations (17) are
especially pleasing to view in their tridiagonal matrix form AX = B.

4 −1
−1 4 −1 O

. . .

−1 4 −1
. . .

O −1 4 −1
−1 4

u2, j+1
u3, j+1

...

u p, j+1
...

un−2, j+1
un−1, j+1

=

2c1 + u3, j
u2, j + u4, j

...

u p−1, j + u p+1, j
...

un−3, j + un−1, j
un−2, j + 2c2

.

When the Crank-Nicholson method is implemented with a computer, the linear system
AX = B can be solved by either direct means or by iteration.

Example 10.4. Use the Crank-Nicholson method to solve the equation

(18) ut (x, t) = uxx (x, t) for 0 < x < 1 and 0 < t < 0.1,

with the initial condition

(19) u(x, 0) = f (x) = sin(πx)+ sin(3πx) for t = 0 and 0 ≤ x ≤ 1,

SEC. 10.2 PARABOLIC EQUATIONS 563

Table 10.5 Values u(xi , ti) Using the Crank-Nicholson Method with t j = (j − 1)/100

x2 = 0.1 x3 = 0.2 x4 = 0.3 x5 = 0.4 x6 = 0.5 x7 = 0.6 x8 = 0.7 x9 = 0.8 x10 = 0.9

t1 1.118034 1.538842 1.118034 0.363271 0.000000 0.363271 1.118034 1.538842 1.118034
t2 0.616905 0.928778 0.862137 0.617659 0.490465 0.617659 0.862137 0.928778 0.616905
t3 0.394184 0.647957 0.718601 0.680009 0.648834 0.680009 0.718601 0.647957 0.394184
t4 0.288660 0.506682 0.625285 0.666493 0.673251 0.666493 0.625285 0.506682 0.288660
t5 0.233112 0.425766 0.556006 0.625082 0.645788 0.625082 0.556006 0.425766 0.233112
t6 0.199450 0.372035 0.499571 0.575402 0.600242 0.575402 0.499571 0.372035 0.199450
t7 0.175881 0.331490 0.451058 0.525306 0.550354 0.525306 0.451058 0.331490 0.175881
t8 0.157405 0.298131 0.408178 0.477784 0.501545 0.477784 0.408178 0.298131 0.157405
t9 0.141858 0.269300 0.369759 0.433821 0.455802 0.433821 0.369759 0.269300 0.141858

t10 0.128262 0.243749 0.335117 0.393597 0.413709 0.393597 0.335117 0.243749 0.128262
t11 0.116144 0.220827 0.303787 0.356974 0.375286 0.356974 0.303787 0.220827 0.116144

and the boundary conditions

u(0, t) = g1(t) ≡ 0 for x = 0 and 0 ≤ t ≤ 0.1,

u(1, t) = g2(t) ≡ 0 for x = 1 and 0 ≤ t ≤ 0.1.

For simplicity, we use the step sizes �x = h = 0.1 and �t = k = 0.01 so that the
ratio is r = 1. The grid will be n = 11 columns wide by m = 11 rows high. Applying the
algorithm generates the values in Table 10.5 for 0 < xi < 1 and 0 ≤ t j ≤ 0.1.

The values obtained with the Crank-Nicholson method compare favorably with the
analytic solution u(x, t) = sin(πx)e−π2t + sin(3πx)e−9π2t , the true values for the final
row being

t11 0.115285 0.219204 0.301570 0.354385 0.372569 0.354385 0.301570 0.219204 0.115285

A three-dimensional presentation of the data in Table 10.5 is given in Figure 10.13. �

Program 10.2 (Forward-Difference Method for the Heat Equation). To ap-
proximate the solution of ut (x, t) = c2uxx (x, t) over R = {(x, t) : 0 ≤ x ≤ a, 0 ≤
t ≤ b} with u(x, 0) = f (x), for 0 ≤ x ≤ a, and u(0, t) = c1, u(a, t) = c2, for
0 ≤ t ≤ b.

function U=forwdif(f,c1,c2,a,b,c,n,m)

%Input - f=u(x,0) as a string ’f’
% - c1=u(0,t) and c2=u(a,t)
% - a and b right endpoints of [0,a] and [0,b]
% - c the constant in the heat equation
% - n and m number of grid points over [0,a] and [0,b]
%Output - U solution matrix; analogous to Table 10.4

564 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

u

x

t

Figure 10.13 u = u(xi , t j) from the Crank-Nicholson method.

%Initialize parameters and U
h=a/(n-1);
k=b/(m-1);
r=c^2*k/h^2;
s=1-2*r;
U=zeros(n,m);

%Boundary conditions
U(1,1:m)=c1;
U(n,1:m)=c2;

%Generate first row
U(2:n-1,1)=feval(f,h:h:(n-2)*h)’;

%Generate remaining rows of U
for j=2:m

for i=2:n-1
U(i,j)=s*U(i,j-1)+r*(U(i-1,j-1)+U(i+1,j-1));

end
end

U=U’;

SEC. 10.2 PARABOLIC EQUATIONS 565

Program 10.3 (Crank-Nicholson Method for the Heat Equation). To approx-
imate the solution of ut (x, t) = c2uxx (x, t) over R = {(x, t) : 0 ≤ x ≤ a, 0 ≤
t ≤ b} with u(x, 0) = f (x), for 0 ≤ x ≤ a, and u(0, t) = c1, u(a, t) = c2, for
0 ≤ t ≤ b.

function U=crnich(f,c1,c2,a,b,c,n,m)

%Input - f=u(x,0) as a string ’f’
% - c1=u(0,t) and c2=u(a,t)
% - a and b right endpoints of [0,a] and [0,b]
% - c the constant in the heat equation
% - n and m number of grid points over [0,a] and [0,b]
%Output - U solution matrix; analogous to Table 10.5

%Initialize parameters and U
h=a/(n-1);
k=b/(m-1);
r=c^2*k/h^2;
s1=2+2/r;
s2=2/r-2;
U=zeros(n,m);

%Boundary conditions
U(1,1:m)=c1;
U(n,1:m)=c2;

%Generate first row
U(2:n-1,1)=feval(f,h:h:(n-2)*h)’;

%Form the diagonal and off-diagonal elements of A and
%the constant vector B and solve tridiagonal system AX=B
Vd(1,1:n)=s1*ones(1,n);
Vd(1)=1;
Vd(n)=1;
Va=-ones(1,n-1);
Va(n-1)=0;
Vc=-ones(1,n-1);
Vc(1)=0;
Vb(1)=c1;
Vb(n)=c2;
for j=2:m

for i=2:n-1
Vb(i)=U(i-1,j-1)+U(i+1,j-1)+s2*U(i,j-1);

end
X=trisys(Va,Vd,Vc,Vb);
U(1:n,j)=X’;

end

U=U’

566 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Exercises for Parabolic Equations

1. (a) Verify by direct substitution that u(x, t) = sin(nπx)e−4n2π2t is a solution to the
heat equation ut (x, t) = 4uxx (x, t) for each positive integer n = 1, 2,

(b) Verify by direct substitution that u(x, t) = sin(nπx)e−(cnπ)2t is a solution to
the heat equation ut (x, t) = c2uxx (x, t) for each positive integer n = 1, 2,

2. What difficulty might occur if �t = k = h2/c2 is used with formula (7)?

In Exercises 3 and 4, use the forward-difference method to calculate the first three rows of
the approximate solution for the given heat equation. Carry out your calculations by hand
(calculator).

3. ut (x, t) = uxx (x, t), for 0 < x < 1 and 0 ≤ t ≤ 0.1, with the initial condition
u(x, 0) = f (x) = sin(πx), for t = 0 and 0 ≤ x ≤ 1, and the boundary conditions

u(0, t) = c1 = 0 for x = 0 and 0 ≤ t ≤ 0.1,

u(1, t) = c2 = 0 for x = 1 and 0 ≤ t ≤ 0.1.

Let h = 0.2, k = 0.02, and r = 0.5.

4. ut (x, t) = uxx (x, t), for 0 < x < 1 and 0 ≤ t ≤ 0.1, with the initial condition
u(x, 0) = f (x) = 1 − |2x − 1|, for t = 0 and 0 ≤ x ≤ 1, and the boundary
conditions

u(0, t) = c1 = 0 for x = 0 and 0 ≤ t ≤ 0.1,

u(1, t) = c2 = 0 for x = 1 and 0 ≤ t ≤ 0.1.

5. Suppose that �t = k = h2/(2c2).
(a) Use this in formula (16) and simplify.
(b) Express the equations in part (a) in the matrix form AX = B.
(c) Is the matrix in part (b) strictly diagonally dominant? Why?

6. Show that u(x, t) =∑N
j=1 a j e−(jπ)2t sin(jπx) is a solution to ut (x, t) = uxx (x, t),

for 0 ≤ x ≤ 1 and 0 < t , and has the boundary values u(0, t) = 0, u(1, t) = 0, and
u(x, 0) =∑N

j=1 a j sin(jπx).

7. Consider the analytic solution u(x, t) = sin(πx)e−π2t + sin(3πx)e−(3π)2t that was
discussed in Example 10.4.
(a) Hold x fixed and determine limt→∞ u(x, t).
(b) What does this mean physically?

8. Suppose that we wish to solve the parabolic equation ut (x, t)− uxx (x, t) = h(x).
(a) Derive the explicit forward-difference equation for this situation.
(b) Derive the implicit difference formula for this situation.

9. Suppose that equation (11) is used and that f (x) ≥ 0, g1(t) = 0, and g2(t) = 0.
(a) Show that the maximum value of u(xi , t j+1) in row j + 1 is less than or equal

to the maximum of u(xi , t j) in row j .

SEC. 10.2 PARABOLIC EQUATIONS 567

(b) Make a conjecture concerning the maximum of u(xi , tn) in row n as n tends to
infinity.

Algorithms and Programs

In Problems 1 and 2, use Program 10.3 to solve the heat equation ut (x, t) = c2uxx (x, t),
for 0 < x < 1 and 0 < t < 0.1, with the initial condition u(x, 0) = f (x), for t = 0 and
0 ≤ x ≤ 1, and the boundary conditions

u(0, t) = c1 = 0 for x = 0 and 0 ≤ t ≤ 0.1,

u(1, t) = c2 = 0 for x = 1 and 0 ≤ t ≤ 0.1,

for the given values. Use the surf and contour commands to plot your approximate
solutions.

1. Use f (x) = sin(πx)+ sin(2πx), h = 0.1, k = 0.01, and r = 1.

2. Use f (x) = 3− |3x − 1| − |3x − 2|, h = 0.1, k = 0.01 and r = 1.

3. (a) Modify Programs 10.2 and 10.3 to accept the boundary conditions u(0, t) =
g1(t) �= 0 and u(a, t) = g2(t) �= 0.

(b) Use your modified Program 10.3 to solve the heat equations in Problems 1 and
2, but use the boundary conditions

u(0, t) = g1(t) = t2 for x = 0 and 0 ≤ t < 0.1,

u(1, t) = g2(t) = et for x = 1 and 0 ≤ t ≤ 0.1,

in place of c1 = c2 = 0.

(c) Use the surf and contour commands to plot your approximate solutions.

4. Construct programs to implement your explicit forward-difference equations and im-
plicit difference formula from parts (a) and (b) of Exercise 8, respectively.

5. Use your programs from Problem 4 to solve the heat equation ut (x, t)− uxx (x, t) =
sin(x), for 0 < x < 1 and 0 < t < 0.20, with the initial condition u(x, 0) = f (x) =
sin(πx)+ sin(3πx) and the boundary conditions

u(0, t) = c2 = 0 for x = 0 and 0 ≤ t ≤ 0.20,

u(1, t) = c2 = 0 for x = 1 and 0 ≤ t ≤ 0.20.

Let h = 0.2, k = 0.02, and r = 0.5.

568 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

10.3 Elliptic Equations

As examples of elliptic partial differential equations, we consider the Laplace, Poisson,
and Helmholtz equations. Recall that the Laplacian of the function u(x, y) is

(1) ∇2u = uxx + uyy .

With this notation, we can write the Laplace, Poisson, and Helmholtz equations in the
following forms:

∇2u = 0 Laplace’s equation,(2)

∇2u = g(x, y) Poisson’s equation,(3)

∇2u + f (x, y)u = g(x, y) Helmholtz’s equation.(4)

It is often the case that the boundary values for the function u are known at all points
on the sides of a rectangular region R in the plane. In this case, each of these equations
can be solved by the numerical technique known as the finite-difference method.

Laplacian Difference Equation

The Laplacian operator must be expressed in a discrete form suitable for numerical
computations. The formula for approximating f ′′(x) is obtained from

(5) f ′′(x) = f (x + h)− 2 f (x)+ f (x − h)

h2
+ O(h2).

When this is applied to the function u(x, y) to approximate uxx (x, y) and uyy(x, y)

and the results are added, we obtain

(6) ∇2u = u(x + h, y)+ u(x − h, y)+ u(x, y + h)+ u(x, y − h)− 4u(x, y)

h2
+ O(h2).

Assume that the rectangle R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b, where b/a = m/n}
is subdivided into n − 1 × m − 1 squares with side h (i.e., a = nh and b = mh), as
shown in Figure 10.14.

To solve Laplace’s equation, we impose the approximation

(7)
u(x + h, y)+ u(x − h, y)+ u(x, y + h)+ u(x, y − h)− 4u(x, y)

h2
= 0,

which has order of accuracy O(h2) at all interior grid points (x, y) = (xi , y j) for
i = 2, . . . , n − 1 and j = 2, . . . , m − 1. The grid points are uniformly spaced:
xi+1 = xi + h, xi−1 = xi − h, yi+1 = yi + h, and yi−1 = yi − h. Using the
approximation ui, j for u(xi , y j), equation (7) can be written in the form

(8) ∇2ui, j ≈ ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j

h2
= 0,

SEC. 10.3 ELLIPTIC EQUATIONS 569

ym

yj + 1

yj

yj − 1

y1
x1 x2 xi − 1 xi − 1 xn − 1 xnxi

Figure 10.14 The grid used with
Laplace’s difference equation.

ui − 1, j

ui,j + 1

ui + 1, j−4ui, j

ui, j − 1 Figure 10.15 The Laplace stencil.

which is known as the five-point difference formula for Laplace’s equation. This
formula relates the function value ui, j to its four neighboring values ui+1, j , ui−1, j ,
ui, j+1, and ui, j−1, as shown in Figure 10.15. The term h2 can be eliminated in (8) to
obtain the Laplacian computational formula

(9) ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j = 0.

Setting Up the Linear System
Assume that the values u(x, y) are known at the following boundary grid points:

u(x1, y j) = u1, j for 2 ≤ j ≤ m − 1 (on the left),

u(xi , y1) = ui,1 for 2 ≤ i ≤ n − 1 (on the bottom),

u(xn, y j) = un, j for 2 ≤ j ≤ m − 1 (on the right),

u(xi , ym) = ui,m for 2 ≤ i ≤ n − 1 (on the top).

Then applying the Laplacian computational formula (9) at each of the interior points
of R will create a linear system of (n − 2) equations in (n − 2) unknowns, which is

570 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

p1 p2 p3

p4 p5 p6

p7 p8 p9

u2, 5 u3, 5 u4, 5

u5, 4u1, 4

u1, 3

u1, 2

u5, 3

u5, 2

u2, 1 u3, 1 u4, 1
Figure 10.16 A 5 × 5 grid for
boundary values only.

solved to obtain approximations to u(x, y) at the interior points of R. For example,
suppose that the region is a square, that n = m = 5, and that the unknown values of
u(xi , y j) at the nine interior grid points are labeled p1, p2, . . . , p9 and positioned in
the grid as shown in Figure 10.16.

The Laplacian computational formula (9) is applied at each of the interior grid
points, and the result is the system AP = B of nine linear equations:

−4p1 + p2 + p4 = −u2,1 − u1,2

p1 − 4p2 + p3 + p5 = −u3,1

p2 − 4p3 + p6 = −u4,1 − u5,2

p1 − 4p4 + p5 + p7 = −u1,3

p2 + p4 − 4p5 + p6 + p8 = 0

p3 + p5 − 4p6 + p9 = −u5,3

p4 − 4p7 + p8 = −u2,5 − u1,4

p5 + p7 − 4p8 + p9 = −u3,5

p6 + p8 − 4p9 = −u4,5 − u5,4.

Example 10.5. Find an approximate solution to Laplace’s equation ∇2u = 0 in the
rectangle R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4}, where u(x, y) denotes the temperature at
the point (x, y) and the boundary values are

u(x, 0) = 20 and u(x, 4) = 180 for 0 < x < 4,

and

u(0, y) = 80 and u(4, y) = 0 for 0 < y < 4.

See Figure 10.17 for the grid to be used.

SEC. 10.3 ELLIPTIC EQUATIONS 571

p1 p2 p3

p4 p5 p6

p7 p8 p9

u2, 5 = 180 u3, 5 = 180 u4, 5 = 180

u5, 4 = 0u1, 4 = 80

u1, 3 = 80

u1, 2 = 80

u5, 3 = 0

u5, 2 = 0

u2, 1 = 20 u3, 1 = 20 u4, 1 = 20
Figure 10.17 The 5 × 5 grid in
Example 10.5.

Applying formula (9) in this case, the linear system AP = B is

−4p1 + p2 + p4 = −100

p1 − 4p2 + p3 + p5 = −20

p2 − 4p3 + p6 = −20

p1 − 4p4 + p5 + p7 = −80

p2 + p4 − 4p5 + p6 + p8 = 0

p3 + p5 − 4p6 + p9 = 0

p4 − 4p7 + p8 = −260

p5 + p7 − 4p8 + p9 = −180

p6 + p8 − 4p9 = −180

The solution vector P can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiagonal
systems). The temperatures at the interior grid points are expressed in vector form

P = [p1 p2 p3 p4 p5 p6 p7 p8 p9
]′

= [55.7143 43.2143 27.1429 79.6429 70.0000

45.3571 112.857 111.786 84.2857]′. �

Derivative Boundary Conditions
The Neumann boundary conditions specify the directional derivative of u(x, y) normal
to an edge. For our illustration we will use the zero normal derivative condition,

(10)
∂

∂ N
u(x, y) = 0.

572 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

ui − 1, 1

2ui,2

ui + 1, 1

−4ui, 1

ui − 1, m

−4ui, m

ui + 1, m

2ui, m − 1

un, j + 1

−4un, j

un, j − 1

2un − 1, j

u1, j + 1

2u2, j

u1, j − 1

−4u1, j

Figure 10.18 The Neumann stencils.

For applications in the area of heat flow, this means that the edge is thermally insulated
and the heat flux throughout the edge is zero.

Suppose that x = xn is held fixed and that we are considering the right edge x = a
of the rectangle R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. The normal boundary condition
to be used along this edge is

(11)
∂

∂x
u(xn, y j) = ux (xn, y j) = 0.

Then the Laplace difference equation for the point (xn, y j) is

(12) un+1, j + un−1, j + un, j+1 + un, j−1 − 4un, j = 0.

The value un+1, j is unknown, because it lies outside the region R. However, we can
use the numerical differentiation formula

(13)
un+1, j − un−1, j

2h
≈ ux (xn, y j) = 0

and obtain the approximation un+1, j ≈ un−1, j , which has order of accuracy O(h2).
When this approximation is used in (12), the result is

2un−1, j + un, j+1 + un, j−1 − 4un, j = 0.

SEC. 10.3 ELLIPTIC EQUATIONS 573

q4 q5 q6

q7 q8 q9

q10 q11 q12

u2, 5 = 180 u3, 5 = 180 u4, 5 = 180

u5, 4 = 0u1, 4 = 80

u1, 3 = 80

u1, 2 = 80

u1, 1 = 80

u5, 3 = 0

u5, 2 = 0

u5, 1 = 0

q1 q2 q3
Figure 10.19 The 5 × 5 grid in
Example 10.6.

This formula relates the function value un, j to its three neighboring values un−1, j ,
un, j+1, and un, j−1.

The computational stencils for the other edges can be derived similarly (see Fig-
ure 10.18). The four cases for the Neumann computational stencils are summarized
next:

2ui,2 + ui−1,1 + ui+1,1 − 4ui,1 = 0 (bottom edge),(14)

2ui,m−1 + ui−1,m + ui+1,m − 4ui,m = 0 (top edge),(15)

2u2, j + u1, j−1 + u1, j+1 − 4u1, j = 0 (left edge),(16)

2un−1, j + un, j−1 + un, j+1 − 4un, j = 0 (right edge).(17)

Suppose that the derivative condition ∂u(x, y)/∂ N = 0 is used along part of the
boundary of R, and that known boundary values of u(x, y) are used on the other por-
tions of the boundary; then we have a mixed problem. The equations for determining
approximations for u(xi , y j) at boundary points will involve appropriate Neumann
computational stencils (14) to (17). The Laplacian computational formula (9) is still
used to determine approximations for u(xi , y j) at the interior points of R.

Example 10.6. Find an approximate solution to Laplace’s equation ∇2u = 0 in the
rectangle R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4}, where u(x, y) denotes the temperature at
the point (x, y) and the boundary values are shown in Figure 10.19:

u(x, 4) = 180 for 0 < x < 4,

uy(x, 0) = 0 for 0 < x < 4,

u(0, y) = 80 for 0 ≤ y < 4,

u(4, y) = 0 for 0 ≤ y < 4.

574 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

The Neumann computational formula (14) is applied at the boundary points q1, q2,
and q3, and the Laplace computational stencil (9) is applied at the other points q4, q5,
. . ., q12. The result is a linear system A Q = B involving 12 equations in 12 unknowns:

− 4q1 + q2 + 2q4 = −80

q1 − 4q2 + q3 + 2q5 = 0

q2 − 4q3 + 2q6 = 0

q1 − 4q4 + q5 + q7 = −80

q2 + q4 − 4q5 + q6 + q8 = 0

q3 + q5 − 4q6 + q9 = 0

q4 − 4q7 + q8 + q10 = −80

q5 + q7 − 4q8 + q9 + q11 = 0

q6 + q8 − 4q9 + q12 = 0

q7 − 4q10 + q11 = −260

q8 + q10 − 4q11 + q12 = −180

q9 + q11 − 4q12 = −180

The solution vector Q can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiag-
onal systems). The temperatures at the interior grid points and along the lower edge are
expressed in vector form as

Q = [q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12
]′

= [71.8218 56.8543 32.2342 75.2165 61.6806 36.0412

87.3636 78.6103 50.2502 115.628 115.147 86.3492]′. �

Iterative Methods

The preceding method showed how to solve Laplace’s difference equation by con-
structing a certain system of linear equations and solving it. The shortcoming of this
method is storage; each interior grid point introduces an equation to be solved. Since
better approximations require a finer mesh grid, many equations might be needed. For
example, the solution of Laplace’s equation with the Dirichlet boundary conditions re-
quires solving a system of (n − 2)(m − 2) equations. If R is divided into a modest
number of squares, say 10 by 10, there would be 91 equations involving 91 unknowns.
Hence it is sensible to develop techniques that will reduce the amount of storage. An
iterative method would require only the storage of the 100 numerical approximations
{ui, j } throughout the grid.

Let us start with Laplace’s difference equation

(18) ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j = 0

SEC. 10.3 ELLIPTIC EQUATIONS 575

and suppose that the boundary values u(x, y) are known at the following grid points:

(19)

u(x1, y j) = u1, j for 2 ≤ j ≤ m − 1 (on the left),

u(xi , y1) = ui,1 for 2 ≤ i ≤ n − 1 (on the bottom),

u(xn, y j) = un, j for 2 ≤ j ≤ m − 1 (on the right),

u(xi , ym) = ui,m for 2 ≤ i ≤ n − 1 (on the top).

Equation (18) is rewritten in the following form that is suitable for iteration:

(20) ui, j = ui, j + ri, j ,

where

(21) ri, j = ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j

4

for 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1.
Starting values for all interior grid points must be supplied. The constant K , which

is the average of the 2n + 2m − 4 boundary values given in (19), can be used for this
purpose. One iteration consists of sweeping formula (20) throughout all of the interior
points of the grid. Successive iterations sweep the interior of the grid with the Laplace
iterative operator (20) until the residual term ri, j on the right side of equation (20) is
“reduced to zero” (i.e., |ri, j | < ε holds for each 2 ≤ i ≤ n − 1 and 2 ≤ j ≤ m − 1).
The speed of convergence for reducing all the residuals {ri, j } to zero is increased by
using the method called successive overrelaxation (SOR). The SOR method uses the
iteration formula

ui, j = ui, j + ω

(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j

4

)
= ui, j + ωri. j ,

(22)

where the parameter ω lies in the range 1 ≤ ω < 2. In the SOR method, formula (22)
is swept across the grid until |ri, j | < ε. The optimal choice for ω is based on the study
of eigenvalues of iteration matrices for linear systems and is given in this case by the
formula

(23) ω = 4

2+
√

4−
(

cos

(
π

n − 1

)
+ cos

(
π

m − 1

))2
.

If the Neumann boundary condition is specified on some portion of the boundary,
we must rewrite equations (14) through (17) in a form that is suitable for iteration. The

576 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

four cases are summarized next and include the relaxation parameter ω:

ui,1 = ui,1 + ω

(
2ui,2 + ui−1,1 + ui+1,1 − 4ui,1

4

)
(bottom edge),(24)

ui,m = ui,m + ω

(
2ui,m−1 + ui−1,m + ui+1,m − 4ui,m

4

)
(top edge),(25)

ui, j = ui, j + ω

(
2u2, j + u1, j−1 + u1, j+1 − 4u1, j

4

)
(left edge),(26)

un, j = un, j + ω

(
2un−1, j + un, j−1 + un, j+1 − 4un, j

4

)
(right edge).(27)

Example 10.7. Use an iterative method to compute an approximate solution to Laplace’s
equation ∇2 = 0 in R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4}, where the boundary values are

u(x, 0) = 20 and u(x, 4) = 180 for 0 < x < 4,

and

u(0, y) = 80 and u(4, y) = 0 for 0 < y < 4.

For illustration, the square is divided into 64 squares with sides �x = h = 0.5 and
�y = h = 0.5. The initial value at the interior grid points was set at ui, j = 70 for
each i = 2, . . . , 8 and j = 2, . . ., 8. The SOR method was used with the parameter
ω = 1.44646 (substitute n = 9 and m = 9 in formula (23)). After 19 iterations, the residual
was uniformly reduced (i.e.,|ri, j | ≤ 0.000606 < 0.001). The resulting approximations are
given in Table 10.6. Because of the discontinuity of the boundary function at the corners,
the boundary values u1,1 = 50, u9,1 = 10, u1,9 = 130, and u9,9 = 90 have been introduced
in Table 10.6 and Figure 10.20; they were not used in the computations at the interior grid
points. A three-dimensional presentation of the data in Table 10.6 is given in Figure 10.20.

�

Example 10.8. Use an iterative method to compute an approximate solution to Laplace’s
equation ∇2u = 0 in R = {(x, y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4}, where the boundary values
are

u(x, 4) = 180 for y = 4 and 0 < x < 4,

uy(x, 0) = 0 for y = 0 and 0 < x < 4,

u(0, y) = 80 for x = 0 and 0 ≤ y < 4,

u(4, y) = 0 for x = 4 and 0 ≤ y < 4.

For illustration, the square is divided into 64 squares with sides �x = h = 0.5 and
�y = h = 0.5. Starting values using linear interpolation were used along the edge where
y = y1 = 0. The initial value at the interior grid points was set at ui, j = 70 for each
i = 2, . . . , 8 and j = 2, . . . , 8. Then the SOR method was employed with the parameter
ω = 1.44646 (as in Example 10.7). After 29 iterations, the residual was reduced uniformly;
(i.e., |ri, j | ≤ 0.000998 < 0.001). The resulting approximations are given in Table 10.7.
Because of the discontinuity of the boundary functions at the corners, the boundary values

SEC. 10.3 ELLIPTIC EQUATIONS 577

Table 10.6 Approximate Solution to Laplace’s Equation with Dirichlet Conditions

x1 x2 x3 x4 x5 x6 x7 x8 x9

y9 130.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 90.0000
y8 80.000 124.821 141.172 145.414 144.005 137.478 122.642 88.6070 0.0000
y7 80.000 102.112 113.453 116.479 113.126 103.266 84.4844 51.7856 0.0000
y6 80.000 89.1736 94.0499 93.9210 88.7553 77.9737 60.2439 34.0510 0.0000
y5 80.000 80.5319 79.6515 76.3999 70.0003 59.6301 44.4667 24.1744 0.0000
y4 80.000 73.3023 67.6241 62.0267 55.2159 46.0796 33.8184 18.1798 0.0000
y3 80.000 65.0528 55.5159 48.8671 42.7568 35.6543 26.5473 14.7266 0.0000
y2 80.000 51.3931 40.5195 35.1691 31.2899 27.2335 21.9900 14.1791 0.0000
y1 50.000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 10.0000

u

y

x

Figure 10.20 u = u(x, y) with Dirichlet boundary values.

u1,9 = 130 and u9,9 = 90 have been introduced in Table 10.7 and Figure 10.21; they were
not used in the computations at the interior grid points. A three-dimensional presentation
of the data in Table 10.7 is given in Figure 10.21. �

Poisson’s and Helmholtz’s Equations

Consider Poisson’s equation

(28) ∇2u = g(x, y).

578 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Table 10.7 Approximate Solution to Laplace’s Equation with Mixed Boundary Conditions

x1 x2 x3 x4 x5 x6 x7 x8 x9

y9 130.000 180.000 180.000 180.000 180.000 180.000 180.000 180.000 90.0000
y8 80.000 126.457 142.311 146.837 145.468 138.762 123.583 89.1008 0.0000
y7 80.000 103.518 115.951 119.568 116.270 105.999 86.4683 52.8201 0.0000
y6 80.000 91.6621 98.4053 99.2137 94.0461 82.4936 63.4715 35.7113 0.0000
y5 80.000 84.7247 86.7936 84.8347 78.2063 66.4578 49.2124 26.5538 0.0000
y4 80.000 80.4424 79.2089 75.1245 67.4860 55.9185 40.3665 21.2915 0.0000
y3 80.000 77.8354 74.4742 68.9677 60.6944 49.3635 35.0435 18.2459 0.0000
y2 80.000 76.4244 71.8842 65.5772 56.9600 45.7972 32.1981 16.6485 0.0000
y1 80.000 75.9774 71.0605 64.4964 55.7707 44.6670 31.3032 16.1500 0.0000

u

y

x

Figure 10.21 u = u(x, y) for a mixed problem.

Using the notation gi, j = g(xi , y j), the generalization of formula (20) for solving (28)
over the rectangular grid is

(29) ui, j = ui, j + ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui, j − h2gi, j

4
.

Consider Helmholtz’s equation

(30) ∇2u + f (x, y)u = g(x, y).

Using the notation fi, j = f (xi , y j), the generalization of formula (20) for solving (30)

SEC. 10.3 ELLIPTIC EQUATIONS 579

over the rectangular grid is

(31) ui, j = ui, j + ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − (4− h2 fi, j)ui, j − h2gi, j

4− h2 fi, j
.

These formulas are explored in greater detail in the exercises.

Improvements

A modification of (8) that can be employed is the nine-point difference formula for
Laplace’s equation:

∇2ui, j ≈ 1

6h2
(ui+1, j−1 + ui−1, j−1 + ui+1, j+1 + ui−1, j+1

+ 4ui+1, j + 4ui−1, j + 4ui, j+1 + 4ui, j−1 − 20ui, j) = 0.

The truncation errors for the nine- and five-point formulas (see formula (8)) are O(h4)

and O(h2), respectively. Thus there is an advantage to using the nine-point difference
formula.

Program 10.4 (Dirichlet Method for Laplace’s Equation). To approximate the
solution of uxx (x, y) + uyy(x, y) = 0 over R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}
with u(x, 0) = f1(x), u(x, b) = f2(x), for 0 ≤ x ≤ a, and u(0, y) = f3(y),
u(a, y) = f4(y), for 0 ≤ y ≤ b. It is assumed that �x = �y = h and that integers
n and m exist so that a = nh and b = mh.

function U=dirich(f1,f2,f3,f4,a,b,h,tol,max1)

%Input - f1,f2,f3,f4 are boundary functions input as strings
% - a and b right endpoints of [0,a] and [0,b]
% - h step size
% - tol is the tolerance
%Output - U solution matrix; analogous to Table 10.6

%Initialize parameters and U
n=fix(a/h)+1;
m=fix(b/h)+1;
ave=(a*(feval(f1,0)+feval(f2,0)) ...

+b*(feval(f3,0)+feval(f4,0)))/(2*a+2*b);
U=ave*ones(n,m);

%Boundary conditions
U(1,1:m)=feval(f3,0:h:(m-1)*h)’;
U(n,1:m)=feval(f4,0:h:(m-1)*h)’;
U(1:n,1)=feval(f1,0:h:(n-1)*h);
U(1:n,m)=feval(f2,0:h:(n-1)*h);

580 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

U(1,1)=(U(1,2)+U(2,1))/2;
U(1,m)=(U(1,m-1)+U(2,m))/2;
U(n,1)=(U(n-1,1)+U(n,2))/2;
U(n,m)=(U(n-1,m)+U(n,m-1))/2;

%SOR parameter
w=4/(2+sqrt(4-(cos(pi/(n-1))+cos(pi/(m-1)))^2));

%Refine approximations and sweep operator throughout
%the grid
err=1;
cnt=0;
while((err>tol)&(cnt<=max1))

err=0;
for j=2:m-1

for i=2:n-1
relx=w*(U(i,j+1)+U(i,j-1)+U(i+1,j)+U(i-1,j)-4*U(i,j))/4;
U(i,j)=U(i,j)+relx;
if (err<=abs(relx))
err=abs(relx);
end

end
end

cnt=cnt+1;
end

U=flipud(U’);

Exercises for Elliptic Equations

1. (a) Determine the system of four equations in the four unknowns p1, p2, p3, and p4
for computing approximations for the harmonic function u(x, y) in the rectangle
R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3} (see Figure 10.22). The boundary values
are

u(x, 0) = 10 and u(x, 3) = 90 for 0 < x < 3,

u(0, y) = 70 and u(3, y) = 0 for 0 < y < 3.

(b) Solve the equations in part (a) for p1, p2, p3, and p4.

2. (a) Determine the system of six equations in the six unknowns q1, q2, . . . , q6 for
computing approximations for the harmonic function u(x, y) in the rectangle
R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3} (see Figure 10.23). The boundary values

SEC. 10.3 ELLIPTIC EQUATIONS 581

u2, 4 = 90 u3, 4 = 90

u1, 3 = 70

u1, 2 =70

u4, 3 = 0

u4, 2 = 0

u2, 1 = 10 u3, 1 = 10

p3

p1

p4

p2

Figure 10.22
The grid for Exercise 1.

u2, 4 = 90 u3, 4 = 90

u1, 3 = 70

u1, 2 =70

u1, 1 =70

u4, 3 = 0

u4, 2 = 0

u4, 1 = 0

q5

q3

q6

q4

q1 q2
Figure 10.23
The grid for Exercise 2.

are

u(x, 3) = 90 and uy(x, 0) = 90 for 0 < x < 3,

u(0, y) = 70 and u(3, y) = 0 for 0 ≤ y < 3.

(b) Solve the equations in part (a) for q1, q2, . . . , q6.

3. (a) Show that u(x, y) = a1 sin(x) sinh(y) + b1 sinh(x) sin(y) is a solution of La-
place’s equation.

(b) Show that u(x, y) = an sin(nx) sinh(ny) + bn sinh(nx) sin(ny) is a solution of
Laplace’s equation for each positive integer n = 1, 2,

4. Let u(x, y) = x2− y2. Determine the quantities u(x+h, y), u(x−h, y), u(x, y+h),
and u(x, y − h), substitute them into equation (7), and simplify.

5. (a) Suppose that u has the form u(x, y) = ax2 + bxy + cy2 + dx + ey + f . Find
a relationship among the coefficients which guarantees that uxx + uyy = 0.

(b) Suppose that u has the form given in part (a). Find a relationship among the
coefficients which guarantees that uxx + uyy = −1.

582 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

u2, 4 u3, 4

u1, 3

u1, 4

u1, 2

u1, 1

u4, 3

u4, 4

u4, 2

u4, 1

p3

p1

p4

p2

u2, 1 u3, 1
Figure 10.24
The grid for Exercise 7.

(c) Find the coefficients of the polynomial u(x, y) given in part (a) that satisfy
the partial differential equation in part (a) and also the boundary conditions
u(x, 0) = 0 and u(x, β) = 0.

(d) Find the coefficients of the polynomial u(x, y) given in part (a) that satisfy
the partial differential equation in part (b) and also the boundary conditions
u(x, 0) = 0 and u(x, β) = 0.

6. Solve uxx+uyy = −4u over R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}with the boundary
values

u(x, y) = cos(2x)+ sin(2y).

7. Determine the system of four equations in four unknowns p1, p2, p2, and p4 for
implementing the Laplace nine-point difference equation on the 4 × 4 grid shown in
Figure 10.24.

Algorithms and Programs

1. (a) Use Program 10.4 to compute approximations for the harmonic function u(x, y)

in the rectangle R = {(x, y) : 0 ≤ x ≤ 1.5, 0 ≤ y ≤ 1.5}; use h = 0.5. The
boundary values are

u(x, 0) = x4 and u(x, 1.5) = x4 − 13.5x2 + 5.0625 for 0 ≤ x ≤ 1.5,

u(0, y) = y4 and u(1.5, y) = y4 − 13.5y2 + 5.0625 for 0 ≤ y ≤ 1.5.

(b) Use the surf command to plot your approximation from part (a) and compare
it with the exact solution u(x, y) = x4 − 6x2 y2 + y4.

2. Modify Program 9.11 (Tridiagonal Systems) to solve a pentadiagonal system.

SEC. 10.3 ELLIPTIC EQUATIONS 583

3. (a) Use a 5 × 5 grid similar to that in Example 10.5 and determine the system of
nine equations in the nine unknowns p1, p2, p3, . . . , p9 for computing approx-
imations for the harmonic function u(x, y) in the rectangle R = {(x, y) : 0 ≤
x ≤ 4, 0 ≤ y ≤ 4}. The boundary values are

u(x, 0) = 10 and u(x, 4) = 120 for 0 < x < 4,

u(0, y) = 90 and u(4, y) = 40 for 0 < y < 4.

(b) Use your modification of Program 9.11 to solve for p1, p2, . . . , p9.
(c) Use Program 10.4 to solve for the approximations.
(d) Use a 9 × 9 grid similar to that in Example 10.7 and Program 10.4 to solve for

the approximations.

4. (a) Use a 5 × 5 grid similar to that in Example 10.6 and determine the system of
12 equations in the 12 unknowns q1, q2, . . . , q12 for computing approximations
for the harmonic function u(x, y) in the rectangle R = {(x, y) : 0 ≤ x ≤ 4,

0 ≤ y ≤ 4}. The boundary values are

u(x, 4) = 120 and uy(x, y) = 0 for 0 < x < 4,

u(0, y) = 90 and u(4, y) = 40 for 0 ≤ y < 4.

(b) Use your modification of Program 9.11 to solve for q1, q2, . . . , q12.
(c) Modify Program 10.4 to solve for the approximations.
(d) Use a 9 × 9 grid similar to that in Example 10.8 and a modification of Pro-

gram 10.4 to solve for the approximations.

5. (a) Using a 5 × 5 grid, derive the nine equations involving the nine unknowns p1,
p2, p3, . . . , p9 for computing approximations for the solution u(x, y) to Pois-
son’s equation with g(x, y) = 2 in the rectangle R = {(x, y) : 0 ≤ x ≤ 1,

0 ≤ y ≤ 1}. The boundary values are

u(x, 0) = x2 and u(x, 1) = (x − 1)2 for 0 ≤ x ≤ 1,

u(0, y) = y2 and u(1, y) = (y − 1)2 for 0 ≤ y ≤ 1.

(b) Use your modification of Program 9.11 to solve for p1, p2, . . . , p9.
(c) Modify Program 10.4 to solve for the approximations.
(d) Use a 9× 9 grid and your modification of Program 10.4 to solve for the approx-

imations.

6. (a) Using a 5 × 5 grid, derive the nine equations involving the nine unknowns p1,
p2, p3, . . . , p9 for computing approximations for the solution u(x, y) to Pois-
son’s equation with g(x, y) = y in the rectangle R = {(x, y) : 0 ≤ x ≤ 1,

0 ≤ y ≤ 1}. The boundary values are

u(x, 0) = x3 and u(x, 1) = x3 for 0 ≤ x ≤ 1,

u(0, y) = 0 and u(1, y) = 1 for 0 ≤ y ≤ 1.

584 CHAP. 10 SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

(b) Use your modification of Program 9.11 to solve for p1, p2, . . . , p9.
(c) Modify Program 10.4 to solve for the approximations.
(d) Use a 9× 9 grid and your modification of Program 10.4 to solve for the approx-

imations.

11

Eigenvalues and Eigenvectors

The design of certain engineering systems involves the maximum stress theory of
failure. This theory is based on the assumption that the maximum principal stress
acting on a body determines its failure. The related mathematical result is the principal
axes theorem for a linear transformation Y = AX . In two dimensions there exists
basis vectors U1 and U2 so that the effect of this transformation is to stretch space in
the directions parallel to U1 and U2 by the amount λ1 and λ2, respectively. Consider
the symmetric matrix [

3.8 0.6
0.6 2.2

]
;

6

3

6

3

-3 0 3 6 9 12 -3 0 3 6 9 12

(a) (b)

Figure 11.1 (a) Preimages U1 =
[
3 1

]′ and U2 =
[−1 3

]′ for the transformation Y = AX . (b) The

image vectors V 1 = AU1 =
[
12 4

]′ and V 2 = AU2 =
[−2 6

]′.
585

586 CHAP. 11 EIGENVALUES AND EIGENVECTORS

the principal directions are U1 =
[
3 1

]′ and U2 =
[−1 3

]′, with corresponding
eigenvalues λ1 = 4 and λ2 = 2, respectively. Images of these vectors are V 1 =
AU1 =

[
12 4

]′ = 4
[
3 1

]′ and V 2 = AU2 =
[−2 6

]′ = 2
[−1 3

]′. This
transformation stretches the quarter-circle shown in Figure 11.1(a) into the quarter
ellipse shown in Figure 11.11(b).

11.1 Homogeneous Systems: Eigenvalue Problem

Background

We will now review some ideas from linear algebra. Proofs of the theorems are either
left as exercises or can be found in any standard text on linear algebra.

In Chapter 3 we saw how to solve n linear equations in n unknowns. It was as-
sumed that the determinant of the matrix was nonzero and hence that the solution was
unique. In the case of a homogeneous system AX = 0, if det(A) �= 0, the unique
solution is the trivial solution X = 0. If det(A) = 0, there exist nontrivial solutions to
AX = 0. Suppose that det(A) = 0, and consider solutions to the homogeneous linear
system

(1)

a11x1 + a12x2 + · · · + a1nxn = 0

a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

an1x1 + an2x2 + · · · + annxn = 0.

The system of equations (1) always has the trivial solution x1 = 0, x2 = 0, . . ., xn = 0.
Gaussian elimination can be used to obtain a solution by forming a set of relationships
between the variables.

Example 11.1. Find the nontrivial solutions to the homogeneous system

x1 + 2x2 − x3 = 0

2x1 + x2 + x3 = 0

5x1 + 4x2 + x3 = 0.

Use Gaussian elimination to eliminate x1 and the result is

x1 + 2x2 − x3 = 0

−3x2 + 3x3 = 0

−6x2 + 6x3 = 0.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 587

Since the third equation is a multiple of the second equation, this system reduces to two
equations in three unknowns:

x1 + x2 = 0

−x2 + x3 = 0.

We can select one unknown and use it as a parameter. For instance, let x3 = t ; then
the second equation implies that x2 = t and the first equation is used to compute x1 = −t .
Therefore, the solution can be expressed as the set of relations:

x1 = −t

x2 = t

x3 = t

or X =
−t

t
t

 = t

−1
1
1

 ,

where t is any real number. �

Definition 11.1. The vectors U1, U2, . . . , Un are said to be linearly independent if
the equation

(2) c1U1 + c2U2 + · · · + cnUn = 0

implies that c1 = 0, c2 = 0, . . . , cn = 0. If the vectors are not linearly independent
they are said to be linearly dependent. In other words, the vectors are linearly depen-
dent if there exists a set of numbers {c1, c2, . . . , cn} not all zero, such that equation (2)
holds. �

Two vectors in $2 are linearly independent if and only if they are not parallel.
Three vectors in $3 are linearly independent if and only if they do not lie in the same
plane.

Theorem 11.1. The vectors U1, U2, . . . , Un are linearly dependent if and only if at
least one of them is a linear combination of the others.

A desirable feature for a vector space is the ability to express each vector as a linear
combination of vectors chosen from a small subset of vectors. This motivates the next
definition.

Definition 11.2. Suppose that S = {U1, U2, . . . , Um} is a set of m vectors in $n .
The set S is called a basis for $n if for every vector X in $n there exists a unique set
of scalars {c1, c2, . . . , cm} so that X can be expressed as the linear combination

�(3) X = c1U1 + c2U2 + · · · + cmUm .

Theorem 11.2. In $n , any set of n linearly independent vectors forms a basis of $n .
Each vector X in $n is uniquely expressed as a linear combination of the basis vectors,
as shown in equation (3).

588 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Theorem 11.3. Let K 1, K 2, ldots, K m be vectors in $n .

If m > n, then the vectors are linearly dependent.(4)

If m = n, the vectors are linearly dependent if and only if det(K) = 0,

where K = [K 1 K 2 · · · K m
]
.

(5)

Eigenvalues

Applications of mathematics sometimes encounter the following equations: What are
the singularities of A − λI , where λ is a parameter? What is the behavior of the
sequence of vectors {A j X0}∞j=0? What are the geometric features of a linear trans-
formation? Solutions for problems in many different disciplines, such as economics,
engineering, and physics, can involve ideas related to these equations. The theory
of eigenvalues and eigenvectors is powerful enough to help solve these otherwise in-
tractable problems.

Let A be a square matrix of dimension n× n and let X be a vector of dimension n.
The product Y = AX can be viewed as a linear transformation from n-dimensional
space into itself. We want to find scalars λ for which there exists a nonzero vector X
such that

(6) AX = λX;
that is, the linear transformation T (X) = AX maps X onto the multiple λX . When
this occurs, we call X an eigenvector that corresponds to the eigenvalue λ, and together
they form the eigenpair λ, X for A. In general, the scalar λ and vector X can involve
complex numbers. For simplicity, most of our illustrations will involve real calcula-
tions. However, the techniques are easily extended to the complex case. The identity
matrix I can be used to express equation (6) as AX = λI X , which is then rewritten in
the standard form for a linear system as

(7) (A− λI)X = 0.

The significance of equation (7) is that the product of the matrix (A− λI) and the
nonzero vector X is the zero vector! According to Theorem 3.5, this linear system has
nontrivial solutions if and only if the matrix A− λI is singular, that is,

(8) det(A− λI) = 0.

This determinant can be written in the form

(9)

∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

... · · · ...

an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣ = 0.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 589

When the determinant in (9) is expanded, it becomes a polynomial of degree n, which
is called the characteristic polynomial

p(λ) = det(A− λI)

= (−1)n(λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ+ cn).
(10)

There exist exactly n roots (not necessarily distinct) of a polynomial of degree n.
Each root λ can be substituted into equation (7) to obtain an underdetermined system
of equations that has a corresponding nontrivial solution vector X . If λ is real, a real
eigenvector X can be constructed. For emphasis, we state the following definitions.

Definition 11.3. If A is an n × n real matrix, then its n eigenvalues λ1, λ2, . . . , λn
are the real and complex roots of the characteristic polynomial

�(11) p(λ) = det(A− λI).

Definition 11.4. If λ is an eigenvalue of A and the nonzero vector V has the property
that

(12) AV = λV ,

then V is called an eigenvector of A corresponding to the eigenvalue λ. �

The characteristic polynomial (11) can be factored in the form

(13) p(λ) = (−1)n(λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λk)
mk ,

where m j is called the multiplicity of the eigenvalue λ j . The sum of the multiplicities
of all eigenvalues is n; that is,

n = m1 + m2 + · · · + mk .

The next three results concern the existence of eigenvectors.

Theorem 11.4. (a) For each distinct eigenvalue λ there exists at least one eigenvec-
tor V corresponding to λ.

(b) If λ has multiplicity r , then there exist at most r linearly independent eigenvec-
tors V 1, V 2, . . . , V r that correspond to λ.

Theorem 11.5. Suppose that A is a square matrix and λ1, λ2, . . ., λk are distinct
eigenvalues of A, with associated eigenvectors V 1, V 2, . . ., V k , respectively; then
{V 1, V 2, . . ., V k} is a set of linearly independent vectors.

Theorem 11.6. If the eigenvalues of the n × n matrix A are all distinct, then there
exist n linearly independent eigenvectors V j , for j = 1, 2, . . . , n.

590 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Theorem 11.4 is usually applied for hand computations in the following manner.
The eigenvalue λ of multiplicity r ≥ 1 is substituted into the equation

(14) (A− λI)V = 0.

Then Gaussian elimination can be performed to obtain the Gauss reduced form, which
will involve n − k equations in n unknowns, where 1 ≤ k ≤ r . Hence there are k
free variables to choose. The free variables can be selected in a judicious manner to
produce k linearly independent solution vectors V 1, V 2, . . . , V k that correspond to λ.

Example 11.2. Find the eigenpairs λ j , V j for the matrix

A =
 3 −1 0
−1 2 −1

0 −1 3

 .

Also, show that the eigenvectors are linearly independent.
The characteristic equation det(A− λI) = 0 is

(15)

∣∣∣∣∣∣
3− λ −1 0
−1 2− λ −1
0 −1 3− λ

∣∣∣∣∣∣ = −λ3 + 8λ2 − 19λ+ 12 = 0,

which can be written as −(λ− 1)(λ− 3)(λ− 4) = 0. Therefore, the three eigenvalues are
λ1 = 1, λ2 = 3, and λ3 = 4.

Case (i): Substitute λ1 = 1 into equation (14) and obtain

2x1 − x2 = 0

−x1 + x2 − x3 = 0

−x2 + 2x3 = 0.

Since the sum of the first equation plus two times the second equation plus the third equa-
tion is identically zero, the system can be reduced to two equations in three unknowns:

2x1 − x2 = 0

−x2 + 2x3 = 0.

Choose x2 = 2a, where a is an arbitrary constant; then the first and second equations are
used to compute x1 = a and x3 = a, respectively. Thus the first eigenpair is λ1 = 1,
V 1 =

[
a 2a a

]′ = a
[
1 2 1

]′.
Case (ii): Substitute λ2 = 3 into equation (14) and obtain

−x2 = 0

−x1 − x2 − x3 = 0

−x2 = 0.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 591

This is equivalent to the system of two equations

x1 + x3 = 0

x2 = 0.

Choose x1 = b, where b is an arbitrary constant, and compute x3 = −b. Hence the second
eigenpair is λ2 = 3, V 2 =

[
b 0 −b

]′ = b
[
1 0 −1

]′.
Case (iii): Substitute λ3 = 4 into (14); the result is

−x1 − x2 = 0

−x1 − 2x2 − x3 = 0

−x2 − x3 = 0.

This is equivalent to the two equations

x1 + x2 = 0

x2 + x3 = 0.

Choose x3 = c, where c is a constant, then use the second equation to compute x2 = −c.
Then use the first equation to get x1 = c. Thus the third eigenpair is λ3 = 4, V 3 =[
c −c c

]′ = c
[
1 −1 1

]′.
To prove that the vectors are linearly independent, it suffices to apply Theorem 11.5.

However, it is beneficial to review techniques from linear algebra and use Theorem 11.3.
Form the determinant

det
([

V 1 V 2 V 3
])=

∣∣∣∣∣∣
a b c

2a 0 −c
a −b c

∣∣∣∣∣∣ = −6abc.

Since det
([

V 1 V 2 V 3
]) �= 0, Theorem 11.3 implies that the vectors V 1, V 2, and V 3 are

linearly independent. �

Example 11.2 shows how hand computations are used to find eigenvalues when
the dimension n is small: (1) find the coefficients of the characteristic polynomial;
(2) find its roots; (3) find the nonzero solutions of the homogeneous linear system
(A−λI)V = 0. We will take the prevalent approach of studying the power and Jacobi
methods and the Q R algorithm. The Q R algorithm and its improvements are used in
professional software packages such as EISPACK and MATLAB.

Since V in (12) is multiplied on the right side of the matrix A, it is called a right
eigenvector corresponding to λ. There also exists a left eigenvector Y such that

(16) Y ′A = λY ′.

In general, the left eigenvector Y is not equal to the right eigenvector V . However,
if A is real and symmetric (A′ = A), then

(17)
(AV)′ = V ′A′ = V ′A,

(λV)′ = λV ′

592 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Therefore, the right eigenvector V is a left eigenvector when A is symmetric. In the
remainder of the book we consider only right eigenvectors.

An eigenvector V is unique only up to a constant multiple. Suppose that c is a
scalar; then the following calculation shows that cV is an eigenvector:

(18) A(cV) = c(AV) = c(λV) = λ(cV).

To regain some semblance of uniqueness, we normalize the eigenvector in one of
the following ways. Use one of the vector norms

‖X‖∞ = max
1≤k≤n

{|xk |}(19)

or

‖X‖2 =
(

n∑
k=1

|xk |2
)1/2

(20)

and require that either ‖X‖∞ = 1 or ‖X‖2 = 1.

Diagonalizability

The eigenvalue situation is easiest to understand for a diagonal matrix D that has the
form

(21) D = diag(λ1, λ2, . . . , λn) =

λ1 0 · · · 0
0 λ2 · · · 0
...

... · · · ...

0 0 · · · λn

 .

Let E j =
[
0 0 · · · 0 1 0 · · · 0

]′ be the standard base vector, where the j th
component is 1 and all other components are 0. Then

(22) DE j =
[
0 0 · · · 0 λ j 0 · · · 0

]′ = λ j E j ,

which implies that the eigenpairs of D are λ j , E j for j = 1, 2, . . . , n. It is desirable
to invent a simple way of transforming the matrix A into diagonal form so that the
eigenvalues are left invariant. This is the motivation for the following definition.

Definition 11.5. Two n × n matrices A and B are said to be similar if there exists a
nonsingular matrix K so that

�(23) B = K−1 AK .

Theorem 11.7. Suppose that A and B are similar matrices and that λ is an eigen-
value of A with corresponding eigenvector V . Then λ is also an eigenvalue of B. If
K−1 AK = B, then Y = K−1V is an eigenvector of B associated with the eigen-
value λ.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 593

An n × n matrix A is called diagonalizable if it is similar to a diagonal matrix.
The next theorem illuminates the intimate role of eigenvectors in this process.

Theorem 11.8 (Diagonalization). The matrix A is similar to a diagonal matrix D if
and only if it has n linearly independent eigenvectors. If A is similar to D, then

(24)
V−1 AV = D = diag(λ1, λ2, . . . , λn)

V = [V 1 V 2 · · · V n
]
,

where the n eigenpairs are λ j , V j , for j = 1, 2, . . . , n.

Theorem 11.8 implies that every matrix A that has n distinct eigenvalues is diago-
nalizable.

Example 11.3. Show that the following matrix is diagonalizable.

A =
 3 −1 0
−1 2 −1

0 −1 3

 .

In Example 11.2 we found the eigenvalues λ1 = 1, λ2 = 3, and λ3 = 4 and the matrix
of eigenvectors

V = [V 1 V 2 V 3
] =

1 1 1
2 0 −1
1 −1 1

 .

The inverse matrix V−1 is

V−1 =

1
6

1
3

1
6

1
2 0 − 1

2
1
3 − 1

3
1
3

 .

It is left to the reader to check the details in computing the product in (24):
1
6

1
3

1
6

1
2 0 − 1

2
1
3 − 1

3
1
3

 3 −1 0
−1 2 −1

0 −1 3

1 1 1
2 0 −1
1 −1 1

 =
1 0 0

0 3 0
0 0 4

 .

Hence we have shown that A can be diagonalized; that is, V−1 AV = D = diag(1, 3, 4).
�

A more general result relating the structure of a matrix to its eigenvalues is the
following theorem.

Theorem 11.9 (Schur). Suppose that A is an arbitrary n × n matrix. A nonsingular
matrix P exists with the property that T = P−1 AP , where T is an upper-triangular
matrix whose diagonal entries consist of the eigenvalues of A.

594 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Certain types of structural analysis in engineering require that a basis of $n be
selected that consists of the eigenvectors of A. This choice makes it easier to visu-
alize how space is transformed by the mapping Y = T (X) = AX . Recall that the
eigenpair λ j , V j has the property that T maps V j onto the multiple of λ j V j . This
characteristic is exploited in the following theorem.

Theorem 11.10. Suppose that A is an n × n matrix that possesses n linearly inde-
pendent eigenpairs λ j , V j for j = 1, 2, . . . , n; then any vector X in $n has a unique
representation as a linear combination of the eigenvectors:

(25) X = c1V 1 + c2V 2 + · · · + cn V n.

The linear transformation T (X) = AX maps X onto the vector

(26) Y = T (X) = c1λ1V 1 + c2λ2V 2 + · · · + cnλn V n.

Example 11.4. Suppose that the 3 × 3 matrix A has eigenvalues λ1 = 2, λ2 = −1,
and λ3 = 4, which correspond to the eigenvectors V 1 =

[
1 2 −2

]′, V 2 =
[−2 1 1

]′,
and V 3 =

[
1 3 −4

]′, respectively. If X = [−1 2 1
]′
, find the image of X under the

mapping T (X) = AX .
We must first express X as a linear combination of the eigenvectors. This is accom-

plished by solving the equation[−1 2 1
]′ = c1

[
1 2 −2

]′ + c2
[−2 1 1

]′ + c3
[
1 3 −4

]′
for c1, c2, and c3. Observe that this is equivalent to solving the linear system

c1 − 2c2 + c3 = −1

2c1 + c2 + 3c3 = 2

−2c1 + c2 − 4c3 = 1.

The solution is c1 = 2, c2 = 1, and c3 = −1. Using Definition 11.4, for eigenvectors,
T (X) is found by the computation

T (X) = A(2V 1 + V 2 − V 3)

= 2AV 1 + AV 2 − AV 3

= 2(2V 1)− V 2 − 4V 3

= [2 −5 7
]′
. �

Virtues of Symmetry

There is no easy way to determine how many linearly independent eigenvectors a ma-
trix possesses without resorting to using the most effective algorithms in a professional
software package such as EISPACK or MATLAB. However, it is known that a real
symmetric matrix has n real eigenvectors and that for each eigenvalue of multiplic-
ity m j there corresponds m j linearly independent eigenvectors. Hence every real sym-
metric matrix is diagonalizable.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 595

Definition 11.6. A set of vectors {V 1, V 2, . . ., V n} is said to be orthogonal provided
that

�(27) V ′j V k = 0 whenever j �= k.

Definition 11.7. Suppose that {V 1, V 2, . . . , V n} is a set of orthogonal vectors; then
we say that they are orthonormal if they are all of unit norm, that is,

�(28)
V ′j V k = 0 whenever j �= k.

V ′j V j = 1 for all j = 1, 2, . . . , n.

Theorem 11.11. An orthonormal set of vectors is linearly independent.

Remark. The zero vector cannot belong to an orthonormal set of vectors.

Definition 11.8. An n× n matrix A is said to be an orthogonal matrix provided that
A′ is the inverse of A; that is,

(29) A′A = I,

which is equivalent to

(30) A−1 = A′.

Also, A is orthogonal if and only if the columns (and rows) of A form a set of or-
thonormal vectors. �

Theorem 11.12. If A is a real symmetric matrix, there exists an orthogonal matrix K
such that

(31) K ′AK = K−1 AK = D,

where D is a diagonal matrix consisting of the eigenvalues of A.

Corollary 11.1. If A is an n × n real symmetric matrix, there exist n linearly inde-
pendent eigenvectors for A, and they form an orthogonal set.

Corollary 11.2. The eigenvalues of a real symmetric matrix are all real numbers.

Theorem 11.13. Eigenvectors corresponding to distinct eigenvalues of a symmetric
matrix are orthogonal.

Theorem 11.14. A symmetric matrix A is positive definite if and only if all the
eigenvalues of A are positive.

596 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Estimates for the Size of Eigenvalues

It is useful to find a bound for the magnitude of the eigenvalues of A. The following
results will give some insights.

Definition 11.9. Let ‖X‖ be a vector norm. Then a corresponding natural matrix
norm is

(32) ‖A‖ = max‖X‖=1

{‖AX‖
‖X‖

}
.

For the norm ‖A‖∞ the following formula holds:

�(33) ‖A‖∞ = max
1≤i≤n

n∑

j=1

|ai j |
 .

Theorem 11.15. If λ is any eigenvalue of A, then

(34) |λ| ≤ ‖A‖ ,

for any natural matrix norm ‖A‖.

Theorem 11.16 (Gerschgorin’s Circle Theorem). Assume that A is an n×n matrix,
and let C j denote the disk in the complex plane with center a j j and radius

(35) r j =
n∑

k=1,k �= j

|a jk | for each j = 1, 2, . . . , n;

that is, C j consists of all complex numbers z = x + iy such that

(36) C j = {z : |z − a j j | ≤ r j }.

If S = ⋃n
i=1 Ci , then all the eigenvalues of A lie in the set S. Moreover, the union of

any k of these disks that do not intersect the remaining n − k must contain precisely k
(counting multiplicities) of the eigenvalues.

Theorem 11.17 (Spectral Radius Theorem). Let A be a symmetric matrix. The
spectral radius of A is ‖A‖2 and obeys the relationship

(37) ‖A‖2 = max{|λ1|, |λ2|, . . . , |λn|}.

SEC. 11.1 HOMOGENEOUS SYSTEMS: EIGENVALUE PROBLEM 597

Overview of Methods

For problems involving moderate-sized symmetric matrices, it is safe to use Jacobi’s
method. For problems involving large symmetric matrices (for n up to several hun-
dred), it is best to use Householder’s method to produce a tridiagonal form, followed
by the Q R algorithm. Unlike real symmetric matrices, real unsymmetric matrices can
have complex eigenvalues and eigenvectors.

For matrices that possess a dominant eigenvalue, the power method can be used
to find the dominant eigenvector. Deflation techniques can be used thereafter to find
the first few subdominant eigenvectors. For real unsymmetric matrices, Householder’s
method is used to produce a Hessenberg matrix, followed by the L R or Q R algorithm.

Exercises for Homogeneous Systems: Eigenvalue Problem

1. For each of the following matrices, find (i) the characteristic polynomial p(λ), (ii) the
eigenvalues, and (iii) an eigenvector for each eigenvalue.

(a) A =
[

1 2
3 2

]
(b) A =

[
1 6
9 2

]
(c) A =

[−2 3
3 −2

]

(d) A =
 1 2 1

0 1 2
−1 3 2

 (e) A =

1 1 1 1
0 2 2 3
0 0 3 2
0 0 0 4

2. Determine the spectral radius of each of the matrices in Exercise 1.

3. Determine the ‖A‖2 and ‖A‖∞ norms of each of the matrices in Exercise 1.

4. Determine which, if any, of the matrices in Exercise 1 are diagonalizable. For each
diagonalizable matrix in Exercise 1, find the matrices V and D from Theorem 11.8
and carry out the matrix product in (24).

5. (a) For any fixed θ , show that

R =
[

cos θ − sin θ

sin θ cos θ

]
is an orthogonal matrix.

Remark. The matrix R is called a rotation matrix.
(b) Determine all values of θ for which all the eigenvalues of R are real.

6. In Section 3.2 the plane rotations Rx (α), Ry(β), and Rz(γ) were introduced.
(a) For any fixed α, β, and γ , show that Rx (α), Ry(β), and Rz(γ), respectively,

are orthogonal matrices.
(b) Determine all values of α, β, and γ for which all the eigenvalues of Rx (α),

Ry(β), and Rz(γ), respectively, are real.

598 CHAP. 11 EIGENVALUES AND EIGENVECTORS

7. Let A =
[

a + 3 2
2 a

]
.

(a) Show that the characteristic polynomial is p(λ) = λ2−(3+2a)λ+a2+3a−4.
(b) Show that the eigenvalues of A are λ1 = a + 4 and λ2 = a − 1.
(c) Show that the eigenvectors of A are V 1 =

[
2 1

]′ and V 2 =
[−1 2

]′.
8. Assume that λ, V form an eigenpair of the matrix A. If k is a positive integer, prove

that λk , V are an eigenpair of the matrix Ak .

9. Suppose that V is an eigenvector of A that corresponds to the eigenvalue λ = 3.
Prove that λ = 9 is an eigenvalue of the matrix A2 corresponding to V .

10. Suppose that V is an eigenvector of A that corresponds to the eigenvalue λ = 2.
Prove that λ = 1

2 is an eigenvalue of the matrix A−1 corresponding to V .

11. Suppose that V is an eigenvector of A that corresponds to the eigenvalue λ = 5.
Prove that λ = 4 is an eigenvalue of the matrix A− I corresponding to V .

12. Let A be an n × n square matrix with characteristic polynomial p(λ) given by

p(λ) = det(A− λI)

= (−1)n(λn + c1λ
n−1 + c2λ

n−2 + · · · + cn−1λ+ cn).

(a) Show that the constant term of p(λ) is cn = (−1)n det(A).
(b) Show that the coefficient of λn−1 is c1 = −(a11 + a22 + · · · + ann).

13. Assume that A is similar to a diagonal matrix; that is,

V−1 AV = D = diag(λ1, λ2, . . . , λn).

If k is a positive integer, prove that

Ak = V diag(λk
1, λ

k
2, . . . , λ

k
n)V−1.

11.2 Power Method

We now describe the power method for computing the dominant eigenpair. Its exten-
sion to the inverse power method is practical for finding any eigenvalue provided that a
good initial approximation is known. Some schemes for finding eigenvalues use other
methods that converge fast, but have limited precision. The inverse power method is
then invoked to refine the numerical values and gain full precision. To discuss the
situation, we will need the following definitions.

Definition 11.10. If λ1 is an eigenvalue of A that is larger in absolute value than any
other eigenvalue, it is called the dominant eigenvalue. An eigenvector V 1 correspond-
ing to λ1 is called a dominant eigenvector. �

SEC. 11.2 POWER METHOD 599

Definition 11.11. An eigenvector V is said to be normalized if the coordinate of
largest magnitude is equal to unity (i.e., the largest coordinate in the vector V is the
number 1). �

It is easy to normalize an eigenvector
[
v1 v2 · · · vn

]′ by forming a new vector

V = (1/c)
[
v1 v2 · · · vn

]′, where c = v j and |v j | = max1≤i≤n{|vi |}.
Suppose that the matrix A has a dominant eigenvalue λ and that there is a unique

normalized eigenvector V that corresponds to λ. This eigenpair λ, V can be found by
the following iterative procedure called the power method. Start with the vector

(1) X0 =
[
1 1 · · · 1

]′
.

Generate the sequence {Xk} recursively, using

(2)
Y k = AXk,

Xk+1 = 1

ck+1
Y k,

where ck+1 is the coordinate of Y k of largest magnitude (in the case of a tie, choose
the coordinate that comes first). The sequences {Xk} and {ck} will converge to V and
λ, respectively:

(3) lim
k→∞ Xk = V and lim

k→∞ ck = λ.

Remark. If X0 is an eigenvector and X0 �= V , then some other starting vector must be
chosen.

Example 11.5. Use the power method to find the dominant eigenvalue and eigenvector
for the matrix

A =
 0 11 −5
−2 17 −7
−4 26 −10

 .

Start with X0 =
[
1 1 1

]′ and use the formulas in (2) to generate the sequence of
vectors {Xk} and constants {ck}. The first iteration produces 0 11 −5

−2 17 −7

−4 26 −10

1

1

1

 =
 6

8

12

 = 12

 1
2
2
3
1

 = c1 X1.

The second iteration produces 0 11 −5

−2 17 −7

−4 26 −10

1
2
2
3

1

 =

7
3
10
3
16
3

 = 16

3

7

16
5
8

1

 = c2 X2.

600 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Table 11.1 Power Method Used in Example 11.5 to Find the Normalized Dominant
Eigenvector V = [2

5
3
5 1

]′
and Corresponding Eigenvalue λ = 4

AXk = Yk = ck+1 Xk+1

AX0 = [6.000000 8.000000 12.00000]′ = 12.00000[0.500000 0.666667 1]′ = c1 X1
AX1 = [2.333333 3.333333 5.333333]′ = 5.333333[0.437500 0.625000 1]′ = c2 X2
AX2 = [1.875000 2.750000 4.500000]′ = 4.500000[0.416667 0.611111 1]′ = c3 X3
AX3 = [1.722222 2.555556 4.222222]′ = 4.222222[0.407895 0.605263 1]′ = c4 X4
AX4 = [1.657895 2.473684 4.105263]′ = 4.105263[0.403846 0.602564 1]′ = c5 X5
AX5 = [1.628205 2.435897 4.051282]′ = 4.051282[0.401899 0.601266 1]′ = c6 X6
AX6 = [1.613924 2.417722 4.025316]′ = 4.025316[0.400943 0.600629 1]′ = c7 X7
AX7 = [1.606918 2.408805 4.012579]′ = 4.012579[0.400470 0.600313 1]′ = c8 X8
AX8 = [1.603448 2.404389 4.006270]′ = 4.006270[0.400235 0.600156 1]′ = c9 X9
AX9 = [1.601721 2.402191 4.003130]′ = 4.003130[0.400117 0.600078 1]′ = c10 X10

AX10 = [1.600860 2.401095 4.001564]′ = 4.001564[0.400059 0.600039 1]′ = c11 X11

Iteration generates the sequence {Xk} (where Xk is a normalized vector):

12

1
2
2
3

1

 ,
16

3

7
16
5
8

1

 ,
9

2

5

12
11
18

1

 ,
38

9

31
76
23
38

1

 ,
78

19

21
52
47
78

1

 ,
158

39

127
316
95

158

1

 , · · ·

The sequence of vectors converges to V = [
2
3

3
5 1

]′
, and the sequence of constants

converges to λ = 4 (see Table 11.1). It can be proved that the rate of convergence is
linear. �

Theorem 11.18 (Power Method). Assume that the n × n matrix A has n distinct
eigenvalues λ1, λ2, . . . , λn and that they are ordered in decreasing magnitude; that is,

(4) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.
If X0 is chosen appropriately, then the sequences

{
Xk =

[
x (k)

1 x (k)
2 . . . x (k)

n

]′} and
{ck} generated recursively by

(5) Y k = AXk

and

(6) Xk+1 = 1

ck+1
Y k,

where

(7) ck+1 = x (k)
j and x (k)

j = max
1≤i≤n

{|x (k)
i |},

SEC. 11.2 POWER METHOD 601

will converge to the dominant eigenvector V 1 and eigenvalue λ1, respectively. That is,

(8) lim
k→∞ Xk = V 1 and lim

k→∞ ck = λ1.

Proof. Since A has n eigenvalues, there are n corresponding eigenvectors V j , for
j = 1, 2, . . . , n, that are linearly independent, normalized, and form a basis for n-
dimensional space. Hence the starting vector X0 can be expressed as the linear combi-
nation

(9) X0 = b1V 1 + b2V 2 + · · · + bn V n.

Assume that X0 =
[
x1 x2 . . . xn

]′ was chosen in such a manner that b1 �= 0. Also,
assume that the coordinates of X0 are scaled so that max1≤ j≤n{|x j |} = 1. Because
{V j }nj=1 are eigenvectors of A, the multiplication AX0, followed by normalization,
produces

Y 0 = AX0 = A(b1V 1 + b2V 2 + · · · + bn V n)

= b1 AV 1 + b2 AV 2 + · · · + bn AV n

= b1λ1V 1 + b2λ2V 2 + · · · + bnλn V n

= λ1

(
b1V 1 + b2

(
λ2

λ1

)
V 2 + · · · + bn

(
λn

λ1

)
V n

)(10)

and

X1 = λ1

c1

(
b1V 1 + b2

(
λ2

λ1

)
V 2 + · · · + bn

(
λn

λ1

)
V n

)
.

After k iterations we arrive at

Y k−1 = AXk−1

= A
λk−1

1

c1c2 · · · ck−1

(
b1V 1 + b2

(
λ2

λ1

)k−1

V 2 + · · · + bn

(
λn

λ1

)k−1

V n

)

= λk−1
1

c1c2 · · · ck−1

(
b1 AV 1 + b2

(
λ2

λ1

)k−1

AV 2 + · · · + bn

(
λn

λ1

)k−1

AV n

)

= λk−1
1

c1c2 · · · ck−1

(
b1λ1V 1 + b2

(
λ2

λ1

)k−1

λ2V 2 + · · · + bn

(
λn

λ1

)k−1

λn V n

)

= λk
1

c1c2 · · · ck−1

(
b1V 1 + b2

(
λ2

λ1

)k

V 2 + · · · + bn

(
λn

λ1

)k

V n

)

(11)

and

Xk = λk
1

c1c2 · · · ck

(
b1V 1 + b2

(
λ2

λ1

)k−1

V 2 + · · · + bn

(
λn

λ1

)k−1

V n

)
.

602 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Since we assumed that |λ j |/|λ1| < 1 for each j = 2, 3, . . . , n, we have

(12) lim
k→∞ b j

(
λ j

λ1

)k

V j = 0 for each j = 2, 3, . . . , n.

Hence it follows that

(13) lim
k→∞ Xk = lim

k→∞
b1λ

k
1

c1c2 · · · ck
V 1.

We have required that both Xk and V 1 be normalized and their largest component be 1.
Hence the limiting vector on the left side of (13) will be normalized, with its largest
component being 1. Consequently, the limit of the scalar multiple of V 1 on the right
side of (13) exists and its value must be 1; that is,

(14) lim
k→∞

b1λ
k
1

c1c2 · · · ck
= 1.

Therefore, the sequence of vectors {Xk} converges to the dominant eigenvector:

(15) lim
k→∞ Xk = V 1.

Replacing k with k − 1 in the terms of the sequence in (14) yields

lim
k→∞

b1λ
k−1
1

c1c2 · · · ck−1
= 1,

and dividing both sides of this result into (14) yields

lim
k→∞

λ1

ck
= lim

k→∞
b1λ

k
1/(c1c2 · · · ck)

b1λ
k−1
1 /(c1c2 · · · ck−1)

= 1

1
= 1.

Therefore, the sequence of constants {ck} converges to the dominant eigenvalue:

(16) lim
k→∞ ck = λ1,

and the proof of the theorem is complete. •

Speed of Convergence

In the light of equation (12) we see that the coefficient of V j in Xk goes to zero in
proportion to (λ j/λ1)

k and that the speed of convergence of {Xk} to V 1 is governed
by the terms (λ2/λ1)

k . Consequently, the rate of convergence is linear. Similarly, the

SEC. 11.2 POWER METHOD 603

Table 11.2 Comparison of the Rate of Convergence of the Power Method and Acceleration of
the Power Method Using Aitken’s ���2 Technique

ckYk ĉk X̂k

c1 X1 = 12.000000[0.5000000 0.6666667 1]′; 4.3809524[0.4062500 0.6041667 1]′ = ĉ1 X̂1
c2 X2 = 5.3333333[0.4375000 0.6250000 1]′; 4.0833333[0.4015152 0.6010101 1]′ = ĉ2 X̂2
c3 X3 = 4.5000000[0.4166667 0.6111111 1]′; 4.0202020[0.4003759 0.6002506 1]′ = ĉ3 X̂3
c4 X4 = 4.2222222[0.4078947 0.6052632 1]′; 4.0050125[0.4000938 0.6000625 1]′ = ĉ4 X̂4
c5 X5 = 4.1052632[0.4038462 0.6025641 1]′; 4.0012508[0.4000234 0.6000156 1]′ = ĉ5 X̂5
c6 X6 = 4.0512821[0.4018987 0.6012658 1]′; 4.0003125[0.4000059 0.6000039 1]′ = ĉ6 X̂6
c7 X7 = 4.0253165[0.4009434 0.6006289 1]′; 4.0000781[0.4000015 0.6000010 1]′ = ĉ7 X̂7
c8 X8 = 4.0125786[0.4004702 0.6003135 1]′; 4.0000195[0.4000004 0.6000002 1]′ = ĉ8 X̂8
c9 X9 = 4.0062696[0.4002347 0.6001565 1]′; 4.0000049[0.4000001 0.6000001 1]′ = ĉ9 X̂9
c10 X10 = 4.0031299[0.4001173 0.6000782 1]′; 4.0000012[0.4000000 0.6000000 1]′ = ĉ10 X̂10

convergence of the sequence of constants {ck} to λ1 is linear. The Aitken ���2 method
can be used for any linearly convergent sequence {pk} to form a new sequence,{

p̂k = (pk+1 − pk)
2

pk+2 − 2pk+1 + pk

}
,

that converges faster. In Example 11.4 this Aitken ���2 method can be applied to speed
up convergence of the sequence of constants {ck}, as well as the first two components of
the sequence of vectors {Xk}. A comparison of the results obtained with this technique
and the original sequences is shown in Table 11.2.

Shifted-Inverse Power Method
We will now discuss the shifted inverse power method. It requires a good starting
approximation for an eigenvalue, and then iteration is used to obtain a precise solution.
Other procedures such as the QM and Givens’ method are used first to obtain the
starting approximations. Cases involving complex eigenvalues, multiple eigenvalues,
or the presence of two eigenvalues with the same magnitude or approximately the same
magnitude will cause computational difficulties and require more advanced methods.
Our illustrations will focus on the case where the eigenvalues are distinct. The shifted
inverse power method is based on the following three results (the proofs are left as
exercises).

Theorem 11.19 (Shifting Eigenvalues). Suppose that λ, V is an eigenpair of A. If
α is any constant, then λ− α, V is an eigenpair of the matrix A− α I .

Theorem 11.20 (Inverse Eigenvalues). Suppose that λ, V is an eigenpair of A. If
λ �= 0, then 1/λ, V is an eigenpair of the matrix A−1.

604 CHAP. 11 EIGENVALUES AND EIGENVECTORS

αλ1 λj − 1 λj
λj + 1 λn

x

Figure 11.2 The location of α for the shifted-inverse
power method.

Theorem 11.21. Suppose that λ, V is an eigenpair of A. If α �= λ, then 1/(λ−α), V
is an eigenpair of the matrix (A− α I)−1.

Theorem 11.22 (Shifted-Inverse Power Method). Assume that the n × n matrix
A has distinct eigenvalues λ1, λ2, . . . , λn and consider the eigenvalue λ j . Then a
constant α can be chosen so that µ1 = 1/(λ j − α) is the dominant eigenvalue of
(A − α I)−1. Furthermore, if X0 is chosen appropriately, then the sequences

{
Xk =[

x (k)
1 x (k)

2 . . . x (k)
n

]′} and {ck} are generated recursively by

(17) Y k = (A− α I)−1 Xk

and

(18) Xk+1 = 1

ck+1
Y k,

where

(19) ck+1 = x (k)
j and x (k)

j = max
1≤ j≤n

{|x (k)
i |}

will converge to the dominant eigenpair µ1, V j of the matrix (A−α I)−1. Finally, the
corresponding eigenvalue for the matrix A is given by the calculation

(20) λ j = 1

µ1
+ α.

Remark. For practical implementations of Theorem 11.22, a linear system solver is
used to compute Y k in each step by solving the linear system (A− α I)Y k = Xk .

Proof. Without loss of generality, we may assume that λ1 < λ2 < · · · < λn . Se-
lect a number α (α �= λ j) that is closer to λ j than any of the other eigenvalues (see
Figure 11.2), that is,

(21) |λ j − α| < |λi − α| for each i = 1, 2, . . ., j − 1, j + 1, . . . , n.

According to Theorem 11.21, 1/(λ j − α), V is an eigenpair of the matrix
(A− α I)−1. Relation (21) implies that 1/|λi − α| < 1/|λ j − α| for each i �= j
so that µ1 = 1/(λ j − α) is the dominant eigenvalue of the matrix (A − α I)−1. The
shifted-inverse power method uses a modification of the power method to determine
the eigenpair µ1, V j . Then the calculation λ j = 1/µ1 + α produces the desired
eigenvalue of the matrix A. •

SEC. 11.2 POWER METHOD 605

Table 11.3 Shifted-Inverse Power Method for the Matrix (A− 4.2I)−1 in
Example 11.6: Convergence to the Eigenvector V = [2

5
3
5 1

]′
and µ1 = −5

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = −23.18181818 [0.4117647059 0.6078431373 1]′ = c1 X1
(A− α I)−1 X1 = −5.356506239 [0.4009983361 0.6006655574 1]′ = c2 X2
(A− α I)−1 X2 = −5.030252609 [0.4000902120 0.6000601413 1]′ = c3 X3
(A− α I)−1 X3 = −5.002733697 [0.4000081966 0.6000054644 1]′ = c4 X4
(A− α I)−1 X4 = −5.000248382 [0.4000007451 0.6000004967 1]′ = c5 X5
(A− α I)−1 X5 = −5.000022579 [0.4000000677 0.6000000452 1]′ = c6 X6
(A− α I)−1 X6 = −5.000002053 [0.4000000062 0.6000000041 1]′ = c7 X7
(A− α I)−1 X7 = −5.000000187 [0.4000000006 0.6000000004 1]′ = c8 X8
(A− α I)−1 X8 = −5.000000017 [0.4000000001 0.6000000000 1]′ = c9 X9

Example 11.6. Employ the shifted-inverse power method to find the eigenpairs of the
matrix

A =
 0 11 −5
−2 17 −7
−4 26 −10

 .

Use the fact that the eigenvalues of A are λ1 = 4, λ2 = 2, and λ3 = 1, and select an
appropriate α and starting vector for each case.

Case (i): For the eigenvalue λ1 = 4, we select α = 4.2 and the starting vector
X0 =

[
1 1 1

]′. First, form the matrix A− 4.2I , compute the solution to−4.2 11 −5
−2 12.8 −7
−4 26 −14.2

Y 0 = X0 =
1

1
1

 ,

and get the vector Y 0 =
[−9.545454545 −14.09090909 −23.18181818

]′. Then com-

pute c1 = −23.18181818 and X1 =
[
0.4117647059 0.6078431373 1

]′. Iteration gener-
ates the values given in Table 11.3. The sequence {ck} converges to µ1 = −5, which is the
dominant eigenvalue of (A− 4.2I)−1, and {Xk} converges to V 1 =

[
2
5

3
5 1

]′
. The eigen-

value λ1 of A is given by the computation λ1 = 1/µ1+α = 1/(−5)+4.2 = −0.2+4.2 =
4.

Case (ii): For the eigenvalue λ2 = 2, we select α = 2.1 and the starting vector
X0 =

[
1 1 1

]′. Form the matrix A− 2.1I , compute the solution to−2.1 11 −5
−2 14.9 −7
−4 26 −12.1

Y 0 = X0 =
1

1
1

 ,

and obtain the vector Y 0 =
[
11.05263158 21.57894737 42.63157895

]′. Then c1 =
42.63157895 and vector X1 =

[
0.2592592593 0.5061728395 1

]′. Iteration produces the

606 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Table 11.4 Shifted-Inverse Power Method for the Matrix (A− 2.1I)−1 in
Example 11.6: Convergence to the Dominant Eigenvector V = [1

4
1
2 1

]
and

µ1 = −10

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = 42.63157895 [0.2592592593 0.5061728395 1]′ = c1 X1
(A− α I)−1 X1 = −9.350227420 [0.2494788047 0.4996525365 1]′ = c2 X2
(A− α I)−1 X2 = −10.03657511 [0.2500273314 0.5000182209 1]′ = c3 X3
(A− α I)−1 X3 = −9.998082009 [0.2499985612 0.4999990408 1]′ = c4 X4
(A− α I)−1 X4 = −10.00010097 [0.2500000757 0.5000000505 1]′ = c5 X5
(A− α I)−1 X5 = −9.999994686 [0.2499999960 0.4999999973 1]′ = c6 X6
(A− α I)−1 X6 = −10.00000028 [0.2500000002 0.5000000001 1]′ = c7 X7

Table 11.5 Shifted-Inverse Power Method for the Matrix (A− 0.875I)−1 in
Example 11.6: Convergence to the Dominant Eigenvector V = [1

2
1
2 1

]′
and

µ1 = 8

(A− α I)−1 Xk = ck+1 Xk+1

(A− α I)−1 X0 = −30.40000000 [0.5052631579 0.4947368421 1]′ = c1 X1
(A− α I)−1 X1 = 8.404210526 [0.5002004008 0.4997995992 1]′ = c2 X2
(A− α I)−1 X2 = 8.015390782 [0.5000080006 0.4999919994 1]′ = c3 X3
(A− α I)−1 X3 = 8.000614449 [0.5000003200 0.4999996800 1]′ = c4 X4
(A− α I)−1 X4 = 8.000024576 [0.5000000128 0.4999999872 1]′ = c5 X5
(A− α I)−1 X5 = 8.000000983 [0.5000000005 0.4999999995 1]′ = c6 X6
(A− α I)−1 X6 = 8.000000039 [0.5000000000 0.5000000000 1]′ = c7 X7

values given in Table 11.4. The dominant eigenvalue of (A−2.1I)−1 is µ1 = −10, and the
eigenpair of the matrix A is λ2 = 1/(−10)+ 2.1 = −0.1+ 2.1 = 2 and V 2 =

[
1
4

1
2 1

]′
.

Case (iii): For the eigenvalue λ3 = 1, we select α = 0.875 and the starting vector
X0 =

[
0 1 1

]′. Iteration produces the values given in Table 11.5. The dominant eigen-
value of (A− 0.875I)−1 is µ1 = 8, and the eigenpair of matrix A is λ3 = 1/8+ 0.875 =
0.125 + 0.875 = 1 and V 3 =

[
1
2

1
2 1

]′
. The sequence {Xk} of vectors with the starting

vector
[
0 1 1

]′ converged in seven iterations. (Computational difficulties were encoun-

tered when X0 =
[
1 1 1

]′ was used, and convergence took significantly longer.) �

Program 11.1 (Power Method). To compute the dominant eigenvalue λ1 and its
associated eigenvector V 1 for the n×n matrix A. It is assumed that the n eigenvalues
have the dominance property |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| > 0.

function [lambda,V]=power1(A,X,epsilon,max1)

SEC. 11.2 POWER METHOD 607

%Input - A is an nxn matrix
% - X is the nx1 starting vector
% - epsilon is the tolerance
% - max1 is the maximum number of iterations
%Output - lambda is the dominant eigenvalue
% - V is the dominant eigenvector

%Initialize parameters
lambda=0;
cnt=0;
err=1;
state=1;

while ((cnt<=max1)&(state==1))
Y=A*X;
%Normalize Y
[m j]=max(abs(Y));
c1=m;
dc=abs(lambda-c1);
Y=(1/c1)*Y;
%Update X and lambda and check for convergence
dv=norm(X-Y);
err=max(dc,dv);
X=Y;
lambda=c1;
state=0;
if(err>epsilon)

state=1;
end
cnt=cnt+1;

end
V=X;

Program 11.2 (Shifted-Inverse Power Method). To compute the dominant eigen-
value λ j and its associated eigenvector V j for the n×n matrix A. It is assumed that
the n eigenvalues have the property λ1 < λ2 < · · · < λn and that α is a real number
such that |λ j − α| < |λi − α|, for each i = 1, 2, . . . , j − 1, j + 1, . . . , n.

function [lambda,V]=invpow(A,X,alpha,epsilon,max1)

%Input - A is an nxn matrix
% - X is the nx1 starting vector
% - alpha is the given shift
% - epsilon is the tolerance
% - max1 is the maximum number of iterations
%Output - lambda is the dominant eigenvalue

608 CHAP. 11 EIGENVALUES AND EIGENVECTORS

% - V is the dominant eigenvector

%Initialize the matrix A-alphaI and parameters
[n n]=size(A);
A=A-alpha*eye(n);
lambda=0;
cnt=0;
err=1;
state=1;

while ((cnt<=max1)&(state==1))
%Solve system AY=X
Y=A\X;
%Normalize Y
[m j]=max(abs(Y));
c1=m;
dc=abs(lambda-c1);
Y=(1/c1)*Y;
%Update X and lambda and check for convergence
dv=norm(X-Y);
err=max(dc,dv);
X=Y;
lambda=c1;
state=0;
if (err>epsilon)

state=1;
end
cnt=cnt+1;

end
lambda=alpha+1/c1;
V=X;

Exercises for Power Method

1. Let λ, V be an eigenpair of A. If α is any constant, show that λ−α, V is an eigenpair
of the matrix A− α I .

2. Let λ, V be an eigenpair of A. If λ �= 0, show that 1/λ, V is an eigenpair of the
matrix A−1.

3. Let λ, V be an eigenpair of A. If α �= λ, show that 1/(λ − α), V is an eigenpair of
the matrix (A− α I)−1.

4. Deflation techniques. Suppose that λ1, λ2, λ3, . . . , λn are the eigenvalues of A with
associated eigenvectors V 1, V 2, V 3, . . . , V n and that λ1 has multiplicity 1. If X is

SEC. 11.2 POWER METHOD 609

any vector with the property that X ′V 1 = 1, prove that the matrix

B = A− λ1V 1 X ′

has eigenvalues 0, λ2, λ3, . . . , λn with associated eigenvectors V 1, W2, W3, . . . , Wn ,
where V j and W j are related by the equation

V j = (λ− λ1)W j + λ1(X ′W j)V 1 for each j = 2, 3, . . . , n.

5. Markov processes and eigenvalues. A Markov process can be described by a square
matrix A whose entries are all positive and the column sums all equal 1. For illus-
tration, let P0 =

[
x (0) y(0)

]′
record the number of people in a certain city who use

brands X and Y , respectively. Each month people decide to keep using the same brand
or switch brands. The probability that a user of brand X will switch to brand Y is 0.3.
The probability that a user of brand Y will switch to brand X is 0.2. The transition
matrix for this process is

Pk+1 = APk =
[

0.8 0.3
0.2 0.7

] [
x (k)

y(k)

]
.

If AP j = P j for some j , then P j = V is said to be the steady-state distribution
for the Markov process. Thus, if there is a steady-state distribution, then λ = 1 must
be an eigenvalue of A. Additionally, the steady-state distribution V is an eigenvector
associated with λ = 1 (i.e., solve (A− I)V = 0).
(a) For the example given above; verify that λ = 1 is an eigenvalue of the transition

matrix A.
(b) Verify that the set of eigenvectors associated with λ = 1 is {t[3/2 1

]′ : t ∈
$, t �= 0}.

(c) Assume that the population of the city was 50,000. Use your results from
part (b) to verify that the steady-state distribution is

[
30,000 20,000

]′.
Algorithms and Programs

In Problems 1 through 4, use:
(a) Program 11.1 to find the dominant eigenpair of the given matrices.
(b) Program 11.2 to find the other eigenpairs.

1. A =
 7 6 −3
−12 −20 24
−6 −12 16

. 2. A =
−14 −30 42

24 49 −66
12 24 −32

.

3. A =

2.5 −2.5 3.0 0.5
0.0 5.0 −2.0 2.0
−0.5 −0.5 4.0 2.5
−2.5 −2.5 5.0 3.5

. 4. A =

2.5 −2.0 2.5 0.5
0.5 5.0 −2.5 −0.5

−1.5 1.0 3.5 −2.5
2.0 3.0 −5.0 3.0

.

610 CHAP. 11 EIGENVALUES AND EIGENVECTORS

5. Suppose that the probability that a user of brand X will switch to brand Y or Z is 0.4
and 0.2, respectively. The probability that a user of brand Y will switch to brand X
or Z is 0.2 and 0.2, respectively. The probability that a user of brand Z will switch to
brand X or Y is 0.1 and 0.1, respectively. The transition matrix for this process is

Pk+1 = APk =
0.4 0.2 0.1

0.4 0.6 0.1
0.2 0.2 0.8

x (k)

y(k)

z(k)

 .

(a) Verify that λ = 1 is an eigenvalue of A.

(b) Determine the steady-state distribution for a population of 80,000.

6. Suppose that the coffee industry consists of five brands B1, B2, B3, B4, and B5. As-
sume that each customer purchases a 3-pound can of coffee each month and 60 mil-
lion pounds of coffee is sold each month. Regardless of brand, each pound of coffee
represents a profit of one dollar. The coffee industry has empirically determined the
following transition matrix A for monthly coffee sales, where ai j represents the prob-
ability that a customer will purchase brand Bi given that their previous purchase was
brand B j .

A =

0.1 0.2 0.2 0.6 0.2
0.1 0.1 0.1 0.1 0.2
0.1 0.3 0.4 0.1 0.2
0.3 0.3 0.1 0.1 0.2
0.4 0.1 0.2 0.1 0.2

An advertising agency guarantees the manufacturer of brand B1 that, for $40 million
a year, they can change the first column of A to

[
0.3 0.1 0.1 0.2 0.3

]′. Should the
manufacturer of brand B1 hire the advertising agency?

7. Write a program, based on the deflation technique in Exercise 4, to find all the eigen-
values of a given matrix. Your program should call Program 11.1 as a subroutine to
determine the dominant eigenvalue and eigenvector at each iteration.

8. Use your program from Problem 7 to find all the eigenvalues of the following matri-
ces.

(a) A =
1 2 −1

1 0 1
4 −4 5

(b) A = [ai j], where ai j =

{
i + j i = j

i j i �= j
and i , j = 1, 2, . . . , 15.

SEC. 11.3 JACOBI’S METHOD 611

11.3 Jacobi’s Method

Jacobi’s method is an easily understood algorithm for finding all eigenpairs for a sym-
metric matrix. It is a reliable method that produces uniformly accurate answers for the
results. For matrices of order up to 10, the algorithm is competitive with more sophis-
ticated ones. If speed is not a major consideration, it is quite acceptable for matrices
up to order 20.

A solution is guaranteed for all real symmetric matrices when Jacobi’s method is
used. This limitation is not severe since many practical problems of applied math-
ematics and engineering involve symmetric matrices. From a theoretical viewpoint,
the method embodies techniques that are found in more sophisticated algorithms. For
instructive purposes, it is worthwhile to investigate the details of Jacobi’s method.

Plane Rotations

We start with some geometrical background about coordinate transformations. Let X
denote a vector in n-dimensional space and consider the linear transformation Y =
RX , where R is an n × n matrix:

R =

1 · · · 0 · · · 0 · · · 0
...

...

0 · · · cos φ · · · sin φ · · · 0
...

...

0 · · · − sin φ · · · cos φ · · · 0
...

...

0 · · · 0 · · · 0 · · · 1

← row p

← row q

↑
col p

↑
col q

Here all off-diagonal elements of R are zero except for the values ± sin φ, and all
diagonal elements are 1 except for cos φ. The effect of the transformation Y = RX is
easy to grasp:

y j = x j when j �= p and j �= q,

yp = x p cos φ + xq sin φ,

yq = −x p sin φ + xq cos φ.

The transformation is seen to be a rotation of n-dimensional space in the x pxq -plane
through the angle φ. By selecting an appropriate angle φ, we could make either yp = 0
or yq = 0 in the image. The inverse transformation X = R−1Y rotates space in the
same x pxq -plane through the angle −φ. Observe that R is an orthogonal matrix; that
is,

R−1 = R′ or R′R = I .

612 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Similarity and Orthogonal Transformations
Consider the eigenproblem

(1) AX = λX .

Suppose that K is a nonsingular matrix and that B is defined by

(2) B = K−1 AK .

Multiply both members of (2) on the right side by the quantity K−1 X . This produces

B K−1 X = K−1 AK K−1 X = K−1 AX

= K−1λX = λK−1 X .
(3)

We define the change of variable

(4) Y = K−1 X or X = KY .

When (4) is used in (3), the new eigenproblem is

(5) BY = λY .

Comparing (1) and (5), we see that the similarity transformation (2) preserved the
eigenvalue λ and that the eigenvectors are different, but are related by the change of
variable in (4).

Suppose that the matrix R is an orthogonal matrix (i.e., R−1 = R′) and that D is
defined by

(6) D = R′AR.

Multiply both terms in (6) on the right by R′X to obtain

(7) DR′X = R′ARR′X = R′AX = R′λX = λR′X .

We define the change of variable

(8) Y = R′X or X = RY .

Now use (8) in (7) to obtain a new eigenproblem,

(9) DY = λY .

As before, the eigenvalues of (1) and (9) are the same. However, for equation (9) the
change of variable (8) makes it easier to convert X to Y and Y back into X because
R−1 = R′.

In addition, suppose that A is a symmetric matrix (i.e., A = A′). Then we find that

(10) D′ = (R′AR)′ = R′A(R′)′ = R′AR = D.

Hence D is a symmetric matrix. Therefore, we conclude that if A is a symmetric matrix
and R is an orthogonal matrix, the transformation of A to D given by (6) preserves
symmetry as well as eigenvalues. The relationship between their eigenvectors is given
by the change of variable (8).

SEC. 11.3 JACOBI’S METHOD 613

Jacobi Series of Transformations

Start with the real symmetric matrix A. Then construct the sequence of orthogonal
matrices R1, R2, . . . , Rn as follows:

(11)
D0 = A,

D j = R′j D j−1 R j for j = 1, 2,

We will show how to construct the sequence {R j } so that

(12) lim
j→∞ D j = D = diag(λ1, λ2, . . . , λn).

In practice we will stop when the off-diagonal elements are close to zero. Then we will
have

(13) Dn ≈ D.

The construction produces

(14) Dn = R′n R′n−1 · · · R′1 AR1 R2 · · · Rn−1 Rn.

If we define

(15) R = R1 R2 · · · Rn−1 Rn,

then R−1 AR = Dk , which implies that

(16) AR = R Dk ≈ R diag(λ1, λ2, . . . , λn).

Let the columns of R be denoted by the vectors X1, X2, . . . , Xn . Then R can be
expressed as a row vector of column vectors:

(17) R = [X1 X2 · · · Xn
]
.

The columns of the products in (16) now take on the form

(18)
[

AX1 AX2 · · · AXn
] ≈ [λ1 X1 λ2 X2 · · · λn Xn

]
.

From (17) and (18) we see that the vector X j , which is the j th column of R, is an
eigenvector that corresponds to the eigenvalue λ j .

614 CHAP. 11 EIGENVALUES AND EIGENVECTORS

General Step

Each step in the Jacobi iteration will accomplish the limited objective of reduction of
the two off-diagonal elements dpq and dqp to zero. Let R1 denote the first orthogonal
matrix used. Suppose that

(19) D1 = R′1 AR1

reduces the elements dpq and dqp to zero, where R1 has the form

R1 =

1 · · · 0 · · · 0 · · · 0
...

...

0 · · · c · · · s · · · 0
...

...

0 · · · −s · · · c · · · 0
...

...

0 · · · 0 · · · 0 · · · 1

← row p

← row q

(20)

↑
col p

↑
col q

Here all off-diagonal elements of R1 are zero except for the element s located in
row p, column q, and the element −s located in row q, column p. Also note that all
diagonal elements are 1 except for the element c, which appears at two locations, in
row p, column p, and in row q, column q. The matrix is a plane rotation where we
have used the notation c = cos φ and s = sin φ.

We must verify that the transformation (19) will produce a change only to rows p
and q and columns p and q. Consider postmultiplication of A by R1 and the product
B = AR1:
(21)

B =

a11 · · · a1p · · · a1q · · · a1n
ap1 · · · app · · · apq · · · apn
aq1 · · · aqp · · · aqq · · · aqn
an1 · · · anp · · · anq · · · ann

1 · · · 0 · · · 0 · · · 0
0 · · · c · · · s · · · 0
0 · · · −s · · · c · · · 0
0 · · · 0 · · · 0 · · · 1

The row by column rule for multiplication applies, and we observe that there is no
change to columns 1 to p−1 and p+1 to q−1 and q+1 to n. Hence only columns p
and q are altered.

b jk = a jk when k �= p and k �= q,

b jp = ca jp − sa jq for j = 1, 2, . . . , n,(22)

b jq = sa jp + ca jq for j = 1, 2, . . . , n.

SEC. 11.3 JACOBI’S METHOD 615

A similar argument shows that premultiplication of A by R′1 will only alter rows p
and q. Therefore, the transformation

(23) D1 = R′1 AR1

will alter only columns p and q and rows p and q of A. The elements d jk of D1 are
computed with the formulas

(24)

d jp = ca jp − sa jq when j �= p and j �= q,

d jq = sa jp + ca jq when j �= p and j �= q,

dpp = c2app + s2aqq − 2csapq ,

dqq = s2app + c2aqq + 2csapq ,

dpq = (c2 − s2)apq + cs(app − aqq),

and the other elements of D1 are found by symmetry.

Zeroing Out dpq and dq p

The goal for each step of Jacobi’s iteration is to make the two off-diagonal elements
dpq and dqp zero. The obvious strategy would be to observe the fact that

(25) c = cos φ and s = sin φ,

where φ is the angle of rotation that produces the desired effect. However, some inge-
nious maneuvers with trigonometric identities are now required. The identity for cot φ
is used with (25) to define

(26) θ = cot 2φ = c2 − s2

2cs
.

Suppose that apq �= 0 and we want to produce dpq = 0. Then using the last
equation in (24), we obtain

(27) 0 = (c2 − s2)apq + cs(app − aqq).

This can be rearranged to yield (c2−s2)/(cs) = (aqq−app)/apq , which is used in (26)
to solve for θ :

(28) θ = aqq − app

2apq
.

616 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Although we can use (28) with formulas (25) and (26) to compute c and s, less
round-off error is propagated if we compute tan φ and use it in later computations. So
we define

(29) t = tan φ = s

c
.

Now divide the numerator and denominator in (26) by c2 to obtain

θ = 1− s2/c2

2s/c
= 1− t2

2t
,

which yields the equation

(30) t2 + 2tθ − 1 = 0.

Since t = tan φ, the smaller root of (30) corresponds to the smaller angle of rotation
with |φ| ≤ π/4. The special form of the quadratic formula for finding this root is

(31) t = −θ ± (θ2 + 1)1/2 = sign(θ)

|θ | + (θ2 + 1)1/2
,

where sign(θ) = 1 when θ ≥ 0 and sign(θ) = −1 when θ < 0. Then c and s are
computed with the formulas

(32)
c = 1

(t2 + 1)1/2

s = ct.

Summary of the General Step

We can now outline the calculations required to zero out the element dpq . First, select
row p and column q for which apq �= 0. Second, form the preliminary quantities

(33)

θ = aqq − app

2apq
,

t = sign(θ)

|θ | + (θ2 + 1)1/2
,

c = 1

(t2 + 1)1/2
,

s = ct.

SEC. 11.3 JACOBI’S METHOD 617

Third, to construct D = D1, use

(34)

dpq = 0;
dqp = 0;
dpp = c2app + s2aqq − 2csapq;
dqq = s2app + c2aqq + 2csapq;

for j = 1 : n

if (j ∼= p) and (j ∼= q)

d jp = ca jp − sa jq;
dpj = d jp;
d jq = ca jq + sa jp;
dq j = d jq;

end

end

Updating the Matrix of Eigenvectors

We need to keep track of the matrix product R1 R2 · · · Rn . When we stop at the nth
iteration, we will have computed

(35) V n = R1 R2 · · · Rn,

where V n is an orthogonal matrix. We need only keep track of the current matrix V j ,
for j = 1, 2, . . . , n. Start by initializing V = I . Use the vector variables XP and XQ
to store columns p and q of V , respectively. Then for each step perform the calculation

(36)

for j = 1 : n

XP j = v j p;
XQ j = v jq;

end

for j = 1 : n

v j p = cXP j − sXQ j ;
v jq = sXP j + cXQ j ;

end

618 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Strategy for Eliminating apq

The speed of convergence of Jacobi’s method is seen by considering the sum of the
squares of the off-diagonal elements:

S1 =
n∑

j,k=1
k �= j

|a jk |2(37)

S2 =
n∑

j,k=1
k �= j

|d jk |2, where D1 = R′AR.(38)

The reader can verify that the equations given in (34) can be used to prove that

(39) S2 = S1 − 2|apq |2.
At each step we let S j denote the sum of the squares of the off-diagonal elements

of D j . Then the sequence {S j } decreases monotonically and is bounded below by zero.
Jacobi’s original algorithm of 1846 selected, at each step, the off-diagonal element apq
of largest magnitude to zero out and involved a search to compute the value

(40) max{A} = max
p<q
{|apq |}.

This choice will guarantee that {S j } converges to zero. As a consequence, this proves
that {D j } converges to D and {V j } converges to the matrix V of eigenvectors.

Jacobi’s search can become time consuming since it requires an order of (n2−n)/2
comparisons in a loop. It is prohibitive for larger values of n. A better strategy is the
cyclic Jacobi method, where one annihilates elements in a strict order across the rows.
A tolerance value ε is selected; then a sweep is made throughout the matrix, and if an
element apq is found to be larger than ε, it is zeroed out. For one sweep through the
matrix the elements are checked in row 1, a12, a13, . . . , a1n; then row 2, a23, a24, . . . ,
a2n; and so on. It has been proved that the convergence rate is quadratic for both the
original and cyclic Jacobi methods. An implementation of the cyclic Jacobi method
starts by observing that the sum of the squares of the diagonal elements increases with
each iteration; that is, if

T0 =
n∑

j=1

|a j j |2(41)

and

T1 =
n∑

j=1

|d j j |2,

SEC. 11.3 JACOBI’S METHOD 619

then

T1 = T0 + 2|apq |2.
Consequently, the sequence {D j } converges to the diagonal matrix D. Notice that the
average size of a diagonal element can be computed with the formula (T0/n)1/2. The
magnitudes of the off-diagonal elements are compared to ε(T0/n)1/2, where ε is the
preassigned tolerance. Therefore, the element apq is zeroed out if

(42) |apq | > ε

(
T0

n

)1/2

.

Another variation of the method, called the threshold Jacobi method, is left for the
reader to investigate.

Example 11.7. Use Jacobi iteration to transform the following symmetric matrix into
diagonal form.

8 −1 3 −1
−1 6 2 0

3 2 9 1
−1 0 1 7

The computational details are left for the reader. The first rotation matrix that will zero

out a13 = 3 is

R1 =

0.763020 0.000000 0.646375 0.000000
0.000000 0.000000 0.000000 0.000000

−0.646375 0.000000 0.763020 0.000000
0.000000 0.000000 0.000000 0.000000

 .

Calculation reveals that A2 = R1 A1 R1 is

A2 =

5.458619 −2.055770 0.000000 −1.409395

−2.055770 6.000000 0.879665 0.000000
0.000000 0.879665 11.541381 0.116645

−1.409395 0.000000 0.116645 7.000000

 .

Next, the element a12 = −2.055770 is zeroed out and we get

A3 =

3.655795 0.000000 0.579997 −1.059649
0.000000 7.802824 0.661373 0.929268
0.579997 0.661373 11.541381 0.116645
−1.059649 0.929268 0.116645 7.000000

 .

After 10 iterations we arrive at

A10 =

3.295870 0.002521 0.037859 0.000000
0.002521 8.405210 −0.004957 0.066758
0.037859 −0.004957 11.704123 −0.001430
0.000000 0.066758 −0.001430 6.594797

 .

620 CHAP. 11 EIGENVALUES AND EIGENVECTORS

It will take six more iterations for the diagonal elements to get close to the diagonal matrix

D = diag(3.295699, 8.407662, 11.704301, 6.592338).

However, the off-diagonal elements are not small enough, and it will take three more it-
erations for them to be less than 10−6 in magnitude. Then the eigenvectors are the columns
of the matrix V = R1 R2 · · · R18, which is

V =

0.528779 −0.573042 0.582298 0.230097
0.591967 0.472301 0.175776 −0.628975
−0.536039 0.282050 0.792487 −0.071235

0.287454 0.607455 0.044680 0.739169

 . �

Program 11.3 (Jacobi Iteration for Eigenvalues and Eigenvectors). To compute
the full set of eigenpairs {λ j , V j }nj=1 of the n × n real symmetric matrix A. Jacobi
iteration is used to find all eigenpairs.

function [V,D]=jacobi1(A,epsilon)

%Input - A is an nxn matrix
% - epsilon is the tolerance
%Output - V is the nxn matrix of eigenvectors
% - D is the diagonal nxn matrix of eigenvalues

%Initialize V,D,and parameters
D=A;
[n,n]=size(A);
V=eye(n);
state=1;

%Calculate row p and column q of the off-diagonal element
%of greatest magnitude in A
[m1 p]=max(abs(D-diag(diag(D))));
[m2 q]=max(m1);
p=p(q);

while(state==1)
%Zero out Dpq and Dqp
t=D(p,q)/(D(q,q)-D(p,p));
c=1/sqrt(t^2+1);
s=c*t;
R=[c s;-s c];
D([p q],:)=R’*D([p q],:);
D(:,[p q])=D(:,[p q])*R;
V(:,[p q])=V(:,[p q])*R;

SEC. 11.3 JACOBI’S METHOD 621

[m1 p]=max(abs(D-diag(diag(D))));
[m2 q]=max(m1);
p=p(q);
if (abs(D(p,q))<epsilon*sqrt(sum(diag(D).^2)/n))

state=0;
end

end
D=diag(diag(D));

Exercises for Jacobi’s Method

1. Mass-spring systems. Consider the undamped mass-spring system shown in Fig-
ure 11.3. The mathematical model describing the displacements from static equilib-
rium isk1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3

x1(t)
x2(t)
x3(t)

+
m1 0 0

0 m2 0
0 0 m3

x ′′1 (t)
x ′′2 (t)
x ′′3 (t)

 =
0

0
0

(a) Use the substitutions x j (t) = v j sin(ωt + θ) for j = 1, 2, 3, where θ is a con-

stant, and show that the solution to the mathematical model can be reformulated
as follows:

k1 + k2

m1

−k2

m1
0

−k2

m2

k2 + k3

m2

−k3

m2

0
−k3

m3

k3

m3

v1

v2

v3

= ω2

v1

v2

v3

.

(b) Set λ = ω2; then the three solutions to part (a) are the eigenpairs λ j , V j =[
v

(j)
1 v

(j)
2 v

(j)
3

]′
, for j = 1, 2, 3. Show that they are used to form the three

k1 m1

k2 m2

k3 m3

x1(t) x2(t) x3(t)

Figure 11.3 An undamped mass-
spring system.

622 CHAP. 11 EIGENVALUES AND EIGENVECTORS

fundamental solutions:

X j (t) =

v

(j)
1 sin(ω j t + θ)

v
(j)
2 sin(ω j t + θ)

v
(j)
3 sin(ω j t + θ)

 = sin(ω j t + θ)

v

(j)
1

v
(j)
2

v
(j)
3

 ,

where ω j =
√

λ j , for j = 1, 2, 3.
Remark. These three solutions are referred to as the three principal modes of
vibration.

2. The homogeneous linear system of differential equations

x ′1(t) = x1(t)+ x2(t)

x ′2(t) = −2x1(t)+ 4x2(t)

can be written in the matrix form

X ′(t) =
[

x ′1(t)
x ′2(t)

]
=
[

1 1
−2 4

] [
x1(t)
x2(t)

]
= AX(t).

(a) Verify that 2,
[
1 1

]′ and 3,
[
1 2

]′ are eigenpairs of the matrix A.
(b) By direct substitution into the matrix form of the system, verify that both X(t) =

e2t
[
1 1

]′ and X(t) = e3t
[
1 2

]′ are solutions of the system of differential equa-
tions.

(c) By direct substitution into the matrix form of the system, verify that X(t) =
c1e2t

[
1 1

]′ + c2e3t
[
1 2

]′ is the general solution of the system of differential
equations.
Remark. If the matrix A has n distinct eigenvalues, then it will have n linearly
independent eigenvectors. In this case the general solution of a homogeneous
system of differential equations can be written as a linear combination: that is,
X(t) = c1eλ1t V 1 + c2eλ2t V 2 + · · · + cneλn t V n .

3. Use the technique (by hand) outlined in Exercise 2 to solve each of the following
initial value problems.

(a)
x ′1 = 4x1 + 2x2

x ′2 = 3x1 − x2
with

{
x1(0) = 1

x2(0) = 2

(b)
x ′1 = 2x1 − 12x2

x ′2 = x1 − 5x2
with

{
x1(0) = 2

x2(0) = 2

(c)

x ′1 = x2

x ′2 = x3

x ′3 = 8x1 − 14x2 + 7x3

with

x1(0) = 1

x2(0) = 2

x3(0) = 3

SEC. 11.3 JACOBI’S METHOD 623

Algorithms and Programs

1. Use Program 11.3 to find the eigenpairs of the given matrix with a tolerance of ε =
10−7. Compare your results with those obtained from the MATLAB command eig
by entering [V,D]=eig(A) in the MATLAB command window.

(a) A =

4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

(b) A =

2.25 −0.25 −1.25 2.75

−0.25 2.25 2.75 1.25
−1.25 2.75 2.25 −0.25

2.75 1.25 −0.25 2.25

(c) A = [ai j], where ai j =

{
i + j i = j

i j i �= j
and i, j = 1, 2, . . . , 30.

(d) A = [ai j], where ai j =
{

cos(sin(i + j)) i = j

i + i j + j i �= j
and i, j = 1, 2, . . . , 40.

2. Use the technique outlined in Exercise 1 and Program 11.3 to find the eigenpairs and
the three principal modes of vibration for the undamped mass-spring systems with the
following coefficients.
(a) k1 = 3, k2 = 2, k3 = 1, m1 = 1, m2 = 1, m3 = 1
(b) k1 = 1

2 , k2 = 1
4 , k3 = 1

4 , m1 = 4, m2 = 4, m3 = 4
(c) k1 = 0.2, k2 = 0.4, k3 = 0.3, m1 = 2.5, m2 = 2.5, m3 = 2.5

3. Use the technique outlined in Exercise 2 and Program 11.3 to find the general solution
of the given homogeneous system of differential equations.
(a) x ′1 = 4x1 + 3x2 + 2x3 + x4

x ′2 = 3x1 + 4x2 + 3x3 + 2x4

x ′3 = 2x1 + 3x2 + 4x3 + 3x4

x ′4 = x1 + 2x2 + 3x3 + 4x4

(b) x ′1 = 5x1 + 4x2 + 3x3 + 2x4 + x5

x ′2 = 4x1 + 5x2 + 4x3 + 3x4 + 2x5

x ′3 = 3x1 + 4x2 + 5x3 + 4x4 + 3x5

x ′4 = 2x1 + 3x2 + 4x3 + 5x4 + 4x5

x ′5 = x1 + 2x2 + 3x3 + 4x4 + 5x5

4. Modify Program 11.3 to implement the “cyclic” Jacobi method.

5. Use your program from Problem 4 on the symmetric matrices in Problem 1. In par-
ticular, compare the number of iterations required by your cyclic program and Pro-
gram 11.3 to satisfy the given tolerance.

624 CHAP. 11 EIGENVALUES AND EIGENVECTORS

11.4 Eigenvalues of Symmetric Matrices

Householder’s Method

Each transformation in Jacobi’s method produced two zero off-diagonal elements, but
subsequent iterations might make them nonzero. Hence many iterations are required to
make the off-diagonal entries sufficiently close to zero. We now develop a method that
produces several zero off-diagonal elements in each iteration, and they remain zero in
subsequent iterations. We start by developing an important step in the process.

Theorem 11.23 (Householder Reflection). If X and Y are vectors with the same
norm, there exists an orthogonal symmetric matrix P such that

(1) Y = P X,

where

(2) P = I − 2W W ′

and

(3) W = X − Y
‖X − Y‖2

.

Since P is both orthogonal and symmetric, it follows that

(4) P−1 = P .

Proof. Equation (3) is used and defines W to be the unit vector in the direction X−Y ;
hence

W ′W = 1(5)

and

Y = X + cW ,(6)

where c = −‖X − Y‖2. Since X and Y have the same norm, the parallelogram rule
for vector addition can be used to see that Z = (X+Y)/2 = X+(c/2)W is orthogonal
to vector W (see Figure 11.4). This implies that

W ′ (X + c

2
W
)
= 0.

Now we can use (5) to expand the preceding equation and get

(7) W ′X + c

2
W ′W = W ′X + c

2
= 0.

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 625

X

Z

WY Figure 11.4 The vectors W , X , Y ,
and Z involved in the Householder
reflection.

The crucial step is to use (7) and express c in the form

(8) c = −2(W ′X).

Now (8) can be used in (6) to see that

Y = X + cW = X − 2W ′XW .

Since the quantity W ′X is a scalar, the last equation can be written as

(9) Y = X − 2W W ′X = (I − 2W W ′)X .

Looking at (9), we see that P = I − 2W W ′. The matrix P is symmetric because

P ′ = (I − 2W W ′)′ = I − 2(W W ′)′

= I − 2W W ′ = P .

The following calculation shows that P is orthogonal:

P ′P = (I − 2W W ′)(I − 2W W ′)
= I − 4W W ′ + 4W W ′W W ′

= I − 4W W ′ + 4W W ′ = I,

and the proof is complete. •
It should be observed that the effect of the mapping Y = P X is to reflect X

through the line whose direction is Z, hence the name Householder reflection.

Corollary 11.3 (kth Householder Matrix). Let A be an n × n matrix, and X any
vector. If k is an integer with 1 ≤ k ≤ n− 2, we can construct a vector W k and matrix
Pk = I − 2W k W ′

k so that

(10) Pk X = Pk

x1
...

xk
xk+1
xk+2

...

xn

=

x1
...

xk
−S

0
...

0

= Y .

626 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Proof. The key is to define the value S so that ‖X‖2 = ‖Y‖2 and then invoke Theo-
rem 11.23. The proper value for S must satisfy

(11) S2 = x2
k+1 + x2

k+2 + · · · + x2
n ,

which is readily verified by computing the norms of X and Y :

‖X‖2 = x2
1 + x2

2 + · · · + x2
n

= x2
1 + x2

2 + · · · + x2
k + S2

= ‖Y‖2 .

(12)

The vector W is found by using equation (3) of Theorem 11.23:

(13)
W = 1

R
(X − Y)

= 1

R

[
0 · · · 0 (xk+1 + S) xk+2 · · · xn

]′
.

Less round-off error is propagated when the sign of S is chosen to be the same as the
sign of xk+1; hence we compute

(14) S = sign(xk+1)(x2
k+1 + x2

k+2 + · · · + x2
n)1/2.

The number R in (13) is chosen so that ‖W‖2 = 1 and must satisfy

R2 = (xk+1 + S)2 + x2
k+2 + · · · + x2

n

= 2xk+1S + S2 + x2
k+1 + x2

k+2 + · · · + x2
n

= 2xk+1S + 2S2.

(15)

Therefore, the matrix Pk is given by the formula

(16) Pk = I − 2W W ′,

and the proof is complete. •

Householder Transformation
Suppose that A is a symmetric n×n matrix. Then a sequence of n−2 transformations
of the form PAP will reduce A to a symmetric tridiagonal matrix. Let us visualize
the process when n = 5. The first transformation is defined to be P1 AP1, where P1
is constructed by applying Corollary 11.3, with the vector X being the first column of
the matrix A. The general form of P1 is

(17) P1 =

1 0 0 0 0
0 p p p p
0 p p p p
0 p p p p
0 p p p p

 ,

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 627

where the letter p stands for some element in P1. As a result, the transformation
P1 AP1 does not affect the element a11 of A:

(18) P1 AP1 =

a11 v1 0 0 0
u1 w1 w w w

0 w w w w

0 w w w w

0 w w w w

 = A1.

The element denoted u1 is changed because of premultiplication by P1, and v1 is
changed because of postmultiplication by P1; since A1 is symmetric, we have u1 = v1.
The changes to the elements denoted w have been affected by both premultiplication
and postmultiplication. Also, since X is the first column of A, equation (10) implies
that u1 = −S.

The second Householder transformation is applied to the matrix A1 defined in (18)
and is denoted P2 AP2, where P2 is constructed by applying Corollary 11.3, with the
vector X being the second column of the matrix A1. The form of P2 is

(19) P2 =

1 0 0 0 0
0 1 0 0 0
0 0 p p p
0 0 p p p
0 0 p p p

 ,

where p stands for some element in P2. The 2 × 2 identity block in the upper-left
corner ensures that the partial tridiagonalization achieved in the first step will not be
altered by the second transformation P2 A1 P2. The outcome of this transformation is

(20) P2 A1 P2 =

a11 v1 0 0 0
u1 w1 v2 0 0
0 u2 w2 w w

0 0 w w w

0 0 w w w

 = A2.

The elements u2 and v2 were affected by premultiplication and postmultiplication
by P2. Additional changes have been introduced to the other elements w by the trans-
formation.

The third Householder transformation, P3 A2 P3, is applied to the matrix A2 de-
fined in (20), where the corollary is used with X being the third column of A2. The
form of P3 is

(21) P3 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 p p
0 0 0 p p

 .

628 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Again, the 3× 3 identity block ensures that P3 A2 P3 does not affect the elements
of A2, which lie in the upper 3× 3 corner, and we obtain

(22) P3 A2 P3 =

a11 v1 0 0 0
u1 w1 v2 0 0
0 u2 w2 v3 0
0 0 u3 w w

0 0 0 w w

 = A3.

Thus it has taken three transformations to reduce A to tridiagonal form.
For efficiency, the transformation PAP is not performed in matrix form. The next

result shows that it is more efficiently carried out via some clever vector manipulations.

Theorem 11.24 (Computation of One Householder Transformation). If P is a
Householder matrix, the transformation PAP is accomplished as follows. Let

(23) V = AW

and compute

(24) c = W ′V

and

(25) Q = V − cW .

Then

(26) PAP = A− 2W Q′ − 2 QW ′.

Proof. First, form the product

AP = A(I − 2W W ′) = A− 2AW W ′.

Using equation (23), this is written as

(27) AP = A− 2V W ′.

Now use (27) and write

(28) PAP = (I − 2W W ′)(A− 2V W ′).

When this quantity is expanded, the term 2(2W W ′V W ′) is divided into two portions
and (28) can be rewritten as

(29) PAP = A− 2W(W ′A)+ 2W(W ′V W ′)− 2V W ′ + 2W(W ′V)W ′.

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 629

Under the assumption that A is symmetric, we can use the identity (W ′A) = (W ′A′) =
V ′. The tricky part is to observe that (W ′V) is a scalar quantity; hence it can commute
freely about in any term. Another scalar identity, W ′V = (W ′V)′, is used to obtain
the relation W ′V W ′ = (W ′V)W ′ = W ′(W ′V) = W ′(W ′V)′ = ((W ′V)W)′ =
(W ′V W)′. These results are used in the terms of (29) in parentheses to get

(30) PAP = A− 2W V ′ + 2W(W ′V W)′ − 2V W ′ + 2W ′V W W ′.

Now the distributive law is used in (30) and we obtain

(31) PAP = A− 2W(V ′ − (W ′V W)′)− 2(V −W ′V W)W ′.

Finally, the definition for Q given in (25) is used in (31) and the outcome is equa-
tion (26), and the proof is complete. •

Reduction to Tridiagonal Form

Suppose that A is a symmetric n × n matrix. Start with

(32) A0 = A.

Construct the sequence P1, P2, . . . , Pn−1 of Householder matrices, so that

(33) Ak = Pk Ak−1 Pk for k = 1, 2, . . . , n − 2,

where Ak has zeros below the subdiagonal in columns 1, 2, . . ., k. Then An−2 is a
symmetric tridiagonal matrix that is similar to A. This process is called Householder’s
method.

Example 11.8. Use Householder’s method to reduce the following matrix to symmetric
tridiagonal form:

A0 =

4 2 2 1
2 −3 1 1
2 1 3 1
1 1 1 2

 .

The details are left for the reader. The constants S = 3 and R = 301/2 = 5.477226 are
used to construct the vector

W ′ = 1√
30

[
0 5 2 1

] = [0.000000 0.912871 0.365148 0.182574
]
.

Then matrix multiplication V = AW is used to form

V ′ = 1√
30

[
0 −12 12 9

]
= [0.000000 −2.190890 2.190890 1.643168

]
.

630 CHAP. 11 EIGENVALUES AND EIGENVECTORS

The constant c = W ′V is then found to be

c = −0.9.

Then the vector Q = V − cW = V + 0.9W is formed:

Q′ = 1√
30

[
0.000000 −7.500000 13.800000 9.900000

]
= [0.000000 −1.369306 2.519524 1.807484

]
.

The computation A1 = A0 − 2W Q′ − 2 QW ′ produces

A1 =

4.0 −3.0 0.0 0.0

−3.0 2.0 −2.6 −1.8
0.0 −2.6 −0.68 −1.24
0.0 −1.8 −1.24 0.68

 .

The final step uses the constants S = −3.1622777, R = 6.0368737, c = −1.2649111 and
the vectors

W ′ = [0.000000 0.000000 −0.954514 −0.298168
]
,

V ′ = [0.000000 0.000000 1.018797 0.980843
]
,

Q′ = [0.000000 0.000000 −0.188578 0.603687
]
.

The tridiagonal matrix A2 = A1 − 2W Q′ − 2 QW ′ is

A2 =

4.0 −3.0 0.0 0.0
−3.0 2.0 3.162278 0.0

0.0 3.162278 −1.4 −0.2
0.0 0.0 −0.2 1.4

 . �

Program 11.4 (Reduction to Tridiagonal Form). To reduce the n× n symmetric
matrix A to tridiagonal form by using n − 2 Householder transformations.

function T=house (A)

%Input - A is an nxn symmetric matrix
%Output - T is a tridiagonal matrix

[n,n]=size(A);

for k=1:n-2
%Construct W
s=norm(A(k+1:n,k));
if (A(k+1,k)<0)

s=-s;
end
r=sqrt(2*s*(A(k+1,k)+s));

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 631

W(1:k)=zeros(1,k);
W(k+1)=(A(k+1,k)+s)/r;
W(k+2:n)=A(k+2:n,k)’/r;
%Construct V
V(1:k)=zeros(1,k);
V(k+1:n)=A(k+1:n,k+1:n)*W(k+1:n)’;
%Construct Q
c=W(k+1:n)*V(k+1:n)’;
Q(1:k)=zeros(1,k);
Q(k+1:n)=V(k+1:n)-c*W(k+1:n);
%Form Ak
A(k+2:n,k)=zeros(n-k-1,1);
A(k,k+2:n)=zeros(1,n-k-1);
A(k+1,k)=-s;
A(k,k+1)=-s;
A(k+1:n,k+1:n)=A(k+1:n,k+1:n) ...
-2*W(k+1:n)’*Q(k+1:n)-2*Q(k+1:n)’*W(k+1:n);

end
T=A;

Q R Method
Suppose that A is a real symmetric matrix. In the preceding section we saw how
Householder’s method is used to construct a similar tridiagonal matrix. The Q R
method is used to find all eigenvalues of a tridiagonal matrix. Plane rotations similar
to those that were introduced in Jacobi’s method are used to construct an orthogonal
matrix Q1 = Q and an upper-triangular matrix U1 = U so that A1 = A has the
factorization

(34) A1 = Q1U1.

Then form the product

(35) A2 = U1 Q1.

Since Q1 is orthogonal, we can use (34) to see that

(36) Q′1 A1 = Q′1 Q1U1 = U1.

Therefore, A2 can be computed with the formula

(37) A2 = Q′1 A1 Q1.

Since Q′1 = Q−1
1 , it follows that A2 is similar to A1 and has the same eigenvalues. In

general, construct the orthogonal matrix Qk and upper-triangular matrix Uk so that

(38) Ak = QkUk .

632 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Then define

(39) Ak+1 = Uk Qk = Q′k Ak Qk .

Again, we have Q′k = Q−1
k , which implies that Ak+1 and Ak are similar. An important

consequence is that Ak is similar to A and hence has the same structure. Specifically,
we can conclude that if A is tridiagonal then Ak is also tridiagonal for all k. Now
suppose that A is written as

(40) A =

d1 e1
e1 d2 e2

e2 d3 · · ·
... dn−2 en−2

en−2 dn−1 en−1
en−1 dn

.

We can find a plane rotation Pn−1 that reduces to zero the element of A in location
(n, n − 1), that is,

(41) Pn−1 A =

d1 e1
e1 d2 e2

e2 d3 · · ·
... dn−2 qn−2 rn−2

en−2 pn−1 qn−1
0 pn

.

Continuing in a similar fashion, we can construct a plane rotation Pn−2 that will
reduce to zero the element of Pn−1 A located in position (n − 1, n − 2). After n − 1
steps we arrive at

(42) P1 · · · Pn−1 A =

p1 q1 r1 · · ·
0 p2 q2

. . .

0 0 p3
. . . rn−4

...
. . . qn−3 rn−3

pn−2 qn−2 rn−2
0 pn−1 qn−1
0 0 pn

= U .

Since each plane rotation is represented by an orthogonal matrix, equation (42) implies
that

(43) Q = P ′n−1 P ′n−2 · · · P ′1.

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 633

Direct multiplication of U by Q will produce all zero elements below the lower
second diagonal. The tridiagonal form of A2 implies that it also has zeros above the
upper second diagonal. Investigation will reveal that the terms r j are used only to
compute these zero elements. Consequently, the numbers {r j } do not need to be stored
or used in the computer.

For each plane rotation P j it is assumed that we store the coefficients c j and s j
that define it. Then we do not need to compute and store Q explicitly; instead, we
can use the sequences {c j } and {s j } together with the correct formulas to unravel the
product

(44) A2 = U Q = U P ′n−1 P ′n−2 · · · P ′1.

Acceleration Shifts

As outlined above the Q R method will work, but convergence is slow even for ma-
trices of small dimension. We can add a shifting technique that speeds up the rate of
convergence. Recall that if λ j is an eigenvalue of A, then λ j − si is an eigenvalue of
the matrix B = A− si I . This idea is incorporated in the modified step

(45) Ai − si I = U i Qi ;
then form

(46) Ai+1 = U i Qi for i = 1, 2, . . . , k j ,

where {si } is a sequence whose sum is λ j ; that is, λ j = s1 + s2 + · · · + sk j .
At each stage the correct amount of shift is found by using the four elements in the

lower-right corner of the matrix. Start by finding λ1 and compute the eigenvalues of
the 2× 2 matrix

(47)

[
dn−1 en−1
en−1 dn

]
.

They are x1 and x2 and are the roots of the quadratic equation

(48) x2 − (dn−1 + dn)x + dn−1dn − en−1en−1 = 0.

The value si in equation (45) is chosen to be the root of (48) that is closest to dn .
Then Q R iterating with shifting is repeated until we have en−1 ≈ 0. This will

produce the first eigenvalue λ1 = s1+ s2+· · ·+ sk1 . A similar process is repeated with
the upper n−1 rows to obtain en−2 ≈ 0, and the next eigenvalue is λ2. Successive iter-
ation is applied to smaller submatrices until we obtain e2 ≈ 0 and the eigenvalue λn−2.
Finally, the quadratic formula is used to find the last two eigenvalues. The details can
be gleaned from Program 11.5

634 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Example 11.9. Find the eigenvalues of the matrix

M =

4 2 2 1
2 −3 1 1
2 1 3 1
1 1 1 2

 .

In Example 11.8, a tridiagonal matrix A1 was constructed that is similar to M . We start
our diagonalization process with this matrix:

A1 =

4 −3 0 0
−3 2 3.16228 0

0 3.16228 −1.4 −0.2
0 0 −0.2 1.4

 .

The four elements in the lower right corner are d3 = −1.4, d4 = 1.4, and e3 = −0.2 and
are used to form the quadratic equation

x2 − (−1.4+ 1.4)x + (−1.4)(1.4)− (−0.2)(−0.2) = x2 − 2 = 0.

Calculation produces the roots x1 = −1.41421 and x2 = 1.41421. The root closest to d4
is chosen as the first shift s1 = 1.41421, and the first shifted matrix is

A1 − s1 I =

2.58579 −3 0 0
−3 0.58579 1.74806 0

0 1.74806 −2.81421 −1.61421
0 0 −1.61421 −0.01421

 .

Next, the factorization A1 − s1 I = Q1U1 is computed:

Q1U1 =

−0.65288 −0.38859 −0.55535 0.33814

0.75746 −0.33494 −0.47867 0.29145
0 0.85838 −0.43818 0.26610
0 0 0.52006 0.85413

×

−3.96059 2.40235 2.39531 0

0 3.68400 −3.47483 −0.17168
0 0 −0.38457 0.08024
0 0 0 −0.06550

 .

Then the matrix product is computed in the reverse order to obtain

A2 = U1 Q1 =

4.40547 2.79049 0 0
2.79049 −4.21663 −0.33011 0
0 −0.33011 0.21024 −0.03406
0 0 −0.03406 −0.05595

 .

The second shift is s2 = −0.06024, the second shifted matrix is A2 − s2 I = Q2U2, and

A3 = U2 Q2 =

4.55257 −2.65725 0 0

−2.65725 −4.26047 0.01911 0
0 0.01911 0.29171 0.00003
0 0 0.00003 0.00027

 .

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 635

The third shift is s3 = 0.00027, the third shifted matrix is A3 − s3 I = Q3U3, and

A4 = U3 Q3 =

4.62640 2.53033 0 0
2.53033 −4.33489 −0.00111 0
0 −0.00111 0.29150 0
0 0 0 0

 .

The first eigenvalue, rounded to five decimal places is given in the calculation

λ1 = s1 + s2 + s3 = 1.41421− 0.06023+ 0.00027 = 1.35425.

Next λ1 is placed in the last diagonal position of A4 and the process is repeated, but
changes are made only in the upper 3× 3 corner of the matrix

A4 =

4.62640 2.53033 0 0
2.53033 −4.33489 −0.00111 0
0 −0.00111 0.29150 0
0 0 0 1.35425

 .

In a similar manner, one more shift reduces the entry in the second row and third
column to zero (to 10 decimal places):

s4 = 0.29150, A4 − s4 I = Q4U4, A5 = U4 Q4.

Hence the second eigenvalue is

λ2 = λ1 + s4 = 1.35425+ 0.29150 = 1.64575.

Finally, λ2 is placed on the diagonal of A5 in the third row and column to obtain

A5 =

4.26081 −2.65724 0 0
−2.65724 −4.55232 0 0

0 0 1.64575 0
0 0 0 1.35425

 .

The final computation requires finding the eigenvalues of the 2× 2 matrix in the upper-left
corner of A5. The characteristic equation is

x2 − (−4.26081+ 4.55232)x + (4.26081)(−4.55232)− (2.65724)(2.65724) = 0,

which reduces to
x2 + 0.29151x − 26.45749 = 0.

The roots are x1 = 5.00000 and x2 = −5.29150, and the last two eigenvalues are computed
with the calculations

λ3 = λ2 + x1 = 1.64575+ 5.0000 = 6.64575

and

λ4 = λ2 + x2 = 1.64575− 5.29150 = −3.64575. �

636 CHAP. 11 EIGENVALUES AND EIGENVECTORS

Program 11.5 can be used to approximate all the eigenvalues of a symmetric tridi-
agonal matrix. The program follows directly from the previous discussion, but with
two notable exceptions. First, the MATLAB command eig is used to find the roots
of the characteristic equation (48) of each 2 × 2 submatrix (47). Second, the Q R
factorization of the matrix Ai − si I (45) is executed using the MATLAB command
[Q,R]=qr(B), which produces an orthogonal matrix Q and an upper-triangular matrix
R, such that B=Q*R (readers will be asked to write their own Q R factorization program).

Program 11.5 (Q R Method with Shifts). To approximate the eigenvalues of a
symmetric tridiagonal matrix A using the Q R method with shifts.

function D=qr2(A,epsilon)

%Input - A is a symmetric tridiagonal nxn matrix
% - epsilon is the tolerance
%Output - D is the nx1 vector of eigenvalues

%Initialize parameters
[n,n]=size(A);
m=n;
D=zeros(n,1);
B=A;

while (m>1)
while (abs(B(m,m-1))>=epsilon)

%Calculate shift
S=eig(B(m-1:m,m-1:m));
[j,k]=min([abs(B(m,m)*[1 1]’-S)]);

%QR factorization of B
[Q,U]=qr(B-S(k)*eye(m));

%Calculate next B
B=U*Q+S(k)*eye(m);

end

%Place mth eigenvalue in A(m,m)
A(1:m,1:m)=B;

%Repeat process on the m-1 x m-1 submatrix of A
m=m-1;
B=A(1:m,1:m);

end
D=diag(A);

SEC. 11.4 EIGENVALUES OF SYMMETRIC MATRICES 637

Exercises for Eigenvalues of Symmetric Matrices

1. In the proof of Theorem 11.23, carefully explain why Z is perpendicular to W .

2. If X is any vector and P = I − 2X X ′, show that P is a symmetric matrix.

3. Let X be any vector and set P = I − 2X X ′.
(a) Find the quantity P ′P .
(b) What additional condition is necessary in order that P be an orthogonal matrix?

Algorithms and Programs

In Problems 1 through 6, use:
(a) Program 11.4 to reduce the given matrix to tridiagonal form.
(b) Program 11.5 to find the eigenvalues of the given matrix.

1.

3 2 1
2 3 2
1 2 3

 2.

4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4

 3.

2.75 −0.25 −0.75 1.25
−0.25 2.75 1.25 −0.75
−0.75 1.25 2.75 −0.25

1.25 −0.75 −0.25 2.75

4.

3.6 4.4 0.8 −1.6 −2.8
4.4 2.6 1.2 −0.4 0.8
0.8 1.2 0.8 −4.0 −2.8
−1.6 −0.4 −4.0 1.2 2.0
−2.8 0.8 −2.8 2.0 1.8

5. A = [ai j], where ai j =

{
i + j i = j

i j i �= j
and i, j = 1, 2, . . . , 30.

6. A = [ai j], where ai j =
{

cos(sin(i + j)) i = j

i + i j + j i �= j
and i, j = 1, 2, . . . , 40.

7. Write a program to carry out the Q R method on a symmetric matrix.

8. Modify Program 11.5 to call your program from Problem 7 as a subroutine. Use this
modified program to find the eigenvalues of the matrices in Problems 1 through 6.

Appendix:
Introduction to MATLAB

This appendix introduces the reader to programming with the software package MAT-
LAB. It is assumed that the reader has had previous experience with a high-level pro-
gramming language and is familiar with the techniques of writing loops, branching
using logical relations, calling subroutines, and editing. These techniques are directly
applicable in the windows-type environment of MATLAB.

MATLAB is a mathematical software package based on matrices. The package
consists of an extensive library of numerical routines, easily accessed two- and three-
dimensional graphics, and a high-level programming format. The ability to implement
and modify programs quickly makes MATLAB an appropriate format for exploring
and executing the algorithms in this textbook.

The reader should work through the following tutorial introduction to MATLAB
(MATLAB commands are in typewriter type). The examples illustrate typical input
and output from the MATLAB Command Window. To find additional information
about commands, options, and examples, the reader is urged to make use of the on-line
help facility and the Reference and User’s Guides that accompany the software.

Arithmetic Operations

+ Addition
- Subtraction
* Multiplication
/ Division
^ Power
pi, e, i Constants

638

APPENDIX: INTRODUCTION TO MATLAB 639

Ex. >>(2+3*pi)/2
ans =

5.7124

Built-in Functions

Below is a short list of some of the functions available in MATLAB. The following ex-
ample illustrates how functions and arithmetic operations are combined. Descriptions
of other available functions may be found by using the on-line help facility.

abs(#) cos(#) exp(#) log(#) log10(#) cosh(#)
sin(#) tan(#) sqrt(#) floor(#) acos(#) tanh(#)

Ex. >>3*cos(sqrt(4.7))
ans =

-1.6869

The default format shows approximately five significant decimal figures. Entering the
command format long will display approximately 15 significant decimal figures.

Ex. >>format long
3*cos(sqrt(4.7))
ans =

-1.68686892236893

Assignment Statements

Variable names are assigned to expressions by using an equal sign.

Ex. >>a=3-floor(exp(2.9))
a=

-15

A semicolon placed at the end of an expression suppresses the computer echo (output).

Ex. >>b=sin(a); Note. b was not displayed.
>>2*b^2
ans=

0.8457

Defining Functions

In MATLAB the user can define a function by constructing an M-file (a file ending
in .m) in the M-file Editor/Debugger. Once defined, a user-defined function is called
in the same manner as built-in functions.

640 APPENDIX: INTRODUCTION TO MATLAB

Ex. Place the function fun(x) = 1 + x − x2/4 in the M-file fun.m. In the
Editor/Debugger one would enter the following:
function y=fun(x)
y=1+x-x.^2/4;

We will explain the use of “.^” shortly. Different letters could be used for the variables
and a different name could be used for the function, but the same format would have
to be followed. Once this function has been saved as an M-file named fun.m, it can be
called in the MATLAB Command Window in the same manner as any function.

>>cos(fun(3))
ans=

-0.1782

A useful and efficient way to evaluate functions is to use the feval command. This
command requires that the function be called as a string.

Ex. >>feval(’fun’,4)
ans=

1

Matrices

All variables in MATLAB are treated as matrices or arrays. Matrices can be entered
directly:

Ex. >>A=[1 2 3;4 5 6;7 8 9]
A=

1 2 3
4 5 6
7 8 9

Semicolons are used to separate the rows of a matrix. Note that the entries of the matrix
must be separated by a single space. Alternatively, a matrix can be entered row by row.

Ex. >>A=[1 2 3
4 5 6
7 8 9]

A =
1 2 3
4 5 6
7 8 9

Matrices can be generated using built-in functions.

Ex. >>Z=zeros(3,5); creates a 3× 5 matrix of zeros
>>X=ones(3,5); creates a 3× 5 matrix of ones
>>Y=0:0.5:2 creates the displayed 1× 5 matrix
Y=
0 0.5000 1.0000 1.5000 2.0000

APPENDIX: INTRODUCTION TO MATLAB 641

>>cos(Y) creates a 1× 5 matrix by taking the
cosine of each entry of Y

ans=
1.0000 0.8776 0.5403 0.0707 -0.4161

The components of matrices can be manipulated in several ways.

Ex. >>A(2,3) select a single entry of A
ans=

6
>>A(1:2,2:3) select a submatrix of A
ans=

2 3
5 6

>>A([1 3],[1 3]) another way to select a submatrix of A
ans=

1 3
7 9

>>A(2,2)=tan(7.8); assign a new value to an entry of A

Additional commands for matrices can be found by using the on-line help facility or
consulting the documentation accompanying the software.

Matrix Operations
+ Addition
- Subtraction
* Multiplication
^ Power
’ Conjugate transpose

Ex. >>B=[1 2;3 4];
>>C=B’ C is the transpose of B
C=

1 3
2 4

>>3*(B*C)^3 3(BC)3

ans=
13080 29568
29568 66840

Array Operations
One of the most useful characteristics of the MATLAB package is the number of func-
tions that can operate on the individual elements of a matrix. This was demonstrated

642 APPENDIX: INTRODUCTION TO MATLAB

earlier when the cosine of the entries of a 1 × 5 matrix was taken. The matrix oper-
ations of addition, subtraction, and scalar multiplication already operate elementwise,
but the matrix operations of multiplication, division, and power do not. These three op-
erations can be made to operate elementwise by preceding them with a period: .*, ./,
and .^. It is important to understand how and when to use these operations. Array op-
erations are crucial to the efficient construction and execution of MATLAB programs
and graphics.

Ex. >>A=[1 2;3 4];
>>A^2 produces the matrix product AA
ans=

7 10
15 22

>>A.^2 squares each entry of A
ans=

1 4
9 16

>>cos(A./2) divides each entry of A by 2, then takes
the cosine of each entry

ans=
0.8776 0.5403
0.0707 -0.4161

Graphics

MATLAB can produce two- and three-dimensional plots of curves and surfaces. Op-
tions and additional features of graphics in MATLAB can be found in the on-line fa-
cility and the documentation accompanying the software.

The plot command is used to generate graphs of two-dimensional functions. The
following example will create the plot of the graphs of y = cos(x) and y = cos2(x)

over the interval [0, π].
Ex. >>x=0:0.1:pi;

>>y=cos(x);
>>z=cos(x).^2;
>>plot(x,y,x,z,’o’)

The first line specifies the domain with a step size of 0.1. The next two lines define the
two functions. Note that the first three lines all end in a semicolon. The semicolon is
necessary to suppress the echoing of the matrices x, y, and z on the command screen.
The fourth line contains the plot command that produces the graph. The first two terms
in the plot command, x and y, plot the function y = cos(x). The third and fourth
terms, x and z, produce the plot of y = cos2(x). The last term, ’o’, results in o’s
being plotted at each point (xk, zk) where zk = cos2(xk).

APPENDIX: INTRODUCTION TO MATLAB 643

In the third line the use of the array operation “.^” is critical. First the cosine of
each entry in the matrix x is taken, and then each entry in the matrix cos(x) is squared
using the .^ command.

The graphics command fplot is a useful alternative to the plot command. The
form of the command is fplot(’name’,[a,b],n). This command creates a plot of
the function name.m by sampling n points in the interval [a, b]. The default number
for n is 25.

Ex. >>fplot(’tanh’,[-2,2]) plots y = tanh(x) over [−2, 2]
The plot and plot3 commands are used to graph parametric curves in two- and three-
dimensional space, respectively. These commands are particularly useful in the visu-
alization of the solutions of differential equations in two and three dimensions.

Ex. The plot of the ellipse c(t) = (2 cos(t), 3 sin(t)), where 0 ≤ t ≤ 2π , is produced
with the following commands:
>>t=0:0.2:2*pi;
>>plot(2*cos(t),3*sin(t))

Ex. The plot of the curve c(t) = (2 cos(t), t2, 1/t), where 0.1 ≤ t ≤ 4π , is pro-
duced with the following commands:
>>t=0.1:0.1:4*pi;
>>plot3(2*cos(t),t.^2,1./t)

Three-dimensional surface plots are obtained by specifying a rectangular subset of the
domain of a function with the meshgrid command and then using the mesh or surf
commands to obtain a graph. These graphs are helpful in visualizing the solutions of
partial differential equations.

Ex. >>x=-pi:0.1:pi;
>>y=x;
>>[x,y]=meshgrid(x,y);
>>z=sin(cos(x+y));
>>mesh(z)

Loops and Conditionals

Relational Operators
== Equal to
~= Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Logical Operators

644 APPENDIX: INTRODUCTION TO MATLAB

~ Not (complement)
& And (true if both operands are true)
| Or (true if either or both operands are true)

Boolean Values
1 True
0 False

The for, if, and while statements in MATLAB operate in a manner analogous to their
counterparts in other programming languages. These statements have the following
basic form:

for (loop-variable = loop-expression)
executable-statements

end

if (logical-expression)
executable-statements

else (logical- expression)
executable-statements

end

while (while-expression)
executable-statements

end

The following example shows how to use nested loops to generate a matrix. The
following file was saved as a M-file named nest.m. Typing nest in the MATLAB
Command Window produces the matrix A. Note that when viewed from the upper-left
corner, the entries of the matrix A are the entries in Pascal’s triangle.

Ex. for i=1:5
A(i,1)=1;A(1,i)=1;

end
for i=2:5

for j=2:5
A(i,j)=A(i,j-1)+A(i-1,j);

end
end
A

The break command is used to exit from a loop.

Ex. for k=1:100
x=sqrt(k);
if ((k>10)&(x-floor(x)==0))
break

end
end

APPENDIX: INTRODUCTION TO MATLAB 645

k

The disp command can be used to display text or a matrix.

Ex. n=10;
k=0;
while k<=n

x=k/3;
disp([x x^2 x^3])
k=k+1;

end

Programs

An efficient way to construct programs is to use user-defined functions. These func-
tions are saved as M-files. These programs allow the user to specify the input and
output parameters. They are easily called as subroutines in other programs. The fol-
lowing example allows one to visualize the effects of moding out Pascal’s triangle with
a prime number. Type the following function in the MATLAB Editor/Debugger and
then save it as an M-file named pasc.m.

Ex. function P=pasc(n,m)
%Input - n is the number of rows
% - m is the prime number
%Output - P is Pascal’s triangle

for j=1:n
P(j,1)=1;P(1,j)=1;

end
for k=2:n

for j=2:n
P(k,j)=rem(P(k,j-1)+P(k-1,j),m);

end
end

Now in the MATLAB Command Window enter P=pasc(5,3) to see the first five rows
of Pascal’s triangle mod 3. Or try P=pasc(175,3); (note the semicolon) and then type
spy(P) (generates a sparse matrix for large values of n).

Conclusion

At this point the reader should be able to create and modify programs based on the
algorithms in this textbook. Additional information on commands and information
regarding the use of MATLAB on your particular platform can be found in the on-line
help facility or in the documentation accompanying the software.

Answers to Selected Exercises

Section 1.1 Review of Calculus

1. (a) L = 2, {εn} =
{

1

2n + 1

}
, limn→∞ εn = 0

3. (a) c = 1−√2

4. (a) M1 = −5/4, M2 = 5

5. (a) c = 0

6. (a) c = 1

7. c = 4/3

9. (a) x2 cos(x)

10. (a) c = ±
√

13/3

11. (a) 2 (b) 1

15. 13π/3, apply the mean value theorem for integrals

16. Let the n roots of P(x) be x0, x1, . . . , xn−1. Verify that the hypotheses of the
generalized Rolle’s theorem are satisfied. Therefore, there exists c ∈ (a, b) such
that P(n−1)(c) = 0.

Section 1.2 Binary Numbers

1. (a) The computer’s answer is not 0 because 0.1 is not an exact binary fraction.

(b) 0 (exactly)

646

ANSWERS TO SELECTED EXERCISES 647

2. (a) 21 (c) 254

3. (a) 0.84375 (c) 0.6640625

4. (a) 1.4140625

5. (a)
√

2− 1.4140625 = 0.000151062 . . .

6. (a) 10111two (c) 101111010two

7. (a) 0.0111two (c) 0.10111two

8. (a) 0.00011two (c) 0.001two

9. (a) 0.006250000 . . .

11. Use c = 3
16 and r = 1

16 to get S = 3
16

1− 1
16
= 1

5

13. (a) 1
3 ≈ 0.1011two × 2−1 = 0.1011two × 2−1

1
5 ≈ 0.1101two × 2−2 = 0.01101two × 2−1

8
15 0.100011two × 2−0

8
15 ≈ 0.1001two × 2−0 = 0.1001two × 20

1
6 ≈ 0.1011two × 2−2 = 0.001011two × 2−0

7
10 0.101111two × 2−0 ≈ 0.1100two

14. (a) 10 = 101three (c) 421 = 120121three

15. (a) 1
3 = 0.1three (b) 1

2 = 0.1three

16. (a) 10 = 20five (c) 721 = 10341five

17. (b) 1
2 = 0.2five

Section 1.3 Error Analysis

1. (a) x = 2.71828182, x̂ = 2.7182, (x − x̂) = 0.00008182,
(x − x̂)/x = 0.00003010, four significant digits

2.
1

4
+ 1

433
+ 1

455(2!) +
1

477(3!) =
292,807

1,146,880
= 0.2553074428 = p̂,

p − p̂ = 0.0000000178, (p − p̂)/p = 0.0000000699

3. (a) p1 + p2 = 1.414+ 0.09125 = 1.505, p1 p2 = (1.414)(0.09125) = 0.1290

4. The error involves loss of significance.

(a)
0.70711385222− 0.70710678119

0.00001
= 0.00000707103

0.000001
= 0.707103

5. (a) ln((x + 2)/x) or ln(1+ 1/x) (c) cos(2x)

648 ANSWERS TO SELECTED EXERCISES

6. (a) P(2.72) = (2.72)3 − 3(2.72)2 + 3(2.72)− 1 = 20.12− 22.19+ 8.16− 1

= −2.07+ 8.16− 1 = 6.09− 1 = 5.09

Q(2.72) = ((2.72− 3)2.72+ 3)2.72− 1 = ((−0.28)2.72+ 3)2.72− 1

= (−0.7616+ 3)2.72− 1 = (2.238)2.72− 1 = 6.087− 1

= 5.087

R(2.72) = (2.72− 1)3 = (1.72)3 = 5.088

7. (a) 0.498 (b) 0.499

9.
1

1− h
+ cos(h) = 2+ h + h2

2
h3 + O(h4)

1

1− h
cos(h) = 1+ h + h2

2
+ h3

2
+ O(h4)

Section 2.1 Iteration for Solving x = g(x)

1. (a) g ∈ C[0, 1], g maps [0, 1] onto [3/4, 1] ⊆ [0, 1], and |g′(x)| = | − x/2| =
x/2 ≤ 1/2 < 1 on [0, 1]. Therefore, the hypotheses of Theorem 2.2 are satisfied
and g has a unique fixed point on [0, 1].

2. (a) g(2) = −4+ 8− 2 = 2, g(4) = −4+ 16− 8 = 4

(b) p0 = 1.9 E0 = 0.1 R0 = 0.05

p1 = 1.795 E1 = 0.205 R1 = 0.1025

p2 = 1.5689875 E2 = 0.4310125 R2 = 0.21550625

p3 = 1.04508911 E3 = 0.95491089 R3 = 0.477455444

(e) The sequence in part (b) does not converge to P = 2. The sequence in part (c)
converges to P = 4.

4. P = 2, g′(2) = 5, iteration will not converge to P = 2.

5. P = 2nπ where n is any integer, g′(P) = 1; Theorem 2.3 gives no information
regarding convergence.

9. (a) g(3) = 0.5(3)+ 1.5 = 3

(c) Proof by mathematical induction. If n = 1, then |P − p1| = |P − p0|/21,
by part (b). Induction hypothesis: Assume that |P − pk | = |P − p0|/2k . Show
statement is true for n = k + 1:

|P − pk+1| = |P − pk |/2 (by part (b))

= (|P − p0|/2k)/2 (induction hypothesis)

= |P − p0|/2k+1.

10. (a)
|pk+1 − pk |
|pk+1| =

∣∣∣∣∣∣
pk

2
− pk

pk

2

∣∣∣∣∣∣ = 1

ANSWERS TO SELECTED EXERCISES 649

Section 2.2 Bracketing Methods for Locating a Root

1. I0 = (0.11+ 0.12)/2 = 0.115 A(0.115) = 254,403

I1 = (0.11+ 0.115)/2 = 0.1125 A(0.1125) = 246,072

I2 = (0.1125+ 0.115)/2 = 0.11375 A(0.11375) = 250,198

3. There are many choices for intervals [a, b] on which f (a) and f (b) have opposite
sign. The following answers are one such choice.

(a) f (1) < 0 and f (2) > 0, so there is a root in [1, 2]; also, f (−1) < 0 and
f (−2) > 0, so there is a root in [−2,−1].
(c) f (3) < 0 and f (4) > 0, so there is a root in [3, 4].

4. c0 = −1.8300782, c1 = −1.8409252, c2 = −1.8413854, c3 = −1.8414048

6. c0 = 3.6979549, c1 = 3.6935108, c2 = 3.6934424, c3 = 3.6934414

11. Find N such that
7− 2

2N+1
< 5× 10−9.

14. The bisection method will never converge (assuming that cn �= 2) to x = 2.

Section 2.3 Initial Approximation and Convergence Criteria

1. There is a root near x = −0.7. The interval [−1, 0] could be used.

3. There is a root near x = 1. The interval [−2, 2] could be used.

5. There is one root near x = 1.4. The interval [1, 2] could be used. There is a
second root near x = 3. The interval [2, 4] could be used.

Section 2.4 Newton-Raphson and Secant Methods

1. (a) pk = g(pk−1) = p2
k−1 − 2

2pk−1 − 1
.

(b) p0 = −1.5, p1 = 0.125, p2 = 2.6458, p3 = 1.1651

3. (a) pk = g(pk−1) = 3
4 pk−1 + 1

2 .

(b) p0 = 2.1, p1 = 2.075, p2 = 2.0561, p3 = 2.0421, p4 = 2.0316

5. (a) pk = g(pk−1) = pk−1 + cos(pk−1)

7. (a) g(pk−1) = p2
k−1/(pk−1 − 1)

(b) p0 = 0.20

p1 = −0.05

p2 = −0.002380953

p3 = −0.000005655

p4 = −0.000000000

lim
n→∞ pk = 0.0

(c) p0 = 20.0

p1 = 21.05263158

p2 = 22.10250034

p3 = 23.14988809

p4 = 24.19503505

lim
n→∞ pk = ∞

8. p0 = 2.6, p1 = 2.5, p2 = 2.41935484, p3 = 2.41436464

650 ANSWERS TO SELECTED EXERCISES

14. No, because f ′(x) is not continuous at the root p = 0. You could also try com-
puting terms with g(pk−1) = −2pk−1 and see that the sequence diverges.

22. (a) g(x) = x − x2 − a

2x

(
1− (x2 − a)2

2(2x)2

)−1

= x(x2 + 3a)

3x2 + a

g(x) = 15x + x3

5+ 3x2

p1 = 2.2352941176, p2 = 2.2360679775, p3 = 2.2360679775

(b) g(x) = 2+ 4x + 2x2 + x3

3+ 4x + 2x2

p1 = −2.0130081301, p2 = −2.0000007211, p3 = −2.0000000000

Section 2.5 Aitken’s Process and Steffensen’s and Muller’s Methods (Optional)

2. (a) �2 pn = �(�pn) = �(pn+1 − pn) = (pn+2 − pn+1)− (pn+1 − pn)

= pn+2 − 2pn+1 + pn = 2(n + 2)2 + 1− 2(2(n + 1)2 + 1)

+ 2n2 + 1 = 4

6. pn = 1/(4n + 4−n)

n pn qn Aitken’s

0 0.5 −0.26437542
1 0.23529412 −0.00158492
2 0.06225681 −0.00002390
3 0.01562119 −0.00000037
4 0.00390619
5 0.00097656

7. g(x) = (6+ x)1/2

n pn qn Aitken’s

0 2.5 3.00024351
1 2.91547595 3.00000667
2 2.98587943 3.00000018
3 2.99764565 3.00000001
4 2.99960758
5 2.99993460

ANSWERS TO SELECTED EXERCISES 651

9. Solution of cos(x)− 1 = 0.

n pn Steffensen’s

0 0.5
1 0.24465808
2 0.12171517
3 0.00755300
4 0.00377648
5 0.00188824
6 0.00000003

11. The sum of the infinite series is S = 99.

n Sn Tn

1 0.99 98.9999988
2 1.9701 99.0000017
3 2.940399 98.9999988
4 3.90099501 98.9999992
5 4.85198506
6 5.79346521

13. The sum of the infinite series is S = 4.

15. Muller’s method for f (x) = x3 − x − 2.

n pn f (pn)

0 1.0 −2.0
1 1.2 −1.472
2 1.4 −0.656
3 1.52495614 0.02131598
4 1.52135609 −0.00014040
5 1.52137971 −0.00000001

Section 3.1 Introduction to Vectors and Matrices

1. (i) (a) (1, 4) (b) (5,−12) (c) (9,−12) (d) 5 (e) (−26, 72)

(f) −38 (g) 2
√

1465

2. θ = arccos(−16/21) ≈ 2.437045 radians

3. (a) Assume that X, Y �= 0. X · Y = 0 iff cos(θ) = 0 iff θ = (2n + 1)
π

2
iff X

and Y are orthogonal.

652 ANSWERS TO SELECTED EXERCISES

6. (c) a ji =
{

j i j = i

j − j i + i j �= i
=

{
i j i = j

i − i j + j i �= j
= ai j

Section 3.2 Properties of Vectors and Matrices

1. AB =
[−11 −12

13 −24

]
, B A =

[−15 10
−12 −20

]
3. (a) (AB)C = A(BC) =

[
2 −5

−88 −56

]
5. (a) 33 (c) The determinant does not exist because the matrix is not square.

8. (AB)(B−1 A−1) = A(B B−1)A−1 = (AI)A−1 = AA−1 = I . Similarly,
(B−1 A−1)(AB) = I . Therefore, (AB)−1 = B−1 A−1.

10. (a) M N (b) M(N − 1)

13. X X ′ = [6], X ′X =
 1 −1 2
−1 1 −2

2 −2 4

Section 3.3 Upper-Triangular Linear Systems

1. x1 = 2, x2 = −2, x3 = 1, x4 = 3, and det A = 120

5. x1 = 3, x2 = 2, x3 = 1, x4 = −1, and det A = −24

Section 3.4 Gaussian Elimination and Pivoting

1. x1 = −3, x2 = 2, x3 = 1

5. y = 5− 3x + 2x2

10. x1 = 1, x2 = 3, x3 = 2, x4 = −2

15. (a) Solution for Hilbert matrix A:
x1 = 16, x2 = −120, x3 = 240, x4 = −140

(b) Solution for the other matrix A:
x1 = 18.73, x2 = −149.6, x3 = 310.1, x4 = −185.1

Section 3.5 Triangular Factorization

1. (a) Y ′ = [−4 12 3
]
, X ′ = [−3 2 1

]
(b) Y ′ = [20 39 9

]
, X ′ = [5 7 3

]
3. (a)

−5 2 −1
1 0 3
3 1 6

 =
 1 0 0
−0.2 1 0
−0.6 5.5 1

−5 2 −1
0 0.4 2.8
0 0 −10

5. (a) Y ′ = [8 −6 12 2

]
, X ′ = [3 −1 1 2

]
(b) Y ′ = [28 6 12 1

]
, X ′ = [3 1 2 1

]

ANSWERS TO SELECTED EXERCISES 653

6. The triangular factorization A = LU is

LU =

1 0 0 0
2 1 0 0
5 1 1 0

−3 −1 −1.75 1

1 1 0 4
0 −3 5 −8
0 0 −4 −10
0 0 0 −7.5

Section 3.6 Iterative Methods for Linear Systems

1. (a) Jacobi iteration

P1 = (3.75, 1.8)

P2 = (4.2, 1.05)

P3 = (4.0125, 0.96)

Iteration will converge to (4, 1).

(b) Gauss-Seidel Iteration

P1 = (3.75, 1.05)

P2 = (4.0125, 0.9975)

P3 = (3.999375, 1.000125)

Iteration will converge to (4, 1).

3. (a) Jacobi iteration

P1 = (−1,−1)

P2 = (−4,−4)

P3 = (−13,−13)

The iteration diverges away

from the solution P = (0.5, 0.5).

(b) Gauss-Seidel iteration

P1 = (−1,−4)

P2 = (−13,−40)

P3 = (−121,−361)

The iteration diverges away

from the solution P = (0.5, 0.5).

5. (a) Jacobi iteration

P1 = (2, 1.375, 0.75)

P2 = (2.125, 0.96875, 0.90625)

P3 = (2.0125, 0.95703125, 1.0390625)

Iteration will converge to P = (2, 1, 1).

(b) Gauss-Seidel iteration

P1 = (2, 0.875, 1.03125)

P2 = (1.96875, 1.01171875, 0.989257813)

P3 = (2.00449219, 0.99753418, 1.0017395)

Iteration will converge to P = (2, 1, 1).

9. (15): ‖X‖1 =
∑N

k=1 |xk | = 0 iff |xk | = 0 for k = 0, 1, . . . , N iff X = 0
(16): ‖cX‖1 =

∑N
k=1 |cxk | =∑N

k=1 |c||xk | = |c|∑N
k=1 |xk | = |c| ‖X‖1

Section 3.7 Iteration for Nonlinear Systems: Seidel and Newton’s Methods (Optional)

1. (a) x = 0, y = 0 (c) x = 0, y = nπ

2. (a) x = 4, y = −2 (c) x = 0, y = (2n + 1)π/2; x = 2(−1)n , y = nπ

654 ANSWERS TO SELECTED EXERCISES

5. J(x, y) =
[

1− x y/4
(1− x)/2 (2− y)/2

]
, J(1.1, 2.0) =

[−0.1 0.5
−0.05 0.0

]
Fixed-point iteration Seidel iteration

k pk qk pk qk

0 1.1 2.0 1.1 2.0
1 1.12 1.9975 1.12 1.9964
2 1.1165508 1.9963984 1.1160016 1.9966327
∞ 1.1165151 1.9966032 1.1165151 1.9966032

7. 0 = x2 − y − 0.2, 0 = y2 − x − 0.3

Pk Solution of the linear system: J(Pk) d P = −F(Pk) Pk + d P[
1.2
1.2

] [
2.4 −1.0
−1.0 2.4

] [−0.0075630
0.0218487

]
= −

[
0.04
−0.06

] [
1.192437
1.221849

]
[

1.192437
1.221849

] [
2.384874 −1.0
−1.0 2.443697

] [−0.0001278
−0.0002476

]
= −

[
0.0000572
0.0004774

] [
1.192309
1.221601

]
(a) Therefore, (p1, q1) = (1.192437, 1.221849) and
(p2, q2) = (1.192309, 1.221601).

Pk Solution of the linear system: J(Pk) d P = −F(Pk) Pk + d P[−0.2
−0.2

] [−0.4 −1.0
−1.0 −0.4

] [−0.0904762
0.0761905

]
= −

[
0.04
−0.06

] [−0.2904762
−0.1238095

]
[−0.2904762
−0.1238095

] [−0.5809524 −1.0
−1.0 −0.2476190

] [
0.0044128
0.0056223

]
= −

[
0.0081859
0.0058050

] [−0.2860634
−0.1181872

]
(b) Therefore, (p1, q1) = (−0.2904762,−0.1238095) and
(p2, q2) = (−0.2860634,−0.1181872).

8. (b) The values of the Jacobian determinant at the solution points are |J(1, 1)| =
0 and |J(−1,−1)| = 0. Newton’s method depends on being able to solve a
linear system where the matrix is J(pn, qn) and (pn, qn) is near a solution. For
this example, the system equations are ill conditioned and thus hard to solve with
precision. In fact, for some values near a solution we have J(x0, y0) = 0, for
example, J(1.0001, 1.0001) = 0.

12. (a) Note. As with derivatives, we have
∂

∂x
(c f (x, y)) = c

∂

∂x
f (x, y). F(X) was

defined as F(X) = [f1(x1, . . . , xn) · · · fm(x1, . . . , xn)
]′; thus, by scalar multipli-

cation, cF(X) = [c f1(x1, . . . , xn) · · · c fm(x1, . . . , xn)
]′. J(cF(X)) = [jik]m×n ,

where jik = ∂

∂xk
(c fi (x1, . . . , xn)) = c

∂

∂xk
fi (x1, . . . , xn). Therefore, by the def-

inition of scalar multiplication, we have J(cF(X)) = c J(F(X)).

ANSWERS TO SELECTED EXERCISES 655

Section 4.1 Taylor Series and Calculation of Functions

1. (a) P5(x) = x − x3/3! + x5/5!
P7(x) = x − x3/3! + x5/5! − x7/7!
P9(x) = x − x3/3! + x5/5! − x7/7! + x9/9!

(b) |E9(x)| = | sin(c)x10/10!| ≤ (1)(1)10/10! = 0.0000002755

(c) P5(x) = 2−1/2(1+ (x − π/4)− (x − π/4)2/2− (x − π/4)3/6

+ (x − π/4)4/24+ (x − π/4)5/120)

3. At x0 = 0 the derivatives of f (x) are undefined. But at x0 = 1 the derivatives are
defined.

5. P3(x) = 1+ 0x − x2/2+ 0x3 = 1− x2/2

8. (a) f (2) = 2, f ′(2) = 1
4 , f ′′(2) = − 1

32 , f (3)(2) = 3
256

P3(x) = 2+ (x − 2)/4− (x − 2)2/64+ (x − 2)3/512

(b) P3(1) = 1.732421875; compare with 31/2 = 1.732050808

(c) f (4)(x) = −15(2 + x)−7/2/16; the minimum of | f (4)(x)| on the interval
1 ≤ x ≤ 3 occurs when x = 1 and | f (4)(x)| ≤ | f (4)(1)| ≤ 3−7/2(15/16) ≈
0.020046. Therefore, |E3(x)| ≤ (0.020046)(1)4

4! = 0.00083529

13. (d) P3(0.5) = 0.41666667

P6(0.5) = 0.40468750

P9(0.5) = 0.40553230

ln(1.5) = 0.40546511

14. (d) P2(0.5) = 1.21875000

P4(0.5) = 1.22607422

P6(0.5) = 1.22660828

(1.5)1/2 = 1.22474487

Section 4.2 Introduction to Interpolation

1. (a) Use x = 4 and get b3 = −0.02, b2 = 0.02, b1 = −0.12, b0 = 1.18. Hence
P(4) = 1.18.

(b) Use x = 4 and get d2 = −0.06, d1 = −0.04, d0 = −0.36. Hence P ′(4) =
−0.36.

(c) Use x = 4 and get i4 = −0.005, i3 = 0.01333333, i2 = −0.04666667,
i1 = 1.47333333, i0 = 5.89333333. Hence I (4) = 5.89333333. Similarly, use
x = 1 and get I (1) = 1.58833333.∫ 4

1 P(x) dx = I (4)− I (1) = 5.89333333− 1.58833333 = 4.305

(d) Use x = 5.5 and get b3 = −0.02, b2 = −0.01, b1 = −0.255, b0 = 0.2575.
Hence P(5.5) = 0.2575.

656 ANSWERS TO SELECTED EXERCISES

Section 4.3 Lagrange Approximation

1. (a) P1(x) = −1(x − 0)/(−1− 0)+ 0 = x + 0 = x

(b) P2(x) = −1
(x − 0)(x − 1)

(−1− 0)(−1− 1)
+ 0+ (x + 1)(x − 0)

(1+ 1)(1− 0)

= −0.5(x)(x − 1)+ 0.5(x)(x + 1) = 0x2 + x + 0 = x

(c) P3(x) = −1
(x)(x − 1)(x − 2)

(−1)(−2)(−3)
+ 0+ (x + 1)(x)(x − 2)

(2)(1)(−1)

+ 8
(x + 1)(x)(x − 1)

(3)(2)(1)
= x3 + 0x2 + 0x + 0 = x3

(d) P1(x) = 1(x − 2)/(1− 2)+ 8(x − 1)/(2− 1) = 7x − 6

(e) P2(x) = 0+ (x)(x − 2)

(1)(−1)
+ 8

(x)(x − 1)

(2)(1)
= 3x2 − 2x

5. (c) f (4)(c) = 120(c−1) for all c; thus E3(x) = 5(x+1)(x)(x−3)(x−4)(c−1)

10. | f (2)(c)| ≤ | − sin(1)| = 0.84147098 = M2
(a) h2 M2/8 = h2(0.84147098)/8 < 5x10−7

12. (a) z = 3− 2x + 4y

Section 4.4 Newton Polynomials

1. P1(x) = 4− (x − 1)

P2(x) = 4− (x − 1)+ 0.4(x − 1)(x − 3)

P3(x) = P2(x)+ 0.01(x − 1)(x − 3)(x − 4)

P4(x) = P3(x)− 0.002(x − 1)(x − 3)(x − 4)(x − 4.5)

P1(2.5) = 2.5, P2(2.5) = 2.2, P3(2.5) = 2.21125, P4(2.2) = 2.21575

5. f (x) = x1/2

P4(x) = 2.0+ 2.3607(x − 4)− 0.01132(x − 4)(x − 5)

+ 0.00091(x − 4)(x − 5)(x − 6)

− 0.00008(x − 4)(x − 5)(x − 6)(x − 7)

P1(4.5) = 2.11804, P2(4.5) = 2.12086, P3(4.5) = 2.12121, P4(4.5) = 2.12128

6. f (x) = 3.6/x

P4(x) = 3.6− 1.8(x − 1)+ 0.6(x − 1)(x − 2)− 0.15(x − 1)(x − 2)(x − 3)

+ 0.03(x − 1)(x − 2)(x − 3)(x − 4)

P1(2.5) = 0.9, P2(2.5) = 1.35, P3(2.5) = 1.40625, P4(2.5) = 1.423125

Section 4.5 Chebyshev Polynomials (Optional)

9. (a) ln(x + 2) ≈ 0.69549038+ 0.49905042x − 0.14334605x2 + 0.04909073x3

(b) | f (4)(x)|/(23(4!)) ≤ | − 6|/(23(4!)) = 0.03125000

ANSWERS TO SELECTED EXERCISES 657

11. (a) cos(x) ≈ 1− 0.46952087x2

(b) | f (3)(x)|/(22(3!)) ≤ | sin(1)|/(22(3!)) = 0.03506129

13. The error bound for Taylor’s polynomial is

| f (8)(x)|
8! ≤ | sin(1)|

8! = 0.00002087.

The error bound for the minimax approximation is

| f (8)(x)|
27(8!) ≤ | sin(1)|

27(8!) = 0.00000016.

Section 4.6 Padé Approximations

1. 1 = p0, 1+ q1 = p1,
1

2
+ q1 = 0, q1 = −1

2
, p1 = 1

2
ex ≈ R1,1(x) = (2+ x)/(2− x)

3. 1 = p0,
1

3
+ 2q1/15 = p1,

2

15
+ q1/3 = 0, q1 = −2

5
, p1 = − 1

15

5. 1 = p0, 1+ q1 = p1,
1

2
+ q1 + q2 = p2.

First solve the system

1

6
+ q1

2
+ q2 = 0

1

24
+ q1

6
+ q2

2
= 0.

Then q1 = −1

2
, q2 = 1

12
, p1 = 1

2
, p2 = 1

12
.

7. (a) 1 = p0,
1

3
+ q1 = p1,

2

15
+ q1/3+ q2 = p2.

First solve the system

17

315
+ 2q1

15
+ q2

3
= 0

62

2835
+ 17q1

315
+ 2q2

15
= 0.

Then q1 = −4

9
, q2 = 1

63
, p1 = −1

9
, p2 = 1

945
.

Section 5.1 Least-Squares Line

1. (a) 10A + 0B = 7

0A + 5B = 13

y = 0.70x + 2.60, E2(f) ≈ 0.2449

2. (a) 40A + 0B = 58

0A + 5B = 31.2

y = 1.45x + 6.24, E2(f) ≈ 0.8958

658 ANSWERS TO SELECTED EXERCISES

3. (c)
5∑

k=1

xk yk

/ 5∑
k=1

x2
k = 86.9/55 = 1.58

y = 1.58x, E2(f) ≈ 0.1720

11. (a) y = 1.6866x2, E2(f) ≈ 1.3

y = 0.5902x3, E2(f) ≈ 0.29. This is the best fit.

Section 5.2 Methods of Curve Fitting

1. (a) 164A + 20C = 186

20B = −34

20A + 4C = 26
y = 0.875x2 − 1.70x + 2.125 = 7/8x2 − 17/10x + 17/8

3. (a) 15A + 5B = −0.8647

5A + 5B = 4.2196
y = 3.8665e−0.5084x , E1(f) ≈ 0.10

6.
Using linearization Minimizing least squares

(a)
1000

1+ 4.3018e−1.0802t

1000

1+ 4.2131e−1.0456t

(b)
5000

1+ 8.9991e−0.81138t

5000

1+ 8.9987e−0.81157t

18. (a) 14A + 15B + 8C = 82

15A + 19B + 9C = 93

8A + 9B + 5C = 49
A = 2.4, B = 1.2, C = 3.8 yields z = 2.4x + 1.2y + 3.8.

Section 5.3 Interpolation by Spline Functions

4. h0 = 1 d0 = −2

h1 = 3 d1 = 1 u1 = 18

h2 = 3 d2 = −2/3 u2 = −10

Solve the system

{
15
2 m1 + m2 = 21

3m1 + 21
2 m2 = −15

to get m1 = 314
101 and m2 = − 234

101 .

ANSWERS TO SELECTED EXERCISES 659

Then m0 = − 460
101 and m3 = 856

303 . The cubic spline is

S0(x) = 129

101
(x + 3)3 − 230

101
(x + 3)2 − (x + 3)+ 2 − 3 ≤ x ≤ −2

S1(x) = −274

909
(x + 2)3 + 157

101
(x + 2)2 − 96

101
(x + 2) − 2 ≤ x ≤ 1

S2(x) = 779

2727
(x − 1)3 − 117

101
(x − 1)2 + 72

303
(x − 1)+ 3 1 ≤ x ≤ 4

5. h0 = 1 d0 = −2

h1 = 3 d1 = 1 u1 = 18

h2 = 3 d2 = −2/3 u2 = −10

Solve the system

{
8m1 + 3m2 = 18

3m1 + 12m2 = −10
to get m1 = 82

29 and m2 = − 134
87 .

Set m0 = 0 = m3. The cubic spline is

S0(x) = 41

87
(x + 3)3 − 215

87
(x + 3)+ 2 − 3 ≤ x ≤ −2

S1(x) = −190

783
(x + 2)3 + 41

29
(x + 2)2 − 92

87
(x + 2) − 2 ≤ x ≤ 1

S2(x) = 67

783
(x − 1)3 − 67

87
(x − 1)2 + 76

87
(x − 1)+ 3 1 ≤ x ≤ 4

6. h0 = 1 d0 = −2

h1 = 3 d1 = 1 u1 = 18

h2 = 3 d2 = −2/3 u2 = −10

Solve the system

{
28
3 m1 + 8

3 m2 = 18

0m1 + 18m2 = −10
to get m1 = 263

126 and m2 = − 5
9 .

Then m0 = 187
63 and m3 = − 403

126 . The cubic spline is

S0(x) = − 37

252
(x + 3)3 + 187

126
(x + 3)2 − 841

252
(x + 3)+ 2 − 3 ≤ x ≤ −2

S1(x) = − 37

252
(x + 2)3 + 263

252
(x + 2)2 − 17

21
(x + 2) − 2 ≤ x ≤ 1

S2(x) = − 37

252
(x − 1)3 − 5

18
(x − 1)2 + 125

84
(x − 1)+ 3 1 ≤ x ≤ 4

Section 5.4 Fourier Series and Trigonometric Polynomials

1. f (x) = 4

π

(
sin(x)+ sin(3x)

3
+ sin(5x)

5
+ sin(7x)

7
+ · · ·

)
3. f (x) = π

4
+∑∞

j=1

(
(−1) j − 1

π j2

)
cos(j x)−∑∞

j=1

(
(−1) j

j

)
sin(j x)

660 ANSWERS TO SELECTED EXERCISES

5. f (x) = 4

π

(
sin(x)− sin(3x)

32
+ sin(5x)

52
− sin(7x)

72
+ · · ·

)

12. f (x) = 6+ 36

π2

∑∞
j=1

(
(−1) j+1

j2

)
cos

(
jπx

3

)

Section 5.5 Bézier Curves

1. B2,4(t) = 6t2 − 12t3 + 6t4

B3,5(t) = 10t3 − 20t4 + 10t5

B5,7(t) = 21t5 − 42t6 + 21t7

3. Note. The binomial coefficients are nonnegative, and t i and (1 − t)N−i are non-
negative for t ∈ [0, 1]. Can also be established using formula (4) and mathemati-
cal induction.

5. d
dt B3,5(t) = 5(B2,4(t)− B3,4(t)) = 5(6t2(1− t)2 − 4t3(1− 2))
d
dt B3,5(1/3) = 80/81 and d

dt B3,5(2/3) = −40/81.

7. t Bi,N (t) =
(

N

i

)
t i+1(1− t)N−i

=
(

N

i

)
t i+1(1− t)(N+1)−(i+1)

=
(N

i

)(N+1
i+1

) Bi+1,N+1(t)

= i + 1

N + 1
Bi+1,N+1(t)

8. (a) P(t) = (1+ 6t − 9t2 + 5t3, 3− 12t + 27t2 − 18t3)

(b) P(t) = (−2+ 4t + 18t2 − 28t3 + 10t4, 3+ 12t2 − 20t3 + 8t4)

(c) P(t) = (1+ 5t, 1+ 5t + 10t2 − 30t3 + 15t4)

9. P(t) = (1+ 3t, 1+ 6t)

Section 6.1 Approximating the Derivative

1. f (x) = sin(x)

h
Approximate f ′(x),

formula (3)
Error in the

approximation
Bound for the

truncation error

0.1 0.695546112 0.001160597 0.001274737
0.01 0.696695100 0.000011609 0.000012747
0.001 0.696706600 0.000000109 0.000000127

ANSWERS TO SELECTED EXERCISES 661

3. f (x) = sin(x)

h
Approximate f ′(x),

formula (10)
Error in the

approximation
Bound for the

truncation error

0.1 0.696704390 0.000002320 0.000002322
0.01 0.696706710 −0.000000001 0.000000000

5. f (x) = x3 (a) f ′(2) ≈ 12.0025000 (b) f ′(2) ≈ 12.0000000

(c) For part (a): O(h2) = −(0.05)2 f (3)(c)/6 = −0.0025000. For part (b):
O(h4) = −(0.05)4 f (3)(c)/30 = −0.0000000

7. f (x, y) = xy/(x + y)

(a) fx (x, y) = (y/(x + y))2, fx (2, 3) = 0.36

h
Approximation to

fx (2, 3)

Error in the
approximation

0.1 0.360144060 −0.000144060
0.01 0.360001400 −0.000001400
0.001 0.360000000 0.000000000

fy(x, y) = (x/(x + y))2, fy(2, 3) = 0.16

h
Approximation to

fy(2, 3)

Error in the
approximation

0.1 0.160064030 −0.000064030
0.01 0.160000600 −0.000000600
0.001 0.160000000 0.000000000

10. (a) Formula (3) gives I ′(1.2) ≈ −13.5840 and E(1.2) ≈ 11.3024. Formula (10)
gives I ′(1.2) ≈ −13.6824 and E (1.2) ≈ 11.2975.
(b) Using differentiation rules from calculus, we obtain I ′(1.2) ≈ −13.6793 and
E(1.2) ≈ 11.2976.

12.

h
App. f ′(x),

equation (17)
Error in the

approximation
Equation (19), total error bound

|round-off| + |trunc.|
0.1 −0.93050 −0.00154 0.00005+ 0.00161= 0.00166
0.01 −0.93200 −0.00004 0.00050+ 0.00002= 0.00052
0.001 −0.93000 −0.00204 0.00500+ 0.00000= 0.00500

15. f (x) = cos(x), f (5)(x) = − sin(x)

Use the bound | f (5)(x)| ≤ sin(1.4) ≈ 0.98545.

662 ANSWERS TO SELECTED EXERCISES

h
App. f ′(x),

equation (22)
Error in the

approximation
Equation (24), total error bound

|round-off| + |trunc.|
0.1 −0.93206 0.00002 0.00008+ 0.00000= 0.00008
0.01 −0.93208 0.00004 0.00075+ 0.00000= 0.00075
0.001 −0.92917 −0.00287 0.00750+ 0.00000= 0.00750

Section 6.2 Numerical Differentiation Formulas

1. f (x) = ln(x)

(a) f ′′(5) ≈ −0.040001600 (b) f ′′(5) ≈ −0.040007900

(c) f ′′(5) ≈ −0.039999833 (d) f ′′(5) = −0.04000000 = −1/52

The answer in part (b) is most accurate.

3. f (x) = ln(x)

(a) f ′′(5) ≈ 0.0000 (b) f ′′(5) ≈ −0.0400

(c) f ′′(5) ≈ 0.0133 (d) f ′′(5) = −0.0400 = −1/52

The answer in part (b) is most accurate.

5. (a) f (x) = x2, f ′′(1) ≈ 2.0000
(b) f (x) = x4, f ′′(1) ≈ 12.0002

9. (a)
x f ′(x)

0.0 0.141345
0.1 0.041515
0.2 −0.058275
0.3 −0.158025

Section 7.1 Introduction to Quadrature

1. (a) f (x) = sin(πx) trapezoidal rule 0.0

Simpson’s rule 0.666667

Simpson’s 3
8 rule 0.649519

Boole’s rule 0.636165

(c) f (x) = sin(
√

x) trapezoidal rule 0.420735

Simpson’s rule 0.573336

Simpson’s 3
8 rule 0.583143

Boole’s rule 0.593376

ANSWERS TO SELECTED EXERCISES 663

2. (a) f (x) = sin(πx) composite trapezoidal rule 0.603553

composite Simpson rule 0.638071

Boole’s rule 0.636165

(b) f (x) = sin(
√

x) composite trapezoidal rule 0.577889

composite Simpson rule 0.592124

Boole’s rule 0.593376

Section 7.2 Composite Trapezoidal and Simpson’s Rule

1. (a) F(x) = arctan(x), F(1)− F(−1) = π/2 ≈ 1.57079632679
(i) M = 10, h = 0.2, T (f, h) = 1.56746305691, ET (f, h) = 0.00333326989
(ii) M = 5, h = 0.2, S(f, h) = 1.57079538809, ES(f, h) = 0.00000093870
(c) F(x) = 2

√
x , F(4)− F(1

2) = 3
(i) M = 10, h = 0.375, T (f, h) = 3.04191993765,
ET (f, h) = −0.04191993765
(ii) M = 5, h = 0.375, S(f, h) = 3.00762208163, ES(f, h) = −0.00762208163

2. (a)
∫ 1

0

√
1+ 9x4 dx = 1.54786565469019

(i) M = 10, T (f, 1/10) = 1.55260945
(ii) M = 5, S(f, 1/10) = 1.54786419

3. (a) 2π
∫ 1

0 x3
√

1+ 9x4 dx = 3.5631218520124
(i) M = 10, T (f, 1/10) = 3.64244664
(ii) M = 5, S(f, 1/10) = 3.56372816

8. (a) Use the bound | f (2)(x)| = | − cos(x)| ≤ | cos(0)| = 1, and obtain
((π/3 − 0)h2)/12 ≤ 5 × 10−9; then substitute h = π/(3M) and get π3/162 ×
108 ≤ M2. Solve and get 4374.89 ≤ M ; since M must be an integer, M = 4375
and h = 0.000239359.

9. (a) Use the bound | f (4)(x)| = | cos(x)| ≤ | cos(0)| = 1, and obtain
((π/3−0)h4)/180 ≤ 5×10−9; then substitute h = π/(6M) and get π5/34,992×
107 ≤ M4; since M must be an integer, M = 18 and h = 0.029088821.

10.
M h T (f, h) ET (f, h) = O(h2)

1 0.2 0.1990008 0.0006660
2 0.1 0.1995004 0.0001664
4 0.05 0.1996252 0.0000416
8 0.025 0.1996564 0.0000104

16 0.0125 0.1996642 0.0000026

664 ANSWERS TO SELECTED EXERCISES

Section 7.3 Recursive Rules and Romberg Integration

1. (a)
J R(J, 0) R(J, 1) R(J, 2)

0 −0.00171772
1 0.02377300 0.03226990
2 0.60402717 0.79744521 0.84845691

(c)

J R(J, 0) R(J, 1) R(J, 2)

0 2.88
1 2.10564024 1.84752031
2 1.78167637 1.67368841 1.66209962

10. (ii) For
∫ 1

0

√
x dx , Romberg integration converges slowly because the higher

derivatives of the integrand f (x) = √x are not bounded near x = 0.

Section 7.5 Gauss-Legendre Integration

1.
∫ 2

0 6t5 dt = 64 (b) G(f, 2) = 58.6666667

3.
∫ 1

0 sin(t)/t dt ≈ 0.9460831 (b) G(f, 2) = 0.9460411

6. (a) N = 4 (b) N = 6

8. If the fourth derivative does not change too much, then

∣∣∣∣ f (4)(c1)

135

∣∣∣∣ < ∣∣∣∣− f (4)(c2)

90

∣∣∣∣.
The truncation error term for the Gauss-Legendre rule will be less than the trun-
cation error term for Simpson’s rule.

Section 8.1 Minimization of a Function of One Variable

1. (a) f ′(x) = 6x2 − 18x + 12 = 6(x − 1)(x − 2)

On (−∞, 1): f ′(x) > 0, thus f is increasing.
On (1, 2): f ′(x) < 0, thus f is decreasing.
On (2,∞): f ′(x) > 0: thus f is increasing.

(b) f ′(x) = 1
x2 + 1

> 0 for all x in the domain of f , thus f is increasing for all

x in the domain of f .

(c) f ′(x) = −1/x2 < 0 for all x in the domain of f , thus f is decreasing for all
x in the domain of f .

(d) f ′(x) = x x (a + ln(x))

On (0, e−1): f ′(x) < 0, thus f is decreasing.

On (e−1,∞): f ′(x) > 0, thus f is increasing.

ANSWERS TO SELECTED EXERCISES 665

3. (a) f ′(x) = 12x3 − 16x − 11; local minimum at x = 11/6

(b) f ′(x) = 1− 6/x3; local minimum at x = 3
√

6

(c) f ′(x) = (x2 + 5x + 4)/((4− x2)2; local minimum at x = −1

(d) f ′(x) = ex (x − 2)/x3; local minimum at x = 2

(e) f ′(x) = − cos(x)− cos(3x); local minimum at x = 0.785398163

5. Minimize the distance squared: d(x) = (x − 2)2 + (sin(x)− 1)2;
d ′(x) = 2(x − 2 + sin(x) cos(x) − cos(x)). The minimum occurs at x =
1.96954061.

7. (a) [a0, b0] = [−2.4000,−1.6000], [a1, b1] = [−2.4000,−1.9056], [a2, b2] =
[−2.4000,−1.6000]
(b) [a0, b0] = [0.8000, 1.6000], [a1, b1] = [1.1056, 1.6000], [a2, b2] = [1.1056, 1.4111]
(c) [a0, b0] = [0.5000, 2.5000], [a1, b1] = [1.2639, 2.5000], [a2, b2] = [1.7361, 2.5000]
(d) [a0, b0] = [1.000, 5.0000], [a1, b1] = [2.5279, 5.0000], [a2, b2] = [2.5279, 4.0557]

9. (a) p0 = −2.4000, pmin1 = −2.1220, pmin2 = −2.1200

(b) p0 = 0.8000, pmin1 = 1.2776, pmin2 = 1.2834

(c) p0 = 0.5000, pmin1 = 1.9608, pmin2 = 1.8920

(d) p0 = 1.0000, pmin1 = 2.8750, pmin2 = 3.3095

11. (a) bk − ak =
(−1+√5

2

)4
(1− 0) = 0.14590

(b) bk − ak =
(−1+√5

2

)5
(−1.6− (−2.3)) = 0063119

Section 8.2 Nelder-Mead and Powell’s Methods

1. (a) fx (x, y) = 3x2 − 3, fy(x, y) = 3y2 − 3
Critical points: (1, 1), (1,−1), (−1, 1), (−1,−1)

Local minimum at (1, 1)

(b) fx (x, y) = 2x − y + 1, fy(x, y) = 2y − x − 2
Critical point: (0, 1). Local minimum at (0, 1).

(c) fx (x, y) = 2xy + y2 − 3y, fy(x, y) = x2 + 2xy − 3x
Critical point: (0, 0), (0, 3), (3, 0), (1, 1)

Local minimum at (1, 1)

3. M = 1

2
(B + G) = (−3/2,−3/2)

R = 2M −W = (−6,−4)

E = 2R − M = (−21/2,−13/2)

5. M = 1

3
(B + G + P) = 1

3
(0, 3, 1)

R = 2M −W = (−2, 1, 2/3)

E = 2R − M = (−4, 1, 1)

666 ANSWERS TO SELECTED EXERCISES

9. “Reflecting” the triangle through the side BG implies that the terminal points
of of the vectors W , M, and R all lie on the same line segment. Thus, by the
definition of scalar multiplication and vector addition, we have R−W = 2(M −
W) or R = 2M −W .

Section 8.3 Gradient and Newton’s Methods

1. (a) ∇ f (x, y) = (2x−3, 3y2−3)∇ f (−1, 2) = (2(−1)−3, 3(2)2−3) = (−5, 9)

(b) ∇ f (x, y) = (200(y − x2)(−2x)− 2(1− x), 200(y − x2))

∇ f (1/2, 4/3) = (200(4
3 −

(
1
2

)2
)(−2(1

2))− 2(1− 1
2), 200(4

3 − (1
2)2))

(c) ∇ f (x, y, z) = (−y sin(xy)− z cos(xz),−x sin(xy),−x cos(xz))
∇ f (0, π, π/2) = (−π sin(0)−π

2 cos cos(0),−0 sin(0),−0 cos(0)) = (−π/2, 0, 0)

3. (a)
[

2 0
0 12

]
(a)

[− 694
3 −200

−200 200

]

(c)

−π2 0 −1
0 0 0
−1 0 0

5. (a) If P0 = (−1, 2), then

P1 = P0 − ∇ f (P0)((H f (P0))
−1)′ =

(
3

2
,

5

4

)
P2 = P1 − ∇ f (P1)((H f (P1))

−1)′ =
(

3

2
,

41

40

)
(b) If P0 = (0.5, 1.33333), then

P1 = P0 − ∇ f (P0)((H f (P0))
−1)′ = (0.498424, 0.248424)

P2 = P1 − ∇ f (P1)((H f (P1))
−1)′ = (0.493401, 0.24342)

(c) The matrix H f (P0) is not invertible.

9. Solve formula (7)

∇(P0)+ (X − P0)(H f (P0))
′ = 0

for X :
(X − P0)(H f (P0))

′ = −∇ f (P0),

assume that (H f (P0))
′ is invertible,

X − P0 = −∇ f (P0((H f (P0))
′)−1

X = P − ∇ f (P0((H f (P0))
−1)′

Note. If a matrix A is invertible, then (A′)−1 = (A−1)′.

ANSWERS TO SELECTED EXERCISES 667

Section 9.1 Introduction to Differential Equations

1. (b) L = 1 3. (b) L = 3 5. (b) L = 60

10. (c) No, because fy(t, y) = 1
2 y−2/3 is not continuous when t = 0,

and limy→0 fy(t, y) = ∞.

13. y(t) = t3 − cos(t)+ 3

15. y(t) = ∫ t
0 e−s2/2 ds

17. (b) y(t) = y0e−0.000120968t (c) 2808 years (d) 6.9237 seconds

Section 9.2 Euler’s Method

1. (a)
tk yk (h = 0.1) yk (h = 0.2)

0.0 1 1
0.1 0.90000
0.2 0.81100 0.80000
0.3 0.73390
0.4 0.66951 0.64800

3. (a)
tk yk (h = 0.1) yk (h = 0.2)

0.0 1 1
0.1 1.00000
0.2 0.99000 1.00000
0.3 0.97020
0.4 0.94109 0.96000

6. Pk+1 = Pk + (0.02Pk − 0.00004P2
k)10 for k = 1, 2, . . . , 8.

Pk

Year tk

Actual population
at tk , P(tk)

Euler rounded at
each step

Euler with more
digits carried

1900 0.0 76.1 76.1 76.1
1910 10.0 92.4 89.0 89.0035
1920 20.0 106.5 103.6 103.6356
1930 30.0 123.1 120.0 120.0666
1940 40.0 132.6 138.2 138.3135
1950 50.0 152.3 158.2 158.3239
1960 60.0 180.7 179.8 179.9621
1970 70.0 204.9 202.8 203.0000
1980 80.0 226.5 226.9 227.1164

668 ANSWERS TO SELECTED EXERCISES

9. No. For any M , Euler’s method produces 0 < y1 < y2 < · · · < yM . The
mathematical solution is y(t) = tan(t) and y(3) < 0.

Section 9.3 Heun’s Method

1. (a)
tk yk (h = 0.1) yk (h = 0.2)

0 1 1
0.1 0.90550
0.2 0.82193 0.82400
0.3 0.75014
0.4 0.69093 0.69488

3. (a)
tk yk (h = 0.1) yk (h = 0.2)

0 1 1
0.1 0.99500
0.2 0.98107 0.98000
0.3 0.95596
0.4 0.92308 0.92277

7. Richardson improvement for solving y′ = (t − y)/2 over [0, 3] with y(0) = 1.
The table entries are approximations to y(3).

k yk (4yk − y2k)/3

1 1.732422

1/2 1.682121 1.665354

1/4 1.672269 1.668985

1/8 1.670076 1.669345

1/16 1.669558 1.669385

1/32 1.669432 1.669390

1/64 1.669401 1.669391

8. y′ = f (t, y) = 1.5y1/3, fy(t, t) = 0.5y−2/3. fy(0, 0) does not exist.
The I.V.P. is not well-posed on any rectangle that contains (0, 0).

ANSWERS TO SELECTED EXERCISES 669

Section 9.4 Taylor Series Method

1. (a)
tk yk (h = 0.1) yk (h = 0.2)

0 1 1
0.1 0.90516
0.2 0.82127 0.82127
0.3 0.74918
0.4 0.68968 0.68968

3. (a)
tk yk (h = 0.1) yk (h = 0.2)

0 1 1
0.1 0.99501
0.2 0.98020 0.98020
0.3 0.96000
0.4 0.92312 0.92313

6. Richardson improvement for the Taylor solution y′ = (t − y)/2 over [0, 3] with
y(0) = 1. The table entries are approximations to y(3).

h yk (16yh − y2h)/15

1 1.6701860
1/2 1.6694308 1.6693805
1/4 1.6693928 1.6693903
1/8 1.6693906 1.6693905

Section 9.5 Runge-Kutta Methods

1. (a)
tk yk(h = 0.1) yk = (h = 0.2)

0 1 1
0.1 0.90516
0.2 0.82127 0.82127
0.3 0.74918
0.4 0.68968 0.68969

670 ANSWERS TO SELECTED EXERCISES

3. (a)
tk yk(h = 0.1) yk = (h = 0.2)

0 1 1
0.1 0.99501
0.2 0.98020 0.98020
0.3 0.95600
0.4 0.92312 0.92312

Section 9.6 Predictor-Corrector Methods

1. y4 = 0.82126825, y5 = 0.78369923

3. y4 = 0.74832050, y5 = 0.66139979

4. y4 = 0.98247692, y5 = 0.97350099

7. y4 = 1.1542232, y5 = 1.2225213

Section 9.7 Systems of Differential Equations

1. (a) (x1, y1) = (−2.5500000, 2.6700000)

(x2, y2) = (−2.4040735, 2.5485015)

(b) (x1, y1) = (−2.5521092, 2.6742492)

5. (b) x ′ = y

y′ = 1.5x + 2.5y + 22.5e2t

(c) x1 = 2.05, x2 = 2.17

(d) x1 = 2.0875384

Section 9.8 Boundary Value Problems

2. No; q(t) = −1/t2 < 0 for all t ∈ [0.5, 4.5].
Section 9.9 Finite-Difference Method

1. (a) h1 = 0.5, x1 = 7.2857149

h2 = 0.25, x1 = 6.0771913, x2 = 7.2827443

2. (a) h1 = 0.5, x1 = 0.85414295

h2 = 0.25, x1 = 0.93524622, x2 = 0.83762911

Section 10.1 Hyperbolic Equations

4.
t j x2 x3 x4 x5

0.0 0.587785 0.951057 0.951057 0.587785
0.1 0.475528 0.769421 0.769421 0.475528
0.2 0.181636 0.293893 0.293893 0.181636

ANSWERS TO SELECTED EXERCISES 671

5.
t j x2 x3 x4 x5

0.0 0.500 1.000 1.500 0.750
0.1 0.500 1.000 0.875 0.800
0.2 0.500 0.375 0.300 0.125

Section 10.2 Parabolic Equations

3.
x1 = 0.0 x2 = 0.2 x3 = 0.4 x4 = 0.6 x5 = 0.8 x6 = 1.0

0.0 0.587785 0.951057 0.951057 0.587785 0.0
0.0 0.475528 0.769421 0.769421 0.475528 0.0
0.0 0.384710 0.622475 0.622475 0.384710 0.0

Section 10.3 Elliptic Equations

1. (a) − 4p1 + p2 + p3 = −80

p1 − 4p2 + p4 = −10

p1 − 4p3 + p4 = −160

p2 + p3 − 4p4 = −90

(b) p1 = 41.25, p2 = 23.75, p3 = 61.25, p4 = 43.75

5. (a) uxx + uyy = 2a + 2c = 0, if a = −c

6. Determine if u (x, y) = cos(2x)+ sin(2y) is a solution, since it is also defined on
the interior of R; that is, uxx + uyy = −4 cos(2x) − 4 sin(2y) = −4(cos(2x) +
sin(2y)) = −4u.

Section 11.1 Homogeneous Systems: Eigenvalue Problem

1. (a) |A− λI | = λ2 − 3λ− 4 = 0 implies that λ1 = −1 and λ2 = 4. Substituting
each eigenvalue into |A − λI | = 0 and solving gives V 1 =

[−1 1
]′ and V 2 =[

2/3 1
]′, respectively.

10. If λ = 2 is an eigenvalue of A corresponding to the vector V , then AV = 2V .
Premultiply both sides by A−1: A−1 AV = A−1(2V) or V = 2A−1V . Thus
A−1V = 1/2V .

Section 11.2 Power Method

1. (A−α I)V = AV−α I V = AV−αV = λV−αV = (λ− α) V . Thus (λ− α),
V is an eigenpair of A− α I .

672 ANSWERS TO SELECTED EXERCISES

5. (a) |A− 1I | =
∣∣∣∣−0.2 0.3

0.2 −0.3

∣∣∣∣ = 0

(b)
[−0.2 0.3 0

0.2 −0.3 0

]
is equivalent to

[−0.2 0.3 0
0 0 0

]
, thus−0.2x+0.3y = 0.

Let y = t , then x = 3/2. Thus the eigenvectors associated with λ = 1 are
{t[3/2 1

]′ : t ∈ $, t �= 0}.
(c) The eigenvector from part (b) implies that in the long run the 50,000 members
of the population will be divided 3 to 2 in their preference for brands X and Y ,
respectively; that is,

[
30,000 20,000

]′.
Section 11.3 Jacobi’s Method

3. (a) The eigenpairs of A =
[

4 2
3 −1

]
are 5,

[
2 1
]′, and −2,

[−1/3 1
]
. Thus the

general solution is X(t) = c1e5t
[
2 1
]′ + c2e−2t

[−1/3 1
]′
. Set t = 0 to solve

for c1 and c2; that is,
[
1 2
]′ = c1

[
2 1
]′ + c2

[−1/3 1
]′. Thus c1 = 0.7143 and

c2 = 1.2857.

Section 11.4 Eigenvalues of Symmetric Matrices

1. From (3) we have W = X − Y
‖X − Y‖ 2

and, from Figure 11.4, Z = 1
2 (X + Y).

Taking the dot product,

X − Y
‖X − Y‖2

· 1

2
(X + Y) = (X − Y) · (X + Y)

2‖X − Y‖2

= X · X + X · Y − Y · X − Y · Y
2‖X − Y‖2

= ‖X‖2 − ‖Y‖2

2‖X − Y‖2
= 0,

since X and Y have the same norm.

2. P ′ = (I − 2X X ′)′ = I ′ − 2(X X ′)′ = I − 2(X ′)′X ′ = I − 2X X ′ = P

Index

Accelerating convergence
Aitken’s process, 90, 99 (#10–#14)
Newton-Raphson, 71, 82, 88 (#23),

176
Steffensen’s method, 90, 95

Adam-Bashforth-Moulton method, 505,
513

Adaptive quadrature, 392, 397
Aitken’s process, 90, 99 (#10–#14)
Approximate significant digits, 25
Approximation of data

least-squares curves, 211, 257
least-squares line, 255, 258
least-squares polynomial, 271, 274

Approximation of functions
Chebyshev polynomial, 230, 233,

236, 240
Lagrange polynomial, 207, 211, 213,

217, 236
least squares, 255, 257, 271
Newton polynomial, 220, 224, 227
Padé approximation, 242, 246
rational functions, 242
splines, 280, 281, 285, 293
Taylor polymomials, 8, 26, 31, 189

Augmented matrix, 126, 129

Back substitution, 121, 123, 136

Backward difference, 344
Basis, 587
Bernstein polynomials, 310
Bézier Curves, 310
Binary numbers, 13, 17, 19
Binomial series, 197 (#14)
Bisection method, 53, 54, 59
Bolzano’s method, 53
Boole’s rule, 354, 382, 385, 390 (#3, #4),

399 (#3)
Boundary value problems, 528, 534, 536,

541
Bracketing methods, 51, 53

Central difference, 323, 324, 339, 350 (#7,
#8)

Characteristic polynomial, 589
Chebyshev nodes, 231
Chebyshev polynomial

interpolation, 230, 233, 236, 240
minimization, 233
nodes, 233

Chopped number, 27
Cn[a, b], 3
Composite Simpson’s rule, 360, 364, 369,

373
Composite trapezoidal rule, 360, 364, 368,

373

673

674 INDEX

Computer accuracy, 21
Continuous function, 3
Convergence

acceleration, 82, 87 (#21–#23), 90,
92, 95

criteria, 62, 66
global (local), 62
linear, 76, 77, 90
Newton-Raphson, 77, 82, 87 (#21,

#23)
order of, 32, 75
quadratic, 76, 77, 82, 87 (#21, #23)
sequence, 3
series, 8, 99 (#10–#14)
speed, 75

Convex hull, 315
Convex set, 314
Corrector formula, 506, 508
Crank-Nicholson method, 561, 565
Cube-root algorithm, 86 (#11)
Cubic approximation, 420
Cubic bracketing search method, 429
Cubic spline

clamped, 284, 285, 293
natural, 284, 285

D’Alembert’s solution, 549
Deflation of eigenvalues, 608
Derivative

definition, 5, 321
formulas, 204, 323, 332, 339, 343,

536, 547, 557, 568
higher, 339, 343, 536
partial, 335 (#7), 547, 557, 568
polynomials, 204, 344, 346

Determinant, 113, 114, 123, 151
Dichotomous search method, 429
Difference

backward, 344
central, 323, 324, 339, 350 (#7, #8)
divided, 223
finite-difference method, 536, 541,

544, 547, 557, 569
forward, 344, 350 (#13)
table, 224

Difference equation, 536, 547, 557, 561,
569

Differential equation

Adams-Bashforth-Moulton method,
505, 513

boundary value problems, 528, 534,
536, 541

Crank-Nicholson method, 561, 565
Dirichlet method for Laplace’s equa-

tion, 579
Euler’s method, 465, 468, 470
existence-uniqueness, 462
finite-difference method, 536, 541,

544, 547, 557, 569
forward-difference method, 558, 563
Hamming’s method, 515
Heun’s method, 475, 477, 479, 496
higher-order equations, 521
initial value problem, 460, 462, 518,

529
Milne-Simpson method, 508, 514
modified Euler method, 496
partial differential equations, 544,

546, 556, 568
predictor, 505, 508
Runge-Kutta method, 489, 493, 497,

499, 519, 533
Runge-Kutta-Fehlberg method, 497,

500
shooting method, 529, 534
stability of solutions, 509, 512
Taylor methods, 482, 484, 487

Digit
binary, 14, 17, 19
decimal, 14, 19, 22

Dirichlet method for Laplace’s equation,
579

Distance between points, 103, 162
Divided differences, 223
Division

by zero, 74, 77
synthetic, 10, 200

Dot product, 103
Double precision, 22
Double root, 75, 77, 87 (#21)

Eigenvalues
characteristic polynomial, 589
definition, 589
dominant, 598
Householder’s method, 624
inverse power method, 603, 605, 606

INDEX 675

Jacobi’s method, 611
power method, 598, 600, 603, 606
Q R method, 631, 636

Eigenvectors
definition, 589
dominant, 598

Elementary row operations, 126
Elementary transformations, 125
Elliptic equations, 568
Endpoint constraints for splines, 284
Epidemic model, 474 (#9)
Equivalent linear systems, 125
Error

absolute, 24
bound, 189, 194, 213
computer, 21, 26, 135
data, 36, 203, 326
differential equations, 469, 477, 484,

493, 506, 508, 549
differentiation, 323, 324, 326, 328
integration, 354, 368, 369, 387
interpolating polynomial, 189, 213,

236
loss of significance, 28
propagation, 33
relative, 24, 66
root mean square, 253
round-off, 26
sequence, 3
stable (unstable), 33
subtractive cancellation, 28
truncation, 26, 323, 324

Euclidean norm, 103, 162, 163
Euler formulas, 299
Euler’s method, 465, 468, 470

global error, 469
modified, 496
systems, 519

Even function, 301
Exponential fit, 263
Extrapolated value, 199
Extreme value theorem, 4

False position method, 56, 60
Fibonacci search, 414
Final global error, 469, 477, 484, 493
Finite-difference method, 536, 541, 544,

547, 557, 569
First derivative test, 411

Fixed-point iteration, 42, 49, 173
error bound, 46

Floating-point number, 21, 22
accuracy, 21

Forward difference, 344, 350 (#13)
Forward difference method, 557, 558, 563
Forward substitution, 125 (#2)
Fourier series, 298

discrete, 304
Fractions, binary, 17
Fundamental theorem of calculus, 6

Gauss-Legendre integration, 399, 402, 404
Gauss-Seidel iteration, 159, 161, 164
Gaussian elimination, 125, 128, 143, 150

back substitution, 121, 123
computational complexity, 147
LU factorization, 141, 143, 150
multipliers, 127, 129
pivoting, 127, 131
tridiagonal systems, 140 (#1), 166

(#3), 284, 537, 629
Generalized Rolle’s theorem, 6, 198 (#20)
Geometric series, 16, 51
Gerschgorin’s circle theorem, 596
Golden ratio search, 411, 422
Gradient, 454
gradient, 446
Graphical analysis

fixed-point iteration, 47
Newton’s method, 70, 78, 79
secant method, 80

Halley’s method, 87 (#22)
Hamming’s method, 515
Heat equation, 545
Helmholtz’s equation, 568, 577
Hessian matrix, 450
Heun’s method, 475, 477, 479, 496
Higher derivatives, 339, 343
Hilbert matrix, 139 (#15)
Hooke’s law, 262 (#1)
Horner’s method, 10, 200
Householder’s method, 624
Hyperbolic equations, 546

Ill-conditioning
least-squares data fitting, 134
matrices, 133, 139 (#15)

676 INDEX

Initial value problem, 460, 462, 518, 529
Integration

adaptive quadrature, 392, 397
Boole’s rule, 354, 382, 385, 390 (#3,

#4), 399 (#3)
composite rules, 360, 364, 368, 373
cubic splines, 296 (#12)
Gauss-Legendre integration, 399,

402, 404
midpoint rule, 376 (#12), 391 (#11)
Newton-Cotes, 354
Romberg integration, 383, 385, 387,

388, 391 (#11)
Simpson’s rule, 354, 363 (#9), 364,

369, 373, 380, 390 (#6), 397
trapezoidal rule, 354, 364, 368, 373,

378, 387
Intermediate value theorem, 3
Interpolation

Chebyshev polynomials, 230, 233,
236, 240

cubic splines, 281, 285–287, 293
error, polynomials, 8, 31, 189, 211,

213, 236
extrapolation, 199
integration, 296 (#12), 354
Lagrange polynomials, 207, 211, 213,

217, 236
least squares, 255, 271
linear, 207, 219 (#12), 255, 277 (#17),

280
Newton polynomials, 220, 224, 227
Padé approximations, 242, 246
piecewise linear, 280
polynomial wiggle, 273
rational functions, 242
Runge phenomenon, 236
Taylor polynomials, 8, 26, 31, 189,

323, 339
trigonometric polynomials, 297, 303,

306
Iteration methods

bisection, 53, 54, 59
fixed point, 42, 49, 173, 574
Gauss-Seidel, 159, 161, 164
Jacobi iteration, 156, 161, 163
Muller, 92, 97
Newton, 70, 82, 84, 88 (#23), 176,

179

partial differential equations, 576
regula falsi, 56, 60
secant, 80, 84, 87 (#20)
Steffensen, 92, 95

Jacobi iteration for linear systems, 156,
161, 163

Jacobi’s method for eigenvalues, 611, 620
Jacobian matrix, 170, 176

Lagrange polynomials, 207, 211, 213, 236
Laplace’s equation, 568, 579
Least-squares data fitting

data linearization, 266
linear fit, 255, 258, 260 (#7), 277

(#17)
nonlinear fit, 257, 266, 271
plane, 277 (#17, #18)
polynomial fit, 271, 274
root-mean-square error, 253
trigonometric polynomials, 297, 303,

306
Length of a curve, 374 (#2)
Length of a vector, 103, 162, 163
Limit

function, 2
sequence, 3
series, 8

Linear approximation, 219 (#12), 255, 258,
277 (#17), 280

Linear combination, 103, 530
Linear convergence, 76, 77, 90
Linear independence, 587
Linear least-squares fit, 255, 258, 260 (#7),

277 (#17)
Linear system, 114, 121, 128, 143, 152,

156, 163
Linear systems of equations

back substitution, 121, 123, 136
forward substitution, 125 (#2)
Gaussian elimination, 125, 128, 143,

150
LU factorization, 141, 143, 150
tridiagonal systems, 140 (#1), 166

(#3), 284, 537, 629
Linear systems, theory

matrix form, 111, 114, 127, 141
nonsingular, 114

Lipschitz condition, 461

INDEX 677

Location of roots, 68
Logistic rule of population growth, 276

(#6, #7)
Loss of significance, 28
Lower triangular determinant, 123
LU factorization, 141, 143, 150

Machine numbers, 20
Maclaurin series, 243
Mantissa, 20, 22
Markov process, 609 (#5)
Matrix

addition, 107
augmented, 126, 129
determinant, 113, 114, 123, 151
diagonalization, 593
eigenvalue, 589
eigenvector, 589
equality, 106
Hilbert, 139 (#15)
identity, 112
ill-conditioned, 133, 139 (#15)
inverse, 112, 114
lower triangular, 120, 125 (#2), 143
LU factorization, 141, 143, 150
multiplication, 110, 112, 143, 150
nonsingular, 112
norm, 596
orthogonal, 595, 624
permutation, 148, 150
singular, 113
strictly diagonally dominant, 160,

162, 163
symmetric, 109 (#6), 595, 611, 620,

624
transpose, 104, 108 (#5), 270
triangular, 120, 125 (#2)
tridiagonal, 140 (#1), 166 (#3), 284,

537, 629
Mean of data, 260 (#4, #5, #6)
Mean value theorems

derivative, 5, 45
integrals, 6
intermediate, 3
weighted integral, 7

Midpoint rule, 376 (#12), 391 (#11)
Milne-Simpson method, 508, 514
Minimax approximation, Chebyshev, 230,

233, 236

Minimum
golden ratio search, 422
gradient method, 454
Nelder-Mead, 432, 441

Modified Euler method, 496
Modified Newton’s method, 453
Muller’s method, 92, 97
Multiple root, 75, 82, 87 (#21, #23)
Multistep methods

Adams-Bashforth-Moulton method,
505, 513

Hamming’s method, 515
Milne-Simpson method, 508, 514

Natural cubic splines, 284, 285
Near-minimax approximation, 230, 233,

236
Nelder-Mead, 432, 441
Nelder-Mead method, 432
Nested multiplication, 10, 221
Neumann boundary conditions, 571, 575
Newton divided differences, 223
Newton polynomial, 220, 224, 227
Newton systems, 176, 179
Newton’s method, 448

multiple roots, 75, 82, 87 (#21, #23)
order of convergence, 77

Newton-Cotes formulas, 354
Newton-Raphson formula, 82, 84, 88

(#23), 176, 179
Nodes, 203, 207, 211, 213, 233, 354, 399
Norm

Euclidean, 103, 162, 163
matrix, 596

Normal equations, 255
Numerical differentiation, 323, 324, 330,

339, 343
backward differences, 344
central differences, 323, 324, 339,

350 (#7, #8)
error formula, 323, 324, 326, 328
forward differences, 344, 350 (#13)
higher derivatives, 339, 343
Richardson extrapolation, 330

Numerical integration
adaptive quadrature, 392, 397
Boole’s rule, 354, 382, 385, 390 (#3,

#4), 399 (#3)
composite rules, 360, 364, 368, 373

678 INDEX

cubic splines, 296 (#12)
Gauss-Legendre integration, 399,

402, 404
midpoint rule, 376 (#12), 391 (#11)
Newton-Cotes, 354
Romberg integration, 383, 385, 387,

388, 391 (#11)
Simpson’s rule, 354, 363 (#9), 364,

369, 373, 380, 390 (#6), 397
trapezoidal rule, 354, 364, 368, 373,

378, 387

O(hn), 29, 32, 214, 323, 324, 339, 343,
383, 387, 469, 477, 484, 493,
506, 508, 536, 547, 557, 568

Odd function, 301
Optimization

golden ratio search, 422
gradient method, 454
Nelder-Mead, 432, 441

Optimum step size
differential equations, 497, 507, 510
differentiation, 326, 327
integration, 368, 392
interpolation, 213, 233

Order
of approximation, 29, 32, 214, 323,

339, 343, 383, 387
of convergence, 32, 75

Orthogonal polynomials, Chebyshev, 238

Padé approximation, 242, 246
Parabolic equation, 556
Partial derivative, 547, 557, 568
Partial differential equations, 544, 546,

556, 568
elliptic equations, 568
hyperbolic equations, 546
parabolic equations, 556

Partial pivoting, 133
Periodic function, 298
Piecewise

continuous, 298
cubic, 281
linear, 280

Pivoting
element, 127
row, 127
strategies, 131, 133

Plane rotations, 115, 611
Poisson’s equation, 568, 577
Polynomials

calculus, 204
characteristic, 589
Chebyshev, 230, 233, 236, 240
derivative, 204, 344, 346
interpolation, 204, 207, 210, 211,

217, 224, 227, 236
Lagrange, 207, 211, 213, 236
Newton, 220, 224, 227
Taylor, 8, 26, 31, 189, 323, 339
trigonometric, 297, 303, 306
wiggle, 273

Powell’s method, 436
Power method, 598, 600, 603, 606
Predator-prey model, 526 (#13)
Predictor-corrector method, 505
Projectile motion, 73, 474 (#8), 482 (#6)
Propagation of error, 33

Q R method, 636
Quadratic approximation, 419
Quadratic convergence, 76, 77, 82, 87

(#21, #23)
Quadratic formula, 39 (#12)
Quadrature

adaptive quadrature, 392, 397
Boole’s rule, 354, 382, 385, 390 (#3,

#4), 399 (#3)
composite rules, 360, 364, 368, 373
cubic splines, 296 (#12)
Gauss-Legendre integration, 399,

402, 404
midpoint rule, 376 (#12), 391 (#11)
Newton-Cotes, 354
Romberg integration, 383, 385, 387,

388, 391 (#11)
Simpson’s rule, 354, 363 (#9), 364,

369, 373, 380, 390 (#6), 397
trapezoidal rule, 354, 364, 368, 373,

378, 387

Radioactive decay, 464 (#17)
Rational function, 242
Regula falsi method, 56, 60
Relative error, 24, 66
Residual, 167 (#5), 253
Richardson

INDEX 679

differential equations, 480 (#7), 488
(#6), 502 (#7)

numerical differentiation, 330, 332
numerical integration, 385

Rolle’s theorem, 5, 6, 198 (#20), 212, 219
(#13)

Romberg integration, 383, 385, 387, 388,
391 (#11)

Root
location, 68
multiple, 75, 82, 87 (#21, #23)
of equation, 53, 75
simple, 75, 77, 87 (#22)
synthetic division, 10, 200

Root finding
bisection, 53, 54, 59
Muller, 92, 97
multiple roots, 75, 82, 87 (#21, #23)
Newton, 82, 84, 88 (#23), 176, 179
quadratic function, 39 (#12)
regula falsi, 56, 60
secant, 80, 84, 87 (#20)
Steffensen, 92, 95

Root-mean-square error, 253
Rotation, 115, 611
Rounding error, 26

differentiation, 323, 324, 326, 328
floating-point number, 21

Row operations, 127
Runge phenomenon, 236
Runge-Kutta methods, 489, 493, 497, 499,

519, 533
Fehlberg method, 497, 500
Richardson extrapolation, 502 (#7)
systems, 519

Scaled partial pivoting, 133
Schur, 593
Scientific notation, 19
Secant method, 80, 84, 87 (#20)
Second derivative test, 411
Second partial derivative test, 431
Seidel iteration, 174, 179
Sequence, 3, 41

convergent, 3
error, 3
geometric, 16, 51

Sequential integration
Boole, 382, 385

Simpson, 380, 385
trapezoidal, 379, 385, 387

Series
binomial, 196 (#10)
convergence, 8, 99 (#10–#14), 189,

194
geometric, 16, 51
Maclaurin, 243
Taylor, 8, 26, 31, 189, 323, 339

Shooting method, 529, 534
Significant digits, 25
Similarity transformation, 612
Simple root, 75, 77, 87 (#22)
simplex, 432
Simpson’s rule, 354, 363 (#9), 364, 369,

373, 380, 397
three-eighths rule, 354, 363 (#9), 390

(#6)
Single precision, 22
Single-step methods, 505
Slope methods, 70, 80, 84
SOR method, 575
Spectral radius theorem, 596
Splines

clamped, 284, 285, 293
end constraints, 284
integrating, 296 (#12)
linear, 280
natural, 284, 285

Square-root algorithm, 72
Stability of differential equations, 509, 512
Steepest descent, 446, 454
Steffensen’s method, 92, 95
Step size

differential equations, 497, 507, 510
differentiation, 326, 328
integration, 368, 392
interpolation, 213, 233

Stopping criteria, 58, 62 (#13)
Successive over-relaxation, 575
Surface area, 374 (#3)
Synthetic division, 10, 200
Systems

differential, 518
linear, 114, 121, 123, 128, 136, 143,

150, 156, 163
nonlinear, 167, 174

Taylor polynomial, 451

680 INDEX

Taylor series, 8, 26, 31, 189, 323, 339
Taylor’s method, 482, 484, 487
Termination criterion

bisection method, 58
Newton’s method, 84
regula falsi method, 58, 60
Romberg integration, 388
Runge-Kutta method, 500
secant method, 84

Transformation, elementary, 125
Trapezoidal rule, 354, 364, 368, 373, 379,

387
Triangular factorization, 141, 143, 149
Trigonometric polynomials, 297, 303, 306
Truncation error, 26, 323, 324

Unstable error, 33
Upper-triangularization, 136, 150

Vectors
dot product, 103
Euclidean norm, 103, 162, 163

Wave equation, 546, 549
Weights, for integration rules, 354, 403
Wiggle, 273

Zeros
of Chebyshev polynomials, 231
of functions, 53, 75
root finding, 40, 51, 70, 90, 167, 174

	9780131911789
	Numerical Methods Using MATLAB_Mathews_4th

