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Preface

The assessment of thermal fatigue crack growth due to turbulent mixing of hot and
cold coolants presents significant challenges, in particular, to determine the thermal
loading spectrum. Thermal striping is defined as a random temperature fluctuation
produced by incomplete mixing of fluid streams at different temperatures, and it is
essentially a random phenomenon in a temporal sense.

The book’s objective is to develop a systematic approach of stochastic modeling
to assess thermal fatigue crack growth in mixing tees, based on the power spectral
density (PSD) of temperature fluctuation at the inner pipe surface. Based on the an-
alytical solution for temperature distribution through the wall thickness, obtained
by the Hankel transform, a frequency, temperature response function is proposed,
in the framework of single-input, single-output (SISO) methodology from random
noise/signal theory under sinusoidal input. For elastic thermal stresses, developed
in a previous work, the magnitude, frequency response function is first derived for
hoop stress, and checked against prediction by FEA. The frequency response of
the stress intensity factor (SIF) is obtained by the polynomial fitting procedure of
stress profiles through the thickness at various instants of time. The variability in
load is given by the statistical properties of the thermal spectrum. The temperature
spectrum is assumed to be given as a stationary normalized Gaussian narrow-band
stochastic process, with constant PSD for a defined range of frequencies. The con-
nection between SIF’s PSD and temperature’s PSD is assured with SIF frequency
response function modulus. The frequency of peaks of any magnitude for KI, which
is supposed to be a stationary narrow-band Gaussian process, is characterized by
Rayleigh’s distribution, and, consequently, the expected value of crack growth rate
in respect to cycles is obtained.

The probabilities of failure are estimated by means of the Monte Carlo methods
by considering a limit state function, which is based on the proposed stochastic
model. The results of the stochastic approach to modeling of thermal fatigue crack
growth in mixing tees are completed with probabilistic input to account variability in
material characteristics, and finally an application is given to obtain the probability
of mixing tees piping failure as a function of the time reference period.



VIII Preface

The book addresses to undergraduate students, young scientists and people in-
volved in the practical application of the stochastic and probabilistic fracture me-
chanics for structural integrity assessment on industrial components.

October 2014 Vasile Radu
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Chapter 1 

Introduction 

The assessment of the thermal fatigue damage (crack initiation) and subsequent 
crack growth due to thermal stresses from turbulent mixing or vortices in 
industrial piping systems remains a demanding task, and much effort continues to 
be devoted to experimental, FEA and analytical studies. 

The problem of thermal fatigue in mixing areas arises in pipes where a 
turbulent mixing or vortices produces rapid fluid temperature fluctuations with 
random frequencies. Structures exposed to such temperature fluctuations can 
suffer thermal fatigue damage and, subsequently, cracking phenomena, which can 
produce through wall cracks. Thermal striping is defined as a random temperature 
fluctuation produced by incomplete mixing of fluid streams at different 
temperatures. It can arise in a certain light water reactor, but also in certain fast 
breeder reactor structures, notably those situated above the core, because of the 
large temperature differences that exist between sodium emerging from the core 
sub-assemblies and from the breeder sub-assemblies. Other areas of potential 
occurrence include pressurized water reactor nozzles where stratified flows are 
encountered. In dry-out zones in steam generators, the fluid/steam boundary can 
oscillate and induce temperature fluctuations on the component surface [1]. 

The results in temperature fluctuations can be local or global and induce 
random variations of local temperature gradients in structural walls of pipe, which 
lead to be cyclic thermal stresses. These cyclic thermal stresses are caused by 
oscillations of fluid temperature, and the strain variations result in fatigue damage, 
cracking and crack growth. In particular, accurate representation of the load is a 
complex issue, and much effort continues to be devoted to experimental and 
analytical studies in this area. 

Transient temperature response inside of an infinite slab to a sinusoidal surface-
temperature input has been investigated by several researchers [2, 3, 4, 5]. For 
cylindrical geometry, it was used mainly isothermal internal boundary condition 
and with various types of thermal loading at the outer surface [1, 6, 7].  The 
determination of the influence of such a random process on subsurface 
temperatures is important in establishing the proper depth at which temperature 
sensitive becomes a concern.  Utilizing the method of random process theory, it is 
possible to determine statistical averages such as the mean and standard deviation 
of the response from the corresponding statistical description of the input process 
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provided that the governing differential equations are linear. If in addition, the 
applied random process is normally distributed the output process will also be 
normal. The effect of spatial incoherence in surface temperature fluctuation can be 
used to calculate the mean square stresses and the mean square equivalent strain 
range, that may be used as a measure of crack initiation likelihood [8]. Also, this 
type of incoherence has the effect of the stress intensity factor in thermal striping. 
By assuming a perfect spatially coherent, but a temporal incoherence it was 
developing a method of calculating the crack propagation using linear elastic 
fracture mechanics and stochastic properties of the temperature spectrum [6]. 

Thermal striping remains a timely subject in the structural integrity area, also 
for future fast spectrum reactors [9], mainly with the objective of establishing 
thermal striping limits or appropriate screening criteria. 

The present book proposes an analytical approach of stochastic modeling to 
assess thermal fatigue crack growth in mixing tees, based on the power spectral 
density (PSD) of temperature fluctuation at the inner pipe surface. Chapter 2 is 
devoted to the statistical nature of crack growth. In Chapter 3, a short review of 
the methods used to apply the stochastic methodology for fatigue crack growth in 
various applications is done, most of them based on the solving of Fokker-Plank 
stochastic equation with Markov modeling of processes. The basic mathematical 
tools used for stochastic fatigue analysis are presented, for easy handling of the 
stochastic particularities connected with structural assessment of fatigue crack 
growth under a thermal spectrum. The model of stochastic fatigue crack growth 
due to temperature fluctuation is developed in Chapter 4, assumed to be a 
normalized stationary Gaussian random process. Based on the analytical solution 
for temperature distribution through the wall thickness, obtained by means of the 
Hankel transform, a frequency, temperature response function is proposed, in the 
framework of single-input, single-output (SISO) methodology from random 
noise/signal theory under sinusoidal input. For elastic thermal stresses, developed 
in a previous work, the magnitude, frequency response function is first derived for 
hoop stress, and checked against prediction by FEA. The frequency response of 
the stress intensity factors (SIF), which is considered for a shallow long axial 
crack on the inner pipe surface, is obtained by the polynomial fitting procedure of 
stress profiles at various instants of time. The variability in load is given by the 
statistical properties of a thermal spectrum. The temperature spectrum is assumed 
to be given as a stationary Gaussian narrow-band stochastic process, with constant 
PSD for a defined range of frequencies. The connection between SIF- PSD and 
temperature-PSD are assured with SIF frequency response function modulus. The 
frequency of peaks of any magnitude for KI, which is supposed to be a stationary 
narrow-band Gaussian process, is characterized by Rayleigh's distribution, and, 
the expected value of crack growth rate in respect to cycles is obtained. To turn on 
to the crack growth rate in respect  to the time variable, it is necessary to introduce 
the peak crossing rate, that for a harmonic Gaussian process is similar to zero up-
crossing rate. The last one is inferred with the aid of the PSD of KI.  

The probabilities of failure are estimated by means of the Monte Carlo 
methods. Firstly, has defined a limit state function, based on the stochastic model 
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developed.  The Civaux case [10] has been chosen to apply the stochastic model 
from the book, in Chapter 5. The variability in statistical properties of material 
parameters is usually accounted by the statistical properties of Paris law 
parameters C and n. Also, the initial crack depth of flaws has a certain probability 
density function, which is more related to probability of detection based on 
experimental in-service inspection (ISI) results. A lognormal probability density 
function of C scaling parameter and an exponential one for initial crack depth are 
used to provide a probabilistic input for solving the integral giving the crack depth 
as a function of time.  

The results of the stochastic approach to modeling of thermal fatigue crack 
growth in mixing tee, completed with probabilistic input to account variability in 
material characteristics, are given as the probability of failure as a function of the 
time reference period. The Civaux 1 damage case is characterized by a short time 
for its development to a significant depth through the wall, which was only about 
≈1500 hours [10]. Metallurgical examinations revealed substantial cracks and also 
some networks of small thermal fatigue cracks close to the welds, but no 
fabrication defects. The probability of failure, obtained by analysis with the 
proposed stochastic model is around 80%, which is a very high value in 
connection with the nuclear safety management, and in agreement with value 
above mentioned. 

The present methodology based on the stochastic modeling of thermal fatigue 
crack growth can be used to analyze and improve the screening criteria proposed 
to avoid cracking issues in industrial piping, especially in tee connection where 
turbulent mixing of flows with different temperature can occur. 
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Chapter 2 

Background on Stochastic Models  
for Cumulative Damage Process 

Abstract. The chapter provides a short review of the stochastic models applied for 
cumulative fatigue damage in structural components. The empirical fatigue crack 
growth is given by Paris's law, and it relates the increment of fatigue crack 
advance, da/dN, per stress cycle to range of the stress intensity factor ΔK in the 
framework of linear elastic fracture mechanics (LEFM).  Investigation of the 
randomness of fatigue crack growth rate under service, loading conditions should 
consider the statistical characteristics of the crack growth law under constant 
amplitude loadings, and also the randomness of loadings that gives rise to fatigue 
under variable amplitude loads. Several probabilistic models for crack growth 
have suggested to “randomize” the deterministic crack propagation by a stochastic 
process. Few stochastic models of the cumulative fatigue damage process are 
nominated in this chapter. A method of calculating crack propagation by linear 
elastic fracture mechanics (LEFM) in the case of Gaussian temperature 
fluctuations has been proposed by Miller, and the principal steps are outlined. The 
main features of various structural assessment techniques for thermal striping and 
thermal fatigue crack growth but also some matters in respect of these methods are 
shortly reviewed. 

2.1   Statistical Nature of the Crack Growth Process 

The parameters that affect structural fatigue performance of metallic components 
may include the applied stress (or loading, in general), the component geometry 
and structural characteristics, the material properties and operating environment 
agents. The empirical fatigue crack growth is given by Paris's law in the following 
form 

( )nda
C K

dN
= ⋅ Δ .                                         (2.1) 

It relates the increment of fatigue crack advance, da/dN, per stress cycle to 
range of the stress intensity factor ΔK in the framework of linear elastic fracture 
mechanics (LEFM). Here ΔK  is resulted from far-field nominal stress range and 
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component geometry. The constant C and n are empirical, which depend on the 
material property and the environment; n is also called the fatigue exponent. The 
experimental data on fatigue crack growth are recorded as the crack size, a, versus 
the number of stress cycles, N. Subsequently, the fatigue experimental data are 
numerical processed as a crack growth rate da/dN versus stress intensity factor 
range. Due to various sources of uncertainty, the experimental data are usually 
dispersed is on the regression line. Actually, the regression line only describes the 
crack growth in the median sense. Investigation of the randomness of fatigue 
crack growth rate under service, loading conditions should consider the statistical 
characteristics of the crack growth law under constant amplitude loadings, and 
also the randomness of loadings that gives rise to fatigue under variable amplitude 
loads.  

Several probabilistic models for crack growth are reviewed in [1], most of them 
suggested to “randomize” the deterministic crack propagation by a stochastic 
process X(t): 

 ( ) ( ) ( )max, , , ,
da t

X t F a K K R S
dt

= Δ ,                      (2.2) 

Where: a is crack depth, ΔK is the stress intensity factor range, Kmax the 
maximum stress intensity factor, R, is the stress ratio, S, is the maximum stress 
level in the loading spectrum, and a (t) is the crack size at time t. The suggestion is 
frequently to model the process X(t) either by a lognormal stationary stochastic 
process with a median value equal to unity or by a random pulse train. The 
reference [2] distinguishes few stochastic models of the cumulative fatigue 
damage process which are nominated in the next. 

a) Random Variable model. This model regards parameters in the crack 
growth law simply as random variables [3, 4, 5, 6, 7, 8]. 

b) Markov Chain Model. Bogdanoff and Kozin first proposed this 
model [9] in which both state and time are handled discretely with a 
lot of practical applications.  

c) Stochastic Differential Equation Model. This is a such model as to 
treat the crack growth law as a stochastic differential equation by 
introducing temporal fluctuations into parameters in the law [10, 11, 
12, 13, 14, 15, 16]. 

d) Locally Averaged Model. The model is to discuss statistical 
properties of whole life by summing up locally averaged lives in 
order to realize the constraint condition of the constant correlation 
distance [17]. 

e) Renewal Process Model. With the application of the stochastic point 
process, this model represents the state transition in terms of non-
homogeneous Poisson processes [9]. 

All models involve a number of hypotheses (the distribution of time to failure, 
the nature of the correlation structure of noise, etc.), which limit their  
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applicability. Additionally, developments are required to enhance these 
probabilistic models and to make them more generally applicable for modeling 
structural fatigue stochastic. 2.3   Ther 

2.3   Thermal Fatigue Crack Growth Modeling 

2.2   Loading Uncertainty 

The knowledge of the stress's history, stress amplitude or stress range is required 
for fatigue analyses. In the first instance, the development of fatigue damage 
depends on the stress ranges. In many applications, the amplitude of stress range is 
usually not constant with respect to the time. Modeling the stress ranges for 
purposes of fatigue reliability analysis involves two parts: definition of cycles 
based on stress histories and identification of probabilistic characteristics of those 
cycles. 

In the case of a narrow-band process, the stress ranges history is easier to be 
identified with the individual stress cycles. This is more difficult to be done in the 
wide band stress process, mainly due to complexity of the frequency content of the 
whole process. Some approaches were carried out to surpass this difficulty, such 
as track filtering and rain-flow counting. In the first one, the stress process is 
transformed into the equivalent narrow band stress process – from the damage 
accumulation point of view. Therefore, the subsequent fatigue analysis can be 
conducted as a narrow-band stress fatigue problem. The rain-flow counting 
approach identifies the stress range from “closed stress-strain loops." This 
approach is widely used in cumulative fatigue damage based on the Palmgren -
Miner's rule (or similarly). It considers that the portion of fatigue damage in the 
total fatigue life contributed by a certain stress level is linearly proportional to the 
fraction of the number of cycles corresponding to that stress level. Sometimes the 
linearly proportionality is replaced with proportionality to the fraction at particular 
power. The stochastic rain-flow counting is successfully applied to accurate 
estimation of fatigue damage under broadband random loading [18,19] induced by 
bimodal processes [20]. The rain-flow counting algorithm is not straightforward to 
be applied in the original form to the crack growth analysis. An evaluation of the 
rain-flow cycle counting method for handling probabilistic characteristics of 
cycles identified should be conducted. Computationally efficient methods for 
treating stress in time or cycle domains require further investigations. 

2.3   Thermal Fatigue Crack Growth Modeling 

A method of calculating crack propagation by linear elastic fracture mechanics 
(LEFM) in the case of Gaussian temperature fluctuations has been, firstly, 
proposed by Miller [6]. The successive steps in the calculation are:  

- For a harmonic surface temperature variation of arbitrary frequency 
calculates the temperature variation at any depth using the heat 
conduction equation and the appropriate thermal boundary conditions; 
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- Calculate the thermal stress at any depth using the linear elastic plate 
theory and appropriate mechanical boundary conditions; 

- Calculate the stress intensity factor (SIF) using LEFM integral method; 
note that temperature, thermal stress and SIF vary harmonically at the 
input frequency; 

- From the surface, temperature power spectral density (PSD) and SIF 
response function, calculate the power spectral intensity factor; 

- Calculate the frequency distribution of SIF maxima; 
- Using a material crack propagation law, calculate the crack propagation 

rate; 
- Integrate the crack propagation rate equation to determine the crack 

length. 

Miller also notes in his approach some assumptions and limitations to be 
included: 

- No account has been taken of the degree of spatial coherence; 
- Large scale of plasticity has been ignored (the calculation is restricted to 

LEFM); 
- The statistics are assumed to be Gaussian; 
- Linear summation of damage is assumed; 
- Crack initiation is not considered. 

Clayton and Irvine, [21], described the main features of various structural 
assessment techniques for thermal striping, but also some matters in respect of 
these methods are outlined. As analysis methods, they shortly reviewed: method 
based on the inlet temperature difference, methods based on periodic temperature 
fluctuations (SIN-method), a method where the temperature spectra is available, 
the method using Gaussian statistics (Miller approach [6]), and method where a 
temperature-time traces is present. It is also noted that the thermal stripping 
produces surface temperature variations which a randomly occurring both in the 
temporal and spatial senses. Consequently, the size of eddies has a number of 
influences on the resulting damage. 

An approach similar Miller is used also in the paper [5] where the evaluation 
method for crack propagation due to thermal striping is extended to simulate 
multiple cracks. The work is supported by FE analysis and thermal fatigue tests. 

Thermal fatigue crack growth in a fast breeder reactor is investigated in 
reference [16]. This is theoretically performed with the aid of probabilistic fracture 
mechanics (PFM) under conditions:  

- The temperature variation is a narrow-band stationary process; 
- The crack grows owing only to the peak stress variation.  

First, a statistical property of residual life of the component with single crack is 
derived in an analytical form with the aid of an extended Markov approximation 
method, which is an efficient mathematical technique in PFM. Next, discussion is 
carried out on the generalization of the primitive model to the case with plural 
cracks, where a stress relaxation factor is introduced to express a stress intensity 
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factor of each crack. Finally, a sensitive analysis is performed with respect to 
some model parameters. 

A valuable work on the fatigue crack behavior under thermal stresses is those 
of Grűter and Huget [22] where is considered the envelopes of stress distribution 
across the wall. The frequencies of fluid streams are considered in the thermal 
stress derived for wall thickness in the conservative manner, but not in stochastic 
fashion. 
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Chapter 3  

Basic Mathematical Tools for Stochastic Fatigue 
Analysis 

Abstract. In the chapter is given a short description of basic mathematical tools 
from stochastic process theory, which will be used to develop the stochastic 
approach of thermal fatigue crack growth in the high cycle domain. Fatigue 
analysis is often performed in the time domain, in which all input loading and 
output stress or strain response are time-based signals. In some situations, 
however, the response stress and input loading are preferable expressed as 
frequency-based signals, usually in the form of a power spectral density (PSD) 
plot. In this case, a system function (or a characteristic of the structural system) is 
required to relate an input PSD of loading to the output PSD of response. The Fast 
Fourier Transform (FFT) of a time signal can be used to obtain the PSD of the 
loading, whereas the Inverse Fourier Transform (IFT) can be used to transform the 
frequency-based signal to the time-based loading. The transform of loading 
history between the time domain and frequency domain is subject to certain 
requirements, as per which the signal must be stationary, random, and Gaussian 
(normal). Thermal striping is a random phenomenon in a temporal sense. In order 
to have a better understanding of further developments in the present book, some 
knowledge of stochastic processes is required.  

3.1   Stochastic Processes-Ensembles of Time Series 

Any system or structural component produces a specific response under certain 
excitation. If the excitation or response, X (t), is not predictable, the system is in a 
random state because the value of X (t) cannot be exactly predicted a priority. It 
can be described only probabilistically.  

A stochastic process, let say X(t) is a time-dependent family of random 
variables whose possible values at any time are governed by probabilistic laws [1]. 
It becomes a random variable when index parameter, t, is fixed. The probability 
density function (PDF) of a time history X(t) can be obtained by calculating its 
statistical properties. With a given probability density function, fX(x),, some 
statistical properties of the random process X(t) can be obtained [2]. The mean, µX, 
and the variance, σ2

X, of the process can be calculated as 



12 3   Basic Mathematical Tools for Stochastic Fatigue Analysis 
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where T is the record length. When µX=0, then σX is the root mean square (RMS) 
of the random process X(t). The RMS is a measure of the amplitude of the process. 
The process X(t) is called Gaussian if its PDF fX(x) follows the bell-shape 
distribution, and PDF is given by 
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1 1
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σπσ

⎡ ⎤⎛ ⎞−
⎢ ⎥= − ⎜ ⎟
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,                                      (3.3) 

where µX and σX are the mean and standard deviation of the process, respectively. 
A random process (or sometime called the stochastic process) may be thought 

as a “sample” function of time such as X1(t) in Figure 3.1. [3] which may  
represent a fluctuation of thermal stresses in mixing tees. As it can be seen, the 
second component, X2(t), may undergo with similar, but not identical, stress 
history. Thus, a collection of an infinite number of sample time histories, such as 
X1(t), X2(t), X3(t), etc., (Figure 3.1), makes up the random process X(t). In 
engineering, the ensemble of a sufficiently large number of sample time histories 
approximates the unlimited collection representing a random process.  

Instead of being measured along a single sample, the ensemble statistical 
properties are determined across the ensemble as shown in Figure 3.1. In this case 
the amplitudes, Xi(t), of such sample functions are examined, all at the time, t1, 
and a density function, fX(t1)(X(t1)), may describe the statistics of the ensemble at t1. 
The mean, variance and other moments of X(t1) are then calculated. The density 
function may also be evaluated at t2 as can the moments of X(t2). The joint density 
of amplitudes at two-time values t1 and t2 separated by a time interval τ=t2-t1 is 
denoted as 

( )
1 2( ) ( ) 1 2( ), ( ) .X t X tf X t X t                                        (3.4) 

For a Gaussian process, the ensemble probability density at each time instant 
and at any two-time,  units must be Gaussian. If the expected value of the product 

1 2 1 1( ) ( ) ( ) ( )X t X t X t X t τ⋅ = ⋅ + ,                            (3.5) 

is a function of delay time τ and not of running time t as 

[ ]1 1( ) ( ) ( )E x t x t Rτ τ⋅ + = ,                                       (3.6) 

then the process is called weakly stationary [1, 2, 3]. For such a process, the first-
order density function fX(x) is independent of time and all- first-order ensemble  
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averages such as the mean and standard deviation, and root mean squares are time 
independent. The process is strongly stationary when higher-order moments are 
also independent of running time.    

 

 

Fig. 3.1 The collection of sample time histories from a random process 

Ensemble averaging is carried out across many series at times. This procedure 
has led to the definition of stationary. A time series can also be averaged along the 
time axis, resulting in temporal averages. The temporal mean is given by 

/2

/2

1
( ) lim ( ) ,

T

T
T

X t X t dt
T→∞

−

= ∫                                    (3.7) 

while the temporal mean square is written as 

/2
2 2

/2

1
( ) lim ( )

T

T
T

X t X t dt
T→∞

−

= ∫ .                                    (3.8) 

The temporal autocorrelation function is 

/2

/2

1
( ) lim ( ) ( ) ( ) ( )

T

T
T

X t X t dt X t X t
T

φ τ τ τ
→∞

−

= ⋅ + = ⋅ +∫ .         (3.9) 

If all temporal averages are equal to the ensemble averages, the process is 
called “ergotic." Alternatively, in other words, a stationary process is called 
ergotic if the statistical properties along any single sample are the same as the 
properties taken across the ensemble. This means that each sample is the same as 
the properties taken across the ensemble. If a random process is ergotic, it must be 
stationary; the converse is not true: a stationary process is not necessary ergotic.  
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3.1.1   The Autocorrelation Function RX(τ) 

The function RX(τ), from Equation 3.6, is the “autocorrelation function” of the 
random process X(t).  When τ=0 the autocorrelation function is 

2 2 2
1 2( 0) [ ( ) ( )]X X XR E X t X t E Xτ σ μ ⎡ ⎤= = ⋅ = + = ⎣ ⎦ ,        (3.10) 

and R(0) becomes the mean square value of the process when µX=0. Forτ→∞, R 
(∞)→μx

2 if R(τ) does not contain a periodic component. R (τ) is an even function of τ 
( ) ( )R Rτ τ= − .                                               (3.11) 

Furthermore, because X(t) is stationary, its mean and standard deviation are 
independent of t. Thus, 

[ ] [ ]1 2( ) ( ) XE X t E X t μ= = ,                                     (3.12) 

1 2( ) ( )X X Xt tσ σ σ= = .                                     (3.13) 

The correlation coefficient, ρ, for X(t1) and X(t2) is given by 
2

2

( )X X

X

R τ μρ
σ
−= .                                               (3.14) 

With ρ=+/- 1, there is a perfect correlation between X(t1) and X(t2), and for 
ρ=0, there is no correlation. Usually the values of ρ are between -1 and +1, the 
autocorrelation function is 

2 2 2 2( )X X X XRμ σ τ μ σ− ≤ ≤ + .                                   (3.15) 

Figure 3.2 shows the property of autocorrelation function R(τ) of a stationary 
process X(t). When the time interval (goes to infinity, the random variables at t1 
and t2 are not correlated.  

 

Fig. 3.2 Autocorrelation function of a stationary process 
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3.1.2   Fourier Analysis and Power Spectral Density SX(ω) 

Any periodic time history can be represented by summation of a series of 
sinusoidal waves of various amplitude, frequency, and phase. If X(t) is a periodic 
function of time with a time period T, X(t) can be expressed by an infinite 
trigonometric series of the following form: 

0
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2 2
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kt kt
X t A A B

T T

π π∞

=
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∑ ,                   (3.16) 
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π
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The Fourier series can be also expressed by using complex coefficients as 
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1

( )
i kt

T
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k

X t C e
π∞

=
=∑ ,  (3.20)

where the complex coefficients Ck is given by 
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T
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T

π−

−

= ∫ .  (3.21)

The Fourier transform can be considered as the limit of the Fourier series of 
X(t) as T approaches infinity.  

The Equation 3.20 is rewritten 

/2 2 2
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T i kt i kt
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X t X t e dt e
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The frequency of the kth harmonic, ω, in radians per second, is 

2
k

k

T

πω = ,                                              (3.23) 

and the spacing between two adjacent periodic functions, Δω, is 

2

T

πωΔ = .                                              (3.24) 

Using Equation 3.24 in 3.22 it becomes 
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If T approaches to infinity, the frequency spacing, Δω, becomes infinitesimally 

small, denoted by dω, and the sum becomes an integral. Thus, Equation 3.25 is 
expressed by the Fourier transform pair X(t) and X(ω): 

1
( ) ( )
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i tX X t e dtωω

π

∞
−

−∞

= ∫ ,                                 (3.26) 

( ) ( ) i tX t X e dωω ω
∞

−

−∞

= ∫ .                                           (3.27) 

The function X(ω) is the forward Fourier transform of X(t), and X(t) is the 
inverse Fourier transform of X(ω). The Fourier transforms exits if the following 
conditions are met: 

- The integral of absolute function exists, i.e.: 
-  

 ( )X t dt
∞

−∞

< ∞∫ .                                               (3.28) 

- Any discontinuities are finite. 

Usually the Fourier transform of a stationary random process X (t)  does not 
exist because the condition (3.28) is not met. However, the Fourier transform of 
the autocorrelation function RX(τ) always exists. If the stationary random process 
X(t) is adjusted (or normalized) to a zero-mean value, i.e., 

 
( ) 0XR τ → ∞ = ,                                             (3.29) 
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the condition 
 

( ) 0XR dtτ
∞

−∞

<∫                                            (3.30) 

 
is met. In this case, the pair Fourier transforms of RX(t) are given by 
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Here the SX(ω) is called the spectral density (or power spectral density, PSD) of 
the normalized stationary random process X(t). With τ=0 Equation (3.32) gives 
the variance in the form 

 

2 2(0) ( )X X XE X R S dω ω σ
∞

−∞

⎡ ⎤ = = =⎣ ⎦ ∫ .                      (3.33) 

 
The Equation 3.33 signifies that the square root of the area under a spectral 

density plot SX(ω) is the root mean square (RMS) of a normalized stationary 
random process. SX(ω) is also called mean square spectral density (Figure 3.3). 
The negative frequencies have no physical meaning. The most common practice is 
to consider the frequency from zero to infinity, and to have the frequency 
expressed in hertz (cycle/second) rather than radians/second. Therefore, the two-
sided spectral density, SX(ω), can be transformed into an equivalent one-sided 
spectral density, WX(f) as follows: 

 

2 2
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( )X XE X W f dfσ
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⎡ ⎤ = =⎣ ⎦ ∫ ,                             (3.34) 

 
where 
 

( ) 4 ( )X XW f Sπ ω=                                           (3.35) 

 
is the power spectral density (PSD), with f=ω/2π in hertz.  
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The following spectral density relationship exists for first and second 
derivatives of a stationary random process X (t): 

2( ) ( )XX
S Sω ω ω= ,                                        (3.36) 
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Fig. 3.3 Relationship between the spectral density and root mean square of a normalized 
stationary random process 

Usually, a stationary random process is called a narrow-band process if its PSD 
has relevant values into a limited frequency interval (narrow band of frequencies), 
Figure 3.4 (a). The sample realizations of such a process are constituted in practice 
by cycles of variable range symmetrically placed with respect to the mean, Figure 
3.4 (b). 
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Fig. 3.4 PSD and sample realization of a narrow-band process (a, b) and wide-band process 
(c, d)  

On the contrary, a stationary random process is called wideband, if its PSD has 
significant values into an interval of frequency (Figure 3.4 (c)). The sample 
realizations of such a process contain a large number of peaks between two 
successive mean level crossings (Figure 3.4 (d)). 

3.2   Few Special Stochastic Processes 

3.2.1   A Stationary Gaussian Process 

A stochastic process is called Gaussian if for any integer n and any subset t1, t2,…, 
tn of T the random variables X(t1), X(t2), …, X(tn) has a joint Gaussian distribution. 
The Gaussian process is completely determined by its mean and autocorrelation 
function, and all the linear transformation of X (t) is also Gaussian. Moreover, the 
derivative of a Gaussian process is still Gaussian. The original process and its first 
derivative are independent. The original process and its second derivative have a 
correlation coefficient equal to the spectral width parameterγ. If X(t) has mean 
zero, all moments can be expressed in terms of second order moments [4]: 
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The summation is over-all possible ways of combining pairs. 
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The peak distribution is given by [4]  
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    (3.44) 

When study involves time series, it is necessary to generate a Gaussian process, 
X(t), from a power spectral density. There are two widely used approaches, 
involving deterministic spectral amplitudes (DSA) and random spectral 
amplitudes (RSA).  Given a two-sided power spectral density S(ω) of a Gaussian 
process, X(t), a sample function of discrete sequence, X(ti), i=0,…, N-1, can  be 
obtained by a DSA method [4]
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Here ωu is the cutoff frequency, and φk  is uniform variations within U [0, 2]. 
A sample function of X(ti) can be also generated by RSA method [4], 
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with 

( )k k kA R S ω ω= Δ , (3.49) 
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Here ωu are the cut-off frequency; Rk is of Rayleigh's distribution, and φk  is 

uniform variations within U[0,2π]. Note that the DSA only consists of one random 
factor, the random phase, and the amplitudes of Ai deterministic. As a result, the 
realizations generated from DSA are artificially regular, and each realization has 
the same variance as the true process. This is not realistic for finite length 
realizations. Furthermore, x(ti) is bounded as long as the number of summation 
terms to generate the sample is limited. In other words, the DSA method may not 
be able to reproduce the extremes of the process unless the value of N is large 
enough. The RSA method consists of two random factors, the random phase and 
the random amplitude. A realization from RSA is more accurate reflection of the 
irregularity of real processes, especially when the mth power of amplitudes of a 
process is a major interest. Moreover, the process generated by RSA method is 
always Gaussian. 
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3.2.2   Wiener Process 

A Wiener process W(t) is defined as a process with independent and stationary 
Gaussian increments,  

( ) ( )W W t t W tΔ = + Δ − , (3.51)

with 

[ ] 0E WΔ = ,  (3.52) 

and 

( )2E W t⎡ ⎤Δ = Δ⎣ ⎦ . (3.53) 

W(t) is a Gaussian stochastic process with zero mean and autocorrelation 
function  

( ) ( )E W t W t t t+ Δ =⎡ ⎤⎣ ⎦ .  (3.54)

Almost all sample functions of W(t) are of unbounded variation in every finite 
interval. 

3.2.3   White Noise 

A white-noise process, ξ(t), is a stationary process with zero mean and 
autocorrelation function 2πS0δ(t), in which δ(x), is a Dirac delta function. Its (two 
sided) power spectral density is a constant, S0, over-all frequencies. 

3.2.4   Markov and Diffusion Process 

A Markov process X(t) is one in which, given all past and present states; the 
knowledge of future states is dependent only on the current state. The evolution of 
a Markov process is described by a transition probability density function, f(y,t| 
x,s), which represents the probability density of X(t)=y, given that X(s)=s, t>s. In 
other words; all probabilistic information of a Markov process can be determined 
from its transition probability density function and initial state. 

A special case of the Markov process is the diffusion process. A Markov 
process X(t) is called a diffusion process if, for any ε>0 [1] 

( )1
lim , , 0
t s

y x

f y t x s dy
t s ε

→
− >

=
− ∫ ,                              (3.55) 
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and there exist m(x,s) and σ(x,s), such that 

( ) ( )1
lim , , ( , )
t s

y x

y x f y t x s dy m x s
t s ε

→
− ≤

− =
− ∫ , (3.56)

( ) ( ) ( )2 21
lim , , ,
t s

y x

y x f y t x s dy x s
t s ε

σ
→

− ≤

− =
− ∫ . (3.57)

 
The condition (3.57) means that a large change in X(t) over a short period of 

time is impossible. The parameter m(x,s) is called the drift coefficient, and it 
describes the mean velocity of the increment X(t)-X(s) under the condition X(s)=x. 
The diffusion coefficient, σ2(x,s), gives the local magnitude of the fluctuation of 
X(t)-X(s) about the mean value. It can be shown that 

( )( ) ( )( )( ) ( ) ( ), ( ), ( ) ( )X t X s m X s s t s X s s W t W sσ− − + − ,  (3.58) 

where the increments of a Wiener process, W(t)-W(s), has the Gaussian 
distribution, N(0,(t-s)).  

A diffusion process can be written as the solution of the Ito stochastic 
differential equation, 

( ) ( )( ) , ) , ) ( )dX t m X t dt X t dW tσ= + .  (3.59)

Analogously, an n-dimensional vector Markov diffusion process X(t) may be 
generated from a vector Ito differential equation 

( ) ( ) ( )( )d t t dt t d t= + WΧ Μ Χ, Γ Χ, .  (3.60)

where M is an n-dimensional drift vector ΓΓT is a n×n diffusion matrix, and W is 
a vector of n independent Wiener processes. Note that it is not necessary that all 
components of the vector be Markovian for the vector to be Markovian.  

The transition probability density f(y,t| x,s), of a Markov diffusion process is 
uniquely determined by the drift vector and diffusion matrix. Assuming f is 

continuous with respect to s and the derivatives / if x∂ ∂  and 2 / i jf x x∂ ∂ ∂  exist 

and are continuous with respect to s, then f is a solution of the Kolmogorov 
backward equation is 

2

1 1 1

1
( , ) ( , ) 0

2

n n n

i ij
i i ji i j

f f f
m x s b x s

s x x x= = =

∂ ∂ ∂+ + =
∂ ∂ ∂ ∂∑ ∑∑ .  (3.61)

If X(t) is a homogeneous process, that is, the transition probability is dependent 
on τ=t-s, not s, then 
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2

1 1 1

1
0

2

n n n

i ij
i i ji i j

f f f
m b

x x xτ = = =

∂ ∂ ∂− + + =
∂ ∂ ∂ ∂∑ ∑∑ .  (3.62)

If f is continuous with respect to t and the derivatives, ( )( , ) /i im x t f x∂ ∂  and 

( )2 ( , ) /ij i jb x t f x x∂ ∂ ∂  exist and are continuous, then f is a solution of the 

Kolmogorov (or Fokker-Plank) equation 

( ) ( )( )2

1 1 1

,( , ) 1
0

2

n n n
iji

i i ji i j

b x t fm x t ff

t x x x= = =

∂∂∂ + − =
∂ ∂ ∂ ∂∑ ∑∑ . (3.63) 

3.3   Stationary Gaussian Narrow-Band Process 

The mean up-crossing rate and peak distribution are very useful descriptors for 
structural fatigue loading, and will be used in the stochastic modeling of thermal 
fatigue crack growth in the following chapter. 

The mean up crossing rate υ+(u,t) is the measure of the average frequency that 
a process crosses a certain level u with positive slope. In other words, it is the 

mean rate of occurrence of the event ( )( ) ( ) 0E X t u X t= = ∩ >  at time t. 

Assuming that the joint density function of X(t) and ( )X t  is ( , )
XX

f u v , the 

following expression is the level crossing rate of a stationary random process: 

0

( , )u XX
f u dυ υ υ υ

∞
+ = ∫ . (3.64) 

If X(t) is a Gaussian stationary random process, the expected up crossing rate of 
x=u is [4] 

2

2

1
exp

2 2
X

u
X

uσ
υ

π σ σ
+ ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
.  (3.65)

The expected rate of zero up-crossing ,0XN is found by considering u=0 in 

Equation 3.65: 

,0 0

1
[ ]

2
X

X
X

N E
σ

υ
π σ

+= = . (3.66) 

By using Equations 3.34 and 3.38, based on one-side PSD into Equation 3.66, 
the expected rate of zero is 
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2

0
,0 0

0

( )

[ ]

( )

X

X

X

f W f df

N E

W f df

υ

∞

+

∞
= =

∫

∫

.  (3.67) 

The expected rate of peak crossing, ,X pN  is found from a similar analysis of 

the velocity process ( )X t . The rate of zero down crossing of the velocity process 

corresponds to the occurrence of a peak in ( )X t , which means the occurrence of 

the event ( )( ) 0 ( ) 0E X t X t= = ∩ < . The result of a Gaussian random 

stationary process is 

,

1
[ ]

2
X

X p p

X

N E
σ

υ
π σ

= = .  (3.68) 

By using Equations 3.38 and 3.41 the expected rate of peak crossing becomes 

4

0
,

2

0

( )

[ ]

( )

X

X p p

X

f W f df

N E

f W f df

υ

∞

∞
= =

∫

∫

.  (3.69) 

A Gaussian stationary narrow-band process is smooth and harmonic. For every 
peak, there is a corresponding zero up-crossing, which means  

0[ ] [ ]pE Eυ υ+ = ,  (3.70)

or  

,0 ,X X pN N= .  (3.71) 

A wide band process is more irregular, and a measure of this irregularity is the 
ratio of the zero up-crossing rates to the peak crossing rate. This ratio is called the 
irregularity factor, γ, in the form 

0[ ]

[ ]p

E

E

υγ
υ

+

= .  (3.72) 
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When γ→∞ there is an infinite number of peaks for every zero up-crossing and 
this is considered a wide band random process. The value of γ=1 corresponds to 
one peak per one zero up-crossing, and it represents a narrow-band stationary 
random process. Alternatively, a narrow- or wide band process can be assessed by 
the width of its spectrum, which is characterized with the spectral width 
parameter, λ, defined as 

21λ γ= −    (3.73) 

Note that λ→0 represents a narrow-band stationary random process. 
The same descriptors for structural fatigue loading can be defined by using the 

so-called spectral moments Mj of the PSD of a stationary random process (Figure 
3.1), which is defined as 

0

( )
a

j
j SM f W f df

∞

= ∫ .  (3.74) 

In particular, the zero-order  moment M0 provides an area of the PSD that 

coincides with the variance 2
Xσ of the normalized stationary random process. A 

family of bandwidth parameters, measures of bandwidth, is described as 

0 2

m
m

m

M

M M
α = ,  (3.75)

which has their values between [0,1]. The one that is most widely used in practice 
is α2. 

The zero up-crossing rates and the peak crossing rate are given by 

2
0

0

[ ]
M

E
M

υ+ = ,  (3.76) 

and 

4

2

[ ]p

M
E

M
υ = .  (3.77)

Furthermore, the irregularity factor,  γ, and the spectral width parameter, λ 
become 

2
2

2
0 4

M

M M
γ α= = ,  (3.78)
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and 

2
2

0 4

1
M

M M
λ = − ,  (3.79)

respectively. 

 

 

Fig. 3 5 Moments of one-side PSD 

The distribution of amplitudes, A, for a stationary narrow-band process 
Gaussian process, is characterized by the Rayleigh distribution. The probability 
density function for amplitudes follows a Rayleigh distribution [5] of the form 

2 2

1
( ) exp

2A
x x

a a
f a

σ σ
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (3.80) 

where a is the random amplitude of the process and σx is the mode of Rayleigh's 
distribution, but also equal to the standard deviation of the underlying Gaussian 
process. The probability of encountering amplitude greater than a given value a, is 
the integral of Equation 3.80, 

[ ]
2 2

2

1 1
exp exp

2 2x x xa

a a a
P A a da

σ σ σ

∞ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥> = − = −⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∫ .  (3.81) 
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The mth moments of Rayleigh are given by 

2
1

2 1
m

m
m m
μ σ ⎛ ⎞= Γ +⎜ ⎟

⎝ ⎠
,  (3.82)

where Γ is the Gamma function. The mean and variance of Rayleigh's distribution 
are 

[ ] 1.253
2x xE a
πσ σ= ≈ ,  (3.83)

and 

2 2 24
0.429

2 x x

πσ σ σ−= ≈ .  (3.84)

 
The features of Rayleigh's distribution will be used for SIF statistical 

properties. 

3.4   Frequency Response Functions 

3.4.1   The General Methodology 

Let be L[Y(t)] a linear differential equation as 

0

kn

k k
k

d
L a

dt=

=∑ ,  (3.85)

with deterministic coefficients, ak. When the input-output relation is governed by a 
linear differential equation of form [7] 

[ ( )] ( )L Y t X t= ,  (3.86)

with X(t) and Y(t) the input and output respectively, the two functions, the 

frequency may be defined. Letting ( ) i tH e ωω ⋅ be the steady-state response of the 

system to a unit-amplitude sinusoidal excitation of form 

( ) i tX t e ω= ,  (3.87) 

then H(ω) is called the frequency response function, and the output becomes 

( ) ( ) i tY H e ωω ω= .  (3.88) 
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By substituting Equation 3.88 into Equation 3.85, the results are 

0

( ) ( )
n

k i t i t
k

k

a i H e eω ωω ω
=

=∑ ,  (3.89)

from which 

0

1
( )

( )
n

k
k

k

H
a i

ω
ω

=

=
∑

.  
(3.90) 

Here H(ω) is a complex function of frequency ω. If X(t) is the real part of the 
excitation 

( ) Re[ ] cosi tX t e tω ω= = ,  (3.91)

then 

( ) Re[ ( ) ] ( ) cos( )i tY t H e H tωω ω ω φ= = + ,  (3.92)

where 

[ ]
[ ]

1 Im ( )
tan

Re ( )

H

H

ω
φ

ω
−= .  (3.93) 

X(ω) and Y(ω) are the Fourier transform of X(t) and Y(t): 

( ) ( ) i tX X t e dtωω
∞

−

−∞

= ∫ ,  (3.94) 

( ) ( ) i tY Y t e dtωω
∞

−

−∞

= ∫ .  (3.95) 

If we apply the Fourier transform  

[ ]
0

( ) ( )
kn

k k
k

d
a Y t X t

dt=

=∑ ,  (3.96)

the result is 

0

( )( ) ( )
n

k
k

k

a Y i Xω ω ω
=

=∑ .  (3.97)
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Therefore 

0

( )
( )

( )
n

k
k

k

X
Y

a i

ωω
ω

=

=
∑

.  
(3.98) 

By using Equation 3.90 into 3.98 the result is 

( ) ( ) ( )Y H Xω ω ω= .  (3.99) 

which will be used in next to relate  specific input-output for fatigue crack growth 
under the thermal spectrum. 

The frequency response function H(ω) is useful in relating input and output 
power spectral densities, respectively SX(ω) with SY(ω) 

2*( ) ( ) ( ) ( ) ( ) ( )Y X XS H H S H Sω ω ω ω ω ω= ⋅ = ,  (3.100)

where H*(ω) is the complex conjugate of H(ω), and SX(ω) and SY(ω) are the 
respective power spectra. Based on the Equation 3.33 the variance of output σy

2 
may then be expressed as 

22 ( ) ( ) ( )Y Y XS d H S dσ ω ω ω ω ω
∞ ∞

−∞ −∞

= =∫ ∫ .  (3.101)

The relation between input and output means may be given in terms of the 
frequency response function for zero frequencies. 

3.4.2   The Sinusoidal Frequency Response 

The frequency response H(ω), which is a complex function, may be expressed 
also in the polar form as 

( )( ) ( ) iH H eφ ωω ω= ,  (3.102)

with its complex conjugate 

* ( )( ) ( ) iH H e φ ωω ω −= .  (3.103)

Let consider the steady-state response of a linear single-input, single-output 
system (SISO) [6] to a sinusoidal input of the form  

( ) sin( )u t A tω ψ= + ,  (3.104)

where A is the amplitude of the input and ψ is an arbitrary phase angle. With 
Euler's formulas which relate complex exponential to sinusoidal and cosinusoidal 
waveforms as 
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( )1
sin( )

2
i t i tt e e

i
ω ωω −= − , (3.105) 

( )1
cos( )

2
i t i tt e e

i
ω ωω −= + ,  (3.106) 

the input may be written as 

( )( ) ( )( ) sin( )
2

i t i tA
u t A t e e

i
ω ψ ω ψω ψ + − += + = − .  (3.107)

Equation (3.107) shows that the real input u(t) can be expressed as the sum of 
two complex exponential components 

( )
1( )

2
i tA

u t e
i

ω ψ+= , (3.108)

and 

( )
2 ( )

2
i tA

u t e
i

ω ψ− += − .  (3.109)

The principle of superposition allows the sinusoidal response to be written as 
the sum of the responses to the two complex exponential components: 

( ) ( )
1 2( ) ( ) ( ) ( ) ( )

2 2
i t i t

s s s

A A
y t y t y t H i e H i e

i i
ω ψ ω ψω ω+ − += + = − − .  (3.110) 

If H(iω) is written in its polar form, and H(-iω) is described by Equation  

( )( ) ( ) iH i H i e φ ωω ω −− = ,  (3.111) 

then ys(t) becomes 

( )

( )
( )

( ) ( ) ( ( ) )

( ( )) ( ( ))

( ) ( )
2

1
( )

2
( ) sin ( )

i t i i i t i i
s

i t i i t i

A
y t H e e e e

i

A H e e
i

A H t i

ω ψ φ ω ω φ ω ψ

ω ψ φ ω ω ψ φ ω

ω

ω

ω ω ψ φ ω

+ − − +

+ + − + +

= − =

= − =

= + + .

 
(3.112)

The steady-state sinusoidal response is a sinusoidal function of the same 
angular frequency ω as the input, but modified in its amplitude by the factor

( )H ω , and shifted in phase by the quantity φ(iω). Thus, in general, the steady-

state response of a linear single-input, single-output system to a sinusoidal input 
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u(t)=A sinωt can be characterized in terms of the magnitude of the frequency 

response function  ( )H ω , and the phase shift φ(iω)=∠H(ω).  

The magnitude of the frequency response represents the ratio of the output 
amplitude to the input amplitude as a function of frequency. 
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Chapter 4  

Stochastic Model for Thermal Fatigue Crack 
Growth 

Abstract. In this chapter, the stochastic mathematical model is developed for the 
thermal fatigue crack growth phenomenon in the metallic pipe of a structural 
component. Any stochastic fatigue crack growth model used in time-reliability 
analysis must include a part means for incorporating randomness in service loads, 
and also another one, which should include a description of statistical 
characteristics of crack growth under constant amplitude loadings. Time–
dependent fluctuation of temperature should be correlated with time dependent 
fluctuation of crack growth from the deterministic crack growth law. The number 
of loading cycles is a discrete variable with respect to time. When time-dependent 
stochastic analysis is conducted, the number of loading cycles is modified into a 
continuous variable by introducing an average cyclic rate. By stochastic analysis 
of a stationary Gaussian narrow-band process, we deal with the expected value of 
crack growth rate and expected rate of peak crossing (or mean rate of maxima) as 
well, in order to assess the thermal fatigue crack growth. The uncertainties in 
initial crack depth and Paris's law constants will be accounted by Monte Carlo 
simulation based on a properly limit state function (damage criterion). A method 
of crack growth assessment of linear elastic fracture mechanics (LEFM) for a 
stationary Gaussian narrow-band temperature fluctuation is given in this  
book. The model of stochastic fatigue crack growth is developed for cylindrical 
geometry, for which analytical solutions for temperature and associated  
elastic stresses were obtained in previous work. For the stochastic approach of 
crack growth due to random thermal fluctuations, only temporal incoherence  
is accounted and not any degree of spatial coherence has been taken into  
account. 

4.1   The Main Steps of the Modeling  

The parameters that affect structural fatigue performance include applied stress, 
geometry of structural details, properties of the material, and operating 
environment. A widely accepted empirical crack growth law originally was 
suggested by Paris, Gomez and Abderson (1961) [1] 



34 4   Stochastic Model for Thermal Fatigue Crack Growth 

( )nda
C K

dN
= Δ

 
(4.1)

where da/dN is the increment of fatigue crack advance per cycle, and ΔK is the 
range of the stress intensity factor, which is related in linear elastic fracture 
mechanics to far-field nominal stress range, and component geometry factor. C 
and n are empirical constants dependent on material property and the environment. 
The regression analysis leading to Equation (4.1) only describes the crack growth 
rate in the median sense. Investigation of the randomness of fatigue crack growth 
rate under service load conditions must consider the statistical characteristics of 
crack growth law under constant amplitude loadings and the randomness of 
loadings that gives rise to fatigue under variable amplitude loads. 

Any stochastic fatigue crack growth model used in time-reliability analysis 
must include a part means for incorporating randomness in service loads, and also 
another one, which should include a description of statistical characteristics of 
crack growth under constant amplitude loadings.  

The selection of an appropriate stochastic model for fatigue crack growth 
depends on the nature of uncertainty to be interpreted. The application of 
stochastic fatigue analysis in this study is focused on the thermal fatigue damaging 
phenomenon in mixing tees of nuclear components. Time–dependent fluctuation 
of temperature should be correlated with time dependent fluctuation of crack 
growth from the deterministic crack growth law. The number of loading cycles is 
a discrete variable with respect to time. When time-dependent stochastic analysis 
is conducted, the number of loading cycles is modified into a continuous variable 
by introducing an average cyclic rate. In this case, we have [2]  

p

dA dA dN dA

dt dN dt dN
ν= = ,  (4.2) 

in which A is the random flaw size (uppercase case denote random variables or 
processes) and νp is the mean rate of maxima, that is constant for a stationary 
random  process.  

By means of stochastic analysis of a stationary Gaussian narrow-band process, 
we deal with the expected value of crack growth rate and expected rate of peak 
crossing (or mean rate of maxima) as well, in order to apply Equation (4.2) for 
thermal fatigue crack growth. The uncertainties in initial crack depth and Paris law 
constants will be accounted by Monte Carlo simulation based on a properly limit 
state function (damage criterion).  

A method of crack growth assessment of linear elastic fracture mechanics 
(LEFM) for a stationary Gaussian narrow-band temperature fluctuation is given in 
this book. The model of stochastic fatigue crack growth is developed for 
cylindrical geometry, for which analytical solutions for temperature and associated 
elastic stresses have been obtained in previous works [7, 8, 9, 10, 11]. For the 
stochastic approach of crack growth due to random thermal fluctuations, only 
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temporal incoherence is accounted and not any degree of spatial coherence has 
been taken into account [3], [4], [5], [6]. 

The main steps of the procedure are given below: 

a) The sinusoidal thermal loading is applied on the inner pipe surface and the 
external one is adiabatic; the solution of temperature distribution through 
thickness for an arbitrary frequency is obtained; 

b) Approximation of frequency, temperature response function is made based 
on the general frequency output in case of sinusoidal input, and also by keeping an 
appropriate conservatism its magnitude is established; 

c) By using the linear elasticity theory for hollow cylinder, the analytical 
solutions for thermal stress components are derived (i.e. radial, hoop and axial) for 
various boundary conditions; 

d) The magnitude of the frequency response function for thermal stresses is 
obtained, by using the corresponding frequency response for temperature; 

e) Calculating the stress intensity factor (SIF) frequency response is based on 
the polynomial fitting of stress response profile through thickness, which is 
usually used in the case of a very high-stress  gradient in the pipe wall; 

f) The power spectral density of SIF is inferred from the power spectral density 
of the thermal spectrum applied on the inner pipe surface, by considering the 
stationary Gaussian narrow-band temperature spectrum; 

g) The main moments of PSD for SIF are calculated (mean up crossing rate and 
amplitude distribution); 

h) The crack propagation rate is converted from respect to cycles into time 
variable respect, and the expected value of crack growth rate is obtained by 
assuming linear summation of damage and ignore the effect of positive maxima in 
the crack propagation law;  

i) A probabilistic input for Paris's law integration is used to account the 
variability in initial crack depth of flaws and also in C scaling parameter; 

j) The lifetime for crack growth due to thermal fluctuations is given in the form 
of probability of failure (or index reliability), and its assessment is based on the 
limit state function with Monte Carlo simulation. 

Note that the calculations are limited to LEFM, and any plasticity or retardation 
effects are ignored. The crack initiation is a separately subject, and it is no longer 
accounted here; in this respect the crack propagation, that follows after the 
initiation period is described only by probabilistic distribution function of initial 
crack depth of flaws. The stress-free temperature that influences the SIF 
magnitude during its fluctuations is not considered as well.  

4.2   Statistical Properties of the Thermal Spectrum 

The main assumption is that the temperature spectrum at the inner pipe surface 
can be modeled as a stationary Gaussian narrow-band process, and its power 
spectral density is known. Firstly, an analytical solution for temperature 
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distribution in the wall-thickness of the pipe is derived under sinusoidal thermal 
loading at the inner surface. In the next step, the frequency response function is 
proposed.  

4.2.1   Analytical Solution of Temperature Distribution under  
  Sinusoidal Thermal Loading 

The analytical solution for time dependent temperature profile for an infinite 
hollow cylinder has been developed in [7]. A short overview will be given in the 
follow. 

Assuming an infinite hollow cylinder made of a homogeneous isotropic 
material, with inner and outer radii ri=a and ro=b, the 1D heat diffusion equation 
has the form 

2

2

1 1

r r r k t

∂ Θ ∂Θ ∂Θ+ =
∂ ∂ ∂

, (a ≤ r ≤ b, t ≥ 0),  (4.3)

where 

0( , ) ( , )r t T r t TΘ = − ,  (4.4)

is the temperature change from the reference temperature at any radial position r 
and at time t. 

The reference temperature T0 is the body temperature in the unstrained state or 
the ambient temperature before changing of temperature. The thermal diffusivity 
is defined as 

k
c

λ
ρ

= ,  (4.5)

with λ is the thermal conductivity, ρ is the mass density and c is the specific heat 
conduction. The solution Θ(r, t) must satisfy the boundary conditions 

( , ) ( ),a t q tΘ = (t≥0),  (4.6) 

( , ) 0,b tΘ = (t≥0),  (4.7) 

and the initial condition 

( ,0) 0,rΘ = (a≤r≤b).  (4.8) 

The function q(t) is a known function of time representing the thermal 
boundary condition applied at the inner surface of the cylinder. By using the finite 
Hankel transform, in the way presented in Appendix A; we are able to obtain the 
analytical solution for arbitrary boundary condition, q(t). The differential Equation 
(4.3) contains a linear operator L , applied to a function Θ(r,t) in general form of 
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Equation (A-9)  from Appendix A, with υ=0. Following Equation (A-14) is 

introduced the transform ( , )ns tΘ as follows 

[ ]( , ) ( , );n ns t r t sΘ = Η Θ ,  (4.9)

and make use the result Equation (A-17) to show that 

( )
( ) ( ) ( ) ( )

2
0 2

2
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21 2
; , , ,n

n n n
n

J s a
s b t a t s s t

r r r J s aπ π
⎡ ⎤∂ Θ ∂ΘΗ + = Θ − Θ − Θ⎢ ⎥∂ ∂⎣ ⎦

. 

(4.10) 

With boundary conditions from Equations (4.6) and (4.7), ( , )ns tΘ satisfies the 

differential equation 

( )2 2
, ( )n nks s t q t

t π
∂⎛ ⎞+ Θ = −⎜ ⎟∂⎝ ⎠

,  (4.11) 

and the initial condition 

( ), 0 0nsΘ = .  (4.12)

Thus, the following solution for ( , )ns tΘ  is obtained 

( ) 2

0

2
, ( )n

t
ks t

n

k
s t e q dτ τ

π
−Θ = − ∫ .  (4.13) 

The solution Θ(r,t) may be obtained by the inversion theorem for operator H as 
in Equation (A-16) 
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⎡ ⎤Θ ≡ Η Θ = −⎡ ⎤⎣ ⎦⎣ ⎦ −∑ .  (4.14) 

 
Here J0 (z), Y0 (z) are Bessel's functions of first and second kind of order 0. 

Finally, the temperature distribution in the thickness is given by analytical 
solution: 
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,(4.15) 

where sn are the positive roots of the transcendental equation 

( ) ( ) ( ) ( )0 0 0 0 0n n n nY s a J s b J s a Y s b− = .  (4.16)
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The analytical solution for temperature distribution from Equation (4.15): may 
be written as follows: 

( ) ( ) ( ) ( )1 2 3
1

, , , , , ,n n n
n

r t k a b s a r s t sπ
∞

=
Θ = Θ ⋅Θ ⋅Θ∑ ,  (4.17)

where 
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J s b J s a
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−
,  (4.18)

( ) ( ) ( ) ( ) ( )2 0 0 0 0, , n n n n na r s Y s a J s r J s a Y s rΘ = − ,  (4.19)

( ) 2 2
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0

, ( )n n

t
ks t ks

nt s e e q dτ τ τ−Θ = ∫ .  (4.20)

To evaluate the time-dependent term Θ3(t, sn), it is assumed the sinusoidal 
thermal loading 

( ) ( )0 0( ) sin sin 2q t t ftω π= Θ ⋅ = Θ ⋅ ,  (4.21)

where Θ0 is the amplitude of temperature wave, ω and f corresponds to angular 
frequency in radians/second and cycles/second (Hz), respectively, and t is time. 
By substituting the Equation  

(4.21) and performing the integral, the result is 
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By inserting the Equations (4.18), (4.19) and (4.20) into Equation (4.17), the 
final form of analytical solution for temperature distribution through wall-
thickness of the pipe is 
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(4.23) 

In the paper [7] the predictions of the analytical solution, given by Equation 
(4.23), have been checked by finite-element  analyses performed with ABAQUS 
computer code (Figure 4.1), with good agreement [7,8]. 
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Fig. 4.1 Comparison between analytical prediction for temperature and FEA for a pipe 
striped at the inner surface with sinusoidal thermal loading at frequency f=0. 5Hz [7] 

4.2.2   Approximation of the Temperature Frequency Response  
  Function for Hollow Cylinder 

From practical point of view it is necessary to obtain the magnitude of frequency 
response function for temperature and associated thermal stresses by considering a 
certain geometry, spectrum loading and material properties. This way will give us the 
flexibility to manipulate the analytical expressions from the general form to specific 
form, most suitable for application itself. Therefore, in this book, we have chosen a 
well-known damaging case study for application of stochastic methodology, namely 
Civaux case study [9, 10,11]. In the appendix, B is given a short description provided 
by reference [12]. The use of the analytical solution from Equation (4.23) needs the 
positive roots sn of transcendental Equation (4.16). Previous work [8] showed that by 
using first one hundred positive roots provides a stable and optimized analytical 
response for temperature. For Civaux case, where the geometry of the pipe consists in 
inner and outer radii by ri=a=0.120m and ro=b=0.129 m, the first 100 roots of 
transcendental Equation (4.16) are given in Appendix C. 

The analytical solution for temperature variation through wall-thickness from 
Equation 4.23, due to sinusoidal loading at the inner pipe surface (Equation 4.21), 
must be adapted to a suitable form that allows the extraction of temperature 
frequency response magnitude. In the next, we work on the Equation 4.22, which 
contains the variable frequency, ω. A first attempt is to neglect the exponential 
term from Equation (4.22) 
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When we perform this operation, we have to check its availability to predict the 
temperature fluctuations inside of the pipe-wall. By inserting Equation 4.24 into 
Equation 4.23, the first approximation o temperature response is 
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.     (4.25) 

For the Civaux case, we consider [10, 11] the input signal (sinusoidal thermal 
loading) at the inner surface as 

( ) ( )0 0( ) sin sin 2q t t ftω π= Θ ⋅ = Θ ⋅ ,  (4.26)

with the amplitude of 0Θ =60°C. The frequencies of loading will be in range of 

0.1 to 1.0 Hz, where the critical frequencies for crack growth are placed [11].  
The results given by Equations 4.23 and 4.25 are compared in Figure 4.2.  
 

 

Fig. 4.2 First approximate of analytical predictions for temperature compared with 
complete analytical solution through wall-thickness of a pipe striped at inner surface with 
sinusoidal thermal loading at frequency f=0.5Hz 
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As it can be seen, the both predictions have, practically, the same temperature 
profiles through thickness, in the case of Civaux geometry, which means that the 
influence of the exponential term can be neglected.  

In a second step, it is important to manipulate the last term of Equation (4.25) 
to obtain the general form of response frequency response similar to Equation 
3.112.  Thus 
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then Equation (4.27) becomes 
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With 4.29, Equation 4.25 gives the first approximation in the following form 
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Each term of sum from Equation (4.30) may be expressed as 
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(4.31)

which is in the form of Equation (3.112). 
Because we interested only in the magnitude of frequency temperature 

response, the Equation (4.31) may be written in the general form as 

( ) ( ) ( )2
0 ,, , , , , sin ,n n T n n nT r t s H r s t sω ω ω ϕ ω⎡ ⎤Θ × −⎣ ⎦ ,   (4.32) 
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with 
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At this point, to force the temperature response from Equation 4.25 to follow a 
typical frequency response similar to (4.32) we shall consider Equation (4.32), in a 

second approximation, with phase ( ), nsϕ ω  being constant. The result is then 

( ) ( ) [ ]0 ,
1

, , , , sinT n n
n

r t H r s tω ω ω ϕ
∞

=

⎡ ⎤Θ Θ × −⎢ ⎥
⎣ ⎦
∑ .        (4.34) 

Finally, we designate the magnitude of temperature frequency response as 
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(4.35)

and temperature fluctuation in the pipe-wall is given by 

( ) ( ) [ ]0, , , sinTr t H r tω ω ω ϕΘ Θ × − .  (4.36)

In a conservative way, if the lag phase is approximate as ϕ≈0, a comparison 
between temperature profiles through thickness predicted by Equation (4.23) - or 
(4.25) - and Equation (4.36) with (4.35) is displayed in Figure 4.3. 

 

Fig. 4.3 Comparison between predictions of temperature profile from complete analytical 
solution and those obtained by means of analytical temperature frequency response function 
in the pipe wall 
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With the same temperature range at the inner pipe surface and with a slightly 
deeper penetration, the prediction of temperature response with assumed 
magnitude of frequency temperature response given by Equation 4.36 may be 
reasonable accounted. Figure 4.4 shows the influence of loading frequency, in 
case of sinusoidal input, on the temperature frequency response magnitude, given 
by Equation 4.35, for several points inside of the wall. 

 
 

 

Fig. 4.4 Dependence of temperature frequency response magnitude on loading frequency 
for various depths through thickness (l is wall-thickness and x originates at the inner pipe 
surface) 

The highest value of response is obtained at x/l=4/9=0.44, in the Civaux case 
geometry, and for deeper points located inside of the pipe-wall values go down for 
the whole range of frequencies.  

4.3   Modeling of the Stress Response to Random Thermal Input 

To obtain the stress frequency response function a similar approach as in the 
previous chapter is used. The general solution of elastic thermal stress components 
(hoop, radial and axial) due to a sinusoidal loading at the inner surface is, firstly, 
derived. Subsequently, the stress frequency response is obtained by means of 
temperature frequency response function, which will be used in the corresponding 
analytical solution. A comparison with FEA prediction is made and a sensitivity 
analysis versus frequency range as well. 
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4.3.1   Analytical Solutions for Elastic Thermal Stress due to  
  Sinusoidal Thermal Input 

For thermal stress evaluation, we assumed that the thermo-mechanical properties 
are not changing during the thermal transient analyses. 

The one-dimensional equilibrium equation in the radial direction for a hollow 
cylinder is [7, 8,13]: 

0rrd

dr r
θσ σσ −+ = ,  (4.37) 

where σr and σθ are the radial and hoop stresses respectively. In the axis 
symmetric problem with small strains, the strain-displacement relations are: 

r

du

dr
ε = ,  (4.38) 

u

rθε = ,  (4.39) 

0rθε = .  (4.40) 

where u is the radial displacement. 
The displacement technique has been used to solve the axis symmetric 

problems of the hollow cylinder. The components of stress in cylindrical 
coordinates can be expressed as 
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⎡ ⎤= ⋅ + − + ⋅ ⋅Θ + + ⋅⎢ ⎥− ⎣ ⎦
,  (4.42)

0rθσ = .  (4.43) 

In the case of plane strain and plane stress, the meanings of the constants from 
Equations (4.41) to (4.43) are: 
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E
E

E
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⎧
⎪= −⎨
⎪⎩

  E–Young modulus,  (4.44) 

 



4.3   Modeling of the Stress Response to Random Thermal Input 45 

' 1

ν
ν ν

ν

⎧
⎪= −⎨
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 ν Poisson’s ratio,                                         (4.45) 

(1 )
'

ν α
α

α
+⎧

= ⎨
⎩

  α -coefficient of the linear thermal expansion,       (4.46) 

0'
0

c
νε⎧

= ⎨
⎩

  ε0 - constant axial strain for plane strain state.           (4.47) 

The substitution of Equations (4.41) and (4.42) in Equation (4.37) yields 
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d d r u d r t

dr r dr dr
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The general solution of Equation (4.48) is 
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The integration constants C1 and C2 may be determined from the boundary 
conditions. The radial stress component is negligible for thin-walled cylinder 
compared to the hoop and axial stress components. The hoop and axial stress 
components are given in the following relationships in the case of plane strain 
[13]: 
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The mathematical relationships for I1(r,ω,t) and I2(ω,t) are given in [7, 8]. 
Because we need to work on the temperature part, here are the complete 
expressions for the case of sinusoidal thermal loading at the inner surface:  
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where sn  are the positive roots of the transcendental Equation (4.16), and J0 (z), Y0 
(z), J1 (z), Y2 (z)  are Bessel's functions of first and second kind of order 0 and 
order 1, respectively. 

The complete form of Equations (4.50 to 4.52) for thermal stress components 
are given in Appendix D. 

4.3.2   The Stress Frequency Response Function 

In the next, we only work for hoop stress component, σθ, to find its frequency 
response function, but with a similar approach one can get the frequency response 
forms for radial (σr ) and axial (σz ) stress components.  

The general approach is to substitute the temperature frequency response 
function in the solution of thermal stress components to make possible obtaining 
the stress frequency response function [14]. Here we start with processing the 
relationships for integrals I1(r,ω,t) and I2(ω,t) given by Equation (4.53) and (4.54) 
respectively. Substituting Equation (4.29) into integrals I1(r,ω,t) and I2(ω,t) this 
yields to approximate forms 
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Obviously, both integrals may be written in the form similar to Equation (4.34), 
such as 

( ) ( ) ( )
11 0 ,

1

, , , , sinI n n
n

I r t H r s tω ω ω ϕ
∞

=

⎡ ⎤Θ ⋅ ⋅ −⎢ ⎥
⎣ ⎦
∑ ,     (4.57) 

( ) ( ) ( )
22 0 ,

1

, , sinI n n
n

I t H s tω ω ω ϕ
∞

=

⎡ ⎤Θ ⋅ ⋅ −⎢ ⎥⎣ ⎦
∑ .      (4.58) 

With the temperature response from Equation (4.36) and integrals, I1(r,ω,t) and 
I2(ω,t) from Equations (4.57) and (4.58), the hoop stress from Equation (4.50) 
becomes 

( ) ( ) ( )0, , , sinr t H r t
θθ σσ ω ω ω ϕΘ ⋅ ⋅ − .            (4.59) 

Furthermore, with processing of Equation (D1) from Appendix D, the final 
form of magnitude for the stress frequency response is given by 
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(4.60)
 

To see how the function for magnitude of stress frequency response works, an 
analysis of predictions from Equation (4.59) with (4.60), by comparison with 
those from FEA and complete analytical solution (Equation D1) is made. Figure 
4.5 illustrates the agreement between all of them. As it can be seen from 
comparison, one can conclude that the magnitude of stress frequency response is 
reasonable described by Equation (4.59), actually in a conservative mode.  
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Fig. 4.5 Comparison between predictions for hoop stress: complete analytical solution, 
FEA, and by means of stress frequency response function (frequency of sinusoidal thermal 
loading f=0.3 Hz) 

 

Fig. 4.6 Magnitude of stress frequency response function versus loading frequency inside 
of the pipe-wall 
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The magnitude of stress frequency response has an interesting dependence on 
loading frequency for points inside of the wall along the radial direction, as it is 
illustrated in Figure 4.6.  

Note, that frequency responses have not the same dependence for temperature 
as those for hoop stress. Moreover, moving on into the pipe wall, for each location 
the frequencies for which the maxima of respective response functions is reached 
are not the same as well. 

It is interesting to see also, how is the dependence of profiles through thickness 
for stress frequency response magnitude, on the loading frequency. Figure 4.7 

displays profiles of function ( ),H r
θσ

ω , given by Equation (4.60), fitted by 

polynomials of 4th order, for several frequencies in the range 0.1 Hz to 1.0 Hz. 
This figure illustrates the sensitivity of magnitude of stress frequency response 
function to loading frequency, for every point of wall-thickness, and should be 
considered as a complement to Figure 4.6. 

 

 
Fig. 4.7 Magnitude of stress frequency response function through wall thickness versus 
loading frequency inside of the pipe-wall 
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( ) ( )
0

, , , , ( )
a

K a t x t M x dxθω σ ω= ∫ ,  (4.61) 

where M(x) is the weight function, and a is the crack depth. 
In the case of analytical solution for hoop stress presented in the report, the 

solving of the corresponding integral involving Bessel’s functions is 
impracticable.  

An alternative formulation for SIF, which has been used in previous works [10, 
11], is to approximate the through-thickness profile as a function of non-
dimensional radial local coordinate (x/l)  originating at the internal surface of the 
component, where l represents the thickness of the wall.  For a long axial crack, 
our approach to derive the stress intensity factors is based on the polynomial 
representation of stress components through the wall-thickness of the pipe. The 
fourth order polynomial distribution can be used for highly non-linear stress 
distributions, such as the hoop stresses arising during a period of sinusoidal 
thermal loading, by curve-fitting the analytical stress distribution. 

The general form of the fourth order polynomial distribution is [15]: 

2 3 4

0 1 2 3 4( )
x x x x

x
l l l l

σ σ σ σ σ σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  (4.62) 

where: 

0σ  -uniform coefficient for polynomial stress distribution (MPa); 

1σ  -linear coefficient for polynomial stress distribution (MPa); 

2σ  -quadratic coefficient for polynomial stress distribution (MPa); 

3σ  -third-order order coefficient for polynomial stress distribution (MPa); 

4σ  -fourth order coefficient for polynomial stress distribution. 

To evaluate the Mode I stress intensity factor, KI, for surface crack under 
thermal stresses, the procedure from ref. [18] was followed, which uses the 
following relation: 

2 3 4

0 0 1 1 2 2 3 3 4 4I

a a a a a a
K G G G G G

l Q l l l l

π σ σ σ σ σ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ + ⋅ + ⋅ + ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

,     (4.63) 

where G0, G1, G2, G3, G4 are the influence coefficients (or magnification factors). 
In the case of a long axial crack and also fully circumferential crack on the inner 
pipe surface, the Q parameter is considered as Q=1. 

Usually, the influence coefficient values are provided in published tables as 
function of the component and crack geometry, also with certain geometric/ 
dimensional limits. In ref. [15] these limits are 
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0.0 0.8
a

l
≤ ≤ ,                                                      (4.64) 

2 1000ir

l
≤ ≤ ,                                                      (4.65) 

Where: a- is the crack depth, l- is the wall thickness, ri= is the  inner pipe radius. 
For the pipe geometry of the Civaux 1 case, the ratio in Equation (4.3.5) is: 

13ir

l
≈ .                                                  (4.66) 

Therefore, this requires a cubic spline interpolating method to be applied on 
labeled data in order to provide the adequate influence coefficients G0, G1, G2, G3, 
G4, for Civaux 1 case geometry; the corresponding values are not found directly 
from Table C9 of API 579 procedure [15]. Table E1 form Appendix E displays the 
published values in the range of interest [15].    

Based on the Table E2 (Appendix E) each influence coefficient needs a new 

interpolation as a function of the 
a

l
 ratio, in order to consider the dependence of 

the stress intensity factor KI  on crack depth a . The following relationships give 
the required dependence: 

3 2

0 10.6083 1.9273 1.2123 1.1143
a a a a

G
l l l l

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  (4.67)

3 2

1 3.5302 0.4091 0.4166 0.6799
a a a a

G
l l l l

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  (4.68) 

3 2

2 1.775 0.11 0.215 0.5234
a a a a

G
l l l l

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ − ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ,  (4.69) 

3 2

3 1.0823 0.0284 0.1364 0.4397
a a a a

G
l l l l
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a a a a

G
l l l l
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. (4.71)
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A check was performed to compare the stress intensity factor calculated by the 
methodology described above with that from finite-element analysis results [10]. 

4.4.1   The SIF Frequency Response Function 

The calculation of the SIF from the surface temperature variation can be regarded 

as a frequency response calculation with modulus ,K

a
H

l
ω⎛ ⎞

⎜ ⎟
⎝ ⎠

. The 

methodology was given elsewhere [16, 17], most of them using the weight 
function method.  

The magnitude of frequency transfer function for SIF may be written in terms 
of  the stress frequency response function assumed in Equation (4.60) [4]. For this, 

function ( ),H r
θσ

ω  is written as through-thickness profile 

 

( ) ( ) ( ) ( ) ( )
2 3 4

0 1 2 3 4,
x x x x x

H h h h h h
l l l l lθσ
ω ω ω ω ω ω⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.  (4.72) 

 
As one can see in Figure (4.7), the fitting coefficients hj (j=0,…,4) depend on 

the loading frequency ω, (ω=2πf). For the range of frequency 0.1 to 1.0 Hz, their 
polynomial dependences on frequency are given in Appendix E. For next 
convenience, the dependences are directly given as frequency in Hz.  

The magnitude of SIF frequency response function (or modulus of the 
frequency transfer function for SIF) is assumed to be given by 

 

, ,K K

a a
H a G

l l
ω π ω⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
.  (4.73) 

with 

( ) ( ) ( )
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l l l l l l
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l l l l

ω ω ω ω

ω ω

⎧⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ ⋅ + ⋅ ⋅ +⎨⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩

⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ⋅ ⋅ + ⋅ ⋅ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎭

.   (4.74) 

The relationships for j

a
G

l
⎛ ⎞
⎜ ⎟
⎝ ⎠

, j=0,…,4 are given by Equations (4.67) to 

(4.71). Figure 4.8 shows the dependence of magnitude of SIF frequency response 

function, ,K

a
H

l
ω⎛ ⎞

⎜ ⎟
⎝ ⎠

, on loading frequency for various crack depths. 
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Fig. 4.8 Magnitude of SIF frequency response as function on loading frequency (Hz) on 
crack depth 

As crack is growing into the thickness, the magnitude response is higher. Note 
that for small crack depth, the magnitude of SIF response is almost the same for 
the whole of frequency range, and for deeper cracks, the maximum of response is 
reached for 0.2-0.3 Hz. 

In the next, if we convert the frequency response function into stress intensity 
factor, KI, as  
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,  (4.75) 

we are able to find its dependence on loading frequency, also for various crack 
depths (Figure 4.9). The examination of this behavior of  KI, which is calculated 
for instant of time t=T/4 (with T= time period of loading), suggests the highest its 
value for frequency f=0.3 Hz, which is in a good agreement with previous study 
[11]. 
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Fig. 4.9 Stress intensity factor (instant T/4) using SIF frequency response function versus 
crack depth 

For the sake of simplicity, we designate the crack depth to the thickness ratio 
as: 

a

a
x

l
= ,  (4.76) 

where the new normalized coordinate xa originates at the inner pipe surface, and 
reminds that a is crack depth of long shallow axial crack; l is the thickness of the 
wall. By using the normalized coordinate, xa , then the modulus of the frequency 
transfer function for SIF becomes 

( ) ( ) ( ) ( )
4

1

,
j

K a a j j a a
j

H x l x abs h G x xω π ω
=

⎧ ⎫
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⎩ ⎭
∑ .    (4.77) 

The Equation (4.3.17) will be used further in application even it is based on a 
single sinusoidal temperature loading. 

4.4.2   Power Spectral Density of SIF and Its Spectral Moments 

The analysis above has been performed by considering a sinusoidal thermal 
loading of surface temperature fluctuations. For mixing tees the surface 
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temperature variation will be random.  For the present analysis, the input of 
surface temperature fluctuations is characterized by its power spectral density 
(PSD), which is the Fourier transform of the autocorrelation function. This may be 
obtained from experimental measurements. 

It is necessary to postulate a probability distribution functional for temperature. 
This will be taken to be Gaussian, implying a Gaussian probability density 
function for temperature at any instant [17]. As it was shown in previous chapters, 
a Gaussian stochastic process is completely described by its PSD. 

The approach followed here is to consider the temperature fluctuation and its 
spectrum as a Gaussian stationary narrow-band process. In this case, following the 
Equation (3.101), the magnitude of SIF frequency response function,

( ),K aH x ω , relates the PSD of SIF, ( ),K aS x ω , and PSD of surface 

temperature ST(ω),  respectively, as 

( ) ( ) ( )2
, ,K a K a TS x H x Sω ω ω= .  (4.78) 

The mean square (variance) of the SIF is given by 

( ) ( )2 ,rms a K aK x S x dω ω
∞

−∞

= ∫ .  (4.79) 

If it is assumed that temperature's PSD is a stationary Gaussian narrow band 
process, then follows that this PSD has relevant values into a limited frequency 
interval. Moreover, from practical point of view here is considered the one-sided 
PSD with frequency expressed in Hertz (cycles/second) 

( ) ( )4T TW f Sπ ω= ⋅ ,  (4.80) 

with WT(f) expressed in (° C)2/Hz, and 
2

f
ω
π

=  in Hz. 

For the sake of simplicity, we shall consider the model of the PSD from Figure 
3.4 (a), in a more idealized shape as it is displayed in Figure 4.10. This yields to a 
mean square of temperature signal (variance) in the form 

( ) ( )
2

1

2
0 2 1 00 ( )

f

T T T T T

f

R W f df W f f W fτ σ= = = = − = Δ∫ ,  (4.81) 

for a normalized stationary Gaussian random process. 
By considering the one-sided PSD with frequency f expressed in Hertz then the 

PSD of SIF is given by 

( ) ( ) ( )2
, ,K a K a TW x f H x f W f= .  (4.82) 
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Fig. 4.10 One-sided PSD for temperature fluctuations 

The PSD of the thermal spectrum from Figure 4.10, can be written as 

( ) [ ]
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W ct f f f
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f f f
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.  (4.83)

This in turn that one-sided PSD of KI becomes 

( ) ( ) 2

0, ,K a K a TW x f H x f W= .  (4.84)

The Equation (4.84) will be used in the next application, but one should note 
that a more general form for PSD of SIF can be manipulated in the same way to 
obtain the expectation of crack propagation rate under a specific thermal spectrum.  

The zero-order moment of KI PSD, which means variance of SIF for a 
normalized stationary Gaussian stochastic process, is given by 

( ) ( ) ( ) ( )
2 2 2

1 1 1

2 22
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f f f
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f f f

K x W x f H x f W df W H x f dfτ = = = =∫ ∫ ∫ .    (4.85) 

The stochastic properties for a stationary Gaussian stochastic process are also 
valid for SIF fluctuations. Thus, because the Gaussian stationary narrow-band 
process is smooth and harmonic, for every peak, there is a corresponding zero up-
crossing (see Equation 3.70), and the expected rate of zero up-crossing rates  
of KI  is 
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( )
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( )
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22 2
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f f
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N N
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= = =
∫ ∫

∫ ∫
.    (4.86) 

The frequency of peaks of any magnitude for KI, which is supposed to be a 
stationary narrow-band Gaussian process, is characterized by Rayleigh's 
distribution, as follows from Equation 3.80:  

( ) ( ) ( )2 2

1
, 0 exp

, 0 2 , 0I

I I
K a

rms a rms a

K K
f x

K x K x
τ

τ τ
⎡ ⎤

= = −⎢ ⎥= =⎣ ⎦
.     (4.87) 

Equation (4.87) can be written in a complete form as function of magnitude of 
SIF frequency response, by taking into account the Equation (4.85): 

 ( )
( ) ( )

2 2

1 1

2 2

0 0

1
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⎢ ⎥⎣ ⎦

∫ ∫

.  
(4.88) 

Based on the knowledge of SIF frequency response magnitude, the Equation 
(4.88) allows to obtain the mth moment of Rayleigh's distribution. 

4.5   Lifetime Estimation for Thermal Fatigue Crack Growth in 
Mixing Tees 

Present analysis assumes a Paris law for crack growth per cycle 

( )nda
C K

dN
= ⋅ Δ ,  (4.89)

where N is the number of maxima and ΔK is the range between the maximum and 
next minimum; here we consider the range between maximum and next zero 

K KΔ = .  (4.90) 

The stochastic model for thermal fatigue crack growth developed to here 
include a first part for incorporating stochastic loads (derived into stochastic 
behavior of K) and a second one, that deals with Monte Carlo simulation to 
accommodate statistical characteristics of crack growth under constant amplitude 
(C and n Paris law parameters).  
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4.5.1   Expected Value of Crack Growth Rate 

Time-dependent fluctuation of temperature should be correlated with time 
dependent fluctuation of crack growth from Paris's law. Because the number of 
loading cycles is a discrete variable with respect to the time variable, the number 
of loading cycles is modified into a continuous variable by introducing an average 
cyclic rate. So, when time-dependent stochastic analysis is conducted, the crack 
growth rate of a random flaw size, a, should be written in the following form: 

p

da da dN da

dt dN dt dN
ν= = ,  (4.91)

where νp is the mean rate of maxima, that is constant for a Gaussian stationary 
stochastic process. Moreover, for this kind of process νp may be identified with 
expected rate of up-crossing rate (equal to expected rate of peak crossing) 
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ν = = = =
∫ ∫

∫ ∫
, (4.92)

with the significance of parameters mentioned in previous chapter.  
We assume a linear summation of damage and ignore the effect of positive 

minima [17], and in this case the expectation rate of crack growth in respect to 
cycles is 

( ) ( )
0

, 0
I

n

K a

da
E C K f x dK

dN
τ

∞⎡ ⎤ = ⋅ =⎢ ⎥⎣ ⎦ ∫ .  (4.93)

By inserting Equation (4.86) and re-arranging the Equation (4.93), results in 

( ) ( ) ( )2 2
0

1
exp

, 0 2 , 0
n I I

rms a rms a

K Kda
E C K dK

dN K x K xτ τ

∞ ⎡ ⎤⎡ ⎤ = ⋅ −⎢ ⎥⎢ ⎥ = =⎣ ⎦ ⎣ ⎦
∫ .  (4.94) 

This last form is the nth moment of Rayleigh's distribution, concerned on KI: 

( ) 2
1

, 0 2 1
n

n

rms a

da
E C K x

dN n
τ⎡ ⎤ ⎛ ⎞⎡ ⎤= ⋅ = ⋅ Γ +⎜ ⎟⎣ ⎦⎢ ⎥⎣ ⎦ ⎝ ⎠

,  (4.95) 

where Γ is the Gamma function. Using the magnitude of SIF frequency response 
yields to 



4.5   Lifetime Estimation for Thermal Fatigue Crack Growth in Mixing Tees 59 

( )
2

1

2
2
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∫ .             (4.96) 

By inserting Equations 4.4.4 and 4.4.8 into Equation 4.4.3, the final form of 
stochastic crack growth rate is 
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∫

∫

,  
(4.97) 

with l being the wall thickness. 
This equation may be integrated numerically to obtain the crack length, or xa, as 

a function of time, when C and n a given deterministically.  

4.5.2   Coupling of the Stochastic Model with the Probabilistic 
Input to Assess Crack Growth Lifetime 

A prospective study for the probabilistic approach of thermal fatigue in mixing 
tees (Civaux 1 damage case) by limit state function and Monte Carlo simulation, 
based on sinusoidal approach, has been done in a previous work [18]. In the 
present work, the limit state function will be based on the Equation (4.97), and in 
the next, we describe shortly the methodology used for probabilistic input to 
account the variability in initial crack depth and in C scaling parameter so far. 

A limit state is generally defined as a state of a structure or part of the structure 
that no longer meets the requirements laid down for its performance or operation. 
In another way, the limit states can be defined as a specific set of states that 
separate a desired state from an undesirable state which fails to meet the design 
requirements. In addition, more generally, we can say that a Limit State is a 
mathematical criterion that categorizes any set of values of the relevant structural 
variables (loads, material and geometrical variables) into one of two categories: a 
“safe” set and a “failure” set. 

A limit state of thermal fatigue damage due to thermal loading is considered a 
crack penetration depth of 80% wall thickness. It is possible to define the failure 
function or limit state function as a function of the number of thermal fatigue 
cycles, Ncycles, as [18] 

( ) ( )cycles cr f cyclesg N a a N= − ,  (4.98) 

or equivalent 
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( )
( ) 1 f cycles

cycles
cr

a N
g N

a
= − ,  (4.99)

where acr is a critical depth of the fatigue crack, corresponding to 80% of the wall-
thickness, and af(Ncycles) is the final crack depth after N cycles of thermal loading. 
The failure is predicted when the number of cycles Ncycles, will produce the 
following condition 

( ) 0cyclesg N ≤ ,  (4.100) 

which means af > acr.,  failure condition.  
To combine the stochastic behavior of K with statistical characteristics of crack 

growth under constant amplitude (C and n Paris law parameters), and also with 
initial crack depth distribution, we define the limit state function in the form 

( ) 1 ref
ref

stoch

t
g t

t
= − ,  (4.101)

where: tref  is the reference time period for thermal fatigue crack growth under 
thermal spectrum; tstoch is estimated values of the lifetime for stochastic crack 
growth derived from Equation (4.97). Thus, for integrating, Equation (4.97) can be 
written as 
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∫
∫ ∫

∫

, 
(4.102) 

where xai is a sample from initial crack distribution, which is supposed to be 
known; the final crack size uses the same failure criterion as above, means 
xacr=acr/l=0.8. Note that in the present study, we consider long cracks; as a 
consequence, the limit state function is referred just to the crack depth. 

During the Monte Carlo simulation (MCS), the trials which satisfy condition 

( ) 0refg t ≤  ,  (4.103) 

are accounted as nfail  and the probability of failure for a certain period of time (tref) 
is given by 

fail
f

trials

n
P

N
= ,  (4.104) 

where Ntrials is the total number of trials' simulation. 
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Chapter 5 
Application 

Abstract. The thermal fatigue damaging case from 1998, when a longitudinal 
crack was discovered at the outer edge of an elbow in a mixing zone of the 
Residual Heat Removal System (RHRS) of the Civaux NPP unit 1 has been 
chosen to verify the stochastic model from the book. The variability in statistical 
properties of material parameters is usually accounted by the statistical properties 
of Paris law parameters C and n. Also, the original crack depth of flaws has a 
certain probability density function, which is more related to probability of 
detection based on experimental in-service inspection (ISI) results. A lognormal 
probability density function of C scaling parameter and an exponential one for 
initial crack depth are used to provide a probabilistic input for solving the integral 
giving the crack depth as a function of time. The results of the stochastic approach 
to modeling of thermal fatigue crack growth in mixing tee, completed with 
probabilistic input to account variability in material characteristics, are given as 
the probability of failure as a function of the time reference period. 

5.1   Application of the Stochastic Model to Assess the Thermal 
Fatigue Crack Growth 

The previous methodology to evaluate stochastic crack growth under thermal 
fluctuation will be applied to Civaux1 case, which is a very well known damaging 
case on the mixing tees concern. It is shortly described in the Appendix B. The 
limit state function defined by Equation (4.101) requires the probability density 
functions for initial crack depth and also for C and n parameters from Paris's law. 

The initial crack size distribution has a very strong influence on the 
deterministic and also probabilistic assessment of a component lifetime. Usually, 
the initial crack distribution involves three kinds of distributions: - crack depth 
distribution, crack aspect ratio distribution, crack existence frequencies. 

The present approach considers only cracks that start out as long inner surface 
cracks, characterized by initial crack depth distribution as an exponential 
distribution. The corresponding probability density function is 

( ) 1
;

x

f z e μμ
μ

−
= , z≥0; μ>0,

 
(5.1)
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In the present book, we adopted the pdf from equation (5.1) in the following 
form 

( ) 1
; a

a

a
a

p a e μμ
μ

−
= , 00 a a≤ ≤ .  (5.2)

For a pipe thickness l=9 mm as in the present work, we consider a mean value 
of the crack depth as  μa=1 mm and the coefficient of variation in this case is 
CoV=1. The mean value of the crack depth is small, but in deterministic 
assessments, this value is generally assumed as a started depth for fatigue crack 
growth. The proposed value to be used for a0 in Equation (5.2), which usually is 
considered ∞ in the case of the thick pipe-wall, can be seen as cracks detected by 
ISI, before assessment. Therefore, in this application, a value of three mm is 
chosen, which means about 30% of the wall pipe. In this way, the cracks with 
depth bigger than three mm, generated by MC sampling from exponential 
distribution, are not accounted for crack growing. 

The fatigue crack growth rates are calculated in the deterministic assessments 
using stainless steel crack growth law given in ASME: 

( )nI

da
C K

dN
= ⋅ Δ ,  (5.3) 

where n=3.3 is the slope of the log(da/dN) versus log(ΔKI) and C is a scaling 
parameter. Slopes (n) and intercepts (C) for all fatigue data are usually highly 
correlated. Ignoring this correlation can give misleading results in a simulation. 
An alternate method to account for this correlation is to use a constant slope and 
put all of variability into the intercept [1]. For a constant slope, the variability in 
fatigue lives will be directly related to variability in the material constant C. The 
scatter in the experimental fatigue data is represented by a lognormal distribution 
for C scaling parameter, with the following pdf  
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0
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; ,
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f z e
z

μ
σμ σ

σ π

⎛ ⎞−− ⎜ ⎟
⎝ ⎠=

⋅
,  (5.4) 

where μ0, σ0, are parameters connected with the median/mean value and standard 
deviation as shown in Appendix F. 

From reference [1] we consider the following parameters for lognormal 
distribution of C: 

- Median: Cmedian=10.04⋅10-12 (m/cycle/ MPa√m),           (5.5) 
- Standard deviation: σC=2.2⋅10-11.                         (5.6) 

With these parameters, a mean value is derived as Cmean= 1.664⋅10-11 (m/cycle/ 
MPa√m) and coefficient of variation by CoV=1.32. The log-normal distribution is 
used to produce random values for C constant in Paris's law with the following 
sequence in MATLAB Statistics Toolbox: 
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C= ( )1
0 0( ); ,F u μ σ− Φ ; μ0= - 25.3244; σ0=1.0053.  (5.7)

Here ( )1
0 0( ); ,F u μ σ− Φ  is the MATLAB function for inverse function of 

log-normal CDF. The parameters μ0 and σ0 were derived with relationships from 
Appendix F.  

The stochastic approach presented in previous chapters requires knowledge of 
statistical properties of the thermal spectrum. The Civaux case was characterized 
by a temperature fluctuation [2], which is displayed in Figure 5.1. 

 

Fig. 5.1 Temperature fluctuations in a pipe where a thermal fatigue crack penetrated the wall 

For a thermal spectrum assumed to be a stationary Gaussian stochastic process, 
we use the one-sided temperature PSD, see figure 4.3.3. In this case, we choose a 
value for its PSD 

( ) [ ]
[ ) ( ]

2
0 500 / , 0.1,1.0

0, 0,0.1 1.0 ,
T

T

W C Hz f Hz
W f

f Hz Hz

⎧ = ∈⎪= ⎨ ∈ ∪ ∞⎪⎩ .  (5.8)

By re-conversion using RSA method (Random Spectral Amplitudes) described 
in chapter 3.2.1, we extract a sample function for temperature that is displayed in 
Figure 5.2 with zero-mean, and in Figure 5.3 with a non-zero mean. For a shorter 
interval, 10 seconds, Figure 5.4 shows a quite similar aspect to those reflected in 
Figure 5.1. 

  
 



66 5   Application 

 
Fig. 5.2 Sample function of the temperature variation from PSD of a stationary Gaussian narrow-
band process, (PSD=500 C^2/Hz, frequency range=0.1-1.0 Hz, with zero-mean value) 

 

Fig. 5.3 Sample function of the temperature variation from PSD of a stationary Gaussian narrow-
band process, (PSD=500 C^2/Hz, frequency range=0.1-1.0 Hz, with non-zero mean value)   
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Fig. 5.4 A shorter time interval sequence of temperature fluctuations (from Figure 5.3)  

The Monte Carlo analyses were performed by implementing in the MATLAB 
environment specific scripts and described function, using a number of trials in the 
range of 104-105. Typical histograms for both the initial crack depth and C scaling 
parameter are illustrated in Figure 5.5 and Figure 5.6, respectively. 

 

Fig. 5.5 Probability density function for initial crack depth (MC simulations) 
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Fig. 5.6 Probability density function for C scaling parameter (MC simulations) 

 

Fig. 5.7 Probabilities of failure: the stochastic modeling results of fatigue crack growth 
coupled with probabilistic input for Monte Carlo simulation 
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The results from analyses of stochastic modeling of fatigue crack growth due to 
thermal spectrum and using probabilistic input to account variability in Paris's law 
parameters and initial crack depth are displayed in Figure 5.7. The probabilities of 
failure, actually defined mathematical by limit state function satisfying Equation 
(4.101) are given as a function of the reference time period. It is shown also, on 
the same graph, the lifetime for crack penetration through wall-piping in Civaux 
case. One can see that the time of 1500 hours, which has been referred as time of 
the crack penetration through the wall in an elbow region of Civaux pipe, 
corresponds to a probability of failure about 80%. This value of the probability is 
quite high, and we can conclude that stochastic modeling of thermal fatigue cracks 
growth, coupled with probabilistic input, gives reasonable assessment of the event, 
even it is performed in the elastic domain. 

References 

[1] Gosselin, S.R., Simonen, F.A., Heasler, P.G., Doctor, S.R.: Fatigue Crack Flaw 
Tolerance in Nuclear Power Plant Piping; A basis for Improvements to ASME Code 
Section XI Appendix L, NUREG/CR-6934, PNNL-16192 (May 2007) 

[2] Gourdin, C., Marie, S., Chapuliot, S.: An Analytical Thermal Fatigue crack growth 
approach, SMiRT 20-Division 2, Paper 1796, Espoo, Finland, August 9-14 (2009) 

 
 



  
© Springer International Publishing Switzerland 2015 
V. Radu, Stochastic Modeling of Thermal Fatigue Crack Growth, 

71 

Applied Condition Monitoring 1, DOI: 10.1007/978-3-319-12877-1_6  

Chapter 6 
Conclusions 

• The book proposes a stochastic model to assess thermal fatigue crack 
growth in mixing tees of NPP with the temperature spectrum assumed to 
be a Gaussian stationary narrow-band stochastic process. The stochastic 
crack growth model includes a main part for incorporating randomness in 
service loads, and also another one, which includes a description of 
statistical characteristics of crack growth under constant amplitude 
loadings.  

• Based on the analytical solution of temperature response (Hankel 
transform) within SIN-methodology, developed in past work a 
temperature frequency response function through pipe thickness is 
developed. By considering the analytical solution for thermal stresses 
also developed in preceding work, a stress frequency response for 
thermal hoop stress is derived and based on this an SIF frequency 
response magnitude is obtained. For a one-sided PSD model of 
temperature fluctuation, the PSD of SIF is obtained, by FRF 
methodology.  Consequently, the expected value of crack growth rate in 
HCF domain can be assessed using the Rayleigh’s distribution moments. 
The variability in Paris's law parameter is accounted and in the crack 
distribution as well, and the probabilities of failure are obtained by MCS. 
The methodology is used to evaluate stochastic crack growth under 
thermal fluctuation in the NPP Civaux1 case, which is a very well known 
damaging case on the mixing tees concern.  

• The present methodology based on the stochastic modeling of thermal 
fatigue crack growth can be used to analyze and improve the screening 
criteria proposed to avoid cracking issues in nuclear piping, especially in 
tee connection where turbulent mixing of flows with different 
temperature occur. 
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Appendix A 

The Use of Finite Hankel Transform 
Appe ndix A: The Use of Finite Hanke l Transfor m 

The method of integral transforms may be applied to the solution of boundary-
value problems in mathematical physics [1]. Let us consider a function f(x) 
defined on a prescribed finite interval (a, b). Furthermore, we consider finite 
transforms of the kind 

[ ] ( ) ( )( ); ( ) ,
b

a

f x p x K x f x dxξ ξ= ∫Τ  ,                      (A1) 

where the prescribed function p(x) is of nature of a “weight function” [1] – in 
sense of the theory of orthogonal polynomials- and function K(x,ξ) denotes a 
prescribed function of x on the open interval (a,b) for each value of the parameter 
ξ, whose domain is also prescribed (T is a linear operator). 

For a particular problem, the form of the kernel K(x,ξ)  requires consideration 
of the solutions of the self-ad joint differential equation 

1
( ) ( ) ( ) 0

( )

d dz
z q x l x z x

p x dx dx
⎧ ⎫= + =⎨ ⎬
⎩ ⎭

L ,         (A2) 

where q(x)∈C2[a,b] and it is assumed that q(x)/p(x)>0 for x∈[a,b]. We consider 
that f∈C1[a,b]  and introduce the boundary operators M and N define as 

1 2( )
x a

f
f a f a a

x =

∂= +
∂

M ,                            (A3) 

1 2( )
x b

f
f b f a b

x =

∂= +
∂

N ,                                          (A4) 

where a1, a2, b1 and b2 are prescribed constants. Note that at least one of the a1 and 
a2 and at least one of b1 and b2 is nonzero [1]. If we denote by K(x,ξn)  and  ξn the 
normalized eigenfunction and eigenvalue of Sturm-Liouville problem   

( ) 0, 0L K K Kξ− = = =M N ,                       (A5) 
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then the finite transform defined by equation 

[ ] ( ) ( ); ,
b

n n n

a

T f f p x K x dxξ ξ≡ = ∫ ,                        (A6) 

has the property that if f∈C1[a,b]  then 
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In deriving the equation it was considered that a2=0 and b2=0 [1]. The 
corresponding inversion formula is 

( )1

1

; ( 0 ,n n n
n

T f x f x f K xξ
∞

−

=

⎡ ⎤ ≡ =⎣ ⎦ ∑ .                               (A8) 

The finite transform corresponding to the linear operator 

2 2

2 2

1d d

dr r dr r

υ= + −L .                                         (A9) 

which is of the form of Equation  (A2)  with p(x)=r, q(x)=r, l(x)=-υ2r-2 are called 
finite Hankel transforms [1]. With ξ=-s2 , the first of Equations (A5) is Bessel’s 
equation 

2 2
2

2 2

1
0

d K dK
s

dr r dr r

υ⎛ ⎞
+ + − =⎜ ⎟

⎝ ⎠
.                           (A10) 

If we consider the case 

( ) ( ), ,a r b f f a f f a≤ ≤ = =M N                    (A11) 

then required solution of Equation (A10) is 

( ) ( ) ( ) ( ) ( ), n n n n nK r s J s r Y s a J s a Y s rυ υ υ υ= − ,            (A12) 

where sn is a root of transcendental equation 

( ) ( ) ( ) ( ) 0n n n nJ s b Y s a J s a Y s bυ υ υ υ− = .     (A13) 

Here Jυ(z), Yυ(z), are Bessel function of first and second kind of order υ. 
The finite Hankel transform of third kind is defined as in reference [1] by 

Equation 

( ) ( ) ( ) ( ) ( ) ( );
b

n n n n n n

a

f H f r rf r J s r Y s a J s a Y s r drυ υ υ υξ≡ = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ .    (A14) 

By using the orthogonality condition for the kernel defined by Equation (A12), 
[1, 2], then 
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( ) ( ) ( )
( )

2 2
2
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b
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n
na n
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r K r s dr
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υ υ

υ
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−⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

∫ .        (A15) 

The solution f(r) may be obtained by the inversion theorem for the operator H, 
[1] as 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
2 22

1
2 2

1

;
2

n n n
n n n n n

n n n

s J s b f
f r H f r J s r Y s a J s a Y s r

J s a J s b

υ
υ υ υ υ

υ υ

π ∞
−

=

⎡ ⎤≡ = −⎡ ⎤⎣ ⎦⎣ ⎦ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
∑

 ,     (A16) 

the sum extending over all the positive roots of Equation (A13). From Equation 
(A7) the following relation 

( ) ( )
( ) ( ) ( ) 22 2

; n
n n n

n

J s a
H f r s f b f a s f

J s b
υ

υπ π
= − −⎡ ⎤⎣ ⎦L ,                 (A17) 

completes the solution for a particular problem. 
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Appendix B 

Description of the Civaux 1 Case 

Appe ndix B Descriptio n of the Civ aux  1 Case 
The main characteristics of the piping system from Civaux 1 case had been 
described in [1,2]. Some of the features concerning on this thermal fatigue 
damaging case are given in the following. In 1998, a longitudinal crack was 
discovered at the outer edge of an elbow in a mixing zone of the Residual Heat 
Removal System (RHRS) of the Civaux NPP unit 1. An extensive investigation 
was carried out, and the conclusion was that the origin of this degradation 
phenomenon was cracking by thermal fatigue. The incident was caused by 
fluctuations in the temperature of the fluid downstream mixing tee. It is worth 
mentioning that the time between initiation of the crack and its development to a 
significant depth through the wall was only about ≈1500 hours, which is 
surprisingly low. Metallurgical examinations revealed substantial cracks and also 
some networks of small thermal fatigue cracks near the welds, but no fabrication 
defects. The section of interest is shown in Figure B1.  The system operated at a 
pressure of 36 bars; the hot leg contains water at 180o C and the cold leg contains 
water at 20oC. In the damage zone of interest the pipe inner radius was ri ≅120 mm 
and outer radius were ro =129 mm. The material properties are shown in Table B1. 

Table B1 Thermal and mechanical properties of austenitic steel (304L) at room 
temperature  

 
c - specific heat coefficient, λ - thermal conductivity,  ρ - density, α - mean 

thermal expansion, 
k – thermal diffusivity coefficient. 

c 
J

kg C
  W

m C
  3

kg
m

  1
C

 E 2

N
m

  k
2m

s
 

480 14.7 7800 16.4.10-6 177.109 0.3 3.93 10-6 



80 Appendix B: Description of the Civaux 1 Case 

The temperature fluctuation was reported to be in the range 20-180o C and on 
the inner surface of the pipe, the maximum temperature fluctuation range was 
estimated to be 120oC [3].  

 

 

Hot flow 

Cold flow

Maximum 
damage area 

(elbow extrados) 

 

Fig. B1 The simplified sketch of piping subsystems with damaged area by thermal fatigue 
cracking [1] 
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Appendix C  

The First Hundred Roots of the Transcendental 
Equation (Civaux Pipe Geometry)   

For Civaux 1 case, considering a pipe with the inner and outer radii ri≅0.120 m 
(=0.1197m) and ro=0.129 m, the first 100 roots of the transcendental Equation (A-
13) used in the analytical solutions for temperature and stress fields are: 

 

            sn =[ 337.78; 675.5900; 1.0134e+003; 1.3512e+003; 1.6890e+003; 

    2.0268e+003; 2.3646e+003; 2.7024e+003; 3.0403e+003; 3.3781e+003; 

    3.7159e+003; 4.0537e+003; 4.3915e+003; 4.7293e+003; 5.0671e+003; 

    5.4049e+003; 5.7427e+003; 6.0806e+003; 6.4184e+003; 6.7562e+003; 

    7.0940e+003; 7.4318e+003; 7.7696e+003; 8.1074e+003; 8.4452e+003; 

    8.7830e+003; 9.1208e+003; 9.4587e+003; 9.7965e+003; 1.0134e+004; 

    1.0472e+004; 1.0810e+004; 1.1148e+004; 1.1486e+004; 1.1823e+004; 

    1.2161e+004; 1.2499e+004; 1.2837e+004; 1.3175e+004; 1.3512e+004; 

    1.3850e+004; 1.4188e+004; 1.4526e+004; 1.4864e+004; 1.5201e+004; 

    1.5539e+004; 1.5877e+004; 1.6215e+004; 1.6553e+004; 1.6890e+004; 

    1.7228e+004; 1.7566e+004; 1.7904e+004; 1.8242e+004; 1.8580e+004;  

    1.8917e+004; 1.9255e+004; 1.9593e+004; 1.9931e+004; 2.0269e+004; 

    2.0606e+004; 2.0944e+004; 2.1282e+004; 2.1620e+004; 2.1958e+004; 

    2.2295e+004; 2.2633e+004; 2.2971e+004; 2.3309e+004; 2.3647e+004; 

    2.3984e+004; 2.4322e+004; 2.4660e+004; 2.4998e+004; 2.5336e+004; 

    2.5674e+004; 2.6011e+004; 2.6349e+004; 2.6687e+004; 2.7025e+004; 

    2.7363e+004; 2.7700e+004; 2.8038e+004; 2.8376e+004; 2.8714e+004; 

    2.9052e+004; 2.9389e+004; 2.9727e+004; 3.0065e+004; 3.0403e+004; 

    3.0741e+004; 3.1078e+004; 3.1416e+004; 3.1754e+004; 3.2092e+004; 

    3.2430e+004; 3.2768e+004; 3.3105e+004; 3.3443e+004; 3.3781e+004]; 

By using this set of values in the analytical solutions given by Equations (D1, 
D2, D3) from Appendix D, the corresponding sums will have the same number of 
terms. 



 

 

Appendix D: Thermal Stress Components in an 
Infinite Hollow Cylinder under Sinusoidal 
Thermal Loading 

The thermal stress components for a hollow circular cylinder subject to sinusoidal 
thermal loading are: 

Hoop Thermal Stress  
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Axial Thermal Stress for εz=0 (Fixed End) 
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Axial Thermal Stress for εz=ε0 (Free End) 
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Appendix E:  The Influence Coefficients Gj  
for Civaux Geometry and Dependence of 
Coefficients Hj(ω) on Loading Frequency 

Table E1 displays the influence coefficients Gj (j=0,1,2,3,4) in the range of 
interest [1].   

Table E1 The influence coefficients for a longitudinal infinite length surface crack in a 
cylindrical shell from Table C9 -API 579 

ri/l 
 

a/l G0 G1 G2 G3 G4 

5 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.307452 
1.8332 
2.734052 
3.940906 
 

0.682 
0.753466 
0.954938 
1.28757 
1.739955 

0.5245 
0.564296 
0.676408 
0.857474 
1.10621 

0.4404 
0.466913 
0.539874 
0.656596 
0.81823 

0.379075 
0.398757 
0.454785 
0.54072 
0.661258 

10 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.332691 
1.957764 
3.223438 
5.543784 
 

0.682 
0.763153 
1.002123 
1.466106 
2.300604 

0.5245 
0.569758 
0.702473 
0.953655 
1.398958 

0.4404 
0.470495 
0.556857 
0.718048 
1.000682 

0.379075 
0.401459 
0.467621 
0.585672 
0.789201 

20 
 

0.0 
0.2 
0.4 
0.6 
0.8 

1.12 
1.345621 
2.028188 
3.573882 
7.388754 

0.682 
0.768292 
1.028989 
1.594673 
2.946567 

0.5245 
0.57256 
0.717256 
1.023108 
1.736182 

0.4404 
0.472331 
0.566433 
0.762465 
1.211533 

0.379075 
0.402984 
0.475028 
0.618437 
0.936978 
 

ri – inner radius; l- wall-thickness. 

The results of cubic spline interpolation (MATLAB function) for the influence 

coefficients in case of ratio 13ir

l
≈  are shown in Table E2. 
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Table E2 Results of cubic spline interpolations for influence coefficients for the case of an 
infinite axial crack on inner pipe surface case 

ri/l 
 

a/l G0 G1 G2 G3 G4 

13 
 

0.0 1.12 0.682 0.5245 0.4404 0.379075 

13 
 

0.2 1.3418 0.7667 0.5717 0.4718 0.4025 

13 
 

0.4 2.0039 1.0196 0.7121 0.5631 0.4724 

13 
 

0.6 3.4165 1.5367 0.9917 0.7424 0.6035 

13 
 

0.8 6.2878 2.5609 1.5349 1.0855 0.8487 

 
 
Dependence of coefficients hj(ω) on loading frequency. 

h0(f)=1.8950+11.5553⋅f -26.4284⋅f 2 +25.9064⋅f3 - 9.3682⋅f4                     (E1) 

h1(f)=1.8950+11.5553⋅f -26.4284⋅f 2 +25.9064⋅f3 - 9.3682⋅f4                      (E2) 

h2(f)=-45.1660+543.2349⋅f -910.2986⋅f 2 +736.5647⋅f3 – 234.9905⋅f4         (E3) 

h3(f)=103⋅( 0.0852-0.6924⋅f+1.0106⋅f 2 -0.7131⋅f3 +0.2013⋅f4)                     (E4) 

h4(f)=-43.4634+281.9147⋅f-341.3181⋅f 2 +184.2000⋅f3 -35.7704⋅f4              (E5) 

Reference 

[1] API 579 Fitness-for-Service-API Recommended Practice 579, 1st edn. American 
Petroleum Institute (January 2000) 

 
 



 

Appendix F: The CDFs and PDFs Used for 
Probabilistic Input of Stochastic Assessment  
by Monte Carlo Method 

a) Normal Distribution (Gauss Distribution) 

Probability density function (PDF): 
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(F2)

Note: For μ=0  and σ=1 we refer to this distribution as standard normal 
distribution 
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which has the cumulative distribution (CFD) 
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Moments: 

mean (expected value): 

( ) μμ == XXE . (F5) 
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variance: 

( ) 2σ=XVar  
(F6)

standard deviation: 

( )XVar=σ
 

(F7)

b) Exponential Distribution 

Probability density function (PDF): 

( ) μ

μ
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x

exf
−

= 1
;

x≥0; μ>0 

(F8) 

Cumulative distribution function (CDF): 

( ) μμ
x

exF
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−=1; . 
(F9) 

Moments: 
mean (expected value): 

( ) μμ == XXE .  (F10)

variance: 

( ) 2μ=XVar  
 (F11)

standard deviation: 

( ) μσ == XVar
. (F12)

The exponential (Marshal) distribution is used to produce random value for 
initial crack depth ai. 

c) Log-Normal Distribution 

Probability density function (PDF): 
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Cumulative Distribution Function (CDF): 
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with μ0, σ0, parameters. 
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Moments: 

mean (expected value): 

( ) 2

2
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σμ

μ
+

== eXE X  
(F15) 

variance: 

( ) ( )1
2
0

2
002 −= + σσμ eeXVar  

(F16)

standard deviation: 

( )XVar=σ
 

(F17)

median: 

0μemed =  (F18) 

The log-normal distribution is used to produce random values for C constant in 
Paris's law.  
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