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 Introduction

• Previously considered distributed forces which were proportional to the 

area or volume over which they act.  

- The resultant was obtained by summing or integrating over the areas or 

volumes.

- The moment of the resultant about any axis was determined by 

computing the first moments of the areas or volumes about that axis.

• Will now consider forces which are proportional to the area or volume 

over which they act but also vary linearly with distance from a given axis.

- It will be shown that the magnitude of the resultant depends on the 

first moment of the force distribution with respect to the axis.

- The point of application of the resultant depends on the second 

moment of the distribution with respect to the axis.

• Current chapter will present methods for computing the moments and 

products of inertia for areas and masses.



3

 Moment of Inertia of an Area

• Consider distributed forces whose magnitudes are 

proportional to the elemental areas on which they 

act and also vary linearly with the distance of 

from a given axis.
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• Example:  Consider a beam subjected to pure 

bending.  Internal forces vary linearly with 

distance from the neutral axis which passes 

through the section centroid. 
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 Moment of Inertia of an Area by Integration

• Second moments or moments of inertia of 

an area with respect to the x and y axes,

  dAxIdAyI yx
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 Moment of Inertia of an Area by Integration

• Evaluation of the integrals is simplified by choosing dA to be a thin 

strip parallel to one of the coordinate axes.
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 Moment of Inertia of an Area by Integration

• For a rectangular area,
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 Moment of Inertia of an Area by Integration

• The formula for rectangular areas may also 

be applied to strips parallel to the axes,
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 Polar Moment of Inertia

• The polar moment of inertia is an important 

parameter in problems involving torsion of 

cylindrical shafts and rotations of slabs.

• The polar moment of inertia is related to the 

rectangular moments of inertia,
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 Radius of Gyration of an Area

• Consider area A with moment of inertia 

Ix .  Imagine that the area is 

concentrated in a thin strip parallel to 

the x axis with equivalent Ix .

kx = radius of gyration with respect 

to the x axis
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 Radius of Gyration of an Area

• Similarly,
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 Sample Problem 01

Determine the moment of inertia of a triangle with respect to its base.

b
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 Sample Problem 01

SOLUTION:
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 Sample Problem 02

a) Determine the centroidal polar moment of inertia of a circular area by 

direct integration.

b) Using the result of part a, determine the moment of inertia of a circular area 

with respect to a diameter.

r
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 Sample Problem 02

SOLUTION:

• An annular differential area element is chosen,
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 Sample Problem 03

(a) Determine the moment of inertia of the shaded area shown with respect to each of 

the coordinate axe. 

(b) Using the results of part a, determine the radius of gyration of the shaded area 

with respect to each of the coordinate axes.
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 Sample Problem 03

SOLUTION:
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 Sample Problem 03

SOLUTION:
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 Sample Problem 03

SOLUTION:
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 Parallel Axis Theorem

• Consider moment of inertia I of an area A

with respect to the axis AA’

 dAyI 2

• The axis BB’ passes through the area centroid 

and is called a centroidal axis.
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 Parallel Axis Theorem

• Moment of inertia IT of a circular area 

with respect to a tangent to the circle,

• Moment of inertia of a triangle with 

respect to a centroidal axis,
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 Moments of Inertia of Composite Areas

• The moment of inertia of a composite area A about a given axis is obtained by 

adding the moments of inertia of  the component areas A1, A2, A3, ... , with 

respect to the same axis.
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 Moments of Inertia of Composite Areas
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 Moments of Inertia of Composite Areas
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 Moments of Inertia of Composite Areas
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 Sample Problem 04

The strength of a W14x38 rolled steel beam is 

increased by attaching a plate to its upper flange.  

Determine the moment of inertia and radius of 

gyration with respect to an axis which is parallel 

to the plate and passes through the centroid of the 

section.
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 Sample Problem 04

SOLUTION:

• Determine location of the centroid of composite section 

with respect to a coordinate system with origin at the 

centroid of the beam section.
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 Sample Problem 04

SOLUTION:
• Apply the parallel axis theorem to determine moments of 

inertia of beam section and plate with respect to composite 

section centroidal axis.

• Calculate the radius of gyration from the moment of inertia 

of the composite section.
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 Sample Problem 05

Determine the moment of inertia of the shaded area with respect to 

the x axis.



29

 Sample Problem 05

SOLUTION:

• Compute the moments of inertia of the bounding 

rectangle and half-circle with respect to the x axis.
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 Sample Problem 05

SOLUTION:
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 Product of Inertia

• Product of Inertia:

• When the x axis, the y axis, or both are an axis 

of symmetry, the product of inertia is zero.

 dAxyI xy

Unlike the moments of inertia Ix and Iy the product 

of inertia Ixy can be positive, negative, or zero.
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 Product of Inertia

• Parallel axis theorem for products of inertia:
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 Sample Problem 06

Determine the product of inertia of the right triangle

(a) with respect to the x and y axes and 

(b) with respect to centroidal axes parallel to the x and y axes.
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 Sample Problem 06

SOLUTION:

• Determine the product of inertia using direct integration 

with the parallel axis theorem on vertical differential 

area strips
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 Sample Problem 06

SOLUTION:

Integrating dIx from x = 0 to x = b,
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 Sample Problem 06

SOLUTION:

• Apply the parallel axis theorem to evaluate the 

product of inertia with respect to the centroidal axes.
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 Systematic Calculation of the Moment of Inertia



Parts iA  iy  ii yA  2

ii yA  igI  

1 1A  1y  11 yA  2

11 yA  1gI  

2 2A  2y  22 yA  2

22 yA  2gI  

3 3A  3y  33 yA  2

33 yA  3gI  

  iA   
ii yA  

2

ii yA   igI  
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 Systematic Calculation of the Moment of Inertia



Parts iA  iy  ii yA  2

ii yA  igI  

1 1A  1y  11 yA  2

11 yA  1gI  

2 2A  2y  22 yA  2

22 yA  2gI  

3 3A  3y  33 yA  2

33 yA  3gI  
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 Systematic Calculation of the Moment of Inertia
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 Sample Problem 07

Determine the moment of Inertia.
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 Sample Problem 07

SOLUTION:

Parts iA  iy  ii yA  2

ii yA  igI  

1 125255   5.22  5.2812  25.63281  42.260)5)(25(
12

1 3   

2 100205   10  1000  10000  33.3333)20)(5(
12

1 3   

3 57.12
2
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 43.212   67.3529  57.66917  48.3543  
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 Sample Problem 07

SOLUTION:

Parts iA  iy  ii yA  2

ii yA  igI  
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 Principal Axes and Principal Moments of Inertia

Given:

we wish to determine moments and

product of inertia with respect to

new axes x’ and y’.

Note:
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 Principal Axes and Principal Moments of Inertia

Similarly:
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 Principal Axes and Principal Moments of Inertia

• The equations for Ix’ and Ix’y’ are the parametric equations for a circle,

we eliminate      from Eqs. (I)

222)( RIII yxavex  

2

2

2
,

2
xy

yxyx

ave I
II

R
II

I 






 





N

yxI 

yI 

m2



46

 Principal Axes and Principal Moments of Inertia

• At the points A and B, Ix’y’ = 0  and Ix’ is a 

maximum and minimum, respectively.
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• Imax and Imin are the principal moments of inertia

of the area about O.

• The equation for      defines two angles, 90o apart 

which correspond to the principal axes of the area 

about O.
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2tan 
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We note that if an area possesses an axis of 

symmetry through a point O , this axis must be a 

principal axis of the area about O. On the other 

hand, a principal axis does not need to be an axis 

of symmetry; weather or not an area possesses 

any axes of symmetry, it will have two principal 

axes of inertia about any point O.
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 Sample Problem 08

For the section shown, the moments of inertia with respect to the x and y axes 

are Ix = 10.38 in4 and Iy = 6.97 in4.

Determine (a) the orientation of the principal axes of the section about O, and 

(b) the values of the principal moments of inertia about O.
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 Sample Problem 08

SOLUTION:

• Compute the product of inertia with respect to the xy axes 

by dividing the section into three rectangles.
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Apply the parallel axis 

theorem to each rectangle,

Note that the product of inertia with 

respect to centroidal axes parallel to the 

xy axes is zero for each rectangle.
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 Sample Problem 08

SOLUTION:

• Determine the orientation of the principal axes (Eq. 9.25) 

and the principal moments of inertia (Eq. 9. 27). 
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 Mohr’s Circle for Moments and Products of Inertia

• Mohr’s circle may be used to graphically or 

analytically determine the moments and 

product of inertia for any other rectangular 

axes including the principal axes and 

principal moments and products of inertia.

Introduced by the German engineer Otto Mohr 

(1835-1918) and is known as Mohr's circle.

• The moments and product of inertia for an area are 

plotted as shown and used to construct Mohr’s circle,
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 Mohr’s Circle for Moments and Products of Inertia
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 Sample Problem 09

The moments and product of inertia with respect to the x and y axes are 

Ix = 7.24x106 mm4, Iy = 2.61x106 mm4, and Ixy = -2.54x106 mm4.

Using Mohr’s circle, determine (a) the principal axes about O, (b) the values of 

the principal moments about O, and (c) the values of the moments and product 

of inertia about the x’ and y’ axes
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 Sample Problem 09

SOLUTION:

• Plot the points (Ix , Ixy) and (Iy ,-Ixy).  

Construct Mohr’s circle based on the circle 

diameter between the points.
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 Sample Problem 09

SOLUTION:

• Based on the circle, determine the orientation of the 

principal axes and the principal moments of inertia.
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 Sample Problem 09

SOLUTION:

The points X’ and Y’ corresponding to the x’ and y’ axes 

are obtained by rotating CX and CY counterclockwise 

through an angle      2(60o) = 120o.  The angle that CX’

forms with the x’ axes is f = 120o - 47.6o = 72.4o.

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