CHAPTER 2

Kinematics of Particles



Kinematics of Particles

J Introduction

* Dynamics includes:

Kinematics : study of the geometry of motion.
Relates displacement, velocity, acceleration, and time without reference to the

cause of motion.
]?thrust

drag

Kinetics : study of the relations existing between the forces acting on a
body, the mass of the body, and the motion of the body. Kinetics 1s used to
predict the motion caused by given forces or to determine the forces required

to produce a given motion.



Kinematics of Particles

J Introduction

Kinematics relationships are used to help us
determine the trajectory of a golf ball, the orbital
speed of a satellite, and the accelerations during
acrobatic flying.




Kinematics of Particles

J Introduction
 Particle kinematics includes:

 Rectilinear motion: position, velocity, and acceleration of a particle as it

moves along a straight line.

 Curvilinear motion: position, velocity, and acceleration of a particle as it
moves along a curved line in two or three dimensions.




Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

A :g: Ly }Pl At . Rec.tiline.ar motion: particle moving along a
] - straight line
1 " : »

PP O " « Position coordinate: defined by positive or
H——#—=————+——++++—,  negative distance from a fixed origin on the

- line.

X

% ) « The motion of a particle is known if the

position coordinate for particle is known for
every value of time t.

 May be expressed in the form of a function,

e.g.,
[ X =6t° —t’ ]

t(s) or in the form of a graph X vs. t.




Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

2
X Ax  Consider particle which occupies position P
OJ: l l > at time t and P’ at t +At,
(t) (t+At) X
: AX
[ Average velocity = At]
P v>0
l > : . AX
x Instantaneous velocity =v=Iim —
v < () | At—0 At
) | P _
i}

 Instantaneous velocity may be positive

(Increasing x) or negative (Decreasing X).
Magnitude of velocity is referred to as
particle speed.



Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

* From the definition of a derivative,

. Ax _dx
V= lim —=—
At0 At dt




Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

P v P piAv  Consider particle with velocity v at time t and
.| ,I " V +Av at t +At,
)  (t+Ae) =

. AV
[Average acceleration = Nt ]

AV

Instantaneous acceleration =a = lim —
At—0 At

v v’
— —
P P’
o o >

% o Positive ( Av>0) : increasing positive velocity

 Instantaneous acceleration may be:

P

a>0

An object going right (+) and speeding up (+) has positive acceleration = (+)X(+) =(+)



Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

L.' l.
P,‘ &  Instantaneous acceleration may be:

— —a- >

x o Positive ( Av>0) : decreasing negative velocity

—————

a>0

An object going left (-) and slowing down (-) has positive acceleration = (=) x(—) =(+)

P P’ * Instantaneous acceleration may be:

o Negative (Av <0 ) : decreasing positive velocity

]

a<(

An object moving right (+) and slowing down (-) has negative acceleration = (+)x (=) =(-)

v’ v

RE— ——  Instantaneous acceleration may be:

x o Negative (Av <0 ) : increasing negative velocity

a<() ‘

An object going left (-) and speeding up (+) has negative acceleration = (=) x(+)=(-)



Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

* From the definition of a derivative,

dx d?x
a:limAV:dV W
At—)OAt dt

e.g. v=12t-3t

[ a=dV=12—6tJ
dt




Kinematics of Particles
1 Concept Quiz

What is true about the kinematics of a particle?

a)
b)

c)

d)

The velocity of a particle 1s always positive

The velocity of a particle 1s equal to the slope of
the position-time graph

If the position of a particle 1s zero, then the
velocity must zero

If the velocity of a particle 1s zero, then its
acceleration must be zero



Kinematics of Particles

L Rectilinear Motion: Position, Velocity & Acceleration

x(m)

39 e From our example,

dx ) dv  d?x
_at2 3] [v=—"=12t-3t7] la= — = =12 —6t
[X ° t] [ dt ] [ dt  dt? J

 Whatarex,v,andaatt=2s?

-att=2s, x=1l6m,v=v,,=12m/s, a=0

* Note that v, occurs when a =0, and that the
slope of the velocity curve is zero at this point.

e Whatarex,v,andaatt=4s?

~att=4s, X=Xp,=32m,v=0, a=-12 m/s?

* Note that X, occurs when vV =0, and that the
slope of the position curve is zero at this point.




Kinematics of Particles

J Determination of the Motion of a Particle

* We often describe motion based on accelerations

Generally have three classes of motion

acceleration given as a function of time, g = f (1)

acceleration given as a function of position, a = f (x)

acceleration given as a function of velocity, @ = f (V)

e Can you think of a physical example of when force is a
function of position? When force is a function of velocity?

(U

a spring drag

14



Kinematics of Particles

1 Acceleration as a function of time, position, or velocity

I. Acceleration as a function of time:

dv
a=q T dv=ad dv = a(t)dt “dv=[at)dt
Vv=a — v=| a
aza(t) |~ () J, dv=] at)
:>[v—v0: ';a(t)dt ]
v:% = dx=vdt = dx:(vo+fa(t)dtjdt
dt 0

= J'Xxodx = j(: (VO + _[; a(t) dt) dt = [ X—X, =Vt + J-(: '[; a(t) dtdt]

The motion of a particle is known for every value of time t.




Kinematics of Particles

1 Acceleration as a function of time, position, or velocity

II. Acceleration as a function of position:

v=% = dtzﬁ
t Y
azﬂ = dt:ﬂ
t a

- =

dx dv

—=— = vdv=adx ; ]

v o a =
a=a(x) = vav=a(x)ax

v o 1 5 ] >
= vdv = XOa(x)dx = [2v _EVO _Loa(x)dx]

dx

v:% = dt—%: dt =
dt —>V
N
N tzJ; dx
\/v +2 a(x)dx
. J

= j;dtz ' ax

\/v +2 a(x)dx XO\/V +2 a(x)dx

The motion of a particle is known
for every value of time t.




Kinematics of Particles
1 Acceleration as a function of time, position, or velocity

III. Acceleration as a function of velocity:

a)
a—ﬂ = dt—ﬂ
dt a} Lo g v
a=a(v) a(v) 0 Yo a(V) Yo a(V)
:>[v:v(t)]
v=% = dx=vdt ] ] . ,
v =V(t) = Gevihd = Jxodx=jt0v(t)dt

:>[ X—X, :jt:v(t)dt ]

The motion of a particle is known
for every value of time t.



Kinematics of Particles

1 Acceleration as a function of time, position, or velocity

III. Acceleration as a function of velocity:

b)
V:% = dt:% dx dv v
gt C\I/ s = y =— = dx=—dv
a:—v = dt= v A - = dx:Ldv
L a=a(v) a(v)
vV
— [Tdx= —dv = | x—-x,=| —dv V =V(X
Xo Vo a(v) [ 0 Vo a(v) ] = [ ( ) ]
v:% = dt:%

dt VAR G SN jtdt: RS O S
vV =V(X) V(X) O V() % V(X)

The motion of a particle is known for every value of time t.




Kinematics of Particles

L Acceleration as a function of time, position, or velocity

dv = a(t) dt v-v, = [ a(tdt
a= a(t) t ot
dx =vdt X—X, =Vt + jo _[0 a(t) dtdt
vdv = a(x)dx 1y 1,2 :jx a(x) dx
2 2"
a=a(x) N o
=" ° \/voz +2[ a(x)dx
dt:ﬂ t= v = v=V()
a(v) Yo a(V) t
dx =v(t)dt X=X, =_[t v(t)dt
a=a(v) et EEEEEEEEEEY P L L L e L L
dx = ——dv X—X, = Y = V=V(X)
a(v) v a(V)
dt = ax _xdx
V(X) % V(X)




Kinematics of Particles

(J Uniform Rectilinear Motion

During free-fall, a parachutist
reaches terminal velocity when
her weight equals the drag
force. If motion is in a straight
line, this is uniform rectilinear
motion.

y ’v

For a particle in uniform
rectilinear motion, the
acceleration is zero and
the velocity is constant.

dx

— =V = constant
dt

= jdx:vj)'dt

= X—X, =Vt

= [x: x0+vt]

Careful — these only apply to
uniform rectilinear motion!

20



Kinematics of Particles

J Uniformly Accelerated Rectilinear Motion

For a particle in uniformly accelerated rectilinear motion, the
acceleration of the particle is constant.

%:a:cte = dv=adt = J'Vdv=aj(:dt = V-V, =at :>[v=v0+at]

dx dx X t
E:V = a:vo+at = dx=(v,+at)dt = jxodx=_[0(v0+at)dt

1 1
= x—x():vot+5at2 :>[x=x0+v0t+2at2]

v _ascte = vdv—adk = _[Vvdv=a dx = lvz—lvozza(x—xo)
dx Yo % 2 2

= [v2 =V, +2a(x - xo)]

21



Kinematics of Particles

J Uniformly Accelerated Rectilinear Motion

Careful — these only apply to uniformly

accelerated rectilinear motion!

a = cte

Relate velocity to time

Relate position to time

Relate velocity to Position

v=V(t)

X = X(t)

V=V(X)

[v:v0+at]

1
[x =X, +V,t +2at2]

[v2 =V, +2a(x - xo)]

22



Kinematics of Particles
1 Sample Problem 01

Ball tossed with 10 m/s vertical velocity
from window 20 m above ground.

Determine:

a) velocity and elevation above ground at
time t,

- [
L S
| -y
o —
| [
pr—— wonizin
- —_
- ewmsen Lty
sy -y
——— oo

b) highest elevation reached by ball and
corresponding time, and

c) time when ball will hit the ground and
corresponding velocity.



Kinematics of Particles
1 Sample Problem 01

t/%: +10 m/s

—
;‘\“a =-9.81 m/s2

yo=+20m




Kinematics of Particles
J Sample Problem 01

SOLUTION:
(a):

t pt
y(t) -y, =V t+ jo jo a(t) dtdt

= y()-20=10t+ [ (-9.81)dtdt

= y(t)—ZO:IOt—%(9.81)t2

= [ y(t) =20+10t —(4.905)t* ]

.
—
L]
il
—
L
il
i
ity
-
emern
L]
[l
s
i

BE B EID RN RN

t/vo= +10 m/s

()_F

y0= +20 m

~a =-9.81 m/s2




Kinematics of Particles
1 Sample Problem 02

Brake mechanism used to reduce gun recoil consists of piston attached to barrel
moving in fixed cylinder filled with o1l. As barrel recoils with itial velocity v,
piston moves and oil i1s forced through orifices in piston, causing piston and
cylinder to decelerate at rate proportional to their velocity. a = —kv

Determine v (t ), X (t ), and v (X ).

Piston

Oil

26



Piston

Kinematics of Particles
J Sample Problem 02

SOLUTION: oil

27



Kinematics of Particles
d Sample Problem 03

The spring-mounted slider moves 1n the
horizontal guide with negligible friction
and has a velocity V, 1n the x-direction as it X
crosses the mid-position where x=0 and =
t=0. The two springs together exert a ‘
retarding force to the motion of the slider,
which gives it an acceleration proportional
to the displacement but oppositely directed
and equal to @ = —k”X, where k is constant.

HVVAVAAAANAN . AV

Determine the expressions for the
displacement and velocity as functions of
the time.



Kinematics of Particles
d Sample Problem 03

SOLUTION:

ANV

RV




Kinematics of Particles
d Sample Problem 03

SOLUTION:

This motion is called simple harmonic motion and is
characteristic of all oscillations where the restoring
force, and hence the acceleration, is proportional to
the displacement but opposite in sign.

Fa il

AN

. &u\r\:\i\:\:\;\f\r\n

30



Kinematics of Particles
d Sample Problem 04

During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height sz
reached by the rocket and its speed just before it hits the ground.
While in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s* due to gravity. Neglect the effect of air
resistance.

Vg = 0

Sp

v, =75m /ST

i

54 =40m

— ty —=




Kinematics of Particles
d Sample Problem 04



Kinematics of Particles
d Sample Problem 05

The car starts from rest and accelerates
according to the relationship

a=3-0.001v’

It travels around a circular track that has
a radius of 200 meters. Calculate the
velocity of the car after it has travelled
halfway around the track. What 1s the
car’s maximum possible speed?

33



Kinematics of Particles

J Sample Problem 05
SOLUTION:

Given: a=3-0.001v" Find: v after 2 lap
Vo=0,r=200m Maximum speed



Kinematics of Particles

(J Motion of Several Particles

We may be interested in the motion of several different particles,
whose motion may be independent or linked together.

35



Kinematics of Particles

(1 Motion of Several Particles: Relative Motion

For particles moving along the same line, time O A
should be recorded from the same starting — | T
instant and displacements should be measured AT *B/A
from the same origin in the same direction.

Xg/a = Xg — X, = relative position of B

[XB:XA+XB/A]

Vg/a = Vg —V, = relative velocity of B

[ Vg =VA+VB/A ]

dg p = Ay —a, = relative acceleration of B

[aB :aA+aB/A]

with respect to A

with respect to A

with respect to A

[ Je

Y

Y

B

Xg,a >0
Particle B at right hand side of Particle A

Vg, a >0

An observer at point A, see the particle B
which increases distance from A.

=Y



Kinematics of Particles
1 Sample Problem 06

Ball thrown vertically from 12 m level
in elevator shaft with initial velocity of
18 m/s. At same instant, open-platform
elevator passes 5 m level moving

upward at 2 m/s.

Determine (a) when and where ball hits
elevator and (b) relative velocity of ball

and elevator at contact.

a = -9.81 m/s2

yo=12m

37



Kinematics of Particles
1 Sample Problem 06

Vo= 18 m/s

L =0
= 2 = -9.81 m/s2

Yo=12m

38



Kinematics of Particles
1 Motion of Several Particles: Dependent Motion s

 Position of a particle may depend on position of one
or more other particles.

X
* Position of block B depends on position of block A. ]
Since rope is of constant length, it follows that sum of —"—h
lengths of segments must be constant. = @) -
lac +lpe g = ko =Cte Z—-—"—

= (Xx,—0C)+ (X —OC—-FB)+(xz; —FB) =1,

N

= X, +2Xg =l +20C+2FB =cte = [XA +2xg, =cte | (one degree of freedom)

v

d;uzd;(B:o = | v, +2v, =0
X, +2X; =Cte = <dt dt

Ya 2% o o a,+2a; =0

| dt dt L )




Kinematics of Particles
1 Motion of Several Particles: Dependent Motion

» Positions of three blocks are dependent.

[ZX AT 2Xg + X = CteJ (two degrees of freedom)

 For linearly related positions, similar relations hold

between velocities and accelerations. B Y
dx dx dx ( )
2—A LB L TC 0 or | 2va+2vg +Ve =0
dt dt \ J
dv dv dv ( )
2th+2 B 4 dtC:O or [ 2a, +2ag +ac =0




Kinematics of Particles

J Sample Problem 07

Pulley D is attached to a collar which
is pulled down at 3 in./s. Att =0,
collar A starts moving down from K
with constant acceleration and zero
initial velocity. Knowing that velocity
of collar A is 12 in./s as it passes L,
determine the change in elevation,
velocity, and acceleration of block B
when block A 1s at L.

41
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1 Sample Problem 07 (x
XA

Kinematics of Particles



Kinematics of Particles

J Sample Problem 08

SOLUTION:

43



Kinematics of Particles

d Sample Problem 08

44



Kinematics of Particles

1 Sample Problem 09

Slider block A moves to the left with a
constant velocity of 6 m/s. Determine the
velocity of block B.

45



Kinematics of Particles
d Sample Problem 09

SOLUTION:

Given: v,=6 m/s left Find: vy

46



Kinematics of Particles

J Sample Problem 10

Slider block B moves to the right with a constant velocity of 300 mm/s.
Determine (a) the velocity of slider block A, (b) the velocity of portion C of the
cable, (¢) the velocity of portion D of the cable, (d) the relative velocity of
portion C of the cable with respect to slider block A.

 (m)
,F - . C (.t: R
| =D : J

A
T




Kinematics of Particles

J Sample Problem 10

SOLUTION:

48



Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

180

160 f
140

Acceleration data from
a head impact during a
round of boxing.

100

Acceleration (g)

[N
o o N
S O o
N_
—d |, |
e
[ BN B e oy

0 i
o et &

47.76 47.77 47.78 47.79 47.8 47.81

Time (s)




Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

A)

ds

ds v:@‘
Y drle=0"2" driln

f.
/ v ds / e — ds
/

When a particle has erratic or changing motion
'lfﬁ‘rl 37 dl |t

then its position, velocity, and acceleration cannot
be described by a single continuous mathematical
function along the entire path. Instead, a series of

52

functions will be required to specify the motion at 53
different intervals. For this reason, it is convenient
to represent the motion as a graph. O" f ty s :
v
ds N
= —
dt
Yo V1
slope of :
= velocity o\ ¢
s—t graph 3




Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

v

_dv _dv
b ="drlr=0" df‘fz p
\ _dv
\ Codt ‘53
dv
dt
t
O [ [ [ slope of .
1 2 3 . f . — acceleration
i grap




Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

; Av

fadr

change in area under
velocity a—t graph




Kinematics of Particles

J Granhical Solution of Rectilinear-Motion Problems

51

S0

As

displacement

/vdr

area under
v—I graph

53



Kinematics of Particles

 Graphical Solution of Rectilinear-Motion Problems

§1

(a)

Vo

51
2 — ) = / ads
So

area under
a—s graph

51

54



Kinematics of Particles

(J Graphical Solution of Rectilinear-Motion Problems

v
dv
ds ™

Ty

5 — (a‘v)
a = v| —
(a) =

velocity times
acceleration = slope of
v—s graph

/-—'_ e,
dy

a = v(dv/ds)

— —..|



Kinematics of Particles

L Other Graphical Methods

 Method to determine particle v
acceleration from v-X curve:

~ ™

a:vy =ABtand =BC
dx

\_ y




Kinematics of Particles
1 Sample Problem 11

A bicycle moves along a straight road such that its position is described
by the graph shown in Fig. 12-13a. Construct the v—f and a— graphs

tor 0 = 1p=30%.
s (ft)

500 ﬁ)

s =20 — 100

100

10 30



Kinematics of Particles
1 Sample Problem 11



Kinematics of Particles
d Sample Problem 12

The v—s graph describing the motion of a motorcycle is shown in
Fig. 12-15a. Construct the a—s graph of the motion and determine the
time needed for the motorcycle to reach the position s = 400 ft.

v (ft/s)

v=02s + 10

s
50 / e

10

fi
200 200 AL

(a)

59



Kinematics of Particles
d Sample Problem 12

ﬁ
v (ft/s) ’

50

10

v =025+ 10

v = 50

f
|

200

s (ft
200 S

(a)

60



Kinematics of Particles

L Quiz

The v—s graph of a cyclist traveling along a straight road is
shown. Construct the a—s graph.

%

v (ft/s) ti

ey
54—
_v==0045+19
v=0.1s+5
5
| s (ft)

|
100 350



Kinematics of Particles

U Curvilinear Motion: Position, Velocity & Acceleration

A particle moving along a curve other than a straight line 1s in
curvilinear motion.

62



Kinematics of Particles

U Curvilinear Motion: Position, Velocity & Acceleration

» The position vector of a particle at
time t 1s defined by a vector between
origin O of a fixed reference frame
and the position occupied by particle.

F

 Consider a particle which occupies position P defined by I at time t
and P'defined by 1'"at t + At



Kinematics of Particles

1 Curvilinear Motion: Position, Velocity & Acceleration

Instantaneous velocity Instantaneous speed
(vector) (scalar)




Kinematics of Particles

U Curvilinear Motion: Position, Velocity & Acceleration

 Consider velocity V of a particle at time t and velocity V' att + At,

instantaneous acceleration (vector)

Y




Kinematics of Particles

1 Curvilinear Motion: Position, Velocity & Acceleration

where Av = v’ — v. To study this time rate of change, the two velocity
vectors 1n Fig. 12-16d are plotted in Fig. 12-16¢ such that their tails are
located at the fixed point O' and their arrowheads touch points on a
curve. This curve is called a hodograph. and when constructed. it describes
the locus of points for the arrowhead of the velocity vector in the same
manner as the path s describes the locus of points for the arrowhead of
the position vector, Fig. 12-16a.

By definition of the derivative, a acts
tangent to the hodograph, and, in general it
1s not tangent to the path of motion.

66



Kinematics of Particles

] Derivatives of Vector Functions

e Let I3(u ) be a vector function of scalar variable u,

Plu + Au)

AP

dP
du

AP
Au—0 AU

—=]lim —=1lim

Au—0

P(u+Au)-

Ol

(u)

AU




Kinematics of Particles

J Derivatives of Vector Functions
* Derivative of vector sum,

d(P+Q) dl5+d(§
du  du du

* Derivative of product of scalar and vector functions,

(d(fIS)_df§+fd_I3
Ldu du du

 Derivative of scalar product and vector product,

(4P+Q)_aP 5 5,00
du du du

d(lSX(j): dls)((j—l—lsxg

\ du du u




Kinematics of Particles
d Rectangular Components of Velocity & Acceleration

* When position vector of particle P is given by its
rectangular components,

[ F=Xi+Vy]+zk ]

* Velocity vector,

4 N
V=—I +—T+$IZ:XT+ yj + 2k
dt  dt” dt
=V, i +V, ] +V,k
g Y,




Kinematics of Particles
d Rectangular Components of Velocity & Acceleration

* When position vector of particle P is given by its
rectangular components,

[ F=xi+Vy]+zK ]

» Acceleration vector,

fé—dzxf+d y]+d—|2 Xl+yj+Zk\
dt*>  dt* " dt’

=a,l +a,]+aKk

J

70



Kinematics of Particles

J Sample Problem 13

The curvilinear motion of a particle is
defined by v, =50-16t and y=100—4t",
where v 1s in meters per second, y is in
meters, and t 1S in seconds. It 1s also
known that x=0 when t=0.

Plot the path of the particle and
determine its velocity and acceleration
when the position y=0 1s reached.

Path

xi i



Kinematics of Particles

J Sample Problem 13
SOLUTION:



Kinematics of Particles

J Sample Problem 13

=0

1004
1> 9
80 AN

60 %
40 L}/j

20 £
/
t:ES/

[] 1

0 20 40 o 60 80
X, n

Y, m
"--...____‘_‘_‘_
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Kinematics of Particles

d Sample Problem 14

At any instant the horizontal position of the weather balloon in
Fig. 12-18a 1s defined by x = (8¢) ft, where ¢ 1s in seconds. If the
equation of the path is y = x*/10. determine the magnitude and
direction of the velocity and the acceleration when r = 2 s.

)
I
‘>—.
(%)

—_—
@)

16 ft

74



Kinematics of Particles

d Sample Problem 14

75



Kinematics of Particles

d Sample Problem 15

For a short time, the path of the plane in Fig. 12-19a 1s described by
y = (0.001x%) m. If the plane is rising with a constant upward velocity of

10 m /s, determine the magnitudes of the velocity and acceleration of the
plane when it reaches an altitude of y = 100 m.

76



Kinematics of Particles

J Sample Problem 13



Kinematics of Particles

d Rectangular Components of Velocity & Acceleration

* Rectangular components particularly effective
when component accelerations can be integrated
independently, e.g., motion of a projectile,

[aX:X':O a, =y=-g aZ:‘z':O] (vyo

with initial conditions,

g SdndliE e

bo=¥o=2,=0 (W00 (), =0]

Integrating twice yields

Ve = (Yy)o vy :(V )o — Ot v, =0
X=(U)t y=(v,)t-1gt> 2=0




Kinematics of Particles

d Rectangular Components of Velocity & Acceleration

« Equation motion of projectile

X
= ol t=——
" (VX) - [ (VX)O]

V)t Lgt » XT
y=) = Y= ”’(( )J 2 ((voo

2 2
. X X g X
= =V, sind —1 = |y=Xtanf -1
Y=Y [VO 0059] 29 [VO cosﬁj [ ? VO2 cos’ 9]




Kinematics of Particles

d Rectangular Components of Velocity & Acceleration

Independently motion of a projectile

e Motion in horizontal direction is uniform.

* Motion in vertical direction is uniformly
accelerated.

* Motion of projectile could be replaced
by two independent rectilinear motions.




Kinematics of Particles

J Sample Problem 16

A projectile 1s fired from the edge 180 m/s
of a 150-m cliff with an initial
velocity of 180 m/s at an angle of
30° with the horizontal. Neglecting
air resistance, find
(a) the horizontal distance from the 150 m
gun to the point where the |
projectile strikes the ground,
(b) the greatest elevation above the >l
ground reached by the < X
projectile.
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Kinematics of Particles
Given: (v), =180 m/s (y), =150 m

d Sample Problem 16 (@), =-9.81m/s> (a), =0 m/s?
SOLUTION:

180 m/s
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Kinematics of Particles

d Sample Problem 17

A baseball pitching machine “throws” baseballs with a
horizontal velocity v,. If you want the height h to be 42
in., determine the value of v,,.

40 ft

A
\

R

h
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Kinematics of Particles

d Sample Problem 11

40 ft

SOLUTION:

Given: x=40 ft, y, =S ft,

L
0! BA

y=42 in.
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Kinematics of Particles

(J Motion Relative to a Frame in Translation

A soccer player must consider the It is critical for a pilot to know the relative
relative motion of the ball and her motion of his aircraft with respect to the
teammates when making a pass. aircraft carrier to make a safe landing.
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Kinematics of Particles

(J Motion Relative to a Frame in Translation

« Designate one frame as the fixed frame of Y
reference.  All other frames not rigidly
attached to the fixed reference frame are
moving frames of reference.

 Position vectors for particles A and B with respect to
the fixed frame of reference Oxyz are Ta and Ig.

* Vector Tg/a joining A and B defines the position of
B with respect to the moving frame Ax'yz’ and

"




Kinematics of Particles

(J Motion Relative to a Frame in Translation

Y

e Absolute motion of B can be obtained by
combining motion of A with relative motion of
B with respect to moving reference frame

attached to A.
[ Iy :FA+FB/A ]

r Vg =Va+Vp/a | VB/A = velocity of B relative to A.

« Differentiating twice,

4 N

dg=dp +dpg/a dg/p = acceleration of B relative to A.

\




Kinematics of Particles

J Sample Problem 18

Automobile A 1is traveling east at the
constant speed of 36 km/h. As automobile

A crosses the intersection shown, -1.2 m/s®
automobile B starts from rest 35 m north
of the intersection and moves south with a
constant acceleration of 1.2 m/s2. I

| o Y
Determine the position, velocity, and 36 kmi/h

acceleration of B relative to A, 5s after A
crosses the intersection.




Kinematics of Particles

J Sample Problem 18
SOLUTION:

Given:
v,=36 km/h, a,=0, (x,),=0
(vp)=0, ag=- 1.2 m/s?, (yg),=35m

;o
1.2 m/s”

36 km/h

l

| g
35 m TB

|

Y

/ A

~(—3CA—>|
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J Sample Problem 18



Kinematics of Particles

1 Tangential and Normal Components

If we have an idea of the path of a vehicle, it is often convenient
to analyze the motion using tangential and normal components
(sometimes called path coordinates).

91



Kinematics of Particles

 Tangential and Normal Components

4
 The tangential direction (e,) 1s y

tangent to the path of the particle.

* This velocity vector of a particle is in
this direction
(e )

* The normal direction (e,) is
perpendicular to e, and points
towards the inside of the curve.

* The acceleration can have components . dv o 1 v’ .
=—e +—

. L = the instantaneous
in both the e, and e, directions dt o " P

radius of curvature




Kinematics of Particles

1 Tangential and Normal Components

* To derive the acceleration vector in tangential
and normal components, define the motion of a
particle as shown in the figure.

* 6 and & are tangential unit vectors for the
particle path at P and P’ |
o

« When € and & are drawn with respect to the x
same origin, A& =& —€;andA@ is the angle
between them.

Ae, =2lesin(A6/2) = Ae =2sin(A6)/2)

lim 28 _ i, SIn(46/2)
A0 A  AO—0 A@/Q




Kinematics of Particles y

1 Tangential and Normal Components

o}

X

Thus, the vector obtained in the limit is a unit vector along the normal to
the path of the particle in the direction toward which e, turns. Denoting
this vector by e,, we have

Ae,

e, = lim —
T Ag—=0 AB
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Kinematics of Particles

1 Tangential and Normal Components

» With the velocity vector expressed as y — V&,
the particle acceleration may be written as

After substituting,

_odv. (1 _dv. Vv’
= ad=—~¢ +V(e,) —|(v) =|a=—¢+—
dt P P




Kinematics of Particles

1 Tangential and Normal Components

_ dv
a‘ t
dt

Ve
+—€,
o,

 The tangential component of acceleration
reflects change of speed and the normal
component reflects change of direction.

* The tangential component may be positive or
negative. Normal component always points
toward center of path curvature.




Kinematics of Particles

1 Tangential and Normal Components

 Relations for tangential and normal acceleration

also apply for particle moving along a space curve. y
Osculating

plane

* The plane containing tangential and normal unit
vectors is called the osculating plane.

e The normal to the osculating plane is found from

O» X
6, = 6; x6&, /
e, = principal normal Z
€, =binormal

» Acceleration has no component along the binormal.



Kinematics of Particles

d Sample Problem 19

A motorist 1s traveling on a curved
section of highway of radius 2500 ft
at the speed of 60 mi/h. The motorist va =60 mi/h &
suddenly applies the brakes, causing

the automobile to slow down at a
constant rate. Knowing that after 8 s
the speed has been reduced to 45
mi/h, determine the acceleration of

the automobile immediately after the
brakes have been applied.

2500 ft
\



Kinematics of Particles

d Sample Problem 19
SOLUTION:

2500 ft

TS
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Kinematics of Particles

J Sample Problem 20

The tangential acceleration of the
centrifuge cab is given by

a, = 0.5t (m/s%)

where t is in seconds and a; 1s in
m/s>. If the centrifuge starts from
rest, determine the total acceleration
magnitude of the cab after 10
seconds.
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Kinematics of Particles

J Sample Problem 20
SOLUTION:

< Sm >

Top View

101



Kinematics of Particles

d Sample Problem 14

SOLUTION:
Determine the normal acceleration

g =t -2 = [an:78.125(m/32)]

Top View

Determine the total acceleration magnitude

a=.a’+a’ =+78.125%+5° €t

= [a:78.285 (m/sz)]

102



Kinematics of Particles

1 Sample Problem 21

To anticipate the dip and hump in the road, the driver of a car applies her brakes to produce a
uniform deceleration. Her speed is 100 km/h at the bottom A of the dip and 50 km/h at the
top C of the hump, which is 120 m along the road from A. If the passengers experience a
total acceleration of 3m/s® at A and if the radius of curvature of the hump at C is 150m,

Calculate 5

(a) the radius of curvature at A, 60 m

(b) the acceleration at the inflection point B W
(c) the total acceleration at C. B 150 m

A |



Kinematics of Particles

C

1 Sample Problem 21 WWT

SOLUTION: o s

A |

104



Kinematics of Particles

 Radial and Transverse Components

By knowing the distance to the aircraft and the
angle of the radar, air traffic controllers can
track aircraft.

Fire truck ladders can rotate as well as extend;
the motion of the end of the ladder can be
analyzed wusing radial and transverse
components.

105



Kinematics of Particles o

(J Radial and Transverse Components

» The position of a particle P is expressed as a distance r
from the origin O to P — this defines the radial direction
e, The transverse direction ey 1s perpendicular to e,

[F:rér]

O
* The particle velocity vector is * The particle acceleration vector is
[\7 (€ +rog, ] [é:(r—r92)§r+(ré+2f9)§9]

[vr:r & vezré] [ar:'r'—ré'?2 & aezré"+2r'9']




Kinematics of Particles

(J Radial and Transverse Components

« We can derive the velocity and acceleration

relationships by recognizing that the unit vectors
change direction.

de, _de; do __ do
dt  do dt 7 dt

de, de,do _ do

= =—8 —
dt d@ dt dt K

-_—ea - e - - - e . . - e

g EEm EEm S S S S e o S E—

e



Kinematics of Particles

(J Radial and Transverse Components

[\7:r'§r+r9§9]

 Similarly, the particle acceleration vector is

de, deydo  _ do

é:ﬂ:(ﬁé +rd§fj+ aros +rd—9é' vro % |ﬂ:~9 dE——*r‘l
dt  \dt ' dt dt ¢  dt ¢ dt ) ! dé dé |
dv : : . . : dé; :déf dg:é do |

- é:d—:('r'é}+|*6’é’9)+(r'6?é'9+r9é9+r<9(—6?é})) ' dt dodt U dt !
t : :

" I

= =—8 —
cdt  do dt dt
/

e I L

= [ d=(F-r6*)& +(ré+2ro)g, ]




Kinematics of Particles 5

D
S
(D

 Radial and Transverse Components

The components of velocity and
acceleration in circle motion

r=cte = f=f=0

V=rg +roe [\7=r9é’ ]
- r 7 2]

= (,if— ro*)e +(ro + 2/19)(9’(9

| a=-ré% +rds, |




Kinematics of Particles

1 Radial and Transverse Components

When particle position is given in cylindrical coordinates, it
1s convenient to express the velocity and acceleration vectors

—

using the unit vectors &g, €, and k.

Position vector,

r=Reé,+zk
Velocity vector, .
_dr L L
V:E = |V=Re&; +ROE, + Zk
Acceleration vector,
_adv N o . T
d=— = |a=(R-RO#*)E, +(RO+2RO)E, + 7k

t
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Kinematics of Particles

J Sample Problem 22

Rotation of the arm about O 1s defined
by €= 0.15t 2where @ is in radians and
t in seconds. Collar B slides along the
arm such that r = 0.9 - 0.12t 2 where r is
1n meters.

After the arm has rotated through 30°,
determine (@) the total velocity of the
collar, (b) the total acceleration of the
collar, and (C) the relative acceleration
of the collar with respect to the arm.




Kinematics of Particles

J Sample Problem 22




Kinematics of Particles

J Sample Problem 23

The angular acceleration of the
centrifuge arm varies according to

0=0.056 (rad/s?)

where 0 1s measured in radians. If the
centrifuge starts from rest, determine the
acceleration magnitude after the gondola
has travelled two full rotations.
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Kinematics of Particles

J Sample Problem 23

SOLUTION:

114



Kinematics of Particles

d Group Problem Solving

What would happen if you
designed the centrifuge so
that the arm could extend
from 6 to 10 meters?

You could now have additional acceleration terms. This might
give you more control over how quickly the acceleration of the
gondola changes (this 1s known as the G-onset rate).

d=(F+r6%)E +(ré +2r 0)g,

115



Kinematics of Particles

d Sample Problem 24

An aircraft P takes off at A with a
velocity Vo of 250 km/h and climbs 1n
the vertical y’'—z' plane at the constant
15" angle with an acceleration along its
flight path of 0.8 m/s* . Flight progress
1s monitored by radar at point O.
Resolve the wvelocity of P into
cylindrical-coordinate components 60
seconds after takeoff and find
for that instant. g Oand 2

P
-y r 8
S I
. 7 |z -y
o -
3 km>™ | —
AN Lﬁ( B 157
NP
A~



Kinematics of Particles

d Sample Problem 24
SOLUTION:
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Kinematics of Particles

d Sample Problem 24
SOLUTION:
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Kinematics of Particles

d UNITS CONVERSION TABLES

Table 1: Multiples and Submultiples of Sl units

Prefix | Symbol Multiplying Factor

exa E 10" 1000 000 000 000 000 000

peta P 10" 1 000 000 000 000 000

tera T 10" 1 000 000 000 000

giga G 10° 1 000 000 000

mega M 10° 1 000 000

kilo k 10° 1 000

hecto* h 107 100

deca* da 10 10

deci* d 107 0.1

centi c 10 0.01

milli m 10 0.001

micro u 10° 0.000 001

nano N 107 0.000 000 001

pico D 107" 0.000 000 000 001
femto f 107" 0.000 000 000 000 001
atto a 107" 0.000 000 000 000 000 001

* these prefixes are not normally used




Kinematics of Particles

d UNITS CONVERSION TABLES

Table 2: Length Units

Millimeters | Centimeters | Meters Kilometers Inches Feet Yards Miles
mm cm m km In ft yd mi
1 0.1 0.001 0.000001 0.03937 | 0.003281 | 0.001094 | 6.21e-07
10 1 0.01 0.00001 0.393701 | 0.032808 | 0.010936 | 0.000006
1000 100 1 0.001 39.37008 | 3.28084 | 1.093613 | 0.000621
1000000 100000 1000 1 39370.08 | 3280.84 | 1093.613 | 0.621371
254 2.54 0.0254 0.000025 1 0.083333 | 0.027778 | 0.000016
304.8 30.48 0.3048 0.000305 12 1 0.333333 | 0.000189
914 4 91.44 0.9144 0.000914 36 3 1 0.000568
1609344 160934 4 1609.344 | 1.609344 63360 5280 1760 1
Table 3: Area Units
Millimeter Centimeter Meter Inch Foot Yard
square square square square square square
mm? cm m? in? ft? de
1 0.01 0.000001 0.00155 0.000011 0.000001
100 1 0.0001 0.155 0.001076 0.00012
1000000 10000 1 1550.003 10.76391 1.19599
645.16 6.4516 0.000645 1 0.006944 | 0.000772
92903 929.0304 0.092903 144 1 0.111111
836127 8361.274 0.836127 1296 9 1




Kinematics of Particles

d UNITS CONVERSION TABLES

Table 4: Volume Units

Centimeter Meter [ sy Inch Foot Us Imperial US barrel (oil)
cube cube cube cube gallons gallons
cm® m’ Itr in’ ft? US gal Imp. gal US brl
1 0.000001 0.001 0.061024 | 0.000035 | 0.000264 | 0.00022 0.000006
1000000 1 1000 61024 35 264 220 6.29
1000 0.001 1 61 0.035 0.264201 0.22 0.00629
16.4 0.000016 | 0.016387 1 0.000579 | 0.004329 | 0.003605 0.000103
28317 0.028317 | 28.31685 1728 1 7.481333 | 6.229712 0.178127
3785 0.003785 3.79 231 0.13 1 0.832701 0.02381
4545 0.004545 4.55 281 0.16 1.20 1 0.028593
158970 0.15897 159 9701 6 42 35 1
Table 5: Mass Units
Grams Kilograms | Metric tonnes | Shortton | Long ton Pounds Qunces
g kg tonne shton Lton b 0z
1 0.001 0.000001 0.000001 | 9.84e-07 | 0.002205 | 0.035273
1000 1 0.001 0.001102 | 0.000984 | 2.204586 | 35.27337
1000000 1000 1 1.102293 | 0.984252 | 2204.586 | 35273.37
907200 907.2 0.9072 1 0.892913 2000 32000
1016000 1016 1.016 1.119929 1 2239.859 | 35837.74
453.6 0.4536 0.000454 0.0005 0.000446 1 16
28 0.02835 0.000028 0.000031 | 0.000028 | 0.0625 1




Kinematics of Particles

d UNITS CONVERSION TABLES

Table 10: High Pressure Units

Kilogram
Bar Pou n_d;'square Kilopascal | Megapascal forcez‘ Millimeter Atmospheres
inch centimeter | of mercury
square
bar psi kPa MPa kgffcm2 mm Hg atm
1 14.50326 100 0.1 1.01968 750.0188 0.987167
0.06895 1 6.895 0.006895 0.070307 51.71379 0.068065
0.01 0.1450 1 0.001 0.01020 7.5002 0.00987
10 145.03 1000 1 10.197 7500.2 9.8717
0.9807 14.22335 98.07 0.09807 1 735.5434 0.968115
0.001333 0.019337 0.13333 0.000133 0.00136 1 0.001316
1.013 14.69181 101.3 0.1013 1.032936 759.769 1

Table 16: Temperature Conversion Formulas

Degree Celsius (°C)

(°F - 32) x 5/9

(K- 273.15)

Degree Fahrenheit (°F)

"C x9/5) + 32

Kelvin (K)

(
(1.8 x K) - 459.67
(°C + 273.15)

(°F + 459.67) = 1.8




