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Preface

This book presents new methodologies for the design and analysis of adaptive
control systems based on the backstepping approach. Our emphasis is on dy-
namic uncertain systems with nonsmooth nonlinearities, such as backlash, dead-
zone, hysteresis and saturation, or time-varying parameters, or interactions.

The backstepping approach, a recursive Lyapunov-based scheme, was pro-
posed in the beginning of 1990s. With this method the construction of feedback
control laws and Lyapunov functions is systematic, following a step-by-step algo-
rithm. Backstepping can be used to relax the matching condition, which blocked
the traditional Lyapunov-based design. A major advantage of backstepping is
that it has the flexibility to avoid cancellations of useful nonlinearities and
achieve regulation and tracking properties. The technique was comprehensively
addressed by Krstic, Kanellakopoulos and Kokotovic in [1]. However, there is
still no monograph available to address problems such as the handling of non-
smooth nonlinearities, time varying parameters and system interactions using
this approach.

Nonsmooth nonlinearities such as dead-zone, backlash, hysteresis and satura-
tion are common in industrial control systems, such as mechanical, hydraulic,
biomedical, piezoelectric, and physical systems. Such nonlinearities are usually
poorly known and may vary with time, and they often limit system performance.
An effective control method should be able to accommodate such common prac-
tical nonsmooth nonlinearities. In practice, system parameters are changing with
time. Parameter time-variations may arise from linear approximations along dif-
ferent motions and may be due to unmodelled dynamics (for instance friction
parameters, electric resistances, inertias) and also some other factors such as
changes in environmental conditions. For such systems, the control problem is
very complicated and becomes even more difficult to deal with when time-varying
parameters are unknown. In the control of large scale systems, one usually faces
poor knowledge on plant parameters and interactions between subsystems. De-
centralized adaptive control strategy is an efficient and effective way for control-
ling these systems with large amount of uncertainties. Decentralized adaptive
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VIII Preface

controllers are designed independently for local subsystems by using local avail-
able signals for feedback. The major challenge is how to compensate the effects
of ignored interactions among subsystems.

In this book, we will present research results on adaptive control of such
systems with the backstepping based technique, including theoretical success
and practical development such as the approaches for stability analysis and the
improvement of system tracking and transient performance. These results are
given in two parts:

• The first part involves designing and analyzing adaptive backstepping con-
trollers for multi-input multi-output (MIMO) systems, time-varying systems,
or larger scale systems. Newly developed strategies are presented. The de-
signed controllers are shown to guarantee all signals bounded in the system
and yield good transient and tracking performance.

• In the second part, we will consider systems with four types of nonsmooth
nonlinear characteristics, namely backlash, dead-zone, hysteresis and satura-
tion. It will be shown how these four nonsmooth nonlinear characteristics can
be adaptively compensated and how desired system performance is achieved,
by incorporating the backstepping technique with other methodologies such
as the inverse technique. The proposed adaptive control schemes are shown
to ensure the stability of the resulting control system. With these schemes,
system performances can be precisely characterized as functions of design
parameters and thus is tunable in certain sense by designers. Each of these
nonsmooth characteristics is considered individually and systematically. The
developed adaptive control methodologies are also applied to the control of
base isolation mechanism and piezo-positioning mechanism.

This book is helpful to learn and understand the fundamental backstepping
schemes for state feedback control and output feedback control. It can be used
as a reference book or a textbook on adaptive control with applications for stu-
dents with some background in feedback control systems. The book is also in-
tended to introduce researchers and practitioners to the area of adaptive control
systems involving the treatment on nonsmooth nonlinearities, interactions and
time varying parameters. Researchers, graduate students and engineers in the
fields of electrical engineering, control, applied mathematics, computer science
and others will benefit from this book.

We are grateful to Nanyang Technological University and Norwegian Univer-
sity of Science and Technology for providing plenty of resources for our research
work. Jing Zhou would like to acknowledge StatoilHydro for their support.

We would also like to express our deep sense of gratitude to our parents and
families who have made us capable enough to write this book. Jing Zhou is
very grateful to her parents, Feng Zhou and Lingfang Ma, and her husband,
Xiaozhong Shen, for their care, understanding and encouragement. Changyun
Wen is greatly indebted to his wife Xiu Zhou and his children Wen Wen, Wendy
Wen, Qingyun Wen and Qinghao Wen for their constant support throughout
these years.
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Finally, we would like to thank the entire team of Springer publications for
their cooperation and encouragement in bringing out the work in the form of
monograph in such a short span of time.

Norwegian University of Science and Technology, Norway, Jing Zhou
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1 Introduction

There have been great efforts to develop high performance control schemes for
unknown plants subject to uncertainties. Adaptive control has been proved to
be one of the most promising techniques which can be applied to control a wide
variety of systems and processes. Adaptive control theory attempts to improve
the behavior or performance of physical systems by gathering and exploiting
knowledge about the system’s operation. Usually this knowledge is encoded as a
descriptive mathematical model of the physical plant from which the controller
design is derived. Given a mathematical representation, we are interested in de-
signing an adaptive controller to achieve objectives such as stability (convergence
of state), output tracking of some reference signals, and transient performance.

1.1 Motivation

Adaptive control has been an important area of active research for over five
decades now. Significant development has been seen, including theoretical suc-
cess and practical development, such as the proof of global stability and the
improvement of system tracking and transient performance. One of the reasons
for the rapid growth of adaptive control is its ability to control plants with
uncertainties during its operation. Adaptive control is a technique of applying
some methods to obtain a model of the process and using this model to design
a controller. An adaptive controller is designed by combining a parameter es-
timator, which provides estimates of unknown parameters, with a control law.
The parameters of the controller are adjusted during the operation of the plant.
In order to obtain desired performances, it also provides adaptation methods to
dealt with some uncertainties, such as flow and speed variations, external distur-
bance and structural uncertainties. One important approach in adaptive control
is certainty equivalence based design. Such an approach has been studied exten-
sively and a number of results have been established [2, 3, 4, 5, 6, 7, 8]. Certain
schemes have also been proposed to study the robustness issues in the context
of both single loop control [9, 10, 11, 12, 13, 14, 15, 16] and decentralized con-
trol of multi-loop systems [17, 18, 19, 20, 21, 22, 23, 24, 25]. Problems related
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2 Introduction

to nonsmooth nonlinearities have also been well addressed in [26, 27, 28, 29].
However, transient performance is difficult to be ensured with this approach.

In the beginning of 1990s, a new approach called “backstepping” was proposed
for the design of adaptive controllers. Backstepping is a recursive Lyapunov-based
scheme for the class of “strict feedback” systems. In fact, when the controlled
plant belongs to the class of systems transformable into the parametric-strict feed-
back form, this approach guarantees global or regional regulation and tracking
properties. An important advantage of the backstepping design method is that it
provides a systematic procedure to design stabilizing controllers, following a step-
by-step algorithm. With this method the construction of feedback control laws
and Lyapunov functions is systematic. Another advantage of backstepping is that
it has the flexibility to avoid cancellations of useful nonlinearities and achieve sta-
bilization and tracking. A number of results using this approach has been obtained
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. However, some important practical prob-
lems such as the handling of nonsmooth nonlinearity have not been addressed us-
ing this approach.

Most practical systems are multi-input multi-output (MIMO) systems. And
usually parameters of practical systems are changing with time. For such sys-
tems, the control problem is very complicated due to the coupling among various
inputs and outputs. It becomes even more difficult to deal with when there exist
unknown parameters in the input or output coupling matrix. In this book, we
will address a class of nonlinear MIMO systems with unknown disturbance.

In the control of interconnected systems, decentralized control strategy is an
efficient and effective way. In particular, decentralized adaptive control is em-
ployed for controlling systems with large amount of uncertainties. Decentralized
adaptive controllers are designed independently for local subsystems by using
local available signals for feedback. Such decentralized controllers should be ro-
bust against the ignored interactions. Due to difficulties to consider the effects
of interconnections, extension of single loop results to multi-loop interconnected
systems is challenging, which is why the number of available results is still lim-
ited. In this book, we present output feedback decentralized stabilizers for a class
of interconnected systems with subsystem having arbitrary relative degrees.

Nonsmooth nonlinearities such as dead-zone [41, 42], backlash [28, 43], hys-
teresis [44, 45] and saturation [46, 47] are common in industrial control systems.
Backlash, a dynamic characteristic, exists in mechanical systems, such as in hy-
draulic actuators. Dead-zone, a static input-output characteristic, often appears
in motors, valves and biomedical actuation systems. Hysteresis, another dynamic
characteristic, exists in a wide range of physical systems and devices. Saturation
is always a potential problem for actuators of control systems as all actuators
do saturate at some level.

Such nonlinearities are usually poorly known and may vary with time, and
they often limit system performance. Control of systems with nonsmooth non-
linearities is an important area of control system research. A desirable con-
trol design approach for such systems should be able to accommodate system
uncertainties. The need for effective control methods to deal with nonsmooth
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systems has motivated growing research activities in adaptive control of sys-
tems with such common practical nonsmooth nonlinearities [48, 49]. Various
design methods based on different control objectives and system conditions have
been developed and verified in theory and practice. Adaptive control schemes
have been used to cope with actuator dead zone [50, 51, 52, 53, 54], backlash
[28, 44, 55], hysteresis [45, 56, 57, 58] and saturation [46, 59, 60, 61, 62, 63].
Other schemes to handle such nonlinearities have included neural networks con-
trol in [42, 64, 65, 66, 67, 68], fuzzy logic control in [41, 69, 70, 71, 72], variable
structure control in [43, 52, 73, 74, 75, 76, 77, 78], pole placement control in
[46, 47, 60] and recursive least square algorithm in [79].

In this book, adaptive control methods based on backstepping technique in-
corporated with other methodologies, such as inverse technique, are proposed
to handle uncertain dynamic systems containing backlash, hysteresis, dead-zone
or saturation in the actuator. Each of these nonsmooth characteristics needs a
systematic consideration. In this book it will be shown how nonsmooth nonlin-
ear industrial characteristics can be adaptively compensated and how desired
system performance is achieved. The controller designed by using backstepping
technique consists of new robust control laws and new estimators to estimate
the unknown parameters. Besides showing stability of the system, the transient
performance of the tracking error is derived to be an explicit function of design
parameters and thus tunable.

1.2 Objectives

The main objectives of this book are as follows:

• The first part of the book is to introduce the backstepping design for state
feedback control and output feedback control. New strategy will be proposed
for a class of uncertain nonlinear systems with unknown time-varying pa-
rameters and unknown sign of high frequency gains in the presence of distur-
bances. We will also develop a new backstepping control scheme for a class
of multi-input multi-output nonlinear systems with respect to parameter un-
certainty. In the last chapter of this part, decentralized adaptive stabilization
of a class of interconnected systems will be presented.

• The second part of the book is to control systems with four most com-
mon component imperfections: backlash, dead-zone, hysteresis and satura-
tion. These nonsmooth nonlinearities have different characteristics, so we
will consider each of them individually in each of controller designs. We
aim at designing, analyzing and implementing adaptive backstepping con-
trol which are able to accommodate such uncertain nonsmooth nonlineari-
ties by introducing new adaptive control schemes to overcome or compensate
the effect of these nonlinearities. In the last two chapters of this part, we
will present applications in base isolation mechanism and piezo-positioning
mechanism.
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1.3 Preview of Chapters

This book is divided into thirteen chapters. Each of chapters 3-13 contains a
new contribution. We now preview chapters 2-13.

In Chapter 2, we introduce adaptive backstepping tools illustrated with appli-
cation to a class of nonlinear systems. To grasp the design and analysis procedure
easily, we start with simple systems. Recursive design procedures using both
state-feedback and output feedback are presented. Approaches of establishing
system stability and performances are also given.

In Chapter 3, an adaptive output feedback controller is proposed for single-
input single-output uncertain time-varying systems in the presence of unknown
bounded disturbances. Both theoretical analysis and simulation results show that
the controller designed with the proposed scheme can make the whole adaptive
control system stable.

In Chapter 4, we design an adaptive output feedback controller for a class
of multiple-input multiple-output systems in the presence of unknown distur-
bances. In order to reject external disturbances, new filters for state estimation
are constructed and an adaptive internal model is employed. The controller de-
sign is achieved by using backstepping, tuning functions, SDU factorization and
estimation of parameters.

In Chapter 5, adaptive backstepping control is employed to design decentral-
ized adaptive regulators. The interconnected system to be regulated consists
of N coupled subsystems having arbitrarily relative degrees. Global stability is
established for the closed-loop system and perfect regulation is ensured.

In Chapter 6, we provide certain basic description of nonsmooth nonlinear
characteristics: dead-zone, backlash, hysteresis and saturation with some typical
examples for illustration.

In Chapter 7, we address adaptive control of uncertain systems preceded by
unknown backlash nonlinearity in either state feedback or output feedback con-
trol. Detailed design and analysis are given, including structure, stability, and
convergence of the algorithms.

In Chapter 8, an adaptive inverse is employed for cancelling the effect of
backlash nonlinearity and an adaptive backstepping controller is developed.

In Chapter 9, we provide a solution to the problem on the relaxation of subsys-
tem relative degrees in decentralized control of interconnected systems with each
loop preceded by unknown backlash-like hysteresis nonlinearities. It is shown
that overall control system is global stable in the sense that all the signals are
bounded.

In Chapter 10, adaptive backstepping control technique will be extended to
state feedback control and output feedback control of nonlinear systems with
unknown dead-zone. The main contribution of this chapter is to develop adap-
tive schemes for uncertain dynamic nonlinear systems with unknown dead-zone
nonlinearity, in the presence of bounded external disturbances. We will give the
detailed design procedure and stability analysis.

In Chapter 11, we present a new scheme to design adaptive controllers for
uncertain systems in the presence of input saturation. By using backstepping
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technique, a new robust adaptive control algorithm is developed. Besides showing
stability, performance on tracking error is also established.

In Chapter 12, we address a second-order uncertain structural system found
in base isolation schemes for seismic active protection of building structures.
This system exhibits a hysteretic nonlinear behavior, which is described by the
so-called Bouc-Wen model. Numerical results show that the adaptive control
laws work satisfactorily in the sense that the response induced by seismic action
is significant reduced.

In Chapter 13, we develop robust adaptive backstepping control algorithms
for piezo-positioning mechanisms. Due to their materials, nonlinear hysteretic
behavior is commonly observed in such mechanisms and can be described by
a LuGre model. It is shown that not only global stability is guaranteed, but
also both transient and asymptotic tracking performances are quantified as ex-
plicit functions of the design parameters so that designers can tune the design
parameters in an explicit way to obtain the required closed loop behavior.



2 Adaptive Backstepping Control

Recursive design in this book is composed of some simple basic steps. They are
referred to as “backstepping designs” because they step back toward the control
input starting with a scalar equation. This chapter reviews basic backstepping
tools for state feedback control and output feedback control. To easily grasp the
design and analysis procedures, we start with simple low order systems. Then
the ideas are generalized to arbitrarily n order systems.

2.1 Backstepping

2.1.1 Integrator Backstepping

Backstepping is a recursive Lyapunov-based scheme proposed in the beginning of
1990s. The technique was comprehensively addressed by Krstic, Kanellakopoulos
and Kokotovic in [1]. The idea of backstepping is to design a controller recursively
by considering some of the state variables as “virtual controls” and designing
for them intermediate control laws. Backstepping achieves the goals of stabiliza-
tion and tracking. The proof of these properties is a direct consequence of the
recursive procedure, because a Lyapunov function is constructed for the entire
system including the parameter estimates.

To give a clear idea of such development, we consider the following third order
strict-feedback system.

ẋ1 = x2 + x2
1

ẋ2 = x3 + x2
2

ẋ3 = u (2.1)

where x1, x2 and x3 are system sates and u is control input. The control objective
is to design a state feedback control to asymptotically stabilize the origin.

Step 1. Start with the first equation of (2.1), we define z1 = x1 and derive the
dynamics of the new coordinate

ż1 = x2 + x2
1 (2.2)
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10 Adaptive Backstepping Control

We view x2 as a control variable and define a virtual control law for (2.2), say
α1, and let z2 be an error variable representing the difference between the actual
and virtual controls of (2.2), i.e.,

z2 = x2 − α1 (2.3)

Thus in terms of the new state variable, we can rewrite (2.2) as

ż1 = α1 + x2
1 + z2 (2.4)

In this step, our objective is to design a virtual control law α1 which makes
z1 → 0. Consider a control Lyapunov function

V1 =
1
2
z2
1 (2.5)

The time derivative of which becomes

V̇1 = z1(α1 + x2
1) + z1z2 (2.6)

We can now select an appropriate virtual control α1, which would make the first
order system stabilizable.

α1 = −c1z1 − x2
1 (2.7)

α̇1 = −(c1 + 2x1)(x2 + x2
1) (2.8)

where c1 is a positive constant. Then the time derivative of V1 becomes

V̇1 = −c1z
2
1 + z1z2 (2.9)

Clearly, if z2 = 0, then V̇1 = −c1z
2
1 and z1 is guaranteed to converge to zero

asymptotically.

Step 2. We derive the error dynamics for z2 = x2 − α1.

ż2 = ẋ2 − α̇1

= x3 + x2
2 + (c1 + 2x1)(x2 + x2

1) (2.10)

in which x3 is viewed as a virtual control input. Define a virtual control law α2
and let z3 be an error variable representing the difference between the actual
and virtual controls

z3 = x3 − α2 (2.11)

Then (2.10) becomes

ż2 = z3 + α2 + x2
2 + (c1 + 2x1)(x2 + x2

1) (2.12)

The control objective is to make z2 → 0. Choose a control lyapunov function

V2 = V1 +
1
2
z2
2 (2.13)
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Taking time derivative gives

V̇2 = V̇1 + z2ż2

= −c1z1 + z1z2 + z2(z3 + α2 + x2
2 + (c1 + 2x1)(x2 + x2

1))
= −c2z

2
2 + z2(α2 + z1 + x2

2 + (c1 + 2x1)(x2 + x2
1) + z2z3 (2.14)

We can now select an appropriate virtual control α2 to cancel some terms related
to z1, x1 and x2, while the term involving z3 cannot be removed

α2 = −z1 − c2z2 − x2
2 − (c1 + 2x1)(x2 + x2

1) (2.15)

where c2 is a positive constant. So the time derivative of V2 becomes

V̇2 = −c1z
2
1 − c2z

2
2 + z2z3 = −

2∑

i=1

ciz
2
i + z2z3 (2.16)

Clearly, if z3 = 0, we have V̇2 = −
∑2

i=1 ciz
2
i , and thus both z1 and z2 are

guaranteed to converge to zero asymptotically.

Step 3. Proceeding to the last equation in (2.1), we derive the error dynamics
for z3 = x3 − α2.

ż3 = u − ∂α2

∂x1
(x2 + x2

1) − ∂α2

∂x2
(x3 + x2

2) (2.17)

In this equation, the actual control input u appears and is at our disposal. Our
objective is to design the actual control input u such that z1, z2, z3 converge to
zero. Choose a Lyapunov function V3 as

V3 = V2 +
1
2
z2
3 (2.18)

Its time derivative is given by

V̇3 = −
2∑

i=1

ciz
2
i + z3(u + z2 − ∂α2

∂x1
(x2 + x2

1) − ∂α2

∂x2
(x3 + x2

2)) (2.19)

We are finally in the position to design control u by making V̇3 ≤ 0 as follows

u = −z2 − c3z3 +
∂α2

∂x1
(x2 + x2

1) +
∂α2

∂x2
(x3 + x2

2) (2.20)

where c3 is a positive constant. Then the derivative of Lyapunov function of
V3 is

V̇3 = −
3∑

i=1

ciz
2
i (2.21)
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Then the Lasalle Theorem given in Appendix B guarantees the global uniform
boundedness of z1, z2 and z3. It follows that z1, z2, z3 → 0 as t → ∞. Since
x1 = z1, x1 is also bounded and limt→∞ x1 = 0. The boundedness of x2 follows
from boundedness of α1 in (2.7) and the fact that x2 = z2 + α1. Similarly, the
boundedness of x3 then follows from boundedness of α2 in (2.15) and the fact
that and x3 = z3 + α2. Combining this with (2.20) we conclude that the control
u(t) is also bounded.

With the above example, the idea of backstepping has been illustrated. In the
following, we will consider parametric uncertainties and achieve both bounded-
ness of the closed-loop states and asymptotic tracking.

2.1.2 Adaptive Backstepping

In this section, we will consider unknown parameters which appear linearly in
system equations. An adaptive controller is designed by combining a parameter
estimator, which provides estimates of unknown parameters, with a control law.
The parameters of the controller are adjusted during the operation of the plant.
In the presence of such parametric uncertainties, the adaptive controller is able
to ensure the boundedness of the closed-loop states and asymptotic tracking.

To illustrate the idea of adaptive backstepping, let us first consider the fol-
lowing second order system.

ẋ1 = x2 + φT
1 (x1)θ

ẋ2 = u + φT
2 (x1, x2)θ (2.22)

where θ ∈ Rr is an unknown vector constant, and φ1 ∈ Rr and φ2 ∈ Rr are
known nonlinear functions. Our problem is to globally stabilize the system and
also to achieve the asymptotic tracking of xr by x1.

For the development of control laws, the following assumption is made.

Assumption 1: The reference signal xr and its first second order derivative are
piecewise continuous and bounded.

The design procedure is elaborated in the following. Introduce the change of
coordinates

z1 = x1 − xr (2.23)
z2 = x2 − α1 − ẋr (2.24)

where α1 is called virtual control and will be determined in later discussion.
If θ is known, we would apply the static integrator backstepping to design a

virtual control law

α1 = −c1z1 − φT
1 θ (2.25)

with the control Lyapunov function

V =
1
2
z2
1 +

1
2
z2
2 (2.26)

whose derivative is rendered negative definite

yazdan
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V̇ = z1ż1 + z2ż2

= −c1z
2
1 + z1z2 + z2(u + φT

2 θ − ∂α1

∂x1
(x2 + φT

1 θ) − ∂α1

∂xr
ẋr − ẍr)

= −c1z
2
1 − c2z

2
2 (2.27)

by choosing the control

u = −z1 − c2z2 − φT
2 θ +

∂α1

∂x1
(x2 + φT

1 θ) +
∂α1

∂xr
ẋr + ẍr (2.28)

Since θ is unknown, we cannot apply the controller (2.28) with virtual control law
(2.25). However, we can use the idea of integrator backstepping and parameter
estimation.

Step 1. We start with the first equation of (2.22) by considering x2 as control
variable. The derivative of tracking error z1 is given as

ż1 = z2 + α1 + φT
1 θ (2.29)

Since θ is unknown, this task is fulfilled with an adaptive controller consisting
of a control law and an update law to obtain an estimate of θ.

Design the first stabilizing function α1 and parameter updating law ˙̂
θ1 as

α1 = −c1z1 − φT
1 θ̂1 (2.30)

˙̂
θ1 = Γφ1z1 (2.31)

where θ̂1 is an estimate of θ, c1 is a positive constant and Γ is a positive definite
matrix. Our task in this step is to stabilize (2.29) with respect to the Lyapunov
function

V1 =
1
2
z2
1 +

1
2
θ̃T
1 Γ−1θ̃1 (2.32)

where θ̃1 = θ − θ̂1. Then the derivative of V1 is given by

V̇1 = z1ż1 − θ̃T
1 Γ−1 ˙̂

θ1

= −c1z
2
1 + z1z2 − θ̃T

1 Γ−1( ˙̂θ1 − Γφ1z1)
= −c1z

2
1 + z1z2 (2.33)

Step 2. The derivative of z2 with (2.30) and (2.31) is now expressed as

ż2 = ẋ2 − α̇1 − ẍr

= u + φT
2 θ − ∂α1

∂x1
(x2 + φT

1 θ) − ∂α1

∂θ̂1

˙̂
θ1 − ∂α1

∂xr
ẋr − ẍr

= u − ∂α1

∂x1
x2 + (φ2 − ∂α1

∂x1
φ1)T θ − ∂α1

∂θ̂1
Γφ1z1 − ∂α1

∂xr
ẋr − ẍr (2.34)
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In this equation, the actual control input u appears and is at our disposal. At
this point we need to select a control Lyapunov function and design u to make
its derivative non-positive. We use a Lyapunov function

V2 = V1 +
1
2
z2
2 (2.35)

whose derivative is

V̇2 = V̇1 + z2ż2

= −c1z
2
1 + z2

[
u + z1 − ∂α1

∂x1
x2 + (φ2 − ∂α1

∂x1
φ1)T θ − ∂α1

∂θ̂1
Γφ1z1

−∂α1

∂xr
ẋr − ẍr

]
(2.36)

The control u is able to cancel the rest six terms in (2.36) to ensure V̇2 ≤ 0.
To deal with the term containing the unknown parameter θ, we try to use the
estimate θ̂1 designed in the first step

u = −z1 − c2z2 +
∂α1

∂x1
x2 − (φ2 − ∂α1

∂x1
φ1)T θ̂1

+
∂α1

∂θ̂1
Γφ1z1 +

∂α1

∂xr
ẋr + ẍr (2.37)

where c2 is a positive constant. The resulting derivatives of V2 is given as

V̇2 = −c1z
2
1 − c2z

2
2 + (φ2 − ∂α1

∂x1
φ1)T (θ − θ̂1) (2.38)

It can be observed that term (φ2 − ∂α1
∂x1

φ1)T (θ − θ̂1) cannot be cancelled. To
eliminate this term, we need to treat θ in the equation (2.34) as a new parameter
vector and assign to it a new estimate θ̂2 by selecting u as

u = −z1 − c2z2 +
∂α1

∂x1
x2 − (φ2 − ∂α1

∂x1
φ1)T θ̂2

+
∂α1

∂θ̂1
Γφ1z1 +

∂α1

∂xr
ẋr + ẍr (2.39)

With this choice, (2.34) becomes

ż2 = −z1 − c2z2 + (φ2 − ∂α1

∂x1
φ1)T (θ − θ̂2) (2.40)

Our task in this step is to stabilize the (z1, z2) system. The presence of the new
parameter estimate θ̂2 suggests the following form of the Lyapunov function:

V2 = V1 +
1
2
z2
2 +

1
2
θ̃T
2 Γ−1θ̃2 (2.41)

where θ̃2 = θ − θ̂2. Then the derivative of Lapunov function of V2 is
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V̇2 = V̇1 + z2ż2 − θ̃T
2 Γ−1 ˙̂

θ2

= −c1z
2
1 + z2(−c2z2 + (φ2 − θ̃T

2
∂α1

∂x1
φ1)) − θ̃T

2 Γ−1 ˙̂
θ2

= −c1z
2
1 − c2z

2
2 − θ̃T

2 Γ−1( ˙̂θ2 − Γ (φ2 − ∂α1

∂x1
φ1)z2) (2.42)

We choose the update law

˙̂
θ2 = Γ (φ2 − ∂α1

∂x1
φ1)z2 (2.43)

Then the derivative of V2 gives

V̇2 = −c1z
2
1 − c2z

2
2 (2.44)

By using the Lasalle’s Theorem (Appendix B), this Lyapunov function (2.44)
guarantees the global uniform boundedness of z1, z2, θ̂1, θ̂2 and z1, z2 → 0 as
t → ∞. It follows that asymptotic tracking is achieved, such that limt→∞(x1 −
xr) = 0. Since z1 and xr are bounded, x1 is also bounded from x1 = z1 + xr .
The boundedness of x2 follows from boundedness of ẋr and α1 in (2.30) and the
fact that x2 = z2 + α1 + ẋr. Combining this with (2.39) we conclude that the
control u(t) is also bounded.

In conclusion, the above adaptive backstepping employs the over parametriza-
tion estimation, that is two estimates for the same parameter vector θ in this
case. This means that the dynamic order of the controller is not of minimal order.
In the next section, a new backstepping design will be presented to avoid such
a case happening, which employs the minimal number of parameter estimates.

2.1.3 Adaptive Backstepping with Tuning Functions

To give a clear idea of tuning function design, we consider the same system in
(2.22) with the same control objective, namely globally stabilization and also
asymptotic tracking of xr by x1, and use the same change of coordinates

z1 = x1 − xr (2.45)
z2 = x2 − α1 − ẋr (2.46)

where α2 is virtual control. The design procedure is elaborated as follows.

Step 1. We start with the first equation of (2.22) by considering x2 as control
variable. The derivative of tracking error z1 is given as

ż1 = z2 + α1 + φT
1 θ (2.47)

Our task in this step is to stabilize (2.47). Choose the control Lyapunov function

V1 =
1
2
z2
1 +

1
2
θ̃T Γ−1θ̃ (2.48)

where Γ is a positive definite matrix, θ̃ = θ − θ̂. Then the derivative of V1 is
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V̇1 = z1ż1 − θ̃T
1 Γ−1 ˙̂

θ

= z1(z2 + α1 + φT
1 θ̂) − θ̃T (Γ−1 ˙̂

θ − φ1z1) (2.49)

We may eliminate θ̃ by choosing ˙̂
θ = Γφ1z1. If x2 is actual control and let z2 = 0,

we choose α1 to make V̇1 ≤ 0.

α1 = −c1z1 − φT
1 θ̂ (2.50)

where c1 is a positive constant, θ̂ is an estimate of θ. However, to overcome the
over-parametrization problem caused by the appearance of θ as shown in the
previous subsection, we do not use this update law to estimate θ. Instead, we
define a function τ1, named tuning function, as follows

τ1 = φ1z1 (2.51)

The resulting derivative of V1 is

V̇1 = −c1z
2
1 + z1z2 − θ̃T (Γ−1 ˙̂

θ − τ1) (2.52)

Step 2. We derive the second tracking error for z2

ż2 = u − ∂α1

∂x1
x2 + (φ2 − ∂α1

∂x1
φ1)T θ − ∂α1

∂θ̂

˙̂
θ − ∂α1

∂xr
ẋr − ẍr (2.53)

In this equation, the actual control input u appears and is at our disposal. The
control Lyapunov function is selected as

V2 = V1 +
1
2
z2
2 =

1
2
z2
1 +

1
2
z2
2 +

1
2
θ̃T Γ−1θ̃ (2.54)

Our task is to make V̇2 ≤ 0.

V̇2 = −c1z
2
1 + z2

(
u + z1 − ∂α1

∂x1
x2 + θ̂T (φ2 − ∂α1

∂x1
φ1) − ∂α1

∂θ̂

˙̂
θ

−∂α1

∂xr
ẋr − ẍr

)
+ θ̃T

(
τ1 + (φ2 − ∂α1

∂x1
φ1)z2 − Γ−1 ˙̂

θ
)

(2.55)

Finally, we can eliminate the θ̃ term from (2.55) by designing the update law as

˙̂
θ = Γτ2 (2.56)

where τ2 is called the second tuning function and is selected as

τ2 = τ1 + (φ2 − ∂α1

∂x1
φ1)z2 (2.57)
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Then

V̇2 = −c1z
2
1 + z2

(
u + z1 − ∂α1

∂x1
x2 + θ̂T (φ2 − ∂α1

∂x1
φ1) − ∂α1

∂θ̂
Γ τ2

−∂α1

∂xr
ẋr − ẍr

)
(2.58)

To stabilize the system (2.53), the actual control input is selected to remove the
residual term and make V̇2 ≤ 0

u = −z1 − c2z2 +
∂α1

∂x1
x2 − θ̂T (φ2 − ∂α1

∂x1
φ1) +

∂α1

∂θ̂
Γ τ2 +

∂α1

∂xr
ẋr + ẍr

(2.59)

where c2 is a positive constant. The resulting of derivative of V2 is

V̇2 = −c1z
2
1 − c2z

2
2 (2.60)

This Lyapunov function provides the proof of uniform stability and the proof of
asymptotic tracking x1(t) − xr(t) → 0.

The controller designed in this section also achieves the goals of stabilization
and tracking. By using tuning functions, only one update law is used to estimate
unknown parameter θ. This avoids the over-parametrization problem and reduces
the dynamic order of the controller to its minimum.

2.2 State Feedback Control

The adaptive backstepping design with tuning functions is now generalized to a
class of nonlinear system as in the following parametric strict-feedback form

ẋ1 = x2 + φT
1 (x1)θ + ψ1(x1)

ẋ2 = x3 + φT
2 (x1, x2)θ + ψ2(x1, x2)

...
...

ẋn−1 = xn + φT
n−1(x1, . . . , xn−1)θ + ψn(x1, . . . , xn−1)

ẋn = bu + φT
n (x)θ + ψn(x) (2.61)

where x = [x1, . . . , xn]T ∈ Rn, the vector θ ∈ Rr is constant and unknown,
φi ∈ Rr, ψ1 ∈ R, i = 1, . . . , n are known nonlinear functions, and the high
frequency gain b is an unknown constant.

The control objective is to force the output x1 to asymptotically track the
reference signal xr with the following assumptions.

Assumption 1: The sign of b is known.

Assumption 2: The reference signal xr and its n order derivatives are piecewise
continuous and bounded.

For system (2.61), the number of design steps required is equal to n. At each
step, an error variable zi, a stabilizing function αi and a tuning function τi are

yazdan
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generated. Finally, the control u and a parameter estimate θ̂ are developed.
Introduce the change of coordinates

z1 = x1 − xr (2.62)
zi = xi − αi−1 − x(i−1)

r , i = 2, 3, . . . , n (2.63)

where αi are virtual controllers. The design procedure is elaborated in the fol-
lowing steps.

Step 1. We start with the first equation of (2.61) by considering x2 as virtual
control variable. The derivative of tracking error z1 is given as

ż1 = ẋ1 − ẋr

= z2 + α1 + φT
1 θ + ψ1 (2.64)

Designing the first stabilizing function α1 as

α1 = −c1z1 − φT
1 θ̂ − ψ1 (2.65)

where c1 is a positive constant and θ̂ is an estimate of θ. Our task in this step is
to achieve the tracking task x1 → xr by considering the Lyapunov function

V1 =
1
2
z2
1 +

1
2
θ̃T Γ−1θ̃ (2.66)

where Γ is a positive definite matrix and θ̃ = θ − θ̂. Then the derivative of V1 is

V̇1 = z1ż1 − θ̃T
1 Γ−1 ˙̂

θ

= z1(z2 + α1 + φT
1 θ̂ + ψ1) − θ̃T (Γ−1 ˙̂

θ1 − φ1z1)

= −c1z
2
1 + θ̃T (τ1 − Γ−1 ˙̂

θ) + z1z2 (2.67)
τ1 = φ1z1 (2.68)

where τ1 is the first tuning function.

Step 2. We consider the second equation of (2.61) by considering x3 as virtual
control variable. With (2.63), the z2 dynamics can be derived

ż2 = ẋ2 − α̇1 − ẍr

= x3 + φT
2 θ + ψ2 − ∂α1

∂x1
(x2 + φT

1 θ + ψ1) − ∂α1

∂θ̂

˙̂
θ − ∂α1

∂xr
ẋr

= z3 + α2 + ψ2 − ∂α1

∂x1
(x2 + ψ1) + (φ2 − ∂α1

∂x1
φ1)T θ − ∂α1

∂θ̂

˙̂
θ − ∂α1

∂xr
ẋr

(2.69)

Our task in this step is to stabilize the (z1, z2)-system (2.64) and (2.69). The
Lyapunov function V2 is chosen as

V2 = V1 +
1
2
z2
2 (2.70)
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Now we select

α2 = −z1 − c2z2 − ψ2 +
∂α1

∂x1
(x2 + ψ1) − θ̂T (φ2 − ∂α1

∂x1
φ1)

+
∂α1

∂θ̂
Γ τ2 +

∂α1

∂xr
ẋr (2.71)

τ2 = τ1 + (φ2 − ∂α1

∂x1
φ1)z2 (2.72)

where c2 is a positive constant and τ2 is the second tuning function. The resulting
derivative of V2 is

V̇2 = −c1z
2
1 + z2

(
z3 + α2 + z1 + ψ2 + θ̂T (φ2 − ∂α1

∂x1
φ1) − ∂α1

∂x1
(x2 + ψ1)

−∂α1

∂xr
ẋr − ∂α1

∂θ̂

˙̂
θ
)

+ θ̃T
(
τ1 + (φ2 − ∂α1

∂x1
φ1

)
z2 − Γ−1 ˙̂

θ)

= −c1z
2
1 − c2z

2
2 + z2z3 + z2

∂α1

∂θ̂
(Γτ2 − ˙̂

θ) + θ̃T (τ2 − Γ−1 ˙̂
θ) (2.73)

Step 3. Proceeding to the third equation in (2.61) by considering x4 as a virtual
control variable, we obtain

ż3 = z4 + α3 + ψ3 − ∂α2

∂x1
(x2 + ψ1) − ∂α2

∂x2
(x3 + ψ2) − ∂α2

∂xr
ẋr − ∂α2

∂ẋr
ẍr

+(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2)T θ − ∂α2

∂θ̂

˙̂
θ (2.74)

Now we select

α3 = −z2 − c3z3 − ψ3 +
∂α2

∂x1
(x2 + ψ1) +

∂α2

∂x2
(x3 + ψ2) +

∂α2

∂xr
ẋr +

∂α2

∂ẋr
ẍr

+(
∂α1

∂θ̂
Γz2 − θ̂T )(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2) +

∂α2

∂θ̂
Γ τ3 (2.75)

τ3 = τ2 + (φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2)z3 (2.76)

where c3 is a positive constant. The Lyapunov function is defined as

V3 = V2 +
1
2
z2
3 (2.77)

The derivative of Lapunov function V3 is

V̇3 = −
3∑

i=1

ciz
2
i + z3z4 + z2

∂α1

∂θ̂
(Γτ2 − ˙̂

θ) + θ̃T (τ2 − Γ−1 ˙̂
θ)

+z3(
∂α1

∂θ̂
Γz2 + θ̃T )(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2) + z3

∂α2

∂θ̂
(Γτ3 − ˙̂

θ)
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= −
3∑

i=1

ciz
2
i + z3z4 + z2

∂α1

∂θ̂

(
Γτ2 + Γz3(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2) − ˙̂

θ

)

+θ̃T

(
τ2 + z3(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2) − Γ−1 ˙̂

θ

)
+ z3

∂α2

∂θ̂
(Γτ3 − ˙̂

θ)

(2.78)

Note that

Γτ2 − ˙̂
θ = Γτ2 − Γτ3 + Γτ3 − ˙̂

θ

= −Γz3(φ3 − ∂α2

∂x1
φ1 − ∂α2

∂x2
φ2) + (Γτ3 − ˙̂

θ) (2.79)

Then we have

V̇3 = −
3∑

i=1

ciz
2
i + z3z4 +

(
z2

∂α1

∂θ̂
+ z3

∂α2

∂θ̂

) (
Γτ3 − ˙̂

θ
)

+θ̃T
(
τ3 − Γ−1 ˙̂

θ
)

(2.80)

We can see that the virtual control law α3 contains the term ∂α1

∂θ̂
Γz2(φ3 −

∂α2
∂x1

φ1 − ∂α2
∂x2

φ2). This term is an important term, since it is used to cancel the
term z2

∂α1

∂θ̂
Γ (τ2 − τ3) in the derivative V̇3 of the Lyapunov function by using

(2.79).

Step i, (i = 4, . . . , n). Repeating the procedure in a recursive manner, we derive
the i-th tracking error for zi

żi = zi+1 + αi + ψi −
i−1∑

j=1

∂αi−1

∂xj
(xj+1 + ψj) + θT

(
φi −

i−1∑

j=1

∂αi−1

∂xj
φj

)

−∂αi−1

∂θ̂

˙̂
θ −

i−1∑

j=1

∂αi−1

∂x
(j−1)
r

x(j)
r (2.81)

We select the stabilizing function αi

αi = −cizi − zi−1 − ψi +
i−1∑

j=1

∂αi−1

∂xj
(xj+1 + ψj) − θ̂T

(
φi −

i−1∑

j=1

∂αi−1

∂xj
φj

)

+
∂αi−1

∂θ̂
Γ τi +

⎛

⎝
i−1∑

j=2

zj
∂αj−1

∂θ̂

⎞

⎠Γ
(
φi −

i−1∑

j=1

∂αi−1

∂xj
φj

)
+

i−1∑

j=1

∂αi−1

∂x
(j−1)
r

x(j)
r

(2.82)

and tuning function

τi = τi−1 +
(
φi −

i−1∑

j=1

∂αi−1

∂xj
φj

)
zi (2.83)



State Feedback Control 21

with the Lyapunov function

Vi = Vi−1 +
1
2
z2

i (2.84)

Its derivative is given as

V̇i = −
i∑

j=1

cjz
2
j + zizi+1 +

⎛

⎝
i∑

j=2

zj
∂αj−1

∂θ̂

⎞

⎠ (Γτi − ˙̂
θ) + θ̃T (τi − Γ−1 ˙̂

θ)

(2.85)

In the last step n, the actual control input u appears and is at our disposal. We
derive the zn dynamics

żn = bu + ψn −
n−1∑

j=1

∂αi−1

∂xj
(xj+1 + ψj) + θT

(
φn −

n−1∑

j=1

∂αi−1

∂xj
φj

)

−∂αn−1

∂θ̂

˙̂
θ −

n−1∑

j=1

∂αi−1

∂x
(j−1)
r

x(j)
r − x(n)

r (2.86)

We are finally in this position to design control u and update laws ˙̂
θ and ˙̂p as

u = p̂ū (2.87)
ū = αn + x(n)

r (2.88)
˙̂
θ = Γτn (2.89)
˙̂p = −γsign(b)ūzn (2.90)

where γ is a positive constant and p̂ is an estimate of p = 1/b. Note that

bu = bp̂ū = ū − bp̃ū (2.91)

where p̃ = p − p̂. We choose the Lyapunov function

Vn = Vn−1 +
|b|
2γ

p̃2 =
n∑

i=1

1
2
z2

i +
1
2
θ̃T Γ−1θ̃ +

|b|
2γ

p̃2 (2.92)

where γ is a positive design parameter. Then its derivative is given by

V̇n = −
n∑

i=1

ciz
2
i +

⎛

⎝
n∑

j=2

zj
∂αj−1

∂θ̂

⎞

⎠ (Γτn − ˙̂
θ)

+θ̃T (τn − Γ−1 ˙̂
θ) − |b|

γ
p̃

(
˙̂p + γsign(b)ūzn

)

= −
n∑

i=1

ciz
2
i ≤ 0 (2.93)
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From the Lasalle’s Theorem in Appendix B, this Lyapunov function provides
the proof of uniform stability, such that z1, z2, . . . , zn, θ̂, p̂ are bounded and zi →
0, i = 1, . . . , n. This further implies that limt→∞(x1−xr) = 0. Since x1 = z1+xr ,
x1 is also bounded from the boundedness of z1 and xr. The boundedness of x2
follows from boundedness of ẋr and α1 in (2.65) and the fact that x2 = z2 +
α1 + ẋr . Similarly, the boundedness of xi (i = 3, . . . , n) can be ensured from the
boundedness of x

(i−1)
r and αi in (2.82) and the fact that xi = zi +αi−1 +x

(i−1)
r .

Combining this with (2.87) we conclude that the control u(t) is also bounded.
Therefore boundedness of all signals and asymptotic tracking are ensured as
formally stated in the following Theorem.

Theorem 2.1. Consider the closed-loop adaptive system (2.61) under Assump-
tions 1-2, the adaptive controller (2.87), virtual control laws (2.65), (2.71) and
(2.82), and updating laws (2.89) and (2.90) guarantee global boundedness of x(t)
and θ̂, p̂ and the asymptotic tracking limt→∞(x1 − xr) = 0.

The controller designed in this section achieves the goals of stabilization and
tracking. The proof of these properties is a direct consequence of the recursive
procedure, because a Lyapunov function is constructed for the entire system
including the parameter estimates. The over-parametrization problem is over-
comed by using tuning functions. The number of parameter estimates are equal
to the number of unknown parameters.

2.3 Output Feedback Control

Now we introduce backstepping design procedures with output feedback for non-
linear systems described in the following form, whose nonlinearities depend only
on the output y.

ẋ1 = x2 + φT
1 (y)θ + ψ1(y)

...
ẋρ−1 = xρ + φT

ρ−1(y)θ + ψρ−1(y)

ẋρ = xρ+1 + φT
ρ (y)θ + ψρ(y) + bmu

...
ẋn−1 = xn + φT

n−1(y)θ + ψn−1(y) + b1u

ẋn = φT
n (y)θ + ψn(y) + b0u (2.94)

y = x1

where x1, . . . , xn, y and u are system states, output and input, the vector θ ∈ Rr

is constant and unknown, φi(y) ∈ Rr, i = 1, . . . , n are known nonlinear functions,
and bm, . . . , b0 are unknown constants.

For the development of control laws, the following assumptions are made.

Assumption 1: The sign of bm is known.
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Assumption 2: The relative degree ρ = n − m is known and the system is
minimum phase.

Assumption 3: The reference signal yr and its ρth order derivatives are piece-
wise continuous, known and bounded.

Our problem is to globally stabilize the system (2.94) and also to achieve the
asymptotic tracking of yr by y.

2.3.1 State Estimation Filters

In order to design the desired adaptive output feedback control law, we rewrite
the system (2.94) in the following form

ẋ = Ax + Φ(y)θ + Ψ(y) +

⎡

⎣ 0

b

⎤

⎦u (2.95)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ψ(y) =

⎡

⎢⎢⎢⎣

ψ1(y)
...

ψn(y)

⎤

⎥⎥⎥⎦ (2.96)

Φ(y) =

⎡

⎢⎢⎢⎣

φT
1 (y)
...

φT
n (y)

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

bm

...

b0

⎤

⎥⎥⎥⎦ (2.97)

Note that only output y is measured. Thus x is unavailable. We need to design
filters to estimate x and generate some signals for controller design. These filters
are summarized as

ξ̇ = A0ξ + ky + Ψ(y) (2.98)
Ξ̇T = A0Ξ

T + Φ(y) (2.99)
λ̇ = A0λ + enu (2.100)
vi = Ai

0λ, i = 0, 1, . . . , m (2.101)

where k = [k1, . . . , kn]T such that all eigenvalues of A0 = A − keT
1 are at some

desired stable locations. The state estimates are given by

x̂(t) = ξ + ΞT θ +
m∑

i=0

bivi (2.102)
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Note that x̂ is unavailable due to the unknown parameters θ and b, so the
estimate x̂ cannot be used in the later controller design. Instead, it will be used
for stability analysis. The derivative of x̂ is given as

˙̂x(t) = ξ̇ + Ξ̇T θ +
m∑

i=0

biv̇i

= A0ξ + ky + Ψ(y) + (A0Ξ
T + Φ(y))θ +

m∑

i=0

biA
i
0(A0λ + enu)

= A0(ξ + ΞT θ +
m∑

i=0

bivi) + ky + Φ(y)θ + Ψ(y) +

⎡

⎣ 0

b

⎤

⎦u

= A0x̂ + ky + Φ(y)θ + Ψ(y) +

⎡

⎣ 0

b

⎤

⎦u (2.103)

It can be shown that the state estimation error

ε = x(t) − x̂(t) (2.104)

satisfies

ε̇ = ẋ(t) − ˙̂x(t)
= Ax − ky − A0x̂

= (A0 + keT
1 )x − ky − A0x̂

= A0ε (2.105)

Suppose P ∈ Rn×n is a positive definite matrix, satisfying PA0 + AT
0 P ≤ −I

and let

Vε = εT Pε (2.106)

It can be shown that

V̇ε = εT (PA0 + AT
0 P )ε

≤ −εT ε (2.107)

This Lyapunov function guarantees that ε → 0, which implies x̂(t) → x(t).
Note that the backstepping design starts with its output y, which is the only

available system state allowed to appear in the control law. The dynamic equa-
tion of y is expressed as

ẏ = x2 + φT
1 (y)θ(t) + ψ1(y)

= bmvm,2 + ξ2 + ψ1(y) + ω̄T Θ + ε2 (2.108)

where

Θ = [bm, . . . , b0, θ
T ]T (2.109)

ω = [vm,2, vm−1,2, . . . , v0,2, Ξ2 + φT
1 ]T (2.110)

ω̄ = [0, vm−1,2, . . . , v0,2, Ξ2 + φT
1 ]T (2.111)
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In above equations, ε2, vi,2, ξ2 and Ξ2 denote the second entries of ε, vi, ξ and Ξ,
respectively, and y, vi, ξ, Ξ are all available signals.

Combining system (2.108) with our filters (2.98)-(2.101), system (2.94) is rep-
resented as

ẏ = bmvm,2 + ξ2 + ψ1(y) + ω̄T Θ + ε2 (2.112)
v̇m,i = vm,i+1 − kivm,1, i = 2, 3, . . . , ρ − 1 (2.113)
v̇m,ρ = vm,ρ+1 − kρvm,1 + u (2.114)

System (2.112)-(2.114) will be our design system, whose states y, vm,2, . . . , vm,ρ

are available. Our task at this stage is to globally stabilize the system and also
to achieve the asymptotic tracking of yr by y.

2.3.2 Design Procedure and Stability Analysis

In this section, we present the adaptive control design using the backstep-
ping technique with tuning functions in ρ steps. Firstly, we take the change of
coordinates

z1 = y − yr (2.115)
zi = vm,i − αi−1 − �̂y(i−1)

r , i = 2, 3, . . . , ρ, (2.116)

where �̂ is an estimate of � = 1/bm and αi−1 is the virtual control at each step
and will be determined in later discussions.

• Step 1: Starting with the equation for the tracking error z1, we obtain, from
(2.112) and (2.115), that

ż1 = bmvm,2 + ξ2 + ψ1(y) + ω̄T Θ + ε2 − ẏr (2.117)

By substituting (2.116) for i = 2 into (2.117) and using �̃ = 1
bm

− 1
b̂m

, we get

ż1 = bmα1 + ξ2 + ψ1(y) + ω̄T Θ + ε2 − bm�̃ẏr + bmz2 (2.118)

By considering vm,2 as the first virtual control, we select a virtual control law
α1 as

α1 = �̂ᾱ1 (2.119)
ᾱ1 = −c1z1 − d1z1 − ξ2 − ψ1(y) − ω̄T Θ̂ (2.120)

where c1 and d1 are positive design parameters, and Θ̂ is the estimate of Θ.
From (2.118) and (2.119) we have

ż1 = −c1z1 − d1z1 + ε2 + ω̄T Θ̃ − bm(ẏr + ᾱ1)�̃ + bmz2

= −(c1 + d1)z1 + ε2 + (ω − �̂(ẏr + ᾱ1)e1)T Θ̃ − bm(ẏr + ᾱ1)�̃ + b̂mz2

(2.121)

where Θ̃ = Θ − Θ̂. Note that
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bmα1 = bm�̂ᾱ1 = ᾱ1 − bm�̃ᾱ1 (2.122)

ω̄T Θ̃ + bmz2 = ω̄T Θ̃ + b̃mz2 + b̂mz2

= ω̄T Θ̃ + (vm,2 − �̂ẏr − α1)eT
1 Θ̃ + b̂mz2

= (ω − �̂(ẏr + ᾱ1)e1)T Θ̃ + b̂mz2 (2.123)

Define the Lyapunov function V1 as

V1 =
1
2
z2
1 +

1
2
Θ̃T Γ−1Θ̃ +

|bm|
2γ

�̃2 +
1

2d1
εT Pε (2.124)

where Γ is a positive definite design matrix, γ is a positive design parameter,
and P is a definite positive matrix such that PA0 + AT

0 P = −I, P = PT > 0.
We examine the derivative of V1

V̇1 ≤ z1ż1 − Θ̃T Γ−1 ˙̂
Θ − |bm|

γ
�̃ ˙̂� − 1

2d1
εT ε

≤ −c1z
2
1 + b̂mz1z2 − 1

4d1
εT ε − |bm|�̃ 1

γ
[γsign(bm)(ẏr + ᾱ1)z1 + ˙̂�]

+Θ̃T [(ω − �̂(ẏr + ᾱ1)e1)z1 − Γ−1 ˙̂
Θ] − d1z

2
1 + z1ε2 − ‖ ε ‖2

4d1
(2.125)

Now we choose

˙̂� = −γsign(bm)(ẏr + ᾱ1)z1 (2.126)

Define

τ1 = (ω − �̂(ẏr + ᾱ1)e1)z1 (2.127)

and τ1 is called the first tuning function. Then the following can be derived by
using Young’s inequality ab ≤ d1a

2 + 1
4d1

b2, update law (2.126) and (2.127)

V̇1 ≤ −c1z
2
1 + b̂mz1z2 − 1

4d1
εT ε + Θ̃T (τ1 − Γ−1 ˙̂

Θ) (2.128)

If z2 = 0, we would choose ˙̂
Θ = Γτ1 and the derivative of V1 would be

V̇1 ≤ −c1z
2
1 − 1

4d1
εT ε ≤ −c1z

2
1 (2.129)

which implies that z1 converges to zero asymptotically. Since z2 �= 0, we do not
use ˙̂

Θ = Γτ1 as an update law for Θ at this step to avoid over-parametrization
problem, because Θ will also appear in the following steps.
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• Step 2: We derive the error dynamics z2

ż2 = v̇m,2 − α̇1 − ˙̂�ẏr − �̂ÿr

= vm,3 − k2vm,1 − ∂α1

∂y
(bmvm,2 + ξ2 + ψ1 + ω̄T Θ + ε2) − ∂α1

∂yr
ẏr

−
m+i−1∑

j=1

∂α1

∂λj
(−kjλ1 + λj+1) − ∂α1

∂ξ
(A0ξ + ky + Ψ(y))

−∂α1

∂Ξ
(A0Ξ

T + Φ(y)) − ∂α1

∂Θ̂

˙̂
Θ − ∂α1

∂�̂
˙̂� − ˙̂�ẏr − �̂ÿr

= vm,3 − �̂ÿr − β2 − ∂α1

∂y
(ωT Θ̃ + ε2)) − ∂α1

∂Θ̂

˙̂
Θ (2.130)

where

β2 =
∂α1

∂y
(ξ2 + ψ1 + ωT Θ̂) + k2vm,1 +

∂α1

∂yr
ẏr + (ẏr +

∂α1

∂�̂

) ˙̂�

+
m+i−1∑

j=1

∂α1

∂λj
(−kjλ1 + λj+1) +

∂α1

∂ξ
(A0ξ + ky + Ψ(y))

+
∂α1

∂ΞT
(A0Ξ

T + Φ(y)) (2.131)

By considering vm,3 as virtual control input and using z3 = vm,3 − α2 − �̂ÿr, we
have

ż2 = z3 + α2 − β2 − ∂α1

∂y
(ωT Θ̃ + ε2) − ∂α1

∂Θ̂

˙̂
Θ (2.132)

With the Lyapunov function

V2 = V1 +
1
2
z2
2 +

1
2d2

εT Pε (2.133)

We choose the second virtual control law α2 and tuning function as

α2 = −b̂mz1 −
(
c2 + d2

(∂α1

∂y

)2
)
z2 + β2 +

∂α1

∂Θ̂
Γτ2 (2.134)

τ2 = τ1 − ∂α1

∂y
ωz2 (2.135)

Then

V̇2 = V̇1 + z2ż2 − 1
2d2

εT ε

≤ −c1z
2
1 + b̂mz1z2 + z2

(
z3 + α2 − β2 − ∂α1

∂y
(ωT Θ̃ + ε2) − ∂α1

∂Θ̂

˙̂
Θ

)

− 1
2d2

εT ε − 1
4d1

εT ε + Θ̃T (τ1 − Γ−1 ˙̂
Θ)
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= −c1z
2
1 − c2z

2
2 + z2z3 − d2

(∂α1

∂y

)2
z2
2 − ∂α1

∂y
ε2z2 − 1

4d2
εT ε

− 1
4d2

εT ε − 1
4d1

εT ε + Θ̃T (τ1 − ∂α1

∂y
ωz2 − Γ−1 ˙̂

Θ) +
∂α1

∂Θ̂
(Γτ2 − ˙̂

Θ)

≤ −
2∑

i=1

(
ciz

2
i +

1
4di

εT ε

)
+ z2z3 + Θ̃T (τ2 − Γ−1 ˙̂

Θ) +
∂α1

∂Θ̂
(Γτ2 − ˙̂

Θ)

(2.136)

Following similar arguments as before, we would choose ˙̂
Θ = Γτ2, as this would

result in V̇2 ≤ −c1z
2
1 − c2z

2
2 if z3 = 0. But z3 �= 0 and thus we do not use it as

an update law for Θ to overcome the over-parametrization problem.

• Step i (i = 3, . . . , ρ): Choose virtual control laws

αi = −zi−1 −
[
ci + di

(∂αi−1

∂y

)2]
zi + βi +

∂αi−1

∂Θ̂
Γτi

−
( i−1∑

k=2

zk
∂αk−1

∂Θ̂

)
Γ

∂αi−1

∂y
ω, i = 3, . . . , ρ (2.137)

where ci are positive design parameters and

τi = τi−1 − ∂αi−1

∂y
ωzi (2.138)

βi =
∂αi−1

∂y
(ξ2 + ψ1 + ωT Θ̂) + kivm,1 +

i−1∑

j=1

∂αi−1

∂y
(j−1)
r

y(j)
r + (y(i−1)

r +
∂αi−1

∂�̂

) ˙̂�

+
m+i−1∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj+1) +

∂αi−1

∂ξ
(A0ξ + ky + Ψ(y))

+
∂αi−1

∂ΞT
(A0Ξ

T + Φ(y)) (2.139)

In the last step ρ, the adaptive controller and parameter update law are finally
given by

u = αρ − vm,ρ+1 + �̂y(ρ)
r (2.140)

˙̂
Θ = Γτρ (2.141)

We define the final Lyapunov function Vρ as

Vρ =
ρ∑

i=1

1
2
z2

i +
1
2
Θ̃T Γ−1Θ̃ +

|bm|
2γ

�̃2 +
ρ∑

i=1

1
2di

εT Pε (2.142)

Note that

Γτi−1 − ˙̂
Θ = Γτi−1 − Γτi + Γτi − ˙̂

Θ

= Γ
∂αi−1

∂y
ωzi + (Γτi − ˙̂

Θ) (2.143)
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From (2.137)-(2.141), the derivative of the last Lyapunov function satisfies

V̇ρ =
ρ∑

i=1

ziżi − Θ̃T Γ−1 ˙̂
Θ − |bm|

γ
�̃ ˙̂� −

ρ∑

i=1

1
2di

εT ε

≤ −
ρ∑

i=1

ciz
2
i −

ρ∑

i=1

1
4di

εT ε − Θ̃T Γ−1( ˙̂
Θ − Γτρ) +

( ρ∑

k=2

zk
∂αk−1

∂Θ̂

)
(Γτρ − ˙̂

Θ)

= −
ρ∑

i=1

ciz
2
i −

ρ∑

i=1

1
4di

εT ε (2.144)

We have the following stability and performance results based on the designed
backstepping controller.

Theorem 2.1. Consider the system consisting of the parameter estimators given
by (2.126) and (2.141), adaptive controllers designed using (2.140) with virtual
control laws (2.119), (2.134) and (2.137), the filters (2.98), (2.99) and (2.100),
and plant (2.94). The system is stable in the sense that all signals in the closed
loop system are globally uniformly bounded. Furthermore

• The asymptotic tracking performance is achieved, i.e.,

lim
t→∞[y(t) − yr(t)] = 0 (2.145)

• The transient tracking error performance is given by

‖ y(t) − yr(t) ‖2 ≤ 1√
c1

(1
2
Θ̃(0)T Γ−1Θ̃(0) +

|bm|
2γ

�̃(0)2

+
1

2d0
‖ ε(0) ‖2

P

)1/2 (2.146)

with zi(0) = 0, i = 1, . . . , ρ, d0 =
( ∑ρ

i=1
1
di

)−1
and ‖ ε(0) ‖2

P = ε(0)T Pε(0).

Proof: Due to the piecewise continuity of yr(t), . . . , y
(ρ)
r (t) and the smoothness

of the control law, the parameter updating laws and the filters, the solution of
the closed-loop adaptive system exists and is unique. From (2.144), it can be
shown that Vρ is uniformly bounded. Thus zi, Θ̂, �̂ and ε are bounded. Since z1
and yr are bounded, y is also bounded. Then from (2.98) and (2.99) we conclude
that ξ and Ξ are bounded as A0 is Hurwitz. From (2.100) and Assumption 2,
we have that λ1, . . . , λm+1 are bounded. From the coordinate change (2.116), it
gives

vm,i = zi + �̂y(i−1)
r + αi−1

(
y, ξ, Ξ, Θ̂, �̂, λ̄m+i−1, ȳ

(i−2)
r

)

i = 2, 3, . . . , ρ, (2.147)

where λ̄k = [λ1, . . . , λk]T , ȳ
(k)
r = [yr, . . . , y

(k)
r ]T . For i = 2, from the boundedness

of λm+1, z2, y, ξ, Ξ, Θ̂, �̂, yr and ẏr, it proves that vm,2 is bounded. From (2.101)
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it follows that λm+2 is bounded. Following the same procedure recursively, we
can show that λ is bounded. From (2.102) and the boundedness of ξ, Ξ, λ, ε, we
conclude that x is bounded.

To show the global uniform stability, the boundedness of m = n−ρ dimension
states ζ with zero dynamics should be guaranteed. Under a similar transforma-
tion as in [1], the states ζ associated with the zero dynamics can be shown to
satisfy

ζ̇ = Abζ + bby + TΦ(y)θ + TΨ(y) (2.148)

where ζ = Tx, bb ∈ Rm, the eigenvalues of the m × m matrix Ab is given as
follows

Ab =

⎡

⎢⎢⎢⎢⎢⎢⎣

−bm−1/bm

Im−1

...

−b0/bm 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎦
(2.149)

T = [(Ab)ρe1, . . . , Abe1, Im]. (2.150)

With Assumption 2, we have that Ab is Hurwitz. Hence, there exists matrix P
such that

PAb + (Ab)T P = −2I (2.151)

Now we define a Lyapunov function for the zero dynamics of the system as
Vζ = ζT Pζ. It can be show that

V̇ζ ≤ −ζT ζ+ ‖ P (bby + TΦ(y)T θ + Ψ(y)) ‖2 (2.152)

Because all signals and functions in the second term of (2.152) are bounded, it
can be shown that ζ is bounded.

Thus all signals in the closed-loop are globally uniformly bounded. By apply-
ing the LaSalle-Yoshizawa theorem to (2.144), it further follows that z(t) → 0
as t → ∞, which implies that limt→∞[y(t) − yr(t)] = 0.

Now we derive the tracking error bound in term of the L2 norm. As shown in
(2.144), the derivative of Vρ is

V̇ρ ≤ −
ρ∑

i=1

ciz
2
i ≤ −c1z

2
1 (2.153)

Since Vρ is non-increasing, we have

‖ z1 ‖2
2 =

∫ ∞

0
|z1(τ)|2dτ ≤ 1

c1
(V (0) − V (∞)) ≤ 1

c1
V (0) (2.154)
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We can set zi(0) to zero by appropriately initializing the reference trajectory as
following

yr(0) = y(0) (2.155)

y(i)
r (0) =

1
�̂(0)

[
vm,i+1(0) − αi

(
y(0), ξ(0), Ξ(0), Θ̂(0), �̂(0), λ̄m+i(0), ȳ(i−1)

r (0)
)]

i = 1, . . . , ρ − 1 (2.156)

Thus, by setting zi(0) = 0, i = 1, . . . , n, we obtain

V (0) =
1
2
Θ̃(0)T Γ−1Θ̃(0) +

|bm|
2γ

�̃(0)2 +
1

2d0
‖ ε(0) ‖2

P (2.157)

a decreasing function of γ, η and Γ , independent of c1. This means that the
bound resulting from (2.154) and (2.157) is

‖ z1 ‖2≤
1

√
c1

(1
2
Θ̃(0)T Γ−1Θ̃(0) +

|bm|
2γ

�̃(0)2 +
1

2d0
‖ ε(0) ‖2

P

)1/2 (2.158)

			

Remark 2.1. The following conclusions can be obtained:

• The transient performance depends on the initial estimate errors Θ̃(0), �̃(0)
and the explicit design parameters. The closer the initial estimates Θ̂(0) and
�̂(0) to the true values Θ and �, the better the transient performance.

• The bound for ‖ y(t) − yr(t) ‖2 is an explicit function of design parameters
and thus computable. We can decrease the effects of the initial error estimates
on the transient performance by increasing the adaptation gains Γ, γ, d0
or c1.



3 Adaptive Control of Time-Varying Nonlinear
Systems

The task of this chapter is to introduce a new scheme to design adaptive con-
trollers for single-input single-output uncertain time-varying systems in the pres-
ence of unknown bounded disturbances. No knowledge is assumed on the sign of
the term multiplying the control. The control design is achieved by introducing
certain well defined functions, estimating variation rates of parameters and in-
corporating a Nussbaum gain. To overcome the problem of overparametrization,
tuning functions, which are different from the standard ones in [1] due to the use
of projection operations, are employed. It is shown that the proposed controller
can guarantee the whole system stable.

3.1 Background

Adaptive control has seen significant development. However, only limited num-
ber of results are available for nonlinear systems with time-varying parameters
and/or without the knowledge on the sign of the term multiplying the control,
i.e. high frequency gain in the case of linear systems, in the presence of external
disturbances. In this chapter, we shall also call this term as high frequency gain
for nonlinear systems for simplicity.

In [80], output feedback control was considered for linear time-varying systems
when the sign of high-frequency gain is known. In [34], the problem of adaptive
control with unknown sign of high-frequency gain for linear time invariant sys-
tems was studied. In [81], Nussbaum gain incorporating with the backstepping
technique was used to design adaptive output stabilizer for high order uncer-
tain time invariant nonlinear systems with unknown sign of high-frequency gain
in the absence of external disturbances. The nonlinearities considered should
satisfy sector conditions. In [35], disturbance decoupling was addressed for non-
linear time invariant systems with known sign of the high frequency gain. The
result obtained is critically depending on a function of the system output y and
the reference trajectory yr. In [82], a flat zone was used to handle the problem
of nonlinear time invariant systems with unknown sign of high frequency gain in
the presence of disturbances. The bound of the disturbance and all the unknown

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 33–50, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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parameters need to be estimated at every step in the backstepping process. This
results in the problem of overparametrization and makes the implementation
complicated. In [83] state-feedback control was considered for a class of uncer-
tain time-varying nonlinear systems in the presence of disturbances. Due to state
feedback, no filter is required for state estimation. Thus the derivatives of the
time varying parameters and the disturbance term do not need to be considered
in controller design. This also makes the stability analysis greatly simplified.
Again, parameters are required to be estimated at every step, which results in
the overparametrization problem. In the case of output feedback control of non-
linear time-varying systems in the presence of disturbances, filters are required
to estimate system states and the equations of the state estimation error will be
used in the design and analysis. In these equations, the external disturbances
and derivatives of time-varying parameters will appear and have great impact
on the errors. This makes the design and analysis quite difficult, especially when
the sign of high frequency gain is unknown and tuning functions are used.

In this chapter, we consider such a case and propose a new control design
scheme to solve the problem as in [40]. The nonlinearities considered are not
required to satisfy the sector type of conditions like [81]. To handle the dis-
turbances, well defined functions are introduced to eliminate their effects in the
Lyapunov functions employed in the recursive design steps. To deal with the time
variation problem, an estimator is used to estimate the bound of the variation
rates. Furthermore, the overparamterization problem is also solved by using the
concept of tuning functions. As projection operation is used, the design of tun-
ing functions are different from existing schemes. With our proposed controller,
system stability can be ensured.

3.2 System Model and Problem Formulation

3.2.1 Problem Formulation

Consider the following class of single-input-single-output (SISO) nonlinear time-
varying systems in the feedback form

ẋ1 = x2 + θa1(t)ψa1(y) + d1(t)φa1(y) + ψ01(y)
...

ẋρ−1 = xρ + θaρ−1(t)ψaρ−1(y) + dρ−1(t)φaρ−1(y) + ψ0ρ−1(y)
ẋρ = xρ+1 + θaρ(t)ψaρ(y) + dρ(t)φaρ(y) + ψ0ρ(y) + bm(t)u (3.1)

...
ẋn = θan(t)ψan(y) + dn(t)φan(y) + ψ0n(y) + b0(t)u
y = eT

1 x

where x = [x1,· · · , xn]T ∈ Rn, u ∈ R and y ∈ R are system states, input and
output, respectively, bj(t), j = 0, . . . , m are bounded uncertain time-varying
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piecewise continuous high-frequency gains, θT
ai(t) ∈ Rpi are uncertain time-

varying parameters, di(t) denote unknown time-varying bounded disturbances,
ψai ∈ Rpi , ψ0i ∈ R and φai ∈ R are known smooth nonlinear functions, for
i = 1, . . . , n. Similar class of systems was analyzed in [84].

For the considered system in (3.1), the following assumptions are imposed.

Assumption 1. The uncertain parameter vector θ is inside a compact set Ωθ,
where θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T . In addition, there exists an un-
known bounded positive constant q so that ‖ θ̇ ‖≤ q. Also q is inside a compact
intervals Ωq = [I−, I+] and bm(t) �= 0, ∀t.

Assumption 2. The relative degree ρ is fixed and known.

Assumption 3. The reference signal yr and its (ρ − 1)th order derivatives are
assumed to be known and bounded.
Assumption 4. The system is minimum phase.

Definition: System is said to be minimum phase if its zero dynamics, subject to
appropriate initial conditions and a suitable control producing output identically
zero, is stable.

The control objective is to design an adaptive controller for system (3.1) satisfy-
ing Assumptions 1-4 such that the closed-loop system is stable and the system
output can track a given reference signal yr(t) as close as possible.

3.2.2 Preliminary Result

In order to cope with the unknown sign of high-frequency gain, the Nuss-
baum gain technique is employed in this chapter. A function N(χ) is called
a Nussbaum-type function if it has the following properties

lims→∞sup
1
s

∫ s

0
N (χ)dχ = ∞ (3.2)

lims→∞inf
1
s

∫ s

0
N (χ)dχ = −∞ (3.3)

In this chapter, the even Nussbaum function exp(χ2) cos(π
2 χ) is exploited. The

following Lemma will be employed in later analysis.

Lemma 3.1. Let V (t) and χ(t) be a smooth function defined on [0, tf) with V (t) ≥
0, ∀t ∈ [0, tf ), and N(χ) = exp(χ2) cos(π

2 χ) be an even smooth Nussbaum-type
function. If the following inequality holds:

V (t) ≤ f0 + e−f∗t

∫ t

0
g(τ)N(χ)χ̇ef∗τdτ + e−f∗t

∫ t

0
χ̇(t)ef∗τdτ (3.4)

where constant f∗ > 0, g(τ) is a time-varying parameter which takes values
in the unknown closed intervals I1 = [g−, g+] with 0 �∈ I1, and f0 represents
a suitable constant, then V (t), χ(t) and

∫ t

0 g(τ)N(χ)χ̇dτ must be bounded on
[0, tf).
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Proof: The boundedness of V can be established based on the Nussbaum gain
properties (3.2) and (3.3) via a contradiction argument. We first define

Vg(ti, tj) =
∫ tj

ti

[g(τ)N(χ) + 1]χ̇e−f∗(tj−τ)dτ (3.5)

where gmax = max{|g−|, |g+|} and gmin = min{|g−|, |g+|}. For notation conve-
nience, Vg(χi, χj) = Vg(χ(ti), χ(tj)) = Vg(ti, tj), ti ≤ tj

Using integral inequality (b − a)fmin ≤
∫ b

a
f(x)dx ≤ (b − a)fmax with fmin =

infa≤x≤b f(x) and fmax = supa≤x≤b f(x), and noting the facts that |g(τ)| ≤
gmax, 0 < e−f∗(t−τ) ≤ 1 for τ ∈ [0, t], we have

|Vg(χ0, χ)| ≤
∫ χ

χ0

|g(τ)N(χ) + 1|dχ

≤ (χ − χ0) sup
τ∈[t0,t],χ∈[χ0,χ]

|g(τ)N(χ) + 1|

≤ (χ − χ0)[gmax sup
χ∈[χ0,χ]

|N(χ)| + 1] (3.6)

For N(χ) = exp(χ2)cos(πχ/2), we know that it is positive for χ ∈ (4m−1, 4m+1)
and negative for χ ∈ (4m + 1, 4m + 3) with m an integer.

Then (3.4) is rewritten as

0 ≤ V (t) ≤ f0 + Vg(χ0, χ) (3.7)

We now show that χ(t) is bounded on [0, tf ] by seeking a contradiction. Suppose
that χ(t) is unbounded and two cases should be considered: 1) χ(t) is has no
upper bound and 2) χ(t) has no lower bound.

Case 1): χ(t) has no upper bound on [0, tf ]. In this case, there must exist a
monotone increasing variable χi = χ(ti) with χ0 = |χ(t0)| > 0, limi→∞ti = tf ,
and limi→∞χi = ∞.

1. g(t) > 0.
From (3.4), we know for [χ0, χ1] = [χ0, 4m + 1]

|Vg(χ0, χ1)| = |
∫ t1

t0

[g(τ)N(χ) + 1]χ̇e−f∗(t1−τ)dτ |

≤ (χ1 − χ0)[gmax sup
χ∈[χ0,χ1]

|N(χ)| + 1]

= lm1gmaxe(4m+1)2 + lm1 (3.8)

where lm1 = 4m + 1 − χ0. Note that N(χ) ≤ 0, ∀χ ∈ [χ1, χ2] = [4m + 1,
4m + 3], we have

Vg(χ1, χ2) ≤
∫ 4m+2+cm1

4m+2−cm1

[g(τ)N(χ) + 1]χ̇e−f∗(t2−τ)dτ (3.9)
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where cm1 ∈ (0, 1), here we select cm1 = 1
2 . Using the integral inequality and

noting that g(t) ≥ gmin > 0, e−f∗(t2−τ) ≥ e−f∗(t2−t1) > 0 for τ ∈ [t1, t2], we
have

Vg(χ1, χ2) ≤ 2cm1[gmin inf
χ∈[χ1,χ2]

N(χ) + 1]e−f∗(t2−t1)

= −g0e
(4m+2−cm1)2 + g1 (3.10)

where g0 =2cm1gmine−f∗(t2−t1)cos(πcm1/2) > 0, and g1 =2cm1e
−f∗(t2−t1) >

0. Thus from (3.8) and (3.10), we have

Vg(χ0, χ2) = Vg(χ0, χ1) + Vg(χ1, χ2)

≤ e(4m+1)2
[

− g0e

(
2(4m+1)(1−cm1)+(1−cm1)2

)

+gmax(4m + 1 − χ0) +
4m + 1 − χ0 + g1

e(4m+1)2

]
(3.11)

Note that em grows faster than m when m → ∞. From (3.11), we know that
Vg(χ0, χ2) = Vg(χ0, 4m + 3) → −∞ as m → ∞.

2. g(t) < 0.
Similar to the case g(t) > 0, for interval [χ0, χ3] = [χ0, 4m − 1], we have

|Vg(χ0, χ3)| = |
∫ t3

t0

[g(τ)N(χ) − 1]χ̇e−f∗(t3−τ)dτ |

≤ (χ3 − χ0)[gmax sup
χ∈[χ0,χ3]

|N(χ)| + 1]

= lm2gmaxe(4m−1)2 + lm2 (3.12)

where lm2 = 4m − 1 − χ0. Note that N(χ) > 0, ∀χ ∈ [χ3, χ1] = [4m − 1,
4m + 1], we have

Vg(χ3, χ1) ≤
∫ 4m+cm1

4m−cm1

[g(τ)N(χ) − 1]χ̇e−f∗(t1−τ)dτ (3.13)

Using the integral inequality and noting that g(t) ≤ −gmin < 0, e−f∗(t1−τ) ≥
e−f∗(t1−t3) > 0 for τ ∈ [t3, t1], we have

Vg(χ3, χ1) ≤ 2cm1[−gmin inf
χ∈[χ3,χ1]

N(χ) + 1]e−f∗(tm1−tm3)

= −g2e
(4m−cm1)2 + g3 (3.14)

where g2 =2cm1gmine−f∗(t1−t3)cos(πcm1/2) > 0, and g3 =2cm1e
−f∗(t1−t3) >

0. Thus from (3.12) and (3.14), we have

Vg(χ0, χ1) = Vg(χ0, χ3) + Vg(χ3, χ1)

≤ e(4m−1)2 [−g2e
[2(4m−1)(1−cm1)+(1−cm1)2]

+lm2gmax +
lm2 + g3

e(4m−1)2 ] (3.15)
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From (3.15), we know that Vg(χ0, χ1) = Vg(χ0, 4m + 1) → −∞ as m → ∞.
From above analysis, we have Vg(χ0, χ) → −∞ as m → ∞. On the other

hand, V (t) > 0 for all t. In a conclusion, we can find a subsequence that
leads to a contradiction in both g(t) > 0 and g(t) < 0. Therefore, χ(t) has
upper bound.

Case 2): χ has no lower bound on [0, tf ]. Define χ = −w. Accordingly, w has no
upper bound. Further noting that N(.) is an even function, (3.4) becomes

V (t) ≤ M −
∫ t

0
[gN(w) − 1]ẇe−f∗(T−τ)dτ

= M − Vg(w(0), w(t)), ∀t ∈ [0, tf ) (3.16)

Thus, there must exist a monotone increasing variable {wi = w(ti)} with w0 =
|w(t0)| > 0, limi→∞ti = tf , and limi→∞wi = ∞. Following the procedure as
in Case 1), we can also construct a subsequence that leads to a contradiction.
Accordingly, we can claim that w has upper bound on [0, tf ). Since χ = −w, we
know that χ has lower bound on [0, tf).

The above argument is true for all tf > 0. Therefore, χ must be bounded.
And also V (t) and

∫ t

0 [g(τ)N(χ) + 1]χ̇dτ are bounded on [0, tf ).

3.3 State Estimation Filters

In order to design the desired adaptive control law with output via backstepping
procedures, we now transform system (3.1) into the following form

ẋ = Ax + F (y, u)T θ + Φa(y)d(t)T + ψ0(y) (3.17)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.18)

F (y, u)T =

⎡

⎣

⎡

⎣ 0(ρ−1)×(m+1)

Im+1

⎤

⎦u, Ψa(y)

⎤

⎦ (3.19)

Ψa(y) =

⎡

⎢⎢⎢⎣

ψT
a1 0 . . . 0

0
...

. . .
...

0 0 . . . ψT
an

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Ψa1(y)
...

Ψan(y)

⎤

⎥⎥⎥⎦ (3.20)
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Φa(y) =

⎡

⎢⎢⎢⎣

φa1 0 . . . 0

0
...

. . .
...

0 0 . . . φan

⎤

⎥⎥⎥⎦ ==

⎡

⎢⎢⎢⎣

ΦT
a1(y)
...

ΦT
an(y)

⎤

⎥⎥⎥⎦ (3.21)

θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T (3.22)
d(t) = [d1(t), . . . , dn(t)] (3.23)

ψ0(y) = [ψ01(y), . . . , ψ0n(y)]T (3.24)

For state estimation, we employ the filters

ξ̇ = A0ξ + ky + ψ0(y) (3.25)
Ω̇T = A0Ω

T + F (y, u)T (3.26)

where

k
�
= [k1, k2, . . . , kn]T (3.27)

A0 = A − keT
1 (3.28)

The vector k in (3.27) is chosen such that the matrix A0 is strictly stable. Next
we lower the dynamic order of the Ω filter by exploiting the structure of F (y, u)
in (3.19). We denote the first m + 1 columns of ΩT by vm, . . . , v1, v0 and the
remaining n columns by Ξ as follows

ΩT = [vm, . . . , v1, v0, Ξ], (3.29)

and show that the equations for the first n + 1 columns of ΩT are governed by

v̇j = A0vj + en−ju, j = 0, . . . , m (3.30)

Due to the special structure of A0, we have

Aj
0en = en−j , j = 0, . . . , n − 1 (3.31)

The vectors vj can be obtained from only one input filter

λ̇ = A0λ + enu (3.32)

Using the algebraic expression, we have

vj = Aj
0λ (3.33)

We also have

Ξ̇ = A0Ξ + Ψa(y) (3.34)

We now summarize the reduced-order filters

ξ̇ = A0ξ + ky + ψ0(y) (3.35)
Ξ̇ = A0Ξ + Ψa(y) (3.36)
λ̇ = A0λ + enu (3.37)
vj = Aj

0λ (3.38)
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With the above filters, a state estimate is given by

x̂ = ξ + ΩT θ (3.39)

and the estimation errors ε is defined as

ε = x − x̂ (3.40)

We have a static relationship between the state x and the unknown parameter θ

x = ξ + ΩT θ + ε (3.41)

Then we have

x2 = ξ2 + ΩT
2 θ + ε2

= ξ2 + [vm,2, vm−1,2, . . . , v0,2, Ξ2]θ + ε2

= bmvm,2 + ξ2 + [0, vm−1,2, . . . , v0,2, Ξ2]θ + ε2 (3.42)

In above equations, ε2, vi,2 and ξ2 denote the second entries of ε, vi and ξ respec-
tively, ε is the estimation error defined in (3.40).

Because the backstepping design starts with its output y, which is the only
available system state allowed to appear in the control law, (3.1) is expressed as

ẏ = x2 + θa1(t)ψa1(y) + d1(t)φa1(y) + ψ01(y)
= bmvm,2 + β + ω̄T θ + ε2 + d(t)Φa1(y) (3.43)

where

β = ξ2 + ψ01(y) (3.44)
ω = [vm,2, vm−1,2, . . . , v0,2, Ξ2 + Ψa1]T (3.45)
ω̄ = [0, vm−1,2, . . . , v0,2, Ξ2 + Ψa1]T (3.46)

Due to the minimum phase in Assumption 4, system (3.1) is restricted to the
first ρ equations. From our designed filters (3.35)-(3.37), the design system is

ẏ = bmvm,2 + β + ω̄T θ + ε2 + d(t)Φa1(y) (3.47)
v̇m,i = vm,i+1 − kivm,1, i = 2, 3, . . . , ρ − 1 (3.48)
v̇m,ρ = vm,ρ+1 − kρvm,1 + u (3.49)

From the equations (3.17), (3.25), (3.26), (3.39) and (3.40), the estimation error
in (3.40) satisfies

ε̇ = A0ε + Φa(y)d(t)T − ΩT θ̇ (3.50)

Remark 1. As the disturbances and derivatives of time-varying parameters ap-
pear in (3.50), their effects should be considered in controller design. However for
the state-feedback control in [83], no filter is required for state estimation. Their
effects may not be necessarily considered in controller design and this makes
problem much simpler.
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We now divide the error ε into two parts, i.e. ε = εa + εb, where εa satisfies

ε̇a = A0εa + Φa(y)d(t)T (3.51)

with εa(0) = ε(0), and εb =
∫ t

0 eA0(t−τ)(−ΩT θ̇)dτ . It can be shown that

‖ εb ‖ ≤
∫ t

0
‖ eA0(t−τ) ‖ · ‖ Ω ‖ · ‖ θ̇ ‖ dτ

≤ q

∫ t

0
‖ eA0(t−τ) ‖ · ‖ Ω ‖ dτ

≤ q

∫ t

0
e−λθ(t−τ)kθ ‖ Ω ‖ dτ (3.52)

where λθ and kθ are chosen positive parameters so that

kθe
−λθt ≥‖ eA0t ‖, ∀t ≥ 0 (3.53)

Thus εb satisfies that

|εb| ≤ h(t)q (3.54)

where h(t) is generated by

ḣ = −λθh + kθ(‖ Ω ‖2 +
1
4
). (3.55)

Suppose P ∈ Rn×n is a positive definite matrix, satisfying PA0 + AT
0 P ≤ −3I

and let

Vε = εT
a Pεa (3.56)

From equation (3.51), the derivative of Vε is given as

V̇ε = ε̇T
a Pεa + εT

a P ε̇a

= εT
a (PA0 + AT

0 P )εa + 2εT
a PΦa(y)d(t)T

≤ −2 ‖ εa ‖2 + ‖ PΦa(y)d(t)T ‖2 (3.57)

The problem of this chapter is to design an adaptive controller to make system
(3.1) BIBO stable.

3.4 Control Design

3.4.1 Design Procedure

In this section, we present the adaptive control design using the backstepping
technique with tuning functions in ρ steps. In order to avoid using the sign of
the high frequency gain, we take the change of coordinates

z1 = y − yr (3.58)
zi = vm,i − αi−1, i = 2, 3, . . . , ρ, (3.59)
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where αi−1 is the virtual control at each step and will be determined in later
discussions. Before presenting the detail, a useful function is introduced. Firstly
we define s(x) as

s(x) =

⎧
⎨

⎩
x2 |x| ≥ δ

(δ2 − x2)ρ + x2 |x| < δ
(3.60)

where δ is a positive design parameter. Note that s(x) is (ρ−1)th order differen-
tiable and bounded below for |x| < δ. Based on s(x), a function H(z1) is defined
as follows

H(z1) =
Φa(y)
s(z1)

=

⎧
⎪⎨

⎪⎩

Φa(y)
z2
1

|z1| ≥ δ

Φa(y)
(δ2 − z2

1)ρ + z2
1

|z1| < δ
(3.61)

Clearly H is well defined and for |z1| < δ, H is bounded as s(z1) is bounded
below.

Remark 2. In [35], a similar function to (3.61) was used to design controllers for
disturbance decoupling. However, the function is undefined at the time instants
when y = yr. Thus, the controller presented is undefined at these time instants.

With (3.61) and using Young’s inequality ab ≤ 1
2a2 + 1

2b2, (3.57) gives

V̇ε ≤ −2 ‖ εa ‖2 +
1
2

‖ PΦa(y) ‖4 +
1
2

‖ d(t) ‖4

= −2 ‖ εa ‖2 +
1
2
s4 ‖ PH ‖4 +

1
2

‖ d(t) ‖4 (3.62)

We now illustrate the backstepping design procedures using Nussbaum gain with
details given for the first two steps.

Step.1
It follows from (3.47) and (3.58) that

ż1 = bmvm,2 + β + ω̄T θ + ε2 + d(t)Φa1(y) − ẏr (3.63)

Without using the sign of bm, the following virtual control law α1 is designed

α1 = N(χ)ᾱ1e
−ft (3.64)

N(χ) = exp(χ2) cos
π

2
χ (3.65)

where f is a positive real design parameter, χ is generated by

χ̇ = z1ᾱ1 (3.66)

and ᾱ1 is chosen to be

ᾱ1 = (c1 + l1 + (eT
1 θ̂)2)z1 + β + ω̄T θ̂ − ẏr + z1h

2q̂

+
1
4
z1 ‖ Φa1(y) ‖2 +

ρ∑

i=1

1
8li

z1s
3(z1) ‖ PH ‖4 (3.67)
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where c1 and l1 are two positive real design parameters, θ̂ and q̂ denotes the
estimates of θ and q. Notice that

bmvm,2 = bm(z2 + α1) = b̂mz2 + bmα1 + b̃mz2 (3.68)

where b̃m = bm − b̂m, b̂m is the first element of θ̂, i.e. b̂m = eT
1 θ̂. Then from (3.63)

and (3.67) we have

ż1 − ᾱ1 = −(c1 + l1 + b̂2
m)z1 + (ω̄T + z2e

T
1 )θ̃ + εa,2 + εb,2 − z1h

2q̂ + b̂mz2

+bmα1 + d(t)Φa1(y) − 1
4
z1 ‖ Φa1(y) ‖2 −

ρ∑

i=1

1
8li

z1s
3 ‖ PH ‖4

(3.69)

where θ̃ = θ − θ̂, and εa,2 and εb,2 represent the second entries of εa and εb. To
proceed, we define the Lyapunov function

V1 =
1
2
z2
1 +

1
2
θ̃T Γ−1θ̃ +

1
2γ

q̃2 +
1

4l1
Vε (3.70)

where Γ is a positive definite matrix and γ is a positive constant. Then the
derivative of V1 along with (3.62), (3.64) and (3.69) is given by

V̇1 = z1(ż1 − ᾱ1) + z1ᾱ1 + θ̃T Γ−1(θ̇ − ˙̂
θ) +

1
γ

q̃ ˙̃q +
1

4l1
V̇ε

≤ −(c1 + b̂2
m)z2

1 + b̂mz1z2 + θ̃T Γ−1(τ1 − ˙̂
θ) − l1z

2
1 + εa,2z1 − 1

2l1
‖ εa ‖2

+εb,2z1 − 1
γ

q̃ ˙̂q − h2q̂z2
1 + d(t)Φa1(y)z1 − 1

4
z2
1 ‖ Φa1(y) ‖2 +bmα1z1 + ᾱ1z1

+
1

8l1
s4 ‖ PH ‖4 −

ρ∑

i=1

1
8li

z2
1s

3 ‖ PH ‖4 +
1

8l1
‖ d(t) ‖4 +θ̃T Γ−1θ̇ (3.71)

where

τ1 = Γz1(ω̄ + z2e1) (3.72)

Here we know that

εb,2z1 − h2q̂z2
1 ≤ hq|z1| − h2q̂z2

1 ≤ q(h2z2
1 + 1/4) − h2q̂z2

1 = h2q̃z2
1 +

q

4

Then we can get

V̇1 ≤ (bmN(χ)e−ft + 1)χ̇ − c1z
2
1 + θ̃T Γ−1(τ1 − ˙̂

θ)

+
1
γ

q̃(ι1 − ˙̂q) − 1
4l1

‖ εa ‖2 +
1
4
z2
2 + M1 (3.73)
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where

ι1 = γh2z2
1 (3.74)

M1 = ‖ d(t) ‖2 +
1

8l1
‖ d(t) ‖4 −

ρ∑

i=2

1
8li

s4 ‖ PH ‖4

+θ̃T Γ−1θ̇ +
1
4
q + N̄ (3.75)

N̄ =

⎧
⎪⎪⎨

⎪⎪⎩

0 |z1| ≥ δ
ρ∑

i=1

1
8li

(δ2 − z2
1)ρs3 ‖ PH ‖4 |z1| < δ

(3.76)

From (3.61) we know that N̄ is bounded.

Step.2
Now, we evaluate the dynamics of the second state z2. Differentiating (3.59) for
i = 2 and using (3.48), we have

ż2 = vm,3 − k2vm,1 − α̇1 (3.77)

Note that α1 is a function of y, θ̂, q̂, ξ, Ξ, λ, χ and yr and following backstepping
design by substituting (3.59) with i = 3 into (3.77), we get

ż2 = α2 − β2 − ∂α1

∂y

(
ε2 + ωT θ̃ + d(t)Φa1(y)

)
+ z3

−∂α1

∂y
ωT θ̂ − ∂α1

∂θ̂

˙̂
θ − ∂α1

∂q̂
˙̂q (3.78)

where

β2
�
= k2vm,1 +

∂α1

∂y
β +

∂α1

∂Π
Π̇ +

m+1∑

j=1

∂α1

∂λj
(−kjλ1 + λj+1)

+
∂α1

∂yr
ẏr +

∂α1

∂χ
χ̇ (3.79)

where Π = [ξT , V ec(Ξ)T ]T . Define the Lyapunov function and choose the virtual
control for this step as

V2 = V1 +
1
2
z2
2 +

1
4l2

Vε (3.80)

α2 = −(c2 +
1
4
)z2 +

∂α1

∂y
ωT θ̂ − z2 ‖ ∂α1

∂θ̂
‖2‖ τ2 ‖2 −z2h

2q̂ ‖ ∂α1

∂y
‖2

−z2 ‖ ∂α1

∂q̂
‖2 ι22 − l2 ‖ ∂α1

∂y
‖2 z2 + β2 − z2

4
‖ ∂α1

∂y
Φa1(y) ‖2 (3.81)

τ2 = τ1 − Γ
∂α1

∂y
ωz2 (3.82)

ι2 = ι1 + γh2 ‖ ∂α1

∂y
‖2 z2

2 (3.83)
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Using (3.73), (3.80) and (3.81), we have that

V̇2 ≤ V̇1 + z2ż2 +
1

4l2
V̇ε

≤ −
2∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇ + z2z3 −

2∑

i=1

1
4li

‖ εa ‖2 +M2

+θ̃T Γ−1(τ1 − ˙̂
θ) − z2

∂α1

∂y
ωT θ̃ + z2

2 ‖ ∂α1

∂θ̂
‖2‖ ˙̂

θ ‖2 −z2
2 ‖ ∂α1

∂θ̂
‖2‖ τ2 ‖2

+
1
γ

q̃(ι1 − ˙̂q) + h2q̃ ‖ ∂α1

∂y
‖2 z2

2 + z2
2 ‖ ∂α1

∂q̂
‖2 ˙̂q

2 − z2
2 ‖ ∂α1

∂q̂
‖2 ι2

≤ −
2∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇ + z2z3 + θ̃T Γ−1(τ2 − ˙̂

θ)

+
1
γ

q̃(ι2 − ˙̂q) + z2
2
(∂α1

∂q̂

)2( ˙̂q
2 − ι22) −

2∑

i=1

1
4li

‖ εa ‖2

+z2
2 ‖ ∂α1

∂θ̂
‖2 (‖ ˙̂

θ ‖2 − ‖ τ2 ‖2) + M2 (3.84)

where

M2 =
2∑

i=1

1
8li

‖ d(t) ‖4 +2 ‖ d(t) ‖2 −
ρ∑

i=3

1
8li

s4 ‖ PH ‖4

+θ̃T Γ−1θ̇ +
1
2

+
1
2
q + N̄ (3.85)

Remark 3. Note that M2 contains s4 ‖ PH ‖4 and this term may not be bounded.
As seen from our analysis, 1

8l2
s4 ‖ PH ‖4 disappears in M2 due to the use of Vε

at step 2. If we use Vε at each step, this term will disappear in Mρ of the last
step.

Step.i (i = 3, . . . , ρ)
We define the positive Lyapunov function Vi as

Vi = Vi−1 +
1
2
z2

i +
1
4li

Vε (3.86)

and choose the virtual control law αi as

αi = −cizi − li ‖ ∂αi−1

∂y
‖2 zi − zi−1 +

∂αi−1

∂y
ωT θ̂ − zi

4
‖ ∂αi−1

∂y
Φa1(y) ‖2

−zi ‖ ∂αi−1

∂θ̂
‖2‖ τi ‖2 +

( i−1∑

k=2

z2
k ‖ ∂αk−1

∂θ̂
‖2

)
(τi + τi−1)T Γ

∂αi−1

∂y
ω

+βi −
( i−1∑

k=2

z2
k ‖ ∂αk−1

∂q̂
‖2

)
(ιi + ιi−1)h2 ‖ ∂αi−1

∂y
‖2 zi
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−zi ‖ ∂αi−1

∂q̂
‖2 ι2i − zih

2q̂ ‖ ∂αi−1

∂y
‖2 (3.87)

τi = τi−1 − Γ
∂αi−1

∂y
ωzi (3.88)

ιi = ιi−1 + γh2 ‖ ∂αi−1

∂y
‖2 z2

i (3.89)

where

βi
�
= kivm,1 +

∂αi−1

∂y
β +

∂αi−1

∂Π
Π̇ +

∂αi−1

∂yr
ẏr

+
m+1∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj+1) +

∂αi−1

∂χ
χ̇ (3.90)

Also note that

‖ τi ‖2 = τT
i τi − τT

i−1τi−1 + τT
i−1τi−1

= (τi + τi−1)T (τi − τi−1) + τT
i−1τi−1

= −(τi + τi−1)T Γ
∂αi−1

∂y
ωzi + τT

i−1τi−1

ι2i = (ιi + ιi−1)γh2 ‖ ∂αi−1

∂y
‖2 z2

i + ι2i−1 (3.91)

Then the actual adaptive controller is obtained and given by

u(t) = αρ − vm,ρ+1 (3.92)
˙̂
θ = Proj(τρ) (3.93)
˙̂q = Proj(ιρ) (3.94)

where Proj(.) is a smooth projection operation to ensure the estimates belong
to compact sets for all time. Such an operation can be found in Appendix C.

Remark 4. Note that the design of tuning functions does not follow the stan-
dard tuning function design in [1] as the projection operations are used in the
parameter estimators.

3.4.2 Stability Analysis

We construct the final Lyapunov function as

Vi = Vi−1 +
1
2
z2

i +
1
4li

Vε (3.95)
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By using the properties −θ̃T Γ−1Proj(τ) ≤ −θ̃T Γ−1τ and Proj(τ)T Proj(τ) ≤
τT τ the final Lyapuonv function Vρ satisfies

V̇ρ ≤ −
ρ∑

k=1

ckz2
k + (bmN(χ)e−ft + 1)χ̇ + Mρ −

ρ∑

i=1

1
4li

‖ εa ‖2

+
( ρ∑

k=2

z2
k ‖ ∂αk−1

∂θ̂
‖2

)
(Proj(τρ)T Proj(τρ)− ‖ τρ ‖2)

+θ̃T Γ−1(τρ − Proj(τρ)) +
1
γ

q̃(ιρ − Proj(ιρ))

+
( ρ∑

k=2

z2
k

(∂αk−1

∂q̂

)2
)((

Proj(ιρ)
)2 − ι2ρ

)

≤ −
ρ∑

k=1

ckz2
k + bmN(χ)e−ftχ̇ + χ̇ + Mρ −

ρ∑

i=1

1
4li

‖ εa ‖2 (3.96)

where

Mρ =
ρ∑

i=1

1
8li

‖ d(t) ‖4 +ρ ‖ d(t) ‖2 +θ̃T Γ−1θ̇ +
ρ − 1

2
+

ρ

4
q + N̄ (3.97)

Integrating both sides of (3.96) over the interval [0, t] gives

∫ t

0
V̇ρe

fτdτ ≤ −
∫ t

0

ρ∑

k=1

ckz2
kefτdτ +

∫ t

0
bmN(χ)χ̇dτ +

∫ t

0
χ̇efτdτ

+
∫ t

0
Mρe

fτdτ −
∫ t

0

ρ∑

i=1

1
4li

‖ εa ‖2 efτdτ (3.98)

Note that Vε ≤‖ P ‖‖ εa ‖2. Then

Vρ =
ρ∑

k=1

1
2
z2

k +
1
2
θ̃T Γ−1θ̃ +

1
2γ

q̃2 +
ρ∑

i=1

1
4li

Vε

≤
ρ∑

k=1

1
2
z2

k +
1
2
θ̃T Γ−1θ̃ +

1
2γ

q̃2 +
ρ∑

i=1

1
4li

‖ P ‖‖ εa ‖2 (3.99)

This yields

0 ≤ Vρ(t) ≤ Vρ(0) + e−ft

∫ t

0
bmN(χ)χ̇dτ +

∫ t

0
χ̇e−f(t−τ)dτ

+
∫ t

0

f

2
(θ̃T Γ−1θ̃) + q̃2)e−f(t−τ)dτ +

∫ t

0
Mρe

−f(t−τ)dτ

(3.100)
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where f = min{ 1
‖P‖2

, 2c1, 2c2, . . . , 2cρ, } > 0. Due to the utilization of projection

operations for θ̂ and q̂, the boundedness of θ̃ and q̃ can be guaranteed. Together
the boundedness d(t), q and θ̇ ,the boundedness of Mρ and

∫ t

0
f
2 (θ̃T Γ−1θ̃ +

q̃2)e−f(t−τ)dτ +
∫ t

0 Mρe
−f(t−τ)dτ can be guaranteed. Thus by comparing with

(3.4), f0 is selected as the upper bound of Vρ(0)+
∫ t

0
f
2 (θ̃T Γ−1θ̃+q̃2)e−f(t−τ)dτ +∫ t

0 Mρe
−f(t−τ)dτ, g(t) = bm(t). Using Lemma 3.1, we can conclude that Vρ(t)

and χ(t), hence zi, (i = 1, . . . , ρ), θ, q and εa are bounded. Since z1 and yr are
bounded, y is also bounded. Because of the boundedness of y, ξ and Ξ in filters
(3.35) and (3.36) are bounded as A0 is Hurwitz. Since the system is minimum
phase in Assumption 4 and the boundedness of y, we have λ1, . . . , λm+1 are
bounded. Then the coordinate change (3.59) gives

vm,i = zi + αi−1(y, ξ, Ξ, θ̂, q̂, y(i−1)
r , λ1, . . . , λm+i−1)

i = 2, 3, . . . , ρ (3.101)

Let i = 2, the boundedness of λ1, . . . , λm+1, z2, y, Ξ, ξ, θ̂, q̂, yr and ẏr proves that
vm,2 is bounded. Then from (3.38) it follows that λm+2 is bounded. Recursively
using the same procedure, we establish that λ and vj are bounded. From (3.54)
and (3.55), the boundedness of εb is established. Finally, with the boundedness
of Ξ, ξ, λ and ε, we conclude that x is bounded.

We have thus show that the signals of the closed-loop adaptive system are
bounded. To conclude this section, the results established are presented in the
following theorem.

Theorem 3.1 Consider the uncertain time-varying nonlinear system (3.1) sat-
isfying Assumptions 1-4. With the application of the controller (3.92) and the
parameter updating laws (3.93) and (3.94), the resulting closed loop system is
BIBO stable.

3.5 An Illustrative Example

For illustration of the proposed scheme, an example is considered. The results of
simulation will verify that our adaptive controller makes the system stable. We
consider the following second-order system

ẋ1 = x2 + θa1(t)x2
1 + d1(t)

ẋ2 = b(t)u + θa2(t)x1 + d2(t)
y = x1 (3.102)

where θa1(t) = x1e
−0.5t, θa2(t) = 2 + cos(t), b(t) = 3 + sin(t), d1(t) = 0.6 sin(t)

and d2(t) = 0.5 cos2(t), actually these timevarying parameters are not needed
to be known in controller design. The objective is to control the system output
y(t).to follow a desired trajectory yr = sin(2t) + sin(t). With the application of
the filters (3.25) and (3.26), the controller (3.92) and the parameter updating
laws (3.93) and (3.94), the resulting closed-loop system is stable.
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Since ρ = 2 = n, we have vρ = vn = λ. The filters are designed as

⎡

⎣ ξ̇1

ξ̇2

⎤

⎦ =

⎡

⎣−k1 1

−k2 0

⎤

⎦

⎡

⎣ ξ1

ξ2

⎤

⎦ +

⎡

⎣ k1

k2

⎤

⎦ y (3.103)

⎡

⎣ Ξ̇1

Ξ̇2

⎤

⎦ =

⎡

⎣−k1 1

−k2 0

⎤

⎦

⎡

⎣Ξ1

Ξ2

⎤

⎦ +

⎡

⎣ y2

y

⎤

⎦ (3.104)

Since b(t) is unknown, we define θ(t) = [b(t), θa1(t), θa1(t)] and the error ε
satisfies

ε̇ = A0ε + Φ(y)D(t) (3.105)

H(y, yr) =

⎡

⎣ 1

0

⎤

⎦ (3.106)

P =

⎡

⎣
1
k1

+ k2
k1

−1

−1 1
k1

+ k2
k1

+ 1
k1k2

⎤

⎦ (3.107)

Following the steps presented in the controller design, we have

α1 = −ωT
1 θ̂ − ẏr +

1
2
z1 ‖ Φa1(y) ‖2 N(χ)

+
1

N(χ)
1

16l1
z3
1 ‖ PH(y, yr) ‖4 (3.108)

with ω1 = [ω̄T , c1z1 + exp(χ2)z1 − ẏr + β]T

u = −c2z2 + β2 + 2N(χ)z1e
−ft − l2

(∂α1

∂y

)2
z2 +

∂α1

∂y
ωT θ̂

−z2

4
‖ ∂α1

∂y
Φa1(y) ‖2 −

ρ∑

i=2

1
8liz2

z4
1 ‖ PH ‖4 (3.109)

and the adaptive laws are given as

˙̂
θ1 = Proj

(
− N(χ)Γ1ω1z1e

−ft
)

(3.110)
˙̂
θ = Proj

(
τ2

)
(3.111)

τ2 = −Γ
∂α1

∂y
ωz2 (3.112)

In the simulation, the design parameters were set as c1 = c2 = 2, l1 = l2 = 1,
k1 = 5, k2 = 4, Γ = I3 and γ = 1. Figure 3.1 and Figure 3.2 show the sys-
tem output y(t) with reference signal yr(t) and the control input u(t). Clearly,
simulation results verify the effectiveness of proposed scheme.
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Fig. 3.1. Output y and reference yr
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3.6 Summary

In this chapter, a scheme is proposed to design an adaptive output-feedback
controller for uncertain time-varying nonlinear systems with unknown sign of
high-frequency gains in the presence of disturbances. No growth conditions on
system nonlinearities are imposed. In the design, certain well defined functions
are used to cancel the effects of disturbances. Furthermore, the overparamteriza-
tion problem is also solved by using the concept of tuning functions. It is shown
that the controller obtained by the proposed design scheme can make the whole
adaptive control system stable.



4 Multivariable Adaptive Control

In this chapter, adaptive output feedback control of a class of multiple-input
multiple-output systems is considered in the presence of unknown disturbances.
Except the signs of the term multiplying the control are assumed, no other knowl-
edge on the unknown parameters is required. The control design is achieved by
using backstepping, tuning functions, SDU (Symmetric Diagonal Unity) factor-
ization and estimation of unknown parameters. It is shown that the proposed
controller can guarantee global uniform ultimate boundedness.

4.1 Introduction

In practice, most practical systems considered are multi-input multi-output
(MIMO) systems. For such systems, the control problem is very complicated due
to the coupling among various inputs and outputs. It becomes even more diffi-
cult to deal with when there exist uncertain parameters in the input or output
coupling matrix. Due to these difficulties, it is noticed that, in comparison with
the vast amount of results on controller design for SISO systems in control area,
there are relatively fewer results available for a general class of MIMO systems.
Adaptive backstepping control for a class of linear MIMO systems was studied in
[85, 86, 87]. In [85] there exists a restrictive assumption about the high frequency
gain Bm that a matrix Sm must be known such that BmSm = (BmSm)T > 0. In
[86] a similar restriction is relaxed using the factorization of high frequency gain.
Recently a model-reference adaptive control was presented in [87] for MIMO lin-
ear systems without external disturbance using factorization of high frequency
gain. In [88] a robust adaptive controller was designed for MIMO systems with-
out disturbances by using switch functions. In [89] an output feedback control
based on high-order sliding manifold approach was proposed for MIMO plants
in the presence of disturbances. The convergence of tracking error is not to zero,
but to a small residual set.

In this chapter, a new scheme is developed for a class of MIMO systems in
the presence of unknown disturbances. With our scheme, a completely control
solution to disturbance rejection is solved. In our design, the signs of the high

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 51–64, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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frequency gains are known. To handle the disturbances and unknown param-
eters, we introduce new filters for states estimation and employ the internal
model. As the parameters of the exosystem that generates external disturbances
are unknown, an adaptive version of the internal model is proposed. Thus our
estimator identifies the unknown parameters in both the system and the exosys-
tem. It is shown that all closed-loop signals are bounded and the tracking error
converges to zero.

4.2 Problem Formulation

The objective is to design an adaptive backstepping control scheme to generate
the control u(t) for multivariable plant described by

y(t) = G(p)
(
u(t) + d̄(t)

)
(4.1)

where p = d
dt , u, y ∈ Rr, r > 1, and G(p) is an r×r strictly proper rational trans-

fer matrix with unknown parameters, d̄ is an unknown bounded disturbance. The
similar problem was considered in [90].

A general MIMO plant G(p) in (4.1) can be expressed as

G(p) = D−1N(p) = Cg(pI − Ag)−1Bg (4.2)
D(p) = pvIr + Av−1p

v−1 + . . . + A1p + A0

N(p) = Bmpm + . . . + B1p + B0

Ag =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Av−1 Ir 0 . . . 0

−Av−2 0 Ir . . . 0
...

...
...

. . .
...

−A1 0 0 . . . Ir

−A0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Bg =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
...

0

Bp

⎤

⎥⎥⎥⎥⎥⎥⎦
, Bp =

⎡

⎢⎢⎢⎢⎢⎢⎣

Bm

...

B1

B0

⎤

⎥⎥⎥⎥⎥⎥⎦
(4.3)

Cg = [Ir 0 . . . 0 0] (4.4)

where v is the observability index of G(p), rv = n, Ir is the r×r identity matrix,
and Ai ∈ Rr×r, i = 0, . . . , v − 1, and Bj ∈ Rr×r, j = 0, . . . , m, m ≤ v − 1 are
matrices.

Using (4.2), (4.1) can be expressed as the following feedback form

ẋ = Ax + Apy +

⎡

⎣ 0

Bp

⎤

⎦u + d(t) (4.5)

y = Cgx

where x ∈ Rn is the system state, A ∈ Rn×n is the matrix Ag with the first
r columns equal to zero, Ap ∈ Rn×r are the first r columns of Ag and BP
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∈ R(m+1)r×r, d(t) = [0 Bp]T d̄(t) = [dT
1 , . . . , dT

v ]T ∈ Rn and di ∈ Rr, (i =
1, . . . , v).

Suppose that the unknown disturbance is generated from the following
exosystem

ḋ(t) = Sd(t) (4.6)

where S is an unknown n × n matrix having distinct eigenvalues with zero real
parts. The disturbance rejection problem in this chapter is based on the internal
model principle in Appendix D.

For system (4.5) there exists an invariant manifold as stated below:

Lemma 4.1. For the system (4.5) with an exosystem (4.6), there exists π(d) =
Πd ∈ Rn and σ(d) = Λd ∈ Rr such that

ΠS = AΠ + I +

⎡

⎣ 0

Bp

⎤

⎦Λ (4.7)

where π1(d) is the first r elements of π(d) and satisfies π1(d) = 0 ∈ Rr.

Proof. The existence of Π and Λ in (4.7) follows from the fact that A is a shift
matrix. Details are given in Appendix D and also in [91, 92, 93].

With the invariant manifold π(d), we define a state transformation as

ζ = x − π(d) (4.8)

It can be shown from (4.5), (4.6) and (4.7) that

ζ̇ = Aζ + Apy +

⎡

⎣ 0

Bp

⎤

⎦ (u − σ(d)) (4.9)

y = Cgζ

Then disturbance rejection problem of (4.5) becomes the stabilization problem
of (4.9).

The control objective is that the output y(t) can track a given bounded ref-
erence output yd(t) asymptotically and all closed-loop signals are bounded. Re-
garding the system and the reference signal, the following assumptions are made:

Assumption 1. The system is minimum phase.

Assumption 2. The leading principle minors of Bm are nonzero and the signs
are known.

Assumption 3. The reference output yd(t) and its ρth order derivatives are
assumed to be known, continuous and bounded.

Remark 4.1. Assumption 1 is fundamental in output feedback adaptive control.
With Assumption 2, we require an apriori information to achieve simplicity of
the resulting multivariable adaptive control scheme and a clear understanding
of its properties.
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4.3 Preliminary Results

We first perform a factorization of the high frequency gain Bm as stated in the
following Lemma.

Lemma 4.2. Every r × r real matrix Bm with nonzero leading principal minors
Δ1, Δ2, . . . , Δr, can be factored as

Bm = S1D1U1 (4.10)

where S1 is symmetric positive definite, D1 is diagonal, and U1 is unity upper
triangular.

Proof: Since the leading principal minors of Bm are nonzero, there exists a
unique factorization

Bm = SDU (4.11)

where S and U are unity lower triangular and

D = diag{Δ1,
Δ2

Δ1
, . . . ,

Δr

Δr−1
} (4.12)

Factoring D as

D = D+D1 (4.13)

where D+ is a diagonal matrix with positive entries, we rewrite (4.11) as Bm =
SD+ST S−T D1U , so that (4.10) is satisfied by

S1 = SD+ST (4.14)
U1 = D−1

1 S−T D1U (4.15)

Remark 4.2. The factorization Bm = S1D1U1 is not unique because the positive
diagonal matrix D+ is arbitrary and so D1 is any diagonal matrix.

To construct a multivariable state observer using u(t) and y(t) for system (4.5),
we choose the following matrix

K = [k1Ir , . . . , kvIr]T ∈ Rn×r (4.16)

where ki > 0, i = 1, . . . , v, such that the matrix

A0 = A − KCg (4.17)

is stable. This is sufficient if sv+k1s
v−1+. . .+kv−1s+kv is a Hurwitz polynomial.

Define

Ei = ei ⊗ Ir (4.18)
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where ⊗ is the Kronecker product, and ei is the ith coordinate vector in Rv. We
also denote vectors ξv(t), ξ(t), vj(t), as the outputs of the filters

ξ̇v = A0ξv + Ky (4.19)
ξ̇i = A0ξi + Ev−iy i = 0, 1, . . . , v − 1 (4.20)
v̇j = A0vj + Ev−ju j = 0, 1, . . . , m (4.21)

where ξv = [ξT
v,1, . . . , ξ

T
v,v]

T . Since A0 is Hurwitz and the spectra of A0 and S
are disjoint, there exists q(d) = Qd with Q ∈ Rn×n such that

QS = A0Q −

⎡

⎣ 0

Bp

⎤

⎦Λ (4.22)

With these filters, we construct a parameterized state observer for the system
(4.9) as

ζ̂(t) = ξv(t) + q(d) −
v−1∑

i=0

Āiξi(t) −
m∑

j=0

B̄jvj(t) (4.23)

where Āi = diag[Ai, . . . , Ai] ∈ Rn×n, B̄i = diag[Bi, . . . , Bi] ∈ Rn×n.

Lemma 4.3. The state observation error ε(t) = ζ − ζ̂ satisfies

ε̇(t) = A0ε (4.24)
lim

t→∞ ε(t) = 0 (4.25)

exponentially.

Proof. Based on the special structures of Āi and A0, we have

ĀiA0 = A0Āi, (i = 0, 1, . . . , v − 1) (4.26)
B̄jA0 = A0B̄j , (j = 0, 1, . . . , m) (4.27)

From (4.6),(4.9),(4.19-4.27) and from

Apy(t) = −
v−1∑

i=0

ĀiEv−iy(t) (4.28)

⎡

⎣ 0

Bp

⎤

⎦u(t) = −
m∑

j=0

B̄jEv−ju(t) (4.29)

we obtain

ε̇(t) = ζ̇ − ˙̂
ζ = A0ε (4.30)

where A0 is a stable matrix. So we get limt→∞ ε(t) = 0 exponentially.
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Based on the parameterized canonical observer from (4.23), we now design a
multivariable adaptive backstepping controller for the plant (4.9).

Let the state variable ζ(t) be partitioned as

ζ = [ζT
1 , . . . , ζT

v ]T , ζi ∈ Rr (4.31)

Then it follows from (4.4) and (4.9) that

y = ζ1 (4.32)
ẏ = ζ2 − Av−1y (4.33)

Let ε(t), ξ(t) and vj(t) be partitioned as

ε = [εT
1 , . . . , εT

v ]T , εi ∈ Rr

ξi = [ξT
i,1, . . . , ξ

T
i,v]T , ξi,k ∈ Rr

vj = [vT
j,1, . . . , v

T
j,v]

T , vj,k ∈ Rr (4.34)

We also define

Θa = [−Av−1, −Av−2, . . . , −A1, −A0],
Θb = [Bm, Bm−1, . . . , B1, B0],

ξ(2) = [ξT
v−1,2, . . . , ξ

T
0,2]

T ,

v(2) = [vT
m,2, . . . , v

T
0,2]

T . (4.35)

From (4.23) and Lemma 4.3 we have

ζ2 = ξv,2 + Θaξ(2) + Θbv(2) + q2 + ε2 (4.36)

where ξv,2, q2 and ε2 are the second entries of ξv, q and ε. Substituting (4.36)
into (4.33) yields

ẏ = ξv,2 + Θa[ξ(2) + E1y] + Θbv(2) + q2 + ε2

= ξv,2 + Bmvm,2 + Θω̄ + q2 + ε2 (4.37)

where E1 = [Tr, 0r×(v−1)r]T , Θ = [Θa, Θb], ω̄ = [ξT
(2) + (E1y)T ,[01,r, vT

m−1,2, . . .,
vT
0,2]]

T .

Remark 4.3. The difficulty now is that the term q(d) is not available, because the
disturbance d(t) and the matrix Q are unknown. For the adaptive backstepping
approach proposed in [1], the state ζ2 serves as the link between the output and
the filter used for the output backstepping. The contribution of σ(d) to ζ2 is
reflected by q2 in ε. Following the treatment in [94] and [95], we reparameterize
(4.6) for generating q2 = Q2d, with Q2 denoting the second r rows of Q. And
we will introduce a new internal model and filter to handle it.



Preliminary Results 57

Lemma 4.4. Given any Hurwitz matrix F ∈ Rv×v and any vector G ∈ Rv such
that the pair {F, G}, i = 1, . . . , r is controllable, the Sylvester equation

MS − FM = GL (4.38)

has a unique solution M , which is non singular.

The existence of a non-singular M is ensured by the facts that S and F have
exclusively different eigenvalues and that {S, L} is observable. Then we have

MSM−1 = F + GψT (4.39)

where ψT = LM−1. S is similar to F + Gψ. Note that, since {F, G} is con-
trollable, and G has just one column, the row vector ψ is precisely the unique
solution to the problem of assigning to F + Gψ the poles of S. The system (4.6)
is immersed into

η̇ = (F + GψT )η (4.40)

where η = Md and ψT = LM−1.

From Lemma 4.4, for any known controllable pair {Fi, Gi}, i = 1, . . . , r with
Fi ∈ Rv×v being Hurwitz and Gi ∈ Rv, there exists a ψi ∈ Rv such that

η̇i = (Fi + Giψ
T
i )ηi

q2,i = ψT
i ηi, i = 1, 2, . . . , r (4.41)

where q2,i denotes the ith variable of q2 = [q2,1, . . . , q2,r]T , the initial value ηi(0)
dependent on exogenerous variables. We define η = [ηT

1 , . . . , ηT
r ]T .

Based on the parametrization (4.41) of the initial model, we design an adaptive
internal model as

δ̇ =

⎡

⎢⎢⎢⎣

δ̇1

...

δ̇r

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

F1δ1 − G1ξv,2,1 + F1G1y1

...

Frδr − Grξv,2,r + FrGryr

⎤

⎥⎥⎥⎦

˙̂q2 =

⎡

⎢⎢⎢⎣

˙̂q2,1
...

˙̂q2,r

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

ψ̂T
1 δ1

...

ψ̂T
r δr

⎤

⎥⎥⎥⎦ (4.42)

where ψ̂i is the estimate of ψi, ξv,2 = [ξv,2,1, . . . , ξv,2,r]T , and y = [y1, . . . , yr]T .
To further exploit the stability of the internal model, we define the filters

λ̇ =

⎡

⎢⎢⎢⎣

λ̇1

...

λ̇r

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

F1λ1 + G1ω
T

...

Frλr + Grω
T

⎤

⎥⎥⎥⎦
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λ̇v =

⎡

⎢⎢⎢⎣

λ̇v,1

...

λ̇v,r

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

F1λv,1 + F1G1v
T
m,1

...

Frλv,r + FrGrv
T
m,1

⎤

⎥⎥⎥⎦ (4.43)

where ω = [ξT
(2) + (E1y)T , [−(K1vm,1)T , vT

m−1,2, . . . , v
T
0,2]]

T .
We define the auxiliary error

e =

⎡

⎢⎢⎢⎣

e1

...

er

⎤

⎥⎥⎥⎦ = η − δ +

⎡

⎢⎢⎢⎣

λ1Θ
T
1

...

λrΘ
T
r

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎣

G1y1

...

Gryr

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

G1Bm,1vm,1

...

GrBm,rvm,1

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

λv,1B
T
m,1

...

λv,rB
T
m,r

⎤

⎥⎥⎥⎦

where Θ = [Θa, Θb] =

⎡

⎢⎢⎢⎣

Θ1

...

Θr

⎤

⎥⎥⎥⎦, Bm =

⎡

⎢⎢⎢⎣

Bm,1

...

Bm,r

⎤

⎥⎥⎥⎦.

Remark 4.4. Note that the traditional filters in [1] cannot deal with the unknown
disturbance generated from an unknown exosystem. Thus the new adaptive in-
ternal model (4.42) and the new auxiliary filters (4.43) are introduced to achieve
disturbance rejection.

Lemma 4.5. The auxiliary error e satisfies

ė = = Fe + Gε2 (4.44)

where F = diag{F1, . . . , Fr}, G = diag{G1, . . . , Gr}.

Proof. From (4.21), we have

v̇m,1 = −K1vm,1 + vm,2 (4.45)

From (4.37-4.43), it can be shown that

ė =

⎡

⎢⎢⎢⎣

F1e1

...

Frer

⎤

⎥⎥⎥⎦ −

⎡

⎢⎢⎢⎣

G1ε2,1

...

Grε2,r

⎤

⎥⎥⎥⎦ (4.46)

With the auxiliary error e, we can express q2 as

q2 =

⎡

⎢⎢⎢⎣

ψT
1 η1

...

ψT
r ηr

⎤

⎥⎥⎥⎦
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=

⎡

⎢⎢⎢⎣

ψT
1 e1 + ψT

1 δ1 + ψT
1 G1y1 − Θψ,1vec(λ1) − Bψ,1(G1 ⊗ vm,1 + vec(λv,1))

...

ψT
r er + ψT

r δr + ψT
r Gryr − Θψ,rvec(λr) − Bψ,r(Gr ⊗ vm,1 + vec(λv,r))

⎤

⎥⎥⎥⎦

= ψT e + ψT Gy + ψT δ − ΘψΛ − BψG ⊗ vm,1 − BψΛv (4.47)

where Θψ,i = ψT
i ⊗ Θi, Bψ,i = ψT

i ⊗ Bm,i, Λ = [vec(λ1)T , . . . , vec(λr)T ]T , Λv =
[vec(λv,1)T , . . . , vec(λv,r)T ]T , i = 1, . . . , r, with vec(.) denotes the vector ob-
tained by rolling the column vectors of the matrix, and ψT = diag{ψT

1 , . . . , ψT
r },

Θψ = diag{Θψ,1, . . . , Θψ,r} and Bψ = diag{Bψ,1, . . . , Bψ,r}. Now all the terms
in the right side of (4.47) are products of unknown parameters and unknown
filtered signals or exponentially decaying signals.

4.4 Backstepping Design with SDU Factorization

In this section, we design an adaptive controller as in [90] for the plant (4.9),
under the given assumptions. With the filters designed in previous section, we
will be able to deal with both unknown parameter Θ in the system and the
unknown parameter ψ in the exosystem, to design the adaptive control input.
From (4.37) and (4.47), we get

ẏ = ξv,2 + Bmvm,2 + Θω̄ + ε2 + ψT e + ψT Gy + ψT δ

−ΘψΛ − BψG ⊗ vm,1 − BψΛv

= ξv,2 + ψT e + ε2 + Θ̄Ω (4.48)

where Θ̄ = [Θ, ψT , −Θψ, −Bψ] and Ω = [ωT , (Gy + δ)T , ΛT , (G⊗ vm,1 +Λv)T ]T .
The design procedure is recursive and similar to that for the single-input

single-output case

z1 = y − yd (4.49)
zi = vm,i − αi−1, i = 2, . . . , ρ (4.50)

where yd is the reference output, αi is the virtual control and will be designed
based on the following procedures.

Step 1. From equations (4.48-4.50), and using Lemma 4.2, we get

ż1 = ξv,2 + Bmvm,2 + Θ̄Ω̄ + ψT e + ε2 − ẏd

= ξv,2 + S1D1U1vm,2 + Θ̄Ω̄ + ψT e + ε2 − ẏd

= S1D1z2 + S1D1[α1 + (U1 − I)vm,2] + ξv,2 + Θ̄Ω̄ + ψT e + ε2 − ẏd

(4.51)

where Ω̄ = [ω̄T , (Gy + δ)T , ΛT , (G ⊗ vm,1 + Λv)T ]T and (U1 − I) is strictly
upper triangular matrix. In order to remove the zero entries from the above
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parametrization, we introduce new parameter vectors χk and regressor matrix
γk (k = 1, . . . , r) as in [86] via the identity

(U1 − I)vm,2 = vm,22

⎡

⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎦
[U1,2] + . . . + vm,2r

⎡

⎣ Ir−1

01,r−1

⎤

⎦

⎡

⎢⎢⎢⎣

U1,r

...

Ur−1,r

⎤

⎥⎥⎥⎦

=
r∑

k=2

γkχk (4.52)

where γk = vm,2k

⎡

⎣ Ik−1

0r−k+1,k−1

⎤

⎦ ∈ Rr×(k−1), χ1 = 0, χk = [U1,k U2,k . . .

Uk−1,k]t ∈ Rk−1(k = 2, . . . , r) and vm,2k
indicates the kth component of vector

vm,2. Since S1D1 is nonsingular, we can introduce P = (S1D1)−1 and new matrix
parameters θ = PΘ̄ and Ψ = PψT . Using (4.52) and choosing positive constants
C1 and l̄1, adding and subtracting (C1 + l̄1)z1 in equation (4.51) and multiplying
both sides by S−1

1 we get

S−1
1 z1 = −S−1

1 C1z1 − S−1
1 l̄1z1 + D1z2 + D1(α1 + P (C1z1 + l̄1z1 + ξv,2 − ẏd))

+ D1

r∑

k=2

γkχk + D1ΘΩ̄ + D1Ψe + S−1
1 ε2

Remark 4.5. The reason for using two positive constants C1 and l̄1 is to have
uniformity with subsequent steps of the backstepping procedure where l̄1 is a
coefficient of a damping term countering ε2.

We define the signal

φ = C1z1 + l̄1z1 + ξv,2 − ẏd (4.53)

and introduce P̂ , χ̂k, θ̂ and L̂i(i = 1, . . . , ρ) as estimates of P, χk, θ and the upper
bound of ‖ Ψ ‖2, respectively. We can choose the first virtual control law α1 as

α1 = −P̂ φ −
r∑

k=2

(γkχ̂k) − θ̂Ω̄ − DT
1 L̂1z1 (4.54)

Choose the Lyapunov function as

V1 =
1
2
Tr(S−1

1 z1z
T
1 ) +

1
2
Tr(θ̃θ̃T ) +

1
2
Tr(P̃ P̃T )

+
1
l̄1

εT Pεε +
1
2
L̃2

1 +
1
2
eT Pee +

1
2
[ r∑

k=2

Tr(χ̃T
k χ̃k)

]
(4.55)
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where θ̃ = θ − θ̂, P̃ = P − P̂ , χ̃k = χk − χ̂k, L̃i = Li − L̂i, i = 1, . . . , ρ, Pε = PT
ε ∈

Rn×n is the solution of PεA0+AT
0 Pε = −diag(S−1

1 , . . . , S−1
1 )−I for stable matrix

A0 in (4.25), Pe = PT
e ∈ Rn×n is the solution of PeF + FT Pe = −2(ρ + 2)I.

Using the following update laws for θ̂, P̂ , χ̂k and L̂1

˙̂
θ = D1z1Ω̄

T (4.56)
˙̂
P = D1z1φ

T (4.57)
˙̂χk = γT

k D1z1, (k = 2, 3, . . . , r) (4.58)
˙̂
L1 = Tr(D1D

T
1 z1z

T
1 ) (4.59)

It can be verified that

V̇1 ≤ −C1Tr(S−1
1 z1z

T
1 ) + Tr(D1z2z

T
1 ) − 1

l̄1
M1(ε) − ρeT e (4.60)

where M1(ε) = Tr(S−1
1 ε1ε

T
1 + 3

4S−1
1 ε2ε

T
2 + . . . + S−1

1 εvεT
v ).

Furthermore, we set constant positive reals l̄1 satisfying the following condi-
tions:

1
l̄1

≥ ‖ PeG ‖2

4
(4.61)

Notice that D1 is a known matrix. By Lemma 4.2, D1 is any diagonal matrix.

Step i. (i = 2, . . . , ρ), ρ = v − m, we introduce the signal zi = vm,i − αi−1.
The corresponding time derivatives can be expressed as

żi = vm,i+1 + βi − ∂αi−1

∂y
(Θ̄Ω − ε2 − ψT e) − ιi (4.62)

where

∂αi

∂y
=

⎡

⎢⎢⎢⎣

∂αi,1
∂y

...
∂αi,r

∂y

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

∂αi,1
∂y1

. . .
∂αi,1
∂yr

...
. . .

...
∂αi,r

∂y1
. . .

∂αi,r

∂yr

⎤

⎥⎥⎥⎦ (4.63)

ιi =
(
Tr(

˙̄̂
Θ

∂αi−1,1

∂ ˆ̄Θ
), . . . , T r(

˙̄̂
Θ

∂αi−1,r

∂ ˆ̄Θ
)
)T (4.64)

(∂αl,k

∂ ˆ̄Θ

)
i,j

=
∂αl,k

∂ ˆ̄Θj,i

, (k = 1, 2, . . . , r) (4.65)

and βi represents all the known terms except vm,i+1. We choose the Lyapunov
function as

V2 = V1 +
1
2
Tr(z2z

T
2 ) +

1
l2

εT P0ε +
1
2
Tr

( ˜̄ΘΓ−1 ˜̄Θ
T )

+
1
2
L̃2

2 (4.66)



62 Multivariable Adaptive Control

Vi = Vi−1 +
1
2
Tr(ziz

T
i ) +

1
li

εT P0ε +
1
2
L̃2

i (4.67)

where ˜̄Θ = Θ̄ − ˆ̄Θ, Γ is a positive definite matrix, P0 = PT
0 > 0 is the solution

of P0A0 + AT
0 P0 = −I for the stable matric A0.

The final adaptive control law is designed as

u = αρ − vm,ρ−1 −
r∑

k=2

uk

⎡

⎣ Ik−1

0r−k+1,k−1

⎤

⎦ χ̂k (4.68)

˙̄̂
Θ

T

= τρ (4.69)

αi = −cizi − li
(∂αi−1

∂y

)T ∂αi−1

∂y
zi − βi − zi−1 +

∂αi−1

∂y
ˆ̄ΘΩ

−
j−1∑

k=2

{ok,j−i} + ι̂i − L̂i

(∂αi−1

∂y

)T ∂αi−1

∂y
zi (4.70)

˙̂
Li = Tr[

(∂αi−1

∂y

)T ∂αi−1

∂y
ziz

T
i ] (4.71)

with

τT
i = τT

i−1 − ΓΩzT
i

∂αi−1

∂y
(4.72)

ι̂i =
(
Tr(τi

∂αi−1,1

∂ ˆ̄Θ
), . . . , T r(τi−1

∂αi−1,r

∂ ˆ̄Θ
)
)T (4.73)

where Tr(∂αj−1,1
∂y )T zkΩT Γ T ∂αk−1,i

∂ ˆ̄Θ
) is the ith element of ok,j−1 ∈ Rr.

Note that the term
∑r

k=2

(
uk

⎡

⎣ Ik−1

0r−k+1,k−1

⎤

⎦ χ̂k

)
appears because the signal

vm,2k
is used in the regressor matrix γk to define the first stabilizing functions

α1 and is passed to the following steps into signal βj , (j = 2, . . . , ρ) which is
formed by the known terms of the derivatives of αl, (l = 1, . . . , j − 1).
Upon some algebraic manipulation, we can write V̇ρ as

V̇ρ ≤
ρ∑

j=1

{
− Tr(cjzjz

T
j ) − 1

li
M(ε)

−liTr
[
(
∂αj−1

∂y
zj +

ε2
2lj

)(
∂αj−1

∂y
zj +

ε2
2lj

)T
]}

− eT e ≤ 0 (4.74)

M(ε) = Tr(ε1εT
1 +

3
4
ε2ε

T
2 + . . . + εvε

T
v ) (4.75)

where c1 = C1S
−1
1 , 1

l1
= 1

l̄1
S−1

1 . Since V̇ρ ≤ 0, we conclude that the complete

system z1, . . . , zρ, θ̂,P̂ , χ̂k, L̂k, Θ̂ are bounded and so the plant output y(t) is
bounded. Then it can be shown that all closed-loop signals are bounded and the
tracking error z1 = y − yd converges to zero.
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Theorem 4.1. Consider the MIMO system (4.5) satisfying Assumptions 1-3.
With the application of controller (4.68) and the parameter update laws (4.56)-
(4.59), (4.69) and (4.71), all closed-loop signals are bounded and the tracking
error converges to zero.

4.5 Simulation Studies

In this section, we illustrate the above method on a simple MIMO system. Con-
sider the 2 × 2 plant described by

G(p) =

⎡

⎣
2(p+1)
(p−2)3

−(p+1)
(p−2)2

(p+2)
(p−2)2(p+1)

(p−2)2

(p+1)

⎤

⎦ , ˙̄d(t) =

⎡

⎣ 0 1

−9σ2 0

⎤

⎦ d̄(t) (4.76)

where d̄(t) is external disturbance, σ is an unknown parameter which ranges
between 1 and 4. The only information necessary for the design are the observ-
ability index v = 3, the order of N(s), m = 1, and the signs of the leading
principal minors of s. We choose the following design parameters k1 = 6, k2 =
12, k3 = 8, D1 = I2, C2 = I2, c1 = l1 = l2 = 1, Γ = I10. The reference signal
is given by yd = 1

(p+1)2 [2 sin(t/2), 4 cos(t)]T . The plant initial condition is such
that y(0) = [0.4, 0.4]T . All other initial conditions are zero. The update laws and
the control law are given by (4.56-4.59), (4.69), (4.71) and (4.68). The simulation
results presented in the Figure 4.1 and Figure 4.2 show the systems output y
and the desired trajectory signal yd. Clearly, system output y can completely
track the trajectory yd. The result verifies our theoretical findings and show the
effectiveness of the control schemes.
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Fig. 4.1. Output y1 and trajectory yd1
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Fig. 4.2. Output y2 and trajectory yd2

4.6 Summary

In this chapter, a new scheme is proposed to design an adaptive output-feedback
controller for uncertain MIMO systems in the presence of disturbances. In order
to reject disturbances generated from unknown exosystems, new filters for state
estimation are constructed and an adaptive internal model is employed. It is
shown that the proposed controller can ensure all the signals in the closed-loop
system bounded and the tracking error to converge to zero.



5 Decentralized Stabilization of Interconnected
Systems

In this chapter, we propose adaptive backstepping scheme to design decentral-
ized output feedback adaptive controllers. For each subsystem, a general transfer
function with arbitrary relative degree is considered. The interactions between
subsystems are allowed to satisfy a nonlinear bound with certain structural con-
ditions. The effects due to interactions are taken into consideration in devising
local control laws. It is shown that perfect stabilization is ensured and the L2
norm of the system outputs is also shown to be bounded by a function of design
parameters.

5.1 Introduction

In practice, decentralized control, designed independently for local subsystems
and using local available signals for feedback, is usually preferred for intercon-
nected systems. In particular, decentralized adaptive control is employed as such
systems usually face poor knowledge on the plant parameters and interactions
between subsystems. However, only limited number of results are available due
to the complexity of the problem, especially difficulties encountered in handling
the effects of interconnections, see for examples [20, 22, 24, 25, 31, 32, 33, 96, 97,
98, 99]. In [22], the first result on decentralized adaptive control was reported,
but only for subsystems with relative degrees less than or equal to two. In [20],
the requirement on subsystem relative degrees was relaxed and unmodelled dy-
namics were considered at the expense of requiring information exchanging be-
tween subsystems. In [96], a structure condition was required and subsystem
relative degrees still cannot exceed two. In [99, 100, 101], all conditions related
to subsystem degrees, structure conditions and information exchanging between
subsystems were relaxed. The relative degree condition was also relaxed by us-
ing the concept of high-order tuners in [102] and [103]. In [104], the subsystem
relative degree condition with the control scheme in [22] was also relaxed.

Research on decentralized adaptive control using backstpping approach has
also received great attentions, due to a number of its advantages such as im-
proving transient performance [1]. In [105], the first decentralized control result

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 65–79, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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using such a technique was reported without requirement on subsystem rela-
tive degrees. More general class of systems with the consideration of unmodelled
dynamics was studied in [32] and [33].

In this chapter, we address decentralized adaptive stabilization for a class of
interconnected systems. The interactions between subsystems are unknown and
allowed to satisfy a high order nonlinear bound. Due to output feedback, local
filters are designed to estimate system states. We use the standard backstep-
ping design approach without any modification to design decentralized adaptive
controllers. It is shown that the designed controllers can globally stabilize the
overall interconnected system asymptotically. This reveals that the standard
backstepping controller offers an additional advantage to conventional adaptive
controllers in term of its robustness against interactions. In controller design, the
term multiplying the control and the system parameters are not assumed to be
within known intervals. Besides global stability, the L2 norms of the system out-
puts are also shown to be bounded by functions of design parameters. Thus the
transient system performance can be tunable by adjusting design parameters.

5.2 Problem Formulation

A system consisting ofN interconnected subsystems modelled below is considered.

ẋoi = Aoixoi + boiui +
N∑

j=1

f̄ij(t, xoj) (5.1)

yi = cT
oixoi, for i = 1, . . . , N (5.2)

where xoi ∈ Rni , ui ∈ R1 and yi ∈ R1 are the states, input and output of the ith
subsystem, respectively, f̄ij(t, xoj) ∈ Rni denotes the nonlinear interactions from
the jth subsystem to the ith subsystem for j �= i, or a nonlinear un-modelled
part of the ith subsystem for j = i. The matrices and vectors in (5.1) and (5.2)
have appropriate dimensions, and their elements are constant but unknown.

For each decoupled local system, we make the following assumptions.

Assumption 1: ni is known;

Assumption 2: The triple (Aoi, boi, coi) are completely controllable and
observable;

Assumption 3: In the transfer function

Gi(s) = cT
oi(sI − Aoi)−1boi =

Ni(s)
Di(s)

=
bmi

i smi + . . . + b1
i s + b0

i

sni + ani−1
i + . . . + a1

i s + a0
i

(5.3)

Ni(s) is a Hurwitz polynomial. The sign of bmi

i and the relative degree
ρi(= ni − mi) of Gi(s) are known;
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Assumption 4: The nonlinear interaction terms satisfy

‖ f̄ij(t, xoj) ‖≤ γ̄ij

∣∣yjψj(yj)
∣∣ (5.4)

where ‖ · ‖denotes the Euclidean norm, γ̄ij are constants denoting the strength
of the interaction, and ψj(yj), j = 1, 2, . . . , N are known nonlinear functions.

Remark 5.1. It is allowed that the interaction f̄ij contains states xoj , as long as
it satisfies (5.4).

Remark 5.2. The class of systems considered in [105] and [106] is a special case
as their interactions satisfy the Lipschitz condition which implies ψj(yj) = 1.

The control objective is to design totally decentralized adaptive controllers for
system (5.1) satisfying Assumptions 1-4 such that the closed-loop system is
stable.

5.3 Local State Estimation Filters

Clearly, there exists a nonsingular matrix Ti, such that under transformation
xoi = Tixi, (5.1) and (5.2) can be transformed to

ẋi = Aixi + aiyi +

⎡

⎣ 0

bi

⎤

⎦ ui + fi (5.5)

yi = (e1
ni

)T xi, for i = 1, . . . , N (5.6)

where

Ai =

⎡

⎢⎢⎢⎣

0
... I

0 . . . 0

⎤

⎥⎥⎥⎦ , ai =

⎡

⎢⎢⎢⎣

−ani−1
i

...

−a0
i

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

bmi

i

...

b0
i

⎤

⎥⎥⎥⎦ (5.7)

fi =
N∑

j=1

T−1
i f̄ij (5.8)

and ek
i denotes the kth coordinate vector in Ri.

For state estimation, we use the following filters

λ̇i = A0
i λi + eni

ni
ui (5.9)

η̇i = A0
i ηi + eni

ni
yi (5.10)

ΩT
i = [vmi

i , . . . , v1
i , v0

i , Ξi] (5.11)

vj
i = (A0

i )
jλi, j = 0, . . . , mi (5.12)

Ξi = −[(A0
i )

ni−1ηi, . . . , A
0
i ηi, ηi] (5.13)

ξni

i = −(A0
i )

niηi (5.14)
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where the vector ki = [k1
i , . . . , kni

i ]T is chosen so that the matrix A0
i = Ai −

ki(e1
ni

)T is Hurwitz. With these designed filters our state estimate is

x̂i = ξni

i + ΩT
i θi (5.15)

θT
i = [bT

i , aT
i ] (5.16)

and the state estimation error εi = x − x̂ satisfies

ε̇i = A0
i εi + fi (5.17)

Let Vεi = εT
i Piεi, where Pi is positive definite and satisfies PiA

0
i + (A0

i )
T Pi =

−2I, Pi = PT
i > 0. Then the derivative of Vεi gives as

V̇εi = εT
i

[
PiA

0
i + (A0

i )
T Pi

]
εi + 2εT

i Pifi

≤ −εT
i εi+ ‖ Pifi ‖2 (5.18)

Because the backstepping design starts with its output yi, which is the only
available system state allowed to appear in the control law, (5.5) is expressed as

ẏi = bmi

i vmi,2
i + ξni,2

i + δ̄T
i θi + ε2i + f1

i (5.19)

where

δi = [vmi,2
i , vmi−1,2

i , . . . , v0,2
i , Ξ

(2)
i − yi(e1

ni
)T ]T (5.20)

δ̄i = [0, vmi−1,2
i , . . . , v0,2

i , Ξ
(2)
i − yi(e1

ni
)T ]T (5.21)

and vmi,2
i , ε2i , ξ

ni,2
i , Ξ

(2)
i denote the second entries of vmi

i , εi, ξ
ni

i , Ξi respectively,
f1

i and d1
i are the first elements of vector fi and di. All states of the local filters

in (5.9) and (5.10) are available for feedback.
Due to the Hurwitz polynomial Ni(s) in Assumption 3, system is minimum

phase. System (5.5) is restricted to the first ρi equations and the design system
is given as

ẏi = bmi

i vmi,2
i + ξni,2

i + δ̄T
i θi + ε2i + f1

i (5.22)

v̇mi, q
i = vmi,q+1

i − kq
i vmi,1

i , q = 2, . . . , ρi − 1 (5.23)

v̇mi, ρi

i = vmi, ρi+1
i − kρi

i vmi,1
i + ui (5.24)

5.4 Design of Adaptive Controllers

The following change of coordinates is made.

z1
i = yi (5.25)

zq
i = vmi,q

i − αq−1
i , q = 2, 3, . . . , ρi (5.26)

where αq−1
i is the virtual control at the qth step of the ith loop and will be

determined in later discussion.
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To illustrate the controller design procedures, we now give a brief description
on the first step.

• Step 1: We start with the equations for the stabilization error z1
i obtained from

(5.22), (5.25) and (5.26) to get

ż1
i = bmi

i α1
i + ξni,2

i + δ̄T
i θi + ε2i + f1

i + bmi

i z2
i (5.27)

We design the virtual control law α1
i as

α1
i = p̂iᾱ

1
i (5.28)

ᾱ1
i = −2c1

i z
1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 − ξni,2

i − δ̄T
i θ̂i (5.29)

where c1
i and l1i are positive design parameters, θ̂i is the estimate of θi, p̂i is an

estimate of pi = 1/bmi

i .

Remark 5.3. The term l∗i z1
i ψ2

i (z1
i ) in (5.29) is designed to compensate the effects

of interactions from other subsystems or the un-modelled part of its own sub-
system. Note that the scheme in [105] dose not have such a term and thus the
result of [105] is not applicable to the systems considered here.

In the following, we have l1i = 2l̄1i to make the presentation easier in the stability
analysis. Each of l̄1i will deal with the terms having ε2i , or f1

i in the evaluation
of V̇ 1

i , respectively.
From (5.27) and (5.28) we have

ż1
i = −2c1

i z
1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 + ε2i + δ̄T

i θ̃i − bmi

i ᾱ1
i p̃i + bmi

i z2
i + f1

i

= −2c1
i z

1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 + (δi − p̂iᾱ

1
i e

1
ni+mi+1)

T θ̃i + ε2i + f1
i

−bmi

i ᾱ1
i p̃i + b̂mi

i z2
i (5.30)

where θ̃i = θi − θ̂i and using p̃i = 1
b

mi
i

− 1
b̂

mi
i

, we have

bmi

i α1
i = bmi

i p̂iᾱ
1
i = ᾱ1

i − bmi

i p̃iᾱ
1
i (5.31)

δ̄T
i θ̃i + bmi

i z2
i = δ̄T

i θ̃ + b̃mi

i z2
i + b̂mi

i z2
i

= δ̄T
i θ̃i + (vmi,2

i − α1
i )(e

1
ni+mi+1)

T θ̃i + b̂mi

i z2
i

= (δi − p̂iᾱ
1
i e

1
ni+mi+1)

T θ̃i + b̂mi

i z2
i (5.32)

We consider the Lyapunov function

V 1
i =

1
2
(z1

i )2 +
1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

p̃2
i +

1
2l̄1i

Vεi (5.33)

where Γi is a positive definite design matrix and γ
′

i is a positive design parameter.
We now examine the derivative of V 1

i

V̇ 1
i = z1

i ż1
i − θ̃T

i Γ−1
i

˙̂
θi − |bmi

i |
γ

′
i

p̃i
˙̂pi +

1
2l̄1i

V̇εi
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= −2c1
i (z

1
i )2 + b̂mi

i z1
i z2

i − |bmi

i |ẽ 1
γ

′
i

[γ
′

isign(bmi

i )ᾱ1z
1
i + ˙̂pi]

+θ̃T
i Γ−1

i [Γi(δi − p̂iᾱ
1
i e

1
ni+mi+1)z

1
i − ˙̂

θi] − l̄1i (z
1
i )2 + z1

i f1
i

−l̄1i (z
1
i )2 + z1

i ε2i − 1
2l̄1i

εT
i εi +

1
2l̄1i

‖ Pifi ‖2 −l∗i (z
1
i )2

(
ψi(z1

i )
)2

≤ −2c1
i (z

1
i )2 + b̂mi

i z1
i z2

i − |bmi

i |ẽ 1
γ

′
i

[γ
′

isign(bmi

i )ᾱ1z
1
i + ˙̂pi]

+θ̃T
i Γ−1

i [Γi(δi − p̂iᾱ
1
i e

1
ni+mi+1)z

1
i − ˙̂

θi] −
1

4l̄1i
εT
i εi

−l∗i (z
1
i )2

(
ψi(z1

i )
)2 +

1
2l̄1i

‖ Pifi ‖2 +
1

4l̄1i
‖ f1

i ‖2 (5.34)

where we use ab ≤ a2 + 1
4b2. Now we choose

˙̂pi = −γ
′

isign(bmi

i )ᾱ1
i z

1
i (5.35)

τ1
i = (δi − p̂iᾱ

1
i e

1
ni+mi+1)z

1
i (5.36)

Then the following derivation for the derivative of V 1
i can be carried out by using

(5.35)-(5.36)

V̇ 1
i ≤ −2c1

i (z
1
i )2 + b̂mi

i z1
i z2

i + θ̃T
i (τ1

i − Γ−1
i

˙̂
θi) − 1

4l̄1i
εT
i εi

−l∗i (z
1
i )2

(
ψi(z1

i )
)2 +

1
2l̄1i

‖ Pifi ‖2 +
1

4l̄1i
‖ f1

i ‖2 (5.37)

• Step q (q = 2, . . . , ρi, i = 1, . . . , N): Choose virtual control laws

α2
i = −b̂mi

i z1
i −

[
c2
i + l2i

(∂α1
i

∂yi

)2]
z2

i + B̄2
i +

∂α1
i

∂θ̂i

Γiτ
2
i (5.38)

αq
i = −zq−1

i −
[
cq
i + lqi

(∂αq−1
i

∂yi

)2]
zq

i + B̄q
i +

∂αq−1
i

∂θ̂i

Γiτ
q
i

−
( q−1∑

k=2

zk
i

∂αk−1
i

∂θ̂i

)
Γi

∂αq−1
i

∂yi
δi (5.39)

τq
i = τq−1

i − ∂αq−1
i

∂yi
δiz

q
i (5.40)

where cq
i , l

q
i , q = 3, . . . , ρi are positive design parameters, and B̄q

i , q = 2, . . . , ρi

denotes some known terms and its detailed structure can be found in Chapter 2.
Then the adaptive controller and parameter update laws are finally given by

ui = αρi

i − vmi,ρi+1
i (5.41)

˙̂
θi = Γiτ

ρi

i (5.42)
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Remark 5.4. When going through the details of the design procedures, we note
that in the equations concerning żq

i , q = 1, 2, . . . , ρi, just functions f1
i from the

interactions, and they are always together with ε2i . This is because only ẏi from
the plant model (5.5) was used in the calculation of α̇q

i for steps q = 2, . . . , ρi.

5.5 Stability Analysis

In this section, the stability of the overall closed-loop system consisting of the
interconnected plants and decentralized controllers will be established.

Firstly, Define zi(t) = [z1
i , z2

i , . . . , zρi

i ]T . A mathematical model for each local
closed-loop control system is derived from (5.30) and the rest of the design steps
2, . . . , ρi.

żi = Azizi + Wεi(ε2i + f1
i ) + WT

θi θ̃i − bmi

i ᾱ1
i p̃ie

1
ρi

− l∗i z1
i

(
ψi(z1

i )
)2

e1
ρi

(5.43)

where Azi is a matrix as the following.

Azi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2c1
i − l1i b̂mi

i 0 . . . 0

−b̂mi

i −c2
i − l2i

(∂α1
i

∂yi

)2 1 + σ2,3
i . . . σ2,ρi

i

0 −1 − σ2,3
i −c3

i − l3i
(∂α2

i

∂yi

)2
. . . σ3,ρi

i

...
...

...
...

...

0 −σ2,ρi

i −σ3,ρi

i . . . −cρi

i − lρi

i

(∂α
ρi−1
i

∂yi

)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.44)

Wεi =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

−∂α1
i

∂yi

...

−∂α
ρi−1
i

∂yi

⎤

⎥⎥⎥⎥⎥⎥⎦
, WT

θi = Wεiδ
T
i − p̂iᾱ

1
i e

1
ρi

e1
ρi

T
(5.45)

where the terms σk,q
i are due to the terms ∂αk−1

i

∂θ̂i
Γi(τ

q
i −τq−1

i ) in the zq
i equation.

To show the system stability, the variables of the filters in (5.10) and the
zero dynamics of subsystems should be included in the Lyapunov function. The
variables ζi associated with the zero dynamics of the ith subsystem can be shown
to satisfy

ζ̇i = Abi

i ζi + b̄iz
1
i + f̄i (5.46)

where the eigenvalues of the mi × mi matrix Abi

i are the zeros of the Hurwitz
polynomial Ni(s), b̄i ∈ Rmi and f̄i ∈ Rmi denoting the effects of the transformed
interactions.
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Now we define a Lyapunov function of the overall decentralized adaptive con-
trol system as

V =
N∑

i=1

Vi (5.47)

where

Vi =
ρi∑

q=1

(1
2
(zq

i )2 +
1

2l̄qi
Vεi

)
+

1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

(p̃i)2

+
1

2lηi

i

ηT
i Piηi +

1

2lζi

i

ζT
i P bi

i ζi (5.48)

where P bi

i is positive definite and satisfies P bi

i Abi

i + (Abi

i )T P bi

i = −2I, P bi

i =
(P bi

i )T > 0, and lζi

i and lηi

i are constants satisfying

lηi

i ≥ ‖ Pie
ni

i ‖2

c1
i

lζi

i ≥ 2 ‖ P bi

i b̄i ‖2

c1
i

The derivative of the Vi satisfies

V̇i ≤ −
ρi∑

q=1

[
cq
i (z

q
i )2 − 1

4l̄qi
εT
i εi

]
− 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi

+θ̃T
i (τρi

i − Γ−1
i

˙̂
θi) − |bmi

i |p̃i
1
γ

′
i

[γ
′

isgn(bmi

i )ᾱ1
i z

1
i + ˙̂pi]

−l∗i (z1
i )2

(
ψi(z1

i )
)2 +

ρi∑

q=1

1
4l̄qi

(2 ‖ Pifi ‖2 + ‖ fi ‖2) +
1

2lζi

i

‖ P bi

i f̄i ‖2

≤ −
ρi∑

q=1

[
cq
i (z

q
i )2 − 1

4l̄qi
εT
i εi

]
− 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi

−l∗i (z1
i )2

(
ψi(z1

i )
)2 +

ρi∑

q=1

1
4l̄qi

(2 ‖ Pifi ‖2 + ‖ fi ‖2) +
1

2lζi

i

‖ P bi

i f̄i ‖2

(5.49)

From Assumption 4, we can show that

ρi∑

q=1

1
4l̄qi

(2 ‖ Pifi ‖2 + ‖ fi ‖2) +
1

2lζi

i

‖ P bi

i f̄i ‖2≤
N∑

j=1

γij

∣∣z1
j ψj(z1

j )
∣∣2 (5.50)

where γij = O(γ̄2
ij) indicating the coupling strength from the jth subsystem to

the ith subsystem depending on l̄qi , l
ζi

i , ‖ Pi ‖, ‖ P bi

i ‖. O(γ̄2
ij) denotes that γij
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and O(γ̄2
ij) are in the same order mathematically. Clearly there exist γ∗

ij such
that for all γij ≤ γ∗

ij ,

l∗i ≥
N∑

j=1

γji (5.51)

if l∗i ≥
N∑

j=1

γ∗
ji (5.52)

Now taking the summation of the first term in the second line of (5.49) into
account and using (5.50) and (5.51), we get

N∑

i=1

−
[
l∗i (z1

i )2
(
ψi(z1

i )
)2 −

ρi∑

k=1

1
4l̄ki

(2 ‖ Pifi ‖2 + ‖ fi ‖2) − 1

2lζi

i

‖ P bi

i f̄i ‖2 ]

≤
N∑

i=1

−
[
l∗i −

N∑

j=1

γji

]∣∣z1
i ψi(z1

i )
∣∣2 ≤ 0 (5.53)

Then from (5.47)-(5.49), the derivative of the V satisfies

V̇ ≤
N∑

i=1

[
−

ρi∑

q=1

(
cq
i (z

q
i )2 − 1

4l̄qi
εT
i εi

)
− 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi

]
(5.54)

This shows that z1
i , z2

i , . . . , zρi

i , εi, ζi,λi, ηi, θ̃i, p̃i and xi are bounded. Therefore
boundedness of all signals in the system is ensured as formally stated in the
following theorem.

Theorem 5.1. Consider the closed-loop adaptive system consisting of the plant
(5.1) under Assumptions 1-4, the controller (5.41), the estimators (5.35), (5.42),
and the filters (5.9) and (5.10). There exist γ∗

ij such that for all γij ≤ γ∗
ij,

i, j = 1, . . . , N , all the states of the system asymptotically approach to zero and
the bound ‖ yi ‖2 is given by

‖ yi ‖2 ≤ 1
2
√

c1
i

( N∑

i=1

yi(0)+ ‖ θ̃i(0) ‖2
Γ −1

i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 + d0
i ‖ εi(0) ‖2

Pi

)1/2

(5.55)

by setting zq
i (0) = 0, q = 2, . . . , ρi, i = 1, . . . , N and definign d0

i =
∑ρi

q=1
1

2l̄qi
,

‖ εi ‖2
Pi

= εi
T (0)Piεi(0), and ‖ θ̃i(0) ‖2

Γ −1
i

= θ̃T
i (0)Γ−1

i θ̃i(0).

Proof: From (5.54), We have

V̇ ≤ −c0
i ‖ zi ‖2

2≤ 0 (5.56)

where c0
i = min{cq

i}, q = 1, . . . , ρi, i = 1, . . . , N . This proves that the uniform
stability and the uniform boundedness of zq

i , p̂i, θ̂i, εi, ζi, ηi, v
j
i , xi and ui. It can be
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shown that both V̇ and V̈ are bounded as well as V̇ is integrable over [0, ∞]. There-
fore, V̇ tends to zero and thus the system states xi converge to zero from (5.56).

Since V is non-increasing, we have

V̇ ≤ −c1
i ‖ z1

i ‖2 (5.57)

‖ yi(t) ‖2
2 =

∫ ∞

0
‖ z1

i (t) ‖2 dt

≤ 1
c1
i

(
V (0) − V (∞)

)
≤ 1

c1
i

V (0) (5.58)

Note that the initial values zq
i (0) depends on c1

i , γ
′

i , Γi. We can set zi,q(0), q =
2, . . . , ρi to zero by suitably initializing our designed filters and initialize η̃i(0) =
ζi(0) = 0. We have

V (0) =
N∑

i=1

1
2
(yi(0))2 + d0

i ‖ εi(0) ‖2
Pi

+ ‖ θ̃i(0) ‖2
Γ −1

i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 (5.59)

Thus the bounds for yi(t) can be obtained clearly.

Remark 5.5. The L2 norm of the system states is shown to be bounded by a func-
tion of design parameters. This implies that the transient system performance
in terms of L2 bounds can be adjusted by choosing suitable design parameters.

Remark 5.6. The condition that γij ≤ γ∗
ij now has the following two implications:

(1) If we know γ̄ij , then we can get an estimate of its bound γ∗
ij and design l∗i

according to (5.51). This means that the coupling strength of the interconnec-
tion between subsystems can be allowed arbitrarily strong.
(2) If we do not know γ̄ij , then the designed local controllers are able to sta-
bilize any interconnected system with coupling strength satisfying (5.52). This
implication is similar to the interpretations of the results in [22], [24], [31] and
[32], where sufficiently weak interactions are allowed.

5.6 An Illustrative Example

We consider the following interconnected system with two second order
subsystems.

ẋi1 = xi2 + ai1yi + fi1

ẋi2 = biui + ai2yi + fi2

yi = xi1, i = 1, 2 (5.60)

where b1 = b2 = 1, a11 = 0, a12 = 1, a21 = 0, a21 = 2, the nonlinear interaction
terms f11 = y2, f12 = 2y2, f11 = 0.5y1, f12 = y1. The objective is to stabilize
system (5.60). The controller (5.41) and the estimator (5.35) and (5.42) are
implemented, where p̂i and θ̂i are estimates of pi = 1/bi and θi = aij , i, j = 1, 2,
respectively. The initials are set as y1(0) = 0.4, y2(0) = 0.4.
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The design parameters are chosen as ki = [4, 4]T , i = 1, 2, γ
′

1 = γ
′

2 = 0.1, Γ1 =
Γ2 = I3, c1

1 = c2
1 = c1

2 = c2
2 = 5, l11 = l21 = l12 = l22 = 2, l∗1 = l∗2 = 5. The

simulation results presented in Figures 5.1-5.4 show the system outputs y1,y2
and inputs u1, u2. Clearly, the system is stabilized and the outputs of both
subsystems converge to zero. This verifies that the proposed scheme is effective
in handling interactions.

1. Effects of Parameters c1
i

To see the effects of changing design parameters c1
i as indicated in Theorem,

we fix γ1 = γ2 = 0.4, Γ1 = Γ2 = 0.1, c2
1 = c2

2 = 1, l11 = l21 = l12 = l22 =
1, l∗1 = l∗2 = 1. The outputs of the two subsystem system outputs y1 and y2
are compared in Figures 5.5-5.6 when c1

i is chosen as 0.1, 5, respectively for
i = 1, 2. Obviously, the L2 norms of the outputs decrease as c1

i for i = 1, 2
increase. The corresponding control u1, u2 are illustrated in Figures 5.7-5.8.
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Fig. 5.10. Output y2 with Γi = 0.1, 4

2. Effects of Parameters Γi

We now fix c1
1 = c2

1 = c2
1 = c2

2 = 2, γ1 = γ2 = 0.1, l11 = l21 = l12 = l22 = 2,
l∗1 = l∗2 = 1. The subsystem outputs y1, y2 are compared in Figures 5.9-5.10
when Γi = 0.1, 4 respectively for i = 1, 2. Clearly, the transient tracking
performances are found significantly improved by increasing Γi.

5.7 Conclusion

In this chapter, decentralized adaptive output feedback stabilization of a class of
interconnected systems is considered. Each local adaptive controller is designed
based on a general transfer function of the local subsystem with arbitrary relative
degree by developing an adaptive backstepping control scheme. The effects of
interactions are considered in the design. The nonlinear interactions between
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subsystems are allowed to satisfy higher-order nonlinear bounds. It is shown
that the designed local adaptive controllers stabilize the overall interconnected
systems. Perfect stabilization is ensured and the L2 norm of the system outputs
is also shown to be bounded by a function of design parameters. The strengths
can be allowed arbitrary strong if their upper bounds are available in this case.
Simulation results illustrate the effectiveness of our proposed scheme.



6 Nonsmooth Nonlinearities

When dealing with real control problems, the designer is inevitably led to face
the difficulties tied to the presence of real physical components, which often
contain nonsmooth nonlinearities. In particular, actuators used in practice al-
most always contain static (e.g., dead-zone) or dynamic (e.g., backlash, hys-
teresis) nonlinearities, whose parameters are unknown and may vary with time.
Dead-zone, backlash, hysteresis and saturation nonlinearities exist in mechan-
ical, hydraulic, magnetic, and other types of system components. Nonsmooth
nonlinearities are among the key factors limiting both static and dynamic per-
formance of feedback control systems. As a matter of fact, these nonlinearities
are particularly harmful and usually lead to a relevant deterioration of system
performance. These nonsmooth nonlinear characteristics are often neglected in
control system design. Nevertheless, certain design methods based on different
control objectives and system conditions have been developed and verified in
theory and practice. Some of them are reviewed below.

The development of control techniques to mitigate effects of unknown non-
smooth nonlinearities has been studied for decades and has attracted a lot of
attentions in engineering and science [45, 53, 107, 108, 109, 110]. A number
of techniques are available in literature to compensate these nonlinearities in
the actuator. Starting from the pioneering work in [50], the idea of employing an
adaptive inverse of the nonlinearity itself to cancel its effect has been widely used
to cope with actuator dead zone [41, 51, 53, 73], backlash [43, 44, 55], or hys-
teresis [45, 48, 56] with unknown parameters. These schemes assumed that the
system parameters must be inside known compact sets. Sometimes it is difficult
to obtain its inverse. Intelligent control using neural networks (NN) is presented
in [42, 64, 65, 66, 67, 68], while fuzzy logic is used in [41, 69, 70, 71]. The system
states and uncertain weights must be within known compact sets. With this,
the error resulted from using NN or fuzzy logic to approximate system functions
will be bounded with known bounds. Variable structure control has been used
as well in [43, 52, 74, 75, 76] and a describing function-based model is adopted
for the input nonlinearities. Although the sliding motion is essential in variable
structure control, it is an undesirable phenomenon from the adaptive control
point of view. In practice, sliding motions cause chattering and also may lead to
a theoretical loss of uniqueness of solutions. Model reference approaches have re-
cently been proposed to handle such nonlinearity, see for examples to cancel the

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 83–96, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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effects of dead-zone in [41], backlash in [28], hysteresis in [56], saturation [59, 63]
and actuator failure in [27]. Systematic design procedures for saturation have
been developed for pole placement control of discrete time plants [46, 47, 60],
where all the poles and zeros of the plant are strictly inside the unit circle or
the plant has only one pole at z = 1 and the others are within the unit circle.
Very recently, the fusion of relay feedback control with robust nominal model
following control has been used and experimentally tested to handle actuator
dead-zone nonlinearities [111]. A recursive least square (RLS) algorithm avoid-
ing nonlinearity inversion holding for dead zones in sensors is described in [79].
In [46, 47, 59, 60, 63, 79, 111], the plant linearity assumption is still required.

In the second part of this book, the controller designed consists of new robust
control laws and new estimators to estimate the unknown parameters. Besides
showing stability of the system, the transient performance of the tracking error
is derived to be an explicit function of design parameters and thus can be tuned.
It will be shown how nonsmooth nonlinear characteristics can be adaptively
compensated and how desired system performance is achieved in the presence
of such nonlinearities. In our pragmatic approach, we have chosen general class
of models with sufficient number of adjustable parameters which provide sig-
nificant flexibility in matching real situations. This flexibility will be exploited
for our backstepping control schemes with such nonsmooth nonlinearities. The
considered plant is supposed to be preceded by the actuating device u = f(v)
as in Figure 6.1, u being the plant input not available for control.

ACTUATOR PLANT

uv

Fig. 6.1. Block scheme of a plant driven by the actuator

This chapter introduces basic description of nonsmooth nonlinear character-
istics, such as dead-zone, backlash, hysteresis and saturation. These nonsmooth
nonlinear characteristics are illustrated by a few examples in this chapter.

6.1 Backlash

Backlash is a dynamic input-output relationship. It exists in a wide range of phys-
ical systems and devices, such as biology optics, electro-magnetism, mechanical
actuators, electronic relay circuits and other areas. The analytical expression of
the backlash characteristic is

u̇(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mv̇(t) if v̇(t) ≥ 0 and u(t) = m(v(t) − cr), or

if v̇(t) ≤ 0 and u(t) = m(v(t) − cl)

0 otherwise

(6.1)
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where m > 0, cl < cr are constant parameters. The motion on any inner segment
is characterized by u̇(t) = 0. A widely accepted characteristic of backlash is
shown in Figure 6.2 where v is the input, u is the output, and cr and cl are the
right and left “crossing”.

u(t)

v(t)0 cr

cl

m

m

Fig. 6.2. Backlash hysteresis

Another expression of the backlash characteristic is described by using a dif-
ferential equation as

du

dt
= α

∣∣dv

dt

∣∣(cv − u) + B1
dv

dt
(6.2)

where α, c and B1 are constants, c > 0 is the slope of the lines satisfying c > B1.
Figure 6.3 shows that the dynamic equation (6.2) can be used to model a class of
backlash nonlinearities, where the parameters α = 1, c = 3.1635, and B1 = 0.345,
the input signal v(t) = 6.5sin(2.3t) and the initial condition u(0) = 0. The simple
backlash model appears in numerous studies of a wide variety of phenomena. We
now briefly describe three typical examples.

6.1.1 Valve Control Mechanism

An input backlash example as in [49] is shown in Figure 6.4, where the backlash is
in the valve control mechanism and G(s) = k/s is the transfer function relating
the liquid level h with the difference between the controlled inflow u and the
uncontrolled outflow d.

6.1.2 Positioning System

An output backlash example is a simple servo for positioning of a low inertia
object in [49], as shown in Figure 6.5. In this case, the transfer function is from
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Fig. 6.4. Backlash in the valve control mechanism of a liquid tank

Amplifier
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motor
Controller

Gear
train

Mirror

ym y

Fig. 6.5. Output backlash in a positioning system

the amplifier/motor unit. Effects of gear-train backlash in such classical servo
mechanism have been extensively studied.
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6.1.3 Piezoelectric Actuator

A piezoelectric actuator [112] is an electrically controllable positioning element
which functions on the basis of the piezoelectric effect. A major limitation of
piezoelectric actuator is the rate-independent hysteresis exhibited between volt-
age and displacement as shown in equation (6.2) and Figure 6.3, which severely
limits system performance such as giving rise to undesirable inaccuracy or oscil-
lations, even leading to instability.

6.2 Dead-Zone

Dead-zone is a static input-output relationship which for a range of input values
gives no output. Once the output appears, the slope between the input and the
output is constant. The analytical expression of the dead-zone characteristic is

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mr(v(t) − br) v(t) ≥ br

0 bl < v(t) < br

ml(v(t) − bl) v(t) ≤ bl

(6.3)

A graphical representation of the dead-zone is shown in Figure 6.6, where v is
the input and u is the output. In general, neither the break-points br ≥ 0, bl ≤ 0
nor the slopes mr, ml > 0 are equal. There is no loss of generality in assuming
that the zero input point is inside the dead-zone because this can always be
achieved with a redefinition of the input v.

The simple dead-zone model appears in numerous studies of a wide variety of
phenomena, not limited to man-made systems. We briefly describe three typical
examples, starting with a bioengineering application.

6.2.1 Upper-Limb Model

In functional neuromuscular stimulation a controlled electrical stimulus v is ap-
plied to inactive nerve in an attempt to replace upper motor neuron control
which may be lost through cerebral stroke, brain injury, tumor, or spinal cessa-
tion. In [113] this approach has been applied to stimulation of the upper limb,
concentrating on elbow flexion/extension. Two dead-zone models are employed
to represent the biceps and triceps nonlinear “gains” appearing at the input of
limb dynamics block in Figure 6.7. A similar model was employed in [49], [107]
and [114] to adaptively control the knee joint of paraplegics.

6.2.2 Ultrasonic Motor

Ultrasonic motor(USM) is a new type motor as in [115], which is driven by the
ultrasonic vibration force of piezoelectric elements. This motor has a nonlinear
speed characteristics, which vary with drive conditions. In position control sys-
tem, the motor shows a variable dead-zone in the control input (phase difference
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Fig. 6.6. Dead-zone
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Fig. 6.7. Dead-zones in upper-limb model

of applied voltages) against load torque. The block diagram of USM is shown
in Figure 6.8. This USM is typical travelling-wave type USM and consists of a
stator and rotor made by elastic body, piezoelectric elements.

6.2.3 Servo-Valve

A common example from industrial applications is servo-valve in Figure 6.9.
Its spool occludes the orifice with some overlap so that for a range of spool
positions v there is no fluid flow u. This overlap prevents leakage losses which
increase with wear and tear. Considering the spool position as the input v, and
the load position y as output, the hydraulic system in Figure 6.9 is represented
in Figure 6.10 as a dead-zone block. It is located as the input of linear dynamics



Saturation 89

   s(s + a)

b

        U S M

Fig. 6.8. Block diagram of USM
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Fig. 6.9. Dead-zone in servo-valve
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Fig. 6.10. Block diagram of the servo-valve

with transfer function G(s) = K
Ms2+Bs , where K = Akx

kp
, B = f + A2

kp
, kx = ∂g

∂x ,

kp = ∂g
∂P , g = g(x, P ) = flow, A = area of piston, P = pressure, and f = viscous

friction.

6.3 Saturation

It is known that all real dynamic systems are subject to hard limits on input. This
is due to inherent physical constraints of the dynamical system and constraints
in the controller actuators. Dynamical systems with hard limit constraints on the
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amplitude of control input, such as finite voltage of electrical motors and finite
capacity of a pump, are the most common cases, where the hard limit constraint
is modelled by a saturation nonlinearity. Saturation is always a potential prob-
lem for actuators of control systems as all actuators do saturate at some level.
Actuator saturation affects the transient performance and even leads to system
instability. Ignoring their existence may lead to severe performance deterioration
and even instability in some cases. Thus, the impact of these constraints upon
the closed-loop feedback control system needs to be addressed. In well-designed
plants the operational requirements have been taken into consideration, and in
addition the performance specs that the plant will be expected to meet are in
line with the applicable physical constraints.

Saturation nonlinearity is defined as follows and shown in Figure 6.11

u = sat(v(t)) =

⎧
⎨

⎩
sign(v(t))uM |v(t)| ≥ uM

v(t) |v(t)| < uM

(6.4)

where uM is a known bound of u(t). The relationship between the applied control
u(t) and the control input v(t) has a sharp corner when |v(t)| = uM .

uM

-uM

0 v

u

Fig. 6.11. Saturation

Input saturation constitutes a class of most encountered nonlinearities in con-
trol design. The control variables of all real-world systems are constrained or
limited due to the physical nature of the actuator.

6.3.1 Active Micro-gravity Isolation System

An active micro-gravity isolation system [116] has saturation which limits the
actuator force. A schematic of system is shown in Figure 6.12. The goal of the
control design is to achieve a level of isolation between the base acceleration xoff

and the inertial acceleration xon of the isolated platform. The isolated platform
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must operate in a limited rattle space. Hence, an additional design constraint
is that the relative displacement xon − xoff does not exceed the 0.5 inch rattle
space limit in order to prevent the platform from bumping into its hard stops.

M

-
+

K

xon

xoff

Isolated  platform

Relative displacement

Inertial acceleration

onx

()nomK

()awK

Fig. 6.12. Schematic Isolation system

6.3.2 Power Supply

The control of the current, position and shape of an elongated cross-section
tokamak plasma [117] is complicated by the instability of the plasma vertical
position. Due to the size and therefore the cost of ITER, there will naturally
be smaller margins in the Poloidal Field coil power supplies implying that the
feedback will experience actuator saturation during large transients due to a
variety of plasma disturbances. Current saturation is relatively good due to the
integrating nature of the tokamak, resulting in a reasonable time horizon for
strategically handling this problem. On the other hand, voltage saturation is
produced by the feedback controller itself, with no intrinsic delay.

6.3.3 Fligh Control with Saturating Actuator

In flight control the sizing and placement of control surfaces on an aircraft are
determined by the performance requirements as in [118]. Obviously, realistic per-
formance specs must be stipulated. Furthermore, the available control authority
must be properly allocated among the tasks at hand. In well-designed plants, the
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saturation constraints are generally of minimal impact, and industry has fared
well in plant design and closed-loop feedback control in Figure 6.13. There are,
however, situations where actuator saturation can become a problem in opera-
tional flight control systems. For example, dogfights and aerial demonstrations at
the boundary of the aircraft’s operational envelope may require high-amplitude
slewing maneuvers at the extreme edge of an aircraft’s capabilities. In the quest
for high performance, and when these systems are “pushed to their limits”, it
is reasonable to expect that actuator saturations may in fact occur, and the
consideration of these nonlinear effects in the design phase might indeed reduce
the degree of conservativeness of an flight control system and thus enhance the
system performance. Additionally, there is the quest for reconfigurable flight
control, which is driven by the need to accommodate failed control surfaces;
saturation of the actuators may realistically become a problem in the event of a
control surface failure or when battle damage is sustained, and performance is
to be recovered.

kr b 1/s

a

kx

r u sat(u) x

Plant

Fig. 6.13. Closed-loop flight control systems

Physical dynamic systems are commonly modelled as linear or nonlinear sys-
tems, whereas in practice, all physical systems are subject to hard constraints,
e.g., and in particular in control systems, actuator displacement and rate sat-
urations. Thus, the impact of these constraints upon the closed-loop feedback
control system needs to be addressed.

6.4 Hysteresis

A hysteresis characteristic can be tuned by eight parameters: four slopes mr, ml,
mt, mb and four crossing parameters cr, cl, ct, cb, where the subscripts l, r, t, b
respectively indicate “left”, “right”,“top”, “bottom” sides of the hysteresis loop.
The hysteresis is a dynamic nonlinearity and is described by two half-lines, two
line segments, and the quadrilateral formed by those half-lines and segments.
The two half-lines and two line segments are described by:

u(t) = mtv(t) + ct, v(t) > v1 =
ct + mlcl

ml − mt
(6.5)
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u(t) = mbv(t) + cb, v(t) < v2 =
cb + mrcr

mr − mb
(6.6)

u(t) = mr(v(t) − cr), v2 < v(t) < v3 =
ct + mrcr

mr − mt
, v̇(t) > 0, u̇(t) > 0 (6.7)

u(t) = ml(v(t) − cl),
cb + mlcl

ml − mb
= v4 < v(t) < v1, v̇(t) < 0, u̇(t) < 0 (6.8)

where v1, v2, v3, v4 are the values of v(t) at the upper-left, lower-right, upper-
right, and lower-left corners of the quadrilateral. The motion on any inner seg-
ment is characterized by u̇(t) = 0 even if v(t) increases or deceases.

The hysteresis phenomena occur inside the loop formed by the half-lines (6.5-
6.6) and the segments (6.7-6.8). Inside the hysteresis loop, the relationship be-
tween u(t) and v(t) is

u(t) =

⎧
⎨

⎩
mtv(t) + cd(t) for v̇(t) < 0

mbv(t) + cu(t) for v̇(t) > 0
(6.9)

where cd(t) ∈ (ct, c1), cu(t) ∈ (c2, cb) are piecewise constant functions which
depend on the point where v̇(t) changes its sign and on the past trajectories of
(v(t), u(t)), with

c1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(mb − mt) cb+mlcl

ml−mb
+ cb for mt < mb

(mb − mt) cb+mrcr

mr−mb
+ cb for mt > mb

cb for mt = mb

(6.10)

c2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(mt − mb) ct+mrcr

mr−mt
+ ct for mt > mb

(mt − mb) ct+mlcl

ml−mt
+ ct for mt < mb

ct for mt = mb

(6.11)

The relationship (6.9) holds for a part of one of the half-lines: when mt > mb,
on the half-line (6.5) with v1 < v(t) < v3, u(t) = mtv(t) + ct for v̇(t) < 0; when
mt < mb, on the half-line (6.6) with v4 < v(t) < v2, u(t) = mbv(t) + cb for
v̇(t) > 0.

The signs of u̇(t) and v̇(t) are not restricted on other parts of these two
half-lines: u(t) = mtv(t) + ct, v(t) ≥ v3; u(t) = mbv(t) + cb, v(t) ≤ v4; and
u(t) = mtv(t) + ct, v1 < v(t) < v3 when mt < mb or u(t) = mbv(t) + cb,
v4 < v(t) < v2 when mt > mb.

The model of the hysteresis and its two typical minor loops are shown in
Figure 6.14.

The motion of u(t) and v(t) on the half-lines (6.5)-(6.6) and the segments
(6.7)-(6.8) and inside the hysteresis loop can be mathematically described as
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u̇(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mtv̇(t) if v(t) ≥ v3 and u(t) = mtv(t) + ct,

or if v4 < v(t) < v3, v̇(t) < 0, u(t) = mtv(t) + cd,

u(t) �= ml(v(t) − cl) and u(t) �= mbv(t) + cb,

or if v4 < v(t) < v3, v̇(t) < 0,

u(t) = mbv(t) + cb and mt < mb

or if v4 < v(t) < v3, v̇(t) > 0,

u(t) = mtv(t) + ct and mt < mb

mbv̇(t) if v(t) ≤ v4 and u(t) = mbv(t) + cb,

or if v4 < v(t) < v3, v̇(t) > 0, u(t) = mbv(t) + cu

u(t) �= mr(v(t) − cr) and u(t) �= mtv(t) + ct,

or if v4 < v(t) < v3, v̇(t) > 0,

u(t) = mtv(t) + ct and mt > mb

or if v4 < v(t) < v3, v̇(t) < 0,

u(t) = mbv(t) + cb and mt > mb

mr v̇(t) if v4 < v(t) < v3, v̇(t) > 0 and u(t) = mr(v(t) − cr)

mlv̇(t) if v4 < v(t) < v3, v̇(t) < 0 and u(t) = ml(v(t) − cl)

0 if v̇(t) = 0

(6.12)

v(t)

u(t)

cr
cl 0

ct

mr

ml

cbmb

mt

cu

cd

Fig. 6.14. Hysteresis model
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6.4.1 Magnetic Suspension with Hysteresis

Typical examples of control systems with input hysteresis are magnetic suspen-
sions and bearings. An oversimplified schematic representation of a magnetic
suspension systems is shown in Figure 6.15. The position of an iron ball is de-
tected by a light source L and a photocell P and compared with a desired
reference r. The error signal y − r is sent to a controller which generates the
control signal - the electromagnet current I.

The magnetic force acting upon the iron ball is a nonlinear function of the
ball position y and the magnetic flux φ. The remaining nonlinearity is the fer-
romagnetic hysteresis characteristic φ(I). To cast this system, we consider the
current I as the signal v(t) and the magnetic force F acting upon the iron ball
as the signal u(t). To hold the ball at some desired position y = r the required
force is us. The amount of the current v needed to generate this force depends
on the operating point on the hysteresis characteristic.

The input-output model of the magnetic suspension system from the current
I to the ball position y can be represented by the block diagram in Figure 6.16
where under certain simplifying assumptions the transfer function G(s) has two
poles: G(s) = k/(s−p1)(s−p2). One of the poles, say p1, is necessarily unstable,
p1 > 0, because the magnetic force decays with the distance and the gravitation
force is constant.

Controller
e   r

y
-

P

I

y

L

Fig. 6.15. A magnetic suspension with solenoid hysteresis

G(s)

v u

Fig. 6.16. Plant with input hysteresis
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6.4.2 Hysteresis Motor

Hysteresis motor [119] is a self-starting synchronous motor that uses the hystere-
sis characteristic of the semi-hard magnetic materials. It consists of polyphase
stator and rotor which contains hysteresis ring. Most of cases, semi-hard mag-
netic material is used for the hysteresis ring. It needs to determine the adequate
thickness of the hysteresis ring in the hysteresis motor and the motor torque
is calculated by the area of hysteresis loop determined by the field intensity in
the ring. The hysteresis ring is affected by the rotational hysteresis caused by
the stator windings and the direction of the magnetization of each element of
the ring is different from that of the magnetic field or magnetic flux density.
That is to say, the thicker the hysteresis ring becomes, the larger the rotational
hysteresis increases and to make matters worse, the output of the thicker ring
motor becomes less than that of thin rotor motor.

6.4.3 Hysteresis in Brakes

Disk brakes are becoming important actuators in advance automotive control
systems which improves safety, drivability, and the overall performance of
passenger cars and trucks. A common air disk (ADB-1560) for trucks has an
input-output force hysteresis characteristic. In a feedback control loop, this large
hysteresis would limit the achievable dynamic performance. Therefore, for high
dynamic performance the effect of hysteresis must be compensated.



7 Backstepping Control of Systems with
Backlash Nonlinearity

In this chapter, we consider uncertain dynamic systems preceded by unknown
backlash nonlinearity. By using backstepping technique, new schemes for both
state feedback and output feedback are proposed. Besides showing global stabil-
ity of the system, the transient performance in terms of L2 norm of the tracking
error is derived to be an explicit function of design parameters. For output feed-
back control we develop a new scheme for a class of uncertain linear systems
preceded by unknown backlash nonlinearities. The controller designed by using
backstepping technique consists of a new robust control law and a new estimator
to estimate the unknown parameters. The result is also extended to nonlinear
systems.

7.1 Introduction

The development of control techniques to mitigate effects of unknown back-
lash has been studied for decades. Much of this interest is a consequence of its
importance in present application. Interest in studying dynamic systems with
backlash is motivated by their role as nonlinearities for which traditional con-
trol methods are insufficient and so requiring development of new approaches.
Several adaptive control schemes have recently been proposed, see for examples
[43, 44, 48, 55, 56, 120]. In [44], [55] and [56], an adaptive inverse cascaded with
the plant was employed to cancel the effects of nonlinearity. In [43] a dynamic
backlash model is defined to pattern a backlash rather than constructing an in-
verse model to mitigate the effects of the backlash. However in [43], the term
multiplying the control and the uncertain parameters of the system must be
within known intervals and the ‘disturbance-like’ term must be bounded by a
known bound. Projection was used to handle the ‘disturbance-like’ term and
unknown parameters. System stability was established and the tracking error
was shown to converge to a residual. In [120], a state feedback backstepping
design was developed to deal with the backlash nonlinearity, where the effect
of backlash was treated as a bounded disturbance and an estimate was used to
estimate its bound.

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 97–123, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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7.2 State Feedback Control

In this section, we develop two simple backstepping adaptive control schemes for
the same class of nonlinear systems as in [43] and [120]. In the first scheme, a
sign function is involved and this can ensure perfect tracking. To avoid possible
chattering caused by the sign function, we propose an alternative smooth control
law and the tracking error is still ensured to approach a prescribed bound in this
case. In our design, the term multiplying the control and the system parameters
are not assumed to be within known intervals. The bound of the ‘disturbance-
like’ term is not required. To handle such a term, an estimator is used to estimate
its bound. Besides showing global stability of the system, transient performance
in terms of L2 norm of the tracking error is derived to be an explicit function
of design parameters and thus our scheme allows designers to obtain the closed
loop behavior by tuning design parameters in an explicit way.

7.2.1 Problem Formulation

The class of systems is modelled as follows:

x(n)(t) +
r∑

i=1

aiYi

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
= bu(w) + d̄(t) (7.1)

where Yi are known continuous linear or nonlinear functions, d̄(t) denotes bounded
external disturbances, parameters ai are unknown constants and control gain b
is an unknown constant, w is the control input, u(w) denotes backlash type of
nonlinearities described as the following.

du

dt
= α

∣∣dw

dt

∣∣(cw − u) + B1
dw

dt
(7.2)

where α, c and B1 are constants, c > 0 is the slope of the lines satisfying c > B1.
This equation can be solved explicitly for w piecewise monotone

u(t) = cw(t) + d1(w) (7.3)

d1(w) = [u0 − cw0]e−α(w−w0)sign(ẇ) + e−αw sign(ẇ)
∫ w

w0

[B1 − c]eαξ sign(ẇ)dξ

(7.4)

for ẇ constant and u(w0) = w0. The solution indicates that dynamic equation
(7.2) can be used to model a class of backlash nonlinearities. Analyzing the
solution (7.3), we see that it is composed of a line with the slop c, together with
a term d1(w). For d1(w), it is bounded clearly. It can be shown that if u(w; w0, u0)
is the solution of (7.4) with initial values (w0, u0), then, if ẇ > 0(ẇ < 0) and
w → +∞(−∞), one has

limw→∞d1 (w) = limw→∞[u(w ;w0 , u0 ) − f (w)] = −c − B1

α
(7.5)

limw→−∞d1 (w) = limw→−∞[u(w ;w0 , u0 ) − f (w)] =
c − B1

α
(7.6)
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It should be noted that the above convergence is exponential at the rate of α.
And we get d1(w) is bounded.

From the solution structure (7.3) of model (7.2), (7.1) becomes

x(n)(t) +
r∑

i=1

aiYi

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
= θw(t) + d(t) (7.7)

where θ = bc and d(t) = bd1(w(t)) + d̄(t). The effect of d(t) is due to both
external disturbances and bd1(w(t)). We call d(t) a ‘disturbance-like’ term for
simplicity of presentation.

Now equation (7.7) is rewritten in the following form

ẋ1 = x2

...
ẋn−1 = xn

ẋn = −
r∑

i=1

aiYi

(
x1(t), x2(t), . . . , x(n−1(t)

)
+ θw(t) + d(t)

= aT Y + θw(t) + d(t) (7.8)

where x1 = x, x2 = ẋ, . . . , xn = x(n−1), a = [−a1, −a2, . . . , −ar]T and Y =
[Y1, Y2, . . . , Yr]T .

For the development of control laws, the following assumptions are made.

Assumption 1. The uncertain parameters b and c are such that θ > 0.

Assumption 2. The desired trajectory yr(t) and its (n − 1)th order derivatives
are known and bounded.

The control objectives are to design backstepping adaptive control laws such
that

• The closed loop is globally stable in the sense that all the signals in the loop
are uniformly ultimately bounded;

• The tracking error x(t) − yr(t) is adjustable during the transient period
by an explicit choice of design parameters and limt→∞ x(t) − yr(t) = 0 or
limt→∞ |x(t) − yr(t)| − δ1 = 0 for an arbitrary specified bound δ1.

Remark 7.1. Compared with [43], the uncertain parameters θ and ai are not
assumed inside known intervals. The bound D for d(t) is not assumed to be
known and it will be estimated by our adaptive controllers. Also the control
objectives are not only to ensure global stability, but also transient performance.

7.2.2 Backstepping Design and Stability Analysis

Before presenting the adaptive control design using the backstepping technique
to achieve the desired control objectives, the following change of coordinates is
made.

z1 = x1 − yr (7.9)
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zi = xi − y(i−1)
r − αi−1, i = 2, 3, . . . , n (7.10)

where αi−1 is the virtual control at the ith step and will be determined in later
discussion. In the following, two control schemes are proposed.

Control Scheme I

To illustrate the backstepping procedures, only the last step of the design, i.e.
step n below, is elaborated in details.

• Step 1: For i = 2, it follows from (7.8) to (7.10) that

ż1 = z2 + α1 (7.11)

We design the virtual control law α1 as

α1 = −c1z1 (7.12)

where c1 is a positive design parameter. From (7.11) and (7.12) we have

z1ż1 = −c1z
2
1 + z1z2 (7.13)

• Step i (i = 2, . . . , n − 1): Choose

αi = −cizi − zi−1 + α̇i−1(x1, . . . , xi−1, yr, . . . , y
(i−1)
r ) (7.14)

where ci, i = 2, . . . , n− 1 are positive design parameters. From (7.10) and (7.14)
we obtain

ziżi = −zi−1zi − ciz
2
i + zizi+1 (7.15)

• Step n: From (7.8) and (7.10) we obtain

żn = θw(t) + aT Y + d(t) − y(n)
r − α̇n−1 (7.16)

Then the adaptive control law is designed as follows

w = ϑ̂w̄ (7.17)
w̄ = −cnzn − zn−1 − âT Y − sign(zn)D̂ + y(n)

r + α̇n−1 (7.18)
˙̂
ϑ = −γw̄zn (7.19)
˙̂a = ΓY zn (7.20)
˙̂
D = η|zn| (7.21)

where cn, γ and η are three positive design parameters, Γ is a positive definite
matrix, ϑ̂, â and D̂ are estimates of ϑ = 1/θ, a and D. Let ϑ̃ = ϑ − ϑ̂, ã = a − â
and D̃ = D − D̂. Note that θw(t) in (7.16) can be expressed as

θw = θϑ̂w̄ = w̄ − θϑ̃w̄ (7.22)
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From (7.16),(7.18) and (7.22) we obtain

żn = −cnzn − zn−1 + ãT Y − sign(zn)D̂ + d(t) − θϑ̃w̄ (7.23)

We define Lyapunov function as

V =
n∑

i=1

1
2
z2

i +
1
2
ãT Γ−1ã +

θ

2γ
ϑ̃2 +

1
2η

D̃2 (7.24)

Then the derivative of V along with (7.8) and (7.17) to (7.21) is given by

V̇ =
n∑

i=1

ziżi + ãT Γ−1 ˙̃a +
θ

γ
ϑ̃

˙̃
ϑ +

1
η
D̃ ˙̃D

= −
n∑

i=1

ciz
2
i + ãT Y zn − |zn|D̂ + d(t)zn − θϑ̃w̄zn − ãΓ−1 ˙̂a − θ

γ
ϑ̃

˙̂
ϑ − 1

η
D̃

˙̂
D

≤ −
n∑

i=1

ciz
2
i + ãT Γ−1(ΓY zn − ˙̂a) − θ

γ
ϑ̃(γw̄zn + ˙̂

ϑ) +
1
η
D̃(η|zn| − ˙̂

D)

= −
n∑

i=1

ciz
2
i (7.25)

where we have used (7.13),(7.15),(7.23) and znd(t) ≤ |zn|D to obtain (7.25).
We have the following stability and performance results based on this scheme.

Theorem 7.1. Consider the uncertain nonlinear system (7.1) satisfying As-
sumptions 1-2. With the application of controller (7.17) and the parameter up-
date laws (7.19)-(7.21), the following statements hold:

• The resulting closed loop system is globally stable.
• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − yr(t)] = 0 (7.26)

• The transient tracking error performance is given by

‖ x(t) − yr(t) ‖2 ≤ 1√
c1

(1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2
)1/2(7.27)

Proof: From (7.25) we established that V is non increasing. Hence, zi, i =
1, . . . , n, ϑ̂, â, D̂ are bounded. By applying the LaSalle-Yoshizawa theorem in
Appendix B to (7.25), it further follows that zi(t) → 0, i = 1, . . . , n as t → ∞,
which implies that limt→∞[x(t) − yr(t)] = 0.
Then we have

‖ z1 ‖2
2=

∫ ∞

0
|z1(τ)|2dτ ≤ 1

c1
(V (0) − V (∞)) ≤ 1

c1
V (0) (7.28)
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Thus, by setting zi(0) = 0, i = 1, . . . , n, we obtain

V (0) =
1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2, (7.29)

a decreasing function of γ, η and Γ , independent of c1. This means that the
bound resulting from (7.28) and (7.29) is

‖ z1 ‖2≤
1√
c1

(1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2
)1/2 (7.30)

���

Remark 7.2. From Theorem 7.1 the following conclusions can be obtained:

• The transient performance depends on the initial estimate errors ϑ̃(0), ã(0),
D̃(0) and the explicit design parameters. The closer the initial estimates
ϑ̂(0), â(0) and D̂(0) to the true values ϑ, a and D, the better the transient
performance.

• The bound for ‖ x(t) − yr(t) ‖2 is an explicit function of design parameters
and thus computable. We can decrease the effects of the initial error estimates
on the transient performance by increasing the adaptation gains γ, η and Γ .

• To improve the tracking error performance we can also increase the gain c1.
However, increasing c1 will influence other performance such as ‖ ẋ − ẏr ‖2
as shown below.

Since V̇ ≤ 0, immediately from (7.24) we know

V (t) =
n∑

i=1

1
2
z2

i +
1
2
ãT Γ−1ã +

θ

2γ
ϑ̃2 +

1
2η

D̃2 ≤ V (0) (7.31)

Then

‖ zi ‖∞ ≤
√

2V (0), i = 1, . . . , n (7.32)

‖ ã ‖∞ ≤
√

λ̄(Γ )
√

2V (0) (7.33)

From equations (7.10) for i = 2 and (7.12), we get

‖ ẋ − ẏr ‖2 = ‖ z2 − c1z1 ‖2

≤ ‖ z2 ‖2 +c1 ‖ z1 ‖2 (7.34)

Similar to the proof of (7.30), we can get ‖ z2 ‖2≤ 1√
c2

√
V (0) and thus

‖ ẋ − ẏr ‖2≤ (
1

√
c2

+
√

c1)
√

V (0) (7.35)

From equation (7.35) we can see that increasing c1 also increase the error ‖
ẋ − ẏr ‖2. This suggests to fix the gain c1 to some acceptable value and adjust
the other gains such as γ, η and Γ .
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Control Scheme II

In the previous scheme, a discontinuous function sgn(zn) is involved in the con-
trol and this may cause chattering. To avoid this, we now propose an alternative
smooth control scheme.

Firstly we define a function sgi(zi) as follows

sgi(zi) =

⎧
⎪⎪⎨

⎪⎪⎩

zi
|zi| |zi| ≥ δi

z
(2q+1)
i

(δ2
i − z2

i )n−i+2 + |zi|(2q+1) |zi| < δi

(7.36)

where δi(i = 1, . . . , n) is a positive design parameter and q = round{(n − i +
2)/2}, where round{x} means the element of x to the nearest integer. Clearly
2q + 1 ≥ (n − i + 2).

Remark 7.3. Note that sgi(zi) is (n − i + 2)th order differentiable, so that this
function can be used in the recursive backstepping control design, which required
the function continuous differentiable. The function is used in the control scheme
to remove the effect of disturbance and avoid chattering problem caused by
discontinuous function.

We also design a function fi(zi) as

fi(zi) =

⎧
⎨

⎩
1 |zi| ≥ δi

0 |zi| < δi

(7.37)

Then we can get

sgi(zi)fi(zi) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 zi ≥ δi

0 |zi| < δi

−1 zi ≤ δi

(7.38)

To ensure the resultant functions are differentiable, we replace z2
i by (|zi| −

δi)n−i+2sgi(zi) in the Lyapunov functions for i = 1, . . . , n in Scheme I and we
also replace zi by (|zi| − δi)n−i+1sgi in the design procedure as detailed below.

• Step 1: we design virtual control law α1 as

α1 = −(c1 +
1
4
)(|z1| − δ1)nsg1(z1) − (δ2 + 1)sg1(z1) (7.39)

where c1 is a positive design parameter. We choose Lyapunov function V1 as

V1 =
1

n + 1
(|z1| − δ1)n+1f1 (7.40)
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Then the derivative of V1 is

V̇1 = (|z1| − δ1)nf1sg1(z1)ż1

≤ −(c1 +
1
4
)(|z1| − δ1)2nf1 + (|z1| − δ1)n(|z2| − δ2 − 1)f1 (7.41)

where (7.39) has been used.
• Step 2: we design virtual control law α2 as

α2 = −(c2 +
5
4
)(|z2| − δ2)n−1sg2(z2) + α̇1 − (δ3 + 1)sg2(z2) (7.42)

where c2 is positive design parameter.
We design Lyapunov function V2 as

V2 =
1
n

(|z2| − δ2)nf2 + V1 (7.43)

Then the derivative of V2 is

V̇2 ≤ −
2∑

i=1

ci(|zi| − δi)2(n−i+1)fi + M2 + (|z2| − δ2)n−1(|z3| − δ3 − 1)f2

(7.44)

where M2 = − 1
4 (|z1|− δ1)2nf1 +(|z1|− δ1)n(|z2|− δ2 −1)f1 − (|z2|− δ2)2(n−1)f2.

Now we show that M2 < 0. It is clear that M2 ≤ 0 for |z2| < δ2 + 1. For
|z2| ≥ δ2 + 1

M2 ≤ −1
4
(|z1| − δ1)2nf1 +

1
4
(|z1| − δ1)2nf2

1

+(|z2| − δ2 − 1)2 − (|z2| − δ2)2(n−1)

< (|z2| − δ2)2 − (|z2| − δ2)2(n−1)

= (|z2| − δ2)2(1 − (|z2| − δ2)2(n−2))
≤ 0 (7.45)

Then (7.44) is written as

V̇2 ≤ −
2∑

i=1

ci(|zi| − δi)2(n−i+1)fi + (|z2| − δ2)n−1(|z3| − δ3 − 1)f2 (7.46)

• Step i (i = 3, . . . , n − 1): Choose

αi = −(ci +
5
4
)(|zi| − δi)n−i+1sgi(zi) + α̇i−1 − (δi+1 + 1)sgi(zi) (7.47)

where ci is positive design parameter.
• Step n: The control law and parameter update laws are designed as follows

w = ϑ̂w̄ (7.48)
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w̄ = −(cn + 1)(|zn| − δn)sgn(zn) − âT Y − sgnD̂ + y(n)
r + α̇n−1 (7.49)

˙̂
ϑ = −γw̄(|zn| − δn)fnsgn(zn) (7.50)
˙̂a = ΓY (|zn| − δn)fnsgn(zn) (7.51)
˙̂
D = η(|zn| − δn)fn (7.52)

where cn, γ and η are three positive design parameters, Γ is a positive definite
matrix, ϑ̂, â and D̂ are estimates of ϑ = 1/θ, a and D. We define Lyapunov
function as

V =
n∑

i=1

1
n − i + 2

(|zi| − δi)n−i+2fi +
1
2
ãT Γ−1ã +

θ

2γ
ϑ̃2 +

1
2η

D̃2 (7.53)

Then the derivative of V is given by

V̇ = V̇i + (|zn| − δn)2fnsgn(zn)żn + ãT Γ−1 ˙̃a +
θ

γ
ϑ̃ ˙̃ϑ +

1
η
D̃ ˙̃D

≤ −
n∑

i=1

ci(|zi| − δi)2(n−i+1)fi + ãT Γ−1(ΓY (|zn| − δn)fnsgn(zn) − ˙̂a
)

− θ

γ
ϑ̃
(
γw̄(|zn| − δn)fnsgn(zn) + ˙̂

ϑ
)

+
1
η
D̃

(
η(|zn| − δn)fn − ˙̂

D
)

= −
n∑

i=1

ci(|zi| − δi)2(n−i+1)fi (7.54)

where (7.8),(7.39),(7.42) and (7.48) to (7.52) have been used.

Theorem 7.2. Consider the uncertain nonlinear system (7.1) satisfying As-
sumptions 1-2. With the application of controller (7.48) and the parameter up-
date laws (7.50) -(7.52), the following statements hold:

• The resulting closed loop system is globally stable.
• The tracking error converges to δ1 asymptotically, i.e.,

lim
t→∞ |x(t) − yr(t)| = δ1, |z1| ≥ δ1 (7.55)

• The transient tracking error performance is given by

‖ |x(t) − yr(t)| − δ1 ‖2≤ c
−1
2n
1

(1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2
) 1

2n

(7.56)

with zi(0) = δi, i = 1, . . . , n,

Proof: Based (7.54), we established that V is non increasing. Hence, |zi|−δi (i =
1, . . . , n), ϑ̂, â, D̂ are bounded. By applying the LaSalle-Yoshizawa theorem in
Appendix B to (7.54), it further follows that |zi|−δi → 0, i = 1, . . . , n as t → ∞,
which implies that limt→∞ |x(t) − yr(t)| = δ1.
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From (7.54) we establish that V is non increasing. Then we have

‖ z1 − δ1 ‖2n
2 =

∫ ∞

0
|z1(τ) − δ1|2ndτ

≤ 1
c1

(V (0) − V (∞)) ≤ 1
c1

V (0) (7.57)

Thus, by setting zi(0) = δi, i = 1, . . . , n, we obtain

V (0) =
1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2, (7.58)

a decreasing function of γ, η and Γ , independent of c1. This means that the
bound resulting from (7.57) and (7.58) is

‖ |x(t) − yr(t)| − δ1 ‖2≤ c
−1
2n
1

(1
2
ã(0)T Γ−1ã(0) +

θ

2γ
ϑ̃(0)2 +

1
2η

D̃(0)2
) 1

2n

(7.59)

���

Remark 7.4. From Theorem 7.2 the following conclusions can also be obtained:

• The transient performance depends on the initial estimate errors ϑ̃(0), ã(0),
D̃(0) and the explicit design parameters.

• The bound for ‖ x(t)−yr(t) ‖2 is an explicit function of design parameters and
thus computable. We can decrease the effects of the initial error estimates on
the transient performance by increasing the adaptation gains c1, γ, η and Γ .

Remark 7.5. To further improve system performance such as the tracking error,
especially in the case without using sign functions, it is worthy to take the system
hysteresis into account in the controller design, instead of only considering its
effect like bounded disturbances.

7.2.3 An Illustrative Example

In this section, we illustrate the state feedback methodologies on the same ex-
ample system in [43] which is described as:

ẋ = a
1 − e−x(t)

1 + e−x(t) + bu(t), u(t) = B(ω(t)) (7.60)

where u(t) represents the output of the the backlash described by (7.2). The
actual parameter values are b = 1 and a = 1. Without control, i.e. u(t) = 0,
(7.60) is unstable, because ẋ = 1−e−x(t)

1+e−x(t) > 0 for x > 0, and ẋ < 0 for x < 0.
The objective is to control the system state x to follow a desired trajectory
yr(t) = 12.5sin(2.3t) as in [43].

Two adaptive backstepping schemes are used.
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In the simulation of Scheme I, the robust adaptive control law (7.17)-(7.21)
was used, taking c1 = 10, γ = Γ = η = 0.4. The initial values are chosen to
ϑ̂(0) = 0.8/3, â(0) = 1.5, D̂(0) = 2,x(0) = 1.05 and w(0) = 0 which are the
same as in [43]. The simulation results presented in Figure 7.1 and Figure 7.2
are system tracking error and input. The effectiveness of adaptive Scheme I is
demonstrated by the fact that the tracking error is reduced to zero after a few
periods of the reference input as shown in Figure 7.1.

In the simulation of Scheme II by using the robust adaptive control law
(7.48)-(7.52), we choose c1, γ, η, Γ and the initial values to be same as above
and δ1 = 0.1. The simulation results presented in Figure 7.3 and Figure 7.4 are
system tracking error and input. The effectiveness of adaptive Scheme II is also
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demonstrated by the fact that the tracking error is reduced to δ1 = 0.1 after a
few periods of the reference input as shown in Figure 7.3.

As a conclusion, all the results verify our theoretical findings and show the
effectiveness of the control schemes.

7.3 Output Feedback Control

In this section, a new scheme is proposed to address an output feedback control
problem: control of a class of uncertain linear systems preceded by unknown
backlash nonlinearity, where the backlash is modelled by a differential equation.
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The controller designed by using backstepping technique consists of a new robust
control law and a new estimator to estimate the unknown parameters as in [121].
For the implementation of the controller, no knowledge is assumed on the bounds
of unknown system parameters and the effect contributed by the backlash. It is
shown that all the signals are bounded. A bound for the truncated L2 norm
of the tracking error is obtained as a function of design parameters. Simulation
studies also verify the effectiveness of the proposed scheme.

7.3.1 Plant Model

The class of single-input single-output linear systems is given by

y(s) =
B(s)
A(s)

u(s) =
b̄msm + . . . + b̄1s + b̄0

sn + an−1sn−1 + . . . + a1s + a0
u(s) (7.61)

du

dt
= α

∣∣dw

dt

∣∣(cw − u) + B1
dw

dt
(7.62)

where the coefficients ai and b̄i are constant but unknown, u denotes a backlash
nonlinearity, w is the design controller. (7.62) is treated as in previous section.

The control objective is for the system output y to asymptotically track a ref-
erence signal yr(t). Regarding the system and the reference signal, the following
assumptions are made:
Assumption 1. The plant is minimum phase, i.e., the polynomial B(s) =
b̄msm + . . . + b̄1s + b̄0 is Hurwitz.
Assumption 2. The relative degree (ρ = n − m) and an upper bound for the
plant order (n) are known.
Assumption 3. The reference signal yr(t) and its first ρ derivatives are known
and bounded, and, in addition, y

(ρ)
r (t) is piecewise continuous.

Assumption 4. The sign of high-frequency gain (sign(bm)), where bm = b̄mc,
is known.

7.3.2 State Estimation Filters

We start by representing the plant (7.61) as in the observer canonical form

ẋ = Ax − ya +

⎡

⎣ 0(ρ−1)×1

b

⎤

⎦w + D(t) (7.63)

y = eT
1 x

where

A =

⎡

⎢⎢⎢⎣

0
... In−1

0 . . . 0

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

b̄mc
...

b̄0c

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

bm

...

b0

⎤

⎥⎥⎥⎦ , D(t) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0(ρ−1)×1

b̄md(t)
...

b̄0d(t)

⎤

⎥⎥⎥⎥⎥⎥⎦

a = [an−1, . . . a0]T
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In order to proceed, we rewrite (7.63) as

ẋ = Ax + F (y, w)T θ + D(t) (7.64)
y = eT

1 x

where

F (y, w)T =

⎡

⎣

⎡

⎣ 0(ρ−1)×(m+1)

Im+1

⎤

⎦w, −Iny

⎤

⎦ , (7.65)

and the p = n + m + 1−dimensional parameter vector θ is defined by

θ =

⎡

⎣ b

a

⎤

⎦ . (7.66)

For state estimation, we use the following filters

λ̇ = A0λ + enw (7.67)
η̇ = A0η + eny (7.68)

ΩT = [vm, . . . , v1, v0, Ξ] (7.69)
vj = Aj

0λ, j = 0, . . . , m (7.70)
Ξ = −[An−1

0 η, . . . , A0η, η] (7.71)
ξ = −An

0η (7.72)

where the vector k = [k1, . . . , kn]T is chosen so that the matrix A0 = A − keT
1

is Hurwitz. Hence there exists a P such that PA0 + AT
0 P = −2I, P = PT > 0.

With these designed filters our state estimate is

x̂ = ξ + ΩT θ (7.73)

and the state estimation error ε = x − x̂ satisfies

ε̇ = A0ε + D(t) (7.74)

Let Vε = εT Pε. It can be shown that

V̇ε = εT (PA0 + AT
0 P )ε + 2εT PD(t)

≤ −εT ε+ ‖ PD(t) ‖2 (7.75)

Then system (7.64) can be expressed as

ẏ = bmvm,2 + ξ2 + δ̄T θ + ε2 (7.76)
v̇m,i = vm,i+1 − kivm,1, i = 2, . . . , ρ − 1 (7.77)
v̇m,ρ = vm,ρ+1 − kρvm,1 + w (7.78)
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where

δ = [vm,2, vm−1,2, . . . , v0,2, Ξ(2) − yeT
1 ]T (7.79)

δ̄ = [0, vm−1,2, . . . , v0,2, Ξ(2) − yeT
1 ]T (7.80)

and vi,2, ε2, ξ2 denote the second entries of vi, ε, ξ respectively. All of its states
are available for feedback.

7.3.3 Design of Adaptive Controllers

Design Procedure

As usual in backstepping approach, the following change of coordinates is made.

z1 = y − yr (7.81)

zi = vm,i − ϑ̂y(i−1)
r − αi−1, i = 2, 3, . . . , ρ (7.82)

where ϑ̂ is an estimate of ϑ = 1/bm and αi−1 is the virtual control at the ith
step and will be determined in later discussion.

To illustrate the backstepping procedures, only the first and the last steps of
the design, i.e. steps 1 and n below, are elaborated in details.

• Step 1: We start with the equation for the tracking error z1 obtained from
(7.64) and (7.81) that

ż1 = bmvm,2 + ξ2 + δ̄T θ + ε2 − ẏr (7.83)

By substituting (7.82) for i = 2 into (7.83) and using ϑ̃ = 1
bm

− ϑ̂, we get

ż1 = bmα1 + ξ2 + δ̄T θ + ε2 − bmϑ̃ẏr + bmz2 (7.84)

We design the virtual control law α1 as

α1 = ϑ̂ᾱ1 (7.85)

ᾱ1 = −c1z1 − d1z1 − ξ2 − δ̄T θ̂ (7.86)

where c1 and d1 are positive design parameters, θ̂ is the estimate of θ. From
(7.84) and (7.85) we have

ż1 = −c1z1 − d1z1 + ε2 + δ̄T θ̃ − bm(ẏr + ᾱ1)ϑ̃ + bmz2

= −(c1 + d1)z1 + ε2 + (δ − ϑ̂(ẏr + ᾱ1)e1)T θ̃ − bm(ẏr + ᾱ1)ϑ̃ + b̂mz2

(7.87)

where θ̃ = θ − θ̂, we have

bmα1 = bmϑ̂ᾱ1 = ᾱ1 − bmϑ̃ᾱ1 (7.88)

δ̄T θ̃ + bmz2 = δ̄T θ̃ + b̃mz2 + b̂mz2

= δ̄T θ̃ + (vm,2 − ϑ̂ẏr − α1)eT
1 θ̃ + b̂mz2

= (δ − ϑ̂(ẏr + ᾱ1)e1)T θ̃ + b̂mz2 (7.89)
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We consider the Lyapunov function

V1 =
1
2
z2
1 +

1
2
θ̃T Γ−1θ̃ +

|bm|
2γ

ϑ̃2 +
1

2d1
Vε (7.90)

where Γ is a positive definite design matrix and γ is a positive design parameter.
We examine the derivative of V1

V̇1 ≤ z1ż1 − θ̃T Γ−1 ˙̂
θ − |bm|

γ
ϑ̃

˙̂
ϑ − 1

2d1
εT ε +

1
2d1

‖ PD(t) ‖2

≤ −c1z
2
1 + b̂mz1z2 − d1z

2
1 + z1ε2 − |bm|ϑ̃ 1

γ
[γsign(bm)(ẏr + ᾱ1)z1 + ˙̂

ϑ]

+θ̃T Γ−1[Γ (δ − ϑ̂(ẏr + ᾱ1)e1)z1 − ˙̂
θ] − 1

2d1
εT ε +

1
2d1

‖ PD(t) ‖2

(7.91)

Now we choose
˙̂
ϑ = −γsign(bm)(ẏr + ᾱ1)z1 − γlϑ(ϑ̂ − ϑ0) (7.92)

τ1 = (δ − ϑ̂(ẏr + ᾱ1)e1)z1 (7.93)

where lϑ, ϑ0 are positive design constants.
From the choice, the following useful property can be obtained:

lϑϑ̃(ϑ̂ − ϑ0) = −lϑ(ϑ̂ − ϑ)(
1
2
(ϑ̂ − ϑ) +

1
2
(ϑ̂ + ϑ) − ϑ0)

≤ −1
2
lϑϑ̃2 +

1
2
lϑ(ϑ − ϑ0)2 (7.94)

Then the following derivation for the derivative of V1 can be carried out by using
(7.92)-(7.94)

V̇1 ≤ −c1z
2
1 + b̂mz1z2 − |bm|

2
lϑϑ̃2 − 1

4d1
εT ε +

|bm|
2

lϑ(ϑ − ϑ0)2

+θ̃T (τ1 − Γ−1 ˙̂
θ) +

1
2d1

‖ PD(t) ‖2 (7.95)

Remark 7.6. Note that a new term γlϑ(ϑ̂ − ϑ0) is introduced in the parameter
update law (7.92) compared with the traditional estimator using backstepping.
This term is used to mitigate the backlash effect for system stability as shown
in later discussion.
• Step i (i = 2, . . . , ρ): Choose virtual control laws

α2 = −b̂mz1 −
[
c2 + d2

(∂α1

∂y

)2]
z2 + β2 +

∂α1

∂θ̂
Γ τ2 +

∂α1

∂θ̂
Γ lθ(θ̂ − θ0) (7.96)

αi = −zi−1 −
[
ci + di

(∂αi−1

∂y

)2]
zi + βi +

∂αi−1

∂θ̂
Γ τi +

∂αi−1

∂θ̂
Γ lθ(θ̂ − θ0)

−
( i−1∑

k=2

zk
∂αk−1

∂θ̂

)
Γ

∂αi−1

∂y
δ (7.97)

where ci, i = 3, . . . , ρ are positive design parameters, and
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τi = τi−1 − ∂αi−1

∂y
δzi (7.98)

βi =
∂αi−1

∂y
(ξ2 + δT θ̂) +

∂αi−1

∂η
(A0η + eny) + kivm,1 +

i−1∑

j=1

∂αi−1

∂y
(j−1)
r

y(j)
r

+(y(i−1)
r +

∂αi−1

∂ϑ̂

) ˙̂
ϑ +

m+i−1∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj+1) (7.99)

Then the adaptive controller and parameter update law are finally given by

w = αρ − vm,ρ+1 + ϑ̂y(ρ)
r (7.100)

˙̂
θ = Γτρ + Γ lθ(θ̂ − θ0) (7.101)

where lθ and θ0 are positive design constants.

Remark 7.7. Again note that ∂αi−1

∂θ̂
Γ lθ(θ̂ − θ0) and Γ lθ(θ̂ − θ0) are added in the

virtual control (7.97) and in the parameter update law ˙̂
θ (7.101), respectively.

These terms are employed to ensure system stability and its performance in the
presence of backlash effects as shown below.

Stability Analysis

We define the final Lyapunov function Vρ as

Vρ =
ρ∑

i=1

1
2
z2

i +
1
2
θ̃T Γ−1θ̃ +

|bm|
2γ

ϑ̃2 +
ρ∑

i=1

1
2di

Vε (7.102)

Note that

Γτi−1 − ˙̂
θ = Γτi−1 − Γτi + Γτi − ˙̂

θ

= Γ
∂αi−1

∂y
δzi + (Γτi − ˙̂

θ) (7.103)

lθθ̃
T (θ̂ − θ0) ≤ −1

2
lθ ‖ θ̃ ‖2 +

1
2
lθ ‖ θ − θ0 ‖2 (7.104)

From (7.97) - (7.101), the derivative of the last Lyapunov function satisfies

V̇ρ =
ρ∑

i=1

ziżi − θ̃T Γ−1 ˙̂
θ − |bm|

γ
ϑ̃

˙̂
ϑ +

ρ∑

i=1

1
2di

V̇ε

≤ −
ρ∑

i=1

ciz
2
i − θ̃T Γ−1( ˙̂θ − Γτρ) −

ρ∑

i=1

1
4di

εT ε − |bm|
2

lϑϑ̃2 +
|bm|
2

lϑ(ϑ − ϑ0)2

+
( ρ∑

k=2

zk
∂αk−1

∂θ̂

)
[Γτρ + Γ lθ(θ̂ − θ0) − ˙̂

θ] +
ρ∑

i=1

1
2di

‖ PD(t) ‖2
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≤ −
ρ∑

i=1

ciz
2
i − 1

2
lθ ‖ θ̃ ‖2 +

1
2
lθ ‖ θ − θ0 ‖2 +

ρ∑

i=1

1
2di

‖ PD(t) ‖2

−|bm|
2

lϑϑ̃2 +
|bm|
2

lϑ(ϑ − ϑ0)2 −
ρ∑

i=1

1
4di

εT ε

≤ −
ρ∑

i=1

ciz
2
i − |bm|

2
lϑϑ̃2 − 1

2
lθ ‖ θ̃ ‖2 −

ρ∑

i=1

1
4di

εT ε + M∗ (7.105)

where

M∗ = M +
ρ∑

i=1

1
2di

‖ P ‖2 D2
max (7.106)

M =
|bm|
2

lϑ(ϑ − ϑ0)2 +
1
2
lθ ‖ θ − θ0 ‖2 (7.107)

In (7.106), Dmax denotes the bound of D(t) which may not be available. Notice
that

−
ρ∑

i=1

ciz
2
i − |bm|

2
lϑϑ̃2 − 1

2
lθ ‖ θ̃ ‖2 −

ρ∑

i=1

1
4di

εT ε ≤ −f−V̄ρ (7.108)

and

Vρ =
ρ∑

i=1

1
2
z2

i +
1
2
θ̃T Γ−1θ̃ +

|bm|
2γ

ϑ̃2 +
ρ∑

i=1

1
2di

Vε ≤ f+V̄ρ (7.109)

where

V̄ρ =
ρ∑

i=1

z2
i + θ̃T θ̃ + ϑ̃2 +

ρ∑

i=1

εT ε (7.110)

f− = min
{
ci,

|bm|
2

lϑ,
1
2
lθ,

1
4di

}
(7.111)

f+ = max
{1

2
,
1
2
λmax(Γ ),

|bm|
2γ

,
1

2di
λmax(P )

}
(7.112)

where λmax(P ) and λmax(Γ ) are the maximum eigenvalues of P and Γ , respec-
tively. Therefore, from (7.105) we obtain

V̇ρ ≤ −f∗Vρ + M∗ (7.113)

By direct integrations of the differential inequality (7.113), we have

Vρ ≤ Vρ(0)e−f∗t +
M∗

f∗ (1 − e−f∗t) ≤ Vρ(0) +
M∗

f∗ (7.114)

where f∗ = f−/f+. This shows that Vρ is uniformly bounded. Thus zi, ϑ̂, θ̂ and
ε are bounded. Since z1 and yr are bounded, y is also bounded. Then from (7.67)
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and (7.68) we can show that λ, η and x are bounded as in Chapter 2. Therefore
boundedness of all signals in the system is ensured as formally stated in the
following Theorem.

Theorem 7.1. Consider the closed-loop adaptive system consisting of the plant
(7.61) under Assumptions 1-4, the controller (7.100), the estimator (7.92),
(7.101), and the filters (7.67) and (7.68). All the signals in the system are glob-
ally uniformly bounded.

We now derive a bound for the vector z(t) where z(t) = [z1, z2, . . . , zρ]T . Firstly,
the following definitions are made.

c0 = min1≤i≤ρci, d0 =
ρ∑

i=1

1
2di

(7.115)

‖ z ‖[0,T ] =

√
1
T

∫ T

0
z(t)2dt (7.116)

Then from (7.105), we have

V̇ρ ≤ −c0 ‖ z ‖2 +M∗ (7.117)

Integrating both sides, we obtain

‖ z ‖[0,T ] ≤ 1
c0

[
|Vρ(0) − Vρ(T )|

T
+ M +

1
T

d0 ‖ P ‖2
∫ T

0
D(t)2dt] (7.118)

On the other hand, from (7.113), we have

|Vρ(0) − Vρ(T )|
T

≤ 1 − e−f∗T

T
(
M

f∗ + Vρ(0)) +
1
T

d0 ‖ P ‖2
∫ T

0
e−f∗(T−t)D(t)2dt

≤ M + f∗Vρ(0) +
‖ P ‖2

T
d0

∫ T

0
D(t)2dt, ∀T ≥ 0, (7.119)

where we have used the fact that e−f∗(T−t) ≤ 1 and 1−e−f∗T

T ≤ f∗.
By setting zi(0) = 0, the initial value of the Lyapunov function is

Vρ(0) =
1
2

‖ θ̃(0) ‖2
Γ −1 +

|bm|
2γ

|ϑ̃(0)|2 + d0|ε(0)|2P (7.120)

Using (7.111) and (7.112), the fact that f∗/c0 ≤ 2, the a bound resulting from
(7.118) - (7.120) is given by

‖ z ‖[0,T ] ≤ ‖ θ̃(0) ‖2
Γ −1 +

|bm|
γ

|ϑ̃(0)|2 +
2

Tc0
d0 ‖ P ‖2

∫ T

0
D(t)2dt

+2d0|ε(0)|2P +
1
c0

(|bm|lϑ(ϑ − ϑ0)2 + lθ ‖ θ − θ0 ‖2) (7.121)
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Remark 7.8. Regarding the above bound, the following conclusions can be drawn:

• The transient performance in the sense of truncated norm given in (7.121)
depends on the initial estimate errors θ̃(0), ϑ̃(0) and ε(0). The closer the
initial estimates to the true values, the better the transient performance.

• This bound can also be systematically reduced by increasing Γ, γ, c0 and
decreasing d0, lϑ, lθ.

7.3.4 Extension to Nonlinear Systems

We consider the following class of nonlinear systems

ẋ = Ax + ψ(y) + ΦT (y)θ + b̄u (7.122)
du

dt
= α

∣∣dw

dt

∣∣(cw − u) + B1
dw

dt
(7.123)

y = eT
1 x (7.124)

where

A =

⎡

⎣ 0 In−1

0 0

⎤

⎦ , b̄ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0n−m−1

b̄m

...

b̄0

⎤

⎥⎥⎥⎥⎥⎥⎦
(7.125)

ψ(y) =

⎡

⎢⎢⎢⎣

ψ1(y)
...

ψn(y)

⎤

⎥⎥⎥⎦ , ΦT (y) =

⎡

⎢⎢⎢⎣

φT
1 (y)
...

φT
n (y)

⎤

⎥⎥⎥⎦ , e1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎦
(7.126)

where x ∈ Rn, u ∈ R1 and y ∈ R1 are the state, input and output of the system,
respectively, θ ∈ Rr and b̄ ∈ Rn are unknown constant vectors, φi(y) ∈ Rr and
ψi(y) ∈ R are known smooth functions, u denotes a backlash nonlinearity, w is
the input to the backlash element, and backlash (7.123) is treated as in previous
section.

The control objective is to design an output feedback control law for w(t) to
ensure that all closed-loop signals are bounded and the plant output y(t) tracks
a given reference signal yr(t) under the following assumptions:

Assumption 1: The sign of bm is known and the relative degree ρ = n − m is
fixed and known. The polynomial B(s) = bmsm + . . . + b1s + b0 is stable.

Assumption 2. The reference signal yr and its ρth order derivatives are con-
tinuous, known and bounded.

Then we rewritten system (7.122) as follows

ẋ = Ax + ψ(y) + ΦT (y)θ + bw + D(t) (7.127)
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where

b =

⎡

⎢⎢⎢⎢⎢⎢⎣

0n−m−1

b̄mc
...

b̄0c

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

0n−m−1

bm

...

b0

⎤

⎥⎥⎥⎥⎥⎥⎦
, D(t) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0(ρ−1)×1

b̄md(t)
...

b̄0d(t)

⎤

⎥⎥⎥⎥⎥⎥⎦
(7.128)

We employ the filters as follows

x̂(t) = ξ0 + ξT θ +
m∑

i=0

bivi (7.129)

λ̇ = A0λ + enw, i = 0, 1, . . . , m (7.130)
ξ̇0 = A0ξ0 + ky + ψ(y) (7.131)
ξ̇T = A0ξ

T + ΦT (y) (7.132)
vi = Ai

0λ, i = 0, . . . , m (7.133)

where k = [k1, . . . , kn]T such that all eigenvalues of A0 = A − keT
1 are at some

desired stable locations. With the designed filters, the state estimation error
ε = x − x̂ satisfies

ε̇ = A0ε + D(t) (7.134)

Then system can be expressed as

ẏ = bmvm,2 + ψ1(y) + ξ2 + δ̄T Θ + ε2 (7.135)
v̇m,i = vm,i+1 − kivm,1, i = 2, . . . , ρ − 1 (7.136)
v̇m,ρ = vm,ρ+1 − kρvm,1 + w (7.137)

where

Θ = [bm, . . . , b0, θ
T ]T (7.138)

δ = [vm,2, vm−1,2, . . . , v0,2, ξ
T
2 + φT

1 ]T (7.139)
δ̄ = [0, vm−1,2, . . . , v0,2, ξ

T
2 + φT

1 ]T (7.140)

and vi,2, ε2, ξ2 denote the second entries of vi, ε, ξ respectively. All of its states
are available for feedback.

The controller design is achieved by following the design procedures in Chapter
2 and are summarized in Table 7.1, Θ̂ where ci, i = 1, . . . , ρ are positive design
parameters, Θ̂ is the estimate of Θ, ϑ̂ is an estimate of ϑ = 1/bm, lϑ, ϑ0 and lΘ
are positive design constants, and Θ0 is a positive constant vectors. The result
is stated in the following theorem.

Theorem 7.2. Consider the closed-loop nonlinear system consisting of the plant
(7.122) under Assumptions 1-2, the controller (7.143), the estimator (7.148),
(7.149), and the filters (7.130), (7.131) and (7.132). All the signals in the system
are globally uniformly bounded.
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Table 7.1. Adaptive Backstepping Controller

Change of coordinates:

z1 = y − yr (7.141)

zi = vm,i − ϑ̂y(i−1)
r − αi−1, i = 2, 3, . . . , ρ (7.142)

Adaptive Control Laws:

w = αρ − vm,ρ+1 + ϑ̂y(ρ)
r (7.143)

α1 = ϑ̂ᾱ1 (7.144)

ᾱ1 = −c1z1 − d1z1 − ψ1(y) − ξ2 − δ̄T Θ̂ (7.145)

α2 = −b̂mz1 −
[
c2 + d2

(∂α1

∂y

)2]
z2 + β2 +

∂α1

∂Θ̂
Γτ2

+
∂α1

∂Θ̂
Γ lΘ(Θ̂ − Θ0) (7.146)

αi = −zi−1 −
[
ci + di

(∂αi−1

∂y

)2]
zi + βi +

∂αi−1

∂Θ̂
Γτi

+
∂αi−1

∂Θ̂
Γ lΘ(Θ̂ − Θ0) −

( i−1∑

k=2

zk
∂αk−1

∂Θ̂

)
Γ

∂αi−1

∂y
δ (7.147)

Parameter Update Laws:

˙̂
ϑ = −γsign(bm)(ẏr + ᾱ1)z1 − γlϑ(ϑ̂ − ϑ0) (7.148)
˙̂
Θ = Γτρ + Γ lΘ(Θ̂ − Θ0) (7.149)

Tuning functions:

τ1 = (δ − ϑ̂(ẏr + ᾱ1)e1)z1 (7.150)

τi = τi−1 − ∂αi−1

∂y
δzi (7.151)

βi =
∂αi−1

∂y
(ξ2 + δT Θ̂) +

∂αi−1

∂η
(A0η + eny) + kivm,1 +

i−1∑

j=1

∂αi−1

∂y
(j−1)
r

y(j)
r

+(y(i−1)
r +

∂αi−1

∂ϑ̂

) ˙̂
ϑ +

m+i−1∑

j=1

∂αi−1

∂λj
(−kjλ1 + λj+1) (7.152)
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7.3.5 Simulation Studies

Design Example 1: Output Feedback Control

We illustrate the output feedback method on a simple linear systems

y(s) =
b̄

s2 + as
u(s) (7.153)

u(t) = B(w(t)) (7.154)

where b̄ = 1, a = 1.2, B(w) is the backlash described by (7.2) with parameters
α = 1, c = 3.1635, B1 = 0.345. These parameters are not needed to be known in
the controller design. The objective is to control the system output y to follow
a desired trajectory yr(t) = 2 sin(2t). The filters from (7.67) and (7.68) are
implemented as

η̇ = A0η + e2y (7.155)
λ̇ = A0λ + e2w (7.156)
Ξ = −[A0η, η], ξ = −A2

0η v = λ (7.157)

A0 =

⎡

⎣−k1 1

−k2 0

⎤

⎦ (7.158)

The adaptive control laws α1 (7.85), w(t) (7.100), and parameter update laws
ϑ̂ (7.92), θ̂ (7.101) were used, where ϑ̂ and θ̂ are estimates of ϑ = 1/b̄c and
θ = [b̄c, a]T , respectively. The design parameters are chosen as c1 = 15, c2 =
5, d1 = d2 = 0.1, γ = 2, Γ = I2, lϑ = 0.1, lθ = 0.1, k1 = 6, k2 = 8. The initials
are set y(0) = 1, ϑ̂(0) = 0.2, θ̂(0) = [2, 0.5]T . The simulation results presented
in the Figure 7.5 shows the system output y and the desired trajectory signal.
Figure 7.6 shows the control signal w(t). These simulation results verify that our
proposed scheme is effective to cope with backlash nonlinearity.
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Fig. 7.5. Output y(dashed) and trajectory yr(solid line)
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Fig. 7.6. Control signal w(t)

Design Example 2: Valve Control Mechanism

In this section, we illustrate our proposed scheme on valve control mechanism
shown in Figure 7.7 as in Chapter 6, where the backlash is in the control inflow
u = B(v) and the output is the liquid level h. The transfer function h(p) can be
expressed as

h(p) = G(p)(u(p) − d(p)) =
k

p
(u(p) − d(p)) (7.159)

h

d

u=B(v)

u

backlash

gear-train

v control

h(s)=G(s)(u(s)-d(s))

G(s)=k/s

Fig. 7.7. Backlash in the valve control mechanism of a liquid tank
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Fig. 7.8. Input backlash

where d is the uncontrolled outflow which is treated as a disturbance and p = d
dt .

The backlash is expressed as follows

du

dt
= α

∣∣dv

dt

∣∣(cv − u) + B1
dv

dt
(7.160)

where α, c and B1 are constants. The true parameters are set as k = 2, α =
1, c = 3, B1 = 0.2. The objective is to control the liquid level to 10m.

The adaptive control law is designed by Scheme II as follows

v = ϑ̂w̄ (7.161)
w̄ = −c1(|z1| − δ1)sg1 − sg1D̂ (7.162)
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Fig. 7.9. Tracking error with controller designed by our proposed Scheme II
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˙̂
ϑ = −γw̄(|z1| − δ1)f1sg1 (7.163)
˙̂
D = η(|z1| − δ1)f1 (7.164)

where z1 = h − yr, yr = 2, D̂ is an estimate of D which is the bound of
kd1(t) − kd(t). In the simulation, the design parameters are chosen as c1 =
2, γ = 1, η = 2, δ1 = 0.01 and the initial value is chosen as h(0) = 5, ϑ̂(0) = 0.15.
The disturbance is selected as sin(2t). Figure 7.8 is the response of input back-
lash. The simulation results presented in Figure 7.9 and Figure 7.10 show the
tracking error of controlled liquid level and the input control obtained by the
designed controller.
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Fig. 7.10. Control signal with controller designed by our proposed Scheme II

7.4 Summary

In this chapter, we present two types of robust adaptive backstepping control
algorithms: state feedback control of a class of nonlinear systems with unknown
backlash and output feedback control of a class of linear systems with unknown
backlash.

For state feedback control, two backstepping adaptive controller design
schemes are developed. In the first scheme, a sign function is involved and this
can ensure perfect tracking. To avoid possible chattering caused by the sign func-
tion, we propose an alternative smooth control law and the tracking error is still
ensured to approach a prescribed bound in this case. The developed backstep-
ping controls do not require the model parameters within known intervals and
the knowledge on the bound of ‘disturbance-like’ term is not required. Besides
showing global stability, we also give an explicit bound on the L2 performance
of the tracking error in terms of design parameters.



Summary 123

For output feedback control, an adaptive control scheme with certain modifica-
tions to the existing backstepping control design is proposed to achieve tracking.
For the implementation of the controller, no a priori knowledge on the bounds
of all the unknown parameters and the backlash effect is required. It is shown
that adaptive control system is globally stable in the sense that all the signals
are bounded. Also a truncated L2 bound is derived for the tracking error as a
function of the design parameters. Simulation results verify the effectiveness of
the proposed schemes. We also extend the results to nonlinear system.



8 Inverse Control of Systems with Backlash
Nonlinearity

We consider a class of uncertain dynamic nonlinear systems preceded by un-
known backlash nonlinearity. The control design is achieved by introducing a
smooth inverse function of the backlash and using it in the controller design
with backstepping technique. For the design and implementation of the con-
troller, no knowledge is assumed on the unknown system parameters. It is shown
that the proposed controller not only can guarantee stability, but also transient
performance.

8.1 Introduction

Backlash exists in a wide range of physical systems and devices, such as biol-
ogy optics, electro-magnetism, mechanical actuators, electronic relay circuits and
other areas. Such nonlinearity is usually poorly known and often limits system
performance. Control of systems with backlash nonlinearity is an important area
of control system research and typically challenging. For backlash nonlinearity,
several adaptive control schemes have recently been proposed, see for examples
[45, 49, 122]. In [28, 44, 55] an inverse nonlinearity was constructed. In the con-
troller design, the term multiplying the control and the uncertain parameters
of the system and nonsmooth nonlinearity must be within known bounded in-
tervals. Backlash compensation using neural network and fuzzy logic has also
been used in feedback control systems [72]. The system states and uncertain
weights must be within known compact sets. With these developed schemes,
the transient performance is usually not guaranteed. In [52], variable structure
control was proposed to stabilize the nonlinear plants by using a quasistatic and
dynamic description of the nonlinearity, where the parameters of nonlinearity
are bounded by known constants. In [43] a dynamic backlash model is defined
to pattern a backlash nonlinearity rather than constructing an inverse model to
mitigate the effects of the backlash. However in [43], the term multiplying the
control and the uncertain parameters of the system must be within known inter-
vals and the ‘disturbance-like’ term must be bounded with known bound. Pro-
jection was used to handle the ‘disturbance-like’ term and unknown parameters.
System stability was established and the tracking error was shown to converge

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 125–138, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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to a residual. In [120], a state feedback backstepping design was developed to
deal with the backlash nonlinearity, where the effect of backlash was treated as
a bounded disturbance and an estimate was used to estimate its bound. The
detailed characteristic of backlash was not considered in the controller design.

In this chapter, we develop a simple output feedback adaptive control scheme
for a class of nonlinear systems, in the presence of unknown backlash actuator
nonlinearity as in [123, 124]. To further improve system performance, we take the
system backlash into account in the controller design, instead of only considering
its effect like bounded disturbances as in [43, 120]. An efficient smooth adaptive
inverse was developed to compensate the effect of the backlash in controller de-
sign with backstepping approach. Furthermore, the over-parametrization prob-
lem is also solved by using the concept of tuning functions. A state observer is
proposed for output feedback control. To avoid possible chattering caused by the
sign function, we propose a smooth control law and the tracking error is ensured
to approach a prescribed bound. In our design, the term multiplying the con-
trol and the system parameters are not assumed to be within known intervals.
Besides showing stability of the system, transient performance in terms of L2
norm of the tracking error is derived to be an explicit function of design param-
eters and thus our scheme allows designers to obtain the closed loop behavior
by tuning design parameters in an explicit way.

8.2 Problem Statement

8.2.1 System Model

We consider the following class of nonlinear systems

ẋ = Ax + ψ(y) +
r∑

i=1

θiφi(y) + bu (8.1)

y = eT
1 x, u = B(v) (8.2)

where

A =

⎡

⎣ 0 In−1

0 0

⎤

⎦ , θ =

⎡

⎢⎢⎢⎣

θ1

...

θr

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎢⎢⎢⎣

0

bm

...

b0

⎤

⎥⎥⎥⎥⎥⎥⎦
(8.3)

ψ(y) =

⎡

⎢⎢⎢⎣

ψ1(y)
...

ψn(y)

⎤

⎥⎥⎥⎦ , e1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎦
(8.4)
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where x ∈ Rn, u ∈ R1 and y ∈ R1 are the states, input and output of the system,
respectively, θ ∈ Rr and b ∈ Rn and are unknown constant vectors, φi(y) ∈ Rn

and ψi(y) ∈ R are known smooth functions. The actuator nonlinearity u = B(v)
is described as a backlash characteristic.

The control objective is to design an output feedback control law for v(t) to
ensure that all closed-loop signals are bounded and the plant output y(t) tracks
a given reference signal yr(t) under the following assumptions:

Assumption 1. The sign of bm is known and the relative degree ρ = n − m is
fixed and known. The polynomial B(s) = bmsm + . . . + b1s + b0 is stable.

Assumption 2. The reference signal yr and its (n − 1)th order derivatives are
known and bounded.

8.2.2 Backlash Characteristic

Traditionally, a backlash nonlinearity in Figure 8.1 can be described by

u̇(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mv̇(t) if v̇(t) > 0 and u(t) = m(v(t) − Br) or

if v̇(t) < 0 and u(t) = m(v(t) − Bl)

0 otherise

(8.5)

where m ≥ m0 is the slope of the lines, with m0 being a small positive constant,
and Br > Bl are constant parameters.

The essence of compensating backlash effect is to employ a backlash inverse.
However the inverse of (8.5) is itself nonsmooth and may not be amenable to
controller design.

In this chapter, we propose a new smooth inverse for the backlash as follows

v = BI(u) =
1
m

u + Brχr(u̇) + Blχl(u̇) (8.6)

where

χr(u̇) =
e(ku̇)

e(ku̇) + e(−ku̇) (8.7)

χl(u̇) =
e(−ku̇)

e(ku̇) + e(−ku̇) (8.8)

where k is a positive constant. χr and χl have the following properties

χr(u̇) → 1 as u̇ → ∞; χr(u̇) → 0 as u̇ → −∞; (8.9)
χl(u̇) → 0 as u̇ → ∞; χl(u̇) → 1 as u̇ → −∞. (8.10)

Note that the larger the value k, the closer χr to 1 and 0 when u̇ → ∞ and
u̇ → −∞. Also the larger the k, the closer χl to 0 and 1 when u̇ → ∞ and
u̇ → −∞. Such an inverse is shown in Figure 8.2.
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Fig. 8.2. Backlash Inverse (dashed: smooth inverse; solid: hard inverse)

Remark 8.1. Note that we will obtain an efficient adaptive backlash inverse in
(8.15) when the backlash parameters are unknown. We will take the system
backlash into account in the controller design, instead of only considering its
effect like bounded disturbances in [43] and [120].

Remark 8.2. Note that the use of smooth functions χr(u̇) and χl(u̇) are con-
tinuous and differentiable. This is different from the inverse in [49], where the
inverse indicator functions are nonsmooth. The latter case may cause chattering
phenomenon in the recursive backstepping control.

To design an adaptive controller for the system, we re-parameterize the backlash
as in [49] as follows

u(t) = σr(t)m
(
v(t) − Br

)
+ σl(t)m

(
v(t) − Bl

)
+ σs(t)us (8.11)
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where us is a generic constant corresponding to the value at any active inner
segment characterized by us

m + Bl ≤ v(t) ≤ us

m + Br.

σr(t) =

⎧
⎨

⎩
1 if u̇(t) > 0

0 otherwise
(8.12)

σl(t) =

⎧
⎨

⎩
1 if u̇(t) < 0

0 otherwise
(8.13)

σs(t) =

⎧
⎨

⎩
1 if u̇(t) = 0

0 otherwise
(8.14)

These functions satisfy that σr(t) + σl(t) + σs(t) = 1.
As parameters m, Br, Bl are unknown and u is unavailable, the actual v(t) is

designed as

v(t) = B̂I(ud) =
1
m̂

[ud + m̂Brχr(u̇d) + m̂Blχl(u̇d)] (8.15)

where m̂, m̂Br and m̂Bl are estimates of m, mBr and mBl, ud(t) is the actual
control input. Then corresponding control input ud(t) is given by

ud(t) = m̂v(t) − m̂Brχr(u̇d) − m̂Blχl(u̇d) (8.16)

The resulting error between u and ud is

u(t) − ud(t) = m̃v − m̃Brχr(u̇d) − m̃Blχl(u̇d) + db(t) (8.17)

where db(t) = usσs − mvσs + mBr(χr(u̇d) − σr) + mBl(χl(u̇d) − σl).

Proposition. The un-parameterizable part db(t) of the backlash inverse con-
trol error u(t) − ud(t) is bounded for any t ≥ 0.

Proof: There are three cases to be examined:
Case 1: σr(t) = 1, σl(t) = σs(t) = 0.

db(t) = mBr(χr(u̇d) − 1) + mBlχl(u̇d) (8.18)
Thus |db(t)| ≤ m(Br − Bl) (8.19)

Case 2: σl(t) = 1, σr(t) = σs(t) = 0.

db(t) = mBl(χl(u̇d) − 1) + mBrχr(u̇d) (8.20)
Thus |db(t)| ≤ m(Br − Bl) (8.21)

Case 3: σs(t) = 1, σr(t) = σl(t) = 0.

|db(t)| ≤ m(Br − Bl + Bs) (8.22)

where Bs depends on the motion of v(t) and u(t) on the inner segment when
σs(t) = 1 and Bs is in the internal (Bl, Br). From these expressions, it is clear
that db(t) is bounded.
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8.3 State Estimation Filters

We employ the filters similar to those in [125] as follows

x̂(t) = ξ0 +
r∑

i=1

θiξi +
m∑

i=0

biηi (8.23)

η̇i = A0ηi + en−iu, i = 0, 1, . . . , m (8.24)
ξ̇0 = A0ξ0 + ky + ψ(y) + χ (8.25)
ξ̇i = A0ξi + φi(y), i = 1, . . . , r (8.26)

where k = [k1, . . . , kn]T such that all eigenvalues of A0 = A − keT
1 are at some

desired stable locations and χ is a design signal specified later. It can be shown
that the state estimation error ε = x(t) − x̂(t) satisfies ε̇ = A0ε − χ.

Note that the signal u(t) is not available. Thus the signal η in (8.24) needs
to be re-parameterized. Let p denote d

dt . With Δ(p) = det(pI − A0), we express
η(t) as

ηi(t) = [ηi1(t), ηi2(t), ..., ηin(t)]T

= [qi1(p), qi2(p), ..., qin(p)]T
1

Δ(p)
u(t), i = 0, ..., m (8.27)

for some known polynomials qij(p), i = 0, ..., m, j = 1, ..., n. Using (8.16) and
(8.17), we have

u(t) = mv − mBrχr(u̇d) − mBlχl(u̇d) + db(t) = βT ω̂(t) + db(t) (8.28)

where

β = [m, mBr, mBl]T (8.29)
ω̂(t) = [v, −χr(u̇d), −χl(u̇d)]T (8.30)

With (8.27), we obtain

ηij(t) = βT ω̂ij(t) + dij(t) (8.31)

where

ω̂ij(t) =
qij(p)I3

Δ(p)
ω̂(t), dij(t) =

qij(p)
Δ(p)

db(t) (8.32)

and I3 is a 3 × 3 identity matrix. Based on (8.31), ω̂i is available for controller
design in place of u. Denoting the second components of ξ0, ξi as ξ02, ξi2, i =
1, . . . , r, we have

x̂2 = ξ02 +
r∑

i=1

θiξi2 +
m∑

i=0

biβ
T ω̂i2(t) +

m∑

i=0

bidi2(t) (8.33)

ω̂i2(t) =
(pm+1 + k1p

m)I3

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t) (8.34)
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8.4 Design of Adaptive Controllers

As usual in backstepping approach, the following change of coordinates is made.

z1 = y − yr, zi = β̂T ω̂
(i−2)
m2 − êy(i−1)

r − αi−1, i = 2, 3, . . . , ρ (8.35)

where β̂ and ê are estimates of β and e = 1/bm, respectively, αi−1 is the virtual
control at the ith step and will be determined in later discussion.

As in [120], we define functions sgi(zi) and fi(zi) as follows

sgi(zi) =

⎧
⎪⎪⎨

⎪⎪⎩

zi
|zi| |zi| ≥ δi

z
(2q+1)
i

(δ2
i − z2

i )ρ−i+2 + |zi|(2q+1) |zi| < δi

(8.36)

fi(zi) =

⎧
⎨

⎩
1 |zi| ≥ δi

0 |zi| < δi

(8.37)

where δi(i = 1, . . . , ρ) is a positive design parameter and q = round{(ρ−i+2)/2},
where round{x} is the nearest integer to x. Clearly 2q + 1 ≥ ρ − i + 2. It can be
shown that sgi(zi) is (ρ − i + 1)th order differentiable.

Remark 8.3. The standard adaptive backstepping design approach [1] results in
difficulties in designing robust adaptive controllers with the capability of esti-
mating the bound of disturbances for the case that relative degree ρ > 1. In
this chapter, function sgi is used to overcome the difficulties by counteracting
the disturbance in each step and also avoid using sign function which is non-
differentiable and may cause the chattering.

Note that, the first and the last steps of the design are quite different from
the approach in [120], due to output feedback and the use of estimated inverse
backlash parameters in control design, and are elaborated in details. The results
of other steps, i.e. step i, i = 2, . . . , ρ−1 are only presented without elaboration.

• Step 1: We start with the equation for the tracking error z1 given (8.1) and
(8.33) to obtain

ż1 = ξ02 + θT (ξ(2) + Φ1(y)) + bmβ̃T ω̂m2(t) − bmẽẏr + bmz2 + bmα1

+
m−1∑

i=0

biβ
T ω̂i2(t) + d(t) + ψ1(y) + ε2 (8.38)

where ξ(2) = [ξ12, ..., ξr2]T , d(t)=
∑m

i=0 bidi2(t), and Φ1(y) = [φ11(y), ..., φr1(y)]T .
From proposition, there exists a positive constant D such that |d(t)| ≤ D.

Remark 8.4. The unknown bound D of d(t) will be estimated online and thus it
is not assumed to be known in contrast to [41], [49] and [126]. With our proposed
scheme, only one estimator will be used to estimate its bound in the backstepping
design to overcome the over-parametrization problem. This is also different from
[125], where a number of estimators are used for the same variable D.
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Now we select the virtual control law α1 as

α1 = êᾱ1 (8.39)

ᾱ1 = −(c1 +
b̂2
m

4
)(|z1| − δ1)nsg1 − ξ02 − Θ̂T ϕ(t) − D̂sg1

−(δ2 + 1)
√

b̂2
m + δ0 · sg1 (8.40)

where c1 is a positive constant, δ0 is a small positive real number, b̂m, D̂ and
Θ̂ are estimates of bm, D and ΘT = [θT , b0β

T , ..., bm−1β
T ], and ϕ(t) = [ξ(2) +

Φ1(y), ω̂02(t), ..., ω̂(m−1)2(t)]T . Then the choice of (8.39) and (8.40) results in
the following system

ż1 = −(c1 +
b̂2
m

4
)(|z1| − δ1)ρsg1(z1) + Θ̃T ϕ(t) + bmz2 − bm(ᾱ1 + ẏr)ẽ

−bmβ̃T ω̂m2(t) + d(t) − D̂sg1 + ε2 − (δ2 + 1)
√

b̂2
m + δ0 · sg1 (8.41)

We define a positive definite function V1 as

V1 =
1

ρ + 1
(|z1| − δ1)ρ+1f1 +

1
2
|bm|β̃T Γ−1

β β̃ +
1
2
Θ̃T Γ−1

Θ Θ̃

+
|bm|
2γe

ẽ2 +
1

2γd
D̃2 +

1
2l1

εT Pε (8.42)

where Θ̃ = Θ − Θ̂, β̃ = β − β̂, ẽ = e − ê, D̃ = D − D̂, ΓΘ, Γβ are positive definite
matrices, γe, γd are positive constants, and P = PT > 0 satisfies the equation
PA0 + AT

0 P = −2I. Let βi = ēT
i θ, i = 1, . . . , 3, where ēi ∈ R3 is an identity

vector. We select the adaptive update laws as

˙̂
βi = ēT

i τβ , i = 2, 3,
˙̂
βi = Proj(ēT

i τβ), i = 1 (8.43)
τβ = −sign(bm)Γβ ω̂m2(t)(|z1| − δ1)ρf1sg1 (8.44)
˙̂e = −sign(bm)γe(ᾱ1 + ẏr)(|z1| − δ1)ρf1sg1 (8.45)

where Proj(.) is a smooth projection operation to ensure the estimate m̂(t) ≥
m0. Such an operation can be found in [1].

Then from (8.41) to (8.45) and using ε̇ = A0ε − χ and the property that
−β̃T Γ−1

β Proj(τβ) ≤ −β̃T Γ−1
β τβ , we obtain the time derivative of V1 as

V̇1 = (|z1| − δ1)ρf1sg1ż1 − |bm|β̃T Γ−1
β

˙̂
β − Θ̃T Γ−1

Θ
˙̂
Θ

−|bm|
γe

ẽ ˙̂e − 1
γd

D̃
˙̂
D +

1
l1

εT P ε̇

≤ −(c1 +
b̂2
m

4
)(|z1| − δ1)2ρf1 + D̃

[
(|z1| − δ1)ρf1 − 1

γd

˙̂
D

]
− 1

l1
εT ε

+Θ̃T
[
ϕ(|z1| − δ1)ρf1sg1 − Γ−1

Θ
˙̂
Θ

]
+ εT [e2(|z1| − δ1)ρf1sg1 − 1

l1
Pχ]
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−|bm|β̃T
[
sign(bm)ω̂m2(|z1| − δ1)ρf1sg1 + Γ−1

β
˙̂
β
]

−|bm|ẽ
[
sign(bm)(ᾱ1 + ẏr)(|z1| − δ1)ρf1sg1 +

1
γe

˙̂e
]

+(|z1| − δ1)ρf1sg1
[
bmz2 − (δ2 + 1)

√
b̂2
m + δ0sg1

]

≤ −(c1 +
b̂2
m

4
)(|z1| − δ1)2ρf1 + Θ̃T (τΘ1 − Γ−1

Θ
˙̂
Θ) + D̃(τD1 − 1

γd

˙̂
D)

+(|z1| − δ1)ρf1sg1
(
bmz2 − (δ2 + 1)

√
b̂2
m + δ0sg1

)

− 1
l1

εT ε + εT (τχ1 − 1
l1

Pχ) (8.46)

τΘ1 = φ(|z1| − δ1)ρf1sg1 (8.47)
τχ1 = e2(|z1| − δ1)ρf1sg1 (8.48)
τD1 = (|z1| − δ1)ρf1 (8.49)

where e2 = [0, 1, 0, . . . , 0]T ∈ Rn.
• Step i, i = 2, . . . , ρ: As detailed in [120], we choose

αi = −(ci + 1)(|zi| − δi)ρ−i+1sgi − gi − (δi+1 + 1)sgi +
∂αi−1

∂y
Θ̂T ϕ

+
∂αi−1

∂y
ϑ̂T ω̂m2(t) +

√

‖ ∂αi−1

∂y
‖2 +δ0 · D̂sgi +

∂αi−1

∂Θ̂
ΓΘτΘi

+
∂αi−1

∂ξ0
l1P

−1τχi +
∂αi−1

∂ϑ̂
Γϑτϑi +

i−1∑

k=2

(|zk| − δk)ρ−k+1fksgk

[
− ∂αk−1

∂Θ̂

∂αi−1

∂y
ϕ − ∂αk−1

∂ξ0

∂αi−1

∂y
l1P

−1e2 − ∂αk−1

∂D̂

∂αi−1

∂y
sgi

]

−
i−1∑

k=3

(|zk| − δk)ρ−k+1fksgk
∂αk−1

∂ϑ̂

∂αi−1

∂y
ω̂m2 +

∂αi−1

∂D̂

1
γd

τDi (8.50)

˙̂
bm = γb(|z1| − δ1)ρf1sg1z2 (8.51)

τDi = τDi−1 −

√

‖ ∂αi−1

∂y
‖2 +δ0 · (|zi| − δi)ρ−i+1fi (8.52)

τΘi = τΘi−1 − ∂αi−1

∂y
ϕ(|zi| − δi)ρ−i+1fisgi (8.53)

τχi = τχi−1 − ∂αi−1

∂y
(|zi| − δi)ρ−i+1fisgie2 (8.54)

τϑi = τϑi−1 − ∂αi−1

∂y
ω̂m2(|zi| − δi)ρ−i+1fisgi (8.55)
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Vi =
i∑

k=1

1
ρ − k + 2

(|zk| − δk)ρ−k+2fk +
1
2
|bm|β̃T Γ−1

β β̃

+
1
2
Θ̃T ΓΘΘ̃ +

|bm|
2γe

ẽ2 +
1
2
ϑ̃T Γ−1

ϑ ϑ̃ +
1

2γb
b̃2
m +

1
2l1

εT Pε (8.56)

where ϑ̂ is an estimate of ϑ = bmβ, ϑ̃ = ϑ − ϑ̂, b̃m = bm − b̂m, gi contains all
known terms, ci is a positive constant, δi is a small positive constant, γb is a
positive constant, Γϑ is a positive definite matrix.

Step ρ: Using (8.16) and (8.34), we have

β̂T ω̂
(ρ−1)
m2 = β̂T (pn + k1p

n−1)I3

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t)

= ud(t) + ω0 (8.57)

where ω0 is given by

ω0 = − (k2p
n−2 + . . . + kn−1p + kn)I3

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t) (8.58)

With this equation, the derivative of zn = −θ̂T ω̂
(ρ−2)
m2 − êy

(ρ−1)
r − αρ−1 is

żρ = ud + gρ − ∂αρ−1

∂y
ΘT ϕ − ∂αρ−1

∂y
ϑT ω̂m2(t) − ∂αρ−1

∂Θ̂

˙̂
Θ − ∂αρ−1

∂D̂

˙̂
D

−∂αρ−1

∂ϑ̂

˙̂
ϑ − ∂αρ−1

∂ξ0
χ − ∂αρ−1

∂y
d(t) − ∂αρ−1

∂y
ε2 (8.59)

where βρ contains all known terms. Define a positive definite Lyapunov function
Vρ as

Vρ = Vρ−1 +
1
2
(|zρ| − δρ)2fρ +

1
2γd

D̃2
ρ (8.60)

We choose the update laws for ϑ̂, Θ̂, D̂

˙̂
Θ = ΓΘτΘρ (8.61)
˙̂
ϑ = Γϑτϑρ (8.62)
˙̂
D = γdτDρ (8.63)

and the design signal χ as

χ = l1P
−1τχρ (8.64)

Finally the control law is given by

ud = αρ (8.65)

v(t) = B̂I(ud) =
1
m̂

[ud + m̂Brχr(u̇d) + m̂Blχl(u̇d)] (8.66)
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With this choice and similar steps in step 1 for V̇1, the derivative of Vn becomes

V̇ρ ≤ −
ρ∑

i=1

ci(|zi| − δi)2(ρ−i+1)fi + ϑ̃T (τϑρ − Γ−1
ϑ

˙̂
ϑ) +

1
γd

D̃(γdτDρ − ˙̂
D)

+εT (τχρ − 1
l1

Pχ) +
ρ∑

k=2

(|zk| − δk)ρ−k+1fk

[∂αk−1

∂ϑ̂
(Γϑτϑρ − ˙̂

ϑ)

+
∂αk−1

∂D̂
(γdτDρ − ˙̂

D) +
∂αk−1

∂ξ0
(l1P−1τχρ − χ)

]
− 1

l1
εT ε

+Θ̃T (τΘρ − Γ−1
Θ

˙̂
Θ) +

ρ∑

k=3

(|zk| − δk)ρ−k+1fk
∂αk−1

∂Θ̂
(ΓΘτΘρ − ˙̂

Θ)

= −
ρ∑

i=1

ci(|zi| − δi)2(ρ−i+1)fi − 1
l1

εT ε (8.67)

From (8.67), we get the following Lemma.

Lemma 8.1. The adaptive controller designed above ensures that z1, . . ., zρ, Θ̂,
ê, b̂m, ϑ̂, D̂ and ε are all bounded.

With Lemma 8.1, all the signals in the closed-loop can be shown to be bounded
and a bound can be established for the tracking error, as stated in the following
theorem.

Theorem 8.1. Consider the system consisting of the parameter estimators given
by (8.43), (8.45), (8.51) and (8.61)-(8.63), adaptive controllers designed using
(8.65)-(8.66) with virtual control laws (8.39) and (8.50), and plant (8.1) with a
backlash nonlinearity (8.5). The system is stable in the sense that all signals in
the closed loop are bounded. Furthermore

• The tracking error converges [δ1, −δ1] asymptotically, i.e.,

lim
t→∞ |y(t) − yr(t)| = δ1 (8.68)

• The transient tracking error performance is given by

‖ |y(t) − yr(t)| − δ1 ‖2

≤ 1

c
1/2ρ
1

(1
2
Θ̃(0)T Γ−1

Θ Θ̃(0) +
|bm|
2Γβ

β̃(0)2 +
1

2Γϑ
ϑ̃(0)2

+
|bm|
2γe

ẽ(0)2 +
1

2γd
D̃(0)2 +

1
2γb

b̃m(0)2 +
1

2l1
ε(0)2

)1/2ρ (8.69)

with zi(0) = 0, i = 1, . . . , ρ,

Proof: From Lemma 8.1, we have that z1, . . . , zρ, β̂, Θ̂, ê, b̂m, ϑ̂, D̂, ε are bounded.
Following similar approaches to those in [125], we can obtain the boundedness
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of αi, i = 1, . . . , ρ, χ and ud, and so are v = B̂I(ud) and u = DI(v). It follows
that ω̂ ∈ L∞. From (8.24), we have that η is bounded. Then x̂ is bounded from
(8.23) and finally x(t) = x̂(t)+ ε(t) is bounded from (8.23-8.24). Thus all signals
in the closed-loop are bounded. The tracking error performance can be obtained
from (8.67) following similar approaches to those in [120].

Remark 8.5. From Theorem 8.1 the following conclusions can be obtained:

• The transient performance depends on the initial estimate errors ẽ(0), β̃(0),
Θ̃(0), ϑ̃(0), D̃(0), b̃m(0) and the explicit design parameters. The closer the
initial estimates ê(0), β̂(0), Θ̂(0), ϑ̂(0), b̂m(0) and D̂(0) to the true values
e, β, Θ, ϑ, bm and D, the better the transient performance.

• The bound for ‖ y(t) − yr(t) ‖2 is an explicit function of design parameters
and thus computable. We can decrease the effects of the initial error estimates
on the transient performance by increasing the adaptation gains c1, γd, γe, γb

and Γβ , ΓΘ, Γϑ.
• The value of δ1 can be chosen as small as possible according to the desired

accuracy, since the output tracking error will converge to [−δ1, δ1]. Notes
that δ1 may influence the control input through the effects of sg1, f1 and
their derivatives in the backstepping design.

8.5 Simulation Study

In this section, we illustrate the above methodology on the following nonlinear
system

ẋ1 = x2, ẋ2 = u + a
1 − e−x1(t)

1 + e−x1(t)

y = x1, u = B(v) (8.70)

where u represents the output of the backlash nonlinearity as in (8.5), parameter
a and backlash parameters m, Br, Bl are unknown, but m ≥ 0.1. The actual
parameter values are chosen as a = 1, m = 1, Br = 0.5, Bl = −0.8 for simulation.
The objective is to control the system output y to follow a desired trajectory
yr(t) = 10 sin(2.5t). Firstly we choose the backlash inverse v(t) = B̂I(ud) and
the filters

ξ̇0 = A0ξ0 + ky + χ, ξ̇1 = A0ξ1 + Y1 (8.71)

η̇ = A0η + e2u, ω̂2 =
p + k1

p2 + k1p + k2
I3[ω̂] (8.72)

where Y1 = [0,
1 − e−x1(t)

1 + e−x1(t)
]T (8.73)

k = [k1, k2]T = [1, 3]T (8.74)

A0 =

⎡

⎣−k1 1

−k2 0

⎤

⎦ =

⎡

⎣−1 1

−3 0

⎤

⎦ (8.75)
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Then we apply our designed control to the plant. In the simulations, we choose
c = 2, e0 = 1, δ1 = 0.01, γ = 1, c1 = c2 = c, Γa = γd = γ, Γθ = γI3 and the
initial parameters â(0) = 1.2, D̂(0) = 0.4, θ̂(0) = [1, 0.4, −0.6]T . The initial state
is chosen as y(0) = 0.6. The parameters and the initial states are the same as
in [120]. For comparison, the scheme in [120] and our proposed scheme are both
applied to the system. In [120], state feedback control is used and the effect of
backlash is considered as a disturbance. The newly developed scheme studies
output feedback control and a smooth backlash inverse is used to compensate
the effect of backlash. The simulation results presented in the Figure 8.3 and
Figure 8.4 are the tracking error y − yr and the controller input v(t). Clearly,
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the simulation results verify our theoretical findings and show the effectiveness
of our control scheme. The newly developed scheme gives better performance
compared with [120].

8.6 Conclusion

This chapter presents an output feedback backstepping adaptive controller de-
sign scheme for a class of uncertain nonlinear SISO system preceded by uncertain
backlash actuator nonlinearity. We propose a new smooth adaptive inverse to
compensate the effect of the unknown backlash. Such an inverse can avoid pos-
sible chattering phenomenon which may be caused by nonsmooth inverse. The
inverse function is employed in the backstepping controller design. The over-
parametrization problem is solved by using the concept of tuning functions. For
the design and implementation of the controller, no knowledge is assumed on the
unknown system parameters. Besides showing stability, we also give an explicit
bound on the L2 performance of the tracking error in terms of design parameters.
Simulation results illustrate the effectiveness of our proposed scheme.



9 Stabilization of Interconnected Systems with
Backlash Nonlinearity

Due to the difficulty of handling both hysteresis and interactions between subsys-
tems, there are limited results available on decentralized stabilization of unknown
interconnected systems with hysteresis, even though the problem is practical and
important. In this chapter, we provide solutions to this challenging problem by
proposing two new schemes to design decentralized output feedback adaptive
controllers using backstepping approach. For each subsystem, a general transfer
function with arbitrary relative degree is considered. The interactions between
subsystems are allowed to satisfy a nonlinear bound with certain structural con-
ditions. In the first scheme, no knowledge is assumed on the bounds of unknown
system parameters. In case that the uncertain parameters are inside known com-
pact sets, we propose an alternative scheme where a projection operation is em-
ployed in the adaptive laws. In both schemes, the effect of the hysteresis and the
effects due to interactions are taken into consideration in devising local control
laws. It is shown that the designed local adaptive controllers can ensure all the
signals in the closed loop system bounded. A root mean square type of bound is
obtained for the system states as a function of design parameters. This implies
that the transient system performance can be adjusted by choosing suitable de-
sign parameters. With Scheme II, the proposed control laws allow arbitrarily
strong interactions provided their upper bounds are available. In the absence of
hysteresis, perfect stabilization is ensured and the L2 norm of the system states
is also shown to be bounded by a function of design parameters when the second
scheme is applied.

9.1 Introduction

In the control of a large scale system, one usually faces poor knowledge on
the plant parameters and interactions between subsystems. Thus adaptive con-
trol technique in this case is an appropriate strategy to be employed. If some
subsystems are distributed distantly, it is difficult for a centralized controller
to gather feedback signals from these subsystems. Also the design and imple-
mentation of the centralized controller are complicated. Therefore decentralized
controllers, designed independently for local subsystems and using local available
signals for feedback, are proposed to overcome such problems. Such decentralized

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 139–164, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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controllers, however, should be robust against the ignored interactions. In the
context of decentralized adaptive control, only a limited number of results have
been obtained, see for examples [20, 22, 24, 25, 32, 33, 96, 97, 98, 99, 105]. The
scheme presented in [105] is the first result using backstepping technique to re-
lax the requirement on the relative degree of subsystems. But the result is only
applicable to interactions satisfying a first-order type of bound and transient
performance is not established.

Hysteresis can be represented by both dynamic input-output and static consti-
tutive relationships. It exists in a wide range of physical systems and materials,
such as electro-magnetism [127], piezoelectric actuators [112], brakes [49], elec-
tronic circuits [128], motors [129], smart materials [119], and so on [130]. When
a plant is preceded by the hysteresis nonlinearity, the system usually exhibits
undesirable inaccuracies or oscillations and even instability due to the combined
effects of the non-differentiable and non-memoryless character of the hysteresis
and the plant. Hysteresis nonlinearity is one of the key factors limiting both
static and dynamic performance of feedback control systems. The development
of control techniques to mitigate the effects of hysteresis is typically challenging
and has recently attracted significant attention, [43, 44, 45, 55, 56, 120, 131, 132].
In [131], a model derivation for smart materials using physical principles leads
to a hysteresis operator at the input end of a linear system. Adaptive recursive
identification and inverse control are addressed. In [44], [55] and [56] an inverse
hysteresis nonlinearity was constructed. An adaptive hysteresis inverse cascaded
with the plant was employed to cancel the effects of hysteresis. In [43], a dy-
namic hysteresis model is used to pattern a backlash-like hysteresis rather than
constructing an inverse model to mitigate the bounded effects of the hysteresis.
In the paper, an adaptive state feedback control scheme is developed for a class
of nonlinear systems. In the design, the term multiplying the control and the
uncertain parameters of the system must be within known compact sets and a
bound for the effect from hysteresis must also be available, in order to implement
the projection operation in the estimator. If the hysteresis effect is not bounded
by the given bound, system stability cannot be ensured. In [120], a state feedback
control for a special structure of nonlinear systems with backlash-like hysteresis
is developed using backstepping methodology. System stability was established
and the tracking error was shown to converge to a residual.

Due to difficulties in considering the effects of interconnections, extension of
single loop results to multi-loop interconnecting systems is challenging, which is
why the number of available results is still limited, especially for the case when the
relative degree of each subsystem is greater than two. In the presence of hysteresis
in unknown interconnected systems, there is one result [133] available for decen-
tralized stabilization so far. In this chapter, we develop two output feedback de-
centralized backstepping adaptive stabilizers for a class of interconnected systems
with arbitrary subsystem relative degrees and with the input of each subsystem
preceded by unknown backlash-like hysteresis modelled by a differential equation
as in [43], [112] and [130]. The interactions between subsystems are allowed to sat-
isfy a nonlinear bound. The effects of both hysteresis and interactions are taken
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into consideration in the development of local control laws. For each subsystem,
we consider a general transfer function. In Scheme I, the term multiplying the
control and the system parameters are not assumed to be within known intervals.
Compared with conventional backstepping approaches, two new terms are added
in the parameter updating laws in order to ensure boundedness of estimates. In
Scheme II, we assume uncertain parameters are inside some known bounded in-
tervals, which is apriori information available. Thus we use projection operation
in the adaptive laws. It is established that the designed local controllers with both
schemes can ensure all the signals in the closed loop system bounded. Besides sta-
bility, a rootmean square type of bound is also obtained for system states as a func-
tion of design parameters. This implies that the transient system performance can
be adjusted by choosing suitable design parameters. With Scheme II, arbitrarily
strong interactions can be accommodated provided their upper bounds are avail-
able. In the absence of hysteresis, perfect stabilization is ensured and the L2 norm
of the system states is also shown to be bounded by a function of design parame-
ters when Scheme II is used.

9.2 Problem Formulation

A system consisting of N interconnected subsystems of order ni modelled below
is considered.

ẋoi = Aoixoi + boiui +
N∑

j=1

f̄ij(t, yj) (9.1)

yi = cT
oixoi, for i = 1, . . . , N (9.2)

where xoi ∈ Rni , ui ∈ R1 and yi ∈ R1 are the states, input and output of the ith
subsystem, respectively, f̄ij(t, yj) ∈ Rni denotes the nonlinear interactions from
the jth subsystem to the ith subsystem for j �= i, or a nonlinear un-modelled
part of the ith subsystem for j = i. The matrices and vectors in (9.1) and (9.2)
have appropriate dimensions, and their elements are constant but unknown.

Usually each loop has a backlash-like hysteresis nonlinearity and ui is the
output of such hysteresis described by

ui(t) = BHi(wi(t)) (9.3)

where wi(t) is the input of the hysteresis, BHi(·) is the backlash hysteresis
operator.

In this chapter, we consider a hysteresis described by a continuous-time dy-
namic model

dui

dt
= α

′

i

∣∣dwi

dt

∣∣(c
′

iwi − ui) + hi
dwi

dt
(9.4)

where α
′

i, c
′

i and hi are constants, c
′

i > 0 is the slope of the lines satisfying
c

′

i > hi. This equation can be solved explicitly

ui(t) = c
′

iwi(t) + ¯̄di(t) (9.5)
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¯̄di(t) = [ui(0) − c
′

iwi(0)]e−α
′
i(wi−wi(0))sgnẇi

+e−α
′
iwisgnẇi

∫ wi

wi(0)
[hi − c

′

i]e
α

′
iξ(sgnẇi)dξ (9.6)

The solution indicates that dynamic equation (9.4) can be used to model a class
of backlash-like hysteresis as shown in Figure 9.1, where α

′

i = 1, c
′

i = 3.1635, hi =
0.345, the input signal wi(t) = 6.5 sin(2.3t) and the initial condition ui(0) = 0.
For ¯̄di(t), it is bounded clearly from Figure 9.1 and the bound is unknown.
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Fig. 9.1. Hysteresis curves

Remark 9.1. A number of different methods of modelling hysteresis are available
in literature [119], [130] and [134]. The hysteresis model of this chapter focuses
on the fact that the output can only change its characteristics when the input
changes direction. This model uses a phenomenological approach, postulating
an integral operator or differential equation to model the relation. The works
in [135, 136, 137] show that such a model is useful in applied electro-magnetics
because the functions and parameters can be fine-tuned to match experimental
results in a given situation. This hysteresis nonlinearity is the key factor limiting
both static and dynamic performance of feedback control systems.

Now substituting (9.5) to (9.1) gives

ẋoi = Aoixoi + b̄oiwi +
N∑

j=1

f̄ij(t, yj) + d̄i(t) (9.7)

yj = cT
oixoi (9.8)

where b̄oi = boic
′

i and d̄i(t) = boi
¯̄di(t). For each local system, we make the

following assumptions.
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Assumption 1. ni is known;

Assumption 2. The triple (Aoi, b̄oi, coi) are completely controllable and
observable;

Assumption 3. In the transfer function

Gi(s) = cT
oi(sI − Aoi)−1b̄oi =

Ni(s)
Di(s)

=
bmi

i smi + . . . + b1
i s + b0

i

sni + ani−1
i sni−1 + . . . + a1

i s + a0
i

(9.9)

Ni(s) is a Hurwitz polynomial. The sign of bmi

i and the relative degree ρi(=
ni − mi) of Gi(s) are known;

Assumption 4. The nonlinear interaction terms satisfy

‖ f̄ij(t, yj) ‖≤ γ̄ij

∣∣yjψj(yj)
∣∣ (9.10)

where ‖ · ‖denotes the Euclidean norm, γ̄ij are constants denoting the strength
of the interaction, and ψj(yj), j = 1, 2, . . . , N are known nonlinear functions and
differentiable at least ρi times.

Remark 9.2. Assumption 4 means that the effects of the nonlinear interactions
to a local subsystem from other subsystems or its unmodelled part is bounded
by a function of the output of this subsystem. With this condition, it is possible
for the designed local controllers to stabilize the interconnected systems with
strong interactions. In fact, this assumption is much more relaxed version of the
linear bounding conditions used in [31, 97, 138, 139].

The control objective is to design totally decentralized adaptive controllers for
system (9.1) and (9.4) satisfying Assumptions 1-4 so that the closed-loop system
is stable and the system performance in certain sense is adjustable by design
parameters.

9.3 Local State Estimation Filters

In this section, a filter using only local input and output will be designed to
estimate the states of each unknown local system in the presence of both inter-
action and hysteresis. To achieve this, each local system model given in (9.1) is
transformed to a more suitable form. From Assumption 2, there exists a nonsin-
gular matrix Ti, such that under transformation xoi = Tixi, (9.7) and (9.8) can
be transformed to

ẋi = Aixi + aiyi +

⎡

⎣ 0

bi

⎤

⎦wi + fi + di (9.11)

yi = (e1
ni

)T xi, for i = 1, . . . , N (9.12)
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where

Ai =

⎡

⎢⎢⎢⎣

0
... Ini−1

0 . . . 0

⎤

⎥⎥⎥⎦ , ai =

⎡

⎢⎢⎢⎣

−ani−1
i

...

−a0
i

⎤

⎥⎥⎥⎦ , bi =

⎡

⎢⎢⎢⎣

bmi

i

...

b0
i

⎤

⎥⎥⎥⎦ (9.13)

fi =
N∑

j=1

T−1
i f̄ij , di = T−1

i d̄i(t) (9.14)

and ek
j denotes the kth coordinate vector in �j . Similar transformations can be

found in [1] and [84]. For state estimation, by following the standard procedures
as in [105], we can obtain

v̇j
i = A0

i v
j
i + e(ni−j)

ni
wi, j = 0, . . . , mi (9.15)

η̇i = A0
i ηi + eni

ni
yi (9.16)

ΩT
i = [vmi

i , . . . , v1
i , v0

i , Ξi] (9.17)
Ξi = −[(A0

i )
ni−1ηi, . . . , A

0
i ηi, ηi] (9.18)

ξni

i = −(A0
i )

niηi (9.19)

where the vector ki = [k1
i , . . . , kni

i ]T is chosen so that the matrix A0
i = Ai −

ki(e1
ni

)T is Hurwitz. Hence there exists a Pi such that PiA
0
i +(A0

i )
T Pi =−2I, Pi =

PT
i > 0. With these designed filters our state estimate is

x̂i = ξni

i + ΩT
i θi (9.20)

θT
i = [bT

i , aT
i ] (9.21)

and the state estimation error εi = xi − x̂i satisfies

ε̇i = A0
i εi + fi + di (9.22)

Let Vεi = εT
i Piεi. It can be shown that

V̇εi = εT
i

[
PiA

0
i + (A0

i )
T Pi

]
εi + 2εT

i Pi(fi + di)

≤ −εT
i εi + 2 ‖ Pidi ‖2 +2 ‖ Pifi ‖2 (9.23)

Then system (9.11) can be expressed as

ẏi = bmi

i vmi,2
i + ξni,2

i + δ̄T
i θi + ε2i + f1

i + d1
i (9.24)

v̇mi, q
i = vmi,q+1

i − kq
i v

mi,1
i , q = 2, . . . , ρi − 1 (9.25)

v̇mi, ρi

i = vmi, ρi+1
i − kρi

i vmi,1
i + wi (9.26)

where

δi = [vmi,2
i , vmi−1,2

i , . . . , v0,2
i , Ξ

(2)
i − yi(e1

ni
)T ]T (9.27)

δ̄i = [0, vmi−1,2
i , . . . , v0,2

i , Ξ
(2)
i − yi(e1

ni
)T ]T (9.28)

and vmi,2
i , ε2i , ξ

ni,2
i , Ξ2

i denote the second entries of vmi

i , εi, ξ
ni

i , Ξi respectively,
f1

i and d1
i are the first elements of vectors fi and di. All states of the local filters

in (9.15) and (9.16) are available for feedback.
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9.4 Design of Adaptive Controllers

In this section, we develop two adaptive backstepping design schemes. The sys-
tem parameters bmi , θi are uncertain parameters. In Scheme I, there is no apriori
information required from these parameters and thus they can be allowed totally
uncertain. To ensure the boundedness of parameter estimates, two new terms are
added in the adaptive law compared with conventional backstepping approaches.
In Scheme II, we assume uncertain parameters are inside known compact sets,
which is apriori information available. A projection operation, which is to replace
the role of the newly added two terms in Scheme I, is used in the adaptive laws
in this case. To illustrate the backstepping procedures, only the first scheme is
elaborated in details.

9.4.1 Control Scheme I

As usual in backstepping approach, the following change of coordinates is made.

z1
i = yi (9.29)

zq
i = vmi,q

i − αq−1
i , q = 2, 3, . . . , ρi (9.30)

where αq−1
i is the virtual control at the qth step of the ith loop and will be

determined in later discussion. To illustrate the controller design procedures, we
now give a brief description on the first step.

• Step 1: We start with the equations for the stabilization error z1
i obtained from

(9.24), (9.29) and (9.30) to get

ż1
i = bmi

i α1
i + ξni,2

i + δ̄T
i θi + ε2i + f1

i + d1
i + bmi

i z2
i (9.31)

The virtual control law α1
i is designed as

α1
i = p̂iᾱ

1
i (9.32)

ᾱ1
i = −3

2
c1
i z

1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 − ξni,2

i − δ̄T
i θ̂i (9.33)

where c1
i , l1i and l∗i are positive design parameters, θ̂i is the estimate of θi, p̂i is

the estimate of pi = 1/bmi

i .

Remark 9.3. The term l∗i z
1
i

(
ψi(z1

i )
)2 in (9.33) is designed to compensate the

effects of interactions from other subsystems or the un-modelled part of its own
subsystem. Note that the scheme in [105] does not have such a term and thus
the result of [105] is not applicable to the systems considered here.

From (9.31) and (9.32) we have

ż1
i = −3

2
c1
i z

1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 + ε2i + δ̄T

i θ̃i − bmi

i ᾱ1
i p̃i + bmi

i z2
i + f1

i + d1
i

= −3
2
c1
i z

1
i − l1i z

1
i − l∗i z

1
i

(
ψi(z1

i )
)2 + ε2i + (δi − p̂iᾱ

1
i e

1
ni+mi+1)

T θ̃i

−bmi

i ᾱ1
i p̃i + b̂mi

i z2
i + f1

i + d1
i (9.34)

where θ̃i = θi − θ̂i. Using p̃i = pi − p̂i,



146 Stabilization of Interconnected Systems with Backlash Nonlinearity

bmi

i α1
i = bmi

i p̂iᾱ
1
i = ᾱ1

i − bmi

i p̃iᾱ
1
i (9.35)

δ̄T
i θ̃i + bmi

i z2
i = δ̄T

i θ̃i + b̃mi

i z2
i + b̂mi

i z2
i

= δ̄T
i θ̃i + (vmi,2

i − α1
i )(e

1
ni+mi+1)

T θ̃i + b̂mi

i z2
i

= (δi − p̂iᾱ
1
i e

1
ni+mi+1)

T θ̃i + b̂mi

i z2
i (9.36)

We consider the Lyapunov function

V 1
i =

1
2
(z1

i )2 +
1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

(p̃i)2 +
1

2l̄1i
Vεi (9.37)

where Γi is a positive definite design matrix and γ
′

i is a positive design parameter.
We now examine the derivative of V 1

i

V̇ 1
i = z1

i ż1
i − θ̃T

i Γ−1
i

˙̂
θi − |bmi

i |
γ

′
i

p̃i
˙̂pi +

1
2l̄1i

V̇εi

≤ −3
2
c1
i (z

1
i )2 + b̂mi

i z1
i z2

i − |bmi

i |p̃i
1
γ

′
i

[γ
′

isgn(bmi

i )ᾱ1
i z

1
i + ˙̂pi]

−l∗i (z
1
i )2

(
ψi(z1

i )
)2 + θ̃T

i Γ−1
i [Γi(δi − p̂iᾱ

1
i e

1
ni+mi+1)z

1
i − ˙̂

θi] −
1

2l̄1i
εT
i εi

+
1
l̄1i

(
‖ Pidi ‖2 + ‖ Pifi ‖2 )

− l1i (z
1
i )2 + (f1

i + d1
i + ε2i )z

1
i (9.38)

Now we choose

˙̂pi = −γ
′

isgn(bmi

i )ᾱ1
i z

1
i − γ

′

i l
p
i (p̂i − p0

i ) (9.39)
τ1
i = (δi − p̂iᾱ

1
i e

1
ni+mi+1)z

1
i (9.40)

where lpi and p0
i are two positive design constants.

From the choice, the following useful property can be obtained:

lpi p̃i(p̂i − p0
i ) = −lpi (p̂i − pi)[

1
2
(p̂i − pi) +

1
2
(p̂i + pi) − p0

i ]

= −1
2
lpi (p̃i)2 − 1

2
lpi (p̂i)2 +

1
2
lpi (pi)2 + lpi p̂ip

0
i − lpi pip

0
i

= −1
2
lpi (p̃i)2 − 1

2
lpi (p̂i)2 + lpi p̂ip

0
i − 1

2
lpi (p0

i )
2 +

1
2
lpi (p0

i )
2

−lpi pip
0
i +

1
2
lpi (pi)2

= −1
2
lpi (p̃i)2 +

1
2
lpi (pi − p0

i )
2 − 1

2
lpi (p̂i − p0

i )
2

≤ −1
2
lpi (p̃i)2 +

1
2
lpi (pi − p0

i )
2 (9.41)
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Let l1i = 3l̄1i . Note that

− l̄1i (z
1
i )2 + f1

i z1
i ≤ 1

4l̄1i
‖ f1

i ‖2 (9.42)

−l̄1i (z
1
i )2 + d1

i z
1
i ≤ 1

4l̄1i
‖ d1

i ‖2 (9.43)

−l̄1i (z
1
i )2 + ε2i z

1
i − 1

4l̄1i
εT
i εi ≤ −l̄1i (z

1
i )2 + ε2i z

1
i − 1

4l̄1i
(ε2i )

2

= −l̄1i (z
1
i − 1

2l̄1i
ε2i )

2 ≤ 0 (9.44)

Then the following derivation for the derivative of V 1
i can be carried out by using

(9.39)-(9.44)

V̇ 1
i ≤ −3

2
c1
i (z

1
i )2 + b̂mi

i z1
i z2

i − |bmi

i |
2

lpi (p̃i)2 − 1
4l̄1i

εT
i εi +

|bmi

i |
2

lpi (pi − p0
i )

2

−l∗i
(
z1

i ψi(z1
i )

)2 + θ̃T
i (τ1

i − Γ−1
i

˙̂
θi) +

1
l̄1i

‖ Pidi ‖2 +
1

4l̄1i
‖ d1

i ‖2

+
1
l̄1i

‖ Pifi ‖2 +
1

4l̄1i
‖ f1

i ‖2 (9.45)

• Step q (q = 2, . . . , ρi, i = 1, . . . , N): Choose virtual control laws

α2
i = −b̂mi

i z1
i −

[
c2
i + l2i

(∂α1
i

∂yi

)2]
z2

i + B̄2
i +

∂α1
i

∂θ̂i

Γiτ
2
i +

∂α1
i

∂θ̂i

Γil
θ
i (θ̂i − θ0

i ) (9.46)

αq
i = −zq−1

i −
[
cq
i + lqi

(∂αq−1
i

∂yi

)2]
zq

i + B̄q
i +

∂αq−1
i

∂θ̂i

Γiτ
q
i +

∂αq−1
i

∂θ̂i

Γil
θ
i (θ̂i − θ0

i )

−
( q−1∑

k=2

zk
i

∂αk−1
i

∂θ̂i

)
Γi

∂αq−1
i

∂yi
δi (9.47)

τq
i = τq−1

i − ∂αq−1
i

∂yi
δiz

q
i (9.48)

where cq
i , l

q
i , q = 3, . . . , ρi are positive design parameters, and B̄q

i , q = 2, . . . , ρi

denotes some known terms and its detailed structure can be found in [1].
Then the adaptive controller and parameter update laws are finally given by

wi = αρi

i − vmi,ρi+1
i (9.49)

˙̂
θi = Γiτ

ρi

i + Γil
θ
i (θ̂i − θ0

i ) (9.50)

where lθi and θ0
i are positive design constants. Note that if ψi is ρi-th order

differentiable, then αρi

i will be differentiable. So wi is differentiable. Thus ui is
well defined and continuous from (9.4).

The designed adaptive controllers are summarized in Table 9.1.
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Table 9.1. Adaptive Backstepping Control Scheme I

Adaptive Control Laws:

α1
i = p̂iᾱ

1
i (9.51)

ᾱ1
i = −3

2
c1
i z

1
i − l1i z1

i − l∗i z1
i

(
ψi(z1

i )
)2 − ξni,2

i − δ̄T
i θ̂i (9.52)

α2
i = −b̂mi

i z1
i −

[
c2
i + l2i

(∂α1
i

∂yi

)2]
z2

i + B̄2
i +

∂α1
i

∂θ̂i

Γiτ
2
i +

∂α1
i

∂θ̂i

Γil
θ
i (θ̂i − θ0

i )

(9.53)

αq
i = −zq−1

i −
[
cq
i + lqi

(∂αq−1
i

∂yi

)2]
zq

i + B̄q
i +

∂αq−1
i

∂θ̂i

Γiτ
q
i

+
∂αq−1

i

∂θ̂i

Γil
θ
i (θ̂i − θ0

i ) −
( q−1∑

k=2

zk
i

∂αk−1
i

∂θ̂i

)
Γi

∂αq−1
i

∂yi
δi

q = 2, . . . , ρi, i = 1, . . . , N (9.54)

wi = αρi
i − vmi,ρi+1

i (9.55)

Parameter Update Laws:

˙̂pi = −γ
′
isgn(bmi

i )ᾱ1
i z

1
i − γ

′
i l

p
i (p̂i − p0

i ) (9.56)
˙̂
θi = Γiτ

ρi
i + Γil

θ
i (θ̂i − θ0

i ) (9.57)

with τ q
i = τ q−1

i − ∂αq−1
i

∂yi
δiz

q
i , τ 1

i = (δi − p̂iᾱ
1
i e

1
ni+mi+1)z

1
i (9.58)

Remark 9.4. From the analysis above, terms γ
′

i l
p
i (p̂i − p0

i ) and Γil
θ
i (θ̂i − θ0

i ) in
the adaptive controllers are used to handle the effects of hysteresis in order to
ensure the boundedness of the parameter estimates. If projection operation is
used as in Scheme II, such terms are not needed.

Remark 9.5. When going through the details of the design procedures, we note
that in the equations concerning żq

i , q = 1, 2, . . . , ρi, just functions f1
i from the

interactions and d1
i due to the hysteresis effect appear, and they are always

together with ε2i . This is because only ẏi from the plant model (9.11) was used
in the calculation of α̇q

i for steps q = 2, . . . , ρi.

Remark 9.6. From our analysis, it can be noted that the design method can
also be applied to system with perturbations satisfying similar boundedness
properties to (9.10).

9.4.2 Control Scheme II

In this section, we assume uncertain parameters pi and θi are inside known
compact sets, which is the apriori information available as follows.
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Assumption 5. Parameters pi and θi and are inside known compact sets Ωpi

and Ωθi in which all the transfer functions with structure of (9.9) satisfy As-
sumption 2.

Thus we can use a smooth projection operation in the adaptive laws to ensure the
estimates belonging to the compact sets for all the time. Such an operation can be
found in [1]. As shown in Appendix C, the projection operation can ensure that
the estimated parameter p̂i(t) ∈ Ωpi for all t, if p̂i(0) ∈ Ωpi and the estimated
parameter vector θ̂i(t) ∈ Ωθi for all t, if θ̂i(0) ∈ Ωθi . Thus, the boundedness of
θ̂i and p̂i are guaranteed for all t. Therefore, in this case, we do not need terms
γ

′

i l
p
i (p̂i − p0

i ) and Γil
θ
i (θ̂i − θ0

i ) in the controller design as in Scheme I.
As the controller design is similar to Scheme I, we only present the resulting

control laws as summarized in Table 9.2.

Table 9.2. Adaptive Backstepping Control Scheme II

Change of Coordinates:

z1
i = yi (9.59)

zq
i = vmi,q

i − αq−1
i , q = 2, 3, . . . , ρi (9.60)

Adaptive Control Laws:

α1
i = p̂iᾱ

1
i (9.61)

ᾱ1
i = −3

2
c1
i z

1
i − l1i z1

i − l∗i z1
i

(
ψi(z1

i )
)2 − ξni,2

i − δ̄T
i θ̂i (9.62)

α2
i = −b̂mi

i z1
i −

[
c2
i + l2i

(∂α1
i

∂yi

)2]
z2

i + B̄2
i +

∂α1
i

∂θ̂i

Γiτ
2
i (9.63)

αq
i = −zq−1

i −
[
cq
i + lqi

(∂αq−1
i

∂yi

)2]
zq

i + B̄q
i +

∂αq−1
i

∂θ̂i

Γiτ
q
i

−
( q−1∑

k=2

zk
i

∂αk−1
i

∂θ̂i

)
Γi

∂αq−1
i

∂yi
δi, q = 2, . . . , ρi, i = 1, . . . , N (9.64)

wi = αρi
i − vmi,ρi+1

i (9.65)

Parameter Update Laws:

˙̂pi = Proj
{

− γ
′
isgn(bmi

i )ᾱ1
i z

1
i

}
(9.66)

˙̂
θi = Proj

{
Γiτ

ρi
i

}
(9.67)

with τ q
i = τ q−1

i − ∂αq−1
i

∂yi
δiz

q
i , τ 1

i = (δi − p̂iᾱ
1
i e

1
ni+mi+1)z

1
i (9.68)
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9.5 Stability Analysis

In this section, the stability of the overall closed-loop system consisting of the
interconnected plants and decentralized controllers will be established.

9.5.1 Control Scheme I

Firstly, Define zi(t) = [z1
i , z2

i , . . . , zρi

i ]T . A mathematical model for each local
closed-loop control system is derived from (9.34) and the rest of the design steps
2, . . . , ρi.

żi = Azizi + Wεi(ε2i + f1
i + d1

i ) + WT
θi θ̃i − bmi

i ᾱ1
i p̃ie

1
ρi

− l∗i z1
i

(
ψi(z1

i )
)2

e1
ρi

(9.69)

where Azi is a matrix having the structure as in the following.

Azi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
2c1

i − l1i b̂mi

i 0 . . . 0

−b̂mi

i −c2
i − l2i

(∂α1
i

∂yi

)2 1 + σ2,3
i . . . σ2,ρi

i

0 −1 − σ2,3
i −c3

i − l3i
(∂α2

i

∂yi

)2
. . . σ3,ρi

i

...
...

...
...

...

0 −σ2,ρi

i −σ3,ρi

i . . . −cρi

i − lρi

i

(∂α
ρi−1
i

∂yi

)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.70)

Wεi =

⎡

⎢⎢⎢⎢⎢⎢⎣

1

−∂α1
i

∂yi

...

−∂α
ρi−1
i

∂yi

⎤

⎥⎥⎥⎥⎥⎥⎦
, WT

θi = Wεiδ
T
i − p̂iᾱ

1
i e

1
ρi

e1
ρi

T
(9.71)

where the terms σk,q
i are due to the terms ∂αk−1

i

∂θ̂i
Γi(τ

q
i −τq−1

i ) in the zq
i equation.

To show the system stability, the variables of the filters in (9.16) and the zero
dynamics of subsystems should be included in the Lyapunov function. Under
a similar transformation as in [105], the variables ζi associated with the zero
dynamics of the ith subsystem can be shown to satisfy

ζ̇i = Abi

i ζi + b̄iz
1
i + f̄i (9.72)

where the eigenvalues of the mi × mi matrix Abi

i are the zeros of the Hurwitz
polynomial Ni(s), b̄i ∈ Rmi and f̄i ∈ Rmi denoting the effects of the transformed
interactions.

Now we define a Lyapunov function of the overall decentralized adaptive con-
trol system as

V =
N∑

i=1

Vi (9.73)
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where

Vi =
ρi∑

q=1

(1
2
(zq

i )2 +
1

2l̄qi
εT
i Piεi

)
+

1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

p̃2
i

+
1

2lηi

i

ηT
i Piηi +

1

2lζi

i

ζT
i P bi

i ζi (9.74)

where P bi

i satisfies P bi

i (Abi

i )+(Abi

i )T P bi

i = −2I, lηi

i and lζi

i are constants satisfying

lηi

i ≥
2 ‖ Pie

ni
ni

‖2

c1
i

lζi

i ≥ 2 ‖ P bi

i b̄i ‖2

c1
i

Note that

Γiτ
q−1
i − ˙̂

θi = Γiτ
q−1
i − Γiτ

q
i + Γiτ

q
i − ˙̂

θi

= Γi
∂αq−1

i

∂yi
δzq

i + (Γiτ
q
i − ˙̂

θi) (9.75)

lθi θ̃
T
i (θ̂i − θ0

i ) = −lθi (θ̂i − θi)T (
1
2
(θ̂i − θi) +

1
2
(θ̂i + θi) − θ0

i )

= −1
2
lθi ‖ θ̃i ‖2 −1

2
lθi ‖ θ̂i ‖2 +

1
2
lθi ‖ θi ‖2 +lθi θ̂

T
i θ0

i − lθi θ
T
i θ0

i

= −1
2
lθi ‖ θ̃i ‖2 −1

2
lθi ‖ θ̂i ‖2 +lθi θ̂

T
i θ0

i − 1
2
lθi ‖ θ0

i ‖2

+
1
2
lθi ‖ θ0

i ‖2 −lθi θ
T
i θ0

i +
1
2
lθi ‖ θi ‖2

= −1
2
lθi ‖ θ̃i ‖2 +

1
2
lθi ‖ θi − θ0

i ‖2 −1
2
lθi ‖ θ̂i − θ0

i ‖2

≤ −1
2
lθi ‖ θ̃i ‖2 +

1
2
lθi ‖ θi − θ0

i ‖2 (9.76)

From (9.23), (9.45), (9.61-9.67), (9.72), (9.75) and (9.76), the derivative of Vi in
(9.74) is given by

V̇i ≤ −
ρi∑

q=1

cq
i (z

q
i )2 − 1

2
lθi ‖ θ̃i ‖2 +

1
2
lθi ‖ θi − θ0

i ‖2 −|bmi

i |
2

lpi (p̃i)2 − 1
4l̄1i

εT
i εi

+
ρi∑

q=1

1
l̄qi

(‖ Pidi ‖2 + ‖ Pifi ‖2) +
|bmi

i |
2

lpi (pi − p0
i )

2 − l∗i (z
1
i )2

(
ψi(z1

i )
)2

+
ρi∑

q=2

(
− lqi

(∂αq−1
i

∂yi

)2(zq
i )2 +

∂αq−1
i

∂yi
(f1

i + d1
i + ε2i )z

q
i − 1

2l̄qi
εT
i εi

)

−1
2
c1
i (z

1
i )2 − 1

lηi

i

‖ ηi ‖2 +
1
lηi

i

ηT
i Pie

ni
ni

yi − 1

lζi

i

‖ ζi ‖2 +
1

lζi

i

ζT
i P bi

i b̄iz
1
i

+
1

lζi

i

ζT
i P bi

i f̄i +
1

4l̄1i
(‖ f1

i ‖2 + ‖ d1
i ‖2) (9.77)
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Using the inequality ab ≤ (a2 + b2)/2, we have

− l̄qi
(∂αq−1

i

∂yi

)2(zq
i )2 +

∂αq−1
i

∂yi
f1

i zq
i ≤ 1

4l̄qi
‖ f1

i ‖2 (9.78)

−l̄qi
(∂αq−1

i

∂yi

)2(zq
i )2 +

∂αq−1
i

∂yi
d1

i z
q
i ≤ 1

4l̄qi
‖ d1

i ‖2 (9.79)

−l̄qi
(∂αq−1

i

∂yi

)2(zq
i )2 +

∂αq−1
i

∂yi
ε2i z

q
i − 1

4l̄qi
εT
i εi ≤ 0 (9.80)

− 1
2lηi

i

‖ ηi ‖2 +
1
lηi

i

ηT
i Pie

ni
ni

z1
i − 1

4
c1
i (z

1
i )2 ≤ −‖ ηi ‖2

2(lηi

i )2
(
lηi

i −
2 ‖ Pie

ni
ni

‖2

c1
i

)

≤ 0 (9.81)

− 1

2lζi

i

‖ ζi ‖2 +
1

lζi

i

ζT
i P bi

i b̄iz
1
i − 1

4
c1
i (z

1
i )2 ≤ −‖ ζi ‖2

2(lζi

i )2
(
lζi

i − 2 ‖ P bi

i b̄i ‖2

c1
i

)

≤ 0 (9.82)

− 1

4lζi

i

‖ ζi ‖2 +
1

lζi

i

‖ ζi ‖‖ P bi

i f̄i ‖ ≤ 1

lζi

i

‖ P bi

i f̄i ‖2 (9.83)

Then, the derivative of the Vi satisfies

V̇i ≤ −
ρi∑

q=1

cq
i (z

q
i )2 − 1

2
lθi ‖ θ̃i ‖2 −|bmi

i |
2

lpi (p̃i)2 −
ρi∑

q=1

1
4l̄qi

εT
i εi − 1

2lηi

i

‖ ηi ‖2

− 1

4lζi

i

‖ ζi ‖2 −l∗i (z
1
i )2

(
ψi(z1

i )
)2 +

ρi∑

q=1

1
l̄qi

(‖ Pifi ‖2 +
1
4

‖ fi ‖2)

+
1

lζi

i

‖ P bi

i f̄i ‖2 +M∗
i (9.84)

where Di,max denotes the bound of di(t), and

M∗
i = Mi +

ρi∑

q=1

1
4l̄qi

(4 ‖ Pi ‖2 +1)D2
i,max (9.85)

Mi =
|bmi

i |
2

lpi (pi − p0
i )

2 +
1
2
lθi ‖ θi − θ0

i ‖2 (9.86)

Remark 9.7. Due to the presence of hysteresis, an extra term M∗
i appears in

(9.84) compared to the analysis in [105]. The handling of M∗
i is elaborated after

(9.91).

From Assumption 4, we can show that

ρi∑

q=1

1
l̄qi

(‖ Pifi ‖2 +
1
4

‖ fi ‖2) +
1

lζi

i

‖ P bi

i f̄i ‖2≤
N∑

j=1

γij

∣∣z1
j ψj(z1

j )
∣∣2 (9.87)
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where γij = O(γ̄2
ij) indicating the coupling strength from the jth subsystem

to the ith subsystem depending on l̄qi , l
ζi

i , ‖ Pi ‖, ‖ P bi

i ‖ and ‖ T−1
j ‖, j =

1, 2, . . . , N . O(γ̄2
ij) denotes that γij and O(γ̄2

ij) are in the same order mathemat-
ically. Clearly there exist a constant γ∗

ij such that for each constant γij satisfying
γij ≤ γ∗

ij ,

l∗i ≥
N∑

j=1

γji (9.88)

if l∗i ≥
N∑

j=1

γ∗
ji (9.89)

Constant γ∗
ij stands for a upper bound of γij . Now taking the summation of the

first term in (9.84) into account and using (9.87) and (9.88), we get

N∑

i=1

−
[
l∗i (z1

i )2
(
ψi(z1

i )
)2 −

ρi∑

k=1

1
l̄ki

(‖ Pifi ‖2 +
1
4

‖ fi ‖2) − 1

lζi

i

‖ P bi

i f̄i ‖2 ]

≤
N∑

i=1

−
[
l∗i −

N∑

j=1

γji

]∣∣z1
i ψi(z1

i )
∣∣2 ≤ 0 (9.90)

Then

V̇ ≤
N∑

i=1

[
−

ρi∑

q=1

cq
i (z

q
i )2 − 1

2
lθi ‖ θ̃i ‖2 −|bmi

i |
2

lpi (p̃i)2 −
ρi∑

q=1

1
4l̄qi

εT
i εi

− 1
2lηi

i

‖ ηi ‖2 − 1

4lζi

i

‖ ζi ‖2 +M∗
i

]
(9.91)

Remark 9.8. The summation in (9.90) is one of the key steps in the stability
analysis. Note that this results in the cancellation of the interaction effects from
other subsystems. The approach in [105] cannot be applied here due to non-
Lipschitz type nonlinear interactions.

Notice that

−
ρi∑

q=1

cq
i (z

q
i )2 − 1

2
lθi ‖ θ̃i ‖2 −|bmi

i |
2

lpi (p̃i)2 −
ρi∑

q=1

1
4l̄qi

εT
i εi

− 1
2lηi

i

‖ ηi ‖2 − 1

4lζi

i

‖ ζi ‖2≤ −f−
i V̄i (9.92)

and

Vi =
ρi∑

q=1

1
2
(zq

i )2 +
1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

(p̃i)2 +
ρi∑

q=1

1
2l̄qi

εi
T Piεi

+
1

2lηi

i

ηT
i Piηi +

1

2lζi

i

ζT
i P bi

i ζi ≤ f+
i V̄i (9.93)
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where

V̄i =
ρi∑

q=1

(zq
i )2 + θ̃T

i θ̃i + (p̃i)2 +
ρi∑

q=1

εi
T εi + ηT

i ηi + ζT
i ζi (9.94)

f−
i = min

{
cq
i ,

1
2
lθi ,

|bmi

i |
2

lpi ,
1

4l̄qi
,

1
2lηi

i

,
1

4lζi

i

}
(9.95)

f+
i = max

{1
2
,

1
2
λq,max

i (Γi),
|bmi

i |
2γ

′
i

,
1

2min(l̄qi , l
ηi

i )
λq,max

i (Pi),

1

2lζi

i

λq,max
i (P bi

i )
}

q = 1, . . . , ρi (9.96)

where λq,max
i (Pi), λq,max

i (P bi

i ) and λq,max
i (Γi) are the maximum eigenvalues of

Pi, P
bi

i and Γi, respectively. Therefore, from (9.91) we obtain

V̇ ≤ −f∗V + M∗ (9.97)

where f∗ =
∑N

i=1 f−
i /

∑N
i=1 f+

i , M∗ =
∑N

i=1 M∗
i is a bounded term. By direct

integrations of the differential inequality (9.97), we have

V ≤ V (0)e−f∗t +
M∗

f∗ (1 − e−f∗t) ≤ V (0) +
M∗

f∗ (9.98)

This shows that V is uniformly bounded. Thus z1
i , z2

i , . . . , zρi

i , p̂i, θ̂i, εi, ζi, vj
i , ηi

and xi are bounded. Therefore boundedness of all signals in the system is ensured
as formally stated in the following theorem.

Theorem 9.1. Consider the closed-loop adaptive system consisting of the plant
(9.1) under Assumptions 1-4, the controller (9.55), the estimator (9.56), (9.57),
and the filters (9.15) and (9.16). There exist a constant γ∗

ij such that for each
constant γij satisfying γij ≤ γ∗

ij , i, j = 1, . . . , N , all the signals in the system are
globally uniformly bounded.

Remark 9.9. Parameter l∗i can be chosen as any positive value and the condition
that γij ≤ γ∗

ij has the implication that the designed local controllers are able
to stabilize any interconnected system with coupling strength satisfying (9.89).
This implication is similar to the interpretations of the results in [22], [24],[32],
[105], where sufficiently weak interactions are allowed. Thus the result is quali-
tative in nature, which shows the robustness of designed local controllers against
interactions.

We now derive a bound for the vector zi(t) where zi(t) = [z1
i , z2

i , . . . , zρi

i ]T .
Firstly, the following definitions are made.

c0
i = min1≤q≤ρic

q
i , d0 =

N∑

i=1

ρi∑

q=1

1
4l̄qi

(9.99)

‖ zi ‖[0,T ] =

√
1
T

∫ T

0
‖ zi(t) ‖2 dt (9.100)
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Note that definition (9.100) is similar to the root mean square value used in
electric circuit.

Define Vρ =
∑N

i=1
∑ρi

q=1

( 1
2 (zq

i )2 + 1
2l̄qi

εi
T Piεi

)
+ 1

2 θ̃T
i Γ−1

i θ̃i + |bmi
i |

2γ
′
i

(p̃i)2. Fol-

lowing similar analysis to (9.84), the derivative of Vρ can be given as

V̇ρ ≤ −f∗Vρ + M∗ ≤ c0
i ‖ zi ‖2 +M∗ (9.101)

Integrating both sides, we obtain

‖ zi ‖[0,T ] ≤ 1
c0
i

[
|Vρ(0) − Vρ(T )|

T
+

N∑

i=1

Mi

+d0
1
T

N∑

i=1

ρi(4 ‖ Pi ‖2 +1)
∫ T

0
(di(t))2dt] (9.102)

On the other hand, from (9.74), we have

|Vρ(0) − Vρ(T )|
T

≤ 1 − e−f∗T

T
(
M

f∗ + Vρ(0)) +
d0

T

N∑

i=1

ρi(4 ‖ Pi ‖2 +1)
∫ T

0
e−f∗(T−t)(di(t))2dt

≤ M + f∗Vρ(0) +
1
T

d0

N∑

i=1

ρi(4 ‖ Pi ‖2 +1)
∫ T

0
e−f∗(T−t)(di(t))2dt

for all T ≥ 0, (9.103)

where we have used the fact that e−f∗(T−t) ≤ 1 and 1−e−f∗T

T ≤ f∗, and M =∑N
i=1 Mi. A bound for ‖ zi ‖[0,T ] is established

‖ zi ‖[0,T ] ≤ 2Vρ(0) +
1
c0
i

N∑

i=1

(|bmi

i |lpi (pi − p0
i )

2 + lθi ‖ θi − θ0
i ‖2)

+
1
c0
i

d0

N∑

i=1

2ρi(4 ‖ Pi ‖2 +1)D2
i,max (9.104)

using the fact that f∗/c0
i ≤ 2. The initial value of the Lyapunov function is

Vρ(0) =
N∑

i=1

1
2
[

‖ zi(0) ‖2 + ‖ θ̃i(0) ‖2
Γ −1

i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 + d0
i ‖ εi(0) ‖2

Pi

]

(9.105)

where d0
i =

∑ρi

q=1
1
l̄qi

, ‖ θ̃i(0) ‖2
Γ −1

i

= θ̃i(0)T Γ−1
i θ̃i(0) and ‖ εi(0) ‖2

Pi
=

εi(0)T Piεi(0).
Following similar ideas to [1] (page 455), where z(0) is set to zero by ap-

propriately initializing the reference trajectory for single loop case, we can set
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zq
i , q = 2, . . . , ρi to zero by suitably initializing our designed filters (9.15) and

(9.16) as follows:

vmi,q
i (0) = αq−1

i

(
yi(0), θ̂i(0), p̂i(0), ηi(0), vmi,q−1

i (0), v̄mi−1,2
i (0)

)
,

q = 2, . . . , ρi (9.106)

Thus, by setting zq
i (0) = 0, q = 2, . . . , ρi, a bound for ‖ zi ‖[0,T ] is established

and stated in the following theorem.

Theorem 9.2. Consider the initial values zq
i (0)=0( q = 2, . . . , ρi, i=1, . . . , N),

the bound ‖ zi ‖[0,T ] satisfies

‖ zi ‖[0,T ] ≤
N∑

i=1

yi(0)+ ‖ θ̃i(0) ‖2
Γ −1

i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 + d0
i ‖ εi(0) ‖2

Pi

+
1
c0
i

N∑

i=1

(|bmi

i |lpi (pi − p0
i )

2 + lθi ‖ θi − θ0
i ‖2)

+
1
c0
i

d0

N∑

i=1

2ρi(4 ‖ Pi ‖2 +1)D2
i,max (9.107)

Proof: Using (9.95), (9.96) and (9.102) - (9.105), the fact that f∗/c0
i ≤ 2, (9.107)

can be obtained.

Remark 9.10. Regarding the above bound, the following conclusions can be
drawn by noting that θ̃i(0), p̃i(0), εi(0) and yi(0) are independent of c0

i , Γi, γ
′

i ,
lθi , l

p
i .

• The transient performance in the sense of truncated norm given in (9.107)
depends on the initial estimation errors θ̃i(0), p̃i(0) and εi(0). The closer the
initial estimates to the true values, the better the transient performance.

• This bound can also be systematically reduced down to a lower bound de-
pending yi(0) by increasing Γi, γ

′

i , c0
i and decreasing lpi , lθi .

• This bound is depending on the effect of hysteresis.

9.5.2 Control Scheme II

Now we define a Lyapunov function of the overall decentralized adaptive control
system as

V =
N∑

i=1

Vi (9.108)

where

Vi =
ρi∑

q=1

(1
2
(zq

i )2 +
1

2l̄qi
Vεi

)
+

1
2
θ̃T

i Γ−1
i θ̃i +

|bmi

i |
2γ

′
i

(p̃i)2

+
1

2lηi

i

ηT
i Piηi +

1

2lζi

i

ζT
i P bi

i ζi (9.109)
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Similar to the procedure of Scheme I, by using the properties that −θ̃T Γ−1

Proj(τ) ≤ −θ̃T Γ−1τ , the derivative of the Vi satisfies

V̇i ≤ −
ρi∑

q=1

[
cq
i (z

q
i )2 − 1

4l̄qi
εT
i εi

]
− 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi + M∗

i

+θ̃T
i (τρi

i − Γ−1
i

˙̂
θi) − |bmi

i |p̃i
1
γ

′
i

[γ
′

isgn(bmi

i )ᾱ1
i z
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(9.110)

where

M∗
i =

ρi∑

q=1

1
4l̄qi

(4 ‖ Pi ‖2 +1)D2
i,max (9.111)

We choose

l∗i ≥
N∑

j=1

γji (9.112)

if l∗i ≥
N∑

j=1

γ∗
ji (9.113)

where γ∗
ij stands for a upper bound of γij , γij = O(γ̄2

ij) indicating the coupling
strength from the jth subsystem to the ith subsystem, a constant γ∗

ij satisfying
γij ≤ γ∗

ij . Similar to the proof in Scheme I, the derivative of the V satisfies

V̇ ≤
N∑

i=1

[
−

ρi∑

q=1

(
cq
i (z

q
i )2 +

1
4l̄qi

εT
i εi

)
− 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi + M∗

i

]

(9.114)

This shows that z1
i , z2

i , . . . , zρi

i , εi, ζi,λi, ηi and xi are bounded. With the projec-
tion operation, θ̃i and p̃i are bounded. Therefore boundedness of all signals in
the system is ensured as formally stated in the following theorem.

Theorem 9.3. Consider the closed-loop adaptive system consisting of the plant
(9.1) under Assumptions 1-5, the controller (9.65), the estimator (9.66), (9.67),
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and the filters (9.15) and (9.16). There exist γ∗
ij such that for all γij ≤ γ∗

ij,
i, j = 1, . . . , N , all the signals in the system are uniformly bounded. A bound for
‖ zi ‖[0,T ] is established as

‖ zi ‖[0,T ] ≤
N∑

i=1

[
yi(0)+ ‖ θ̃i(0) ‖2

Γ −1
i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 + d0
i ‖ εi(0) ‖2

Pi

+
1
c0
i

d0

N∑

i=1

2ρi(4 ‖ Pi ‖2 +1)D2
i,max

]
(9.115)

by setting zq
i (0) = 0, q = 2, . . . , ρi, i = 1, . . . , N .

Remark 9.11. The condition that γij ≤ γ∗
ij now has the following two

implications:

(1) If we know γ̄ij , then we can get an estimate of its bound γ∗
ij which depends

on l̄qi , l
ζi

i , ‖ Pi ‖, ‖ P bi

i ‖ and the bound of ‖ T−1
j ‖, j = 1, 2, . . . , N and

design l∗i according to (9.112). This means that the coupling strength of the
interconnection between subsystems can be allowed arbitrarily strong.

(2) If γ̄ij is unknown, we have similar implication to Remark 9.9. In this case,
l∗i is chosen as any positive value and thus it is sufficient that only the local
systems satisfy Assumption 2 instead of all the members in the given compact
sets of Assumption 5.

If the system has no hysteresis, then di(t) = 0 and we have the following corollary.

Corollary 9.4. Consider the closed-loop decentralized adaptive control system
consisting of the plant (9.1) without input hysteresis under Assumptions 1-5 and
the controller (9.65), the estimator (9.66) and (9.67), and the filters (9.15) and
(9.16). All the states of the system asymptotically approach to zero and the bound
‖ zi ‖2 is given by

‖ zi ‖2 ≤ 1
2
√

c0
i

( N∑

i=1

yi(0)+ ‖ θ̃i(0) ‖2
Γ −1

i

+
|bmi

i |
γ

′
i

|p̃i(0)|2 + d0
i |εi(0)|2Pi

)1/2

(9.116)

by setting zq
i (0) = 0, q = 2, . . . , ρi, i = 1, . . . , N .

Proof: In the absence of hysteresis the term di(t) = 0, so M∗
i = 0 in (9.114).

We have

V̇ ≤
N∑

i=1

[
−

ρi∑

q=1

cq
i (z

q
i )2 −

ρi∑

q=1

1
4l̄qi

εT
i εi − 1

2lηi

i

ηT
i ηi − 1

4lζi

i

ζT
i ζi

]
≤ −c0

i ‖ zi ‖2

≤ 0 (9.117)

where ‖ zi ‖2
2=

∫ ∞
0 ‖ zi ‖2dτ . This proves that the uniform stability and the

uniform boundedness of zq
i , p̂i, θ̂i, εi, ζi, ηi, v

j
i , xi and ui. It can be shown that
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both V̇ and V̈ are bounded as well as V̇ is integrable over [0, ∞]. Therefore, V̇
tends to zero and thus the system states xi converge to zero from (9.117). Also
(9.116) can be obtained clearly.

Remark 9.12. In the absence of hysteresis, the L2 norm of the system states is
shown to be bounded by a function of design parameters. This implies that the
transient system performance in terms of L2 bounds can be adjusted by choosing
suitable design parameters. This result further extends that presented in [105],
where only first order interactions considered and no transient performance like
(9.116) is available.

Remark 9.13. Following similar analysis for the L2 bound and the approaches in
[1], a bound on ‖ zi ‖∞ can also be established and this bound can be adjusted
by choosing suitable design parameters.

9.6 An Illustrative Example

We consider the following interconnected system with three subsystems.

ẋ1 = a1x1 + b1u1 + f1, y1 = x1 (9.118)
ẋ2 = a2x2 + b2u2 + f2, y2 = x2 (9.119)
ẋ3 = a3x3 + b3u3 + f3, y3 = x3 (9.120)
u1 = BH1(w1), u2 = BH2(w2), u3 = BH3(w3) (9.121)

where a1 = 1, b1 = 1, a2 = 0.5, b2 = 1, a3 = 2, b3 = 1, the nonlinear interaction
terms f1 = y2 + sin(y2) + 0.2y3,f2 = 0.2y2

1 + y3, f3 = y1 + 0.5y2
2, BH1(w1),

BH2(w2) and BH3(w3) are the backlash hysteresis described by (9.4) with pa-
rameters α

′

1 = 1, c
′

1 = 2, h1 = 0.2, α
′

2 = 1, c
′

2 = 1, h2 = 0.2, α
′

3 = 1.2, c
′

3 =
1, h3 = 0.3. These parameters are not needed to be known in the controller
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Fig. 9.2. Output y1 with considering hysteresis using Scheme I
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Fig. 9.3. Output y1 without considering hysteresis
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Fig. 9.4. Output y2 with considering hysteresis using Scheme I
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Fig. 9.6. Output y3 with considering hysteresis using Scheme I
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Fig. 9.7. Output y3 without considering hysteresis
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Fig. 9.8. Output y1 using Scheme II in the presence of hysteresis
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Fig. 9.9. Output y1 using Scheme II in the absence of hysteresis
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Fig. 9.10. Output y2 using Scheme II

design. The objective is to stabilize system (9.118-9.120). The controllers with
Scheme I and Scheme II are implemented, where p̂i and θ̂i are estimates of
pi = 1/bic

′

i and θi = ai, i = 1, 2, respectively. The design parameters are chosen
as c1

1 = c1
2 = c1

3 = 10, l11 = l21 = l31 = 5, l∗1 = l∗2 = l∗3 = 5, γ1 = 2, γ2 = 2, γ3 =
2, Γ1 = Γ2 = Γ3 = 1. The initials are set as y1(0) = 0.3, y2(0) = 0.5, y3(0) = 1.0.

In order to illustrate the effects of hysteresis, we observe system performances
by applying controllers designed without considering hysteresis and with our pro-
posed Scheme I, respectively. The simulation results presented in Figures 9.2, 9.4,
9.6 and Figures 9.3, 9.5, 9.7 show the system outputs y1, y2 and y3 with Scheme I
and without considering hysteresis, respectively. Clearly, poor performance is ob-
served if hysteresis is not taken into account in controller design. In fact, system
stability is not even ensured theoretically in this case. When Scheme II is applied,
we study the cases in the presence or absence of hysteresis. Figures 9.8-9.13 show



An Illustrative Example 163

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t(sec)

y 2

Fig. 9.11. Output y2 using Scheme II
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Fig. 9.12. Output y3 using Scheme II
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the system outputs, which show that |yi| → 0 in the absence of hysteresis. All the
simulation results verify that our proposed two schemes are effective to cope with
hysteresis nonlinearity and high order nonlinear interactions.

9.7 Conclusion

In this chapter, decentralized adaptive output feedback stabilization of a class
of interconnected subsystems with the input of each loop preceded by unknown
backlash-like hysteresis nonlinearity is considered. Each local adaptive controller
is designed based on a general transfer function of the local subsystem with arbi-
trary relative degree by developing two adaptive control schemes. The effects of
hysteresis and interactions are considered in the design. The nonlinear interac-
tions between subsystems are allowed to satisfy higher-order nonlinear bounds.
In Scheme I, the term multiplying the control and the system parameters are not
assumed to be within known intervals. Two new terms are added in the parame-
ter updating laws, compared to the standard backstepping approach. In Scheme
II, uncertain parameters are assumed inside known compact sets. Thus we use
projection operation in the adaptive laws. It is shown that the designed local
adaptive controllers with both schemes stabilize the overall interconnected sys-
tems. We also derive an explicit bound on the root mean square performance of
the system states in terms of design parameters. This implies that the transient
system performance can be adjusted by choosing suitable design parameters.
With Scheme II, in the absence of hysteresis, perfect stabilization is ensured and
the L2 norm of the system states is also shown to be bounded by a function of
design parameters. The strengths can be allowed arbitrary strong if their upper
bounds are available in this case. Simulation results illustrate the effectiveness of
our schemes by comparing the cases with and without considering hysteresis in
controller design, as well as examining the outputs in the presence and absence
of hysteresis when Scheme II is employed.



10 Adaptive Control of Nonlinear Systems with
Dead-Zone Nonlinearity

In this chapter, we present new adaptive schemes for uncertain nonlinear sys-
tems preceded by unknown dead-zone nonlinearity. Robust adaptive backstep-
ping control algorithms are developed for state feedback tracking of a class of
uncertain dynamic nonlinear systems preceded by unknown dead-zone nonlinear-
ities, in the presence of bounded external disturbances. Output feedback track-
ing is also considered and this is achieved by introducing a new smooth inverse
function of the dead-zone and using it in the controller design with backstepping
technique. For the design and implementation of the controllers, no knowledge is
assumed on the unknown system parameters and also the dead-zone. It is shown
that the proposed controllers not only can guarantee stability, but also transient
performance.

10.1 Introduction

Dead-zone, which can severely limit system performances, is one of the most
important nonsmooth nonlinearities arisen in actuators, such as valves and DC
servo motors and other devices. Therefore the effect of dead-zone should be
taken into consideration in the design and analysis of control systems. In most
practical motion systems, the dead-zone parameters are poorly known, and thus
robust adaptive control techniques may be applied to design controllers. The
study of adaptive control for systems with unknown dead-zone at the input was
initiated in [50], where an adaptive scheme was proposed with full state mea-
surement. An immediate method for the control of dead-zone is to construct an
adaptive dead-zone inverse. This approach was used in [41, 42, 51, 52, 53, 73, 74],
where the output of a dead-zone is measurable. In [41] a fuzzy pre-compensator
was proposed in nonlinear industrial motion system. Such approaches promise
to improve the tracking performance of motion system in presence of unknown
dead-zones. An alternative approach based on sliding mode control is proposed
in [52, 74]. In [51] and [57], an adaptive state feedback controller employs an
adaptive inverse for a class of nonlinear systems. Dead-zone pre-compensation
using neural network(NN) have also been used in feedback control systems [42],

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 165–188, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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where the uncertain NN weights must be within a known compact set. With
this, the error resulted from using NN to approximate system functions will be
bounded with known bounds. This assumption makes the control design and
system analysis simpler. In [140], a robust adaptive control scheme is developed
for a class of nonlinear systems without using the dead-zone inverse, where the
dead-zone slopes in the positive and negative region are the same and the un-
known system parameters are inside a known compact set. For all approaches
mentioned above, strictly speaking, only local stability is ensured in the sense
that the initial values of the parameter estimates, which can be considered as
part of system state variables, must be chosen from the compact set. If the true
parameters are outside the set, system stability cannot be ensured. Also the
developed schemes cannot ensure the transient performance due to their design
methods.

In this chapter, we consider state feedback control and output feedback control
of a class of nonlinear systems.

10.2 State Feedback Backstepping Control

In this section, we consider a class of uncertain dynamic nonlinear systems pre-
ceded by unknown dead-zone nonlinearities, in the presence of bounded external
disturbances. By using backstepping technique, robust adaptive control algo-
rithms are developed as in [141]. Unlike some existing control schemes for systems
with dead-zone, the developed backstepping controllers do not require the un-
certain parameters within known intervals. Also no knowledge is assumed on the
bound of the ‘disturbance-like’ term, a combination of the external disturbances
and a term separated from the dead-zone model. It is shown that the proposed
controllers not only can guarantee stability, but also transient performance.

10.2.1 Problem Statement

We consider a class of nonlinear systems with unknown dead-zone given as follows:

x(n)(t) +
r∑

i=1

aiYi

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
= bu(v) + d̄(t) (10.1)

where Yi are known continuous linear or nonlinear functions, d̄(t) denotes bounded
external disturbances, parameters ai are unknown constants and control gain b
is unknown constant, v is the control input, u(v) denotes dead-zone nonlinearity
described by

u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(v(t) − br) v(t) ≥ br

0 bl < v(t) < br

m(v(t) − bl) v(t) ≤ bl

(10.2)

where br ≥ 0, bl ≤ 0 and m > 0 are constants, v is the input and u is the output.
For plant (10.1) with dead-zone nonlinearity, the u(t) can be expressed as
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u(t) = mv(t) + d1(v(t)) (10.3)

where

d1(v(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−mbr v(t) ≥ br

−mv(t) bl < v(t) < br

−mbl v(t) ≤ bl

(10.4)

It is clear that d1(v(t)) is bounded.
From the structure (10.3) of model (10.2), (10.1) becomes

x(n)(t) +
r∑

i=1

aiYi

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
= βv(t) + d(t) (10.5)

where β = bm and d(t) = bd1(v(t) + d̄(t). The effect of d(t) is due to both
external disturbances and bd1(v(t)). We call d(t) a ‘disturbance-like’ term for
simplicity of presentation and use D to denote its bound.

Now equation (10.5) is rewritten in the following form

ẋ1 = x2

...
ẋn−1 = xn

ẋn = −
r∑

i=1

aiYi

(
x1(t), x2(t), . . . , x(n−1)(t)

)
+ βv(t) + d(t)

= aT Y + βv(t) + d(t) (10.6)

where x1 = x, x2 = ẋ, . . . , xn = x(n−1), a = [−a1, −a2, . . . , −ar]T and Y =
[Y1, Y2, . . . , Yr]T .

For the development of control laws, the following assumptions are made.

Assumption 1. The uncertain parameters b and m are such that β > 0.

Assumption 2. The desired trajectory yr(t) and its (n − 1)th order derivatives
are known and bounded.

The control objectives are to design backstepping adaptive control laws such
that

• The closed loop is globally stable in sense that all the signals in the loop are
uniformly ultimately bounded;

• The tracking error x(t) − yr(t) is adjustable during the transient period
by an explicit choice of design parameters and limt→∞ x(t) − yr(t) = 0 or
limt→∞ |x(t) − yr(t)| − δ1 = 0 for an arbitrary specified bound δ1.
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10.2.2 Controller Design

We develop two adaptive backstepping designs as in Chapter 7. These schemes
are now concisely summarized in the tables 10.1 and 10.2, where ci, i = 1, . . . , n,
are positive design parameters, γ and η are two positive design parameters, Γ
is a positive definite matrix, ê, â and D̂ are estimates of e = 1/β, a and D,
δi(i = 1, . . . , n) are positive design parameters and q = round{(n − i + 2)/2},
round{x} means the element of x to the nearest integer.

Table 10.1. Adaptive Backstepping Controller-Scheme I

Adaptive Control Laws:

α1 = −c1z1 (10.7)

αi = −cizi − zi−1 + α̇i−1(x1, . . . , xi−1, yr, . . . , y
(i−1)
r ) (10.8)

v̄ = −cnzn − zn−1 − âT Y − sign(zn)D̂ + y(n)
r + α̇n−1

v = êv̄, i = 2, . . . , n (10.9)

Parameter Update Laws:

˙̂e = −γv̄zn (10.10)
˙̂a = ΓY zn (10.11)
˙̂
D = η|zn| (10.12)

Theorem 10.1. Consider the uncertain nonlinear system (10.1) satisfying As-
sumptions 1-2. With the application of controller (10.9) and the parameter up-
date laws (10.10) to (10.12), the following statements hold:

• The resulting closed loop system is globally stable.
• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − yr(t)] = 0 (10.22)

• The transient tracking error performance is given by

‖ x(t) − yr(t) ‖2≤
1√
c1

(1
2
ã(0)T Γ−1ã(0) +

β

2γ
ẽ(0)2 +

1
2η

D̃(0)2
)1/2 (10.23)

Theorem 10.2. Consider the uncertain nonlinear system (10.1) satisfying As-
sumptions 1-2. With the application of controller (10.18) and the parameter
update laws (10.19) to (10.21), the following statements hold:
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Table 10.2. Adaptive Backstepping Controller-Scheme II

Functions:

sgi(zi) =

⎧
⎪⎪⎨

⎪⎪⎩

zi

|zi| |zi| ≥ δi

z
(2q+1)
i

(δ2
i − z2

i )n−i+2 + |zi|(2q+1) |zi| < δi

(10.13)

fi(zi) =

⎧
⎨

⎩
1 |zi| ≥ δi

0 |zi| < δi

i = 1, . . . , n (10.14)

Adaptive Control Laws:

α1 = −(c1 +
1
4
)(|z1| − δ1)nsg1(z1) − (δ2 + 1)sg1(z1) (10.15)

α2 = −(c2 +
5
4
)(|z2| − δ2)n−1sg2(z2) + α̇1 − (δ3 + 1)sg2(z2) (10.16)

αi = −(ci +
5
4
)(|zi| − δi)n−i+1sgi(zi) + α̇i−1

−(δi+1 + 1)sgi(zi) (i = 3, . . . , n) (10.17)

v̄ = −(cn + 1)(|zn| − δn)sgn(zn) − âT Y − sgnD̂ + y(n)
r + α̇n−1

v = êv̄ (10.18)

Parameter Update Laws:

˙̂e = −γv̄(|zn| − δn)fnsgn(zn) (10.19)
˙̂a = ΓY (|zn| − δn)fnsgn(zn) (10.20)
˙̂
D = η(|zn| − δn)fn (10.21)

• The resulting closed loop system is globally stable.
• The tracking error converges to δ1 asymptotically, i.e.,

lim
t→∞ |x(t) − yr(t)| = δ1, |z1| ≥ δ1 (10.24)

• The transient tracking error performance is given by

‖ |x(t) − yr(t)| − δ1 ‖2 ≤ c
−1
2n
1

(1
2
ã(0)T Γ−1ã(0) +

β

2γ
ẽ(0)2 +

1
2η

D̃(0)2
) 1

2n

(10.25)

with zi(0) = δi, i = 1, . . . , n,
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Remark 10.1. From the above two theorems the following conclusions can be
obtained:

• The transient performance depends on the initial estimate errors ẽ(0), ã(0),
D̃(0) and the explicit design parameters. The closer the initial estimates
ê(0), â(0) and D̂(0) to the true values e, a and D, the better the transient
performance.

• The bound for ‖ x(t) − yr(t) ‖2 is an explicit function of design parameters
and thus computable. We can decrease the effects of the initial error estimates
on the transient performance by increasing the adaptation gains γ, η and Γ .

• To improve the tracking error performance we can also increase the gain c1.
However, increasing c1 will influence other performance such as ‖ ẋ − ẏr ‖2.

10.3 Output Feedback Control Using Backstepping and
Inverse Technique

In this section, we will address the output feedback control of a class of nonlinear
systems in the presence of unknown dead-zone actuator nonlinearity. We take the
dead-zone into account in our controller design unlike in [74] and [140]. A new
smooth inverse of the dead-zone will be introduced to compensate the effect of
the dead-zone in controller design with backstepping approach as in [125]. Such a
smooth inverse can avoid chattering problems that may occur in the nonsmooth
inverse approach proposed in [41], [49], [126] and [142]. The specific treatment of
the dead-zone may bring performance improvement. As system output feedback
is employed, a state observer is required. To obtain such an observer, a new
parametrization of the state observer for the plant is proposed to include two
sets of parameters: one from the dead-zone nonlinearity and the other from
the plant. Besides showing stability of the system, the transient performance in
terms of L2 norm of the tracking error is derived to be an explicit function of
design parameters and thus our scheme allows designers to obtain the closed
loop behavior by tuning design parameters in an explicit way.

10.3.1 System Model

We consider the class of uncertain nonlinear systems with unknown dead-zone
nonlinearity. For completeness, the system model is given as follows:

x(n)(t) + a1Y1(x(t)) + a2Y2(x(t)) + . . . + arYr(x(t)) = bu (10.26)
y = x1, u = DZ(v) (10.27)

where Yi are known continuous linear or nonlinear functions, parameters ai and
control gain b are unknown constants, v(t) is the output from the controller,
u(t) is the input to the system and y(t) is the system output. The actuator
nonlinearity DZ(v) is described as a dead-zone characteristic.

The control objective is to design an output feedback control law for v(t) to
ensure that all closed-loop signals are bounded and the plant output y(t) tracks
a given reference signal yr(t) under the following assumptions:
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Assumption 1. The sign of b is known and the reference signal yr(t) and its
first nth derivatives are known and bounded.

Assumption 2. The dead-zone parameters mr and ml satisfy mr ≥ mr0 and
ml ≥ ml0, where mr0 and ml0 are two small positive constants.

10.3.2 Dead-Zone Characteristic

The parameterized model of the dead-zone characteristic DZ(.) can be unified
as follows.

u(t) = DZ(v(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mr(v(t) − br) v(t) ≥ br

0 bl < v(t) < br

ml(v(t) − bl) v(t) ≤ bl

(10.28)

where br ≥ 0, bl ≤ 0 and mr > 0, ml > 0 are constants. In general, the break-
points |br| �= |bl| and the slopes mr �= ml.

The essence of compensating dead-zone effect is to employ a dead-zone inverse
as shown in [41, 49, 126, 142]. In this section, we propose a smooth inverse for
the dead-zone as follows:

v(t) = DI(u(t)) =
u(t) + mrbr

mr
φr(u) +

u(t) + mlbl

ml
φl(u) (10.29)

where φr(u) and φl(u) are smooth continuous indicator functions defined as

φr(u) =
eu/e0

eu/e0 + e−u/e0
(10.30)

φl(u) =
e−u/e0

eu/e0 + e−u/e0
(10.31)

Such an inverse is shown in Figure 10.1.
As e0 → 0, φr(u) and φl(u) approaches the indicator functions defined in [49].

Remark 10.2. Note that the functions φr(u) and φl(u) are continuous and dif-
ferentiable. This is different from the inverse in [41], [49] and [126], where the
inverse indicator functions are nonsmooth. The latter case may cause chattering
phenomenon in the recursive backstepping control.

To design adaptive controller for the system, we parameterize the dead-zone as

u(t) = −θT ω (10.32)

where

θ = [mr, mrbr, ml, mlbl]T (10.33)
ω(t) = [−σr(t)v(t), σr(t), −σl(t)v(t), σl(t)]T (10.34)
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Fig. 10.1. Dead-Zone inverse

σr(t) =

⎧
⎨

⎩
1 if u(t) > 0

0 otherwise
(10.35)

σl(t) =

⎧
⎨

⎩
1 if u(t) < 0

0 otherwise
(10.36)

As θ is unknown and ω is unavailable, the actual control input to the plant ud(t)
is designed as

ud(t) = −θ̂T ω̂(t) (10.37)

θ̂ = [m̂r, m̂rbr, m̂l, m̂lbl]T (10.38)
ω̂(t) = [−φr(v)v(t), φl(v), −φl(v)v(t), φl(v)]T (10.39)

where θ̂ is an estimate of θ. Then corresponding control output v(t) is given by

v(t) = D̂I(ud(t)) =
ud(t) + m̂rbr

m̂r
φr(ud) +

ud(t) + m̂lbl

m̂l
φl(ud(t)) (10.40)

The resulting error between u and ud is

u(t) − ud(t) = (θ̂ − θ)T ω̂(t) + dN (t) (10.41)

where dN (t) = θT ω̂(t) − u(t). The bound of dN (t) can be obtained as

|dN (t)| = |θT ω̂(t) − u(t)|

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2e−1|mr − ml|e0 + |mrbr−mlbl|

e2br /e0+1 v(t) ≥ br

max{|mrbr|, |mlbl|} bl < v(t) < br

1
2e−1|mr − ml|e0 + |mrbr−mlbl|

e−2bl/e0+1
v(t) ≤ bl

(10.42)
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Fig. 10.2. Approximation error dN(t)

where we have used that |v|e−|v| ≤ e−1. It has the desired properties that dN (t)
is bounded for all t ≥ 0 and dN (t) approaches to 0 as θ̂ → θ and e0 → 0.
Figure 10.2 shows the characteristic of dN (t) and it can be observed that dN (t)
is bounded.

10.3.3 State Observer

As we consider output feedback, a state observer is required. To design such an
observer, we re-write plant equation (10.26) as

ẋ = Ax + aT Y en + buen (10.43)
y = cx, u = DZ(v) (10.44)

where

A =

⎡

⎢⎢⎢⎣

0
... In−1

0 . . . 0

⎤

⎥⎥⎥⎦ , a =

⎡

⎢⎢⎢⎣

−a1

...

−ar

⎤

⎥⎥⎥⎦ , Y =

⎡

⎢⎢⎢⎣

Y1

...

Yr

⎤

⎥⎥⎥⎦ , c =

⎡

⎢⎢⎢⎣

1
...

0

⎤

⎥⎥⎥⎦

T

en =

⎡

⎢⎢⎢⎣

0
...

1

⎤

⎥⎥⎥⎦

To construct an observer for (10.43) and (10.44), we choose k = [k1, . . . , kn]T

such that all eigenvalues of A0 = A − kc are at some desired stable locations. If
the signal u(t) were available we would implement the following filters

x̂(t) = ξ0 −
r∑

i=1

aiξi + bη (10.45)

ξ̇0 = A0ξ0 + ky + χ (10.46)
ξ̇i = A0ξi + Yien, i = 1, . . . , r (10.47)
η̇ = A0η + enu (10.48)
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where χ is a design signal specified later. It can be shown that the state estima-
tion error ε = x(t) − x̂(t) satisfies

ε̇ = A0ε − χ (10.49)

Hence, limt→∞ε(t) = 0 exponentially if χ = 0.
In our control problem, the signal u(t) is not available. Thus the signal η in

(10.48) needs to be re-parameterized. From (10.37) and (10.41), we know that

u(t) = −θT ω̂(t) + dN (t) (10.50)

Let p = d
dt . With Δ(p) = det(pI − A0), we express (10.48)

η(t) = [η1(t), η2(t), . . . , ηn(t)]T

= [q1(p), q2(p), . . . , qn(p)]T
1

Δ(p)
u(t) (10.51)

for some known polynomials qi(p), i = 1, . . . , n. Using (10.50) and (10.51), we
obtain

ηi(t) = −θT ω̂i(t) + di(t) (10.52)

ω̂i(t) =
qi(p)I4

Δ(p)
ω̂(t) (10.53)

di(t) =
qi(p)
Δ(p)

dN (t) (10.54)

Based on (10.52), ω̂i is available for controller design in place of u. Denoting the
second components of ξ0, ξi as ξ02, ξi2, i = 0, . . . , r, respectively, we have

x̂2 = ξ02 −
r∑

i=1

aiξi2 − bθT ω̂2(t) + bd2(t) (10.55)

ω̂2(t) =
(p + k1)I4

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t) (10.56)

The term θT ω̂
(n−1)
2 renders a place to the signal ud at the last step of the

backstepping design.

10.3.4 Backstepping Design with Dead-Zone Inverse

Design Procedure

As usual in backstepping approach, the following change of coordinates is made.

z1 = y − yr (10.57)

zi = −θ̂T ω̂
(i−2)
2 − êy(i−1)

r − αi−1, i = 2, 3, . . . , ρ (10.58)

where ê is an estimate of e = 1/b and αi−1 is the virtual control at the ith step
and will be determined in later discussion.
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Firstly, we define functions sgi(zi) and fi(zi) as follows

sgi(zi) =

⎧
⎪⎪⎨

⎪⎪⎩

zi

|zi| |zi| ≥ δi

z
(2q+1)
i

(δ2
i − z2

i )n−i+2 + |zi|(2q+1) |zi| < δi

(10.59)

fi(zi) =

⎧
⎨

⎩
1 |zi| ≥ δi

0 |zi| < δi

(10.60)

where δi(i = 1, . . . , n) is a positive design parameter and q = round{(n − i +
2)/2}, where round{x} means the element of x to the nearest integer. Clearly
2q+1 ≥ (n−i+2). It can be shown that sgi(zi) is (n−i+2)th order differentiable.

As the backstepping design procedures are similar to [120], only the first and
the last steps of the design, i.e. steps 1 and n below, are elaborated in details.

• Step 1: We start with the equation for the tracking error z1 obtained from
(10.43), (10.55) and (10.57) to obtain

ż1 = ξ02 + aT ξ(2) + bz2 + bα1 − bθ̃T ω̂2(t) + d(t) + ε2 − bẽẏr (10.61)

where d(t) = bd2(t), θ̃ = θ − θ̂, ξ(2) = [ξi1, . . . , ξr2]. From (10.42) and (10.54),
there exists a positive constant D such that

|d(t)| ≤ D.

Remark 10.3. The unknown bound D of d(t) will be estimated online and thus
it is not assumed to be known in contrast with [41], [49] and [126]. In fact,
bounded external disturbance can also be treated in the same way, even though
disturbance is not considered explicitly in this section.

Now select the first virtual control law α1 as

α1 = êᾱ1 (10.62)

ᾱ1 = −(c1 +
b̂2

4
)(|z1| − δ1)nsg1 − ξ02 − âT ξ(2)

−D̂1sg1 − (δ2 + 1)
√

b̂2 + δ0 · sg1 (10.63)

where c1 is a positive constant, δ0 is a small positive real number, ê, â and b̂
are estimates of e, a and b, D̂1 is an estimate of D. We define a positive definite
function V1 as

V1 =
1

n + 1
(|z1| − δ1)n+1f1 +

1
2
|b|θ̃T Γ−1

θ θ̃ +
1
2
ãT Γaã

+
|b|
2γ1

ẽ2 +
1

2γd1
D̃2

1 +
1

2l1
εT Pε (10.64)
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where ã = a − â, ẽ = e − ê, Γθ, Γa are positive definite matrices, γ1, γd1 are
positive constants, and P = PT > 0 satisfies the equation PA0 + AT

0 P = −2I.
We select the adaptive update laws as

˙̂
θ = Proj{−sign(b)Γθω̂2(t)(|z1| − δ1)2nf1sg1} (10.65)
˙̂e = −sign(b)γ1(ᾱ1 + ẏr)(|z1| − δ1)2nf1sg1 (10.66)

˙̂
D1 = γd1(|z1| − δ1)nf1 (10.67)

where Proj(.) is a smooth projection operation to ensure the estimates m̂r(t) ≥
mr0 and m̂l(t) ≥ ml0. Such an operation can be found in [1]. Then form (10.64)
to (10.66), we obtain the time derivative of V1 as

V̇1 ≤ −(c1 +
b̂2

4
)(|z1| − δ1)2nf1 + ãT (τa1 − Γ−1

a
˙̂a) + εT (τχ1 − 1

l1
Pχ)

+(|z1| − δ1)nf1sg1
(
bz2 − (δ2 + 1)

√
b̂2 + δ0

)
− 1

l1
εT ε (10.68)

τa1 = ξ(2)(|z1| − δ1)nf1sg1 (10.69)
τχ1 = e2(|z1| − δ1)nf1sg1 (10.70)

where e2 = [0, 1, 0, . . . , 0]T .
• Step 2: Using (10.45), (10.46), (10.58)and (10.62), we write

ż2 = − d

dt

(
θ̂T ω̂2 − êẏr

)
− α̇1

= − ˙̂
θ

T

ω̂2 + z3 − ˙̂eẏr + α2 − ∂α1

∂y

(
ξ02 + aT ξ(2) − bθT ω̂2(t) + d(t) + ε2

)

−∂α1

∂ê
˙̂e − ∂α1

∂yr
ẏr − ∂α1

∂ẏr
ÿr − ∂α1

∂ξ0
(A0ξ0 + ky + χ)

−
r∑

i=1

∂α1

∂ξi
ξ̇i − ∂α1

∂â
˙̂a − ∂α1

∂D̂1

˙̂
D1 − ∂α1

∂ω̂2

˙̂ω2

= z3 + α2 + β2 − ∂α1

∂y
aT ξ(2) +

∂α1

∂y
ΘT ω̂2(t) − ∂α1

∂â
˙̂a

−∂α1

∂ξ0
χ − ∂α1

∂y
d(t) − ∂α1

∂y
ε2 (10.71)

where

β2 = − ˙̂eẏr − ˙̂
θ

T

ω̂2 − ∂α1

∂y
ξ02 − ∂α1

∂ê
˙̂e − ∂α1

∂yr
ẏr − ∂α1

∂ẏr
ÿr − ∂α1

∂ξ0
(A0ξ0 + ky)

−
r∑

i=1

∂α1

∂ξi
ξ̇i − ∂α1

∂ω̂2

˙̂ω2 − ∂α1

∂D̂1

˙̂
D1 (10.72)

where Θ = bθ.
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Remark 10.4. Noted that in (10.72), the term ω̂2 is continuous and differentiable
because ω̂ is continuous function from the definitions of the dead-zone (10.30),
(10.31), (10.39) and (10.56).

We choose the virtual control law for α2 and the adaptive updated law for b̂, the
estimate of b, as

α2 = −(c2 + 1)(|z2| − δ2)n−1sg2 − β2 − (δ3 + 1)sg2 − ∂α1

∂y
Θ̂T ω̂2(t)

+
∂α1

∂y
âT ξ(2) +

√

‖ ∂α1

∂y
‖2 +δ0 · D̂2sg2 +

∂α1

∂â
Γaτa2 +

∂α1

∂ξ0
l1P

−1τχ2

(10.73)
˙̂
b = γ2(|z1| − δ1)nf1sg1z2 (10.74)

˙̂
D2 = γd2

√

‖ ∂α1

∂y
‖2 +δ0 · (|z2| − δ2)n−1f2 (10.75)

τa2 = τa1 − ∂α1

∂y
ξ(2)(|z2| − δ2)n−1f2sg2 (10.76)

τχ2 = τχ1 − ∂α1

∂y
(|z2| − δ2)n−1f2sg2e2 (10.77)

where c2, γ2 and γd2 are positive constants. Defining a positive Lyapunov func-
tion V2 as

V2 = V1 +
1
n

(|z2| − δ2)nf2 +
1
2
Θ̃T Γ−1

Θ Θ̃ +
1

2γ2
b̃2 +

1
2γd2

D̃2
2 (10.78)

Then the derivative of V2 is

V̇2 ≤ −
2∑

i=1

ci(|zi| − δi)2(n−i+1)fi + ãT (τa2 − Γ−1
a

˙̂a) + εT (τχ2 − 1
l1

Pχ)

+
[∂α1

∂â
(Γaτa2 − ˙̂a) +

∂α1

∂ξ0
(l1P−1τχ2 − χ)

]
(|z2| − δ2)n−1f2sg2 − 1

l1
εT ε

+Θ̃T (τΘ2 + Γ−1
Θ

˙̂
Θ) + (|z2| − δ2)n−1(|z3| − δ3 − 1)f2 + M2 (10.79)

τΘ2 = −∂α1

∂y
ω̂2(|z2| − δ2)n−1f2sg2 (10.80)

where

M2 = − b̂2

4
(|z1| − δ1)2nf1 + |b̂|(|z1| − δ1)n(|z2| − δ2 − 1)f1 − (|z2| − δ2)2(n−1)f2

Now we show that M2 < 0. This is quite clear for |z2| < δ2 + 1. For |z2| ≥ δ2 +1

M2 ≤ − b̂2

4
(|z1| − δ1)2nf1 +

b̂2

4
(|z1| − δ1)2nf2

1
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+(|z2| − δ2 − 1)2 − (|z2| − δ2)2(n−1)

< (|z2| − δ2)2 − (|z2| − δ2)2(n−1)

= (|z2| − δ2)2(1 − (|z2| − δ2)2(n−2))
≤ 0 (10.81)

• Step i, i = 3, . . . , n: We choose

αi = −(ci + 1)(|zi| − δi)n−i+1sg2 − βi − (δi+1 + 1)sgi +
∂αi−1

∂y
âT ξ(2)

+

√

‖ ∂αi−1

∂y
‖2 +δ0 · D̂isgi +

∂αi−1

∂â
Γaτai +

∂αi−1

∂ξ0
l1P

−1τχi

−
i−1∑

k=3

(|zk| − δk)n−k+1fksgk
∂αk−1

∂Θ̂

∂αi−1

∂y
ω̂2 − ∂αi−1

∂y
Θ̂T ω̂2(t)

+
i−1∑

k=2

(|zk| − δk)n−k+1fksgk

[
− ∂αk−1

∂â

∂αi−1

∂y
ξ(2)

−∂αk−1

∂ξ0

∂αi−1

∂y
l1P

−1e2
]
+

∂αi−1

∂Θ̂
ΓΘτΘi (10.82)

and

˙̂
Di = γdi

√

‖ ∂αi−1

∂y
‖2 +δ0 · (|zi| − δi)n−i+1fi (10.83)

τai = τai−1 − ∂αi−1

∂y
ξ(2)(|zi| − δi)n−i+1fisgi (10.84)

τχi = τχi−1 − ∂αi−1

∂y
(|zi| − δi)n−i+1fisgie2 (10.85)

τΘi = τΘi−1 − ∂αi−1

∂y
(|zi| − δi)n−i+1fisgiω̂2 (10.86)

and

Vi =
i∑

k=1

(
1

n − k + 2
(|zk| − δk)n−k+2fk +

1
2γdk

D̃2
k

)
+

1
2
|b|θ̃T Γ−1

θ θ̃

+
1
2
ãT Γaã +

|b|
2γ1

ẽ2 +
1
2
Θ̃T Γ−1

Θ Θ̃ +
1

2γ2
b̃2 +

1
2l1

εT Pε (10.87)

where Θ̂, D̂k are estimates of Θ = bθ and D, Θ̃ = Θ−Θ̂, b̃ = b− b̂, D̃k = D−D̂k,
βi contains all known terms, ci, γdi, i = 1, . . . , n are positive constants, ΓΘ is a
positive definite matrix.

Step n: Using (10.40), (10.50) and (10.56), we have

θ̂T ω̂
(n−1)
2 = θ̂T (pn + k1p

n−1)I4

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t)

= −ud(t) + ω0 (10.88)
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where ω0 is given by
ω0 = − (k2p

n−2 + . . . + kn−1p + kn)I4

pn + k1pn−1 + . . . + kn−1p + kn
ω̂(t) (10.89)

With this equation, the derivative of zn = −θ̂T ω̂
(n−2)
2 − êy

(n−1)
r − αn−1 is

żn = ud + βn − ∂αn−1

∂y
aT ξ(2) +

∂αn−1

∂y
ΘT ω̂2(t) − ∂αn−1

∂â
˙̂a −

n−1∑

j=1

∂αn−1

∂D̂j

˙̂
Dj

−∂αn−1

∂Θ̂

˙̂
Θ − ∂αn−1

∂ξ0
χ − ∂αn−1

∂y
d(t) − ∂αn−1

∂y
ε2 (10.90)

where βn contains all known terms.
We choose the update laws for â, D̂, Θ̂

˙̂a = Γaτan (10.91)

˙̂
Dn = γdn

√

‖ ∂αn−1

∂y
‖2 +δ0 · (|zn| − δn)fn (10.92)

˙̂
Θ = −ΓΘτΘn (10.93)

and the design signal as
χ = l1P

−1τχn (10.94)

Finally the control law is given by

v(t) =
ud(t) + m̂rbr

m̂r
φr(ud) +

ud(t) + m̂lbl

m̂l
φl(ud) (10.95)

ud = αn (10.96)

10.3.5 Stability Analysis

Define a positive definite Lyapunov function Vn as

Vn = Vn−1 +
1
2
(|zn| − δn)2fn +

1
2γdn

D̃2
n (10.97)

With this choice of adaptive controller and parameter update laws, the derivative
of Vn becomes

V̇n ≤ −
n∑

i=1

ci(|zi| − δi)2(n−i+1)fi + ãT (τan − Γ−1
a

˙̂a) + εT (τχn − 1
l1

Pχ)

+ Θ̃T (τΘn + Γ−1
Θ

˙̂
Θ) − 1

l1
εT ε +

n∑

k=3

(|zk| − δk)n−k+1fk
∂αk−1

∂Θ̂
(ΓΘτdΘ + ˙̂

Θ)

+
n∑

k=2

(|zk| − δk)n−k+1fk

[∂αk−1

∂â
(Γaτan − ˙̂a) +

∂αk−1

∂ξ0
(l1P−1τχn − χ)

]

≤ −
n∑

i=1

ci(|zi| − δi)2(n−i+1)fi − 1
l1

εT ε (10.98)

From (10.98), we get the following Lemma.



180 Adaptive Control of Nonlinear Systems with Dead-Zone Nonlinearity

Lemma 10.1. The adaptive controller designed above ensures that z1, . . . , zn, θ̂,
ê, b̂, â, Θ̂, D̂i, ε are all bounded.

With Lemma 10.1, all the signals in the closed-loop can be shown to be bounded
and a bound can be established for the tracking error, as stated in the following
theorem.

Theorem 10.3. Consider the system consisting of the parameter estimators
given by (10.65), (10.66), (10.74), (10.91)-(10.93), adaptive controllers designed
using (10.95) and (10.96) with virtual control laws (10.62), (10.73) and (10.82),
and plant (10.26) with a dead-zone nonlinearity (10.28). The system is stable in
the sense that all signals in the closed loop are bounded. Furthermore

• The tracking error converges to [−δ1, δ1] asymptotically, i.e.,

lim
t→∞ |y(t) − yr(t)| = δ1, |z1| ≥ δ1 (10.99)

• The transient tracking error performance is given by

‖ |y(t) − yr(t)| − δ1 ‖2≤
1

c2n
1

(1
2
ã(0)T Γ−1

a ã(0) +
|b|
2Γθ

θ̃(0)2 +
1

2ΓΘ
Θ̃(0)2

+
|b|
2γ1

ẽ(0)2 +
n∑

i=1

1
2γdi

D̃i(0)2 +
1

2γ2
b̃(0)2 +

1
2l1

ε(0)2
)1/2n (10.100)

with zi(0) = 0, i = 1, . . . , n,

Proof: From Lemma 10.1, we have that z1, . . . , zn, θ̂, ê, b̂, â, Θ̂, D̂i, ε are bounded.
The tracking error performance can be obtained from (10.98) following similar
approaches to those in [125]. What we need to prove is the boundedness of state
x, controller output v and plant input u. From state observers (10.46) and (10.47),
and (10.49), we have that ξ0, . . . , ξr are bounded. Re-writing plant (10.26) as

pny +
r∑

i=1

aiYi

(
y, py, . . . , pn−1y

)
= bu (10.101)

and using (10.51), we have

η2 =
q2(p)
Δ(p)

u =
pnq2(p)
bΔ(p)

y +
q2(p)
bΔ(p)

r∑

i=1

aiYi

(
y, py, . . . , pn−1y

)
(10.102)

Since Δ(p) = pn + k1p
n−1 + . . . + kn is Hurwitz, so q2(p)

bΔ(p) is stable. We have
that η2 is bounded because y is bounded. From (10.50) and (10.52), we have
η2 = −θT ω̂2(t) + d2(t). As d2(t) ∈ L∞, then θT ω̂2 ∈ L∞.

Express (10.53) as

ω̂2(t) =
[
− q2(p)

Δ(p)
φr(v)v,

q2(p)
Δ(p)

φr(v), −q2(p)
Δ(p)

φl(v)v,
q2(p)
Δ(p)

φl(v)]T

(10.103)
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θT ω̂2(t) = −mr
q2(p)
Δ(p)

φr(v)v + mrbr
q2(p)
Δ(p)

φr(v)

−ml
q2(p)
Δ(p)

φl(v)v + mlbl
q2(p)
Δ(p)

φl(v) (10.104)

Because φr(v) ∈ L∞, φl(v) ∈ L∞ and q2(p)
Δ(p) is stable, the terms q2(p)

Δ(p) φr(v) and
q2(p)
Δ(p) φl(v) in (10.103) are bounded.

We now show that ω̂2 is bounded in two cases:

Case 1. If v(t) is bounded, ω̂2 is bounded directly from (10.103).
Case 2. In case that v(t) is unbounded, we divide R+ = [0, ∞) into two subse-
quences R+ = R1 ∪ R2, where R1 = {t |v(t) ≥ 0} and R2 = {t |v(t) < 0}. Then
the following two situations are considered.

(i). t ∈ R1. From (10.31) we get

φl(v) · v =
e−v/e0

ev/e0 + e−v/e0
· v =

v

1 + e2v/e0

Thus φl(v) · v → 0, when v → +∞ for t ∈ R1. (10.105)

So in equation (10.104), the third term ml
q2(p)
Δ(p) φl(v)v(t) → 0, with the bound-

edness of second term and fourth term and θT ω̂2 ∈ L∞, we see that the first
term mr

q2(p)
Δ(p) φr(v)v is bounded for t ∈ R1.

(ii). t ∈ R2. Similarly from (10.30) we can show that

φr(v) · v =
ev/e0

ev/e0 + e−v/e0
· v =

v

1 + e−2v/e0

Thus φr(v) · v → 0, when v → −∞ for t ∈ R2. (10.106)

and the third term ml
q2(p)
Δ(p) φl(v)v is bounded for t ∈ R2.

Combining (i) and (ii), we get that for all t ∈ R+, q2(p)
Δ(p) φr(v)v and q2(p)

Δ(p) φl(v)v
are bounded. Then ω̂2 is bounded from (10.103). In summary, from the two cases
we obtain the boundedness of ω̂2.

Since θ̂T ω̂2 and z2 are bounded, from z2 = −θ̂T ω̂2 − êẏr − α1 we can obtain
the boundedness of α1. From (10.62), we have ᾱ1 is bounded. From (10.82),
α2, . . . , αn are bounded, and so is χ. From (10.96) we have that ud(t) is bounded,
and so are v = D̂I(ud) and u = DI(v). It following from (10.53) that ω̂i ∈
L∞, i = 1, . . . , n. From (10.48), we have that η is bounded. Then x̂ is bounded
from (10.45) and finally x(t) = x̂(t) + ε(t) is bounded from (10.45-10.48).

���
Remark 10.5. The transient performance depends on the initial estimate errors
and the explicit design parameters. The closer the initial estimates to the true
values, the better the transient performance. The bound for ‖ y(t)−yr(t) ‖2 is an
explicit function of design parameters and thus computable. We can decrease the
effects of the initial error estimates on the transient performance by increasing
the adaptation gains γ1, γ2, γdi and Γa, Γθ, ΓΘ.
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10.4 Illustrative Examples

10.4.1 Example 1: State Feedback Backstepping Control

In this section, we illustrate the above methodologies for state feedback control
of a simple system which is described as:

ẍ = a1
1 − e−x(t)

1 + e−x(t) − a2(ẋ2 + 2x) − 0.2a3 sin(3t) + bu(t) (10.107)

where u(t) represents the output of the dead-zone nonlinearity. The actual pa-
rameter values are b = 1 and a1 = a2 = a3 = 1. The parameters of the dead-zone
at br = 0.5, bl = −0.6, m = 1. The objective is to control the system state x to
follow a desired trajectory yr(t) = 2.5 sin(t).

In the simulation of Scheme I, the robust adaptive control law (10.9)-(10.12)
was used, taking c1 = 2, c2 = 2, γ = 0.5, Γ = 0.5I3, η = 0.5. The initial values
are chosen as follows: ê(0) = 0.25, â(0) = [1.5 1 1]T , D̂(0) = 2,x(0) = [1 1.05]T

and v(0) = 0. The simulation results presented in the Figure 10.3 and Figure
10.4 are system tracking error and input. The effectiveness of adaptive Scheme
I is demonstrated by the fact that the tracking error is reduced to zero after
a few periods of the reference input as shown in Figure 10.3. The chattering
phenomena in Figure 10.4 is caused by the sign function used in the controller.
It can be avoided by adaptive Scheme II.

In the simulation of Scheme II by using the robust adaptive control law
(10.18)-(10.21), we choose c1, γ, η, Γ and the initial values to be same as above
and δ1 = 0.05. The simulation results presented in the Figure 10.5 and Figure
10.6 are system tracking error and input. In Figure 10.5, the tracking error is
reduced to δ1 = 0.05 after a few periods of the reference input. The control input
v is bounded and has no chattering problem as shown in Figure 10.6.

As a conclusion, all the results verify our theoretical findings and show the
effectiveness of the control schemes.
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Fig. 10.3. Tracking error-Scheme I
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Fig. 10.4. Control signal v(t)-Scheme I
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Fig. 10.5. Tracking error-Scheme II

10.4.2 Example 2: Output Feedback Inverse Control

In this section, we illustrate the above methodology for output feedback control
of the same system as in [43] and [74], which is described as:

ẋ = a
1 − e−x(t)

1 + e−x(t) + bu(t) (10.108)

u = DZ(v)

where u represents the output of the dead-zone nonlinearity. The actual pa-
rameter values are b = 1 and a = 1, and the dead-zone parameter values are
mr = 1.05, ml = 1.05, br = 0.3, bl = −0.5. The objective is to control the system
state x to follow a desired trajectory yr(t) = sin(2t).
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Fig. 10.6. Control signal v(t)-Scheme II

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t(sec)

T
ra

ck
in

g 
er

ro
r

(dashed: scheme in [74], solid: proposed scheme)

Fig. 10.7. Tracking error

In the simulations, taking c1 = 4, Γa = 0.1, γ1 = 0.3, γ2 = 0.2, Γθ = [0.1, 0.1,
0.1, 0.1]T , e0 = 1, δ1 = 0.02 and the initial parameters ê(0) = 0.3, â(0) =
1.5, D̂(0) = 0.4, θ̂(0) = [1, 1, 0.2, −0.3]T . The initial state is chosen as x(0) = 0.4.
The parameters and the initial states are the same as in [74]. For comparison,
the scheme in [74] and our proposed scheme are both applied to the system. The
simulation results presented in the Figure 10.7 and Figure 10.8 are the tracking
error and the controller output v(t).

Note that the tracking error with the proposed scheme is reduced to zero after
a few periods of the reference input as shown in Figure 10.7. However, for the
scheme in [74], the tracking error converges to a residual. It is remarkable that
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Fig. 10.8. Control signal v(t)

the tracking performance of our scheme is better than that of other scheme,
while the control effort is about same.

As a conclusion, the simulation results verify our theoretical findings and show
the effectiveness of our control scheme. Also system performance is improved by
our scheme.

10.4.3 Example 3: Application to Servo-Valve

In this section, we apply our proposed scheme to servo-valve as in Chapter 6.
Its spool occludes the orifice with some overlap so that for a range of spool
positions v there is no fluid flow u. This overlap prevents leakage losses which
increase with wear and tear. Considering the spool position as the input v, and
the load position y as output, the hydraulic system is represented in Figure
10.9 as a dead-zone block. It is located as the input of linear dynamics with
transfer function G(s) = K

Ms2+Bs , where K = Akx

kp
, B = f + A2

kp
, kx = ∂g

∂x ,

kp = ∂g
∂P , g = g(x, P ) = flow, A = area of position, P = pressure, and f =

viscous friction. The system is modelled as

v u y

   s(M s + B)

K

Fig. 10.9. Block diagram

Mÿ + Bẏ = Ku(v) (10.109)
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where u(v) represents the dead-zone nonlinearity. The adaptive control law is
designed as follows

v(t) =
ud(t) + m̂rbr

m̂r
φr(ud) +

ud(t) + m̂lbl

m̂l
φl(ud(t)) (10.110)

ud = êū (10.111)
ū = −(c2 + 1)(|z2| − δ2)sg2 + α̇1 + âẏ − sg2D̂ (10.112)

α1 = −(c1 + 1)(|z1| − δ1)2sg1 (10.113)
˙̂e = −γū(|z2| − δ2)f2sg2 (10.114)
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Fig. 10.10. Without considering dead-zone: Load position (y: solid line; yr: dashed
line)
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Fig. 10.11. Without considering dead-zone: Spool position v
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Fig. 10.12. Our proposed scheme: Load position (y: solid line; yr: dashed line)
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Fig. 10.13. Our proposed scheme: Spool position v

˙̂a = −ηẏ(|z2| − δ2)f2sg2 (10.115)
˙̂
θ = Proj

{
− sign(

K

M
)Γθω̂(|z2| − δ2)f2

}
(10.116)

where z1 = y−yr, z2 = ẏ−α1−ẏr, yr = 2+0.5 sin(t), â is an estimate of a = B/M
and ê is an estimate of e = M/K. In the simulation, the design parameters are
chosen as c1 = c2 = 1, γ = 0.5, η = 0.6, Γθ = 0.2I4 and the initial value is chosen
as y(0) = 2.2, ê(0) = â(0) = 1, θ̂(0) = [1, 1, 0.4, −0.4]T . The simulation results
presented in Figures 10.10-10.13 show that the load position y and yr and the
spool position v using the controller without considering dead-zone and with
our proposed smooth inverse. Clearly, our proposed scheme improves the system
performance greatly.
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10.5 Summary

In this chapter, we present two types of robust adaptive backstepping control
algorithms: state feedback control and output feedback control of nonlinear sys-
tems with unknown dead-zone. For state feedback control two backstepping
adaptive controller design schemes are developed. For output feedback control,
we propose a new smooth adaptive inverse to compensate the effect of the un-
known dead-zone. Such an inverse can avoid possible chattering phenomenon
which may be caused by nonsmooth inverse. The inverse function is employed
in the backstepping controller design. For the design and implementation of the
controllers, no knowledge is assumed on the unknown system parameters and
nonlinearity. Besides showing stability, we also give an explicit bound on the
L2 performance of the tracking error in terms of design parameters. Simulation
results illustrate the effectiveness of proposed schemes.



11 Adaptive Control of Systems with Input
Saturation

In this chapter, we present a new scheme to design adaptive controllers for un-
certain nonlinear systems in the presence of input saturation. Similar to previous
chapters, the developed controllers do not require uncertain parameters within
a known compact set. Besides showing global stability, transient performance is
also established and can be adjusted by tuning certain design parameters.

11.1 Introduction

In many practical dynamic systems, physical input saturation on hardware dic-
tates that the magnitude of the control signal is always constrained. Saturation
is a potential problem for actuators of control systems. It often severely limits
system performance, giving rise to undesirable inaccuracy or leading instability.
The development of adaptive control schemes for systems with input saturation
has been a task of major practical interest as well as theoretical significance.

However, the number of available results by taking saturation into account in
the design and analysis is still limited due to the difficulty of the problem. For
linear stable systems with known parameters and input saturation, a few control
schemes have been proposed, for examples, anti-windup schemes in [143, 144],
low-gain control in [145, 146] and linear feedback regulation in [147]. When the
system parameters are unknown, adaptive control schemes have been proposed,
for examples, model reference adaptive control in [59, 63], predictive control
in [61], discrete-time control approaches in [46], indirect adaptive regulator in
[60, 62], where uncertain parameters must be inside a known compact set. An
adaptive force-balancing control scheme with actuator limits for a MEMS gy-
roscope was also presented in [148], where the plant is a stable second-order
uncertain linear system. The system tracking error is shown to approach a sig-
nal generated by an artificially constructed system.

Backstepping approach is a Lyapunov-based recursive design procedure. With
this technique, transient performance can be established and improved with
explicit tuning of design parameters. A great deal of attention has been paid to
tackle both linear and nonlinear systems with unknown parameters. A number

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 189–197, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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of results have been obtained as summarized in [1]. Some robustness issues have
also been addressed, see for examples, [34, 120]. However, the effect of saturation
nonlinearity has not been addressed with this approach, especially in the absence
of a priori knowledge of system parameters. To solve such a problem, certain
modifications of standard backstepping controllers are required.

In this chapter, we will address the problem of controlling a class of uncer-
tain nonlinear systems in the presence of saturation as in [149]. To deal with
saturation, we construct a new system with the same order as that of the plant
similar to [148]. With the error between the control input and saturated input
as the input of the constructed system, a number of signals are generated to
compensate the effect of saturation. With the proposed adaptive backstepping
controller, the system tracking error is shown to approach a signal generated
by the constructed system. The tracking error is also adjustable by an explicit
choice of design parameters. Thus our designed backstepping scheme allows de-
signers to obtain the closed loop behavior by tuning design parameters in an
explicit way.

11.2 System Description and Problem Statement

The system model is given as follows:

x(n)(t) +
r∑

i=1

aiYi

(
x(t), ẋ(t), . . . , x(n−1)(t)

)
= u(v) (11.1)

where Yi(x, ẋ, . . . , x(n−1)) are known continuous linear or nonlinear functions,
parameters ai are unknown constants, v is the control input, and u(v(t)) ∈ R
denotes the plant input subject to saturation described by

u(v(t)) = sat(v(t)) =

⎧
⎨

⎩
sign(v(t))uM |v(t)| ≥ uM

v(t) |v(t)| < uM

(11.2)

where uM is the saturation bound of u(t).
For the development of control laws, the following assumption is made.

Assumption 1. The plant is bounded input bounded output stable.

The control objectives are to design backstepping adaptive control law v(t) such
that

• The closed loop system is globally stable in sense that all the signals in the
system are uniformly ultimately bounded;

• The tracking error y(t) − yr(t) is adjustable by an explicit choice of design
parameters.

11.3 Design of Adaptive Controllers

Now equation (11.1) is rewritten in the following form
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ẋ1 = x2

...
ẋn−1 = xn

ẋn = −
r∑

i=1

aiYi

(
x1(t), x2(t), . . . , x(n−1)(t)

)
+ bu(v)

= aT Y + u(v) (11.3)
y = x1 (11.4)

where x1 = x, x2 = ẋ, . . . , xn = x(n−1), a = [−a1, −a2, . . . , −ar]T and Y =
[Y1, Y2, . . . , Yr]T .

In order to compensate the effect of the saturation, the following system is
constructed to generate signals λ(t) = [λ1, . . . , λn]T

λ̇1 = λ2 − c1λ1

λ̇i = λi+1 − ciλi, i = 2, 3, . . . , n

λ̇n = −cnλn + Δu (11.5)

where ci are positive constants and Δu = u(v) − v.
The following change of coordinates is made.

z1 = y − yr − λ1 (11.6)
zi = xi − αi−1 − y(i−1)

r − λi, i = 2, 3, . . . , n (11.7)

where αi−1 is the virtual control at the ith step to be determined.

Remark 11.1. With the error Δu as the input of the constructed system, it has
no effect on zi. Thus it will not affect the design of controllers. Then by fol-
lowing the standard backstepping approach, the adaptive law will ensure the
boundedness of parameter estimates regardless of Δu. On the other hand, such
estimates will depend on Δu when standard backstepping is used without using
the transformed systems.

In the following, backstepping control scheme is proposed. To illustrate the de-
sign procedures, only the first and the last step are elaborated in details.

• Step 1: Starting from the equations for the tracking error obtained from (11.3)
to (11.7), we get

ż1 = x2 − λ2 + c1λ1 − ẏr

= z2 + α1 + c1λ1 (11.8)

We design the virtual control law α1 as

α1 = −c1(x1 − yr) (11.9)
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where c1 > 1/2 is a positive design parameter. A positive Lyapunov function V1
is defined as

V1 =
1
2
z2
1 (11.10)

Then the derivative of V1 along with (11.8) and (11.9) is given as

V̇1 = −c1z
2
1 + z1z2

≤ −c1z
2
1 +

1
2
z2
1 +

1
2
z2
2

= −c̄1z
2
1 +

1
2
z2
2 (11.11)

where c̄1 = c1 − 1
2 > 0.

• Step i (i = 2, . . . , n − 1): For zi = xi − αi−1 − y
(i−1)
r − λi, we choose virtual

control law αi as

αi = −ci(xi − αi−1 − y(i−1)
r ) + α̇i−1(x1, . . . , xi−1) (11.12)

where ci, i = 2, . . . , n − 1 are positive design parameters satisfying ci > 1. From
(11.7) and (11.12) we obtain

ziżi = −ciz
2
i + zizi+1 (11.13)

We choose Lyapunov function as

Vi =
i∑

k=1

1
2
z2

k (11.14)

Then the derivative of Vi along with (11.12) and (11.13) is given by

V̇i ≤ −ciz
2
i + zizi+1 +

1
2
z2

i

≤ −
i∑

i=1

c̄iz
2
i +

1
2
z2

i+1 (11.15)

where c̄i = ci − 1 > 0.
• Step n: From (11.3) and (11.7) for i = n, we obtain

żn = v + aT Y − α̇n−1 + cnλn − y(n)
r (11.16)

We design the adaptive control law v(t) as follows

v = −cn(xn − αn−1 − y(n−1)
r ) − âT Y + α̇n−1(x1, . . . , xn−1) + y(n)

r (11.17)

where cn is a positive design parameter satisfying cn > 1
2 , â is an estimate of a.

The parameter update law is designed as

˙̂a = ΓY zn (11.18)
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where Γ is a positive definite matrix. We define a positive Lyapunov function
Vn as

V =
n∑

i=1

1
2
z2

i +
1
2
ãT Γ−1ã (11.19)

where ã = a − â. Then the derivative of V along with (11.16) to (11.18) is given
by

V̇ =
n∑

i=1

ziżi + ãT Γ−1 ˙̃a

≤ −
n∑

i=1

c̄iz
2
i + ãT Γ−1(ΓY zn − ˙̂a)

= −
n∑

i=1

c̄iz
2
i (11.20)

where c̄n = cn − 1
2 .

This shows that V is uniformly bounded. Thus zi, i = 1, . . . , n and â are
bounded. From Assumption 1, we have that xi, i = 1, . . . , n are bounded as the
plant is stable and its input is bounded. So that the boundedness of α1, . . . , αn−1
and control signal v(t) can be obtained from (11.9), (11.12) and (11.17). Thus
Δu = u(v)−v is also bounded. Therefore boundedness of all signals in the closed
loop system is ensured as stated in the following theorem.

Theorem 11.1. Consider the uncertain nonlinear system (11.1) in the presence
of input saturation satisfying Assumption 1. With the application of controller
(11.17) and the parameter update law (11.18), the following statements hold:

• The steady state tracking error satisfies

lim
t→∞[y(t) − yr(t) − λ1(t)] = 0 (11.21)

• A bound of the transient tracking error will be given by

‖ y(t) − yr(t) ‖2 ≤ 1√
c̄1

(
1
2
ã(0)T Γ−1ã(0))1/2 +

1√
c0

‖ Δu ‖2 (11.22)

Proof: From (11.20) we established that V is non increasing. Hence, zi, i =
1, . . . , n, â are bounded. By applying the LaSalle-Yoshizawa theorem to (11.20),
it further follows that zi(t) → 0, i = 1, . . . , n as t → ∞, which implies that
limt→∞[y(t) − yr(t) − λ1] = 0.

From (11.20) we also have that

‖ z1 ‖2
2 = ‖ y − yr − λ1 ‖2

2=
∫ ∞

0
|z1(τ)|2dτ

≤ 1
c̄1

(V (0) − V (∞)) ≤ 1
c̄1

V (0) (11.23)
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Thus, by setting zi(0) = 0, i = 1, . . . , n, we obtain

V (0) =
1
2
ã(0)T Γ−1ã(0) (11.24)

a decreasing function of Γ , independent of c̄1. This means that the bound re-
sulting from (11.23) and (11.24) is

‖ y(t) − yr(t) − λ1(t) ‖2 ≤ 1√
c̄1

(1
2
ã(0)T Γ−1ã(0)

)1/2 (11.25)

Now we derive the bound of λ1.
We construct the positive Lyapunov function Vλ =

∑n
i=1

1
2λ2

i . Then the
derivative of Vλ is given as

V̇λ = −c1λ
2
1 + λ1λ2 − c2λ

2
2 + λ2λ3 + . . . + λn−1λn − cnλ2

n + λnΔu

≤
n∑

i=1

−c̄iλ
2
i + Δu2

≤ −c0 ‖ λ ‖2 +Δu2 (11.26)

where c̄1 = c1 − 1
2 , c̄i = ci − 1(i = 2, . . . , n − 1), c̄n = cn − 3

4 , c0 = min1≤i≤nc̄i.
Integrating both sides of (11.26), we have

‖ λ ‖2
2 =

∫ ∞

0
‖ λ ‖2 dτ

≤ 1
c0

[
(Vλ(0) − Vλ(∞)) +

∫ ∞

0
(Δu)2dτ

]
(11.27)

By setting λi(0) = 0, the initial value of the Lyapunov function is Vλ(0) = 0.
Then a bound on the state ‖ λ ‖2 is established as follows

‖ λ ‖2≤
1

√
c0

‖ Δu ‖2 (11.28)

Thus from (11.25) and (11.28), it is obtained

‖ y − yr ‖2 ≤ 1√
c̄1

(1
2
ã(0)T Γ−1ã(0)

)1/2 +
1

√
c0

‖ Δu ‖2 (11.29)

			
From Theorem 11.1 the following conclusions can be obtained.

Remark 11.2. The transient performance depends on the initial estimate error
ã(0) and the explicit design parameters. The closer the initial estimate â(0) to
the true value a, the better the transient performance.

Remark 11.3. The bound for ‖ y(t) − yr(t) ‖2 is an explicit function of design
parameters and thus computable. We can decrease the effects of the initial error
estimate on the transient performance by increasing the adaptation gain Γ and
parameter c1.
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Remark 11.4. The bound of ‖ y(t) − yr(t) ‖2 depends on the bound of Δu, the
effects of which on system performance can be decreased by increasing parameter
c0. If Δu → 0 as t → ∞, we have λ1 → 0. Then limt→∞[y(t) − yr(t)] = 0. This
implies that if the system has no saturation or the control signal is not saturated
as t → ∞, then perfect tracking is ensured.

11.4 Simulation Study

In this section, we illustrate the above methodology on the following example.
We consider a second-order system depicted in Figure 11.1 which is modelled by

m

k

Actuator

c

N.P.
y

)(u

Fig. 11.1. Spring, mass and damper system

0 5 10 15
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t(sec)

T
ra

ck
in

g 
er

ro
r

Fig. 11.2. Tracking error with the controller designed using standard backstepping
approach
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Fig. 11.3. Control signal with the controller designed using standard backstepping
approach
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Fig. 11.4. Tracking error with proposed scheme

ẋ1 = x2

ẋ2 = − k

m
x1 − c

m
x2 +

1
m

sat(v) (11.30)
y = x1

where x1 and x2 are the position and velocity, m is the mass of the object, k is the
stiffness constant of the spring and c is the damping. The input saturation limit is
13N . The true parameters are set as m = 1.25kg, c = 2N ·s/m, k = 8N/m, which
are not needed to be known in our controller design. The design parameters are
chosen as c1 = c2 = 5 and Γ = 0.5I2. The adaptive control law and parameter
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Fig. 11.5. Control signal with proposed scheme

update laws are followed by (11.17) and (11.18), where a = [−k
m , −c

m ]T , b = 1
m .

The initial parameter values are selected as â(0) = [−6, −1]T and ê(0) = 1. The
desired trajectory is given as r(t) = −0.2 cos(2π × 1.5t) + 0.2 [m] and the initial
conditions are x1(0) = 0.6m, x2(0) = 0.8.

Two controllers, designed using the standard backstepping approach [1] and
the proposed scheme respectively, are applied to system (11.30). Simulation re-
sults on system tracking error and control signal are presented in Figures 11.2
to 11.5. Significantly improved performance is clearly seen with the proposed
scheme. It is also observed that the input signal is not saturated for t > 8
second and the perfect tracking is obtained. These results indicate that the pro-
posed backstepping adaptive controller is effective and practically useful.

11.5 Conclusion

This chapter presents a new scheme to design adaptive backstepping controller
for a class of uncertain nonlinear systems in the presence of input saturation. We
propose a new control law to compensate the effect of the saturation nonlinear-
ity using backstepping technique. The developed backstepping control does not
require the model parameters within known intervals. Besides showing global
stability, we also give an explicit bound on the performance of the tracking error
in terms of design parameters. Simulation results illustrate the effectiveness of
our proposed scheme. Also improvement of system performance over a backstep-
ping adaptive controller designed without considering saturation is observed.



12 Control of a Hysteretic Structural System in
Base Isolation Scheme

In this chapter, we present two adaptive backstepping control algorithms for
a second-order uncertain hysteretic structural system found in base isolation
scheme for seismic active protection of building structures. The hysteretic non-
linear behavior is described by a Bouc-Wen model. It is shown that not only
stability is guaranteed by the proposed controller, but also both transient and
asymptotic performances are quantified as explicit functions of the design pa-
rameters so that designers can tune the design parameters in an explicit way to
obtain the required closed loop behavior.

12.1 Introduction

The modelling and identification of nonlinear hysteretic systems is a problem
widely encountered in the structural dynamics field. Nonlinear hysteretic behav-
ior is seen commonly in structures experiencing strong ground earthquake excita-
tion. Because of the hysteretic nature of the restoring force in such situation, the
nonlinear force cannot be expressed in the form of an algebraic function involving
the instantaneous values of the state variables of the system. Studies of this prob-
lem have been reported in the works of [150, 151, 152, 153, 154, 155]. In [150], an
adaptive controller was designed for a class of state-feedback nonlinear systems
with unknown hysteresis to counteract the effect of an earthquake excitation. To
represent the behavior of a seismic base isolation scheme which has a nonlinear
hysteretic behavior, the Bouc-Wen model in connection to a second-order struc-
tural system is used. This behavior is described in ([156, 157, 158, 159, 160]).
The system considered arises from a class of nonlinear oscillators, which are
common in structural engineering models [150, 161]. The proposed controller is
designed to counteract the effect of an earthquake excitation and mitigate the
seismic displacement response of the system. In the controller design, the true
hysteretic behavior is not required to be known. However, the system uncertain
parameters must be within some known intervals and the effect of the hysteresis
is treated as a bounded disturbance. The bound of the effect is also required for
the design. Certain structural information in the model is not exploited.

In this chapter, we develop two backstepping adaptive control design schemes
for a second-order uncertain hysteretic structural system as in [162]. In the

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 199–213, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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design, no knowledge is assumed on the term multiplying the control and other
uncertain parameters. In the first scheme, we use some available structure in-
formation in the design and the residual effect of the hysteresis is treated as a
bounded disturbance. An update law is used to estimate the bound involving
this partial hysteresis effect and external disturbance. In the second scheme, we
further take the structure of the Bouc-Wen model describing the hysteresis into
account in the controller design, if apriori knowledge on some parameters of the
model is available. It is shown that the proposed controller can guarantee sta-
bility and achieve tracking performance. Also with the proposed scheme, both
transient and asymptotic performances are quantified as explicit functions of the
design parameters so that designers can tune the design parameters in an explicit
way to obtain the required closed loop behavior. Compared with the scheme in
[150], system performance with the first scheme applied is still improved even
though we need much less knowledge from the system. When the second scheme
is applied, the performance has been significantly improved compared with the
first scheme and the scheme in [150]. Simulation results verify the effectiveness
of our adaptive controllers.

12.2 Problem Formulation

A hysteresis friction model will be developed to simply and appropriately de-
scribe the dynamics of Hysteretic Structural System in Base Isolation Scheme.
The hysteresis model of Bouc as modified by Wen [156] possesses an appeal-
ing mathematical simplicity, and is able to represent a large class of hysteretic
behavior, from inelastic stress-strain relationships found in structures to magne-
toelectrical behavior.

Given the states x(t), z(t) : T → R, the Bouc-Wen model is described by

ż = Aẋ − β|ẋ||z|n−1z − λẋ|z|n (12.1)

Nominally, x and z denote the position of an oscillator and a restoring force
acting on the oscillator, respectively. A hysteretic relation is observed between x
and z. The parameters A, β and λ control the scale and shape of the hysteresis
curve, n is an integer that governs the smoothness of the transition from elastic
to plastic response. Illustrations of their effect are shown in Figures 12.1-12.2.
Note that for the model to exhibit positive energy dissipation through each cycle,
thermodynamic laws require that λ > 0. Figures 12.1 and 12.2 show the effect
of n and the loop shapes with n = 1 and different A, β and λ.

In the limit as n → ∞, ż = ẋ[sgn(z + A) − sgn(z − A)]/2.
Consider now the following second-order uncertain nonlinear system illus-

trated in Figure 12.3 modelled as

mẍ + c̄ẋ + Φ(x, t) = f(t) + u(t) (12.2)

where m is an unknown positive parameter, c̄ is an uncertain parameter and Φ
represents a nonlinear component, f(t) is an external disturbance with unknown
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Fig. 12.1. The effect of increasing n on the hysteretic characteristic for A = 1, β = 1,
λ = 2 and n = 1, 3, 5
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Fig. 12.2. Hysteretic loop shapes for n = 1, A = 1, β = λ = 0.5 (solid) and n = 1, A =
1, β = −0.9λ = 0.5 (dashed)

bound, and u(t) is control input. In the structural system, m and c̄ are the mass
and the damping coefficients, respectively, and restoring force Φ characterizes
a hysteretic behavior of isolator material, which is usually made with inelastic
rubber bearings, x is the position, u(t) is an active control force supplied by
appropriate actuators, f(t) is an exciting unknown force, which is described as
f(t) = −ma(t), where a(t) is earthquake ground acceleration. The hysteresis
force Φ is described in the following form ([156, 157, 158, 160, 163]).

Φ(x, t) = αkx(t) + (1 − α)Dkz(t) (12.3)
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ż = D−1[Aẋ − β|ẋ||z|n−1z − λẋ|z|n] (12.4)

This model represents the restoring force Φ(x, t) by superposition of elastic com-
ponent αkx and a hysteretic component (1 − α)Dkz, in which D > 0 is the
yield constant displacement and α is the post to pre-yielding stiffness ratio. The
hysteretic part involves an auxiliary variable z which is the solution of the non-
linear first order differential equation (12.4). The Bouc-Wen model in (12.1) is
able to capture, in an analytic form, a range of shapes of hysteretic cycles which
match the behavior of a wide class of nonlinear structures. It is widely used in
structure dynamics, particularly to describe rubber bearing isolation schemes.
Now we prove the boundedness of z(t). From dynamic system (12.4), we have

ż = −D−1|z|n−1[ β|ẋ|z + λẋ|z|] + D−1Aẋ

= −D−1|z|n−1|ẋ|
[
β + λsign(z)sign(ẋ)

]
z + D−1Aẋ (12.5)

We construct a positive Lyapunov function Vz = z(t)2/2. Its derivative takes
different forms depending on the signs of ẋ and z. The following analysis de-
termines the condition on the Bouc-Wen model parameters, such that z(t) is
globally bounded as in [164].

Consider the case A > 0. There are three possibilities.

∗ P1 : β + λ > 0 and β − λ ≥ 0;
∗ P2 : β + λ > 0 and β − λ < 0;
∗ P3 : β + λ ≤ 0.

Let us now focus on the case P1. Indeed, setting Q1 := {ẋ ≥ 0 and z ≥ 0}, and
denoting V̇Q1 as the expression of the derivative of the Lyapunov function Vz

over the set Q1, we have V̇Q1 = zẋD−1(A− (β +λ)zn). Thus V̇Q1 ≤ 0. Similarly,
V̇Q2 ≤ 0 for |z| ≥ z0, where Q2 = {ẋ ≤ 0, and z ≤ 0}.

Also setting Q3 = {ẋ ≥ 0, and z ≤ 0}, we have V̇Q3 = zẋD−1(A+(β−λ)|z|n).
In this case, V̇Q3 ≤ 0 for all values of z. The same conclusion is drawn in the
case that Q4 = {ẋ ≤ 0, and z ≥ 0}.

We then conclude that for all possible signs of ẋ and z, we have V̇z ≤ 0 for
all |z| ≥ z0. By theorem 4.10 in [164] we conclude that z(t) is bounded for every

Fig. 12.3. Base isolation system (a) and physical model (b)
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piecewise function ẋ and every initial condition z(0). The bounds on z(t) can
be derived as follows: If the initial condition of z is such that |z(0)| ≤ z0, then
|z| ≤ z0 for all t ≥ 0. If the initial condition of z is such that z(0) ≥ z0, then
|z| ≤ z(0) for all t ≥ 0.

We now turn to the case P2 by considering V̇z in the regions {ẋ ≥ 0, and z ≥
z0}, {ẋ ≥ 0, and − z1 ≤ z ≤ 0}, {ẋ ≤ 0, and 0 ≤ z ≤ z1}, and {ẋ ≤
0, and − z0 ≤ z ≤ 0}, where

z1 = n
√

A/(λ − β)

Following the similar argument earlier, we can show that V̇z ≤ 0 for the initial
state z(0) satisfying that |z(0)| ≤ z1.

Following the same analysis for the case P3, we can see that z may be un-
bounded for some functions ẋ. This implies that the region of boundedness of
z(t) is empty in this case.

A similar analysis can be carried out for the case A < 0 and A = 0 and a
conclusion draw from the analysis is summarized in the following lemma.

Lemma 12.1. Consider the nonlinear dynamic system (12.4). Then for any
piecewise continuous signal x and ẋ, the output z(t) is globally bounded if and
only if the parameters of system (12.4) satisfies the inequality β > |λ|.

The control objective is to design a backstepping adaptive control law such that

• The closed loop is bounded.
• The tracking error x(t)−yr(t) is made arbitrarily small both in the transient

period and steady state by an explicit choice of the design parameters, where
yr(t) is a known bounded reference signal.

12.3 Control Design and Main Results

In this section, we develop two adaptive backstepping design schemes. In Scheme
I, we use some available structure information in the design and the residual effect
of the hysteresis is treated as a bounded disturbance with unknown bound. An
update law is used to estimate the bound involving the effect of the hysteresis and
the external disturbance. In Scheme II, we assume certain apriori information
of the parameters in the Bouc-Wen model (12.4) is available and construct a
variable z̄(t) to approximate z(t) in (12.4) in our controller design. To illustrate
the backstepping procedures, only the first scheme is elaborated in details.

12.3.1 Control Scheme I

The Bouc-Wen nonlinear restoring force Φ(x, t) in (12.3) can be parameterized
as follows.

Φ(t) = θ1x(t) + R(t) (12.6)

where θ1 = αk is uncertain parameter and R(t) = (1−α)Dkz(t). Note that x(t)
is an available signal.
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For the residual term R we have the following inequality:

|R(t)| ≤ (1 − αmin)Dmaxkmaxmaxt≥0|z(t)| (12.7)

Then we rewrite equations (12.2) and (12.6) in the following form

ẋ1 = x2 (12.8)

ẋ2 =
1
m

(
u(t) − c̄x2 − θ1x(t) − R(t) + f(t)

)

= θT ϕ(t) +
1
m

(
u(t) + d(t)

)
(12.9)

where x1 = x, x2 = ẋ, θ = [ c̄
m , θ1

m ]T is a constant vector of uncertain parameters,
ϕ = [−x2, −x(t)]T and d(t) = f(t) − R(t). Note that R(t) is bounded as z(t) has
been shown bounded in Lemma 12.1. So d(t) is bounded with unknown bound F .

Before presenting the adaptive control design using the backstepping tech-
nique to achieve the desired control objectives, the following change of coordi-
nates is made.

ς1 = x1 − yr (12.10)
ς2 = x2 − ẏr − α1 (12.11)

where α1 is the virtual control and will be determined in later discussion.

• Step 1: We design the virtual control law α1 as

α1 = −c1ς1 (12.12)

where c1 is a positive design parameter. From (12.8) and (12.12) we have

ς1 ς̇1 = −c1ς
2
1 + ς1ς2 (12.13)

• Step 2: From (12.9) and (12.11), we have

ς̇2 = θT ϕ +
1
m

(
d(t) + u(t)

)
− ÿr − α̇1 (12.14)

Then the control law and parameter update laws are given below.

u = −F̂ sign(ς2) + m̂ū (12.15)

ū = −c2ς2 − ς1 − θ̂ϕ + ÿr + α̇1 (12.16)
˙̂
θ = Γϕς2 (12.17)
˙̂m = −γūς2 (12.18)
˙̂
F = γf |ς2| (12.19)

where c2, γ and γf are designed positive parameters, Γ is a positive definite
design matrix. θ̂, m̂ and F̂ are estimates of θ, m and F .
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Remark 12.1. Note that a parameter update law is used to estimate the bound
F of the disturbance d(t), so there is no need to know this bound.

We define a positive Lyapunov function as

V =
1
2
ς2
1 +

1
2
ς2
2 +

1
2mγ

m̃2 +
1
2
θ̃T Γ−1θ̃ +

1
2mγf

F̃ 2 (12.20)

where m̃ = m − m̂, θ̃ = θ − θ̂ and F̃ = F − F̂ .
Note that 1

mu in (12.14) can be expressed as

1
m

u =
1
m

m̂ū − 1
m

F̂ sign(ς2)

= ū − 1
m

m̃ū − 1
m

F̂ sign(ς2) (12.21)

Then the derivative of V along with (12.15-12.18) is given by

V̇ = ς1ς̇1 + ς2ς̇2 + θ̃T Γ−1 ˙̃θ +
1

mγ
m̃ ˙̃m +

1
mγf

F̃ ˙̃F

≤ −c1ς
2
1 − c2ς

2
2 + θ̃T Γ−1(Γϕς2 − ˙̂

θ
)

− 1
mγ

m̃
(
γūς2 + ˙̂m

)
+

1
mγf

F̃
(
γf |ς2| − ˙̂

F
)

= −c1ς
2
1 − c2ς

2
2 (12.22)

Based on (12.22), we can obtain the result on system stability and performance
as stated below.

Theorem 12.1. Consider the uncertain nonlinear system (12.2). With the ap-
plication of the controller (12.15) and the parameter update laws (12.17), (12.18)
and (12.19), the following statements hold:

• The resulting closed loop system is global uniform ultimate bounded.
• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − yr(t)] = 0 (12.23)

• The transient displacement tracking error performance is given by

‖ x(t) − yr(t) ‖2≤
1

√
c1

×
(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.24)

• The transient velocity tracking error performance is given by

‖ ẋ − ẏr ‖2≤ (
1

√
c2

+
√

c1)
(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.25)
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Proof: Equation (12.22) shows that V (t) is globally uniformly bounded. This
implies that ς1, ς2, θ̃, m̃, F̃ are bounded. The state variables x1, x2 and the pa-
rameter estimates θ̂, m̂, F̂ are also bounded. Thus u is bounded from (12.15)
because of the boundedness of ς1, ς2, θ̂, m̂, F̂ .

Since V is non increasing from (12.22), we have

‖ ς1 ‖2
2 =

∫ ∞

0
|ς1(τ)|2dτ ≤ 1

c1
(V (0) − V (∞)) ≤ 1

c1
V (0) (12.26)

Thus, by setting ς1(0) = ς2(0) = 0, we obtain

V (0) =
1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2 (12.27)

a decreasing function of γ, γf and Γ , independent of c1. This means that the
bounds resulting from (12.26) and (12.27)

‖ ς1 ‖2 ≤ 1
√

c1

(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.28)

can be asymptotically reduced either by increasing c1 or by simultaneously in-
creasing γ, γf and Γ . The bound for ‖ ς1 ‖2 is explicit.

From equations (12.9) to (12.12), we get

‖ ẋ − ẏr ‖2=‖ ς2 − c1ς1 ‖2≤‖ ς2 ‖2 +c1 ‖ ς1 ‖2 (12.29)

Similarly, we can get ‖ ς2 ‖2≤ 1√
c2

√
V (0). Along with (12.28) we get

‖ ẋ − ẏr ‖2≤ (
1

√
c2

+
√

c1)
(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.30)

Remark 12.2. From Theorem 12.1 the following conclusions can be obtained:

• Boundedness of the adaptive system is guaranteed to be global, uniform and
ultimate for any positive values of the design parameters c1, c2, γ, γf and Γ .
No a priori information is required about the parameter uncertainty.

• We can decrease the effects of the initial error estimates on the transient
performance by increasing the adaptation gains γ, γf and Γ . And thus the
bound for ‖ x − yr ‖ is an explicit function of desired parameters.

• The transient performance depends on the initial estimate errors θ̃(0) and
m̃(0). The closer the initial estimates θ̂(0), F̂ (0) and m̂(0) to the true values
θ, F and m, the better the transient performance. The asymptotic behavior
is not affected by the initial estimate errors.
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• To improve the displacement tracking error performance we can also increase
the gain c1. However, increasing the gain c1 will also increase the velocity track-
ing error as shown above. Improving the closed loop displacement behavior
may be done at the expense of the increase in the control signal amplitude.
This suggests to fix the gain c1 to some acceptable value and adjust the other
gains. By fixing the gain c1, increasing the gain c2 or by simultaneously increas-
ing γ, γf and Γ , we can achieve a velocity tracking error as small as desired.

12.3.2 Control Scheme II

In this section, we assume that certain apriori information of the Bouc-Wen
model parameters is available. Thus we further exploit the structure of the model
in our controller design to improve system performance.

The Bouc-Wen nonlinear restoring force Φ(x, t) in (12.3) can be parameterized
as follows.

Φ(t) = θ1x(t) + θ2z(t) (12.31)

where θ1 = αk and θ2 = (1 − α)Dk are uncertain parameters.

Assumption. Parameters A, β, D, λ are inside some known intervals.

With the above assumption, a signal z̄(t) can be generated using an equation

˙̄z = D−1
0 [A0ẋ − β0|ẋ||z̄|n−1z̄ − λ0ẋ|z̄|n] (12.32)

where A0, β0, D0, λ0 are inside the known intervals. With this z̄(t), we approxi-
mate Φ(x, t) by Φ̄(x, t) as Φ̄(x, t) = θ1x(t) + θ2z̄(t).

Remark 12.3. From Lemma 12.1, z̄(t) − z(t) is bounded. Note that Φ − Φ̄ =
θ2(z − z̄). So Φ − Φ̄ is also bounded. This bounded error can then be combined
with external disturbance to get f with its combined bound F estimated as in
Scheme I. It is expected that ‖ Φ − Φ̄ ‖≤‖ Φ ‖.

Then we rewrite equations (12.2) and (12.6) in the following form

ẋ1 = x2 (12.33)

ẋ2 = θT ϕ(t) +
1
m

(
u(t) + f(t)

)
(12.34)

where x1 = x, x2 = ẋ, θ = [ c̄
m , θ1

m , θ2
m ]T is a constant vector of uncertain param-

eters, and ϕ = [−x2, −x(t), −z̄(t)]T .
The controller design is similar to the Scheme I. We only give the resulting

control laws.

u = −F̂ sign(ς2) + m̂ū (12.35)

ū = −c2ς2 − ς1 − θ̂ϕ + ÿr + α̇1 (12.36)
α1 = −c1ς1 (12.37)

˙̂
θ = Γϕς2 (12.38)
˙̂m = −γūς2 (12.39)
˙̂
F = γf |ς2| (12.40)
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where c1, c2, γ and γf are designed positive parameters, Γ is a positive definite
design matrix, θ̂, m̂ and F̂ are estimates of θ, m and F .

Remark 12.4. Certain information of the hysteretic structure is used in our con-
troller design, unlike the Scheme I and the scheme in [150], where the effect of
hysteresis is treated as a bounded disturbance. This is reflected in θ̂ and ϕ of
the designed controller in (12.35)-(12.40).

Following the similar analysis to Scheme I, we can establish that x, ẋ, θ̂, m̂, F̂
are all bounded. Then from Lemma 12.1 and (12.35), (12.36), u is also bounded.
Thus the result on system stability and performance can be established and now
stated in the following theorem.

Theorem 12.2. Consider the uncertain nonlinear system (12.2). With the ap-
plication of the controller (12.35) and the parameter update laws (12.38), (12.39)
and (12.40), the following statements hold:

• The resulting closed loop system is global uniform ultimate bounded.
• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − yr(t)] = 0 (12.41)

• The transient displacement tracking error performance is given by

‖ x(t) − yr(t) ‖2≤
1√
c1

(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.42)

• The transient velocity tracking error performance is given by

‖ ẋ − ẏr ‖2≤ (
1

√
c2

+
√

c1)
(1
2
θ̃T (0)Γ−1θ̃(0) +

1
2mγ

m̃(0)2 +
1

2mγf
F̃ (0)2

)1/2

(12.43)

12.4 Simulation Results

In this section we test our proposed backstepping controller. For simulation
studies, the following values are selected as “true” parameters for the system and
the hysteresis model: m = 156× 103[Kg], k = 6 × 106[N/m], c = 2× 104[Ns/m],
α = 0.6, D = 0.6[m], A = 1, β = 0.5, λ = 0.4, n = 3. In fact, it is not required to
know the exact values of these parameters to implement the controller.

The control objective is to mitigate the seismic displacement response of the
system, so the reference trajectory yr(t) is set to 0.

When Scheme I is used, we take the following set of design parameters: γ =
0.1, Γ = I3, γf = 0.5, c1 = 0.3, c2 = 3, m̂(0) = 300 × 103, D̂(0) = 200 × 103, and
θ̂(0) = [0.15, 12, 5]T .
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Fig. 12.4. Earthquake ground acceleration
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Fig. 12.5. Hysteresis identification

When Scheme II is used, we take the following set of design parameters:
γ = 0.1, Γ = I2, γf = 0.5, c1 = 0.3, c2 = 3, m̂(0) = 300 × 103, F̂ (0) = 200 ×
103, θ̂(0) = [0.15, 12]T , A0 = 1.5, β0 = 0.6, λ0 = 0.3, D = 0.5. Note that the
uncertainties of these parameters are 50%, 20%, 25%, 16.7%, respectively.

Figure 12.4 shows the earthquake ground acceleration. Figure 12.5 displays
the results of the hysteresis behavior.

The simulation results with the proposed Scheme I are presented in Figures
12.6 to 12.8. Figures 12.6 and 12.7 show the time histories of the displacement
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Fig. 12.6. Displacement x1(Without Control: dashed; With Scheme I: solid)
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Fig. 12.7. Velocity x2 (Without Control: dashed; With Scheme I: solid)

x1 and the velocity x2 without control and with control using Scheme I. After t
= 20 seconds, the excitation stops and the uncontrolled case corresponds to free
vibration response. The open loop system exhibits a low damping behavior. On
the contrary, the proposed control drive the response towards zero rapidly, thus
introducing a significant damping effect into the system. Figure 12.8 shows the
time history of the control signal with Scheme I. Clearly, system performance is
improved by Scheme I, even though we need much less apriori knowledge from
the system.
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Fig. 12.8. Control Signal u(t)/m with Scheme I
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Fig. 12.9. Control Signal u(t)/m with Scheme II

The simulation results with the proposed Scheme II are also presented in
Figures 12.9 to 12.13. Figures 12.9-12.11 show the time history of the control
signal, the displacement x1 and the velocity x2. Figure 12.12 displays system
hysteresis behavior Φ(t) and the approximated hysteresis behavior Φ̄(t) with
Scheme II. Figure 12.13 displays the behavior of Φ − Φ̄. As noted, |Φ − Φ̄| is
smaller than |Φ(t)|. A significant reduction in the magnitude of x and ẋ can be
observed with Scheme II.

As a conclusion, the simulation results verify our theoretical findings and show
the effectiveness of our control schemes. System performance is improved by our
proposed schemes. Also Scheme II is better than Scheme I in improving system
performance, but requires more apriori knowledge.
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Fig. 12.10. Displacement x1 (Without Control: dashed; With Scheme II: solid)
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Fig. 12.11. Velocity x2 ( Without Control: dashed; With Scheme II: solid)

12.5 Summary

This chapter has presented two backstepping adaptive controllers for a second-
order uncertain building structural system involving hysteretic phenomena. The
hysteretic nonlinear behavior is described by the so-called Bouc-Wen model.
The control strategies have been applied to a system found in base isolation
schemes for seismic active protection of building structures. In the first scheme,
the partial effect of the hysteresis is treated as a bounded disturbance. In the
second scheme, we further take the structure of the hysteresis into account in our
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Fig. 12.12. True system hysteresis Φ: solid; approximated hysteresis Φ̄ with Scheme
II: dashed
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controller design. It is shown that the proposed controllers can guarantee global
boundedness of all signals and achieve tracking to a desired precision. Numerical
results show that the adaptive control law is working satisfactorily in that the
response induced by seismic action is significant reduced.



13 Control of a Piezo-Positioning Mechanism
with Hysteresis

Piezo-positioning mechanisms are often used in high-precision positioning
applications. Due to their materials, nonlinear hysteretic behavior is commonly
observed in such mechanisms and can be described by a LuGre model. In this chap-
ter, we develop two robust adaptive backstepping control algorithms for piezo-
positioning mechanisms. In the first scheme, we take the structure of the LuGre
model into account in the controller design, if the parameters of the model are
known. A nonlinear observer is designed to estimate the hysteresis force. In the
second scheme, there is no apriori information required from these parameters
and thus they can be allowed totally uncertain. In this case, the LuGre model
is divided into two parts. While the unknown parameters of one part is incorpo-
rated with unknown system parameters for estimation, the effect of the other part
is treated as a bounded disturbance. An update law is used to estimate the bound
involving this partial hysteresis effect and the external load. For both schemes, it
is shown that not only stability is guaranteed by the proposed controller, but also
both transient and asymptotic performances are quantified as explicit functions
of the design parameters so that designers can tune the design parameters in an
explicit way to obtain the required closed loop behavior.

13.1 Introduction

Piezo-positioning mechanisms are often used in high-precision positioning appli-
cations, such as nanometer. Since the materials of the piezo-positioning mech-
anisms are ferroelectric, nonlinear hysteretic behavior is commonly observed in
such mechanisms in response to an applied electric field. This leads to problems of
severe inaccuracy, instability, and restricted system performance due to the hys-
teresis nonlinearity. Moreover, the hysteresis characteristic is usually unknown
and the states to represent hysteresis dynamics are often unavailable. These
usually cause the increasing difficulties in servo control design with high per-
formance requirement for piezo-positioning mechanisms. Studies of this problem
have been reported in the works of [165, 166]. In [166], a feed-forward model-
reference control was designed to improve scanning accuracy of PZT piezoelectric
actuator. Studies of controlling hysteresis nonlinearity have also been reported

J. Zhou & C. Wen: Adapt. Backstepping Ctrl. of Uncertain Systems, LNCIS 372, pp. 215–226, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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in the works of [43, 45, 56, 55, 126, 120]. In [55, 56, 126], an adaptive hysteresis
inverse cascaded with the plant was employed to cancel the effects of hysteresis.
In [43, 120] a dynamic hysteresis model was defined to pattern a hysteresis rather
than constructing an inverse model to mitigate the effects of the hysteresis. In
[167], a reinforcement discrete neuro-adaptive control was proposed for unknown
piezoelectric actuator systems with dominant hysteresis. In [168], an adaptive
wavelet neural network control was proposed to control a piezo-positioning mech-
anism with hysteresis estimation. However, it is assumed that system uncertain
parameters must be within some known intervals. It is also assumed that system
states must be inside compact sets in order to ensure the error due to neural
network approximation bounded. This implies that the closed-loop system is
bounded-input bounded-output stable even before the controller is designed.

In this chapter, in order to consider the hysteresis, the Lugre model pre-
sented in [169] is used and the proposed hysteresis model with parametrization
is integrated into a mechanical motion dynamics with lumped external load to
completely represent the overall dynamics of a piezo-positioning mechanism.
We develop two simple adaptive backstepping control schemes for the piezo-
positioning mechanism. In the first scheme, we take the structure of the Lugre
model into account in the controller design, if parameters of the model are known.
A nonlinear observer is designed by using Lyapunov technique to estimate the
unavailable state. In the second scheme, there is no apriori information required
from these parameters and thus they can be allowed totally uncertain. In this
case, the LuGre model is divided into two parts. While the unknown parameters
of one part is incorporated with unknown system parameters for estimation, the
effect of the other part is treated as a bounded disturbance. An update law is
used to estimate the bound involving this partial hysteresis effect and the exter-
nal load. Besides showing stability of the system for both schemes, the transient
performance in terms of L2 norm of the tracking error is derived to be an explicit
function of design parameters and thus our scheme allows designers to obtain
the closed loop behavior by tuning design parameters in an explicit way.

13.2 System Description

It is well known that there exist two difficulties in the modelling of the hysteresis
nonlinearity of piezo-actuators: (i) the nonlocal memory phenomenon; and (ii)
the asymmetric loop between descending and ascending paths. A hysteresis fric-
tion model will be developed to simply and appropriately describe the dynamics
of the piezo-positioning mechanism with a hysteresis effect. In this chapter, the
following second-order uncertain nonlinear system in [168] is used to model the
dynamics of a piezo-positioning mechanism.

Mẍ + Dẋ + FH + FL = u (13.1)

where M denotes the equivalent mass of the controlled piezo-positioning mech-
anism, which is positive; x is the displacement of the mechanism; ẋ denotes the
relative velocity; ẍ denotes the acceleration; D is the linear friction coefficient of
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the piezo-positioning mechanism; FL is the external load; FH denotes the hys-
teresis friction force function; u denotes the applied voltage to piezo-positioning
mechanism. A block diagram representing system (13.1) is shown in Figure 13.1.

1
Ms+D

1
s

Hysteresis
Friction Model

FL FH

u -
+ +

-
x

Model with hysteresis

Model of Piezo-Positioning Mechanism with Hysteresis

.
x

Fig. 13.1. Block diagram of modelling piezo-positioning mechanism

The hysteresis friction force FH is described by the so-called LuGre model
[169] in the following form

FH = σ0z + σ1
dz

dt
+ σ2ẋ (13.2)

ż = ẋ − |ẋ|
g(ẋ)

z (13.3)

where z is an un-measurable state and represents the average deflection of the
contact force, ẋ denotes the relative velocity between the two contact surfaces,
σ0, σ1 and σ2 are positive constants and can be equivalently interpreted as the
bristle stiffness, bristle damping and viscous damping coefficient, respectively.
Moreover, the function g(ẋ) denotes the Stribeck effect curve given by

σ0g(ẋ) = fC + (fS − fC)e−(ẋ/ẋS)2 (13.4)

where fC is the coulomb friction which is independent of the velocity, fS is the
stiction force which is the critical force that makes an object move from the static
mode, and ẋS is the Stribeck velocity, see [170]. The function g(ẋ) is positive
and bounded. As shown in [169], the following lemma holds.

Lemma 13.1. Consider nonlinear dynamic system (13.3). For any piecewise
continuous signal x and ẋ, the output z(t) is bounded.
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Substituting (13.3) into (13.2), the hysteresis friction model can be rewritten as:

FH = σ0z − σ1
1

g(ẋ)
z|ẋ| + (σ1 + σ2)ẋ (13.5)

The hysteresis friction expressed in (13.5), which is functionally related to the
system velocity, is used to represent the behavior of the hysteresis introduced
by the piezo-actuator. Furthermore, if the hysteresis friction is integrated into
the mechanical motion dynamics, the overall dynamics including the hysteresis
effect can be effectively and completely modelled.

The control objective is to design a backstepping adaptive control law for
system (13.1) so that the displacement x of the piezo-positioning mechanism
can track any desired bounded reference trajectory xm.

13.3 Backstepping Control and Stability Analysis

In this section, we develop two adaptive backstepping design schemes. In Scheme
I, we assume that the hysteresis parameters σ0, σ1, σ2 and the function g are
known. The state z(t) is not measurable and hence has to be observed to esti-
mate the hysteresis force FH . For this we design an observer ẑ(t) to estimate
z(t). In Scheme II, we assume that the parameters σ0, σ1, σ2, fS, fC , ẋS in the
hysteresis model (13.3) are all uncertain. The residual effect of the hysteresis is
treated as a bounded disturbance with unknown bound. An update law is used
to estimate the bound involving the effect of the hysteresis and the external load.
To illustrate the backstepping procedures, only the first scheme is elaborated in
details.

Control Scheme I

When the hysteresis parameters σ0, σ1, σ2 and the function g are known, we can
exploit the structure of the model in our controller design to improve system
performance.

We rewrite equations (13.1) in the following form

ẋ1 = x2

ẋ2 =
1
M

u − θx2 − 1
M

FH − 1
M

FL (13.6)

where x1 = x, x2 = ẋ and θ = D
M is uncertain parameter. Note that FL is

bounded with unknown bound Fo. Before presenting the adaptive control design
using the backstepping technique to achieve the desired control objectives, the
following change of coordinates is made.

ς1 = x1 − xm (13.7)
ς2 = x2 − ẋm − α1 (13.8)

where α1 is a virtual control and will be determined in later discussion.
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The variable z(t) is not measurable and hence has to be observed to estimate
the hysteresis force FH . For this, we design a nonlinear observer to estimate the
variable z as follows:

˙̂z = ẋ − |x2|
g(x2)

ẑ + φ(t) (13.9)

where φ(t) is a nonlinear function derived later. Note that |x2|
g(x2)

is positive and
bounded.

• Step 1: From (13.6) to (13.8), we obtain that

ς̇1 = ς2 + α1 (13.10)

We design the virtual control law α1 as

α1 = −c1ς1 (13.11)

where c1 is a positive design parameter. From (13.10) and (13.11) we have

ς1 ς̇1 = −c1ς
2
1 + ς1ς2 (13.12)

• Step 2: From (13.6) and (13.8), we have

ς̇2 =
1
M

u − θx2 − 1
M

FH − 1
M

FL − ẍm − α̇1 (13.13)

Then function φ(t) in (13.9), the control law and parameter update laws are
obtained as follows by considering a Lyapunov function in (13.21) with details
given later.

φ(t) = −σ0ς2 + σ1
|x2|

g(x2)
ς2 (13.14)

u(t) = M̂ū + F̂H − F̂osign(ς2) (13.15)

ū(t) = −c2ς2 − ς1 + θ̂x2 + ẍm + α̇1 (13.16)
˙̂
θ = −γθx2ς2 (13.17)
˙̂

M = −γM ūς2 (13.18)
˙̂
F o = γF |ς2| (13.19)

F̂H = σ0ẑ − σ1
|x2|

g(x2)
ẑ + (σ1 + σ2)x2 (13.20)

where c2, γθ, γM and γF are positive design parameters, θ̂, M̂ and F̂o are es-
timates of θ, M and Fo, respectively, Fo is the unknown bound of the external
load FL.

Remark 13.1. Note that a parameter update law is used to estimate the bound
Fo of the external load FL, so there is no need to know this bound.
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We now show how (13.14)-(13.20) are derived by the following function.

V =
1
2
ς2
1 +

1
2
ς2
2 +

1
2MγM

M̃2 +
1

2γθ
θ̃2 +

1
2MγF

F̃ 2
o +

1
2M

z̃2 (13.21)

where M̃ = M − M̂ , θ̃ = θ − θ̂, F̃o = Fo − F̂o and z̃ = z − ẑ.
Note that 1

M u in (13.13) can be expressed as

1
M

u =
1
M

M̂ū +
1
M

F̂H − 1
M

F̂osign(ς2)

= ū − 1
M

M̃ū +
1
M

F̂H − 1
M

F̂osign(ς2) (13.22)

Then the derivative of V along with (13.9), (13.13) and (13.22) is given by

V̇ = ς1 ς̇1 + ς2ς̇2 +
1
γθ

θ̃ ˙̃θ +
1

MγM
M̃ ˙̃M +

1
MγF

F̃o
˙̃F o +

1
M

z̃ ˙̃z

= −c1ς
2
1 + ς1ς2 + ς2(

1
M

u − θx2 − 1
M

FH − 1
M

FL − ẍm − α̇1)

+
1
γθ

θ̃
˙̃
θ +

1
MγM

M̃ ˙̃M +
1

MγF
F̃o

˙̃F o +
1
M

z̃(ż − ˙̂z)

= −c1ς
2
1 + ς2(ū + ς1 − θx2 − ẍm − α̇1) − 1

M
ς2(FH − F̂H) +

1
M

z̃(ż − ˙̂z)

− 1
γθ

θ̃T ˙̂
θ − 1

MγM
M̃

(
γM ūς2 + ˙̂

M
)

+
1

MγF
F̃o

(
γF |ς2| − ˙̂

F o

)
(13.23)

So ū given in (13.16) is designed based on the second term of (13.23). Then the
derivative of V is given by

V̇ ≤ −c1ς
2
1 − c2ς

2
2 − 1

M

|x2|
g(x2)

z̃2 +
1
M

z̃
(

− σ0ς2 +
σ1|x2|
g(x2)

ς2 − φ(t)
)

− 1
γθ

θ̃T
(
γθx2ς2 + ˙̂

θ
)

− 1
MγM

M̃
(
γM ūς2 + ˙̂

M
)

+
1

MγF
F̃o

(
γF |ς2| − ˙̂

F o

)
(13.24)

Then φ(t), ˙̂
θ,

˙̂
M and ˙̂

F o in (13.14), (13.17), (13.18) and (13.19) are obtained by
making the last four terms of (13.24) zero, respectively. Thus,

V̇ ≤ −c1ς
2
1 − c2ς

2
2 − 1

M

|x2|
g(x2)

z̃2 (13.25)

Based on (13.25), we can obtain the result on system stability and performance
as stated below.

Theorem 13.1. Consider the uncertain nonlinear system (13.1). With the ap-
plication of the controller (13.15), the observer (13.9) and the parameter update
laws (13.17), (13.18) and (13.19), the following statements hold:
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• The resulting closed loop system is globally bounded input bounded output
(BIBO) stable.

• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − xm(t)] = 0 (13.26)

• The transient displacement tracking error performance is given by

‖ x(t) − xm(t) ‖2

≤ 1
√

c1

( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2 +
1

2M
z̃(0)2

)1/2

(13.27)

• The transient velocity tracking error performance is given by

‖ ẋ − ẋm ‖2

≤ (
1

√
c2

+
√

c1)
( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2 +
1

2M
z̃(0)2

)1/2

(13.28)

Proof: Equation (13.25) shows that V (t) is globally uniformly bounded. This
implies that ς1, ς2, θ̃, M̃ , F̃o, z̃ are bounded. The state variables x1, x2 and the
parameter estimates θ̂, M̂ , F̂o, ẑ are also bounded. Thus u is bounded from
(13.15) because of the boundedness of ς1, ς2, θ̂, M̂ , F̂o, ẑ. By applying the LaSalle-
Yoshizawa theorem to (13.25), it further follows that zi(t) → 0, i = 1, 2 as t → ∞,
which implies that limt→∞[x(t) − xm(t)] = 0.

Since V is non increasing from (13.25), we have

‖ ς1 ‖2
2 =

∫ ∞

0
|ς1(τ)|2dτ ≤ 1

c1
(V (0) − V (∞)) ≤ 1

c1
V (0) (13.29)

The initial value of the Lyapunov function is

V (0) =
1
2
ς2
1 (0) +

1
2
ς2
2 (0) +

1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2

+
1

2MγF
F̃o(0)2 +

1
2M

z̃(0)2 (13.30)

Note that θ̃(0), M̃(0), F̃o(0) and ς1(0) = x1(0)−xm(0) are clearly independent of
c1, γM , γθ and γF . We can set ς1(0) and ς2(0) to zero by appropriately initializing
the reference trajectory xm(0) and ẋm(0) as follows

xm(0) = x1(0) (13.31)
ẋm(0) = x2(0) (13.32)

Thus, by setting ς1(0) = ς2(0) = 0, we obtain

V (0) =
1

2γθ
θ̃(0)2 +

1
2MγM

M̃(0)2 +
1

2MγF
F̃o(0)2 +

1
2M

z̃(0)2 (13.33)
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a decreasing function of γθ, γF and γM , independent of c1. This means that the
bound resulting from (13.29) and (13.33) satisfies

‖ ς1 ‖2 ≤ 1√
c1

( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2 +
1

2M
z̃(0)2

)1/2

(13.34)

and can be asymptotically reduced either by increasing c1 or by simultaneously
increasing γθ, γM and γF . Thus the bound for ‖ ς1 ‖2 is an explicit function of
design parameters.

From equations (13.10) to (13.11), we get

‖ ẋ − ẏr ‖2=‖ ς2 − c1ς1 ‖2≤‖ ς2 ‖2 +c1 ‖ ς1 ‖2 (13.35)

Similarly, we can get ‖ ς2 ‖2≤ 1√
c2

√
V (0). Along with (13.34) we get

‖ ẋ − ẏr ‖2

≤ (
1√
c2

+
√

c1)
( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2 +
1

2M
z̃(0)2

)1/2

(13.36)

Remark 13.2. From Theorem 13.1 the following conclusions can be obtained:

• Boundedness of signals in the adaptive system is guaranteed to be global,
uniform and ultimate for any positive values of the design parameters c1, c2,
γθ, γM and γF .

• The transient performance depends on the initial estimate errors θ̃(0), M̃(0),
F̃o(0) and z̃(0). The closer the initial estimates to the true values, the better
the transient performance. The asymptotic behavior is not affected by the
initial estimate errors. We can decrease the effects of the initial error esti-
mates on the transient performance by increasing the adaptation gains γθ,
γM and γF .

• To improve the displacement tracking error performance we can also increase
the gain c1. However, increasing the gain c1 will also increase the velocity
tracking error as shown above. Improving the closed loop displacement be-
havior may be done at the expense of the increase in the control signal ampli-
tude. This suggests to fix the gain c1 to some acceptable value and adjust the
other gains. By fixing the gain c1, increasing the gain c2 or by simultaneously
increasing γθ, γM and γF , we can achieve a velocity tracking error as small
as desired.

Control Scheme II

In this section, there is no apriori information required from parameters σ0,
σ1, σ2, fC , fS ẋS and thus they can be allowed totally uncertain. The LuGre
hysteresis friction force FH in (13.5) can be divided into two parts as follows.

FH = (σ1 + σ2)ẋ + R(t) (13.37)

R(t) = σ0z − σ1
|ẋ|

g(ẋ)
z (13.38)
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From Lemma 13.1, we have that R(t) is bounded. Then we combine (σ1 + σ2)ẋ
with Dẋ in (1) and rewrite equations (13.1) and (13.37) in the following form

ẋ1 = x2

ẋ2 =
1
M

u − θx2 − 1
M

d(t) (13.39)

where x1 = x, x2 = ẋ, θ = 1
M (D + σ1 + σ2), and d(t) = R + FL. So d(t) is

bounded with unknown bound Fo.
Now d(t) can be handled in the same way as FL in Scheme I. Thus the

controller design in this case is similar to the Scheme I and we only give the
resulting control laws.

u = M̂ū − F̂osign(ς2) (13.40)

ū = −c2ς2 − ς1 + θ̂x2 + ẍm + α̇1 (13.41)
α1 = −c1ς1 (13.42)

˙̂
θ = −γθx2ς2 (13.43)
˙̂

M = −γM ūς2 (13.44)
˙̂
F o = γF |ς2| (13.45)
ς1 = x1 − xm (13.46)
ς2 = x2 − ẋm − α1 (13.47)

where c1, c2, γθ, γM and γF are designed positive parameters, θ̂, M̂ and F̂o are
estimates of θ, M and Fo, respectively.

Following the similar analysis to Scheme I, we can establish that ς1, ς2, θ̂, M̂ ,
F̂o, u are all bounded. Thus similar to Theorem 13.1, the results on system
stability and performance can be established and now stated in the following
theorem.

Theorem 13.2. Consider the uncertain nonlinear system (13.1). With the ap-
plication of the controller (13.40) and the parameter update laws (13.43), (13.44)
and (13.45), the following statements hold:
• The resulting closed loop system is globally bounded input bounded output
(BIBO) stable.

• The asymptotic tracking is achieved, i.e.,

lim
t→∞[x(t) − xm(t)] = 0 (13.48)

• The transient displacement tracking error performance is given by

‖ x(t) − xm(t) ‖2≤
1

√
c1

×
( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2
)1/2

(13.49)
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• The transient velocity tracking error performance is given by

‖ ẋ − ẋm ‖2

≤ (
1

√
c2

+
√

c1)
( 1
2γθ

θ̃(0)2 +
1

2MγM
M̃(0)2 +

1
2MγF

F̃o(0)2
)1/2

(13.50)

13.4 Simulation Results

In this section we test our proposed backstepping controllers on model (13.1).
For simulation studies, the following values are selected as “true” parameters
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Fig. 13.2. Time history of tracking error x − xm with Scheme I
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Fig. 13.3. Time history of tracking error x − xm with Scheme II
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Fig. 13.4. Time history of control input u(t) with Scheme I
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Fig. 13.5. Time history of control input u(t) with Scheme II

for the system and the hysteresis model: σ0 = 5N/m, σ1 = 0.9Ns/m, σ2 =
0.4Ns/m, fC = 1N, fS = 1.5N, ẋS = 0.01m/s, M = 1kg, D = 0.15Ns/m and
FL = 0.3 sin(t).

The design objective is to drive the displacement x of the piezo-positioning
mechanism to track the reference trajectory xm(t) = 2 sin(2t).

For both schemes, we take the following set of design parameters: γθ =
0.4, γM = 0.2, γF = 0.4, c1 = c2 = 4. The initials are set as x(0) = 0.6, ẋ(0) =
2, z(0) = 0, ẑ(0) = 0, M̂(0) = 1.2, F̂O(0) = 0.8, and θ̂(0) = 0.2, respectively.

When Scheme II is used, we take the following set of design parameters:
γθ = 0.4, γM = 0.2, γF = 0.4, c1 = c2 = 4. The initials are same with Scheme I.

The simulation results with the proposed two schemes are presented in Figures
13.2 to 13.6, respectively. Figures 13.2 and 13.3 show the time history of the
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Fig. 13.6. Hysteresis identification

displacement x and the trajectory xm, while figures 13.4 and 13.5 show the time
history of the control input u. Figure 13.6 displays the results of the hysteresis
behavior.

It is observed that Scheme I is better than Scheme II in improving system
performance. This is expected as more apriori knowledge is used. Overall, the
simulation results verify our theoretical findings and show the effectiveness of
our control schemes.

13.5 Conclusion

In this chapter, two backstepping adaptive controllers have been presented for
a piezo-positioning mechanism involving hysteretic phenomena. The hysteretic
nonlinear behavior is described by the LuGre model. In the first scheme, we
take the structure of the hysteresis into account in our controller design, if the
parameters of the Lugre model are all known. A nonlinear observer is designed
by considering a Lyapunov function. In the second scheme, there is no apriori
information required from these parameters and part of the hysteresis effect is
treated as a bounded disturbance. It is shown that the proposed controllers can
guarantee global boundedness of signals and achieve asymptotic tracking. Nu-
merical results show that the designed adaptive control laws work satisfactorily.
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Appendix A

Lyapunov Stability [1]

For all control systems and adaptive control systems in particular, stability is
the primary requirement. Consider the time-varying system

ẋ = f(x, t) (A.1)

where x ∈ Rn, and f : Rn × R+ → Rn is piecewise continuous in t and locally
Lipschiz in x. The solution of (A.1) which starts from the point x0 at time
t0 ≥ 0 is denoted as x(t; x0, t0) with x(t0; x0, t0) = x0. If the initial condition x0
is perturbed to x̃0, then, for stability, the resulting perturbed solution x(t; x̃0, t0)
is required to stay close to x(t; x0, t0) for all t ≥ t0. In addition, for asymptotic
stability, the error x(t; x̃0, t0) → x(t; x0, t0) is required to vanish as t → ∞. So
the solution x(t; x0, t0) of (A.1) is

• bounded, if there exists a constant B(x0, t0) > 0 such that

|x(t; x0, t0)| < B(x0, t0), ∀ t ≥ t0;

• stable, if for each ε > 0 there exists a δ(ε, t0) > 0 such that

|x̃0 − x0| < δ, |x(t; x̃0, t0) − x(t; x0, t0)| < ε, ∀ t ≥ t0;

• attractive, if there exists a r(t0) > 0 and, for each ε > 0, a T (ε, t0) > 0 such
that

|x̃0 − x0| < r, |x(t; x̃0, t0) − x(t; x0, t0)| < ε, ∀ t ≥ t0 + T ;

• asymptotically stable, if it is stable and attractive; and
• unstable, if it is not stable.
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Theorem A.1 (Uniform Stability). Let x = 0 be an equilibrium point of
(A.1) and D = {x ∈ Rn | |x| < r. Let V : D × Rn → R+ be a continuously
differentiable function such that ∀t ≥ 0, ∀x ∈ D, such that

γ1(|x|) ≤ V (x, t) ≤ γ2(|x|)
∂V

∂t
+

∂V

∂x
f(x, t) ≤ −γ3(|x|)

Then the equilibrium x = 0 is

• uniformly stable, if γ1 and γ2 are class κ functions on [0, r) and γ3(.) ≥ 0 on
[0, r);

• uniformly asymptotically stable, if γ1, γ2 and γ3 are class κ functions on [0, r);
• exponentially stable, if γi(ρ) = kiρ

α on [0, r), ki > 0, α > 0, i = 1, 2, 3;
• globally uniformly stable, if D = Rn, γ1 and γ2 are class κ∞ functions, and

γ3(.) ≥ 0 on R+;
• globally unifromly asymptotically stable, if D = Rn, γ1 and γ2 are class κ∞

functions, and γ3 is a class of κ function on R+; and
• globally exponentially stable, if D = Rn and γi(ρ) = kiρ

α on R+, ki > 0, α >
0, i = 1, 2, 3.

Appendix B

LaSalle-Yoshizawa Theorem [1]

Theorem B.1 (LaSalle-Yoshizawa). Let x = 0 be an equilibrium point of
(A.1) and suppose f is locally Lipschitz in x uniformly in t. Let V : Rn ×R+ →
R+ be a continuously differentiable function such that

γ1(|x|) ≤ V (x, t) ≤ γ2(|x|) (B.1)

V̇ =
∂V

∂t
+

∂V

∂x
f(x, t) ≤ −W (x) ≤ 0 (B.2)

∀ t ≥ 0, ∀ x ∈ Rn, where γ1 and γ2 are class k∞ functions and W is a continuous
function. Then, all solutions of (A.1) are globally uniformly bounded and satisfy

limt→∞W (x(t)) = 0 (B.3)

In addition, if W (x) is positive definite, then the equilibrium x = 0 is globally
uniformly asymptotically stable.

Appendix C

Parameter Projection [1]

Defining the following convex set

IIε = {θ̂ ∈ IRp|P (θ̂) ≤ ε}, II = {θ̂ ∈ IRp|P (θ̂) ≤ 0} (C.1)
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which is a union of the set II and an O(ε)-boundary layer around it. Let us
denote the interior of IIε by IIo and observe that ∇θ̂P represents an outward
normal vector at θ̂ ∈ ∂IIε. The standard projection operator is

Proj{τ} =

⎧
⎨

⎩
τ θ̂ ∈ IIo or ∇θ̂P

tτ ≤ 0
(
I − c(θ̂)Γ ∇θ̂P∇θ̂P T

∇θ̂P T Γ∇θ̂P

)
τ θ̂ ∈ IIε/IIo and ∇θ̂P

T τ > 0

(C.2)

c(θ̂) = min
{
1,

P (θ̂)
ε

}
(C.3)

where Γ belongs to the set G of all positive definite symmetric p × p matrices.
It is helpful to note that c(∂IIε) = 1.

Theorem C.1 (Projection Operator). The following are the properties of
the projection operator (C.2):

(i). The mapping Proj: IRp×IIε×G → IRp is locally Lipschiz in its arguments
τ, θ̂, Γ .

(ii). Proj{τ}T Γ−1Proj{τ} ≤ τT Γ−1τ , ∀ θ̂ ∈ IIε.

(iii). Let Γ (t), τ(t) be continuously differentiable and ˙̂
θ = Proj{τ}, θ̂(0) ∈ IIε.

Then, on its domain of definition, the solution θ̂(t) remains in IIε.
(iv). −θ̃T Γ−1Proj{τ} ≤ −θ̃T Γ−1τ , ∀ θ̂ ∈ IIε, θ ∈ II.

Appendix D

Internal Model Principle

Consider w generated by an exosystem

ẇ = Sw (D.1)

where S is an unknown matrix having distinct eigenvalues with zero real parts.
Such as

S =

⎡

⎢⎢⎢⎣

S1 . . . 0

. . . . .

0 . . . Sm

⎤

⎥⎥⎥⎦ , S1 =

⎡

⎣ 0 β1

−β1 0

⎤

⎦ . . . Sm =

⎡

⎣ 0 βm

−βm 0

⎤

⎦ (D.2)

where w = col(w11, w12, . . . , wm1, wm2), β1, . . . , βm are constants.

Lemma D.1. Let A be a n × n matrix having all eigenvalues with nonzero real
part and S be a matrix which the eigenvalues are zero real parts and distinct
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as in (D.2). Let P denote the set of all homogeneous polynomials of degree p in
w11, w12, . . . , wm1, wm2 with coefficients in R. For any q(w) ∈ Pn, the equation

∂π(w)
∂w

Sw = Aπ(w) + q(w) (D.3)

has a unique solution π(w), which is an element of Pn.

Proof. Follows the proof as in [171]. P is indeed a vector space over R, of
finite dimension d(p, m). Set

Xi = wi1 − jwi2, X̄i = wi1 + jwi2 (D.4)

and note that any b(w) ∈ P can be written as

b(w) =
∑

i1+j1+...+im+jm=p

bi1j1...imjmX i1
i X̄j1

1 . . .X im
m X̄jm

m (D.5)

where bi1j1...imjm are unique determined and

bi1j1...imjm = b̄j1i1...jmim (D.6)

because the coefficients of b(w) are real numbers. Choose any order for the set
of indices i1j1 . . . imjm and write b(w) in the form

b(w) = BW (D.7)

where W is d(p, m)×1 vector consisting of all products of the form the X i1
i X̄j1

1 . . .
X im

m X̄jm
m , while B is a 1 × d(p, m) vector consisting of the corresponding

bj1i1...jmim ’s. In the notation thus established, elements q(w) and π(w) of Pn

can be expressed in the form

q(w) = QW, π(w) = ΠW, (D.8)

where Q and Π are n × d(p, m) matrices.
Note that

∂X i1
i X̄j1

1 . . .X im
m X̄jm

m

∂w
Sw = λi1j1...imjmX i1

i X̄j1
1 . . .X im

m X̄jm
m , (D.9)

where

λi1j1...imjm = j((i1 − j1)β1 + . . . + (im − jm)βm). (D.10)

Thus,

∂W

∂w
Sw = S̃W (D.11)

where S̃ is a d(p, m) × d(p, m) diagonal matrix having all the eigenvalues on the
imaginary axis.
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In the notation introduced above, the equation (D.3) becomes

ΠS̃ = AΠW + QW (D.12)

and this in turn reduces to the Sylvester equation

ΠS̃ = AΠ + Q (D.13)

Since the spectra of S̃ and A are disjoint, this equation has a unique solution Π .
� � �

Using this property it is possible to prove the following result.

Proposition D.2. Let F (x, u, w) = Ax + Bu + Dw and S as in (D.2). As-
sume that all matrices Ai have eigenvalues with negative real part. The the
equation

∂π(w)
∂w

Sw = F (π(w), α(w), w), π(0) = 0 (D.14)

having a globally defined solution π(w), whose entries are polynomials, in the
components of w.

Proof. Set π(w) = Πw, α(w) = Λw, where Π and Λ are matrices of appropriate
dimensions. Then observe that the equation

∂π(w)
∂w

Sw = Aπ(w) + BΛw + Dw (D.15)

reduces to a Sylvester equation of the form

ΠS = AΠ + BΛ + D (D.16)

which indeed has a unique solution Π because the spectra of S and A are
disjoint.

Thus according to Lemma D.1, It is easy to show the existence and uniqueness
of the solution π(w) of (D.14), whose entries are homogeneous polynomials.

� � �
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