Genetic and Biotechnology in Aquaculture

Gametogenesis

- Gamelogene is is the creation of gametes.
- In males, it is
 Spermatogenesis, creation of sperm.
- In females, it is occenesis, creation of ova.

- Meiosis generates genetic diversity through:
- the exchange of genetic material between homologous chromosomes during Meiosis I
- the random alignment of maternal and paternal chromosomes in Meiosis I
- the random alignment of the sister chromatids at Meiosis II

Cytogeenetic and Kariology

Cytogenetics: is a branch of genetics that is concerned with the study of the structure and function of the cell, especially the chromosomes.

An eukaryotic chromosome is a molecule of DNA together with associated proteins Carries part or all of a cell's genetic information

- Most fish are diploid (2N)
- Normal for most vertebrates ~50 chromosomes typical (range 16-446)
- Produce haploid (1N) gametes

ĨX	¥8 2	ăă	57	äX	88	88 7	3 3	XX °
10	88 11	12	88 13	14	86 15	88 16	XX 17	8 7
87 19	20	21	X 3 22	XX 23	24	8 (1 25	X8 26	XX 27
B 8 9 9 9 9 1	2	X 8 3	68	5	1 6	7 7	X	(j
10	38 11	12	13	8 3 14	15	1 6	装置 17	18
19	20	21	22	XX 23	24	25	26	8 27

- Normally, all the individuals of a species have the same number of chromosomes.
- Closely related species usually have similar chromosome numbers.
- Presence of a whole sets of chromosomes is called euploidy.
- It includes haploids, diploids, triploids, tetraploids etc.
- Gametes normally contain only one set of chromosome – this number is called Haploid
- Somatic cells usually contain two sets of chromosome - 2n : Diploid

- 3n triploid
- 4n tetraploid

The condition in which the chromosomes sets are present in a multiples of "n" is Polyploidy When a change in the chromosome number does not involve entire sets of chromosomes, but only a few of the chromosomes - is Aneuploidy.

- Monosomics (2n-1)
- Trisomics (2n+1)
- Nullisomics (2n-2)
- Tetrasomics (2n+2)

- Constant chromosome number usually characteristic of a species
- Some species may display variation
- Rainbow trout 58-64 chromosomes
- Variation results when chromosome arms rearrange

Types of Chromosomes

Sex chromosomes

 In humans, the X and Y chromosomes that are involved in sex determination. These have different sizes and shapes

Autosomes

- Chromosomes other than the sex chromosomes
- In trout, chromosomes 1 to 29 are autosomes

Chromosomes

- A diploid cell has two sets of each of its chromosomes
- A trout has 60 chromosomes (2n = 60)
- In a cell in which DNA synthesis has occurred all the chromosomes are duplicated and thus each consists of two identical sister chromatids

Homologues

- Homologous chromosomes:
 - Look the same
 - Control the same traits
 - May code for different forms of each trait
 - Independent origin each one was inherited from a different parent

Chromosome Shape

- As chromosomes condense and become visible during cell division, certain structural features can be recognized
- 1) Chromomer

2) Centromere

- A region of a chromosome to which microtubule fibers attach during cell division
- The location of a centromere gives a chromosome its characteristic shape

Centromere Location

 Replicated chromosomes at metaphase consist of sister chromatids joined by a single centromere

- Chromosomes may differ in the position of the Centromere, the place on the chromosome where spindle fibers are attached during cell division.
- In general, if the centromere is near the middle, the chromosome is metacentric
- If the centromere is toward one end, the chromosome is acrocentric or submetacentric
- If the centromere is very near the end, the chromosome is telocentric.

3) Kinetochore

- Within the centromere region, most species have several locations where spindle fibers attach, and these sites consist of DNA as well as protein.
- The actual location where the attachment occurs is called the kinetochore and is composed of both DNA and protein.
- The DNA sequence within these regions is called CEN DNA.

Chromosome structure

- The centromere is a constricted region of the chromosome containing a specific DNA sequence, to which is bound 2 discs of protein called kinetochores.
- Kinetochores serve as points of attachment for microtubules that move the chromosomes during cell division:

4) Telomere

- The two ends of a chromosome are known as telomeres.
- It required for the replication and stability of the chromosome.
- When telomeres are damaged or removed due to chromosome breakage, the damaged chromosome ends can readily fuse or unite with broken ends of other chromosome.
- Thus it is generally accepted that structural integrity and individuality of chromosomes is maintained due to telomeres.

Telomere Repeat Sequences

until recently, little was known about molecular structure of telomeres. However, during the last few years, telomeres have been isolated and characterized from several sp.

TTAGGG

