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 Introduction

• The earth exerts a gravitational force on each of the particles

forming a body. These forces can be replace by a single

equivalent force equal to the weight of the body and applied

at the center of gravity for the body.

• The centroid of an area is analogous to the center of gravity

of a body. The concept of the first moment of an area is

used to locate the centroid.

• Determination of the area of a surface of revolution and

the volume of a body of revolution are accomplished

with the Theorems of Pappus-Guldinus.
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 Center of Gravity of a 2D Body

• Center of gravity of a plate
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 Center of Gravity of a 2D Body

• Center of gravity of a wire
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 Centroids and First Moments of Areas

• Centroid of an area
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 Centroids and First Moments of Lines
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• Centroid of a line
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 First Moments of Areas and Lines

• An area is symmetric with respect to an axis BB’

if for every point P there exists a point P’ such 

that PP’ is perpendicular to BB’ and is divided 

into two equal parts by BB’.

• The first moment of an area with respect to a 

line of symmetry is zero.

• If an area possesses a line of symmetry, its 

centroid lies on that axis
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 First Moments of Areas and Lines

• If an area possesses two lines of symmetry, its 

centroid lies at their intersection.

• An area is symmetric with respect to a center O

if for every element dA at (x,y) there exists an 

area dA’ of equal area at (-x,-y).  

• The centroid of the area coincides with the 

center of symmetry.
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 Centroids of Common Shapes of Areas



10

 Centroids of Common Shapes of Areas
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 Centroids of Common Shapes of Lines
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 Composite Plates

• Composite plates
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 Composite Areas

• Composite area
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 Composite Areas

• Composite area
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 Sample Problem 01

For the plane area shown, determine 

the first moments with respect to the 

x and y axes and the location of the 

centroid.



• Find the total area and first moments of the 

triangle, rectangle, and semicircle.  Subtract the 

area and first moment of the circular cutout.
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 Sample Problem 01
SOLUTION:
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 Sample Problem 01

SOLUTION:
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• Compute the coordinates of the area centroid 

by dividing the first moments by the total area.
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 Sample Problem 02

The figure shown is made from a piece of thin, homogeneoius wire 

Determine the location of its center of gravity.
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 Sample Problem 02
SOLUTION:
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 Determination of Centroids by Integration

• Double integration to find the first moment may be avoided by 

defining dA as a thin rectangle or strip.
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 Determination of Centroids by Integration
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 Determination of Centroids by Integration
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 Sample Problem 03

Determine by direct integration the 

location of the centroid of a parabolic 

spandrel.
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 Sample Problem 03

SOLUTION:

• Determine the constant k.
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 Sample Problem 03

SOLUTION:

• Using vertical strips, perform a single integration 

to find the first moments.
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 Sample Problem 03

SOLUTION:

• Or, using horizontal strips, perform a single 

integration to find the first moments.
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 Sample Problem 03

SOLUTION:

• Evaluate the centroid coordinates.
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 Sample Problem 04

Detemline the location of the centroid of the circular arc shown.



Distributed Forces: Centroids and Centers of Gravity
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 Sample Problem 04

SOLUTION:

• Since the arc is symmetrical with respect to the x axis,             . A differential 

element is chosen as shown, and the length or the arc i determined by 

integration

0y



Distributed Forces: Centroids and Centers of Gravity
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 Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a 

plane curve about a fixed axis.
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 Theorems of Pappus-Guldinus

• Area of a surface of revolution is equal to the length of the generating 

curve times the distance traveled by the centroid through the rotation.

 dLyAdLydA  22

LyA 2



32

 Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane 

area about a fixed axis.
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 Theorems of Pappus-Guldinus

• Volume of a body of revolution is equal to the generating area  times the 

distance traveled by the centroid through the rotation.
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 Sample Problem 05

Determine the area of the surface of revolution shown, which is obtained by 

rotating a quarter-circular arc about a vertical axis.



35

 Sample Problem 05

SOLUTION:

According to Theorem I of Pappu -Guldinus, the area generated is equal to the product of 

tlle length of the arc and Ule distance traveled by its centroid.
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 Sample Problem 06

The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as 

shown.  Knowing that the pulley is made of steel and that the density of steel 

is                                          .  determine the mass and weight of the rim.
33 mkg 1085.7 



Distributed Forces: Centroids and Centers of Gravity
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 Sample Problem 06

SOLUTION:

• Apply the theorem of Pappus-Guldinus to evaluate 

the volumes or revolution for the rectangular rim 

section and the inner cutout section.

• Multiply by density and acceleration to get the mass 

and weight.

kg 0.60)mm/m10()mm1065.7()kg/m1085.7( 3393633   mVm 

N 589)/81.9()kg 0.60( 2  WsmmgW
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 Distributed Loads on Beams

• A distributed load is represented by plotting the load per 

unit length, w (N/m) .  The total load is equal to the area 

under the load curve.
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• A distributed load can be replace by a concentrated load 

with a magnitude equal to the area under the load curve 

and a line of action passing through the area centroid.
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 Sample Problem 07

A beam supports a distributed load as shown.  Determine the equivalent 

concentrated load and the reactions at the supports.
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 Sample Problem 07

SOLUTION:

• The magnitude of the concentrated load is equal to the total load 

or the area under the curve.

• The line of action of the concentrated load passes through the 

centroid of the area under the curve.
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 Sample Problem 07

SOLUTION:

• Determine the support reactions by summing 

moments about the beam ends.
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 Center of Gravity of a 3D Body: Centroid of a Volume

• Center of gravity G
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 Composite 3D Bodies

• Moment of the total weight concentrated at the 

center of gravity G is equal to the sum of the 

moments of the weights of the component parts.

• For homogeneous bodies,
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 Sample Problem 08

Locate the center of gravity of the steel machine element.  The 

diameter of each hole is 1 in.
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 Sample Problem 08

SOLUTION:
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 Sample Problem 08

SOLUTION:
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 Sample Problem 08

SOLUTION:
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