Chapter 7: Centroids and Centers of Gravity

S.Mamazizi

Assistant Prof. of Structural Engineering

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the center of gravity for the body.
- The centroid of an area is analogous to the center of gravity of a body. The concept of the first moment of an area is used to locate the centroid.
- Determination of the area of a surface of revolution and the volume of a body of revolution are accomplished with the Theorems of Pappus-Guldinus.

Center of Gravity of a 2D Body

- Center of gravity of a plate

$\sum F_{z}: \Rightarrow W=\Delta W_{1}+\Delta W_{1}+\cdots+\Delta W_{n}$

$$
\begin{aligned}
& \sum M_{y}: \Rightarrow \bar{x} W=\sum x \Delta W \Rightarrow \bar{x}=\frac{\sum x \Delta W}{W} \text { or } \quad \bar{x}=\frac{\int x d W}{W} \\
& \sum M_{x}: \Rightarrow \bar{y} W=\sum y \Delta W \Rightarrow \bar{y}=\frac{\sum y \Delta W}{W} \text { or } \quad \bar{y}=\frac{\int y d W}{W}
\end{aligned}
$$

- Center of Gravity of a 2D Body
- Center of gravity of a wire

$\sum M_{y}: \Rightarrow \bar{x} W=\sum x \Delta W \Rightarrow \bar{x}=\frac{\sum x \Delta W}{W}$ or $\quad \bar{x}=\frac{\int x d W}{W}$

$$
\sum M_{x}: \Rightarrow \bar{y} W=\sum y \Delta W \Rightarrow \bar{y}=\frac{\sum y \Delta W}{W} \text { or } \quad \bar{y}=\frac{\int y d W}{W}
$$

Centroids and First Moments of Areas

- Centroid of an area
$\Delta W=\gamma t \Delta A \Rightarrow W=\gamma t A$

$$
\bar{x}=\frac{\int x d W}{W} \Rightarrow \bar{x}=\frac{\int x(\gamma t) d A}{(\gamma A t)} \Rightarrow \bar{x}=\frac{\int x d A}{A}
$$

$$
\text { if } Q_{y}=\int x d A \Rightarrow \quad Q_{y}=\bar{x} A
$$

$Q_{y}: \quad$ First moment with respect to y axis
$\bar{y}=\frac{\int y d W}{W} \Rightarrow \bar{y}=\frac{\int y(\gamma t) d A}{(\gamma A t)} \Rightarrow \bar{y}=\frac{\int y d A}{A}$
if $Q_{x}=\int y d A \Rightarrow Q_{x}=\bar{y} A$
Q_{x} : First moment with respect to x axis

Centroids and First Moments of Lines

- Centroid of a line

$$
\Delta W=\gamma a \Delta L \Rightarrow W=\gamma a L
$$

$a: \quad$ Cross section area
$\bar{x}=\frac{\int x d W}{W} \Rightarrow \bar{x}=\frac{\int x(\gamma a) d L}{(\gamma L a)} \Rightarrow \bar{x}=\frac{\int x d L}{L}$
$\bar{y}=\frac{\int y d W}{W} \Rightarrow \bar{y}=\frac{\int y(\gamma a) d L}{(\gamma L a)} \Rightarrow \bar{y}=\frac{\int y d L}{L}$

$$
\begin{aligned}
& d L=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& d L=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \\
& d L=\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
\end{aligned}
$$

- First Moments of Areas and Lines
- An area is symmetric with respect to an axis $B B^{\prime}$ if for every point P there exists a point P^{\prime} such that $P P^{\prime}$ is perpendicular to $B B^{\prime}$ and is divided into two equal parts by $B B^{\prime}$.

- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis

First Moments of Areas and Lines

- If an area possesses two lines of symmetry, its centroid lies at their intersection.

- An area is symmetric with respect to a center O if for every element $d A$ at (x, y) there exists an area $d A^{\prime}$ of equal area at $(-x,-y)$.
- The centroid of the area coincides with the center of symmetry.

C Centroids of Common Shapes of Areas

Shape		\bar{x}	\bar{y}	Area
Triangular area			$\frac{h}{3}$	$\frac{b h}{2}$
Quarter-circular area		$\frac{4 r}{3 \pi}$	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{4}$
Semicircular area		0	$\frac{4 r}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter-elliptical area	+	$\frac{4 a}{3 \pi}$	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{4}$
Semielliptical area	$\rightarrow \bar{x} \leftarrow \quad O_{\mid}+a \rightarrow$	0	$\frac{4 b}{3 \pi}$	$\frac{\pi a b}{2}$
Semiparabolic area		$\frac{3 a}{8}$	$\frac{3 h}{5}$	$\frac{2 a h}{3}$
Parabolic area		0	$\frac{3 h}{5}$	$\frac{4 a h}{3}$

\square Centroids of Common Shapes of Areas

Parabolic spandrel				
General spandrel	$\frac{3 a}{4}$	$\frac{3 h}{10}$	$\frac{a h}{3}$	
Circular sector		$\frac{n+1}{n+2} a$	$\frac{n+1}{4 n+2} h$	$\frac{a h}{n+1}$

\square Centroids of Common Shapes of Lines

Shape		\bar{x}	\bar{y}	Length
Quarter-circular arc				
Semicircular arc				
Arc of circle				

\square Composite Plates

- Composite plates

$$
\bar{X}=\frac{\sum \bar{x} W}{\sum W}
$$

$$
\bar{Y}=\frac{\sum \bar{y} W}{\sum W}
$$

\square Composite Areas

- Composite area

$$
\bar{X}=\frac{\sum \bar{x} A}{\sum A}
$$

$$
\bar{Y}=\frac{\sum \bar{y} A}{\sum A}
$$

\square Composite Areas

- Composite area

	\bar{x}	A	$\bar{x} A$
A_{1} Semicircle	-	+	-
A_{2} Full rectangle	+	+	+
A_{3} Circular hole	+	-	-

\square Sample Problem 01

For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid.

\square Sample Problem 01

SOLUTION:

Component	$A, \mathrm{~mm}^{2}$	$\bar{x}, \mathrm{~mm}$	$\bar{y}, \mathrm{~mm}$	$\bar{x} A, \mathrm{~mm}^{3}$	$\bar{y} A, \mathrm{~mm}^{3}$
Rectangle	$(120)(80)=9.6 \times 10^{3}$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60)=3.6 \times 10^{3}$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2} \pi(60)^{2}=5.655 \times 10^{3}$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\pi(40)^{2}=-5.027 \times 10^{3}$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma A=13.828 \times 10^{3}$			$\Sigma \bar{x} A=+757.7 \times 10^{3}$	$\Sigma \bar{y} A=+506.2 \times 10^{3}$

- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

$$
\begin{aligned}
& Q_{x}=+506.2 \times 10^{3} \mathrm{~mm}^{3} \\
& Q_{y}=+757.7 \times 10^{3} \mathrm{~mm}^{3}
\end{aligned}
$$

- Sample Problem 01

SOLUTION:

- Compute the coordinates of the area centroid by dividing the first moments by the total area.

$$
\begin{aligned}
& \bar{X}=\frac{\sum \bar{x} A}{\sum A}=\frac{+757.7 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}} \Rightarrow \bar{X}=54.8(\mathrm{~mm}) \\
& \bar{Y}=\frac{\sum \bar{y} A}{\sum A}=\frac{+506.2 \times 10^{3} \mathrm{~mm}^{3}}{13.828 \times 10^{3} \mathrm{~mm}^{2}} \Rightarrow \bar{Y}=36.6(\mathrm{~mm})
\end{aligned}
$$

- Sample Problem 02

The figure shown is made from a piece of thin, homogeneoius wire Determine the location of its center of gravity.

\square Sample Problem 02 SOLUTION:

Segment	L, in.	\bar{x}, in.	\bar{y}, in.	$\bar{x} L$, in 2	$\bar{y} L, \mathrm{in}^{2}$
$A B$	24	12	0	288	0
$B C$	26	12	5	312	130
$C A$	10	0	5	0	50
	$\Sigma L=60$			$\Sigma \bar{x} L=600$	$\Sigma \bar{y} L=180$

$$
\bar{X}=\frac{\sum \bar{x} L}{\sum L}=\frac{600}{60} \Rightarrow \bar{X}=10 \text { (in.) } \bar{Y}=\frac{\sum \bar{y} L}{\sum L}=\frac{180}{60} \Rightarrow \bar{Y}=3 \text { (in.) }
$$

- Determination of Centroids by Integration

- Double integration to find the first moment may be avoided by defining $d A$ as a thin rectangle or strip.

$$
\begin{aligned}
& Q_{y}=\bar{x} A=\int x d A \Rightarrow Q_{y}=\iint x d x d y \text { or } Q_{y}=\int \bar{x}_{e l} d A \\
& Q_{x}=\bar{y} A=\int y d A \Rightarrow Q_{x}=\iint y d x d y \text { or } Q_{x}=\int \bar{y}_{e l} d A \\
& Q_{y}=\bar{x} A=\int \bar{x}_{e l} d A \Rightarrow Q_{y}=\int x(y d x) \\
& Q_{x}=\bar{y} A=\int \bar{y}_{e l} d A \Rightarrow Q_{x}=\int \frac{y}{2}(y d x)
\end{aligned}
$$

[Determination of Centroids by Integration

$$
\begin{aligned}
& Q_{y}=\bar{x} A=\int \bar{x}_{e l} d A \Rightarrow Q_{y}=\int \frac{a+x}{2}[(a-x) d y] \\
& Q_{x}=\bar{y} A=\int \bar{y}_{e l} d A \Rightarrow Q_{x}=\int y[(a-x) d y]
\end{aligned}
$$

D Determination of Centroids by Integration

$$
\begin{aligned}
& Q_{y}=\bar{x} A=\int \bar{x}_{e l} d A \Rightarrow Q_{y}=\int \frac{2 r}{3} \cos \theta\left(\frac{1}{2} r^{2} d \theta\right) \\
& Q_{x}=\bar{y} A=\int \bar{y}_{e l} d A \Rightarrow Q_{x}=\int \frac{2 r}{3} \sin \theta\left(\frac{1}{2} r^{2} d \theta\right)
\end{aligned}
$$

\square Sample Problem 03

Determine by direct integration the location of the centroid of a parabolic spandrel.

\square Sample Problem 03

SOLUTION:

- Determine the constant k .

\square Sample Problem 03

SOLUTION:

- Using vertical strips, perform a single integration to find the first moments.

\square Sample Problem 03

SOLUTION:

- Or, using horizontal strips, perform a single integration to find the first moments.

\square Sample Problem 03

SOLUTION:

- Evaluate the centroid coordinates.

- Sample Problem 04

Detemline the location of the centroid of the circular arc shown.

Disurbuted Forces: Centroids and Centers of Gravity

\square Sample Problem 04

SOLUTION:

- Since the arc is symmetrical with respect to the x axis, $\bar{y}=0$. A differential element is chosen as shown, and the length or the arc i determined by integration

Disurbuted Forces: Centroids and Centers of Gravity

] Theorems of Pappus-Guldinus- Surface of revolution is generated by rotating a plane curve about a fixed axis.

Sphere

Cone

Torus

\square Theorems of Pappus-Guldinus

- Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$
\begin{aligned}
d A= & 2 \pi y d L \Rightarrow A=2 \pi \int y d L \\
& \Rightarrow A=2 \pi \bar{y} L
\end{aligned}
$$

T Theorems of Pappus-Guldinus

- Body of revolution is generated by rotating a plane area about a fixed axis.

Sphere

Cone

Torus

- Theorems of Pappus-Guldinus

- Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$
d V=2 \pi y d A \Rightarrow V=2 \pi \int y d A
$$

$$
\Rightarrow V=2 \pi \bar{y} A
$$

[Sample Problem 05

Determine the area of the surface of revolution shown, which is obtained by rotating a quarter-circular arc about a vertical axis.

\square Sample Problem 05

SOLUTION:

According to Theorem I of Pappu -Guldinus, the area generated is equal to the product of tlle length of the arc and Ule distance traveled by its centroid.

$$
\begin{gathered}
\bar{x}=2 r-\frac{2 r}{\pi} \Rightarrow \bar{x}=2 r\left(1-\frac{1}{\pi}\right) \\
A=2 \pi \bar{x} L=2 \pi\left[2 r\left(1-\frac{1}{\pi}\right)\right]\left(\frac{2 \pi r}{4}\right) \Rightarrow A=2 \pi r^{2}(\pi-1)
\end{gathered}
$$

[Sample Problem 06

The outside diameter of a pulley is 0.8 m , and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is $\rho=7.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. determine the mass and weight of the rim.

Disurbuted Forces: Centroids and Centers of Gravity

\square Sample Problem 06

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and weight.

	Area, mm^{2}	$\bar{y}, \mathrm{~mm}$	Distance Traveled by $C, \mathrm{~mm}$	Volume, mm^{3}
II	$\begin{aligned} & +5000 \\ & -1800 \end{aligned}$	$\begin{aligned} & 375 \\ & 365 \end{aligned}$	$\begin{aligned} & 2 \pi(375)=2356 \\ & 2 \pi(365)=2293 \end{aligned}$	$(5000)(2356)=11.78 \times 10^{6}$
				$(-1800)(2293)=-4.13 \times 10^{6}$
				Volume of rim $=7.65 \times 10^{6}$

$$
\begin{aligned}
& m=\rho V=\left(7.85 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(7.65 \times 10^{6} \mathrm{~mm}^{3}\right)\left(10^{-9} \mathrm{~m}^{3} / \mathrm{mm}^{3}\right) \Rightarrow m=60.0 \mathrm{~kg} \\
& W=m g=(60.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \Rightarrow W=589 \mathrm{~N}
\end{aligned}
$$

Distributed Loads on Beams

- A distributed load is represented by plotting the load per unit length, $w(N / m)$. The total load is equal to the area

$$
W=\int_{0}^{L} w d x=\int d A \Rightarrow W=A
$$ under the load curve.

- A distributed load can be replace by a concentrated load $(O P) W=\int x d W \Rightarrow$ with a magnitude equal to the area under the load curve
and a line of action passing through the area centroid. $(O P) A=\int_{0}^{L} x d A=\bar{x} A \Rightarrow(O P)=\bar{x}$

- Sample Problem 07

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

- Sample Problem 07

SOLUTION:

Component	A, kN	$\bar{x}, \mathrm{~m}$	$\bar{x} A, \mathrm{kN} \cdot \mathrm{m}$
Triangle I	4.5	2	9
Triangle II	13.5	4	54
	$\Sigma A=18.0$		$\Sigma \bar{x} A=63$

- The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$
F=\sum A \Rightarrow F=18.0 \mathrm{kN}
$$

- The line of action of the concentrated load passes through the centroid of the area under the curve.

$$
\bar{X}=\frac{\sum \bar{x} A}{\sum A}=\frac{63 \mathrm{kN} \cdot \mathrm{~m}}{18 \mathrm{kN}} \Rightarrow \bar{X}=3.5 \mathrm{~m}
$$

- Sample Problem 07

SOLUTION:

- Determine the support reactions by summing moments about the beam ends.

$$
\begin{aligned}
& \sum F_{x}=0 \Rightarrow B_{x}=0 \\
& \sum M_{A}=0: B_{y}(6)-(18)(3.5)=0 \Rightarrow B_{y}=10.5(\mathrm{kN}) \\
& \sum F_{y}=0 \Rightarrow A_{y}+B_{y}-18=0 \Rightarrow A_{y}+10.5-18=0 \\
&
\end{aligned}
$$

$w_{B}=4500 \mathrm{~N} / \mathrm{m}$

- Center of Gravity of a 3D Body: Centroid of a Volume

- Center of gravity G
$-W \vec{j}=\sum(-\Delta W \vec{j})$
$\vec{r}_{G} \times(-W \vec{j})=\sum[\vec{r} \times(-\Delta W \vec{j})]$
$\vec{r}_{G} W \times(-\vec{j})=\left(\sum \vec{r} \Delta W\right) \times(-\vec{j})$
$W=\int d W \Rightarrow \vec{r}_{G} W=\int \vec{r} d W$
- Results are independent of body orientation,

$$
\bar{x} W=\int x d W \quad \bar{y} W=\int y d W \quad \bar{z} W=\int z d W
$$

- For homogeneous bodies,

$$
\begin{aligned}
& W=\gamma V \text { and } d W=\gamma d V \Rightarrow \\
& \quad \bar{x} V=\int x d V \quad \bar{y} V=\int y d V \quad \bar{z} V=\int z d V
\end{aligned}
$$

\square Composite 3D Bodies

- Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$
\bar{X} \sum W=\sum \bar{x} W \quad \bar{Y} \sum W=\sum \bar{y} W \quad \bar{z} \sum W=\sum \bar{z} W
$$

- For homogeneous bodies,

$$
\bar{X} \sum V=\sum \bar{x} V \quad \bar{Y} \sum V=\sum \bar{y} V \quad \bar{Z} \sum V=\sum \bar{z} V
$$

\square Sample Problem 08

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in .

- Sample Problem 08

SOLUTION:

- Sample Problem 08

SOLUTION:

+ NiI

	V, in 3	\bar{x}, in.	\bar{y}, in.	\bar{z}, in.	$\bar{x} V$, in 4	$\bar{y} V$, in 4	$\bar{z} V$, in 4
I	$(4.5)(2)(0.5)=4.5$	0.25	-1	2.25	1.125	-4.5	10.125
II	$\frac{1}{4} \pi(2)^{2}(0.5)=1.571$	1.3488	-0.8488	0.25	2.119	-1.333	0.393
III	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	3.5	-0.098	0.393	-1.374
IV	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	1.5	-0.098	0.393	-0.589
	$\Sigma V=5.286$				$\Sigma \bar{x} V=3.048$	$\Sigma \bar{y} V=-5.047$	$\Sigma \bar{z} V=8.555$

\square Sample Problem 08

SOLUTION:

	V, in 3	\bar{x}, in.	\bar{y}, in.	$\overline{\mathbf{z}}$, in.	$\bar{x} V$, in 4	$\bar{y} V$, in 4	$\bar{z} V$, in 4
I	$(4.5)(2)(0.5)=4.5$	0.25	-1	2.25	1.125	-4.5	10.125
II	$\frac{1}{4} \pi(2)^{2}(0.5)=1.571$	1.3488	-0.8488	0.25	2.119	-1.333	0.393
III	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	3.5	-0.098	0.393	-1.374
IV	$-\pi(0.5)^{2}(0.5)=-0.3927$	0.25	-1	1.5	-0.098	0.393	-0.589
	$\Sigma V=5.286$				$\Sigma \bar{x} V=3.048$	$\Sigma \bar{y} V=-5.047$	$\Sigma \bar{z} V=8.555$

$$
\begin{aligned}
& \bar{X}=\frac{\sum \bar{x} V}{\sum V}=\frac{\left(3.08 \mathrm{in}^{4}\right)}{\left(5.286 \mathrm{in}^{3}\right)} \Rightarrow \bar{X}=0.577 \mathrm{in.} \\
& \bar{Y}=\frac{\sum \bar{y} V}{\sum V}=\frac{\left(-5.047 \mathrm{in}^{4}\right)}{\left(5.286 \mathrm{in}^{3}\right)} \Rightarrow \bar{Y}=0.577 \mathrm{in.} \\
& \bar{Z}=\frac{\sum \bar{z} V}{\sum V}=\frac{\left(1.618 \mathrm{in}^{4}\right)}{\left(5.286 \mathrm{in}^{3}\right)} \Rightarrow \bar{Z}=0.577 \mathrm{in.}
\end{aligned}
$$

