
Unconstrained Multivariate Optimization

Multivariate optimization means optimization of a scalar
function of a several variables:

y = P(x)
and has the general form:

where P(x) is a nonlinear scalar-valued function of the vector
variable x.

Background

Before we discuss optimization methods, we need to talk
about how to characterize nonlinear, multivariable functions
such as P(x). Consider the 2nd order Taylor series expansion
about the point x0:

If we let:
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Unconstrained Multivariate Optimization

Then we can re-write the Taylor series expansion as a
quadratic approximation for P(x):

and the derivatives are:

We can describe some of the local geometric properties of
P(x) using its gradient and Hessian. If fact there are only a few
possibilities for the local geometry, which can easily be
differentiated by the eigenvalues of the Hessian (H).

Recall that the eigenvalues of a square matrix (H) are
computed by finding all of the roots (λi) of its characteristic
equation:

P a( )x b x x Hx  T T
! + + 1

2

! " +

! "

x

x

x b x H

x H

P

P

( )

( )

  

  

T T

2

gradient

Hessian

!I H"  =  0



Unconstrained Multivariate Optimization

The possible geometries are:
1)  if  λi < 0 (∀ i =1,…,n), the Hessian is said to be negative

         definite. This object has a unique maximum and is what we
         commonly refer to as a hill (in three dimensions).

2)  if  λi > 0 (∀ i =1,…,n), the Hessian is said to be positive
         definite. This object has a unique minimum and is what we
         commonly refer to as a valley (in three dimensions).

P(x)

x1 x2

P(x)

x1 x2



Unconstrained Multivariate Optimization

3)  if  λi < 0 (∀ i =1,…,m) and λi > 0 (∀ i =m+1,…,n) , the
         Hessian is said to be indefinite. This object has neither a

     unique maximum or minimum, and is what we commonly
     refer to as a saddle (in three dimensions).

4)  if  λi < 0 (∀ i =1,…,m) and λi = 0 (∀ i =m+1,…,n) , the
         Hessian is said to be negative semi-definite. This object

     does not have a unique maximum and is what we
     commonly refer to as a ridge (in three dimensions).
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Unconstrained Multivariate Optimization

5)  if  λi > 0 (∀ i =1,…,m) and λi = 0 (∀ i =m+1,…,n) , the
         Hessian is said to be positive semi-definite. This object

     does not have a unique minimum and is what we
     commonly refer to as a trough (in three dimensions).

A well posed problem has a unique optimum, so will will limit
our discussions to either problems with positive definite
Hessians (for minimization) or negative definite Hessians (for
maximization).

Further, we would prefer to choose units for our decision
variables (x) so that the eigenvalues of the Hessian all have
approximately the same magnitude. This will scale the
problem so that the profit contours are concentric circles and
will condition our optimization calculations.
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Unconstrained Multivariate Optimization

Necessary and Sufficient Conditions

For a twice continuously differentiable scalar function P(x), a
point x* is an optimum if:

and:

We can use these conditions directly, but it usually involves
solving a set of simultaneous nonlinear equations (which is
usually just as tough as the original optimization problem).
Consider:

Then:

and stationarity of the gradient requires that:

This is a set of very nonlinear equations in the variables x.
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Unconstrained Multivariate Optimization

Example
Consider the scalar function:

or:

where x = [x1 x2]T.

Stationarity of the gradient requires:

Check the Hessian to classify the type of stationary point:

The eigenvalues of the Hessian are:

Thus the Hessian is indefinite and the stationary point is a
saddle point. This is a trivial example, but it highlights the
general procedure for direct use of the optimality conditions.
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Unconstrained Multivariate Optimization

Like the univariate search methods we studied earlier,
multivariate optimization methods can be separated into two
groups:

 those which depend solely on function evaluations,
 those which use derivative information (either analytical

derivatives or numerical approximations).

Regardless of which method you choose to solve a
multivariate optimization problem, the general procedure
will be:

1)  select a starting point(s),
2)  choose a search direction,
3)  minimize in chosen search direction,
4)  repeat steps 2 & 3 until converged.

Also, successful solution of an optimization problem will
require specification of a convergence criterion. Some
possibilities include:
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Sequential Univariate Searches

Perhaps the simplest multivariable search technique to
implement would be a system of sequential univariate
searches along some fixed set of directions. Consider the two
dimensional case, where the chosen search directions are
parallel to the coordinate axes:

In this algorithm, you:
1. select a starting point x0,
2. select a coordinate direction (e.g. s = [0 1]T, or [1 0] T),
3. perform a univariate search                             ,
4. repeat steps 2 and 3 alternating between search

directions, until converged.
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Sequential Univariate Searches

The problem with this method is that a very large number of iterations
may be required to attain a reasonable level of accuracy. If we new
something about the “orientation” of the objective function the rate of
convergence could be greatly enhanced. Consider the previous two
dimensional problem, but using the independent search directions ([1
1]T, [1 -1] T).

Of course, finding the optimum in n steps only works for quadratic
objective functions where the Hessian is known and each line search
is exact.  There are a large number of these optimization techniques
which vary only in the way that the search directions are chosen.
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Nelder-Meade Simplex

This approach has nothing to do with the SIMPLEX method
of linear programming. The method derives its name from an
n-dimensional polytope (and as a result is often referred to as
the “polytope” method).

A polytope is an n-dimensional object that has n+1 vertices:

It is an easily implemented direct search method, that only
relies on objective function evaluations. As a result, it can be
robust to some types of discontinuities and so forth. However,
it is often slow to converge and is not useful for larger
problems (>10 variables).

n polytope number of

vertices

1 line segment 2

2 triangle 3

3 tetrahedron 4
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Nelder-Meade Simplex

To illustrate the basic idea of the method, consider the two-
dimensional minimization problem:

Step 1:
 P1 = max (P1, P2, P3), define P4 as the reflection of P1 through

the centroid of the line joining P2 and P3.
 P4 ≤ max (P1, P2, P3), form a new polytope from the points P2,

P3, P4.

Steps 2 through 4:
 repeat the procedure in Step 1 to form new polytopes.
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We can repeat the procedure until the polytope defined by P4,
P5, P6. Further iterations will cause us to flip between two
polytopes. We can eliminate these problems by introducing
two further operations into the method:

 contraction when the reflection step does not offer any
improvement,

 expansion to accelerate convergence when the
reflection step is an improvement.
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Nelder-Meade Simplex

For minimization, the algorithm is:

 xh is given by P(xh) = max{P(x1), … ,P(xn+1)},
 xl is given by P(xl) = min{P(x1), … ,P(xn+1)},

 calculate the centroid of the vertices other than xh as:

 calculate reflection step:  xr = 2 xc- xh

 if P(xr) < P(xl) then attempt expansion,

xe = xc + γ (xr- xc)

if P(xe) < P(xr) the expansion was successful,
form the new polytope replacing xh with xe.

else the expansion step failed,
form the new polytope replacing xh with xr.

end if
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Nelder-Meade Simplex

    else
if P(xr) < max{P(xi) | xi ≠ xh} use the reflection,

 form the new polytope replacing xh with xr.

else
the reflection step failed, try a contraction,

if P(xs) < min{P(xh),P(xr)} use contraction,
   form the new polytope replacing xh with xs.
else
   repeat contraction.
end if.

repeat the entire procedure until termination.

The Nelder-Meade Simplex method can be slow to converge,
but it is useful for functions whose derivatives cannot be
calculated or approximated (e.g. some non-smooth functions).
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Nelder-Meade Simplex

Example

222  min
21

2

2

2

1
+!!+ xxxx

x

x1 x2 x3 P1 P2 P3 xr Pr notes

0 3
3









3
2









2
2







 8 5 2 2

1







 1 expansion γ=3, failed

1 2
1









1
1









2
2







 1 5 2 1

1







 0 expansion γ=3, failed

2 2
1









1
1









2
2







 1 0 2 1

0







 1 expansion γ=3, failed

3 2
1









1
1









1
0







 1 0 1 0

0







 2 contraction β= ½

4 3
2
3
4










1
1









1
0









5
16

0 1 3
2
7
4










13
16

expansion γ=3, failed

5 3
2
3
4










1
1









3
2
7
4










5
16

0 13
16



Gradient-Based Methods

This family of optimization methods use first-order derivatives
to determine a “descent” direction. (Recall that the gradient
gives the direction of quickest increase for the objective
function. Thus, the negative of the gradient gives the direction
of quickest decrease for the objective function.)

Steepest Descent

It would seem that the fastest way to find an optimum would
be to always move in the direction in which the objective
function decreases the fastest. Although this idea is intuitively
appealing, it is very rarely true; however, with a good line
search every iteration will move closer to the optimum.
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Gradient-Based Methods

The Steepest Descent algorithm is:

1.  choose a starting point x0,
2.  calculate the search direction:

3.  determine the next iterate for x:

     by solving the univariate optimization problem:

4.  repeat steps 2 & 3 until termination. Some 
     termination criteria to consider:

where ε is some small positive scalar.
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Gradient-Based Methods

Steepest Descent Example #1

start at x0 = [3 3]T

start at x0 = [1 2]T

This example shows that the method of Steepest Descent is
very efficient for well-scaled quadratic optimization problems
(the profit contours are concentric circles). This method is not
nearly as efficient for non-quadratic objective functions or
objective functions with very elliptical profit contours (poorly
scaled).
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Gradient-Based Methods

Steepest Descent Example #2

Consider the minimization problem:

Then:

To develop an objective function for our line search, substitute
xk+1 =  xk + λksk into the original objective function:

To simplify our work, let H =                    , which yields:

This expression is quadratic in λk, thus making it easy to
perform an exact line search:
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Gradient-Based Methods

Solving for the step length yields:

Starting at x0 = [2 1]T:
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Gradient-Based Methods

Conjugate Gradients

Steepest Descent was based on the idea that the minimum will
be found provided that we always move in the downhill
direction. The second example showed that the gradient does
not always point in the direction of the optimum, due to the
geometry of the problem. Fletcher and Reeves (1964)
developed a method which attempts to account for local
curvature in determining the next search direction.

The algorithm is:
1.  choose a starting point x0,
2.  set the initial search direction as:

3.  determine the next iterate for x:

     by solving the univariate optimization problem:

4.  calculate the next search direction as:

5.  repeat steps 3 & 4 until termination.
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Gradient-Based Methods

The manner in which the successive search directions are
calculated is important. For quadratic functions, these
successive search directions are conjugate with respect to the
Hessian. This means that for the quadratic function:

successive search directions satisfy:

As a result, these successive search directions have
incorporated within them information about the geometry of
the optimization problem.

Conjugate Gradients Example

Consider again the optimization problem:

We saw that Steepest Descent was slow to converge on this
problem because of its poor scaling. As in the previous
example, we will use an exact line search. It can be shown that
the optimal step length is:
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Gradient-Based Methods

Starting at x0 = [2 1]T:

Notice the much quicker convergence of the algorithm. For a
quadratic objective function with exact line searches, the
Conjugate Gradients method exhibits quadratic convergence.

The quicker convergence comes at an increased computational
requirement. These include:

• a more complex search direction calculation,
• increased storage for maintaining previous search

directions and gradients.
These are usually small in relation to the performance
improvements.
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Newton’s Method

The Conjugate Gradients method showed that there was a
considerable performance gain to be realized by incorporating
some problem geometry into the optimization algorithm.
However, the method did this in an approximate sense.
Newton’s method does this by using second-order derivative
information.

In the multivariate case, Newton’s method determines a search
direction by using the Hessian to modify the gradient. The
method is developed directly from the Taylor Series
approximation of the objective function. Recall that an
objective function can be locally approximated as:

Then, stationarity can be approximated as:

Which can be used to determine an expression for calculating
the next point in the minimization procedure:

Notice that in this case we get both the direction and the step
length for the minimization. Further, if the objective function
is quadratic, the optimum is found in a single (Newton Step)
without a line search.
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Newton’s Method

At a given point xk, the algorithm for Newton’s method is:

1.  calculate the gradient at the current point            ,

2.  calculate the Hessian at the current point            ,

3.  calculate the Newton step:

4.  calculate the next point:

5.  repeat steps 1 through 4 until termination.

Newton’s Method Example

Consider once again the optimization problem:

The gradient and Hessian for this example is:
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Newton’s Method

Starting at x0 = [2 1]T:

Comparing the three methods on this problem:
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Newton’s Method

As expected Newton’s method was very effective, eventhough
the problem was not well scaled.

 poor scaling was compensated for by using the inverse
of the Hessian.

Steepest Descent was very good for the first two iterations,
when we were quite far from the optimum. But it slowed
rapidly as:

The Conjugate Gradients approach avoided this difficulty by
including some measure of problem geometry in the
algorithm. However, the method started out using the Steepest
Descent direction and built in curvature information as the
algorithm progressed to the optimum. For higher-dimensional
and non-quadratic objective functions, the number of
iterations required for convergence can increase substantially.

In general, Newton’s Method will yield the best convergence
properties, at the cost of increased computational load to
calculate and store the Hessian. The Conjugate Gradients
approach can be effective in situations where computational
requirements are an issue. However, there are some other
methods where the Hessian is approximated using gradient
information and the approximate Hessian is used to calculate a
Newton step. These are called the Quasi-Newton methods.
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Newton’s Method

As we saw in the univariate case, care must be taken when
using Newton’s method for complex functions:

Since Newton’s method is searching for a stationary point, it
can oscillate between such points in the above situation. For
such complex functions, Newton’s method is often
implemented with an alternative to step 4.

4′.  calculate the next point:

      where the step length is determined as:
i)   0 < λk < 1 (so we don’t take a full step),
ii)  perform a line search on λk.

Generally, Newton and Newton-like methods are preferred to
other methods, the main difficulty is determining the Hessian.
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Approximate Newton Methods

As we saw in the univariate case the derivatives can be
approximated by finite differences. In multiple dimensions
this can require substantially more calculations. As an
example, consider forward difference approximation of the
gradient:

where δi is a perturbation in the direction of xi. This approach
requires 1 additional objective function evaluation per
dimension for forward or backward differencing, and 2
additional objective function evaluations per dimension for
central differencing.

To approximate the Hessian using only finite differences in
the objective function could have the form:

Finite difference approximation of the Hessian requires at
least an additional 2 objective function evaluations per
dimension. Some differencing schemes will give better
performance than others; however, the increased
computational load required for difference approximation of
the second derivatives precludes the use of this approach for
larger problems.

  

)()(
   = 

i

kik

i

PP

x

P
P

k

k !

!

"

" xx

x

xx

#+
$%

&

'
(
)

*
+

[ ] [ ]
     

)()()()(
   = 

2
2

ji

kjkkik

ji

PPPP

xx

P
P

k

k !!

!!

""

" xxxx

x

x
x

#+##+
$

%
%
&

'

(
(
)

*
+



Approximate Newton Methods

Alternatively, the Hessian can be approximated in terms of
gradient information. In the forward difference case the
Hessian can be approximated as:

Then, we can form a finite difference approximation to the
Hessian as:

The problem is that often this approximate Hessian is non-
symmetric. A symmetric approximation can be formed as:

Whichever approach is used to approximate the derivatives,
the Newton step is calculated from them. In general, Newton’s
methods based on finite differences can produce results
similar to analytical results, providing care is taken in
choosing the perturbations δi. (Recall that as the algorithm
proceeds:

Then small approximation errors will affect convergence and
accuracy.)

Some alternatives which can require fewer computations, yet
build curvature information as the algorithms proceed are the
Quasi-Newton family.
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Quasi-Newton Methods

This family of methods are the multivariate analogs of the
univariate Secant methods. They build second derivative
(Hessian) information as the algorithm proceeds to solution,
using available gradient information.

Consider the Taylor series expansion for the gradient of the
objective function along the step direction sk:

Truncating the Taylor series at the second-order terms an re-
arranging slightly yields the so-called Quasi-Newton
Condition:

Thus, any algorithm which satisfies this condition can build up
curvature information as it proceeds from xk to xk+1 in the
direction Δxk; however, the curvature information is gained in
only one direction. Then as these algorithms proceed the from
iteration-to-iteration, the approximate Hessians can differ by
only a rank-one matrix:

Combining the Quasi-Newton Condition and the update
formula yields:
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Quasi-Newton Methods

Which yields a solution for the vector u of:

and a Hessian update formula:

Unfortunately this update formula is not unique with respect to
the Quasi-Newton Condition and the step vector sk. We could
add an additional term of wzT to the update formula, where the
vector w is any vector from the null space of Δxk. (Recall that
if w ∈ null(Δxk), then Δxk

T
 w = 0). Thus there are a family of

such Quasi-Newton methods which differ only in this
additional term wzT.

Perhaps the most successful member of the family is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update:

The BFGS update has several advantages including that it is
symmetric and it can be further simplified if the step is
calculated according to:
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Quasi-Newton Methods

In this case the BFGS update formula simplifies to:

General Quasi-Newton Algorithm

1.  Initialization:
- choose a starting point x0,
- choose an initial Hessian approximation

(usually               ).
2.  At iteration k:

- calculate the gradient             ,
- calculate the search direction:

- calculate the next iterate:

    using a line search on λk.
- compute
- update the Hessian (       ) using the method

of your choice (e.g. BFGS).
3.  Repeat step 2 until termination.
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Quasi-Newton Methods

BFGS Example

Consider once again the optimization problem:

Recall that the gradient for this example is:

As before starting at x0 = [2 1]T:
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Quasi-Newton Methods

It is worth noting that the optimum is found in 3 steps
(although we are very close within 2). Also, notice that we
have a very accurate approximation for the Hessian (to 7
significant figures) after 2 updates.

The BFGS algorithm was:
  not quite as efficient as Newton's method,
 approximately as efficient as the Conjugate Gradients

approach,
 much more efficient than Steepest Descent.

This is what should be expected for quadratic objective
functions of low dimension. As the dimension of the problem
increases, the Newton and Quasi-Newton methods will usually
out perform the other methods.

A cautionary note:
The BFGS algorithm guarantees that the approximate Hessian
remains positive definite (and invertible) providing that the
initial matrix is chosen as positive definite, in theory.
However, round-off errors and sometimes the search history
can cause the approximate Hessian to become badly
conditioned. When this occurs, the approximate Hessian
should be reset to some value (often the identity matrix I).



Convergence

During our discussions we have mentioned convergence
properties of various algorithms. There are a number of ways
with which convergence properties of an algorithm can be
characterized. The most conventional approach is to determine
the asymptotic behaviour of the sequence of distances between
the iterates (xk) and the optimum (x*), as the iterations of a
particular algorithm proceed. Typically, the distance between
an iterate and the optimum is defined as:

We are most interested in the behaviour of an algorithm within
some neighbourhood of the optimum; hence, the asymptotic
analysis. The asymptotic rate of convergence is defined as:

with the asymptotic order p and asymptotic error β.

In general, most algorithms show convergence properties
which are within three categories:

• linear (0 ≤ β < 1, p = 1),
• superlinear (β = 0, p = 1),
• quadratic (β ≥ 0, p = 2),
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Convergence

For the methods we have studied, it can be shown that:

1) the Steepest Descent method exhibits superlinear
    convergence in most cases. For quadratic objective
    functions the asymptotic convergence properties can
    be shown to approach quadratic as κ(H) →1 and
    linear as κ(H) →∞.

2) the Conjugate Gradients method will generally show
    superlinear (and often nearly quadratic) convergence
    properties.

3) Newton’s method converges quadratically.

4) Quasi-Newton methods can closely approach
    quadratic rates of convergence.



Unconstrained Multivariate Optimization

As in the univariate case, there are two basic approaches:
• direct search (Nelder-Meade Simplex, ...),
• derivative-based (Steepest Descent, Newton’s ...).

Choosing which method to use for a particular problem is a
trade-off among:

• ease of implementation,
• convergence speed and accuracy,
• computational limitations.

Unfortunately there is no ‘best’ method in all situations. For
nearly quadratic functions Newton’s and Quasi-Newton
methods will usually be very efficient. For nearly flat or non-
smooth objective functions, the direct search methods are
often a good choice. For very large problems (more than 1000
decision variables), algorithms which use only gradient
information (Steepest Descent, Conjugate Gradients, Quasi-
Newton, etc.) can be the only practical methods.

Remember that the solution to a multivariable optimization
problem requires:

• a function (and derivatives) that can be evaluated,
• an appropriate optimization method,
• a good starting point,
• a well chosen termination criterion.



Unconstrained Optimization Problems

1. For the Wastewater settling pond problem discussed in class,
we found that the outlet concentration could be described as:

Assuming τ = 4 hours and ci=100 grams/liter, please do each
of the following:

a) Find the maximum outlet concentration using Matlab’s
“fminbnd” and “fminunc” commands.

b) Determine the sensitivity of the maximum outlet
concentration and time at which the maximum occurs
to the assumed value of τ.

c) Determine the sensitivity of the maximum outlet
concentration and time at which the maximum occurs
to the assumed value of ci.
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Unconstrained Optimization Problems

2. The file “inhibit.mat” contains data from experiments that relate the
consumption rate (µ) of substrate (hr-1) in a wastewater treatment
plant to the concentration of the substrate (S) in the feed (grams/litre)
to the wastewater treatment plant. The relationship is expected to be:

Using the given data, please do each of the following:
a) Estimate the model parameters µ, Km, and K1 using Matlab’s

“lsqcurvefit” command.
b) The last data point in the supplied data is expected to be an

outlier. Determine how sensitive the parameters estimates are
to the suspected outlier?

             Constrained ultivariable NLP
- Until now we have only been

discussing NLP that do not have constraints.
Most problems that we wish to solve will have
some form of constraints.

- i) equality constraints
(material and energy balances)

- ii) inequality constraints
(limits on operating   
conditions)

- These type of problems require
techniques that rely heavily on the
unconstrained methods.

-

-
equality constraint

- The solution to this problem must lie
on the equality constraint. So for this problem,
we must find the value of x that has the
optimum profit and satisfies the equality
constraint. Thus, the original a 2-dimensional
problem has been reduced to a search along a
constraint (one dimensional search)
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