- 1) induction sterility
- 2) Transgenesis
- 3) Sex reversal
 - 3-1) Feminization
 - 3-2) Masculinization
- 4) Hybridization
- 5) Gynogenesis
- 6) Androgenesis

- کاهش شدت تغذیه
- مشكلات ايجاد بلوغ
- ♦کاهش رشد
- جنسی در دوره پرورش
- ♦افزایش حساسیت ابتلا به بیماریها
 - •تغییر در کیفیت گوشت
- تغییرات ظاهری و کاهش بازار پسندی
 - ◆تولید ماهی با اندازه متفاوت
 - رها سازی در منابع آبهای طبیعی

- 1) induction sterility
 - 1. Surgical
 - 2. Irradiation
 - 3. Hormonal
 - 4. Hybridization
 - 5. Polyploidy

Triploid Hybrids

- Triploids where one diploid set of chromosomes comes from one species and one haploid set comes from another.
 - e.g. grass carp x common carp or rainbow trout x brook trout;
- Often show increased survival;
- ☐ Sterility is more sure;
- ☐ Can often reproduce the growth advantage of triploids without the mortality or deformity rates sometimes seen in triploids (e.g. coho x chinook salmon triploids)

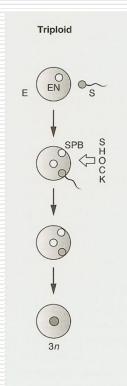
1) induction sterility

Polyploidy

Polyploidy has been thoroughly studied in fish and shellfish. The polyploid state refers to individuals with extra sets of chromosomes.

The normal and most common chromosome complement is two sets (diploid).

Triploidy refers to individuals with three sets of chromosomes and tetraploidy refers to individuals with four sets.


Methods to Induce Triploid

□ Direct Method

□ Indirect Method

Polyploid Induction in Fish

Direct Method

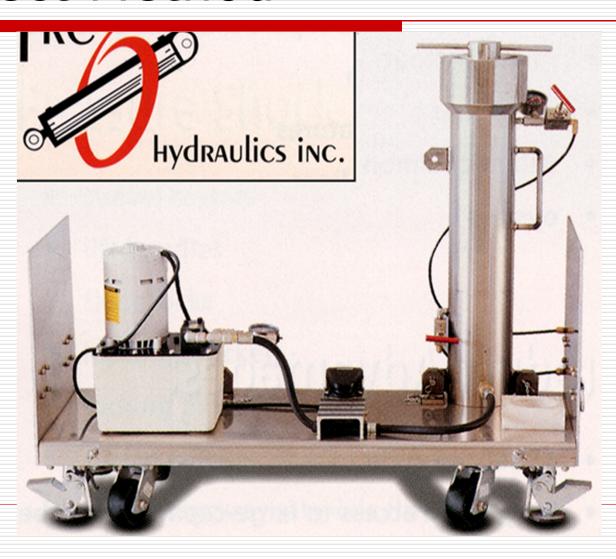
Triploidy is induced by allowing normal fertilization and then forcing retention of the second polar body (Chourrout, 1980, 1984; Lou and Purdom, 1984).

□ Physical shocks

Thermal shock

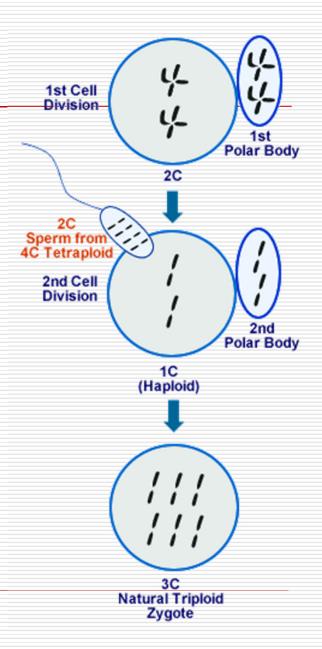
Cold Shock Heat Shock Hydrostatic Pressure

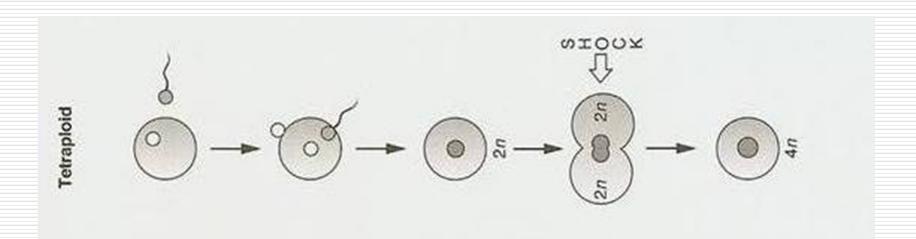
Chemical treatments


جدول ضمیمه ۲ - مروری بر شوکهای دمایی استفاده شده توسط محققین مختلف

مدت اعمال شوک	زمان اعمال شوک پس از لقاح	دمای شوک (°C)	گونه مورد تحقیق	ماخذ	رديف
1 - 1 + min	\min	40	کپور معمولی	Stanly (1975)	
0-∀•min	Y Omin	T4,48,4A	قزل آلای رنگین کمان	Chourout,D.(1982)	۲
¥h.	*/0-1 *min	/0	ماهی آزاد کوهو	Refstie(1982)	٣
\ +min	₹ • min	TA	قزل آلای رنگین کمان	Thampson,D.(1984)	*
1 + min	₩•min	**	قزل آلای رنگین کمان	Purdom,C.(1985)	٥
۶٠min	0–10min	+	کپور معمولی	Linhart,o.(1986)	,
₹ - ₹ • min	Yamin	7.5	قزل آلای رنگین کمان	Chourrout,D.(1986)	٧
r.Sec-r.min	1-0min	Y0-F.	کپور معمولی	Hollebeq(1986)	٨
Tomin	O min	+	لای ماهی	Linhart(1986)	4
\ +min		**	قزل آلای رنگین کمان	Disney(1987)	1 .

☐ Triploidy successful depends largely on three factors

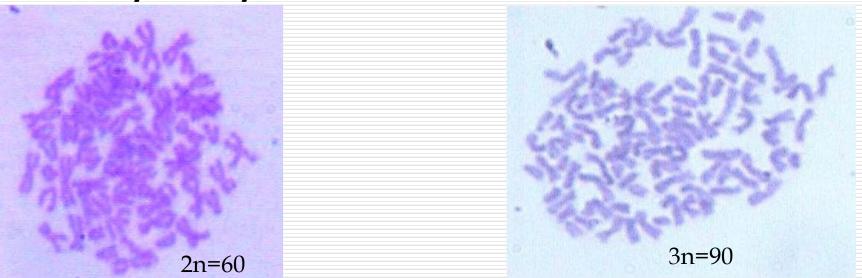

	Shock intensity	Time of shock initiation	Duration of treatment
Heat shock	26-28 C	20 -40 min (300-600 CTM)	10 -20 min
Hydrostatic Pressure	7000 – 10000 psi	(300-600 CTM)	3-10 min (5)



Indirect Method

 $4n * 2n \longrightarrow AII 3n$

Induction Tetraploid

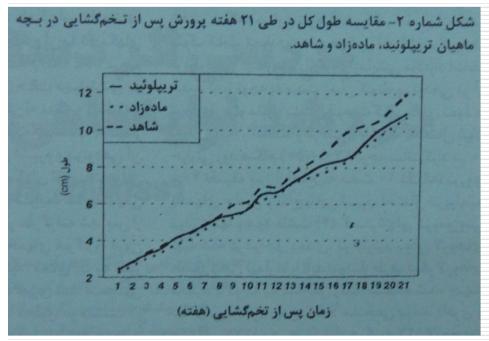


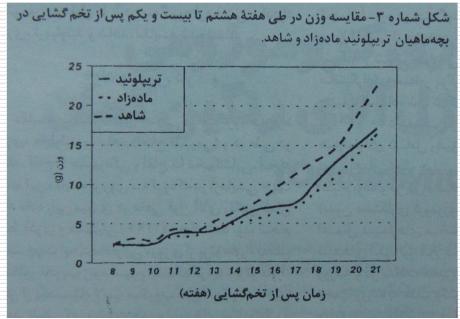
Ploidy Determination

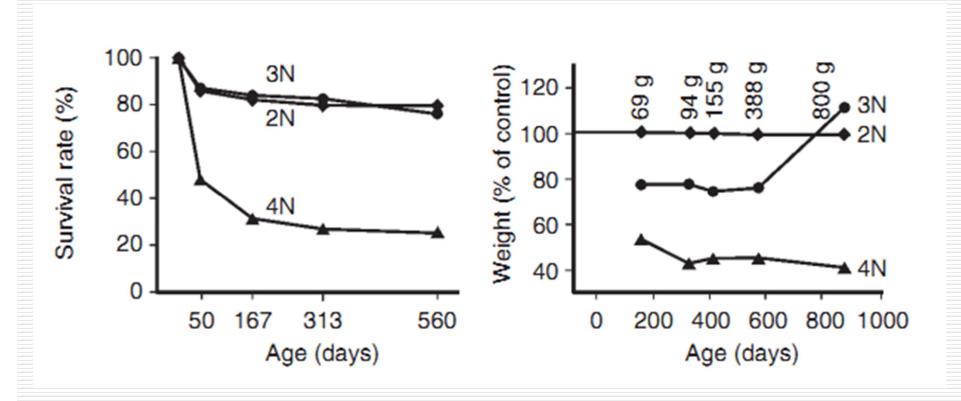
Karyotyping, the actual visualization and enumeration of chromosomes, is, of course, the most accurate method for determining ploidy level.

cell-size measurement with a blood smears.

Flow cytometry




Ploidy Determination


Erythrocytes of diploid (left) and triploid (right) brown trouts (\times 40 magnification, each unit 2.5 μ m)

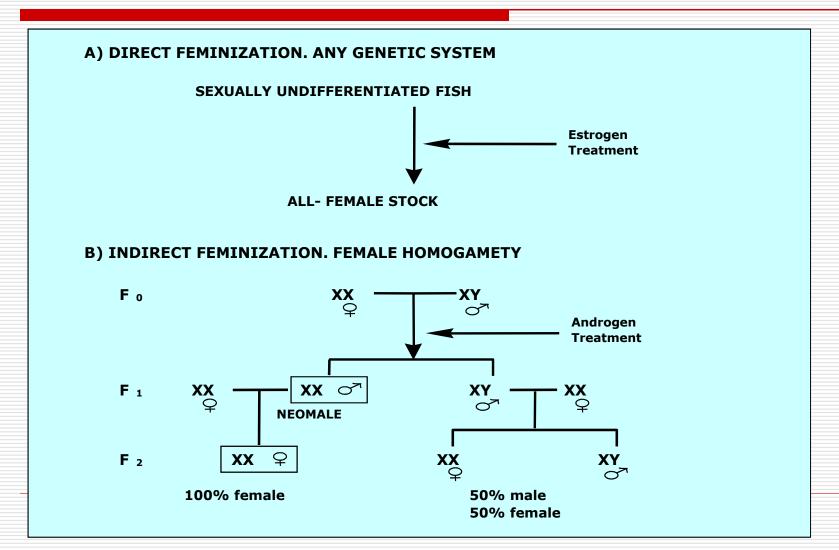
Growth of Diploid, Triploid and Tetraploid



Growth of Diploid, Triploid and Tetraploid

Problems with Triploids

- □ For many species triploids are not allowed by law (e.g. sea bass in Europe);
- Although sterile many triploids differentiate and develop gonads to some extent (mosaics) , so growth advantage is not always there;



Macroscopical appearance of triploid ovarium in the female brown trout on the 19th month post-fertilization

Macroscopical appearance of triploid testis in the male brown trout on the 19th month postfertilization

All female triploid

