
Research Article
Dynamic Resource Allocation for Load
Balancing in Fog Environment

Xiaolong Xu ,1,2,3,4 Shucun Fu,1,2 Qing Cai,1,2 Wei Tian,1,2 Wenjie Liu ,1,2

Wanchun Dou ,3 Xingming Sun ,1,2 and Alex X. Liu1,4

1School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
2Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing, China
3State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
4Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA

Correspondence should be addressed to Wanchun Dou; douwc@nju.edu.cn

Received 6 December 2017; Accepted 19 March 2018; Published 26 April 2018

Academic Editor: Deepak Puthal

Copyright © 2018 Xiaolong Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fog computing is emerging as a powerful and popular computing paradigm to perform IoT (Internet ofThings) applications, which
is an extension to the cloud computing paradigm to make it possible to execute the IoT applications in the network of edge. The
IoT applications could choose fog or cloud computing nodes for responding to the resource requirements, and load balancing is
one of the key factors to achieve resource efficiency and avoid bottlenecks, overload, and low load. However, it is still a challenge
to realize the load balance for the computing nodes in the fog environment during the execution of IoT applications. In view of
this challenge, a dynamic resource allocation method, named DRAM, for load balancing in fog environment is proposed in this
paper. Technically, a system framework for fog computing and the load-balance analysis for various types of computing nodes
are presented first. Then, a corresponding resource allocation method in the fog environment is designed through static resource
allocation and dynamic service migration to achieve the load balance for the fog computing systems. Experimental evaluation and
comparison analysis are conducted to validate the efficiency and effectiveness of DRAM.

1. Introduction

In recent years, the Internet of Things (IoT) has attracted
attention from both industry and academia, which is benefi-
cial to humans’ daily lives. The data extracted from the smart
sensors are often transmitted to the cloud data centers and the
applications are generally executed by the processors in the
data centers [1]. The cloud computing paradigm is efficient
in provisioning computation and storage resources for the
IoT applications, but the ever-increasing amount of resource
requirements of the IoT applications leads to the explosively
increased energy consumption and the performance degra-
dation of the computing nodes due to data transmission
and computing node migration; thus, how to perform IoT
applications becomes an urgent issue [2–6]. Fog computing
extends the computing process to the edge of the network
rather than performing the IoT applications in the cloud
platforms.

In the fog environment, the routers are the potential
physical servers which could provision resources for the fog
services at the edge of the network [7, 8]. The routers could
enhance the performance of computation and storage, which
could be fully utilized as the computing nodes. In the big
data era, there are different performance requirements for
the IoT applications, especially for the real-time applications;
thus, such applications choose the edge computing nodes
as a priority to host [9, 10]. In the fog environment, the
users could access and utilize the computation, storage, and
network resources, like the way the customers use the cloud
resources, and the virtualized technology is also applicative to
provision the on-demand resources dynamically [11].The IoT
applications could be performed by the fog computing nodes
and the physical resources deployed in the remote cloud data
center.The resource allocation for the IoT applications should
take into account both the centralized and the geodistributed
computing nodes, and the resource schedulers and managers

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 6421607, 15 pages
https://doi.org/10.1155/2018/6421607

http://orcid.org/0000-0003-4879-9803
http://orcid.org/0000-0002-9317-2869
http://orcid.org/0000-0003-4833-2023
http://orcid.org/0000-0001-7982-726X
https://doi.org/10.1155/2018/6421607
Zharfa
Highlight

Zharfa
Highlight

2 Wireless Communications and Mobile Computing

should choose the appropriate computing nodes to host the
fog services combined in the IoT applications through the
design of resource allocation strategies.

Resource allocation and resource scheduling are the key
technologies to manage the data centers, which contribute a
great deal to lowering the carbon emission, improving the
resource utilization, and obtaining load balancing for the
data centers [12–14]. In the cloud environment, the main
goal of resource allocation is to optimize the number of
active physical machines (PMs) and make the workloads
of the running PMs distributed in a balanced manner, to
avoid bottlenecks and overloaded or low-loaded resource
usage [14–17]. In the fog environment, resource allocation
becomes more complicated since the applications could be
responded to by the computing nodes both in fog and in
clouds. The computing nodes in the fog are distributed
dispersedly in the network of edge, while the computing
nodes in the cloud are distributed in a centralized data
center. The resource requirements of the IoT applications for
the computing nodes are various as the applications have
different demands of computing power, storage capacity, and
bandwidth. Therefore, it is necessary to undergo resource
allocation for the dynamic resource requirements of the IoT
applications, to achieve the goal of load balancing.

With the above observations, it is still a challenge to
realize the load balance for the computing nodes in the fog
environment during the execution of IoT applications. In
view of this challenge, a dynamic resource allocationmethod,
named DRAM, for load balancing in fog environment is
proposed in this paper. Specifically, our main contributions
are threefold. Firstly, we present a system framework for
IoT applications in fog environment and conduct the load-
balance analysis for various types of computing nodes.
Then, a corresponding resource allocation method in the fog
environment is designed through static resource allocation
anddynamic servicemigration to achieve the load balance for
the fog computing systems. Finally, adequate experimental
analysis is conducted to verify the performance of our
proposed method.

The rest of this paper is organized as follows. In Section 2,
formalized concepts and definitions are presented for load-
balance analysis in the fog environment. Section 3 elaborates
the proposed resource allocation method DRAM. Section 4
illustrates the comparison analysis and performance evalua-
tion. Section 5 summarizes the related work, and Section 6
concludes the paper and presents the prospect for the future
work.

2. Preliminary Knowledge

In this section, a fog computing framework for IoT applica-
tions is designed and the load-balance analysis is conducted
as well.

To facilitate dynamic resource allocation for load balanc-
ing in fog environment, formal concepts and load-balance
analysis are presented in this section. Key notations and
descriptions used in this section are listed in the section
named “Key Terms and Descriptions Involved in Resource
Scheduling in Fog Environment.”

2.1. System Framework for Fog Computing. Fog computing is
a new computing paradigm, which sufficiently leverages the
decentralized resources through the fog and cloud environ-
ments, to provision the computation and storage services for
the IoT applications. Fog computing extends the data process
and data storage between the smart sensors and the cloud
data centers. Some of the tasks from the IoT applications
could be processed in the fog rather than performing all the
tasks in the cloud environment. The virtualized technology
could be employed to improve the resource usage in the fog
environment.

Figure 1 shows a hierarchical framework for computing
tasks from IoT applications in the fog environment. There
are four layers in this framework, that is, the IoT application
layer, the service layer, the fog layer, and the cloud layer. The
IoT application contains a large amount of service require-
ments that need to be responded to by selecting appropriate
computing nodes according to the time urgency and the
resource amount from fog and cloud.The fog layer consists of
the edge computing nodes and the intermediate computing
nodes. The services with the highest time urgency and less
computation density can be calculated by the edge computing
nodes in the fog layer, and the less urgent tasks could choose
intermediate computing nodes for execution. The cloud
layer is appropriate to hosting the loose-fitting tasks with
high-density computation and huge-volume storage which
often demand a large amount of physical resources. The
intermediate computing nodes could be the routers for data
transmission, the edge computing nodes could be the mobile
devices or sensors, and the computing nodes in the cloud are
the PMs.

Fog computing is useful for IoT applications which
combine many fog services. The fog services cover all the
procedures of the data extraction, data transmission, data
storage, and service execution from the IoT applications.

Definition 1 (fog service). The services requested by the IoT
applications are available to be performed in the fog and
remote cloud data centers, denoted as 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁},
where 𝑁 is the number of fog services generated by the IoT
applications.

The PMs in the remote cloud data centers, the intermedi-
ate computing nodes, and the edge computing nodes in the
fog environment are all available to be leveraged to provision
physical resources for the fog services. Suppose there are𝑀 computing nodes in the fog and cloud environment,
denoted as 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑀}. The virtualized technology
has been widely applied in the cloud environment, which
is also adaptive in the fog environment to measure the
resource capacity of all the computing nodes and the resource
requirement of the fog services.

Definition 2 (resource capacity of computing nodes). For all
the computing nodes in the fog and cloud, their resource
capacities are quantified as the number of resource units,
and each resource unit contains various physical resources,
including CPU, memory, and bandwidth.

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Wireless Communications and Mobile Computing 3

Intermediate Computing Nodes

Edge Computing Nodes Fog layer

Cloud layer

Service layer

IoT application layer

...

...

Resource Units

...

Resource Units

...

..
.

..
.

..
.

...

... VM Instances

...

...

Physical
Resource

Intermediate Computing Nodes

Edge Computing Nodes

...

R

....

..
..

..
..

..
..

...

Figure 1: Fog computing framework for IoT applications.

Definition 3 (resource requirement of 𝑠𝑛). The corresponding
resource requirement of the 𝑛th fog service 𝑠𝑛 could be
quantified as the time requirements, the resource type,
and the resource amount to perform 𝑠𝑛, denoted as 𝑟𝑛 ={𝑠𝑡𝑖𝑚𝑛, 𝑑𝑢𝑡𝑖𝑚𝑛, 𝑡𝑦𝑝𝑒𝑛, 𝑐𝑜𝑢𝑛}, where 𝑠𝑡𝑖𝑚𝑛, 𝑑𝑢𝑡𝑖𝑚𝑛, 𝑡𝑦𝑝𝑒𝑛, and𝑐𝑜𝑢𝑛 represent the request start time, the duration time, the
resource type, and the requested amount of 𝑠𝑛, respectively.

Note that the resource requirements in this paper are
measured by the amount of resource units. For example,
in the cloud data centers, the resource units are the VM
instances, and the customers often rent several VM instances
to host one application.

2.2. Load Balancing Model in Fog Environment. Fog com-
puting paradigm releases the load distribution in the cloud
environment. Due to the diversity of execution duration
and specifications for the computing nodes in the fog, the
resources could not be fully utilized. In the fog environment,
we try to achieve load balancing for the computing nodes to
avoid low utilization or overload of the computing nodes.

Let 𝐼𝑚𝑛 (𝑡) be the binary variable to judge whether 𝑠𝑛 (1 ≤𝑛 ≤ 𝑁) is assigned to the computing node 𝑝𝑚 (1 ≤ 𝑚 ≤ 𝑀)
at time instant 𝑡, which is calculated by

𝐼𝑚𝑛 (𝑡) = {{{
1, if 𝑠𝑛 is assigned to 𝑝𝑚,
0, otherwise. (1)

With the judgement of fog service distribution, the
resource utilization for the𝑚th computing node 𝑝𝑚 at time 𝑡
is calculated by

𝑟𝑢𝑚 (𝑡) = 1𝑐𝑚
𝑁∑
𝑛=1

𝐼𝑚𝑛 (𝑡) ⋅ 𝑟𝑛, (2)

where 𝑐𝑚 is the capacity of the computing node 𝑝𝑚.
According to the service distribution, the number of

services deployed on 𝑝𝑚 at time instant 𝑡 is calculated by

𝑛𝑠𝑚 (𝑡) = 𝑁∑
𝑛=1

𝐼𝑚𝑛 (𝑡) . (3)

The load-balance variance should be specified for each
type of computing node. Suppose there are𝑊 types of com-
puting nodes in cloud and fog environment for performing
the fog services.

The load-balance variance is closely relevant to the
resource utilization. To calculate the resource utilization, the
employed amount of computing nodeswith type𝑤 at the time
instant 𝑡 is calculated by

𝑎𝑤 (𝑡) = 𝑀∑
𝑚=1

𝑓𝑚 (𝑡) ⋅ 𝛽𝑚𝑤 , (4)

where 𝛽𝑚𝑤 is a flag to judge whether 𝑝𝑚 is a type 𝑤 of
computing nodes, which is described in (5), and𝑓𝑚(𝑡) is used
to judge whether 𝑝𝑚 is empty at 𝑡, presented in (6).

4 Wireless Communications and Mobile Computing

𝛽𝑚𝑤 = {{{
1, if 𝑝𝑚 is a 𝑤th type computing node,
0, otherwise. (5)

𝑓𝑚 (𝑡) = {{{
1, if 𝑛𝑠𝑚 > 0,
0, otherwise. (6)

The resource utilization for the computing nodes with𝑤th type at time 𝑡 is calculated by

𝑅𝑈𝑤 (𝑡) = 1𝑎𝑤 (𝑡)
𝑀∑
𝑚=1

𝑁∑
𝑛=1

𝐼𝑚𝑛 (𝑡) ⋅ 𝑟𝑢𝑚 (𝑡) ⋅ 𝑓𝑚 (𝑡) . (7)

Definition 4 (variance of load balance of 𝑝𝑚 at time instant𝑡). The load-balance value is measured by the variance of the
resource utilization. The variance value for 𝑝𝑚 is calculated
by

𝑙𝑏𝑚 (𝑡) = (𝑟𝑢𝑚 (𝑡) − 𝑊∑
𝑤=1

𝑅𝑈𝑤 (𝑡) ⋅ 𝛽𝑚𝑤)
2

. (8)

Then, the average variance value for all the type 𝑤
computing nodes is calculated by

𝐿𝐵𝑤 (𝑡) = 1𝑎𝑤 (𝑡)
𝑀∑
𝑚=1

𝑁∑
𝑛=1

𝐼𝑚𝑛 (𝑡) ⋅ 𝑙𝑏𝑚 (𝑡) ⋅ 𝑓𝑚 (𝑡) . (9)

For the execution period [𝑇0, 𝑇] in the fog and cloud
environment, the load-balance variance could be calculated
by

𝐿𝐵𝑤 = 1𝑇 − 𝑇0 ∫
𝑇

𝑇0

𝐿𝐵𝑤 (𝑡) 𝑑𝑡. (10)

With these observations, the problem of minimizing the
variance of load balance can be formulated as follows:

min 𝐿𝐵𝑤, ∀𝑤 = 1, . . . ,𝑊 (11)

s.t. 𝑎𝑤 (𝑡) ≤ 𝑀∑
𝑚=1

𝛽𝑚𝑤 , (12)

𝑁∑
𝑛=1

𝑟𝑛 ≤ 𝑀∑
𝑚=1

𝑐𝑚, (13)

𝑁∑
𝑛=1

𝐼𝑚𝑛 𝑟𝑛 ≤ 𝑐𝑚, (14)

where∑𝑁𝑛=1 𝑟𝑛 in formula (13) represents the resource require-
ments for all services, ∑𝑀𝑚=1 𝑐𝑚 in formula (14) represents the
capacity of all computing nodes, and ∑𝑁𝑛=1 𝐼𝑚𝑛 𝑟𝑛 in formula
(14) represents the resource requirements for all services
allocated to the type𝑚 computing node.

From (11) to (14), we can find that the final objective
solved in this paper is an optimization problemwith multiple
constraints [18–20].

3. A Dynamic Resource Allocation Method for
Load Balancing in Fog Environment

In this section, we propose a dynamic resource allocation
method, named DRAM, for load balancing in fog environ-
ment. Our method aims to achieve high load balancing for
all the types of computing nodes in the fog and the cloud
platforms.

3.1. Method Overview. Our method consists of four main
steps, that is, fog service partition, spare space detection for
computing nodes, static resource allocation for fog service
subset, and the load-balance driven global resource alloca-
tion, as shown in the section named “Specification of our
Proposed Resource AllocationMethod for Load Balancing in
Fog Environment.” In this method, Step 1 is the preprocess
procedure, Step 2 is employed to detect the resource usage
for Steps 3 and 4, and Step 3 is designed for static resource
allocation for the fog services in the same subset and it
provides the primary resource provision strategies for Step 4.
Finally, Step 4 is a global resource allocationmethod to realize
dynamic load balance.

Specification of Our Proposed Resource Allocation Method for
Load Balancing in Fog Environment

Step 1 (fog service partition). There are different types of
computing nodes for the performance of fog services. To
efficiently provision resources, the fog services are classified
as several sets based on the resource requirements of node
type. Furthermore, these sets are divided into multiple sub-
sets according to the request start time.

Step 2 (spare space detection for computing nodes). To judge
whether a computing node is portable to host the fog service,
it is necessary to detect the spare space of all the computing
nodes. We analyze the employed resource units through the
analysis of occupation records, and then the spare space of
the computing nodes could be obtained.

Step 3 (static resource allocation for fog service subset).
For the fog services in the same service subset, the proper
computing nodes are identified to host these services. When
allocating resource units for a fog service, the computing
node with the least and enough spare space is selected.
Besides, some workloads from the computing nodes with
higher resource usage are migrated to the computing nodes
with low resource usage.

Step 4 (load-balance driven global resource allocation). For
all the fog service subsets, we could find the initialized
resource allocation strategies in Step 4, and then the dynamic
resource allocation adjustment is conducted at the competi-
tion moments of the fog services to achieve the global load
balance during the execution period of the fog services.

3.2. Fog Service Partition. The fog services from different
IoT applications have different requirements of computing
resources; that is, the fog services need to choose different

Zharfa
Highlight

Wireless Communications and Mobile Computing 5

Fog services Service sets Service subsets

s1: (�ퟎ, 1.0, �ퟏ, 2)

s2: (�ퟎ, 0.8, �ퟏ, 1)

s3: (�ퟏ, 0.5, �ퟏ, 1)

s4: (�ퟏ, 0.7, �ퟏ, 3)

s5: (�ퟎ, 1.5, �ퟐ, 2)

s6: (�ퟏ, 1.0, �ퟐ, 3)

s1
s1s2
s2s3

s3

s4
s4

f1

f2

s5 s5s6 s6

f1,1 f1,2

f2,1 f2,2

Figure 2: An example of subset acquisition with 6 fog services (i.e.,𝑠1∼𝑠6).

types of computing nodes for resource response. Suppose
there are𝑊 types of processing nodes, including the PMs in
cloud platforms, the intermediate nodes, and the edge nodes
near the sensors.

In this paper, we try to achieve the goal of load balancing
for each type of computing node; we assume that the fog ser-
vices need to be performed with the same type of computing
nodes. As a result, the fog services could be partitioned as𝑊
different service sets, denoted as F = {f1, f2, . . . , fW}.

The resource requirements of the fog services in the same
set have different resource response time. To efficiently realize
resource allocation for the services, the fog services in the
same set should be partitioned to several subsets according
to the start time for occupying the resource units of the
computing nodes.Then, we can allocate resource units for the
fog services in the same set to achieve high load balancing.

The subset fw (𝑤 = 1, 2, . . . ,𝑊) in F is divided into
multiple subsets according to the requested start time of the
fog services. Let fw,i be the 𝑖th (1 ≤ 𝑖 ≤ |fw|) subset contained
in fw. After the partition process, the fog services in 𝑓𝑤,𝑖 have
the same request start time.

For example, there are 6 fog services, that is, 𝑠1∼𝑠6, and
the resource requirements of these 6 services are 𝑠1: (0, 1, 1,
2), 𝑠2: (0, 0.8, 1, 1), 𝑠3: (1, 0.5, 1, 1), 𝑠4: (1, 0.7, 1, 3), 𝑠5: (0, 1.5,
2, 2), and 𝑠6: (1, 1, 2, 3), as shown in Figure 2. These 6 fog
services are put in two different sets𝑓1 and𝑓2 according to the
requested type of computing nodes, 𝑓1 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} and𝑓2 = {𝑠5, 𝑠6}. Then, 𝑓1 and 𝑓2 are partitioned to the subsets
according to the requested start time. Partition 𝑓1 is divided
into 2 subsets, 𝑓1,1 = {𝑠1, 𝑠2} and 𝑓1,2 = {𝑠3, 𝑠4}; meanwhile, 𝑓2
is also separated as 2 subsets, that is,𝑓2,1 = {𝑠5} and𝑓2,2 = {𝑠6}.

Algorithm 1 specifies the process of fog services subset
acquisition. In Algorithm 1, the input is the resource require-
ments of IoT applications, that is, 𝑅, and the output is the
partitioned fog service set F. We traverse all the fog services
(Line (1)), and the services are put in different sets according
to the requested resource type (Lines (1) to (6)), and then the
fog services are put in𝑊 different service sets.Then, the set fw
is divided to multiple subsets, according to the required start
time (Lines (8) to (17)).
3.3. Spare Space Detection for Computing Nodes. The fog
services need to be put on the computing nodes; thus, those
computing nodes with spare space should be identified. For
all the computing nodes, the allocation records are employed

Input:The resource requirements of IoT applications 𝑅
Output:The partitioned fog service set F
(1) for 𝑖 = 1 to𝑁 do
(2) for 𝑗 = 1 to𝑊 do
//There are𝑊 types of computing nodes in fog and cloud
(3) if 𝑡𝑦𝑝𝑒𝑖 == 𝑗 then
(4) Add 𝑟𝑖 to 𝑓𝑖
(5) end if
(6) end for
(7) end for
(8) for 𝑖 = 1 to𝑊 do
(9) 𝑛𝑛 = 0, 𝑞 = 0, 𝑓 = 𝑠𝑡𝑖𝑚0
(10) while 𝑛𝑛 < |𝑓𝑠𝑖| do
(11) if 𝑠𝑡𝑖𝑚𝑞 ≤ 𝑓 then
(12) Add the𝑚th fog service to 𝑓𝑠𝑖,𝑛𝑛
(13) else 𝑛𝑛 = 𝑛𝑛 + 1, 𝑞 = 𝑞 + 1, 𝑓 = 𝑠𝑡𝑖𝑚𝑞
(14) Add the 𝑞th fog service to 𝑓𝑠𝑖,𝑛𝑛
(15) end if
(16) end while
(17) end for
(18) Return F

Algorithm 1: Fog service subset acquisition.

to monitor the resource usage of all the computing nodes in
the fog and cloud.

Definition 5 (occupation record 𝑟𝑠𝑚,𝑖). The 𝑖th (1 ≤ 𝑖 ≤|𝑟𝑠𝑚|) occupation record in 𝑟𝑠𝑚 contains the response fog
service, the occupation start time, the duration time, and
the resource units, which is a 4-tuple, denoted as 𝑟𝑠𝑚,𝑖 =(𝑓𝑠𝑚,𝑖, 𝑠𝑡𝑚,𝑖, 𝑑𝑡𝑚,𝑖, 𝑢𝑠𝑚,𝑖), where 𝑓𝑠𝑚,𝑖, 𝑠𝑡𝑚,𝑖, 𝑑𝑡𝑚,𝑖, and 𝑢𝑠𝑚,𝑖 are
the fog service, the start time, the duration time, and the
resource unit sets of 𝑟𝑠𝑚,𝑖, respectively.

A computing node has a set of occupation records, since
it could host several fog services. The record set for the
computing node 𝑝𝑚 (1 ≤ 𝑚 ≤ 𝑀) is recorded as 𝑟𝑠𝑚. Then,
for all the computing nodes in the fog and cloud, there are𝑀
occupation record sets, denoted as 𝑅𝑆 = {𝑟𝑠1, 𝑟𝑠2, . . . , 𝑟𝑠𝑀}.
In 𝑟𝑠𝑚, there are many occupation records, which reflect the
resource usage of the computing node 𝑝𝑚.

The occupation records are dynamically updated accord-
ing to the real-time resource provisioning for the fog services.
Once the fog services are moved to the other computing
nodes during their lifetime, the occupation time parameter
should be updated accordingly for the relevant records. The
occupation records are generated from the users when they
apply for resources in the fog and cloud data center for imple-
menting the services generated from the IoT applications.

Benefiting from the resource monitoring, the occupied
resource units of all the computing nodes and the spare units
could be detected for resource allocation at any time.

Definition 6 (spare space of 𝑝𝑚). The spare space of the
computing node 𝑝𝑚 is defined as the idle amount of resource
units, which is measured by the difference value of the
capacity and the occupied amount of resource units on 𝑝𝑚.

Zharfa
Highlight

6 Wireless Communications and Mobile Computing

0.5 1.0 1.5 2.0 2.5 3.00
Time instants

Re
so

ur
ce

 U
ni

ts

r1

r2 r3

r3

r4

r5

r5

r6

u1,6

u1,5

u1,4

u1,3

u1,2

u1,1

Figure 3: An example of spare space detection with 6 occupation
records (i.e., 𝑟1∼𝑟6).

Input:The occupation record for the computing node 𝑝𝑚
Output:The spare space for 𝑝𝑚
(1) 𝑐𝑜𝑢 = 0
(2) for 𝑖 = 1 to |𝑟𝑠𝑚| do
(3) 𝑐𝑡𝑚,𝑖 = 𝑠𝑡𝑚,𝑖 + 𝑑𝑡𝑚,𝑖
//𝑐𝑡𝑚,𝑖 is the finish time for the occupation of resource units
(4) if 𝑡 ≥ 𝑠𝑡𝑚,𝑖 && 𝑡 < 𝑐𝑡𝑚,𝑖 then
//𝑡 is the request time for statistics
(5) 𝑐𝑜𝑢 = 𝑐𝑜𝑢 + |𝑢𝑠𝑚,𝑖|
(6) end if
(7) end for
(8) 𝑐𝑜𝑢 = 𝑐𝑚 − 𝑐𝑜𝑢
(9) Return cou

Algorithm 2: Spare space detection for computing nodes.

The spare space of the computing node 𝑝𝑚 could be
detected from the analysis of occupation records. In these
records, if occupation start time is less than the statistic time
instant for checking the PM status and the occupation finish
time is over the statistic time, the relevant resource units
combined in the occupation records could be obtained. With
these acquired resource units and the resource capacity of𝑝𝑚,
the spare space could be finally detected.

For example, there are 6 occupation records for the
computing node 𝑝1, that is, 𝑟1 : (1, 0, 0.5, {𝑢1,1}), 𝑟2 : (2, 0.3,
0.7, {𝑢1,2}), 𝑟3 : (3, 1.3, 1, {𝑢1,1, 𝑢1,2}), 𝑟4 : (4, 1.4, 1.2, {𝑢1,3}),𝑟5 : (5, 1.4, 0.8, {𝑢1,4, 𝑢1,5}), and 𝑟6 : (6, 2.5, 0.5, {𝑢1,1}), as
shown in Figure 3. If the statistic instant for spare space
detection is 1.5, the identified occupation records within the
statistic time are 𝑟3, 𝑟4, and 𝑟5. Based on the analysis of
the occupation records, the employed resource units at this
moment are 𝑢1,1, 𝑢1,2, 𝑢1,3, 𝑢1,4, and 𝑢1,5. Suppose the capacity
of 𝑝1 is 6; then, the spare space of 𝑝1 at time instant 1.5 is 1.

Algorithm 2 specifies the key idea of spare space detection
for computing nodes. In Algorithm 2, the input and the
output are the occupation records of the computing node 𝑝𝑚
and the spare space for 𝑝𝑚. According to Definition 7, we
need to calculate the occupation amount of resource units on

𝑝𝑚 first (Lines (1) to (8)), and then the spare space could be
detected (Line (8)).
3.4. Static Resource Allocation for Fog Service Subset. Based
on the fog service partition in Section 3.1 and spare space
detection for computing nodes in Section 3.2, the fog services
that need to be processed and the available computing
resources for fog service execution are identified, which are
all beneficial for resource allocation.

In the fog environment, the fog services need to be
responded to by the computing nodes, and the time require-
ments also should be presented when allocating the resources
to the fog services. In this section, we define the resource
allocation records to reserve the allocation history about
resource provisioning for the fog services.

Definition 7 (resource allocation record for 𝑠𝑛). The resource
allocation record for 𝑠𝑛 consists of the node type, the number
of resource units, the start time, and the desired duration
time, which is denoted as 𝑎𝑛 = (𝑛𝑡𝑛, 𝑛𝑢𝑚𝑛, 𝑠𝑡𝑛, 𝑑𝑡𝑛), where𝑛𝑡𝑛, 𝑛𝑢𝑚𝑛, 𝑠𝑡𝑛, and 𝑑𝑡𝑛 are the node type, the amount
of resource units, the service start time, and the resource
occupation time for 𝑠𝑛, respectively.

The fog services in the same fog service subset have the
same required node type and start time. When allocating
resource units for the fog service subset, each fog service
should find a portable computing node to host it. Thus, we
need to find the available nodes first. The computing nodes
with the requested type, which have spare space, which could
be detected by Algorithm 2, are chosen as the candidate
resources to be provided for the fog services in the subset.

To achieve the load balancing of the computing nodes, we
try to achieve high resource usage of the employed computing
nodes. The problem of static resource allocation is like bin
packing problem, which is NP-hard. Here, we leverage the
idea of Best Fit Decreasing to realize the process of computing
node matching for the fog services. Before resource alloca-
tion, the fog services are sorted in the decreasing order of
requested resource amount. The service with more required
resource units will be processed first. And it chooses the
computing node with the least and enough spare space for
hosting the service.

For example, there are 3 computing nodes 𝑃1, 𝑃2, and𝑃3, and the spare spaces of these 3 computing nodes are 4,
6, and 9, respectively, as shown in Figure 4. There are two
fog services in the same subset, that is, 𝑆1 and 𝑆2, and the
requested resource amounts of these two services are 2 and
6. When conducting resource allocation for 𝑆1 and 𝑆2, 𝑆2 has
more resource requirements, and thus 𝑆2 is processed first.
After resource allocation, 𝑆2 chose𝑃3 for hosting and 𝑆1 chose𝑃1 for hosting.

The above allocation may lead to the unbalanced dis-
tribution of the workloads of some computing nodes. In
this section, a threshold 𝜌 is employed to judge whether the
computing node is in low resource utilization. If a computing
node is in low resource utilization and there are no other
computing nodes that could host the workloads in this
computing node, we choose to move some workloads to this
computing node to improve the load balance.

Zharfa
Highlight

Zharfa
Highlight

Zharfa
Highlight

Wireless Communications and Mobile Computing 7

Computing nodes

Fog services

Before allocation

After allocation

P1

P1

P2

P2

P3

P3
S1 S2

Figure 4: An example of static resource allocation for fog services𝑆1 and 𝑆2, with computing nodes 𝑃1, 𝑃2, and 𝑃3.

After resource allocation, there are several allocation
records generated, to record the allocation history for the
fog services in the service subset. Meanwhile, there are some
computing nodes, providing resource units for executing the
fog services, which also generate some occupation records.

Algorithm 3 illustrates the key idea of static resource
allocation for fog service subset fw,i.The input of Algorithm 3
is the fog service subset fw,i, and the output of this algorithm
is the resource allocation records for the fog services in fw,i.
The required computing nodes of fog services in the same
subset have the same node type, which should be obtained
first (Line (1)). The services with fewer requested resource
units will be processed first, so fw,i should be sorted in
the increasing order of the amount of values of required
resources. Then, each service could be responded to with
computing nodes sequentially (Line (3)). When selecting a
computing node to provision resources for a fog service, the
available computing nodes with enough spare space to host
the service, calculated by Algorithm 2, should be achieved
first (Lines (4) to (11)). The computing nodes also should be
sorted in the increasing order of spare space (Line (12)).Then,
the computing node with the least spare space will be selected
to accommodate the service (Line (13)). Some workloads
from the computing nodes with higher resource usage will
be migrated to the computing nodes with low resource
utilization to improve load balance (Lines (15) to (24)).
Finally, the relevant occupation records and the resource
allocation record for the fog service should be updated (Lines(25) and (26)).
3.5. Load-Balance Driven Global Resource Allocation. From
the analysis in Sections 3.2 and 3.4, the initialized resource
allocation is conducted, and the different types of computing
nodes could achieve high resource utilization and load bal-
ancing at the allocationmoment. However, the static resource
allocation only could achieve the temporary load balancing
at the service arrival moments. During the service running,
the resource usage of the computing nodes is dynamically
changed due to the various lifetimes of the fog services. In
this section, a global resource allocation strategy is designed
tomake load balancing come true during the execution of the
fog services.

Input:The fog service subset fw,i
Output:The relevant resource allocation records
(1) Get the node type nt in the service subset fw,i
(2) Sort fw,i in decreasing order of required resource amount
(3) for each fog service in fw,i do
(4) for 𝑖 = 1 to𝑀 do
(5) if 𝑝𝑚 has the same type with 𝑛𝑡 then
(6) Get the spare space byAlgorithm 2
(7) if 𝑝𝑚 has enough space to host the service then
(8) Add the computing node to 𝐶𝐿
(9) end if
(10) end if
(11) end for
(12) Sort 𝐶𝐿 in increasing order of spare space
(13) Put the service in the first computing node in 𝐶𝐿
(14) end for
(15) flag = 1, 𝑖 = 1
(16) Identify the occupied computing nodes from 𝐶𝐿 to 𝐶𝐿󸀠
(17) Sort 𝐶𝐿󸀠 in the decreasing order of spare space
(18) while flag == 1 do
(19) if the resource usage of 𝑐𝑙󸀠𝑖 is less than 𝜌 then
(20) Select the tasks to migrate to the computing node
(21) 𝑖 = 𝑖 + 1
(22) else flag = 0
(23) end if
(24) end while
(25)Update the relevant occupation records
(26) Generate an allocation records

Algorithm 3: Static resource allocation for fog service subset.

The fog service subsets demand the same type of comput-
ing nodes for hosting sequentially according to the requested
start time of the resources. Let 𝑏𝑡𝑤,𝑖 be the requested start
time for resource occupation of the 𝑖th subset 𝑓𝑤,𝑖 in fw. For
dynamic adjustment of resource allocation at the finish time
of the fog services in 𝑏𝑡𝑤,𝑖 (1 ≤ 𝑖 < |fw|), the scheduling
time should be with the time period (𝑏𝑡𝑤,𝑖, 𝑏𝑡𝑤,𝑖+1). When𝑖 = |fw|, the scheduling time should be the competition time
for the rest of the fog service loads during the period for the
execution of the fog services in fw,i.

At the scheduling time, the running workloads occupy
some computing nodes, and these computing nodes may
be with low resource usage due to the service competition.
The computing nodes with the same type in fog or cloud
could be sorted in the decreasing order of the resource
usage. The workloads in the computing nodes with the
lower resource usage could be migrated to the computing
nodes with higher resource usage, to achieve higher resource
utilization. Besides, the migration of workloads could also
help to realize the goal of load balancing as the computing
nodes withmore spare space could bemoved vacant and shut
down further.

For the workloads from different fog services, it is
necessary to find the destination computing nodes to host
them. The selection of destination computing nodes decides
on the resource requirements of the workloads and the spare
space of the computing nodes. If all the workloads from the

Zharfa
Highlight

8 Wireless Communications and Mobile Computing

Input:The fog service set 𝑆
Output:The resource allocation records

The occupation records on computing nodes
(1)Obtain fog service subset F by Algorithm 1
(2) for 𝑖 = 1 to𝑊 do
(3) for 𝑗 = 1 to |𝑓𝑤| do
(4) Algorithm 3 Static resource allocation for fw,j
(5) Calculate 𝐶𝑇
// CT is the competition time list
// CT = {𝑐𝑡1, 𝑐𝑡2, . . . , 𝑐𝑡𝐾}
(6) for 𝑘 = 1 to 𝐾 do
(7) Update the current run list in fw,j
(8) for 𝑙 = 1 to𝑀 do
(9) Get spare space by Algorithm 2 at 𝑐𝑡𝑘
(10) if𝑝𝑙 has spare space and is not empty then
(11) Add 𝑝𝑙 to 𝑆𝐿
(12) end if
(13) end for
(14) Sort SL in increasing order of spare space
(15) flag = 1, 𝑞 = 1
(16) while flag == 1 do
(17) Get the occupied resources sets on 𝑠𝑙𝑞
(18) for each occupied resource set do
(19) Confirm the destination PM
(20) end for
(21) if the resource sets can be moved then
(22) 𝑞 = 𝑞 + 1
(23) Update the relevant allocation records
(24) Update the occupation records
(25) else flag = 0
(26) end if
(27) end while
(28) end for
(29) end for
(30) end for

Algorithm 4: Load-balance driven global resource allocation.

same computing node could find the destination computing
nodes, these workloads could be migrated to the destination
computing nodes. Finally, the resource allocation records and
the occupation records are generated or updated according to
the real occupation computing nodes and the usage time of
the corresponding resource units.

Algorithm 4 illustrates the key process of load-balance
driven global resource allocation.The key idea of Algorithm4
is to conduct static resource allocation for the fog services at
the start execution time and dynamically adjust the service
placement according to the resource usage of all the employed
computing nodes. The input of this algorithm is the fog
service set 𝑆, and the final output of this algorithm is the
resource allocation records and the occupation records. In
this algorithm, the fog service subset is achieved first by
Algorithm 1 (Line (1)), and then we traverse each subset for
resource allocation (Line (2)) and conduct static resource
allocation for the subsets by Algorithm 3 (Line (3)).Then, for
each subset, the competition time list𝐶𝐿 is extracted for load-
balance driven dynamic resource allocation (Line (5)). Then,
at each competition instant, we adjust the resource allocation

Table 1: Parameter settings.

Parameter Domain
Number of fog services {500, 1000, 1500, 2000}
Number of computing nodes 3000
Number of node types 3
Resource capacity {7, 12, 18}
Resource requirements of fog services [1, 15]
Duration for each service [0.1, 4.8]

records for the running services (Line (6)). The fog services
on the computing node with less spare space would bemoved
to the computing node with higher resource usage, which has
enough spare space to host the services (Lines (8) to (20)).
When all the fog services on a computing node could find
the destination node, the relevant allocation records and the
occupation records for the resource units will be generated
and updated (Lines (15) to (27)).
4. Experimental Analysis

In this section, the cloud simulator Cloudsim is applied to
evaluate our proposed method DRAM. The intermediate
computing nodes and the edge computing nodes are simu-
lated as two computing data centers. The resource allocation
method for fog environment is NP-hard, like the bin packing
problem; thus, the typical and efficient resource allocation
methods FF, BF, FFD, and BFD are employed for comparison
analysis.

4.1. Experimental Context. To discuss the effectiveness of
DRAM, 4 datasets with different scale of fog services are
utilized, which are shared at https://drive.google.com/drive/
folders/0B0T819XffFKrZTV4MFdzSjg0dDA?usp=sharing.
The parameters for experimental evaluation are presented in
Table 1.

The fog services employ three types of computing nodes,
that is, the edge computing node, the intermediate node,
and the PMs in cloud for resource response. The number of
services for each type of computing node contained in the
4 different datasets is shown in Figure 5. For example, when
the number of fog services is 1000, there are 324 fog services
that need edge computing nodes, 353 fog services that need
intermediate computing nodes, and 323 fog services that need
PMs in the remote cloud for resource response.

4.2. Performance Evaluation. Our proposed method tends to
minimize the load-balance variance, which is relevant to the
resource utilization of each computing node and the average
resource utilization. Therefore, we conduct performance
evaluation for this fog computing system on the employed
number of computing nodes, resource utilization, and load-
balance variance.

(1) Performance Evaluation on the Employed Number of
Computing Nodes.The number of the computing nodes could
reflect the efficiency of resource usage. Figure 6 shows the
comparison of the number of employed computing nodes

https://drive.google.com/drive/folders/0B0T819XffFKrZTV4MFdzSjg0dDA?usp=sharing
https://drive.google.com/drive/folders/0B0T819XffFKrZTV4MFdzSjg0dDA?usp=sharing

Wireless Communications and Mobile Computing 9

179

324

489

637

167

353

517

713

154

323

494

650

0

100

200

300

400

500

600

700

800

500 1000 1500 2000

Edge Computing Node
Intermediate Computing Node
PMs in Cloud

Number of fog services for resource allocation

N
um

be
r o

f s
er

vi
ce

s f
or

 co
m

pu
tin

g
no

de
s

Figure 5: Number of fog services for the 3 types of computing nodes
with different datasets.

0

20

40

60

80

100

120

140

500 1000 1500 2000

FF
BF
FFD

BFD
DRAM

Number of fog services for resource allocation

N
um

be
r o

f e
m

pl
oy

ed
 co

m
pu

tin
g

no
de

s

Figure 6: Comparison of the number of employed computing nodes
by FF, BF, FFD, BFD, and DRAM with different datasets.

by FF, BF, FFD, BFD, and DRAM by using the 4 different
scales of datasets. From Figure 6, we can find that our
proposed method DRAM as well as BFD could employ fewer
computing nodes, compared with FF, BF, and FFD, when
the number of fog services is 500, 1000, and 2000. When
the number of fog services is 1500, our proposed DRAM
could even get higher efficiency on the employed number of
computing nodes than BFD. In the process of static resource
allocation, DRAM leverages the basic idea of BFD; thus, in
most cases, DRAMandBFDhave similar performance on the
amount of employed computing nodes. But when some of the
computing nodes are spared through the process of DRAM,
thus in some cases, DRAM is superior to BFD.

As there are 3 types of computing nodes in our experi-
mental evaluations, we should evaluate DRAM for the dif-
ferent types of computing nodes, compared to the other four
methods.The4 subfigures in Figure 7 show the comparison of
the number of the employed computing nodes with different
types by FF, BF, FFD, BFD, and DRAM using different
datasets. It is intuitive from Figure 7 that our proposed
method DRAM is fit for all kinds of computing nodes, which
employs fewer computing nodes than FF, BF, and FFD, and
gets similar performance to BFD in most cases.

(2) Performance Evaluation on Resource Utilization. The
resource utilization is a key factor to decide the load-balance
variance; thus we evaluate this value to discuss the resource
usage achieved by FF, BF, FFD, BFD, and DRAM with
different datasets. The resource utilization is referenced to
the resource usage of the resource units on the computing
nodes. Figure 8 shows the comparison of average resource
utilization by FF, BF, FFD, BFD, and DRAM with different
datasets. It is intuitive from Figure 8 that DRAM could obtain
better resource utilization than FF, BF, FFD, and BFD, since
DRAM is a dynamic and adaptivemethodwhich could adjust
the load distribution during the fog service execution.

Similar to the evaluation on the employed amount of
computing nodes, the performance evaluation on resource
utilization is conducted from the perspective of the different
types of the computing nodes. Figure 9 shows the comparison
of resource utilization for different types of computing nodes
by FF, BF, FFD, BFD, and DRAM with different datasets.
From Figure 9, we can find that DRAM could achieve higher
resource utilization than FF, BF, FFD, and BFD. For example,
in Figure 9(c), when the number of fog services is 1500,
DRAM obtains the resource utilization over 80%, whereas
FF, BF, FFD, and BFD obtain near or below 70% resource
utilization for each type of computing node.

(3) Performance Evaluation on Load-Balance Variance. The
evaluation of the load-balance variance is also conducted by
FF, BF, FFD, BFD, and DRAM using 4 different scales of
datasets. Figure 10 shows the comparison of average load-
balance variance, where we can find that our proposed
method DRAM is superior to the other methods, that is, FF,
BF, FFD, and BFD. For example, when the number of fog
services is 500, the load-balance variance obtained by DRAM
is near 2.5 × 10−2, whereas FF, BF, FFD, and BFD obtain the
load-balance value over 3 × 10−2.

The evaluation on the load-balance variance also should
take into consideration the computing node type. Figure 11
shows the comparison of load-balance variance values for
different types of computing nodes by FF, BF, FFD, BFD, and
DRAM with different datasets. From Figure 11, we can find
that when changing the scale of datasets, our method can
keep the priority on the load-balance variance for each type
of computing node.

5. Related Work

The IoT technology has been widely applied in many fields,
including weather forecasting and traffic monitoring. The

10 Wireless Communications and Mobile Computing

0

5

10

15

20

25

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

N
um

be
r o

f e
m

pl
oy

ed
 co

m
pu

tin
g

no
de

s

FF
BF
FFD

BFD
DRAM

(a) Number of fog services = 500

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud
0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f e
m

pl
oy

ed
 co

m
pu

tin
g

no
de

s

FF
BF
FFD

BFD
DRAM

(b) Number of fog services = 1000

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud
0
5

10
15
20
25
30
35
40
45
50

N
um

be
r o

f e
m

pl
oy

ed
 co

m
pu

tin
g

no
de

s

FF
BF
FFD

BFD
DRAM

(c) Number of fog services = 1500

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud
0
5

10
15
20
25
30
35
40
45
50

N
um

be
r o

f e
m

pl
oy

ed
 co

m
pu

tin
g

no
de

s

FF
BF
FFD

BFD
DRAM

(d) Number of fog services = 2000

Figure 7: Comparison of the number of the employed computing nodes with different types by FF, BF, FFD, BFD, and DRAM using different
datasets.

0
10
20
30
40
50
60
70
80
90

100

500 1000 1500 2000
Number of fog services for resource allocation

Av
er

ag
e r

es
ou

rc
e u

til
iz

at
io

n
(%

)

FF
BF
FFD

BFD
DRAM

Figure 8: Comparison of average resource utilization by FF, BF, FFD, BFD, and DRAM with different datasets.

Wireless Communications and Mobile Computing 11

0
10
20
30
40
50
60
70
80
90

100
Re

so
ur

ce
 U

til
iz

at
io

n
(%

)

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

FF
BF
FFD

BFD
DRAM

(a) Number of fog services = 500

0
10
20
30
40
50
60
70
80
90

100

Re
so

ur
ce

 U
til

iz
at

io
n

(%
)

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

FF
BF
FFD

BFD
DRAM

(b) Number of fog services = 1000

0
10
20
30
40
50
60
70
80
90

100

Re
so

ur
ce

 U
til

iz
at

io
n

(%
)

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

FF
BF
FFD

BFD
DRAM

(c) Number of fog services = 1500

0
10
20
30
40
50
60
70
80
90

100

Re
so

ur
ce

 U
til

iz
at

io
n

(%
)

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

FF
BF
FFD

BFD
DRAM

(d) Number of fog services = 2000

Figure 9: Comparison of resource utilization for different types of computing nodes by FF, BF, FFD, BFD, and DRAMwith different datasets.

0

1

2

3

4

5

6

500 1000 1500 2000
Number of fog services for resource allocation

Av
er

ag
e l

oa
d

ba
la

nc
e v

ar
ia

nc
e

×10−2

FF
BF
FFD

BFD
DRAM

Figure 10: Comparison of average load-balance variance by FF, BF, FFD, BFD, and DRAM with different datasets.

12 Wireless Communications and Mobile Computing

0

1

2

3

4

5

6

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

×10−2

FF
BF
FFD

BFD
DRAM

Lo
ad

 B
al

an
ce

 V
ar

ia
nc

e

(a) Number of fog services = 500

0

1

2

3

4

5

6

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

×10−2

FF
BF
FFD

BFD
DRAM

Lo
ad

 B
al

an
ce

 V
ar

ia
nc

e

(b) Number of fog services = 1000

0

1

2

3

4

5

6

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

×10−2

FF
BF
FFD

BFD
DRAM

Lo
ad

 B
al

an
ce

 V
ar

ia
nc

e

(c) Number of fog services = 1500

0

1

2

3

4

5

6

Intermediate
Computing Node

Edge Computing
Node

PMs in Cloud

×10−2

Lo
ad

 B
al

an
ce

 V
ar

ia
nc

e

FF
BF
FFD

BFD
DRAM

(d) Number of fog services = 2000

Figure 11: Comparison of load-balance variance values for different types of computing nodes by FF, BF, FFD, BFD, andDRAMwith different
datasets.

data storage and processing usually benefit from the cloud
computing which provides scalable and elastic resources for
executing the IoT applications [21–26]. In the ever-expanding
data volume, cloud computing is difficult to provide efficient,
low-latency computing services, and fog computing is pro-
posed to complement the above shortage of cloud computing
[1, 2].

Compared to the remote cloud computing center, fog
computing is closer to the Internet of Things devices and
sensors. Fog computing can quickly solve lightweight tasks
with fast response. In the era of big data, with cloud comput-
ing expansion, fog computing is widely used in the medical,
transportation, and communication fields, to name a few
[21, 27–30].

Hu et al. [21] designed a fog calculation framework in
detail and compared it with the traditional cloud computing,
and a practical application case in the fog computing envi-
ronment was put forward. Similarly, Kitanov and Janevski

[27] compared the cloud computing on computing perfor-
mance with fog computing in the 5G network, reflecting
the superiority of fog computing. Akrivopoulos et al. [28]
presented a technology to respond to the combination of IoT
applications and the fog computing and introduced the use of
fog computing in an automatedmedical monitoring platform
to improve the medical work for the patients. Arfat et al. [29]
not only unprecedentedly proposed the integration of mobile
applications, big data analysis, and fog computing, but also
introduced Google Maps as an example, showing the system
of information feedback diversification. Taneja andDavy [30]
studied the computational efficiency in the fog environment
and constructed a resource-aware placement.

Generally, resource allocation refers to the allocation
of specific, limited resources and effective management to
achieve the optimal use of resources.The original intention of
cloud computing is to allocate network resources on demand,
so that it is the same as the use of water and electricity billing

Wireless Communications and Mobile Computing 13

[31, 32]. In the cloud computing, resource allocation method
can effectively help to achieve the goal of high resource usage
and energy saving for centralized resource management for
different types of applications [4, 33–35]. Fog computing,
as an extension of cloud computing paradigm, also needs
to conduct resource allocation to achieve high-efficiency
resource usage.

Mashayekhy et al. [36] proposed an auction-based online
mechanism; it can access in real time the actual needs of
users and the allocation of appropriate resources to the user
price. Kwak et al. [37] developed a DREAM algorithm for
complex tasks in mobile devices, saving 35% of total energy
and managing network resources. To address the challenges
of high latency and resource shortage in clouds, Alsaffar et
al. [38] proposed the resource management framework, col-
laborating the cloud computing and the fog computing, and
then they optimized the resource allocation in fog computing.
Xiang et al. [39] designed a RAN (F-RAN) architecture based
on atomization calculation, which effectively achieved the
high resource usage and could coordinate the global resource
scheduling.

Load balancing is an effective factor to determine the
resource allocation strategy. For multiple computing tasks,
load balancing could promote the resource managers to
assign these tasks tomultiple computing nodes for execution.
The realization of load balancing not only can save the cost of
hardware facilities but also can improve resource efficiency.

Banerjee andHecker [40] proposed a distributed resource
allocation protocol algorithm to realize load balancing in
a large-scale distributed network; as a result, compared to
the FIFO, the response time and resource utilization could
be greatly improved. Govindaraju and Duran-Limon [41]
designed a method based on the lifecycle-related Service
Level Agreement (SLA) parameters of the virtual machines
in cloud environment to address resource utilization and cost
issues. Evolution algorithms are proved to be powerful to
solve the multiobjective problem, which could be leveraged
in the resource scheduling in the fog computing [42]. Jeyakr-
ishnan and Sengottuvelan [43] developed a new algorithm,
while saving operating costs, while maximizing the use of
resources, in the balanced scheduling compared to SA, PSO,
and ADS being more outstanding.

For the load balancing maximization problem solved in
this paper, the traditional operations research is proved to be
efficient in optimization problem with constraints [44, 45].
The game theory is also efficient for the resource allocation
with resource competition, and the Nash Equilibria are often
needed to be verified first [46, 47].

To the best of our knowledge, there are few studies
focusing on the resource allocation of fog services in the fog
environment which aims to realize the load balancing for the
computing nodes in both fog and cloud.

6. Conclusion and Future Work

In recent years, IoT has been one of the most popular
technologies for daily lives. With rapid development of IoT,
fog computing is emerging as one of the most powerful
paradigms for processing the IoT applications. In the fog

environment, the IoT applications are performed by the edge
computing nodes and the intermediate computing nodes in
the fog, as well as the physical machines in the cloud plat-
forms. To achieve the dynamic load balancing for each type
of computing node in the fog and cloud, a dynamic resource
allocation method, named DRAM, for load balancing has
been developed in this paper. Firstly, a system framework
in fog computing was presented and load balancing for the
computing nodes is analyzed accordingly. Then, the DRAM
method has been implemented based on the static resource
allocation and dynamic resource scheduling for fog services.
As a result, the experimental evaluations and comparison
analysis were carried out to verify the validity of our proposed
method.

For future work, we try to analyze the negative impact
of the service migration, including the traffic for different
types of computing nodes, the cost for service migration,
the performance degradation for the service migration, and
the data transmission cost. Furthermore, we will design a
correspondingmethod to balance the negative effects and the
positive impacts for service migration.

Key Terms and Descriptions Involved in
Resource Scheduling in Fog Environment

𝑀: The number of computing nodes𝑃: The set of computing nodes,𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑀}𝑁: The number of services𝑆: The set of services, 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁}𝑝𝑚: The𝑚th (1 ≤ 𝑚 ≤ 𝑀) computing node in𝑃𝑠𝑛: The 𝑛th (1 ≤ 𝑛 ≤ 𝑁) service in 𝑆𝑐𝑚: The resource capacity of the𝑚th
computing node 𝑝𝑚𝑟𝑛: The set of resource requirements of the𝑛th service 𝑠𝑛𝑊: The number of types of processing nodes𝛽𝑚𝑤 : A flag to judge whether 𝑝𝑚 is a type 𝑤 of
computing nodes𝑟𝑢𝑚(𝑡): The resource utilization for 𝑝𝑚 at time 𝑡𝑅𝑈𝑤(𝑡): The resource utilization for the 𝑤th type
computing nodes at time 𝑡𝑙𝑏𝑚(𝑡): The load-balance variance for 𝑝𝑚 at time 𝑡𝐿𝐵𝑤(𝑡): The load-balance variance for the 𝑤th type
computing nodes at time 𝑡𝐿𝐵𝑤: The average load-balance variance for the𝑤th type computing nodes.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research is supported by the National Natural Science
Foundation of China under Grants nos. 61702277, 61672276,
61772283, 61402167, and 61672290, the Key Research and
Development Project of Jiangsu Province under Grants nos.

14 Wireless Communications and Mobile Computing

BE2015154 and BE2016120, and the Natural Science Foun-
dation of Jiangsu Province (Grant no. BK20171458). Besides,
this work is also supported by the Startup Foundation for
Introducing Talent of NUIST, the Open Project from State
Key Laboratory for Novel Software Technology, Nanjing
University, under Grant no. KFKT2017B04, the Priority Aca-
demic Program Development of Jiangsu Higher Education
Institutions (PAPD) fund, Jiangsu Collaborative Innova-
tion Center on Atmospheric Environment and Equipment
Technology (CICAEET), and the project “Six Talent Peaks
Project in Jiangsu Province” under Grant no. XYDXXJS-040.
Special thanks are due to Dou Ruihan, Nanjing Jinling High
School, Nanjing, China, for his intelligent contribution to our
algorithm discussion and experiment development.

References

[1] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based
method for task allocation in open and dynamic cloud environ-
ments,” Knowledge-Based Systems, vol. 115, pp. 123–132, 2017.

[2] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the
Suitability of Fog Computing in the Context of Internet of
Things,” IEEE Transactions on Cloud Computing, vol. 6, no. 1,
pp. 46–59, 2015.

[3] K. Peng, R. Lin, B. Huang, H. Zou, and F. Yang, “Link impor-
tance evaluation of data center network based on maximum
flow,” Journal of Internet Technology, vol. 18, no. 1, pp. 23–31, 2017.

[4] E. Luo, M. Z. Bhuiyan, G. Wang, M. A. Rahman, J. Wu, and
M. Atiquzzaman, “PrivacyProtector: Privacy-Protected Patient
Data Collection in IoT-Based Healthcare Systems,” IEEE Com-
munications Magazine, vol. 56, no. 2, pp. 163–168, 2018.

[5] P. Li, S. Zhao, andR. Zhang, “A cluster analysis selection strategy
for supersaturated designs,” Computational Statistics & Data
Analysis, vol. 54, no. 6, pp. 1605–1612, 2010.

[6] G.-L. Tian, M. Wang, and L. Song, “Variable selection in the
high-dimensional continuous generalized linear model with
current status data,” Journal of Applied Statistics, vol. 41, no. 3,
pp. 467–483, 2014.

[7] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, “Offloading
mobile data traffic for QoS-aware service provision in vehicular
cyber-physical systems,” Future Generation Computer Systems,
vol. 61, pp. 118–127, 2016.

[8] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proceedings of the Workshop on
Mobile Big Data (Mobidata ’15), pp. 37–42, ACM, Hangzhou,
China, June 2015.

[9] X. L. Xu, X. Zhao, F. Ruan et al., “Data placement for privacy-
aware applications over big data in hybrid clouds,” Security
and Communication Networks, vol. 2017, Article ID 2376484, 15
pages, 2017.

[10] X. Xu, W. Dou, X. Zhang, C. Hu, and J. Chen, “A traffic hotline
discovery method over cloud of things using big taxi GPS data,”
Software: Practice and Experience, vol. 47, no. 3, pp. 361–377,
2017.

[11] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing:
A platform for internet of things and analytics,” in Big Data and
Internet of Things: A Roadmap for Smart Environments, vol. 546
of Studies in Computational Intelligence, pp. 169–186, 2014.

[12] X. Xu, X. Zhang, M. Khan, W. Dou, S. Xue, and S. Yu,
“A balanced virtual machine scheduling method for energy-
performance trade-offs in cyber-physical cloud systems,” Future
Generation Computer Systems, 2017.

[13] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan,
“Stochastic Load Balancing for Virtual Resource Management
in Datacenters,” IEEE Transactions on Cloud Computing, pp. 1–
14, 2016.

[14] Y. Sahu, R. K. Pateriya, and R. K. Gupta, “Cloud server opti-
mization with load balancing and green computing techniques
using dynamic compare and balance algorithm,” in Proceedings
of the 5th International Conference onComputational Intelligence
and Communication Networks, CICN 2013, pp. 527–531, India,
September 2013.

[15] G. Soni and M. Kalra, “A novel approach for load balancing
in cloud data center,” in Proceedings of the 2014 4th IEEE
International Advance Computing Conference, IACC 2014, pp.
807–812, India, February 2014.

[16] X. Xu, W. Dou, X. Zhang, and J. Chen, “EnReal: An Energy-
Aware Resource Allocation Method for Scientific Workflow
Executions inCloud Environment,” IEEETransactions onCloud
Computing, vol. 4, no. 2, pp. 166–179, 2016.

[17] S. Li and Y. Zhang, “On-line scheduling on parallel machines
to minimize the makespan,” Journal of Systems Science &
Complexity, vol. 29, no. 2, pp. 472–477, 2016.

[18] G. Wang, X. X. Huang, and J. Zhang, “Levitin-Polyak well-
posedness in generalized equilibrium problems with functional
constraints,” Pacific Journal of Optimization. An International
Journal, vol. 6, no. 2, pp. 441–453, 2010.

[19] B. Qu and J. Zhao, “Methods for solving generalized Nash
equilibrium,” Journal of Applied Mathematics, vol. 2013, Article
ID 762165, 2013.

[20] S. Lian and Y. Duan, “Smoothing of the lower-order exact
penalty function for inequality constrained optimization,” Jour-
nal of Inequalities and Applications, Paper No. 185, 12 pages,
2016.

[21] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog com-
puting: architecture, key technologies, applications and open
issues,” Journal of Network and Computer Applications, vol. 98,
pp. 27–42, 2017.

[22] A. V. Dastjerdi and R. Buyya, “Fog Computing: Helping the
Internet of Things Realize Its Potential,”The Computer Journal,
vol. 49, no. 8, Article ID 7543455, pp. 112–116, 2016.

[23] J. Shen, T. Zhou, D. He, Y. Zhang, X. Sun, and Y. Xiang,
“Block design-based key agreement for group data sharing in
cloud computing,” IEEE Transactions on Dependable and Secure
Computing, vol. PP, no. 99, 2017.

[24] Z. Xia, X. Wang, L. Zhang, Z. Qin, X. Sun, and K. Ren, “A
privacy-preserving and copy-deterrence content-based image
retrieval scheme in cloud computing,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 11, pp. 2594–2608,
2016.

[25] J. Shen, D. Liu, J. Shen, Q. Liu, and X. Sun, “A secure cloud-
assisted urban data sharing framework for ubiquitous-cities,”
Pervasive and Mobile Computing, vol. 41, pp. 219–230, 2017.

[26] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data
with accuracy improvement,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 12, pp. 2706–2716, 2016.

[27] S. Kitanov andT. Janevski, “Energy efficiency of FogComputing
and Networking services in 5G networks,” in Proceedings of

Wireless Communications and Mobile Computing 15

the 17th IEEE International Conference on Smart Technologies,
EUROCON 2017, pp. 491–494, Macedonia, July 2017.

[28] O. Akrivopoulos, I. Chatzigiannakis, C. Tselios, and A. Anto-
niou, “On the Deployment of Healthcare Applications over
Fog Computing Infrastructure,” in Proceedings of the 41st
IEEE Annual Computer Software and Applications Conference
Workshops, COMPSAC 2017, pp. 288–293, Italy, July 2017.

[29] Y. Arfat, M. Aqib, R. Mehmood et al., “Enabling Smarter
Societies through Mobile Big Data Fogs and Clouds,” in
Proceedings of the International Workshop on Smart Cities
Systems Engineering (SCE 2017), vol. 109, pp. 1128–1133, Procedia
Computer Science, Portugal, May 2017.

[30] M. Taneja and A. Davy, “Resource Aware Placement of Data
Analytics Platform in FogComputing,” inProceedings of the 2nd
International Conference on Cloud Forward: FromDistributed to
Complete Computing, CF 2016, pp. 153–156, Procedia Computer
Science, Spain, October 2016.

[31] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: a survey,” Future Generation Computer Systems, vol.
29, no. 1, pp. 84–106, 2013.

[32] S. S. Manvi and G. Krishna Shyam, “Resource management for
Infrastructure as a Service (IaaS) in cloud computing: a survey,”
Journal of Network and Computer Applications, vol. 41, no. 1, pp.
424–440, 2014.

[33] Y. Ren, J. Shen, D. Liu, J. Wang, and J.-U. Kim, “Evidential
quality preserving of electronic record in cloud storage,” Journal
of Internet Technology, vol. 17, no. 6, pp. 1125–1132, 2016.

[34] Y. Chen, C. Hao, W. Wu, and E. Wu, “Robust dense reconstruc-
tion by range merging based on confidence estimation,” Science
China Information Sciences, vol. 59, no. 9, Article ID 092103, pp.
1–11, 2016.

[35] T. Ma, Y. Zhang, J. Cao, J. Shen, M. Tang, and Y. Tian, “Abdul-
lah Al-Dhelaan, Mznah Al-Rodhaan, KDVEM: a k-degree
anonymity with Vertex and Edge Modification algorithm,”
Computing, vol. 70, no. 6, pp. 1336–1344, 2015.

[36] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos,
“An online mechanism for resource allocation and pricing
in clouds,” Institute of Electrical and Electronics Engineers.
Transactions on Computers, vol. 65, no. 4, pp. 1172–1184, 2016.

[37] J. Kwak, Y. Kim, J. Lee, and S. Chong, “DREAM: Dynamic
Resource and Task Allocation for Energy Minimization in
Mobile Cloud Systems,” IEEE Journal on Selected Areas in
Communications, vol. 33, no. 12, pp. 2510–2523, 2015.

[38] A. A. Alsaffar, H. P. Pham, C.-S. Hong, E.-N. Huh, and
M. Aazam, “An Architecture of IoT Service Delegation and
Resource Allocation Based on Collaboration between Fog and
Cloud Computing,” Mobile Information Systems, vol. 2016,
Article ID 6123234, pp. 1–15, 2016.

[39] H. Xiang, M. Peng, Y. Cheng, and H.-H. Chen, “Joint mode
selection and resource allocation for downlink fog radio access
networks supported D2D,” in Proceedings of the 11th EAI Inter-
national Conference on Heterogeneous Networking for Quality,
Reliability, Security and Robustness, QSHINE 2015, pp. 177–182,
Taiwan, August 2015.

[40] S. Banerjee and J. P. Hecker, “A Multi-agent System Approach
to Load-Balancing and Resource Allocation for Distributed
Computing,” in First Complex Systems Digital CampusWorld E-
Conference, pp. 393–408, 2017.

[41] Y. Govindaraju andH. Duran-Limon, “AQoS and energy aware
load balancing and resource allocation framework for iaas cloud
providers,” in Proceedings of the 9th IEEE/ACM International

Conference on Utility and Cloud Computing, UCC 2016, pp. 410–
415, China, December 2016.

[42] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance
relation-based evolutionary algorithm for many-objective opti-
mization,” IEEE Transactions on Evolutionary Computation, vol.
20, no. 1, pp. 16–37, 2016.

[43] V. Jeyakrishnan and P. Sengottuvelan, “A Hybrid Strategy for
Resource Allocation and Load Balancing in Virtualized Data
Centers Using BSO Algorithms,” Wireless Personal Communi-
cations, vol. 94, no. 4, pp. 2363–2375, 2017.

[44] H. Wu, Y. Ren, and F. Hu, “Continuous dependence property
of BSDE with constraints,” Applied Mathematics Letters, vol. 45,
pp. 41–46, 2015.

[45] Y. Wang, X. Sun, and F. Meng, “On the conditional and
partial trade credit policy with capital constraints: a Stackelberg
model,” Applied Mathematical Modelling: Simulation and Com-
putation for Engineering and Environmental Systems, vol. 40, no.
1, pp. 1–18, 2016.

[46] J. Zhang, B. Qu, and N. Xiu, “Some projection-like methods for
the generalized Nash equilibria,” Computational optimization
and applications, vol. 45, no. 1, pp. 89–109, 2010.

[47] C.Wang, C.Ma, and J. Zhou, “A new class of exact penalty func-
tions and penalty algorithms,” Journal of Global Optimization,
vol. 58, no. 1, pp. 51–73, 2014.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

