Digital

COMPLEMENTS OF NUMBERS

-Two's Complement 2 متمم

- Signed Binary Numbers $\begin{aligned} & \text { Table } 1.3 \\ & \text { Signed Binary Numbers }\end{aligned}$

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	-	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
	1000	-	-

COMPLEMENTS OF NUMBERS

$$
\begin{aligned}
& (-128) \cdots 0 \cdot(127)
\end{aligned}
$$

COMPLEMENTSOFNUMBERS
二, $1(-8 \cdots+\cdots+7) ;$ 它 -

$$
\mathrm{F}_{-1}^{-8},=32=416,=18
$$

 जornر

COMPLEMENTS OF NUMBERS

- Example:

| +6 | 00000110 | -6 | 11111010 |
| :--- | :--- | :--- | :--- | :--- |
| $\frac{+13}{+19}$ | $\frac{00001101}{00010011}$ | $\frac{+13}{+7}$ | $\frac{00001101}{00000111}$ |
| +6 | 00000110 | -6 | 11111010 |
| $\frac{-13}{-7}$ | $\frac{11110011}{11111001}$ | $\frac{-13}{-19}$ | $\frac{11110011}{11101101}$ |

COMPLEMENTSOFNUMBERS

151 ,
.

(

$$
\begin{array}{cc|ccccccccccccccc}
& 1 & 64 & 32 & 16 & 8 & 4 & 2 & 1 & & \tilde{k} & 64 & 32 & 16 & 8 & 4 & 2
\end{array} 1
$$

COMPLEMENTSOFNUMBERS

8bit
的
؟－is，合 101111101 a in in

（品 $64+2+1$ 少

COMPLEMENTS OF NUMBERS

COMPLEMENTS OF NUMBERS

$$
\begin{aligned}
& \begin{array}{llllllllllll}
& \text { (2) (1) } & 0 & 0 & 0 & 0 & 0 & 0 & & \\
+64 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & +84+ & 20
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
128 & 4 & 2 & 1
\end{array} \quad \text { yocoseriver } \\
& 128+16+4+2+1=151=1151 \text { ש }
\end{aligned}
$$

COMPLEMENTS OF NUMBERS

$$
\begin{aligned}
& -67 \\
& \begin{array}{ll}
1 \\
0 \\
0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -15)_{i}+151 \text { = }
\end{aligned}
$$

BINARYCODES

- Binary-Coded Decimal (BCD)

It is important to realize that BCD numbers are decimal numbers and not binary numbers, although they use bits in their representation.

$$
(185)_{10}=(000110000101)_{\mathrm{BCD}}=(10111001)_{2}
$$

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BINARYCODES

- BCD Addition

4	0100	4	0100	8	1000
$+\frac{5}{9}$	$+\underline{0101}$	$\frac{+8}{1001}$	$+\underline{1000}$	$\frac{+9}{1100}$	$\frac{1001}{17}$
			$\frac{+0110}{10010}$		$\frac{+0110}{10111}$

Consider the addition of $184+576=760$ in BCD:

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BINARYCODES

Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 ,} \mathbf{- 2 , - \mathbf { 1 }}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

BINARYCODES

- self-complementing codes

The 2421 and the excess- 3 codes are examples of self-complementing codes. Such codes have the property that the 9's complement of a decimal number is obtained directly by changing 1's to 0's and 0's to 1's (i.e., by complementing each bit in the pattern).

For example, decimal 395
is represented in the excess-3 code as 011011001000.

The 9's complement of 604 is represented as 10010011 0111, which is obtained simply by complementing each bit of the code (as with the 1 's complement of binary numbers).

BINARYCODES

- Gray Code

Gray Code

Gray Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	3
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

BINARYCODES

- Gray Code

BINARYCODES

- American Standard Code for Information Interchange (ASCII)

American Standard Code for Information Interchange (ASCII)

$b_{4} b_{3} b_{2} b_{1}$	$b_{7} \mathbf{b}_{6} b_{5}$							
	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	-	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	B	R	b	r
0011	ETX	DC3	\#	3	C	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	\%	5	E	U	e	u
0110	ACK	SYN	\&	6	F	V	f	v
0111	BEL	ETB	-	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	x
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K	[k	\{
1100	FF	FS	,	<	L	1	1	\|
1101	CR	GS	-	$=$	M]	m	\}
1110	SO	RS	.	>	N	\wedge	n	\sim
1111	SI	US	1	?	O	-	o	DEL

BINARY LOGIC
Truth Tables of Logical Operations

AND		OR			NOT		
x	y	$x \cdot y$		x	y	$x+y$	
0	0	0		0	0	0	x^{\prime}
0	1	0	0	1	1	0	1
1	0	0	1	0	1	1	0
1	1	1	1	1	1		

- Logic Gates

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

- Input-output signals for gates

| x | 0 | 1 | 1 | 0 | 0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 | 0 | 1 | 1 | 0 |
| AND: $x \cdot y$ | 0 | 0 | 1 | 0 | 0 |
| OR: $x+y$ | 0 | 1 | 1 | 1 | 0 |
| NOT: x^{\prime} | 1 | 0 | 0 | 1 | 1 |

