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Preface to the Third Edition

Let me begin by thanking the readers of the second edition for their many
helpful comments and suggestions, with special thanks to Joe Kidd and Nam
Trang. For the third edition, I have corrected all known errors, polished and
refined some arguments (such as the discussion of reflexivity, the rational
canonical form, best approximations and the definitions of tensor products) and
upgraded some proofs that were originally done only for finite-dimensional/rank
cases. I have also moved some of the material on projection operators to an
earlier position in the text.

A few new theorems have been added in this edition, including the spectral
mapping theorem and a theorem to the effect that , withdim dim
equality if and only if  is finite-dimensional.

I have also added a new chapter on associative algebras that includes the well-
known characterizations of the finite-dimensional division algebras over the real
field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem).
The reference section has been enlarged considerably, with over a hundred
references to books on linear algebra.

Steven Roman Irvine, California, May 2007



Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions. The second edition represents a major change from
the first edition. Indeed, one might say that it is a totally new book, with the
exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and
roughly 20 books worth of experience has enabled me to improve the quality of
my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,
separation and positive solutions to linear systems Chapter 15) and a chapter on(
the QR decomposition, singular values and pseudoinverses Chapter 17). The(
treatments of tensor products and the umbral calculus have been greatly
expanded and I have included discussions of determinants in the chapter on(
tensor products), the complexification of a real vector space, Schur's theorem
and Geršgorin disks.

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or
advanced undergraduate student. Prerequisites are limited to a knowledge of the
basic properties of matrices and determinants. However, since we cover the
basics of vector spaces and linear transformations rather rapidly, a prior course
in linear algebra even at the sophomore level), along with a certain measure of(
“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are
required for the sequel. This chapter should be skimmed quickly and then used
primarily as a reference. Chapters 1–3 contain a discussion of the basic
properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison
between the properties of modules and those of vector spaces. Chapter 5
provides more on modules. The main goals of this chapter are to prove that any
two bases of a free module have the same cardinality and to introduce
Noetherian modules. However, the instructor may simply skim over this
chapter, omitting all proofs. Chapter 6 is devoted to the theory of modules over
a principal ideal domain, establishing the cyclic decomposition theorem for
finitely generated modules. This theorem is the key to the structure theorems for
finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis
here is on the finite-dimensional case, in order to arrive as quickly as possible at
the finite-dimensional spectral theorem for normal operators, in Chapter 10.
However, we have endeavored to state as many results as is convenient for
vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with
the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric
vector spaces, where we describe the structure of symplectic and orthogonal
geometries over various base fields. Chapter 12 contains enough material on
metric spaces to allow a unified treatment of topological issues for the basic



xii Preface

Hilbert space theory of Chapter 13. The rather lengthy proof that every metric
space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate
the universal property of tensor products, without getting too involved in
categorical terminology, we first treat both free vector spaces and the familiar
direct sum, in a universal way. Chapter 15 (Chapter 16 in the second edition) is
on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the
umbral calculus. This is an algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject emphasizing the algebraic
aspects, rather than the applications. This is the first time that this subject has
appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text
is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California
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Preliminaries

In this chapter, we briefly discuss some topics that are needed for the sequel.
This chapter should be skimmed quickly and used primarily as a reference.

Part 1 Preliminaries

Multisets
The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let  be a nonempty set. A   with   is amultiset underlying set
set of ordered pairs

 for 

where . The number  is referred to as the  of themultiplicity
elements  in . If the underlying set of a multiset is finite, we say that the
multiset is . The  of a finite multiset  is the sum of the multiplicitiesfinite size
of all of its elements.

For example,  is a multiset with underlying set
. The element  has multiplicity . One often writes out the

elements of a multiset according to multiplicities, as in .

Of course, two mutlisets are equal if their underlying sets are equal and if the
multiplicity of each element in the common underlying set is the same in both
multisets.

Matrices
The set of  matrices with entries in a field  is denoted by  or
by  when the field does not require mention. The set  is denoted
by  or  If , the th entry of  will be denoted by .
The identity matrix of size  is denoted by . The elements of the base
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field  are called . We expect that the reader is familiar with the basicscalars
properties of matrices, including matrix addition and multiplication.

The  of an  matrix  is the sequence of entriesmain diagonal

where .min

Definition The  of  is the matrix  defined bytranspose

A matrix  is  if  and  if .symmetric skew-symmetric

Theorem 0.1 Properties of the transpose  Let , . Then( )
1)
2)
3   for all )
4   provided that the product  is defined)
5  .) det det

Partitioning and Matrix Multiplication
Let  be a matrix of size . If  and , then
the   is the matrix obtained from  by keeping only thesubmatrix
rows with index in  and the columns with index in . Thus, all other rows and
columns are discarded and  has size .

Suppose that  and . Let

1)  be a partition of 
2)  be a partition of 
3)  be a partition of 

(Partitions are defined formally later in this chapter.) Then it is a very useful fact
that matrix multiplication can be performed at the block level as well as at the
entry level. In particular, we have

When the partitions in question contain only single-element blocks, this is
precisely the usual formula for matrix multiplication
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Block Matrices
It will be convenient to introduce the notational device of a block matrix. If 
are matrices of the appropriate sizes, then by the block matrix

block

we mean the matrix whose upper left  is , and so on. Thus, thesubmatrix
's are  of  and not entries. A square matrix of the formsubmatrices

block

where each  is square and  is a zero submatrix, is said to be a block
diagonal matrix.

Elementary Row Operations
Recall that there are three types of elementary row operations. Type 1
operations consist of multiplying a row of  by a nonzero scalar. Type 2
operations consist of interchanging two rows of . Type 3 operations consist of
adding a scalar multiple of one row of  to another row of .

If we perform an elementary operation of type  to an identity matrix , the
result is called an  of type . It is easy to see that allelementary matrix
elementary matrices are invertible.

In order to perform an elementary row operation on  we can perform
that operation on the identity , to obtain an elementary matrix  and then take
the product . Note that multiplying on the right by  has the effect of
performing column operations.

Definition A matrix  is said to be in  ifreduced row echelon form
1  All rows consisting only of 's appear at the bottom of the matrix.)
2  In any nonzero row, the first nonzero entry is a . This entry is called a)

leading entry.
3  For any two consecutive rows, the leading entry of the lower row is to the)

right of the leading entry of the upper row.
4  Any column that contains a leading entry has 's in all other positions.)

Here are the basic facts concerning reduced row echelon form.
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Theorem 0.2 Matrices  are , denoted by ,row equivalent
if either one can be obtained from the other by a series of elementary row
operations.
1  Row equivalence is an equivalence relation. That is,)
 a  )
 b  )
 c  , .)
2  A matrix  is row equivalent to one and only one matrix  that is in)

reduced row echelon form. The matrix  is called the reduced row
echelon form of . Furthermore,

where  are the elementary matrices required to reduce  to reduced row
echelon form.

3   is invertible if and only if its reduced row echelon form is an identity)
matrix. Hence, a matrix is invertible if and only if it is the product of
elementary matrices.

The following definition is probably well known to the reader.

Definition A square matrix is  if all of its entries below theupper triangular
main diagonal are . Similarly, a square matrix is  if all of itslower triangular
entries above the main diagonal are . A square matrix is  if all of itsdiagonal
entries off the main diagonal are .

Determinants
We assume that the reader is familiar with the following basic properties of
determinants.

Theorem 0.3 Let . Then  is an element of . Furthermore,det
1  For any ,)

det det det

2   is nonsingular invertible  if and only if .) ( ) det
3  The determinant of an upper triangular or lower triangular matrix is the)

product of the entries on its main diagonal.
4  If a square matrix  has the block diagonal form)

block

then .det det
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Polynomials
The set of all polynomials in the variable  with coefficients from a field  is
denoted by . If , we say that  is a polynomial  . Ifover

is a polynomial with , then  is called the  of leading coefficient
and the  of  is , written . For convenience, the degreedegree deg
of the zero polynomial is . A polynomial is  if its leading coefficientmonic
is .

Theorem 0.4  Let  where  .( )Division algorithm deg
Then there exist unique polynomials  for which

where  or .deg deg

If   , that is, if there exists a polynomial  for whichdivides

then we write . A nonzero polynomial  is said to split
over  if  can be written as a product of linear factors

where .

Theorem 0.5 Let . The  of  andgreatest common divisor
, denoted by , is the unique monic polynomial  over gcd

for which
1   and )
2  if  and  then .)
Furthermore, there exist polynomials  and  over  for which

gcd

Definition The polynomials  are  ifrelatively prime
gcd . In particular,  and  are relatively prime if and
only if there exist polynomials  and  over  for which

Definition A nonconstant polynomial  is  if wheneverirreducible
, then one of  and  must be constant.

The following two theorems support the view that irreducible polynomials
behave like prime numbers.
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Theorem 0.6 A nonconstant polynomial  is irreducible if and only if it has
the property that whenever , then either  or

.

Theorem 0.7 Every nonconstant polynomial in  can be written as a product
of irreducible polynomials. Moreover, this expression is unique up to order of
the factors and multiplication by a scalar.

Functions
To set our notation, we should make a few comments about functions.

Definition Let  be a function from a set  to a set .
1  The  of  is the set  and the  of  is .) domain range
2  The  of  is the set .) imimage
3   is  , or an , if .) ( )injective one-to-one injection
4   is   , or a , if .) ( ) imsurjective onto surjection
5   is , or a , if it is both injective and surjective.) bijective bijection
6  Assuming that , the  of  is) support

supp

If  is injective, then its inverse  exists and is well-im
defined as a function on .im

It will be convenient to apply  to subsets of  and . In particular, if 
and if , we set

and

Note that the latter is defined even if  is not injective.

Let . If , the  of  to  is the function restriction
defined by

for all . Clearly, the restriction of an injective map is injective.

In the other direction, if  and if , then an  of  to  isextension
a function  for which .
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Equivalence Relations
The concept of an equivalence relation plays a major role in the study of
matrices and linear transformations.

Definition Let  be a nonempty set. A binary relation on  is called an
equivalence relation on  if it satisfies the following conditions:
1) ( )Reflexivity

for all .
2) ( )Symmetry

for all .
3) ( )Transitivity

for all .

Definition Let be an equivalence relation on . For , the set of all
elements equivalent to  is denoted by

and called the  of .equivalence class

Theorem 0.8 Let be an equivalence relation on . Then
1)
2  For any , we have either  or .)

Definition A  of a nonempty set  is a collection  ofpartition
nonempty subsets of , called the  of the partition, for whichblocks
1   for all )
2  .)

The following theorem sheds considerable light on the concept of an
equivalence relation.

Theorem 0.9
1  Let be an equivalence relation on . Then the set of  equivalence) distinct

classes with respect to are the blocks of a partition of .
2  Conversely, if  is a partition of , the binary relation defined by)

 if  and  lie in the same block of 
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is an equivalence relation on , whose equivalence classes are the blocks
of .

This establishes a one-to-one correspondence between equivalence relations on
 and partitions of .

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let be an equivalence relation on . A function , where
 is any set, is called an  of if it is constant on the equivalenceinvariant

classes of , that is,

and a  if it is constant and distinct on the equivalencecomplete invariant
classes of , that is,

A collection  of invariants is called a complete system of
invariants if

 for all 

Definition Let be an equivalence relation on . A subset  is said to be
a set of  or just a  for if for every ,canonical forms canonical form( )
there is   such that . Put another way, each equivalenceexactly one
class under contains  member of .exactly one

Example 0.1 Define a binary relation on  by letting  if and
only if  for some nonzero constant . This is easily seen to be
an equivalence relation. The function that assigns to each polynomial its degree
is an invariant, since

deg deg

However, it is not a complete invariant, since there are inequivalent polynomials
with the same degree. The set of all monic polynomials is a set of canonical
forms for this equivalence relation.

Example 0.2 We have remarked that row equivalence is an equivalence relation
on . Moreover, the subset of reduced row echelon form matrices is a
set of canonical forms for row equivalence, since every matrix is row equivalent
to a unique matrix in reduced row echelon form.
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Example 0.3 Two matrices ,  are row equivalent if and only if
there is an invertible matrix  such that . Similarly,  and  are
column equivalent, that is,  can be reduced to  using elementary column
operations, if and only if there exists an invertible matrix  such that .

Two matrices  and  are said to be  if there exist invertibleequivalent
matrices  and  for which

Put another way,  and  are equivalent if  can be reduced to  by
performing a series of elementary row and/or column operations. The use of the(
term equivalent is unfortunate, since it applies to all equivalence relations, not
just this one. However, the terminology is standard, so we use it here.)

It is not hard to see that an  matrix  that is in both reduced row echelon
form and reduced column echelon form must have the block form

block

We leave it to the reader to show that every matrix  in  is equivalent to
exactly one matrix of the form  and so the set of these matrices is a set of
canonical forms for equivalence. Moreover, the function  defined by

, where , is a complete invariant for equivalence.

Since the rank of  is  and since neither row nor column operations affect the
rank, we deduce that the rank of  is . Hence, rank is a complete invariant for
equivalence. In other words, two matrices are equivalent if and only if they have
the same rank.

Example 0.4 Two matrices ,  are said to be  if there existssimilar
an invertible matrix  such that

Similarity is easily seen to be an equivalence relation on . As we will learn,
two matrices are similar if and only if they represent the same linear operators
on a given -dimensional vector space . Hence, similarity is extremely
important for studying the structure of linear operators. One of the main goals of
this book is to develop canonical forms for similarity.

We leave it to the reader to show that the determinant function and the trace
function are invariants for similarity. However, these two invariants do not, in
general, form a complete system of invariants.

Example 0.5 Two matrices ,  are said to be  if therecongruent
exists an invertible matrix  for which
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where  is the transpose of . This relation is easily seen to be an equivalence
relation and we will devote some effort to finding canonical forms for
congruence. For some base fields  such as ,  or a finite field , this is( )
relatively easy to do, but for other base fields such as , it is extremely( )
difficult.

Zorn's Lemma
In order to show that any vector space has a basis, we require a result known as
Zorn's lemma. To state this lemma, we need some preliminary definitions.

Definition A  is a pair  where  is a nonempty setpartially ordered set
and is a binary relation called a , read “less than or equal to,”partial order
with the following properties:
1   For all ,) ( )Reflexivity

2   For all ,) ( )Antisymmetry

 and  implies 

3   For all ,) ( )Transitivity

 and  implies 

Partially ordered sets are also called .posets

It is customary to use a phrase such as “Let  be a partially ordered set” when
the partial order is understood. Here are some key terms related to partially
ordered sets.

Definition Let  be a partially ordered set.
1  The ,  element of , should it exist, is an element) ( )maximum largest top

 with the property that all elements of  are less than or equal to
, that is,

Similarly, the , ,  element of , should itmimimum least smallest bottom( )
exist, is an element  with the property that all elements of  are
greater than or equal to , that is,

2  A  is an element  with the property that there is no) maximal element
larger element in , that is,
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Similarly, a  is an element  with the property thatminimal element
there is no smaller element in , that is,

3  Let . Then  is an  for  and  if) upper bound

 and 

The unique smallest upper bound for  and , if it exists, is called the least
upper bound of  and  and is denoted by .lub

4  Let . Then  is a  for  and  if) lower bound

 and 

The unique largest lower bound for  and , if it exists, is called the
greatest lower bound of  and  and is denoted by .glb

Let  be a subset of a partially ordered set . We say that an element  is
an  for  if  for all . Lower bounds are definedupper bound
similarly.

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have  with the property
that  and .

Definition A partially ordered set in which every pair of elements is
comparable is called a , or a . Anytotally ordered set linearly ordered set
totally ordered subset of a partially ordered set  is called a  in .chain

Example 0.6
1  The set  of real numbers, with the usual binary relation , is a partially)

ordered set. It is also a totally ordered set. It has no maximal elements.
2  The set  of natural numbers, together with the binary)

relation of divides, is a partially ordered set. It is customary to write 
to indicate that  divides . The subset  of  consisting of all powers of 
is a totally ordered subset of , that is, it is a chain in . The set

 is a partially ordered set under . It has two maximal
elements, namely  and . The subset  is a partially
ordered set in which every element is both maximal and minimal!

3  Let  be any set and let  be the power set of , that is, the set of all)
subsets of . Then , together with the subset relation , is a partially
ordered set.

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.
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Theorem 0.10  If  is a partially ordered set in which every( )Zorn's lemma
chain has an upper bound, then  has a maximal element.

We will use Zorn's lemma to prove that every vector space has a basis. Zorn's
lemma is equivalent to the famous axiom of choice. As such, it is not subject to
proof from the other axioms of ordinary (ZF) set theory. Zorn's lemma has many
important equivalancies, one of which is the . A well-ordering principle well
ordering on a nonempty set  is a total order on  with the property that every
nonempty subset of  has a least element.

Theorem 0.11  Every nonempty set has a well( )Well-ordering principle
ordering.

Cardinality
Two sets  and  have the same , writtencardinality

if there is a bijective function a one-to-one correspondence  between the sets.( )
The reader is probably aware of the fact that

 and 

where  denotes the natural numbers,  the integers and  the rational
numbers.

If  is in one-to-one correspondence with a  of , we write . Ifsubset
 is in one-to-one correspondence with a  subset of  but not all of ,proper

then we write . The second condition is necessary, since, for instance,
 is in one-to-one correspondence with a proper subset of  and yet  is also in

one-to-one correspondence with  itself. Hence, .

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, size cardinality  than it is to explicitly define the size cardinality  of( ) ( )
a given set.

Be that as it may, we associate to each set  a cardinal number, denoted by 
or , that is intended to measure the size of the set. Actually, cardinalcard
numbers are just very special types of sets. However, we can simply think of
them as vague amorphous objects that measure the size of sets.

Definition
1  A set is  if it can be put in one-to-one correspondence with a set of the) finite

form , for some nonnegative integer . A set that is
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not finite is . The  or  of a finite set isinfinite cardinal number cardinality( )
just the number of elements in the set.

2  The  of the set  of natural numbers is  read “aleph) (cardinal number
nought” , where  is the first letter of the Hebrew alphabet. Hence,)

3  Any set with cardinality  is called a  set and any finite) countably infinite
or countably infinite set is called a  set. An infinite set that is notcountable
countable is said to be .uncountable

Since it can be shown that , the real numbers are uncountable.

If  and  are  sets, then it is well known thatfinite

 and 

The first part of the next theorem tells us that this is also true for infinite sets.

The reader will no doubt recall that the   of a set  is the set ofpower set
all subsets of . For finite sets, the power set of  is always bigger than the set
itself. In fact,

The second part of the next theorem says that the power set of any set  is
bigger has larger cardinality  than  itself. On the other hand, the third part of( )
this theorem says that, for infinite sets , the set of all  subsets of  is thefinite
same size as .

Theorem 0.12
1  –  For any sets  and ,) ( )Schroder Bernstein theorem¨

 and 

2   If  denotes the power set of , then) ( )Cantor's theorem

3  If  denotes the set of all finite subsets of  and if  is an infinite set,)
then

Proof. We prove only parts 1  and 2 . Let  be an injective function) )
from  into  and let  be an injective function from  into . We
want to use these functions to create a bijective function from  to . For this
purpose, we make the following definitions. The  of an elementdescendants

 are the elements obtained by repeated alternate applications of the
functions  and , namely
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If  is a descendant of , then  is an  of . Descendants and ancestorsancestor
of elements of  are defined similarly.

Now, by tracing an element's ancestry to its beginning, we find that there are
three possibilities: the element may originate in , or in , or it may have no
point of origin. Accordingly, we can write  as the union of three disjoint sets

 originates in 
 originates in 
 has no originator

Similarly,  is the disjoint union of ,  and .

Now, the restriction

is a bijection. To see this, note that if , then  originated in  and
therefore must have the form  for some . But  and its ancestor  have
the same point of origin and so  implies . Thus,  is surjective
and hence bijective. We leave it to the reader to show that the functions

 and 

are also bijections. Putting these three bijections together gives a bijection
between  and . Hence, , as desired.

We now prove Cantor's theorem. The map  defined by 
is an injection from  to  and so . To complete the proof we
must show that no injective map  can be surjective. To this end, let

We claim that  is not in . For suppose that  for some .im
Then if , we have by the definition of  that . On the other hand, if

, we have again by the definition of  that . This contradiction
implies that  and so  is not surjective.im

Cardinal Arithmetic
Now let us define addition, multiplication and exponentiation of cardinal
numbers. If  and  are sets, the   is the set of allcartesian product
ordered pairs

The set of all functions from  to  is denoted by .
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Definition Let  and  denote cardinal numbers. Let  and  be disjoint sets
for which  and .
1  The   is the cardinal number of .) sum
2  The   is the cardinal number of .) product
3  The   is the cardinal number of .) power

We will not go into the details of why these definitions make sense. For(
instance, they seem to depend on the sets  and , but in fact they do not.  It)
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 0.13 Let ,  and  be cardinal numbers. Then the following
properties hold:
1) ( )Associativity

 and 

2) ( )Commutativity

 and 

3) ( )Distributivity

4  Properties of Exponents) ( )
 a  )
 b  )
 c  )

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 0.14 Let  and  be cardinal numbers, at least one of which is
infinite. Then

max

It is not hard to see that there is a one-to-one correspondence between the power
set  of a set  and the set of all functions from  to . This leads to
the following theorem.

Theorem 0.15 For any cardinal 
1  If , then )
2)
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We have already observed that . It can be shown that  is the smallest
infinite cardinal, that is,

0  is a natural number

It can also be shown that the set  of real numbers is in one-to-one
correspondence with the power set  of the natural numbers. Therefore,

The set of all points on the real line is sometimes called the  and socontinuum
 is sometimes called the  and denoted by .power of the continuum

Theorem 0.14 shows that cardinal addition and multiplication have a kind of
“absorption” quality, which makes it hard to produce larger cardinals from
smaller ones. The next theorem demonstrates this more dramatically.

Theorem 0.16
1  Addition applied a countable number of times or multiplication applied a)

finite number of times to the cardinal number , does not yield anything
more than . Specifically, for any nonzero , we have

 and 

2  Addition and multiplication applied a countable number of times to the)
cardinal number  does not yield more than . Specifically, we have

 and 

Using this theorem, we can establish other relationships, such as

which, by the Schröder–Bernstein theorem, implies that

We mention that the problem of evaluating  in general is a very difficult one
and would take us far beyond the scope of this book.

We will have use for the following reasonable-sounding result, whose proof is
omitted.

Theorem 0.17 Let  be a collection of sets, indexed by the set ,
with . If  for all , then

Let us conclude by describing the cardinality of some famous sets.
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Theorem 0.18
1  The following sets have cardinality .)
 a  The rational numbers .)
 b  The set of all finite subsets of .)
 c  The union of a countable number of countable sets.)
 d  The set  of all ordered -tuples of integers.)
2  The following sets have cardinality .)
 a  The set of all points in .)
 b  The set of all infinite sequences of natural numbers.)
 c  The set of all infinite sequences of real numbers.)
 d  The set of all finite subsets of .)
 e  The set of all irrational numbers.)

Part 2 Algebraic Structures
We now turn to a discussion of some of the many algebraic structures that play a
role in the study of linear algebra.

Groups
Definition A  is a nonempty set , together with a binary operationgroup
denoted by *, that satisfies the following properties:
1   For all ,) ( )Associativity

2   There exists an element  for which) ( )Identity

for all .
3   For each , there is an element  for which) ( )Inverses

Definition A group  is , or , ifabelian commutative

for all . When a group is abelian, it is customary to denote the
operation  by +, thus writing  as . It is also customary to refer to the
identity as the  and to denote the inverse  by , referred to aszero element
the  of .negative

Example 0.7 The set  of all bijective functions from a set  to  is a group
under composition of functions. However, in general, it is not abelian.

Example 0.8 The set  is an abelian group under addition of matrices.
The identity is the zero matrix 0  of size . The set  is not a
group under multiplication of matrices, since not all matrices have multiplicative



18 Advanced Linear Algebra

inverses. However, the set of invertible matrices of size  is a nonabelian( )
group under multiplication.

A group  is  if it contains only a finite number of elements. Thefinite
cardinality of a finite group  is called its  and is denoted by  ororder
simply . Thus, for example,  is a finite group under
addition modulo , but  is not finite.

Definition A  of a group  is a nonempty subset  of  that is asubgroup
group in its own right, using the same operations as defined on .

Cyclic Groups
If  is a formal symbol, we can define a group  to be the set of all integral
powers of :

where the product is defined by the formal rules of exponents:

This group is denoted by  and called the  . Thecyclic group generated by
identity of  is . In general, a group  is  if it has the formcyclic

 for some .

We can also create a finite group  of arbitrary positive order  by
declaring that . Thus,

where the product is defined by the formal rules of exponents, followed by
reduction modulo :

mod

This defines a group of order , called a  . The inversecyclic group of order
of  is .mod

Rings
Definition A  is a nonempty set , together with two binary operations,ring
called  denoted by  and  denoted by juxtaposition ,addition multiplication( ) ( )
for which the following hold:
1   is an abelian group under addition)
2   For all ,) ( )Associativity
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3   For all ,) ( )Distributivity

 and 

A ring  is said to be  if  for all . If a ring commutative
contains an element  with the property that

for all , we say that  is a . The identity  is usuallyring with identity
denoted by .

A   is a commutative ring with identity in which each nonzero elementfield
has a multiplicative inverse, that is, if  is nonzero, then there is a 
for which .

Example 0.9 The set  is a commutative ring under
addition and multiplication modulo 

mod mod

The element  is the identity.

Example 0.10 The set  of even integers is a commutative ring under the usual
operations on , but it has no identity.

Example 0.11 The set  is a noncommutative ring under matrix addition
and multiplication. The identity matrix  is the identity for .

Example 0.12 Let  be a field. The set  of all polynomials in a single
variable , with coefficients in , is a commutative ring under the usual
operations of polynomial addition and multiplication. What is the identity for

? Similarly, the set  of polynomials in  variables is a
commutative ring under the usual addition and multiplication of polynomials.

Definition If  and  are rings, then a function  is a ring
homomorphism if

for all .

Definition A  of a ring  is a subset  of  that is a ring in its ownsubring
right, using the same operations as defined on  and having the same
multiplicative identity as .
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The condition that a subring  have the same multiplicative identity as  is
required. For example, the set  of all  matrices of the form

for  is a ring under addition and multiplication of matrices isomorphic to(
). The multiplicative identity in  is the matrix , which is not the identity 

of . Hence,  is a ring under the same operations as  but it is
not a subring of .

Applying the definition is not generally the easiest way to show that a subset of
a ring is a subring. The following characterization is usually easier to apply.

Theorem 0.19 A nonempty subset  of a ring  is a subring if and only if
1  The multiplicative identity  of  is in )
2   is closed under subtraction, that is,)

3   is closed under multiplication, that is,)

Ideals
Rings have another important substructure besides subrings.

Definition Let  be a ring. A nonempty subset  of  is called an  ifideal
1   is a subgroup of the abelian group , that is,  is closed under)

subtraction:

2   is closed under multiplication by  ring element, that is,) any

 and 

Note that if an ideal  contains the unit element , then .

Example 0.13 Let  be a polynomial in . The set of all multiples of
,

is an ideal in , called the  .ideal generated by

Definition Let  be a subset of a ring  with identity. The set
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of all finite linear combinations of elements of , with coefficients in , is an
ideal in , called the  . It is the smallest in the sense of setideal generated by (
inclusion  ideal of  containing . If  is a finite set, we write)

Note that in the previous definition, we require that  have an identity. This is
to ensure that .

Theorem 0.20 Let  be a ring.
1  The intersection of any collection  of ideals is an ideal.)
2  If  is an ascending sequence of ideals, each one contained in)

the next, then the union  is also an ideal.
3  More generally, if)

is a chain of ideals in , then the union  is also an ideal in .
Proof. To prove 1 , let . Then if , we have  for all)

. Hence,  for all  and so . Hence,  is closed
under subtraction. Also, if , then  for all  and so . Of
course, part 2  is a special case of part 3 . To prove 3 , if , then ) ) )
and  for some . Since one of  and  is contained in the other, we
may assume that . It follows that  and so  and if

, then . Thus  is an ideal.

Note that in general, the union of ideals is not an ideal. However, as we have
just proved, the union of any  of ideals is an ideal. chain

Quotient Rings and Maximal Ideals
Let  be a subset of a commutative ring  with identity. Let be the binary
relation on  defined by

It is easy to see that is an equivalence relation. When , we say that 
and  are  . The term “mod” is used as a colloquialism forcongruent modulo
modulo and  is often written

mod

As shorthand, we write .
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To see what the equivalence classes look like, observe that

 for some 

The set

is called a  of  in . The element  is called a  forcoset coset representative
.

Thus, the equivalence classes for congruence mod  are the cosets  of 
in . The set of all cosets is denoted by

This is read “  mod .” We would like to place a ring structure on .
Indeed, if  is a subgroup of the abelian group , then  is easily seen to be
an abelian group as well under coset addition defined by

In order for the product

to be well-defined, we must have

or, equivalently,

But  may be any element of  and  may be any element of  and so this
condition implies that  must be an ideal. Conversely, if  is an ideal, then
coset multiplication is well defined.

Theorem 0.21 Let  be a commutative ring with identity. Then the quotient
 is a ring under coset addition and multiplication if and only if  is an

ideal of . In this case,  is called the  of   , wherequotient ring modulo
addition and multiplication are defined by
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Definition An ideal  in a ring  is a  if  and if whenevermaximal ideal
 is an ideal satisfying , then either  or .

Here is one reason why maximal ideals are important.

Theorem 0.22 Let  be a commutative ring with identity. Then the quotient
ring  is a field if and only if  is a maximal ideal.
Proof. First, note that for any ideal  of , the ideals of  are precisely the
quotients  where  is an ideal for which . It is clear that 
is an ideal of . Conversely, if  is an ideal of , then let

It is easy to see that  is an ideal of  for which .

Next, observe that a commutative ring  with identity is a field if and only if 
has no nonzero proper ideals. For if  is a field and  is an ideal of 
containing a nonzero element , then  and so . Conversely,
if  has no nonzero proper ideals and , then the ideal  must be 
and so there is an  for which . Hence,  is a field.

Putting these two facts together proves the theorem.

The following result says that maximal ideals always exist.

Theorem 0.23 Any nonzero commutative ring  with identity contains a
maximal ideal.
Proof. Since  is not the zero ring, the ideal  is a proper ideal of . Hence,
the set  of all proper ideals of  is nonempty. If

is a chain of proper ideals in , then the union  is also an ideal.
Furthermore, if  is not proper, then  and so , for some ,
which implies that  is not proper. Hence, . Thus, any chain in 
has an upper bound in  and so Zorn's lemma implies that  has a maximal
element. This shows that  has a maximal ideal.

Integral Domains
Definition Let  be a ring. A nonzero element r  is called a  ifzero divisor
there exists a nonzero  for which . A commutative ring  with
identity is called an  if it contains no zero divisors.integral domain

Example 0.14 If  is not a prime number, then the ring  has zero divisors and
so is not an integral domain. To see this, observe that if  is not prime, then

 in , where . But in , we have
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mod

and so  and  are both zero divisors. As we will see later, if  is a prime, then
 is a field which is an integral domain, of course .( )

Example 0.15 The ring  is an integral domain, since  implies
that  or .

If  is a ring and  where , then we cannot in general cancel
the 's and conclude that . For instance, in , we have , but
canceling the 's gives . However, it is precisely the integral domains in
which we can cancel. The simple proof is left to the reader.

Theorem 0.24 Let  be a commutative ring with identity. Then  is an integral
domain if and only if the cancellation law

holds.

The Field of Quotients of an Integral Domain
Any integral domain  can be embedded in a field. The  or quotient field field(
of quotients) of  is a field that is constructed from  just as the field of
rational numbers is constructed from the ring of integers. In particular, we set

where  if and only if . Addition and multiplication of
fractions is defined  by

and

It is customary to write  in the form . Note that if  has zero divisors,
then these definitions do not make sense, because  may be  even if  and 
are not. This is why we require that  be an integral domain.

Principal Ideal Domains
Definition Let  be a ring with identity and let . The principal ideal
generated by  is the ideal

An   in which every ideal is a principal ideal is called aintegral domain
principal ideal domain.
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Theorem 0.25 The integers form a principal ideal domain. In fact, any ideal 
in  is generated by the smallest positive integer a that is contained in .

Theorem 0.26 The ring  is a principal ideal domain. In fact, any ideal  is
generated by the unique monic polynomial of smallest degree contained in .
Moreover, for polynomials ,

gcd

Proof. Let  be an ideal in  and let  be a monic polynomial of
smallest degree in . First, we observe that there is only one such polynomial in

. For if  is monic and , thendeg deg

and since , we must have  and sodeg deg
.

We show that . Since , we have . To establish
the reverse inclusion, if , then dividing  by  gives

where  or deg deg . But since  is an ideal,

and so   is impossible. Hence,  anddeg deg

This shows that  and so .

To prove the second statement, let . Then, by what we
have just shown,

where  is the unique monic polynomial  in  of smallest degree. In
particular, since , we have  for each .
In other words,  is a common divisor of the 's.

Moreover, if  for all , then  for all , which implies
that

and so . This shows that  is the  common divisor of thegreatest
's and completes the proof.
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Example 0.16 The ring  of polynomials in two variables  and  is
not a principal ideal domain. To see this, observe that the set  of all
polynomials with zero constant term is an ideal in . Now, suppose that  is the
principal ideal . Since , there exist polynomials 
and  for which

 and 0.1( )

But  cannot be a constant, for then we would have . Hence,
deg  and so  and  must both be constants, which
implies that 0.1  cannot hold.( )

Theorem 0.27 Any principal ideal domain  satisfies the ascending chain
condition, that is,  cannot have a strictly increasing sequence of ideals

where each ideal is properly contained in the next one.
Proof. Suppose to the contrary that there is such an increasing sequence of
ideals. Consider the ideal

which must have the form  for some . Since  for some ,
we have  for all , contradicting the fact that the inclusions are
proper.

Prime and Irreducible Elements
We can define the notion of a prime element in any integral domain. For

, we say that    written  if there exists an  fordivides ( )
which .

Definition Let  be an integral domain.
1  An invertible element of  is called a . Thus,  is a unit if ) unit

for some .
2  Two elements  are said to be  if there exists a unit  for) associates

which . We denote this by writing .
3  A nonzero nonunit  is said to be  if) prime

 or 

4  A nonzero nonunit  is said to be  if) irreducible

 or  is a unit  

Note that if  is prime or irreducible, then so is  for any unit .

The property of being associate is clearly an equivalence relation.
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Definition We will refer to the equivalence classes under the relation of being
associate as the  of .associate classes

Theorem 0.28 Let  be a ring.
1  An element  is a unit if and only if .)
2   if and only if .)
3   divides  if and only if .)
4    , that is,  where  is not a unit, if and only if) properly divides

.

In the case of the integers, an integer is prime if and only if it is irreducible. In
any integral domain, prime elements are irreducible, but the converse need not
hold. In the ring  the irreducible element (
divides the product  but does not divide either
factor.)

However, in principal ideal domains, the two concepts are equivalent.

Theorem 0.29 Let  be a principal ideal domain.
1  An  is irreducible if and only if the ideal  is maximal.)
2  An element in  is prime if and only if it is irreducible.)
3  The elements  are , that is, have no common) relatively prime

nonunit factors, if and only if there exist  for which

This is denoted by writing .
Proof. To prove 1 , suppose that  is irreducible and that . Then)

 and so  for some . The irreducibility of  implies that  or
 is a unit. If  is a unit, then  and if  is a unit, then .

This shows that  is maximal. We have , since  is not a unit.( )
Conversely, suppose that  is not irreducible, that is,  where neither  nor
 is a unit. Then . But if , then , which implies that
 is a unit. Hence . Also, if , then  must be a unit. So we

conclude that  is not maximal, as desired.

To prove 2 , assume first that  is prime and . Then  or . We)
may assume that . Therefore, . Canceling 's gives 
and so  is a unit. Hence,  is irreducible. Note that this argument applies in(
any integral domain.)

Conversely, suppose that  is irreducible and let . We wish to prove that
 or . The ideal  is maximal and so  or . In the

former case,  and we are done. In the latter case, we have
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for some . Thus,

and since  divides both terms on the right, we have .

To prove 3 , it is clear that if , then  and  are relatively prime. For)
the converse, consider the ideal , which must be principal, say

. Then  and  and so  must be a unit, which implies that
. Hence, there exist  for which .

Unique Factorization Domains
Definition An integral domain  is said to be a unique factorization domain
if it has the following factorization properties:
1  Every nonzero nonunit element  can be written as a product of a finite)

number of irreducible elements .
2  The factorization into irreducible elements is unique in the sense that if)

 and  are two such factorizations, then  and
after a suitable reindexing of the factors, .

Unique factorization is clearly a desirable property. Fortunately, principal ideal
domains have this property.

Theorem 0.30 Every principal ideal domain  is a unique factorization
domain.
Proof. Let  be a nonzero nonunit. If  is irreducible, then we are done. If
not, then , where neither factor is a unit. If  and  are irreducible, we
are done. If not, suppose that  is not irreducible. Then , where
neither  nor  is a unit. Continuing in this way, we obtain a factorization of
the form after renumbering if necessary( )

Each step is a factorization of  into a product of nonunits. However, this
process must stop after a finite number of steps, for otherwise it will produce an
infinite sequence  of nonunits of  for which  properly divides .
But this gives the ascending chain of ideals

where the inclusions are proper. But this contradicts the fact that a principal
ideal domain satisfies the ascending chain condition. Thus, we conclude that
every nonzero nonunit has a factorization into irreducible elements.

As to uniqueness, if  and  are two such factorizations,
then because  is an integral domain, we may equate them and cancel like
factors, so let us assume this has been done. Thus,  for all . If there are
no factors on either side, we are done. If exactly one side has no factors left,
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then we have expressed  as a product of irreducible elements, which is not
possible since irreducible elements are nonunits.

Suppose that both sides have factors left, that is,

where . Then , which implies that  for some . We can
assume by reindexing if necessary that . Since  is irreducible 
must be a unit. Replacing  by  and canceling  gives

This process can be repeated until we run out of 's or 's. If we run out of 's
first, then we have an equation of the form  where  is a unit,
which is not possible since the 's are not units. By the same reasoning, we
cannot run out of 's first and so  and the 's and 's can be paired off as
associates.

Fields
For the record, let us give the definition of a field a concept that we have been(
using .)

Definition A  is a set , containing at least two elements, together with twofield
binary operations, called  denoted by  and addition multiplication( )
( )denoted by juxtaposition , for which the following hold:
1   is an abelian group under addition.)
2  The set  of all  elements in  is an abelian group under) nonzero

multiplication.
3   For all ,) ( )Distributivity

 and 

We require that  have at least two elements to avoid the pathological case in
which .

Example 0.17 The sets ,  and , of all rational, real and complex numbers,
respectively, are fields, under the usual operations of addition and multiplication
of numbers.

Example 0.18 The ring  is a field if and only if  is a prime number. We
have already seen that  is not a field if  is not prime, since a field is also an
integral domain. Now suppose that  is a prime.

We have seen that  is an integral domain and so it remains to show that every
nonzero element in  has a multiplicative inverse. Let . Since

, we know that  and  are relatively prime. It follows that there exist
integers  and  for which
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Hence,

mod

and so  in , that is,  is the multiplicative inverse of .

The previous example shows that not all fields are infinite sets. In fact, finite
fields play an extremely important role in many areas of abstract and applied
mathematics.

A field  is said to be  if every nonconstant polynomialalgebraically closed
over  has a root in . This is equivalent to saying that every nonconstant
polynomial splits over . For example, the complex field  is algebraically
closed but the real field  is not. We mention without proof that every field  is
contained in an algebraically closed field , called the  of .algebraic closure
For example, the algebraic closure of the real field is the complex field.

The Characteristic of a Ring
Let  be a ring with identity. If  is a positive integer, then by , we simply
mean

 terms

Now, it may happen that there is a positive integer  for which

For instance, in , we have . On the other hand, in , the
equation  implies  and so no such positive integer exists.

Notice that in any  ring, there must exist such a positive integer , since thefinite
members of the infinite sequence of numbers

cannot be distinct and so  for some  , whence .

Definition Let  be a ring with identity. The smallest positive integer  for
which  is called the  of . If no such number  exists, wecharacteristic
say that  has characteristic . The characteristic of  is denoted by
char .

If , then for any , we havechar

 terms  terms
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Theorem 0.31 Any finite ring has nonzero characteristic. Any finite integral
domain has prime characteristic.
Proof. We have already seen that a finite ring has nonzero characteristic. Let 
be a finite integral domain and suppose that . If , wherechar

, then . Hence, , implying that  or
. In either case, we have a contradiction to the fact that  is the smallest

positive integer such that . Hence,  must be prime.

Notice that in any field  of characteristic , we have  for all .
Thus, in ,

 for all 

This property takes a bit of getting used to and makes fields of characteristic 
quite exceptional. As it happens, there are many important uses for fields of(
characteristic .  It can be shown that all finite fields have size equal to a)
positive integral power  of a prime  and for each prime power , there is a
finite field of size . In fact, up to isomorphism, there is exactly one finite field
of size .

Algebras
The final algebraic structure of which we will have use is a combination of a
vector space and a ring. We have not yet officially defined vector spaces, but(
we will do so before needing the following definition, which is placed here for
easy reference.)

Definition An   over a field  is a nonempty set , together withalgebra
three operations, called  denoted by ,  denoted byaddition multiplication( ) (
juxtaposition  and  also denoted by juxtaposition , for) ( )scalar multiplication
which the following properties hold:
1   is a vector space over  under addition and scalar multiplication.)
2   is a ring under addition and multiplication.)
3  If  and , then)

Thus, an algebra is a vector space in which we can take the product of vectors,
or a ring in which we can multiply each element by a scalar subject, of course,(
to additional requirements as given in the definition .)
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Chapter 1
Vector Spaces

Vector Spaces
Let us begin with the definition of one of our principal objects of study.

Definition Let  be a field, whose elements are referred to as . A scalars vector
space vectors over  is a nonempty set , whose elements are referred to as ,
together with two operations. The first operation, called  and denotedaddition
by , assigns to each pair  of vectors in  a vector  in . The
second operation, called  and denoted by juxtaposition,scalar multiplication
assigns to each pair  a vector  in . Furthermore, the
following properties must be satisfied:
1   For all vectors ,) ( )Associativity of addition

2   For all vectors ,) ( )Commutativity of addition

3    There is a vector  with the property that) ( )Existence of a zero

for all vectors .
4   For each vector , there is a vector) ( )Existence of additive inverses

in , denoted by , with the property that
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5   For all scalars F and for all) ( )Properties of scalar multiplication
vectors ,

Note that the first four properties in the definition of vector space can be
summarized by saying that  is an abelian group under addition.

A vector space over a field  is sometimes called an . A vector space-space
over the real field is called a  and a vector space over thereal vector space
complex field is called a .complex vector space

Definition Let  be a nonempty subset of a vector space . A linear
combination of vectors in  is an expression of the form

where  and . The scalars  are called the
coefficients trivial of the linear combination. A linear combination is  if every
coefficient  is zero. Otherwise, it is .nontrivial

Examples of Vector Spaces
Here are a few examples of vector spaces.

Example 1.1
1  Let  be a field. The set  of all functions from  to  is a vector space)

over , under the operations of ordinary addition and scalar multiplication
of functions:

and

2  The set  of all  matrices with entries in a field  is a vector)
space over , under the operations of matrix addition and scalar
multiplication.

3  The set  of all ordered -tuples whose components lie in a field , is a)
vector space over , with addition and scalar multiplication defined
componentwise:

and
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When convenient, we will also write the elements of  in column form.
When  is a finite field  with  elements, we write  for .

4  Many sequence spaces are vector spaces. The set Seq  of all infinite)
sequences with members from a field  is a vector space under the
componentwise operations

and

In a similar way, the set  of all sequences of complex numbers that
converge to  is a vector space, as is the set  of all bounded complex
sequences. Also, if  is a positive integer, then the set  of all complex
sequences  for which

is a vector space under componentwise operations. To see that addition is a
binary operation on , one verifies Minkowski's inequality

which we will not do here.

Subspaces
Most algebraic structures contain substructures, and vector spaces are no
exception.

Definition A  of a vector space  is a subset  of  that is a vectorsubspace
space in its own right under the operations obtained by restricting the
operations of  to . We use the notation  to indicate that  is a
subspace of  and  to indicate that  is a  of , that is,proper subspace

 but . The  of  is .zero subspace

Since many of the properties of addition and scalar multiplication hold a fortiori
in a nonempty subset , we can establish that  is a subspace merely by
checking that  is closed under the operations of .

Theorem 1.1  A nonempty subset  of a vector space  is a subspace of  if
and only if  is closed under addition and scalar multiplication or, equivalently,
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 is closed under linear combinations, that is,

Example 1.2 Consider the vector space  of all binary -tuples, that is,
-tuples of 's and 's. The   of a vector  is the numberweight

of nonzero coordinates in . For instance, . Let  be the set of
all vectors in  of even weight. Then  is a subspace of .

To see this, note that

where  is the vector in  whose th component is the product of the
th components of  and , that is,

Hence, if  and  are both even, so is . Finally, scalar
multiplication over  is trivial and so  is a subspace of , known as
the  of .even weight subspace

Example 1.3 Any subspace of the vector space  is called a .linear code
Linear codes are among the most important and most studied types of codes,
because their structure allows for efficient encoding and decoding of
information.

The Lattice of Subspaces
The set  of all subspaces of a vector space  is partially ordered by set
inclusion. The zero subspace  is the smallest element in  and the entire
space  is the largest element.

If , then  is the largest subspace of  that is contained in
both  and . In terms of set inclusion,  is the  of greatest lower bound
and :

glb

Similarly, if  is any collection of subspaces of , then their
intersection is the greatest lower bound of the subspaces:

glb

On the other hand, if  and  is infinite , then  if( )
and only if  or . Thus, the union of two subspaces is never a
subspace in any “interesting” case. We also have the following.
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Theorem 1.2 A nontrivial vector space  over an infinite field  is not the
union of a finite number of proper subspaces.
Proof. Suppose that , where we may assume that

Let  and let . Consider the infinite set

which is the “line” through , parallel to . We want to show that each 
contains at most one vector from the infinite set , which is contrary to the fact
that . This will prove the theorem.

If  for , then  implies , contrary to assumption.
Next, suppose that  and  , for , where .
Then

and so , which is also contrary to assumption.

To determine the smallest subspace of  containing the subspaces  and , we
make the following definition.

Definition Let  and  be subspaces of . The   is defined bysum

More generally, the  of any collection  of subspaces is the setsum
of all finite sums of vectors from the union :

It is not hard to show that the sum of any collection of subspaces of  is a
subspace of  and that the sum is the least upper bound under set inclusion:

lub

More generally,

lub

If a partially ordered set  has the property that every pair of elements has a
least upper bound and greatest lower bound, then  is called a . If  haslattice
a smallest element and a largest element and has the property that every
collection of elements has a least upper bound and greatest lower bound, then 
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is called a . The least upper bound of a collection is also calledcomplete lattice
the  of the collection and the greatest lower bound is called the .join meet

Theorem 1.3 The set  of all subspaces of a vector space  is a complete
lattice under set inclusion, with smallest element , largest element , meet

glb

and join

lub

Direct Sums
As we will see, there are many ways to construct new vector spaces from old
ones.

External Direct Sums
Definition Let  be vector spaces over a field . The external direct
sum of , denoted by

is the vector space  whose elements are ordered -tuples:

with componentwise operations

and

for all .

Example 1.4 The vector space  is the external direct sum of  copies of ,
that is,

where there are  summands on the right-hand side.

This construction can be generalized to any collection of vector spaces by
generalizing the idea that an ordered -tuple  is just a function

 from the   to the union of the spacesindex set
with the property that .
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Definition Let  be any family of vector spaces over . The
direct product of  is the vector space

thought of as a subspace of the vector space of all functions from  to .

It will prove more useful to restrict the set of functions to those with finite
support.

Definition Let  be a family of vector spaces over . The
support of a function  is the set

supp

Thus, a function  has  if  for all but a finite number offinite support
. The  of the family  is the vector spaceexternal direct sum

ext
,  has finite support

thought of as a subspace of the vector space of all functions from  to .

An important special case occurs when  for all . If we let 
denote the set of all functions from  to  and  denote the set of all
functions in  that have finite support, then

  and
ext

Note that the direct product and the external direct sum are the same for a finite
family of vector spaces.

Internal Direct Sums
An internal version of the direct sum construction is often more relevant.

Definition A vector space  is the   of a family( )internal direct sum
 of subspaces of , written

or

if the following hold:
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1    is the sum join  of the family :) ( ) ( )Join of the family

2   For each ,) ( )Independence of the family

In this case, each  is called a  of . If  is adirect summand
finite family, the direct sum is often written

Finally, if , then  is called a  of  in .complement

Note that the condition in part 2) of the previous definition is  thanstronger
saying simply that the members of  are pairwise disjoint:

for all .

A word of caution is in order here: If  and  are subspaces of , then we may
always say that the sum  exists. However, to say that the direct sum of 
and  exists or to write  is to imply that . Thus, while the
sum of two subspaces always exists, the  sum of two subspaces does notdirect
always exist. Similar statements apply to families of subspaces of .

The reader will be asked in a later chapter to show that the concepts of internal
and external direct sum are essentially equivalent isomorphic . For this reason,( )
the term “direct sum” is often used without qualification.

Once we have discussed the concept of a basis, the following theorem can be
easily proved.

Theorem 1.4 Any subspace of a vector space has a complement, that is, if  is a
subspace of , then there exists a subspace  for which .

It should be emphasized that a subspace generally has many complements
( )although they are isomorphic . The reader can easily find examples of this in

.

We can characterize the uniqueness part of the definition of direct sum in other
useful ways. First a remark. If  and  are distinct subspaces of  and if

, then the sum  can be thought of as a sum of vectors from the
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same subspace (say ) or from different subspaces—one from  and one from
. When we say that a vector  cannot be written as a sum of vectors from the

distinct subspaces  and , we mean that  cannot be written as a sum 
where  and   as coming from different subspaces, even ifcan be interpreted
they can also be interpreted as coming from the same subspace. Thus, if

, then   express  as a sum of vectors from distinctdoes
subspaces.

Theorem 1.5 Let  be a family of distinct subspaces of . The
following are equivalent:
1   For each ,) ( )Independence of the family

2   The zero vector  cannot be written as a) ( )Uniqueness of expression for 
sum of nonzero vectors from distinct subspaces of .

3   Every nonzero  has a unique, except for) ( )Uniqueness of expression
order of terms, expression as a sum

of nonzero vectors from distinct subspaces in .
Hence, a sum

is direct if and only if any one of 1 3  holds.)– )
Proof. Suppose that 2) fails, that is,

where the nonzero 's are from distinct subspaces . Then  and so

which violates 1). Hence, 1) implies 2). If 2) holds and

and

where the terms are nonzero and the 's belong to distinct subspaces in  and
similarily for the 's, then

By collecting terms from the same subspaces, we may write
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Then 2) implies that  and  for all . Hence, 2)
implies 3).

Finally, suppose that 3) holds. If

then  and

where  are nonzero. But this violates 3).

Example 1.5 Any matrix  can be written in the form

( )1.1

where  is the transpose of . It is easy to verify that  is symmetric and  is
skew-symmetric and so 1.1  is a decomposition of  as the sum of a symmetric( )
matrix and a skew-symmetric matrix.

Since the sets Sym and SkewSym of all symmetric and skew-symmetric
matrices in  are subspaces of , we have

Sym SkewSym

Furthermore, if , where  and  are symmetric and  and 
are skew-symmetric, then the matrix

is both symmetric and skew-symmetric. Hence, provided that , wechar
must have  and so  and . Thus,

Sym SkewSym

Spanning Sets and Linear Independence
A set of vectors  a vector space if every vector can be written as a linearspans
combination of some of the vectors in that set. Here is the formal definition.

Definition The  or  by a nonempty setsubspace spanned subspace generated( )
 of vectors in  is the set of all linear combinations of vectors from :

span
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When  is a finite set, we use the notation  or
span . A set  of vectors in  is said to  , or  , ifspan generate

span .

It is clear that any superset of a spanning set is also a spanning set. Note also
that all vector spaces have spanning sets, since  spans itself.

Linear Independence
Linear independence is a fundamental concept.

Definition Let  be a vector space. A nonempty set  of vectors in  is
linearly independent if for any distinct vectors  in ,

for all 

In words,  is linearly independent if the only linear combination of vectors
from  that is equal to  is the trivial linear combination, all of whose
coefficients are . If  is not linearly independent, it is said to be linearly
dependent.

It is immediate that a linearly independent set of vectors cannot contain the zero
vector, since then  violates the condition of linear independence.

Another way to phrase the definition of linear independence is to say that  is
linearly independent if the zero vector has an “as unique as possible” expression
as a linear combination of vectors from . We can never prevent the zero vector
from being written in the form , but we can prevent  from
being written in any other way as a linear combination of the vectors in .

For the introspective reader, the expression  has two
interpretations. One is  where  and , but this does
not involve distinct vectors so is not relevant to the question of linear
independence. The other interpretation is  where 
(assuming that ). Thus, if  is linearly independent, then  cannot
contain both  and .

Definition Let  be a nonempty set of vectors in . To say that a nonzero
vector  is an  linear combination of the vectors in  isessentially unique
to say that, up to order of terms, there is one and only one way to express  as a
linear combination

where the 's are distinct vectors in  and the coefficients  are nonzero. More
explicitly,  is an essentially unique linear combination of the vectors in 
if  and if whenever
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and

where the 's are distinct, the 's are distinct and all coefficients are nonzero,
then  and after a reindexing of the 's if necessary, we have  and

 for all . Note that this is stronger than saying that(
.)

We may characterize linear independence as follows.

Theorem 1.6 Let  be a nonempty set of vectors in . The following are
equivalent:
1   is linearly independent.)
2  Every nonzero vector  is an essentially unique linear) span

combination of the vectors in .
3  No vector in  is a linear combination of other vectors in .)
Proof. Suppose that 1  holds and that)

where the 's are distinct, the 's are distinct and the coefficients are nonzero.
By subtracting and grouping 's and 's that are equal, we can write

and so 1  implies that  and  and  for all .)
Thus, 1  implies 2 .) )

If 2) holds and  can be written as

where  are different from , then we may collect like terms on the right
and then remove all terms with  coefficient. The resulting expression violates
2). Hence, 2) implies 3). If 3) holds and

where the 's are distinct and , then  and we may write

which violates 3 .)

The following key theorem relates the notions of spanning set and linear
independence.
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Theorem 1.7  Let  be a set of vectors in . The following are equivalent:
1   is linearly independent and spans .)
2  Every nonzero vector  is an essentially unique linear combination of)

vectors in .
3   is a minimal spanning set, that is,  spans  but any proper subset of )

does not span .
4   is a maximal linearly independent set, that is,  is linearly independent,)

but any proper superset of  is not linearly independent.
A set of vectors in  that satisfies any and hence all  of these conditions is( )
called a  for .basis
Proof. We have seen that 1  and 2  are equivalent. Now suppose 1  holds. Then) ) )

 is a spanning set. If some proper subset  of  also spanned , then any
vector in  would be a linear combination of the vectors in ,
contradicting the fact that the vectors in  are linearly independent. Hence 1)
implies 3 .)

Conversely, if  is a minimal spanning set, then it must be linearly independent.
For if not, some vector  would be a linear combination of the other vectors
in  and so  would be a proper spanning subset of , which is not
possible. Hence 3  implies 1 .) )

Suppose again that 1  holds. If  were not maximal, there would be a vector)
 for which the set  is linearly independent. But then  is not

in the span of , contradicting the fact that  is a spanning set. Hence,  is a
maximal linearly independent set and so 1  implies 4 .) )

Conversely, if  is a maximal linearly independent set, then  must span , for
if not, we could find a vector  that is not a linear combination of the
vectors in . Hence,  would be a linearly independent proper superset of

, which is a contradiction. Thus, 4  implies 1 .) )

Theorem 1.8 A finite set  of vectors in  is a basis for  if
and only if

Example 1.6 The th  in  is the vector  that has 's in allstandard vector
coordinate positions except the th, where it has a . Thus,

The set  is called the  for .standard basis

The proof that every nontrivial vector space has a basis is a classic example of
the use of Zorn's lemma.
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Theorem 1.9  Let  be a nonzero vector space. Let  be a linearly independent
set in  and let  be a spanning set in  containing . Then there is a basis 
for  for which . In particular,
1  Any vector space, except the zero space , has a basis.)
2  Any linearly independent set in  is contained in a basis.)
3  Any spanning set in  contains a basis.)
Proof. Consider the collection  of all linearly independent subsets of 
containing  and contained in . This collection is not empty, since .
Now, if

is a chain in , then the union

is linearly independent and satisfies , that is, . Hence, every
chain in  has an upper bound in  and according to Zorn's lemma,  must
contain a maximal element , which is linearly independent.

Now,  is a basis for the vector space , for if any  is not a linear
combination of the elements of , then  is linearly independent,
contradicting the maximality of . Hence  and so .

The reader can now show, using Theorem 1.9, that any subspace of a vector
space has a complement.

The Dimension of a Vector Space
The next result, with its classical elegant proof, says that if a vector space  has
a  spanning set , then the size of any linearly independent set cannotfinite
exceed the size of .

Theorem 1.10  Let  be a vector space and assume that the vectors 
are linearly independent and the vectors  span . Then .
Proof. First, we list the two sets of vectors: the spanning set followed by the
linearly independent set:

Then we move the first vector  to the front of the first list:

Since  span ,  is a linear combination of the 's. This implies that
we may remove one of the 's, which by reindexing if necessary can be ,
from the first list and still have a spanning set



Vector Spaces 49

Note that the first set of vectors still spans  and the second set is still linearly
independent.

Now we repeat the process, moving  from the second list to the first list

As before, the vectors in the first list are linearly dependent, since they spanned
 before the inclusion of . However, since the 's are linearly independent,

any nontrivial linear combination of the vectors in the first list that equals 
must involve at least one of the 's. Hence, we may remove that vector, which
again by reindexing if necessary may be taken to be  and still have a spanning
set

Once again, the first set of vectors spans  and the second set is still linearly
independent.

Now, if , then this process will eventually exhaust the 's and lead to the
list

where  span , which is clearly not possible since  is not in the
span of . Hence, .

Corollary 1.11 If  has a  spanning set, then any two bases of  have thefinite
same size.

Now let us prove the analogue of Corollary 1.11 for arbitrary vector spaces.

Theorem 1.12  If  is a vector space, then any two bases for  have the same
cardinality.
Proof. We may assume that all bases for  are infinite sets, for if any basis is
finite, then  has a finite spanning set and so Corollary 1.11 applies.

Let  be a basis for  and let  be another basis for . Then any
vector  can be written as a finite linear combination of the vectors in ,
where all of the coefficients are nonzero, say

But because  is a basis, we must have
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for if the vectors in  can be expressed as finite linear combinations of the
vectors in a  subset  of , then  spans , which is not the case.proper

Since  for all , Theorem 0.17 implies that

But we may also reverse the roles of  and , to conclude that  and so
the Schröder–Bernstein theorem implies that .

Theorem 1.12 allows us to make the following definition.

Definition A vector space  is  if it is the zero space , orfinite-dimensional
if it has a finite basis. All other vector spaces are . Theinfinite-dimensional
dimension of the zero space is  and the  of any nonzero vectordimension
space  is the cardinality of any basis for . If a vector space  has a basis of
cardinality , we say that  is  and write .-dimensional dim

It is easy to see that if  is a subspace of , then . If indim dim
addition, , then .dim dim

Theorem 1.13  Let  be a vector space.
1  If  is a basis for  and if  and , then)

2  Let . If  is a basis for  and  is a basis for , then)
 and  is a basis for .

Theorem 1.14  Let  and  be subspaces of a vector space . Then

dim dim dim dim

In particular, if  is any complement of  in , then

dim dim dim

that is,

dim dim dim

Proof. Suppose that  is a basis for . Extend this to a basis
 for  where  is disjoint from . Also, extend  to a

basis  for  where  is disjoint from . We claim that
 is a basis for . It is clear that .

To see that  is linearly independent, suppose to the contrary that
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where  and  for all . There must be vectors  in this
expression from both  and , since  and  are linearly independent.
Isolating the terms involving the vectors from  on one side of the equality
shows that there is a nonzero vector in . But then 
and so , which implies that , a contradiction. Hence,

 is linearly independent and a basis for .

Now,

dim dim

dim
dim dim

as desired.

It is worth emphasizing that while the equation

dim dim dim dim

holds for all vector spaces, we cannot write

dim dim dim dim

unless  is finite-dimensional.

Ordered Bases and Coordinate Matrices
It will be convenient to consider bases that have an order imposed on their
members.

Definition Let  be a vector space of dimension . An  for  isordered basis
an ordered -tuple  of vectors for which the set  is a
basis for .

If  is an ordered basis for , then for each  there is a
unique ordered -tuple  of scalars for which

Accordingly, we can define the   bycoordinate map

( )1.3
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where the column matrix  is known as the  of  withcoordinate matrix
respect to the ordered basis . Clearly, knowing  is equivalent to knowing 
( )assuming knowledge of .

Furthermore, it is easy to see that the coordinate map  is bijective and
preserves the vector space operations, that is,

or equivalently

Functions from one vector space to another that preserve the vector space
operations are called  and form the objects of study in thelinear transformations
next chapter.

The Row and Column Spaces of a Matrix
Let  be an  matrix over . The rows of  span a subspace of  known
as the  of  and the columns of  span a subspace of  known asrow space
the  of . The dimensions of these spaces are called the column space row rank
and , respectively. We denote the row space and row rank bycolumn rank
rs rrk cs crk and  and the column space and column rank by  and .

It is a remarkable and useful fact that the row rank of a matrix is always equal to
its column rank, despite the fact that if , the row space and column space
are not even in the same vector space!

Our proof of this fact hinges on the following simple observation about
matrices.

Lemma 1.15 Let  be an  matrix. Then elementary column operations do
not affect the row rank of . Similarly, elementary row operations do not affect
the column rank of .
Proof. The second statement follows from the first by taking transposes. As to
the first, the row space of  is

rs

where  are the standard basis vectors in . Performing an elementary
column operation on  is equivalent to multiplying  on the right by an
elementary matrix . Hence the row space of  is

rs

and since  is invertible,
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rrk rs rs rrkdim dim

as desired.

Theorem 1.16  If , then . This number is called therrk crk
rank of  and is denoted by .rk
Proof. According to the previous lemma, we may reduce  to reduced column
echelon form without affecting the row rank. But this reduction does not affect
the column rank either. Then we may further reduce  to reduced row echelon
form without affecting either rank. The resulting matrix  has the same row
and column ranks as . But  is a matrix with 's followed by 's on the main
diagonal entries  and 's elsewhere. Hence,( )

rrk rrk crk crk

as desired.

The Complexification of a Real Vector Space
If  is a complex vector space that is, a vector space over , then we can( )
think of  as a real vector space simply by restricting all scalars to the field .
Let us denote this real vector space by  and call it the  of .real version

On the other hand, to each real vector space , we can associate a complex
vector space . This “complexification” process will play a useful role when
we discuss the structure of linear operators on a real vector space. Throughout(
our discussion  will denote a real vector space.)

Definition If  is a real vector space, then the set  of ordered
pairs, with componentwise addition

and scalar multiplication over  defined by

for  is a complex vector space, called the  of .complexification

It is convenient to introduce a notation for vectors in  that resembles the
notation for complex numbers. In particular, we denote  by 
and so

Addition now looks like ordinary addition of complex numbers,

and scalar multiplication looks like ordinary multiplication of complex numbers,
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Thus, for example, we immediately have for ,

The  of  is  and the  of  is .real part imaginary part
The essence of the fact that  is really an ordered pair is that  is

 if and only if its real and imaginary parts are both .

We can define the   bycomplexification map cpx

cpx

Let us refer to  as the , or  of .complexification complex version
Note that this map is a group homomorphism, that is,

cpx cpx cpx cpxand

and it is injective:

cpx cpx

Also, it preserves multiplication by  scalars:real

cpx cpx

for . However, the complexification map is not surjective, since it gives
only “real” vectors in .

The complexification map is an injective linear transformation defined in the(
next chapter  from the real vector space  to the real version  of the)
complexification , that is, to the complex vector space  provided that
scalars are restricted to real numbers. In this way, we see that  contains an
embedded copy of .

The Dimension of 
The vector-space dimensions of  and  are the same. This should not
necessarily come as a surprise because although  may seem “bigger” than ,
the field of scalars is also “bigger.”

Theorem 1.17 If  is a basis for  over , then the
complexification of ,

cpx



Vector Spaces 55

is a basis for the vector space  over . Hence,

dim dim

Proof. To see that  spans  over , let . Then cpx
and so there exist real numbers  and  some of which may be  for which( )

To see that  is linearly independent, ifcpx

then the previous computations show that

 and 

The independence of  then implies that  and  for all .

If  and  is a basis for , then we may write

for . Since the coefficients are real, we have

and so the coordinate matrices are equal:

cpx

Exercises
1. Let  be a vector space over . Prove that  and  for all 

and . Describe the different 's in these equations. Prove that if
, then  or . Prove that  implies that  or .
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2. Prove Theorem 1.3.
3. a  Find an abelian group  and a field  for which  is a vector space)

over  in at least two different ways, that is, there are two different
definitions of scalar multiplication making  a vector space over .

 b  Find a vector space  over  and a subset  of  that is 1  a) ( )
subspace of  and 2  a vector space using operations that differ from( )
those of .

4. Suppose that  is a vector space with basis  and  is a
subspace of . Let  be a partition of . Then is it true that

What if  for all ?
5. Prove Theorem 1.8.
6. Let . Show that if , then

This is called the  for the lattice .modular law
7. For what vector spaces does the distributive law of subspaces

hold?
8. A vector  is called  if  for allstrongly positive

.
 a  Suppose that  is strongly positive. Show that any vector that is “close)

enough” to  is also strongly positive. Formulate carefully what “close(
enough” should mean.)

 b  Prove that if a subspace  of  contains a strongly positive vector,)
then  has a basis of strongly positive vectors.

9. Let  be an  matrix whose rows are linearly independent. Suppose
that the  columns  of  span the column space of . Let  be
the matrix obtained from  by deleting all columns except .
Show that the rows of  are also linearly independent.

10. Prove that the first two statements in Theorem 1.7 are equivalent.
11. Show that if  is a subspace of a vector space , then .dim dim

Furthermore, if  then . Give an example todim dim
show that the finiteness is required in the second statement.

12. Let  and suppose that . What can youdim
say about the relationship between  and ? What can you say if

?
13. What is the relationship between  and ? Is the direct sum

operation commutative? Formulate and prove a similar statement
concerning associativity. Is there an “identity” for direct sum? What about
“negatives”?
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14. Let  be a finite-dimensional vector space over an infinite field . Prove
that if  are subspaces of  of equal dimension, then there is a
subspace  of  for which  for all . In other words,

 is a common complement of the subspaces .
15. Prove that the vector space  of all continuous functions from  to  is

infinite-dimensional.
16. Show that Theorem 1.2 need not hold if the base field  is finite.
17. Let  be a subspace of . The set  is called an

affine subspace of .
 a  Under what conditions is an affine subspace of  a subspace of ?)
 b  Show that any two affine subspaces of the form  and  are)

either equal or disjoint.
18. If  and  are vector spaces over  for which , then does it

follow that ?dim dim
19. Let  be an -dimensional real vector space and suppose that  is a

subspace of  with . Define an equivalence relation ondim
the set  by  if the “line segment”

has the property that . Prove that is an equivalence
relation and that it has exactly two equivalence classes.

20. Let  be a field. A  of  is a subset  of  that is a field in itssubfield
own right using the same operations as defined on .

 a  Show that  is a vector space over any subfield  of .)
 b  Suppose that  is an -dimensional vector space over a subfield  of)

. If  is an -dimensional vector space over , show that  is also a
vector space over . What is the dimension of  as a vector space
over ?

21. Let  be a finite field of size  and let  be an -dimensional vector space
over . The purpose of this exercise is to show that the number of
subspaces of  of dimension  is

The expressions  are called  and have propertiesGaussian coefficients
similar to those of the binomial coefficients. Let  be the number of

-dimensional subspaces of .
 a  Let  be the number of -tuples of linearly independent vectors)

 in . Show that

 b  Now, each of the -tuples in a  can be obtained by first choosing a) )
subspace of  of dimension  and then selecting the vectors from this
subspace. Show that for any -dimensional subspace of , the number
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of -tuples of independent vectors in this subspace is

 c  Show that)

How does this complete the proof?
22. Prove that any subspace  of  is a closed set or, equivalently, that its set

complement  is open, that is, for any  there is an open
ball  centered at  with radius  for which .

23. Let  and  be bases for a vector space .
Let . Show that there is a permutation  of  such
that

and

are both bases for . : You may use the fact that if  is an invertibleHint
 matrix and if , then it is possible to reorder the rows so

that the upper left  submatrix and the lower right 
submatrix are both invertible. This follows, for example, from the general(
Laplace expansion theorem for determinants.)

24. Let  be an -dimensional vector space over an infinite field  and
suppose that  are subspaces of  with . Provedim
that there is a subspace  of  of dimension  for which

 for all .
25. What is the dimension of the complexification  thought of as a real

vector space?
26. When is a subspace of a complex vector space a complexification?  Let ( )

be a real vector space with complexification  and let  be a subspace of
. Prove that there is a subspace  of  for which

if and only if  is closed under complex conjugation  defined
by .



Chapter 2
Linear Transformations

Linear Transformations
Loosely speaking, a linear transformation is a function from one vector space to
another that  the vector space operations. Let us be more precise.preserves

Definition Let  and  be vector spaces over a field . A function 
is a  iflinear transformation

for all scalars  and vectors , . The set of all linear
transformations from  to  is denoted by .
1  A linear transformation from  to  is called a  on . The) linear operator

set of all linear operators on  is denoted by . A linear operator on a
real vector space is called a  and a linear operator on areal operator
complex vector space is called a .complex operator

2  A linear transformation from  to the base field  thought of as a vector) (
space over itself  is called a  on . The set of all linear) linear functional
functionals on  is denoted by  and called the  of .dual space

We should mention that some authors use the term linear operator for any linear
transformation from  to . Also, the application of a linear transformation 
on a vector  is denoted by  or by , parentheses being used when
necessary, as in , or to improve readability, as in  rather than

.

Definition The following terms are also employed:
1   for linear transformation) homomorphism
2   for linear operator) endomorphism
3   or  for injective linear transformation) ( )monomorphism embedding
4   for surjective linear transformation) epimorphism
5   for bijective linear transformation.) isomorphism
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6   for bijective linear operator.) automorphism

Example 2.1
1  The derivative  is a linear operator on the vector space  of all)

infinitely differentiable functions on .
2  The integral operator  defined by)

is a linear operator on .
3  Let  be an  matrix over . The function  defined by)

, where all vectors are written as column vectors, is a linear
transformation from  to . This function is just multiplication by .

4  The coordinate map  of an -dimensional vector space is a)
linear transformation from  to .

The set  is a vector space in its own right and  has the structure of
an algebra, as defined in Chapter 0.

Theorem 2.1
1  The set  is a vector space under ordinary addition of functions)

and scalar multiplication of functions by elements of .
2  If  and , then the composition  is in .)
3  If  is bijective then .)
4  The vector space  is an algebra, where multiplication is composition)

of functions. The identity map  is the multiplicative identity and
the zero map  is the additive identity.

Proof. We prove only part 3 . Let  be a bijective linear)
transformation. Then  is a well-defined function and since any two
vectors  and  in  have the form  and , we have

which shows that  is linear.

One of the easiest ways to define a linear transformation is to give its values on
a basis. The following theorem says that we may assign these values arbitrarily
and obtain a unique linear transformation by linear extension to the entire
domain.

Theorem 2.2  Let  and  be vector spaces and let  be a
basis for . Then we can define a linear transformation  by
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specifying the values of   for all  and extending  to  byarbitrarily
linearity, that is,

This process defines a unique linear transformation, that is, if 
satisfy  for all  then .
Proof. The crucial point is that the extension by linearity is well-defined, since
each vector in  has an essentially unique representation as a linear
combination of a finite number of vectors in . We leave the details to the
reader.

Note that if  and if  is a subspace of , then the restriction  of
 to  is a linear transformation from  to .

The Kernel and Image of a Linear Transformation
There are two very important vector spaces associated with a linear
transformation  from  to .

Definition Let . The subspace

ker

is called the  of  and the subspacekernel

im

is called the  of . The dimension of  is called the  of  and isimage nullityker
denoted by . The dimension of  is called the  of  and isnull im rank
denoted by .rk

It is routine to show that  is a subspace of  and  is a subspace ofker im
. Moreover, we have the following.

Theorem 2.3  Let . Then
1   is surjective if and only if ) im
2   is injective if and only if ) ker
Proof. The first statement is merely a restatement of the definition of
surjectivity. To see the validity of the second statement, observe that

ker

Hence, if , then , which shows that  is injective.ker
Conversely, if  is injective and , then  and so . Thisker
shows that .ker
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Isomorphisms
Definition A bijective linear transformation  is called an
isomorphism from  to . When an isomorphism from  to  exists, we say
that  and  are  and write .isomorphic

Example 2.2 Let . For any ordered basis  of , the coordinatedim
map  that sends each vector  to its coordinate matrix

 is an isomorphism. Hence, any -dimensional vector space over  is
isomorphic to .

Isomorphic vector spaces share many properties, as the next theorem shows. If
 and  we write

Theorem 2.4  Let  be an isomorphism. Let . Then
1   spans  if and only if  spans .)
2   is linearly independent in  if and only if  is linearly independent in)

.
3   is a basis for  if and only if  is a basis for .)

An isomorphism can be characterized as a linear transformation  that
maps a basis for  to a basis for .

Theorem 2.5  A linear transformation  is an isomorphism if and
only if there is a basis  for  for which  is a basis for . In this case, 
maps any basis of  to a basis of .

The following theorem says that, up to isomorphism, there is only one vector
space of any given dimension over a given field.

Theorem 2.6  Let  and  be vector spaces over . Then  if and only
if .dim dim

In Example 2.2, we saw that any -dimensional vector space is isomorphic to
. Now suppose that  is a set of cardinality  and let  be the vector

space of all functions from  to  with finite support. We leave it to the reader
to show that the functions  defined for all  by

if
if

form a basis for , called the . Hence, .standard basis dim

It follows that for any cardinal number , there is a vector space of dimension .
Also, any vector space of dimension  is isomorphic to .
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Theorem 2.7  If  is a natural number, then any -dimensional vector space
over  is isomorphic to . If  is any cardinal number and if  is a set of
cardinality , then any -dimensional vector space over  is isomorphic to the
vector space  of all functions from  to  with finite support.

The Rank Plus Nullity Theorem
Let . Since any subspace of  has a complement, we can write

ker ker

where  is a complement of  in . It follows thatker ker

dim dim ker dim ker

Now, the restriction of  to ,ker

ker

is injective, since

ker ker ker

Also, . For the reverse inclusion, if , then sinceim im im
 for  and , we haveker ker

im

Thus . It follows thatim im

ker im

From this, we deduce the following theorem.

Theorem 2.8  Let .
1  Any complement of  is isomorphic to ) imker
2) ( )The rank plus nullity theorem

dim ker dim dimim

or, in other notation,

rk null dim

Theorem 2.8 has an important corollary.

Corollary 2.9 Let , where . Then  isdim dim
injective if and only if it is surjective.

Note that this result fails if the vector spaces are not finite-dimensional. The
reader is encouraged to find an example to support this statement.
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Linear Transformations from  to 
Recall that for any  matrix  over  the multiplication map

is a linear transformation. In fact, any linear transformation  has
this form, that is,  is just multiplication by a matrix, for we have

and so , where

Theorem 2.10
1  If  is an  matrix over  then .)
2  If  then , where)

The matrix  is called the  of .matrix

Example 2.3 Consider the linear transformation  defined by

Then we have, in column form,

and so the standard matrix of  is

If , then since the image of  is the column space of , we have

dim ker dimrk

This gives the following useful result.

Theorem 2.11  Let  be an  matrix over .
1   is injective if and only if n.) rk
2   is surjective if and only if m. ) rk
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Change of Basis Matrices
Suppose that  and  are ordered bases for a
vector space . It is natural to ask how the coordinate matrices  and  are
related. Referring to Figure 2.1,

V

Fn

Fn

B

C

C( B)-1

Figure 2.1

the map that takes  to  is  and is called the change of basis
operator change of coordinates operator or . Since  is an operator on( )

, it has the form , where

We denote  by  and call it the  from  to ., change of basis matrix

Theorem 2.12  Let  and  be ordered bases for a vector space
. Then the change of basis operator  is an automorphism of ,

whose standard matrix is

,

Hence

and .,

Consider the equation

or equivalently,

Then given any two of  an invertible  matrix  an ordered basis for( ) (
) ( ) and  an ordered basis for , the third component is uniquely

determined by this equation. This is clear if  and  are given or if  and  are



66 Advanced Linear Algebra

given. If  and  are given, then there is a unique  for which  and
so there is a unique  for which .

Theorem 2.13 If we are given any two of the following:
1  an invertible  matrix )
2  an ordered basis  for )
3  an ordered basis  for .)
then the third is uniquely determined by the equation

The Matrix of a Linear Transformation
Let  be a linear transformation, where  anddim
dim  and let  be an ordered basis for  and  an
ordered basis for . Then the map

is a  of  as a linear transformation from  to , in the senserepresentation
that knowing  along with  and , of course  is equivalent to knowing . Of( )
course, this representation depends on the choice of ordered bases  and .

Since  is a linear transformation from  to , it is just multiplication by an
 matrix , that is,

Indeed, since , we get the columns of  as follows:

Theorem 2.14  Let  and let  and  be ordered
bases for  and , respectively. Then  can be represented with respect to 
and  as matrix multiplication, that is,

,

where

,

is called the     and . When  andmatrix of with respect to the bases
, we denote  by  and so,

Example 2.4 Let  be the derivative operator, defined on the vector
space of all polynomials of degree at most . Let . Then
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,

and so

Hence, for example, if , then

and so .

The following result shows that we may work equally well with linear
transformations or with the matrices that represent them with respect to fixed(
ordered bases  and . This applies not only to addition and scalar)
multiplication, but also to matrix multiplication.

Theorem 2.15  Let  and  be finite-dimensional vector spaces over , with
ordered bases  and , respectively.
1  The map  defined by)

,

is an isomorphism and so . Hence,

dim dim

2  If  and  and if ,  and  are ordered bases for)
,  and , respectively, then

, , ,

Thus, the matrix of the product composition   is the product of the( )
matrices of  and . In fact, this is the primary motivation for the definition
of matrix multiplication.

Proof. To see that  is linear, observe that for all ,
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and since  is a standard basis vector, we conclude that

and so  is linear. If , we define  by the condition ,
whence  and  is surjective. Also,  since ker
implies that . Hence, the map  is an isomorphism. To prove part 2 , we)
have

,

Change of Bases for Linear Transformations
Since the matrix  that represents  depends on the ordered bases  and , it,
is natural to wonder how to choose these bases in order to make this matrix as
simple as possible. For instance, can we always choose the bases so that  is
represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,
we will take up the general question of how best to represent a linear operator
by a matrix. For now, let us take the first step and describe the relationship
between the matrices  and  of  with respect to two different pairs

 and  of ordered bases. Multiplication by  sends  to
. This can be reproduced by first switching from  to , then applying
 and finally switching from  to , that is,

, , ,

Theorem 2.16  Let ,  and let  and  be pairs of ordered
bases of  and , respectively. Then

(2.1)

When  is a linear operator on , it is generally more convenient to
represent  by matrices of the form , where the ordered bases used to
represent vectors in the domain and image are the same. When , Theorem
2.16 takes the following important form.

Corollary 2.17 Let  and let  and  be ordered bases for . Then the
matrix of  with respect to  can be expressed in terms of the matrix of  with
respect to  as follows:

(2.2)

Equivalence of Matrices
Since the change of basis matrices are precisely the invertible matrices, 2.1  has( )
the form



Linear Transformations 69

where  and  are invertible matrices. This motivates the following definition.

Definition Two matrices  and  are  if there exist invertibleequivalent
matrices  and  for which

We have remarked that  is equivalent to  if and only if  can be obtained
from  by a series of elementary row and column operations. Performing the
row operations is equivalent to multiplying the matrix  on the left by  and
performing the column operations is equivalent to multiplying  on the right by

.

In terms of 2.1 , we see that performing row operations premultiplying by ( ) ( )
is equivalent to changing the basis used to represent vectors in the image and
performing column operations postmultiplying by  is equivalent to( )
changing the basis used to represent vectors in the domain.

According to Theorem 2.16, if  and  are matrices that represent  with
respect to possibly different ordered bases, then  and  are equivalent. The
converse of this also holds.

Theorem 2.18  Let  and  be vector spaces with  anddim
dim . Then two  matrices  and  are equivalent if and only if
they represent the same linear transformation , but possibly with
respect to different ordered bases. In this case,  and  represent exactly the
same set of linear transformations in .
Proof. If  and  represent , that is, if

, ,and

for ordered bases  and , then Theorem 2.16 shows that  and  are
equivalent. Now suppose that  and  are equivalent, say

where  and  are invertible. Suppose also that  represents a linear
transformation  for some ordered bases  and , that is,

Theorem 2.9 implies that there is a unique ordered basis  for  for which
 and a unique ordered basis  for  for which . Hence
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Hence,  also represents . By symmetry, we see that  and  represent the
same set of linear transformations. This completes the proof.

We remarked in Example 0.3 that every matrix is equivalent to exactly one
matrix of the block form

block

Hence, the set of these matrices is a set of canonical forms for equivalence.
Moreover, the rank is a complete invariant for equivalence. In other words, two
matrices are equivalent if and only if they have the same rank.

Similarity of Matrices
When a linear operator  is represented by a matrix of the form ,
equation 2.2  has the form( )

where  is an invertible matrix. This motivates the following definition.

Definition Two matrices  and  are , denoted by , if theresimilar
exists an invertible matrix  for which

The equivalence classes associated with similarity are called similarity
classes.

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19  Let  be a vector space of dimension . Then two 
matrices  and  are similar if and only if they represent the same linear
operator , but possibly with respect to different ordered bases. In this
case,  and  represent exactly the same set of linear operators in .
Proof. If  and  represent , that is, if

and

for ordered bases  and , then Corollary 2.17 shows that  and  are similar.
Now suppose that  and  are similar, say

Suppose also that  represents a linear operator  for some ordered
basis , that is,

Theorem 2.9 implies that there is a unique ordered basis  for  for which
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. Hence

Hence,  also represents . By symmetry, we see that  and  represent the
same set of linear operators. This completes the proof.

We will devote much effort in Chapter 7 to finding a canonical form for
similarity.

Similarity of Operators
We can also define similarity of operators.

Definition Two linear operators  are , denoted by , ifsimilar
there exists an automorphism  for which

The equivalence classes associated with similarity are called similarity
classes.

Note that if  and  are ordered bases for , then

Now, the map defined by  is an automorphism of  and

Conversely, if  is an automorphism and  is an ordered
basis for , then  is also a basis:

The analog of Theorem 2.19 for linear operators is the following.

Theorem 2.20  Let  be a vector space of dimension . Then two linear
operators  and  on  are similar if and only if there is a matrix  that
represents both operators, but with respect to possibly different ordered bases.
In this case,  and  are represented by exactly the same set of matrices in .
Proof. If  and  are represented by , that is, if

for ordered bases  and , then

As remarked above, if  is defined by , then



72 Advanced Linear Algebra

and so

from which it follows that  and  are similar. Conversely, suppose that  and 
are similar, say

where  is an automorphism of . Suppose also that  is represented by the
matrix , that is,

for some ordered basis . Then  and so

It follows that

and so  also represents . By symmetry, we see that  and  are represented
by the same set of matrices. This completes the proof.

We can summarize the sitiation with respect to similarity in Figure 2.2. Each
similarity class  in  corresponds to a similarity class  in :  is
the set of all matrices that represent any   and  is the set of all operators
in  that are represented by any .

similarity classes
of L(V)

[ ]B
[ ]C

Similarity classes
of matrices

[ ]B
[ ]C

Figure 2.2

Invariant Subspaces and Reducing Pairs
The restriction of a linear operator  to a subspace  of is not
necessarily a linear operator on . This prompts the following definition.
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Definition Let . A subspace  of  is said to be   orinvariant under
-  if , that is, if  for all . Put another way,  isinvariant

invariant under  if the restriction  is a linear operator on .

If

then the fact that  is -invariant does not imply that the complement  is also
-invariant. The reader may wish to supply a simple example with .( )

Definition Let . If  and if both  and  are -invariant,
we say that the pair   .reduces

A reducing pair can be used to decompose a linear operator into a direct sum as
follows.

Definition Let . If  reduces  we write

and call  the  of  and . Thus, the expressiondirect sum

means that there exist subspaces  and  of  for which  reduces  and

  and 

The concept of the direct sum of linear operators will play a key role in the
study of the structure of a linear operator.

Projection Operators
We will have several uses for a special type of linear operator that is related to
direct sums.

Definition Let . The linear operator  defined by

where  and  is called  onto   .projection along

Whenever we say that the operator  is a projection, it is with the
understanding that . The following theorem describes a few basic
properties of projection operators. We leave proof as an exercise.

Theorem 2.21 Let  be a vector space and let .
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1  If  then)

2  If  then)

im and ker

and so

im ker

In other words,  is projection onto its image along its kernel. Moreover,

im

3  If  has the property that)

im ker and im

then  is projection onto  along .im ker

Projection operators are easy to characterize.

Definition A linear operator  is  if .idempotent

Theorem 2.22 A linear operator  is a projection if and only if it is
idempotent.
Proof. If , then for any  and ,

and so . Conversely, suppose that  is idempotent. If ,im ker
then  and so

Hence . Also, if , thenim ker

ker im

and so . Finally,  and so .ker im im
Hence,  is projection onto along .im ker

Projections and Invariance
Projections can be used to characterize invariant subspaces. Let  and
let  be a subspace of . Let  for any complement  of . The key is
that the elements of  can be characterized as those vectors fixed by , that is,
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 if and only if . Hence, the following are equivalent:

 for all 
 for all 

 for all 

Thus,  is -invariant if and only if  for all vectors . But this is
also true for all vectors in , since both sides are equal to  on . This proves
the following theorem.

Theorem 2.23 Let . Then a subspace  of  is -invariant if and only
if there is a projection  for which

in which case this holds for all projections of the form .

We also have the following relationship between projections and reducing pairs.

Theorem 2.24 Let . Then  reduces  if and only if 
commutes with .
Proof. Theorem 2.23 implies that  and  are -invariant if and only if

and

and a little algebra shows that this is equivalent to

and

which is equivalent to .

Orthogonal Projections and Resolutions of the Identity
Observe that if  is a projection, then

Definition Two projections  are , written , iforthogonal

Note that  if and only if

im imker kerand

The following example shows that it is not enough to have  in the
definition of orthogonality. In fact, it is possible for  and yet  is not
even a projection.
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Example 2.5 Let  and consider the - and -axes and the diagonal:

Then

From this we deduce that if  and  are projections, it may happen that both
products  and  are projections, but that they are not equal. We leave it to
the reader to show that  (which is a projection), but that 
is not a projection.

Since a projection  is idempotent, we can write the identity operator  as s sum
of two orthogonal projections:

Let us generalize this to more than two projections.

Definition A  on  is a sum of the formresolution of the identity

where the 's are pairwise orthogonal projections, that is,  for .

There is a connection between the resolutions of the identity on  and direct
sum decompositions of . In general terms, if

for any linear operators , then for all ,

im im

and so

im im

However, the sum need not be direct.

Theorem 2.25 Let  be a vector space. Resolutions of the identity on 
correspond to direct sum decompositions of  as follows:
1  If  is a resolution of the identity, then)

im im
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and  is projection onto  alongim

ker im

2  Conversely, if)

and if  is projection onto  along the direct sum ,, then
 is a resolution of the identity.

Proof. To prove 1), if  is a resolution of the identity, then

im im

Moreover, if

then applying  gives  and so the sum is direct. As to the kernel of ,
we have

im im imker

and since , it follows that

im ker

and so equality must hold. For part 2), suppose that

and  is projection onto  along . If , then

im ker

and so . Also, if  for , then

and so  is a resolution of the identity.

The Algebra of Projections
If  and  are projections, it does not necessarily follow that ,  or 
is a projection. For example, the sum  is a projection if and only if
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which is equivalent to

Of course, this holds if , that is, if . But the converse is also
true, provided that . To see this, we simply evaluate  in twochar
ways:

and

Hence,  and so . It follows that  and so
. Thus, for , we have  is a projection if and only ifchar
.

Now suppose that  is a projection. For the kernel of , note that

and similarly, . Hence, . But the reverseker ker ker
inclusion is obvious and so

ker ker ker

As to the image of , we have

im im im

and so . For the reverse inclusion, if ,im im im
then

and so . Thus, . Finally, im im im im
implies that  and so the sum is direct andim ker

im im im

The following theorem also describes the situation for the difference and
product. Proof in these cases is left for the exercises.

Theorem 2.26 Let  be a vector space over a field  of characteristic  and
let  and  be projections.
1  The sum  is a projection if and only if , in which case)

im im im and ker ker ker

2  The difference  is a projection if and only if)
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in which case

im im imker ker kerand

3  If  and  commute, then  is a projection, in which case)

im im im and ker ker ker

( )Example 2.5 shows that the converse may be false.

Topological Vector Spaces
This section is for readers with some familiarity with point-set topology.

The Definition
A pair  where  is a real vector space  and  is a topology on the set

 is called a  if the operations of additiontopological vector space

and scalar multiplication

are continuous functions.

The Standard Topology on 
The vector space  is a topological vector space under the ,standard topology
which is the topology for which the set of open rectangles

's are open intervals in  

is a base, that is, a subset of  is open if and only if it is a union of open
rectangles. The standard topology is also the topology induced by the Euclidean
metric on , since an open rectangle is the union of Euclidean open balls and
an open ball is the union of open rectangles.

The standard topology on  has the property that the addition function

and the scalar multiplication function

are continuous and so  is a topological vector space under this topology.
Also, the linear functionals  are continuous maps.

For example, to see that addition is continuous, if
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then  and so there is an  for which

for all . It follows that if

and

then

The Natural Topology on 
Now let  be a real vector space of dimension  and fix an ordered basis

 for . We wish to show that there is precisely one topology 
on  for which  is a topological vector space and all linear functionals
are continuous. This topology is called the  on .natural topology

Our plan is to show that if  is a topological vector space and if all linear
functionals on  are continuous, then the coordinate map  is a
homeomorphism. This implies that if  does exist, it must be unique. Then we
use  to move the standard topology from  to , thus giving  a
topology  for which  is a homeomorphism. Finally, we show that  is
a topological vector space and that all linear functionals on  are continuous.

The first step is to show that if  is a topological vector space, then  is
continuous. Since  where  is defined by

it is sufficient to show that these maps are continuous. The sum of continuous(
maps is continuous.  ) Let  be an open set in . Then

is open in . This implies that if , then there is an open interval
 containing  for which

We need to show that the set  is open. But

In words, an -tuple  is in  if the th coordinate  times  is
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in . But if , then there is an open interval  for which  and
. Hence, the entire open set

where the factor  is in the th position is in , that is,

Thus,  is open and , and therefore also , is continuous.

Next we show that if every linear functional on  is continuous under a
topology  on , then the coordinate map  is continuous. If  denote by

 the th coordinate of . The map  defined by  is a
linear functional and so is continuous by assumption. Hence, for any open
interval  the set

is open. Now, if  are open intervals in , then

is open. Thus,  is continuous.

We have shown that if a topology  has the property that  is a
topological vector space under which every linear functional is continuous, then

 and  are homeomorphisms. This means that if  exists, its open sets
must be the images under  of the open sets in the standard topology of . It
remains to prove that the topology  on  that makes  a homeomorphism
makes  a topological vector space for which any linear functional  on 
is continuous.

The addition map on  is a composition

where  is addition in  and since each of the maps on the
right is continuous, so is .

Similarly, scalar multiplication in  is

where  is scalar multiplication in . Hence,  is
continuous.

Now let  be a linear functional. Since  is continuous if and only if  is
continuous, we can confine attention to . In this case, if  is the
standard basis for for any and  for all , then 
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, we have

Now, if , then  and so , which implies that 
is continuous at .

According to the Riesz representation theorem (Theorem 9.18) and the Cauchy–
Schwarz inequality, we have

where . Hence,  implies  and so by linearity, 
implies  and so  is continuous at all .

Theorem 2.27  Let  be a real vector space of dimension . There is a unique
topology on , called the , for which  is a topological vectornatural topology
space and for which all linear functionals on  are continuous. This topology is
determined by the fact that the coordinate map  is a
homeomorphism, where  has the standard topology induced by the Euclidean
metric.

Linear Operators on 
A linear operator  on a real vector space  can be extended to a linear operator

 on the complexification  by defining

Here are the basic properties of this  of .complexification

Theorem 2.28 If , then
1  , )
2)
3)
4  .)

Let us recall that for any ordered basis  for  and any vector  we have

cpx

Now, if  is an ordered basis for , then the th column of  is

cpx cpx

which is the th column of the coordinate matrix of  with respect to the basis
cpx . Thus we have the following theorem.
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Theorem 2.29 Let  where  is a real vector space. The matrix of 
with respect to the ordered basis  is equal to the matrix of  with respectcpx
to the ordered basis :

cpx

Hence, if a real matrix  represents a linear operator  on , then  also
represents the complexification  of  on .

Exercises
1. Let  have rank . Prove that there are matrices  and

, both of rank , for which . Prove that  has rank  if
and only if it has the form  where  and  are row matrices.

2. Prove Corollary 2.9 and find an example to show that the corollary does not
hold without the finiteness condition.

3. Let . Prove that  is an isomorphism if and only if it carries a
basis for  to a basis for .

4. If  and  we define the external direct sum
 by

Show that  is a linear transformation.
5. Let . Prove that . Thus, internal and external

direct sums are equivalent up to isomorphism.
6. Let  and consider the external direct sum . Define a

map  by . Show that  is linear. What is the
kernel of ? When is  an isomorphism?

7. Let  where . Let . Suppose thatdim
there is an isomorphism  with the property that .
Prove that there is an ordered basis  for which .

8. Let  be a subset of . A subspace  of  is  if  is --invariant
invariant for every . Also,  is  if the only -invariant-irreducible
subspaces of  are  and . Prove the following form of Schur's lemma.
Suppose that  and  and  is -irreducible and 
is -irreducible. Let  satisfy , that is, for any

 there is a  such that  and for any  there is a
 such that . Prove that  or  is an isomorphism.

9. Let  where . If  show thatdim rk rk
im ker .

10. Let ,  and . Show that

 minrk rk rk

11. Let  and . Show that

null null null
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12. Let  where  is invertible. Show that

rk rk rk

13. Let . Show that

rk rk rk

14. Let  be a subspace of . Show that there is a  for which
ker . Show also that there exists a  for which .im

15. Suppose that .
 a  Show that  for some .) im im if and only if 
 b  Show that  for some .)  if and only if ker ker
16. Let  and suppose that  satisfies . Show thatdim

rk dim .
17. Let  be an  matrix over . What is the relationship between the

linear transformation  and the system of equations ?
Use your knowledge of linear transformations to state and prove various
results concerning the system , especially when .

18. Let  have basis  and assume that the base field  for 
has characteristic . Suppose that for each  we define

 by

if
if

Prove that the  are invertible and form a basis for .
19. Let . If  is a -invariant subspace of  must there be a subspace

 of  for which  reduces ?
20. Find an example of a vector space  and a proper subspace  of  for

which .
21. Let . If ,  prove that  implies that  and dim

are invertible and that  for some polynomial .
22. Let . If  for all  show that , for some

, where  is the identity map.
23. Let  be a vector space over a field  of characteristic  and let  and 

be projections. Prove the following:
 a  The difference  is a projection if and only if)

in which case

im im imker ker kerand

Hint:  is a projection if and only if  is a projection and so 
is a projection if and only if
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is a projection.
 b  If  and  commute, then  is a projection, in which case)

im im im and ker ker ker

24  be a continuous function with the property that. Let 

Prove that  is a linear functional on .
25. Prove that any linear functional  is a continuous map.
26. Prove that any subspace  of  is a closed set or, equivalently, that

 is open, that is, for any  there is an open ball 
centered at  with radius  for which .

27. Prove that any linear transformation  is continuous under the
natural topologies of  and .

28. Prove that any surjective linear transformation  from  to  both finite-(
dimensional topological vector spaces under the natural topology  is an)
open map, that is,  maps open sets to open sets.

29. Prove that any subspace  of a finite-dimensional vector space  is a
closed set or, equivalently, that  is open, that is, for any  there is
an open ball  centered at  with radius  for which

.
30. Let  be a subspace of  with .dim
 a  Show that the subspace topology on  inherited from  is the natural)

topology.
 b  Show that the natural topology on  is the topology for which the)

natural projection map  continuous and open.
31. If  is a real vector space, then  is a complex vector space. Thinking of

 as a vector space  over , show that  is isomorphic to the
external direct product .

32. When is a complex linear map a complexification?  Let  be a real vector( )
space with complexification  and let . Prove that  is a
complexification, that is,  has the form  for some  if and only
if  commutes with the conjugate map  defined by

.
33. Let  be a complex vector space.
 a  Consider replacing the scalar multiplication on  by the operation)

where  and . Show that the resulting set with the addition
defined for the vector space  and with this scalar multiplication is a
complex vector space, which we denote by .

 b  Show, without using dimension arguments, that .)



Chapter 3
The Isomorphism Theorems

Quotient Spaces
Let  be a subspace of a vector space . It is easy to see that the binary relation
on  defined by

is an equivalence relation. When , we say that  and  are congruent
modulo . The term  is used as a colloquialism for modulo and  ismod
often written

mod

When the subspace in question is clear, we will simply write .

To see what the equivalence classes look like, observe that

 for some 

The set

is called a  of  in  and  is called a  for .coset coset representative
( )Thus, any member of a coset is a coset representative.

The set of all cosets of  in  is denoted by

This is read “  mod ” and is called the   . Ofquotient space of modulo 
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course, the term space is a hint that we intend to define vector space operations
on .

The natural choice for these vector space operations is

and

but we must check that these operations are well-defined, that is,

1)
2)

Equivalently, the equivalence relation  must be  with the vectorconsistent
space operations on , that is,

3)
4)

This senario is a recurring one in algebra. An equivalence relation on an
algebraic structure, such as a group, ring, module or vector space is called a
congruence relation if it preserves the algebraic operations. In the case of a
vector space, these are conditions 3) and 4) above.

These conditions follow easily from the fact that  is a subspace, for if 
and , then

which verifies both conditions at once. We leave it to the reader to verify that
 is indeed a vector space over  under these well-defined operations.

Actually, we are lucky here: For  subspace  of , the quotient  is aany
vector space under the natural operations. In the case of groups, not all
subgroups have this property. Indeed, it is precisely the  subgroups  ofnormal

 that have the property that the quotient  is a group. Also, for rings, it is
precisely the  (not the subrings) that have the property that the quotient isideals
a ring.

Let us summarize.
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Theorem 3.1  Let  be a subspace of . The binary relation

is an equivalence relation on , whose equivalence classes are the cosets

of  in . The set  of all cosets of  in , called the  of quotient space
modulo , is a vector space under the well-defined operations

The zero vector in  is the coset .

The Natural Projection and the Correspondence Theorem
If  is a subspace of , then we can define a map  by sending
each vector to the coset containing it:

This map is called the  or  of  ontocanonical projection natural projection
, or simply  . (Not to be confused with the projectionprojection modulo

operators .) It is easily seen to be linear, for we have writing  for ( )

The canonical projection is clearly surjective. To determine the kernel of , note
that

ker

and so

ker

Theorem 3.2  The canonical projection  defined by

is a surjective linear transformation with .ker

If  is a subspace of , then the subspaces of the quotient space  have the
form  for some intermediate subspace  satisfying . In fact, as
shown in Figure 3.1, the projection map  provides a one-to-one
correspondence between intermediate subspaces  and subspaces of
the quotient space . The proof of the following theorem is left as an
exercise.
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V

V/S

{0}

S T/S

T

{0}

Figure 3.1: The correspondence theorem

Theorem 3.3 The  correspondence theorem( ) Let  be a subspace of . Then
the function that assigns to each intermediate subspace  the
subspace  of  is an order-preserving with respect to set inclusion( )
one-to-one correspondence between the set of all subspaces of  containing 
and the set of all subspaces of .
Proof. We prove only that the correspondence is surjective. Let

be a subspace of  and let  be the union of all cosets in :

We show that  and that . If , then  and
 are in  and since , we have

which implies that . Hence,  is a subspace of  containing .
Moreover, if , then  and so . Conversely, if

, then  and therefore . Thus, .

The Universal Property of Quotients and the First
Isomorphism Theorem
Let  be a subspace of . The pair  has a very special property,
known as the —a term that comes from the world of categoryuniversal property
theory.

Figure 3.2 shows a linear transformation , along with the
canonical projection  from  to the quotient space .



The Isomorphism Theorems 91

V W

V/S

s

'

Figure 3.2: The universal property

The universal property states that if , then there is a uniqueker
 for which

Another way to say this is that any such  can be factored through
the canonical projection .

Theorem 3.4  Let  be a subspace of  and let  satisfy
ker . Then, as pictured in Figure 3.2, there is a unique linear

transformation  with the property that

Moreover,  and .ker ker im im
Proof. We have no other choice but to define  by the condition ,
that is,

This function is well-defined if and only if

which is equivalent to each of the following statements:

ker

Thus,  is well-defined. Also,

im im

and
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ker

ker
ker

The uniqueness of  is evident.

Theorem 3.4 has a very important corollary, which is often called the first
isomorphism theorem and is obtained by taking .ker

Theorem 3.5 The    Let  be a linear( )first isomorphism theorem
transformation. Then the linear transformation  defined byker

ker

is injective and

ker
im

According to Theorem 3.5, the image of any linear transformation on  is
isomorphic to a quotient space of . Conversely, any quotient space  of 
is the image of a linear transformation on : the canonical projection . Thus,
up to isomorphism, quotient spaces are equivalent to homomorphic images.

Quotient Spaces, Complements and Codimension
The first isomorphism theorem gives some insight into the relationship between
complements and quotient spaces. Let  be a subspace of  and let  be a
complement of , that is,

Applying the first isomorphism theorem to the projection operator 
gives

Theorem 3.6  Let  be a subspace of . All complements of  in  are
isomorphic to  and hence to each other.

The previous theorem can be rephrased by writing

On the other hand, quotients and complements do not behave as nicely with
respect to isomorphisms as one might casually think. We leave it to the reader to
show the following:
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1  It is possible that)

with  but . Hence,  does  imply that a complementnot
of  is isomorphic to a complement of .

2  It is possible that  and)

 and 

but . Hence,  does  imply that . However,not (
according to the previous theorem, if    then .equals )

Corollary 3.7 Let  be a subspace of a vector space . Then

dim dim dim

Definition If  is a subspace of , then  is called the  ofdim codimension
 in  and is denoted by  or .codim codim

Thus, the codimension of  in  is the dimension of any complement of  in 
and when  is , we havefinite-dimensional

codim dim dim

(This makes no sense, in general, if  is not finite-dimensional, since infinite
cardinal numbers cannot be subtracted.)

Additional Isomorphism Theorems
There are other isomorphism theorems that are direct consequences of the first
isomorphism theorem. As we have seen, if  then . This can
be written

This applies to nondirect sums as well.

Theorem 3.7 The    Let  be a vector space( )second isomorphism theorem
and let  and  be subspaces of . Then

Proof. Let  be defined by

We leave it to the reader to show that  is a well-defined surjective linear
transformation, with kernel . An application of the first isomorphism theorem
then completes the proof.
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The following theorem demonstrates one way in which the expression 
behaves like a fraction.

Theorem 3.8 The    Let  be a vector space and( )third isomorphism theorem
suppose that  are subspaces of . Then

Proof. Let  be defined by . We leave it to the
reader to show that  is a well-defined surjective linear transformation whose
kernel is . The rest follows from the first isomorphism theorem.

The following theorem demonstrates one way in which the expression 
does not behave like a fraction.

Theorem 3.9  Let  be a vector space and let  be a subspace of . Suppose
that  and  with . Then

Proof. Let  be defined by

This map is well-defined, since the sum  is direct. We leave it to
the reader to show that  is a surjective linear transformation, whose kernel is

. The rest follows from the first isomorphism theorem.

Linear Functionals
Linear transformations from  to the base field  thought of as a vector space(
over itself  are extremely important.)

Definition Let  be a vector space over . A linear transformation
 whose values lie in the base field  is called a linear functional

( ) ( )or simply  on . Some authors use the term .  Thefunctional linear function
vector space of all linear functionals on  is denoted by  and is called the*

algebraic dual space of .

The adjective  is needed here, since there is another type of dual spacealgebraic
that is defined on general normed vector spaces, where continuity of linear
transformations makes sense. We will discuss the so-called continuous dual
space briefly in Chapter 13. However, until then, the term “dual space” will
refer to the algebraic dual space.
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To help distinguish linear functionals from other types of linear transformations,
we will usually denote linear functionals by lowercase italic letters, such as , 
and .

Example 3.1 The map  defined by  is a linear
functional, known as  .evaluation at

Example 3.2 Let  denote the vector space of all continuous functions on
. Let  be defined by

Then .

For any , the rank plus nullity theorem is*

dim ker dim dimim

But since , we have either , in which case  is the zeroim im
linear functional, or , in which case  is surjective. In other words, aim
nonzero linear functional is surjective. Moreover, if , then

codim ker dim
ker

and if , thendim

dim ker dim

Thus, in dimensional terms, the kernel of a linear functional is a very “large”
subspace of the domain .

The following theorem will prove very useful.

Theorem 3.10
1  For any nonzero vector , there exists a linear functional  for) *

which .
2  A vector  is zero if and only if  for all .) *

3  Let . If , then)

ker

4  Two nonzero linear functionals  have the same kernel if and only)
if there is a nonzero scalar  such that .

Proof. For part 3 , if , then  and  for) ker
, whence , which is false. Hence,  andker

the direct sum  exists. Also, for any  we haveker
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ker

and so .ker

For part 4 , if  for , then . Conversely, if) ker ker
ker ker , then for  we have by part 3 ,)

Of course,  for any . Therefore, if , it follows that
 and hence .

Dual Bases
Let  be a vector space with basis . For each , we can
define a linear functional  by the orthogonality condition*

where  is the , defined byKronecker delta function

if
if

Then the set  is linearly independent, since applying the
equation

to the basis vector  gives

for all .

Theorem 3.11  Let  be a vector space with basis .
1  The set  is linearly independent.)
2  If  is finite-dimensional, then  is a basis for , called the  of) dual basis

.
Proof. For part 2 , for any , we have)

and so  is in the span of . Hence,  is a basis for .*
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It follows from the previous theorem that if , thendim

dim dim

since the dual vectors also form a basis for . Our goal now is to show that the
converse of this also holds. But first, let us consider an example.

Example 3.3 Let  be an infinite-dimensional vector space over the field
, with basis . Since the only coefficients in  are  and , a

finite linear combination over  is just a finite sum. Hence,  is the set of all
finite sums of vectors in  and so according to Theorem 0.12,

On the other hand, each linear functional  is uniquely defined by
specifying its values on the basis . Since these values must be either  or ,
specifying a linear functional is equivalent to specifying the subset of  on
which  takes the value . In other words, there is a one-to-one correspondence
between linear functionals on  and all subsets of . Hence,

This shows that  cannot be isomorphic to , nor to any proper subset of .
Hence, .dim dim

We wish to show that the behavior in the previous example is typical, in
particular, that

dim dim

with equality if and only if  is finite-dimensional. The proof uses the concept
of the  of a field , which is defined as the smallest subfield ofprime subfield
the field . Since , it follows that  contains a copy of the integers

If  has prime characteristic , then  and so  contains the elements

which form a subfield of . Since any subfield  of  contains  and , we see
that  and so  is the prime subfield of . On the other hand, if  has
characteristic , then  contains a “copy” of the integers  and therefore also
the rational numbers , which is the prime subfield of . Our main interest in
the prime subfield is that in either case, the prime subfield is .countable

Theorem 3.12 Let  be a vector space. Then

dim dim

with equality if and only if  is finite-dimensional.
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Proof. For any vector space , we have

dim dim

since the dual vectors to a basis  for  are linearly independent in . We
have already seen that if  is finite-dimensional, then . Wedim dim
wish to show that if  is infinite-dimensional, then . Thedim dim (
author is indebted to Professor Richard Foote for suggesting this line of proof.)

If  is a basis for  and if  is the base field for , then Theorem 2.7 implies
that

where  is the set of all functions with finite support from  to  and

where  is the set of all functions from  to . Thus, we can work with the
vector spaces  and .

The plan is to show that if  is a countable subfield of  and if  is infinite,
then

dim dim dim dim

Since we may take  to be the prime subfield of , this will prove the theorem.
The first equality follows from the fact that the -space  and the -space

 each have a basis consisting of the “standard” linear functionals
 defined by

for all , where  is the Kronecker delta function.

For the final inequality, suppose that  is linearly independent over 
and that

where . If  is a basis for  over , then  for 
and so

Evaluating at any  gives
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and since the inner sums are in  and  is -independent, the inner sums
must be zero:

Since this holds for all , we have

which implies that  for all . Hence,  is linearly independent over
. This proves that .dim dim

For the center inequality, it is clear that

dim dim

We will show that the inequality must be strict by showing that the cardinality
of  is  whereas the cardinality of  is greater than . To this end, the
set  can be partitioned into blocks based on the support of the function. In
particular, for each finite subset  of , if we let

supp

then

 finite

where the union is disjoint. Moreover, if , then

and so

 finite

max

But since the reverse inequality is easy to establish, we have

As to the cardinality of , for each subset  of , there is a function 
that sends every element of  to  and every element of  to . Clearly,
each distinct subset  gives rise to a distinct function  and so Cantor's



100 Advanced Linear Algebra

theorem implies that

This shows that

dim dim

and completes the proof.

Reflexivity
If  is a vector space, then so is the dual space  and so we may form the
double algebraic  dual space( )  , which consists of all linear functionals

. In other words, an element  of  is a linear functional that**

assigns a scalar to each linear functional on .

With this firmly in mind, there is one rather obvious way to obtain an element of
. Namely, if , consider the map  defined by

which sends the linear functional  to the scalar . The map  is called
evaluation at . To see that , if  and , then

and so  is indeed linear.

We can now define a map  by

This is called the  or the  from  to . Thiscanonical map natural map( )
map is injective and hence in the finite-dimensional case, it is also surjective.

Theorem 3.13  The canonical map  defined by , where  is
evaluation at , is a monomorphism. If  is finite-dimensional, then  is an
isomorphism.
Proof. The map  is linear since

for all . To determine the kernel of , observe that

 for all 
 for all 

by Theorem 3.10 and so . In the finite-dimensional case, sinceker
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dim dim dim

it follows that  is also surjective, hence an isomorphism.

Note that if , then since the dimensions of  and  are the same,dim
we deduce immediately that . This is not the point of Theorem 3.13.
The point is that the   is an isomorphism. Because of this, natural map
is said to be . Theorem 3.13 and Theorem 3.12 togetheralgebraically reflexive
imply that a vector space is algebraically reflexive if and only if it is finite-
dimensional.

If  is finite-dimensional, it is customary to identify the double dual space 
with  and to think of the elements of  simply as vectors in . Let us
consider a specific example to show how algebraic reflexivity fails in the
infinite-dimensional case.

Example 3.4 Let  be the vector space over  with basis

where the  is in the th position. Thus,  is the set of all infinite binary
sequences with a finite number of 's. Define the   of any  to beorder
the largest coordinate of  with value . Then  for all .

Consider the dual vectors , defined as usual  by( )

For any , the evaluation functional  has the property that

 if 

However, since the dual vectors  are linearly independent, there is a linear
functional  for which

for all . Hence,  does not have the form  for any . This shows that
the canonical map is not surjective and so  is not algebraically reflexive.

Annihilators
The functions  are defined on vectors in , but we may also define  on
subsets  of  by letting
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Definition Let  be a nonempty subset of a vector space . The annihilator
 of  is

The term annihilator is quite descriptive, since  consists of all linear
functionals that  send to  every vector in . It is not hard to seeannihilate ( )
that  is a subspace of , even when  is not a subspace of .

The basic properties of annihilators are contained in the following theorem.

Theorem 3.14
1   If ) ( )Order-reversing  and  are nonempty subsets of , then

2  If , then for any nonempty subset  of  the natural map) dim

span

is an isomorphism from . In particular, if  is aspan  onto 
subspace of , then .

3  If  and  are subspaces of , then)

 and 

Proof. We leave proof of part 1  for the reader. For part 2 , since) )

span

it is sufficient to prove that  is an isomorphism, where  is a
subspace of . Now, we know that  is a monomorphism, so it remains to prove
that . If , then  has the property that for all ,

and so , which implies that . Moreover, if , then
for all  we have

and so every linear functional that annihilates  also annihilates . But if ,
then there is a linear functional  for which  and .
( )We leave proof of this as an exercise.  Hence,  and so  and
so .

For part 3 , it is clear that  annihilates  if and only if  annihilates both)
 and . Hence, . Also, if  where

 and , then  and so . Thus,
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For the reverse inclusion, suppose that . Write

where  and . Define  by

and define  by

It follows that ,  and .

Annihilators and Direct Sums
Consider a direct sum decomposition

Then any linear functional  can be extended to a linear functional  on 
by setting . Let us call this  . Clearly,  and it isextension by
easy to see that the extension by  map  is an isomorphism from  to

, whose inverse is the restriction to .

Theorem 3.15  Let .
a  The extension by  map is an isomorphism from  to  and so)

b  If  is finite-dimensional, then)

dim dim dimcodim

Example 3.5 Part b  of Theorem 3.15 may fail in the infinite-dimensional case,)
since it may easily happen that . As an example, let  be the vector
space over  with a countably infinite ordered basis . Let

 and . It is easy to see that  and that
dim dim .

The annihilator provides a way to describe the dual space of a direct sum.

Theorem 3.16  A linear functional on the direct sum  can be written
as a sum of a linear functional that annihilates  and a linear functional that
annihilates , that is,
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Proof.  Clearly , since any functional that annihilates both  and
 must annihilate . Hence, the sum  is direct. The rest

follows from Theorem 3.14, since

Alternatively, since  is the identity map, if , then we can
write

and so .

Operator Adjoints
If , then we may define a map  by*

for . We will write composition as juxtaposition.  Thus, for any ,* ( )

The map  is called the  of  and can be described by theoperator adjoint
phrase “apply  first.”

Theorem 3.17 Properties of the Operator Adjoint( )
1  For  and ,)

2  For  and ,)

3  For any invertible ,)

Proof. Proof of part 1  is left for the reader. For part 2 , we have for all ,) )

Part 3  follows from part 2  and) )

and in the same way, . Hence .

If , then  and so . Of course,( )
 is not equal to . However, in the finite-dimensional case, if we use the

natural maps to identify  with  and  with , then we can think of 
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as being in . Using these identifications, we do have equality in the
finite-dimensional case.

Theorem 3.18  Let  and  be finite-dimensional and let . If we
identify  with  and  with  using the natural maps, then  is
identified with .
Proof. For any  let the corresponding element of  be denoted by  and
similarly for . Then before making any identifications, we have for ,

for all  and so*

Therefore, using the canonical identifications for both  and  we have

for all .

The next result describes the kernel and image of the operator adjoint.

Theorem 3.19  Let . Then
1) imker
2) im ker
Proof. For part 1 ,)

ker

im
im

For part 2 , if , then  and so) im ker ker
ker .

For the reverse inclusion, let . We wish to show thatker
 for some . On , there is no problem since ker

and  agree on  for any . Let  be a complement of .ker
Then  maps a basis  for  to a linearly independent set

in  and so we can define  on  by setting

and extending to all of . Then  on  and therefore on . Thus,
im .
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Corollary 3.20 Let , where  and  are finite-dimensional.
Then .rk rk

In the finite-dimensional case,  and  can both be represented by matrices.
Let

 and 

be ordered bases for  and , respectively, and let

 and 

be the corresponding dual bases. Then

and

Comparing the last two expressions we see that they are the same except that the
roles of  and  are reversed. Hence, the matrices in question are transposes.

Theorem 3.21  Let , where  and  are finite-dimensional. If 
and  are ordered bases for  and , respectively, and  and  are the
corresponding dual bases, then

In words, the matrices of  and its operator adjoint  are transposes of one
another.

Exercises
1. If  is infinite-dimensional and  is an infinite-dimensional subspace, must

the dimension of  be finite? Explain.
2. Prove the correspondence theorem.
3. Prove the first isomorphism theorem.
4. Complete the proof of Theorem 3.9.
5. Let  be a subspace of . Starting with a basis  for  how

would you find a basis for ?
6. Use the first isomorphism theorem to prove the rank-plus-nullity theorem

rk null dim

for  and .dim
7. Let  and suppose that  is a subspace of . Define a map

 by



The Isomorphism Theorems 107

When is  well-defined? If  is well-defined, is it a linear transformation?
What are  and ?im ker

8. Show that for any nonzero vector , there exists a linear functional
 for which .

9. Show that a vector  is zero if and only if  for all .
10. Let  be a proper subspace of a finite-dimensional vector space  and let

. Show that there is a linear functional  for which
 and  for all .

11. Find a vector space  and decompositions

with  but . Hence,  does  imply that .not
12. Find isomorphic vectors spaces  and  with

 and 

but . Hence,  does  imply that .not
13. Let  be a vector space with

Prove that if  and  have finite codimension in , then so does 
and

codim dim dim

14. Let  be a vector space with

Suppose that  and  have finite codimension. Hence, by the previous
exercise, so does . Find a direct sum decomposition 
for which 1   has finite codimension, 2   and 3( ) ( ) ( )

.
15. Let  be a basis for an infinite-dimensional vector space  and define, for

all , the map  by  if  and  otherwise, for all
. Does  form a basis for ? What do you conclude about

the concept of a dual basis?
16. Prove that if  and  are subspaces of , then .
17. Prove that  and  where  is the zero linear operator and  is

the identity.
18. Let  be a subspace of . Prove that .
19. Verify that
 a   for .)
 b   for any  and )
20. Let , where  and  are finite-dimensional. Prove that

rk rk .



Chapter 4
Modules I: Basic Properties

Motivation
Let  be a vector space over a field  and let . Then for any
polynomial , the operator  is well-defined. For instance, if

, then

where  is the identity operator and  is the threefold composition .

Thus, using the operator  we can define the product of a polynomial
 and a vector  by

( )4.1

This product satisfies the usual properties of scalar multiplication, namely, for
all   and ,

Thus, for a fixed , we can think of  as being endowed with the
operations of addition and multiplication of an element of  by a  inpolynomial

. However, since  is not a field, these two operations do not make 
into a vector space. Nevertheless, the situation in which the scalars form a ring
but not a field is extremely important, not only in this context but in many
others.

Modules
Definition Let  be a commutative ring with identity, whose elements are
called . An  or a  is a nonempty set ,scalars -module module over ( )
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together with two operations. The first operation, called  and denotedaddition
by , assigns to each pair , an element . The
second operation, denoted by juxtaposition, assigns to each pair

, an element . Furthermore, the following properties
must hold:
1   is an abelian group under addition.)
2  For all  and )

The ring  is called the  of .base ring

Note that vector spaces are just special types of modules: a vector space is a
module over a field.

When we turn in a later chapter to the study of the structure of a linear
transformation , we will think of  as having the structure of a vector
space over  as well as a module over  and we will use the notation . Put
another way,  is an abelian group under addition, with two scalar
multiplications—one whose scalars are elements of  and one whose scalars are
polynomials over . This viewpoint will be of tremendous benefit for the study
of . For now, we concentrate only on modules.

Example 4.1
1  If  is a ring, the set  of all ordered -tuples whose components lie in )

is an -module, with addition and scalar multiplication defined
componentwise just as in ,( )

and

for ,  . For example,  is the -module of all ordered -tuples
of integers.

2  If  is a ring, the set  of all matrices of size  is an -)
module, under the usual operations of matrix addition and scalar
multiplication over . Since  is a ring, we can also take the product of
matrices in . One important example is , whence

 is the -module of all  matrices whose entries are
polynomials.

3  Any commutative ring  with identity is a module over itself, that is,  is)
an -module. In this case, scalar multiplication is just multiplication by
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elements of , that is, scalar multiplication is the ring multiplication. The
defining properties of a ring imply that the defining properties of the -
module  are satisfied. We shall use this example many times in the
sequel.

Importance of the Base Ring
Our definition of a module requires that the ring  of scalars be commutative.
Modules over noncommutative rings can exhibit quite a bit more unusual
behavior than modules over commutative rings. Indeed, as one would expect,
the general behavior of -modules improves as we impose more structure on
the base ring . If we impose the very strict structure of a field, the result is the
very well behaved vector space.

To illustrate, we will give an example of a module over a  ringnoncommutative
that has a basis of size  for every integer ! As another example, if the
base ring is an integral domain, then whenever  are linearly
independent over  so are  for any nonzero . This can fail
when  is not an integral domain.

We will also consider the property on the base ring  that all of its ideals are
finitely generated. In this case, any finitely generated -module  has the
property that all of its submodules are also finitely generated. This property of

-modules fails if  does not have the stated property.

When  is a principal ideal domain such as  or , each of its ideals is( )
generated by a single element. In this case, the -modules are “reasonably” well
behaved. For instance, in general, a module may have a basis and yet possess a
submodule that has no basis. However, if  is a principal ideal domain, this
cannot happen.

Nevertheless, even when  is a principal ideal domain, -modules are less well
behaved than vector spaces. For example, there are modules over a principal
ideal domain that do not have any linearly independent elements. Of course,
such modules cannot have a basis.

Submodules
Many of the basic concepts that we defined for vector spaces can also be
defined for modules, although their properties are often quite different. We
begin with submodules.

Definition A  of an -module  is a nonempty subset  of  thatsubmodule
is an -module in its own right, under the operations obtained by restricting the
operations of  to . We write  to denote the fact that  is a submodule
of .
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Theorem 4.1  A nonempty subset  of an -module  is a submodule if and
only if it is closed under the taking of linear combinations, that is,

Theorem 4.2  If  and  are submodules of , then  and  are also
submodules of .

We have remarked that a commutative ring  with identity is a module over
itself. As we will see, this type of module provides some good examples of non-
vector-space-like behavior.

When we think of a ring  as an -module rather than as a ring, multiplication
is treated as  multiplication. This has some important implications. Inscalar
particular, if  is a submodule of , then it is closed under scalar multiplication,
which means that it is closed under multiplication by  elements of the ring .all
In other words,  is an ideal of the ring . Conversely, if  is an ideal of the
ring , then  is also a submodule of the module . Hence, the submodules of
the -module  are precisely the ideals of the ring .

Spanning Sets
The concept of spanning set carries over to modules as well.

Definition The  or  by a subset  of a modulesubmodule spanned generated( )
 is the set of all  of elements of :linear combinations

A subset  is said to   or   if .span generate

We use a double angle bracket notation for the submodule generated by a set
because when we study the -vector space/ -module , we will need to
make a distinction between the subspace  generated by  and the
submodule  generated by .

One very important point to note is that if a nontrivial linear combination of the
elements  in an -module  is ,

where not all of the coefficients are , then we  conclude, as we could incannot
a vector space, that one of the elements  is a linear combination of the others.
After all, this involves dividing by one of the coefficients, which may not be
possible in a ring. For instance, for the -module  we have

but neither  nor  is an integer multiple of the other.
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The following simple submodules play a special role in the theory.

Definition Let  be an -module. A submodule of the form

for  is called the  generated by .cyclic submodule

Of course, any finite-dimensional vector space is the direct sum of cyclic
submodules, that is, one-dimensional subspaces. One of our main goals is to
show that a finitely generated module over a principal ideal domain has this
property as well.

Definition An -module  is said to be  if it contains afinitely generated
finite set that generates . More specifically,  is  if it has a-generated
generating set of size  although it may have a smaller generating set as(
well .)

Of course, a vector space is finitely generated if and only if it has a finite basis,
that is, if and only if it is finite-dimensional. For modules, life is more
complicated. The following is an example of a finitely generated module that
has a submodule that is not finitely generated.

Example 4.2 Let  be the ring  of all polynomials in infinitely
many variables over a field . It will be convenient to use  to denote

 and write a polynomial in  in the form . Each polynomial in(
, being a finite sum, involves only finitely many variables, however.  Then )

is an -module and as such, is finitely generated by the identity element
.

Now consider the submodule  of all polynomials with zero constant term. This
module is generated by the variables themselves,

However,  is not finitely generated. To see this, suppose that 
is a finite generating set for . Choose a variable  that does not appear in any
of the polynomials in . Then no linear combination of the polynomials in 
can be equal to . For if
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then let  where  does not involve . This gives

The last sum does not involve  and so it must equal . Hence, the first sum
must equal , which is not possible since  has no constant term.

Linear Independence
The concept of linear independence also carries over to modules.

Definition A subset  of an -module  is  if for anylinearly independent
distinct  and , we have

 for all 

A set  that is not linearly independent is .linearly dependent

It is clear from the definition that any subset of a linearly independent set is
linearly independent.

Recall that in a vector space, a set  of vectors is linearly dependent if and only
if some vector in  is a linear combination of the other vectors in . For
arbitrary modules, this is not true.

Example 4.3 Consider  as a -module. The elements  are linearly
dependent, since

but neither one is a linear combination i.e., integer multiple  of the other.( )

The problem in the previous example as noted earlier  is that( )

implies that

but in general, we cannot divide both sides by , since it may not have a
multiplicative inverse in the ring .
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Torsion Elements
In a vector space  over a field , singleton sets  where  are linearly
independent. Put another way,  and  imply . However, in a
module, this need not be the case.

Example 4.4 The abelian group  is a -module, with
scalar multiplication defined by , for all  and .mod
However, since  for all , no singleton set  is linearly
independent. Indeed,  has no linearly independent sets.

This example motivates the following definition.

Definition Let  be an -module. A nonzero element  for which 
for some nonzero  is called a  of . A module that has notorsion element
nonzero torsion elements is said to be . If all elements of  aretorsion-free
torsion elements, then  is a . The set of all torsion elements oftorsion module

, together with the zero element, is denoted by .tor

If  is a module over an , it is not hard to see that  is aintegral domain tor
submodule of  and that  is torsion-free. We will define quotienttor (
modules shortly: they are defined in the same way as for vector spaces.)

Annihilators
Closely associated with the notion of a torsion element is that of an annihilator.

Definition Let  be an -module. The  of an element  isannihilator

ann

and the  of a submodule  of  isannihilator

ann

where . Annihilators are also called .order ideals

It is easy to see that  and  are ideals of . Clearly,  is aann ann
torsion element if and only if . Also, if  and  are submodules ofann

, then

ann ann

(note the reversal of order).

Let  be a finitely generated module over an integral domain
 and assume that each of the generators  is torsion, that is, for each , there is

a nonzero . Then, the nonzero product  annihilates eachann
generator of  and therefore every element of , that is, . Thisann
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shows that . On the other hand, this may fail if  is not anann
integral domain. Also, there are torsion modules whose annihilators are trivial.
( )We leave verification of these statements as an exercise.

Free Modules
The definition of a basis for a module parallels that of a basis for a vector space.

Definition Let  be an -module. A subset  of  is a  if  is linearlybasis
independent and spans . An -module  is said to be  if  or iffree

 has a basis. If  is a basis for , we say that  is  .free on

We have the following analog of part of Theorem 1.7.

Theorem 4.3  A subset  of a module  is a basis if and only if every nonzero
 is an essentially unique linear combination of the vectors in .

In a vector space, a set of vectors is a basis if and only if it is a minimal
spanning set, or equivalently, a maximal linearly independent set. For modules,
the following is the best we can do in general. We leave proof to the reader.

Theorem 4.4  Let  be a basis for an -module . Then
1   is a minimal spanning set.)
2   is a maximal linearly independent set.)

The -module  has no basis since it has no linearly independent sets. But
since the entire module is a spanning set, we deduce that a minimal spanning set
need not be a basis. In the exercises, the reader is asked to give an example of a
module  that has a finite basis, but with the property that not every spanning
set in  contains a basis and not every linearly independent set in  is
contained in a basis. It follows in this case that a maximal linearly independent
set need not be a basis.

The next example shows that even free modules are not very much like vector
spaces. It is an example of a free module that has a submodule that is not free.

Example 4.5 The set  is a free module over itself, using componentwise
scalar multiplication

with basis . But the submodule  is not free since it has no
linearly independent elements and hence no basis.

Theorem 2.2 says that a linear transformation can be defined by specifying its
values arbitrarily on a basis. The same is true for  modules.free
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Theorem 4.5 Let  and  be -modules where  is free with basis
. Then we can define a unique -map  by specifying

the values of  arbitrarily for all  and then extending  to  by
linearity, that is,

Homomorphisms
The term  is special to vector spaces. However, thelinear transformation
concept applies to most algebraic structures.

Definition Let  and  be -modules. A function  is an -
homomorphism -map or  if it preserves the module operations, that is,

for all  and . The set of all -homomorphisms from  to  is
denoted by . The following terms are also employed:hom
1  An -  is an -homomorphism from  to itself.) endomorphism
2  An -  or -  is an injective -homomorphism.) monomorphism embedding
3  An -  is a surjective -homomorphism.) epimorphism
4  An -  is a bijective -homomorphism.) isomorphism

It is easy to see that  is itself an -module under addition ofhom
functions and scalar multiplication defined by

Theorem 4.6  Let . The kernel and image of , defined as forhom
linear transformations by

ker

and

im

are submodules of  and , respectively. Moreover,  is a monomorphism if
and only if .ker

If  is a submodule of the -module , then the map  defined by
 is evidently an -monomorphism, called  of  into .injection

Quotient Modules
The procedure for defining quotient modules is the same as that for defining
quotient vector spaces. We summarize in the following theorem.
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Theorem 4.7 Let  be a submodule of an -module . The binary relation

is an equivalence relation on , whose equivalence classes are the cosets

of  in . The set  of all cosets of  in , called the  ofquotient module
  , is an -module under the well-defined operationsmodulo

The zero element in  is the coset .

One question that immediately comes to mind is whether a quotient module of a
free module must be free. As the next example shows, the answer is no.

Example 4.6 As a module over itself,  is free on the set . For any ,
the set  is a free cyclic submodule of , but the quotient -
module  is isomorphic to  via the map

mod

and since  is not free as a -module, neither is .

The Correspondence and Isomorphism Theorems
The correspondence and isomorphism theorems for vector spaces have analogs
for modules.

Theorem 4.8 The  correspondence theorem( ) Let  be a submodule of .
Then the function that assigns to each intermediate submodule  the
quotient submodule  of  is an order-preserving with respect to set(
inclusion  one-to-one correspondence between submodules of  containing )
and all submodules of .

Theorem 4.9 The   Let  be an -( )first isomorphism theorem
homomorphism. Then the map  defined byker

ker

is an -embedding and so

ker
im
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Theorem 4.10 The   Let  be an -module( )second isomorphism theorem
and let  and  be submodules of . Then

Theorem 4.11 The   Let  be an -module and( )third isomorphism theorem
suppose that  are submodules of . Then

Direct Sums and Direct Summands
The definition of direct sum of a family of submodules is a direct analog of the
definition for vector spaces.

Definition The  of -modules , denoted byexternal direct sum

is the -module whose elements are ordered -tuples

with componentwise operations

and

for .

We leave it to the reader to formulate the definition of external direct sums and
products for arbitrary families of modules, in direct analogy with the case of
vector spaces.

Definition An -module  is the   of a family( )internal direct sum
 of submodules of , written

or

if the following hold:
1    is the sum join  of the family :) ( ) ( )Join of the family
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2   For each ,) ( )Independence of the family

In this case, each  is called a  of . If  isdirect summand
a finite family, the direct sum is often written

Finally, if , then  is said to be  and  is called acomplemented
complement of  in .

As with vector spaces, we have the following useful characterization of direct
sums.

Theorem 4.12 Let  be a family of distinct submodules of an -
module . The following are equivalent:
1   For each ,) ( )Independence of the family

2   The zero element  cannot be written as) ( )Uniqueness of expression for 
a sum of nonzero elements from distinct submodules in .

3   Every nonzero  has a unique, except for) ( )Uniqueness of expression
order of terms, expression as a sum

of nonzero elements from distinct submodules in .
Hence, a sum

is direct if and only if any one of 1 3  holds.)– )

In the case of vector spaces, every subspace is a direct summand, that is, every
subspace has a complement. However, as the next example shows, this is not
true for modules.

Example 4.7 The set  of integers is a -module. Since the submodules of 
are precisely the ideals of the ring  and since  is a principal ideal domain, the
submodules of  are the sets
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Hence, any two nonzero proper submodules of  have nonzero intersection, for
if , then

where . It follows that the only complemented submodules of lcm
are  and .

In the case of vector spaces, there is an intimate connection between subspaces
and quotient spaces, as we saw in Theorem 3.6. The problem we face in
generalizing this to modules is that not all submodules are complemented.
However, this is the only problem.

Theorem 4.13 Let  be a complemented submodule of . All complements of
 are isomorphic to  and hence to each other.

Proof. For any complement  of , the first isomorphism theorem applied to
the projection  gives .

Direct Summands and Extensions of Isomorphisms
Direct summands play a role in questions relating to whether certain module
homomorphisms  can be extended from a submodule  to the
full module . The discussion will be a bit simpler if we restrict attention to
epimorphisms.

If , then a module epimorphism  can be extended to an
epimorphism  simply by sending the elements of  to zero, that is,
by setting

This is easily seen to be an -map with

ker ker

Moreover, if  is another extension of  with the same kernel as , then  and 
agree on  as well as on , whence . Thus, there is a  extension ofunique

 with kernel .ker

Now suppose that  is an isomorphism. If  is complemented, that is,
if

then we have seen that there is a  extension  of  for which .unique ker
Thus, the correspondence

, where ker

from complements of  to extensions of  is an injection. To see that this
correspondence is a bijection, if  is an extension of , then
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ker

To see this, we have

ker ker

and if , then there is a  for which  and so

Thus,

ker

which shows that  is a complement of .ker

Theorem 4.14 Let  and  be -modules and let .
1  If , then any -epimorphism  has a unique)

extension  to an epimorphism with

ker ker

2  Let  be an -isomorphism. Then the correspondence)

, where ker

is a bijection from complements of  onto the extensions of . Thus, an
isomorphism  has an extension to  if and only if  is
complemented.

Definition Let . When the identity map  has an extension to
, the submodule  is called a  of  and  is called theretract

retraction map.

Corollary 4.15 A submodule  is a retract of  if and only if  has a
complement in .

Direct Summands and One-Sided Invertibility
Direct summands are also related to one-sided invertibility of -maps.

Definition Let  be a module homomorphism.
1  A  of  is a module homomorphism  for which) left inverse

.
2  A  of  is a module homomorphism  for which) right inverse

.
Left and right inverses are called . An ordinary inverse isone-sided inverses
called a .two-sided inverse

Unlike a two-sided inverse, one-sided inverses need not be unique.
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A left-invertible homomorphism  must be injective, since

Also, a right-invertible homomorphism  must be surjective, since if
, then

im

For  functions, the converses of these statements hold:  is left-invertible ifset
and only if it is injective and  is right-invertible if and only if it is surjective.
However, this is not the case for -maps.

Let  be an injective -map. Referring to Figure 4.1,

M M1

im( )

H

im( ))-1

im( )

Figure 4.1

the map  obtained from  by restricting its range to  isim im im
an isomorphism and the left inverses  of  are precisely the extensions of

im im  to . Hence, Theorem 4.14 says that the
correspondence

extension of  with kernel im

is a bijection from the complements  of  onto the left inverses of .im

Now let  be a surjective -map. Referring to Figure 4.2,

M M1

ker( )

H |H

R=( |H)-1

Figure 4.2

if  is complemented, that is, ifker

ker
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then  is an isomorphism. Thus, a map  is a right
inverse of  if and only if  is a  of , the onlyrange-extension
difference being in the ranges of the two functions. Hence, 
is the only right inverse of  with image . It follows that the correspondence

is an injection from the complements  of  to the right inverses of .ker
Moreover, this map is a bijection, since if  is a right inverse of ,
then  and  is an extension of , whichim im
implies that

im ker

Theorem 4.16 Let  and  be -modules and let  be an -map.
1  Let  be injective. The map)

extension of  with kernel im

is a bijection from the complements  of  onto the left inverses of .im
Thus, there is exactly one left inverse of  for each complement of im
and that complement is the kernel of the left inverse.

2  Let  be surjective. The map)

is a bijection from the complements  of  to the right inverses of .ker
Thus, there is exactly one right inverse of  for each complement  of
ker  and that complement is the image of the right inverse. Thus,

ker ker im

The last part of the previous theorem is worth further comment. Recall that if
 is a linear transformation on vector spaces, then

ker im

This holds for modules as well .provided that  is a direct summandker

Modules Are Not as Nice as Vector Spaces
Here is a list of some of the properties of modules over commutative rings with(
identity  that emphasize the differences between modules and vector spaces.)

1  A submodule of a module need not have a complement.)
2  A submodule of a finitely generated module need not be finitely generated.)
3  There exist modules with no linearly independent elements and hence with)

no basis.
4  A minimal spanning set or maximal linearly independent set is not)

necessarily a basis.
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5  There exist free modules with submodules that are not free.)
6  There exist free modules with linearly independent sets that are not)

contained in a basis and spanning sets that do not contain a basis.

Recall also that a module over a  ring may have bases ofnoncommutative
different sizes. However, all bases for a free module over a commutative ring
with identity have the same size, as we will prove in the next chapter.

Exercises
1. Give the details to show that any commutative ring with identity is a

module over itself.
2. Let  be a subset of a module . Prove that  is

the  submodule of  containing . First you will need to formulatesmallest
precisely what it means to be the smallest submodule of  containing .

3. Let  be an -module and let  be an ideal in . Let  be the set of all
finite sums of the form

where  and . Is  a submodule of ?
4. Show that if  and  are submodules of , then with respect to set(

inclusion)

glb lub and 

5. Let  be an ascending sequence of submodules of an -
module . Prove that the union  is a submodule of .

6. Give an example of a module  that has a finite basis but with the property
that not every spanning set in  contains a basis and not every linearly
independent set in  is contained in a basis.

7. Show that, just as in the case of vector spaces, an -homomorphism can be
defined by assigning arbitrary values on the elements of a basis and
extending by linearity.

8. Let  be an -isomorphism. If  is a basis for , provehom
that  is a basis for .

9. Let  be an -module and let  be an -endomorphism.hom
If  is , that is, if , show thatidempotent

ker im

Does the converse hold?
10. Consider the ring  of polynomials in two variables. Show that

the set  consisting of all polynomials in  that have zero constant term is
an -module. Show that  is not a free -module.

11. Prove that if  is an integral domain, then all -modules  have the
following property: If  is linearly independent over , then so is

 for any nonzero .
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12. Prove that if a nonzero commutative ring  with identity has the property
that every finitely generated -module is free then  is a field.

13. Let  and  be -modules. If  is a submodule of  and  is a
submodule of  show that

14. If  is a commutative ring with identity and  is an ideal of , then  is an
-module. What is the maximum size of a linearly independent set in ?

Under what conditions is  free?
15. a   the set  of all) Show that for any module  over an integral domain tor

torsion elements in a module  is a submodule of .
 b  Find an example of a ring  with the property that for some -module)

 the set  is not a submodule.tor
 c  ) Show that for any module  over an integral domain, the quotient

module  is torsion-free.tor
16. a  Find a module  that is finitely generated by torsion elements but for)

which .ann
 b  Find a torsion module  for which .) ann
17. Let  be an abelian group together with a scalar multiplication over a ring

 that satisfies all of the properties of an -module except that  does not
necessarily equal  for all . Show that  can be written as a direct
sum of an -module  and another “pseudo -module” .

18. Prove that  is an -module under addition of functions andhom
scalar multiplication defined by

19. Prove that any -module  is isomorphic to the -module .hom
20. Let  and  be commutative rings with identity and let  be a ring

homomorphism. Show that any -module is also an -module under the
scalar multiplication

21. Prove that  where .hom gcd
22. Suppose that  is a commutative ring with identity. If  and  are ideals of

 for which  as -modules, then prove that . Is the
result true if  as rings?



Chapter 5
Modules II: Free and Noetherian Modules

The Rank of a Free Module
Since all bases for a vector space  have the same cardinality, the concept of
vector space dimension is well-defined. A similar statement holds for free -
modules when the base ring is commutative but not otherwise .( )

Theorem 5.1 Let  be a free module over a commutative ring  with identity.
1  Then any two bases of  have the same cardinality.)
2  The cardinality of a spanning set is greater than or equal to that of a basis.)
Proof. The plan is to find a vector space  with the property that, for any basis
for , there is a basis of the same cardinality for . Then we can appeal to the
corresponding result for vector spaces.

Let  be a maximal ideal of , which exists by Theorem 0.23. Then  is a
field. Our first thought might be that  is a vector space over , but that is
not the case. In fact, scalar multiplication using the field ,

is not even well-defined, since this would require that . On the other
hand, we can fix precisely this problem by factoring out the submodule

Indeed,  is a vector space over , with scalar multiplication defined
by

To see that this is well-defined, we must show that the conditions

imply
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But this follows from the fact that

Hence, scalar multiplication is well-defined. We leave it to the reader to show
that  is a vector space over .

Consider now a set  and the corresponding set

If  spans  over , then  spans  over . To see this, note
that any  has the form   for  and so

which shows that  spans .

Now suppose that  is a basis for  over . We show that
 is a basis for  over . We have seen that  spans

. Also, if

then  and so

where . From the linear independence of  we deduce that  for all
 and so . Hence  is linearly independent and therefore a

basis, as desired.

To see that , note that if , then

where . If , then the coefficient of  on the right must be equal to



Modules II: Free and Noetherian Modules 129

 and so , which is not possible since  is a maximal ideal. Hence,
.

Thus, if  is a basis for  over , then

dim

and so all bases for  over  have the same cardinality, which proves part 1 .)

Finally, if  spans  over , then  spans  and so

dim

Thus,  has cardinality at least as great as that of any basis for  over .

The previous theorem allows us to define the  of a free module. The termrank (
dimension is not used for modules in general.)

Definition Let  be a commutative ring with identity. The   of arank rk
nonzero free -module  is the cardinality of any basis for . The rank of the
trivial module  is .

Theorem 5.1 fails if the underlying ring of scalars is not commutative. The next
example describes a module over a noncommutative ring that has the
remarkable property of possessing a basis of size  for any positive integer .

Example 5.1 Let  be a vector space over  with a countably infinite basis
. Let  be the ring of linear operators on . Observe that

 is not commutative, since composition of functions is not commutative.

The ring  is an -module and as such, the identity map  forms a basis
for . However, we can also construct a basis for  of any desired finite
size . To understand the idea, consider the case  and define the operators

 and  by

and

These operators are linearly independent essentially because they are surjective
and their supports are disjoint. In particular, if

then
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and

which shows that  and . Moreover, if , then we define 
and  by

from which it follows easily that

which shows that  is a basis for .

More generally, we begin by partitioning  into  blocks. For each
, let

mod

Now we define elements  by

where  and where  is the Kronecker delta function. These functions
are surjective and have disjoint support. It follows that  is0
linearly independent. For if

where , then, applying this to  gives

for all . Hence, .

Also,  spans , for if , we define  by

+

to get

+ + +

and so

Thus,  is a basis for  of size .0

Recall that if  is a basis for a vector space  over , then  is isomorphic to
the vector space  of all functions from  to  that have finite support. A



Modules II: Free and Noetherian Modules 131

similar result holds for free -modules. We begin with the fact that  is a
free -module. The simple proof is left to the reader.

Theorem 5.2  Let  be any set and let  be a commutative ring with identity.
The set  of all functions from  to  that have finite support is a free -
module of rank  with basis  where

if
if

This basis is referred to as the  for .standard basis

Theorem 5.3  Let  be an -module. If  is a basis for , then  is
isomorphic to .
Proof. Consider the map  defined by setting

where  is defined in Theorem 5.2 and extending  to  by linearity. Since 
maps a basis for  to a basis  for , it follows that  is an
isomorphism from  to .

Theorem 5.4  Two free -modules over a commutative ring  are isomorphic if( )
and only if they have the same rank.
Proof. If , then any isomorphism  from  to  maps a basis for  to
a basis for . Since  is a bijection, we have . Conversely,rk rk
suppose that . Let  be a basis for  and let  be a basis for .rk rk
Since , there is a bijective map . This map can be extended by
linearity to an isomorphism of  onto  and so .

We have seen that the cardinality of a minimal  spanning set for a free module( )
 is at least equal to . Let us now speak about the cardinality of maximalrk

linearly independent sets.

Theorem 5.5 Let  be an integral domain and let  be a free -module. Then
all linearly independent sets have cardinality at most .rk
Proof. Since  we need only prove the result for . Let  be the
field of quotients of . Then  is a vector space. Now, if

is linearly independent over  as a subset of , then  is clearly linearly
independent over  as a subset of . Conversely, suppose that  is linearly
independent over  and
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where  for all  and  for some . Multiplying by 
produces a nontrivial linear dependency over ,

which implies that  for all . Thus  is linearly dependent over  if and
only if it is linearly dependent over . But in the vector space , all sets of
cardinality greater than  are linearly dependent over  and hence all subsets of

 of cardinality greater than  are linearly dependent over .

Free Modules and Epimorphisms
If  is a module epimorphism where  is free on , then it is easy to
define a right inverse for , since we can define an -map  by
specifying its values arbitrarily on  and extending by linearity. Thus, we take

 to be any member of . Then Theorem 4.16 implies that  is aker
direct summand of  and

ker

This discussion applies to the canonical projection  provided that
the quotient  is free.

Theorem 5.6 Let  be a commutative ring with identity.
1  If  is an -epimorphism and  is free, then  is) ker

complemented and

ker ker

where .
2  If  is a submodule of  and if  is free, then  is complemented and  )

If  and  are free, then

rk rk rk

and if the ranks are all finite, then

rk rk rk

Noetherian Modules
One of the most desirable properties of a finitely generated -module  is that
all of its submodules be finitely generated:
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 finitely generated,  finitely generated

Example 4.2 shows that this is not always the case and leads us to search for
conditions on the ring  that will guarantee this property for -modules.

Definition An -module  is said to satisfy the ascending chain condition
( )abbreviated ACC  on submodules if every ascending sequence of submodules

of  is eventually constant, that is, there exists an index  for which

k

Modules with the ascending chain condition on submodules are also called
Noetherian modules  after Emmy Noether, one of the pioneers of module(
theory .)

Since a ring  is a module over itself and since the submodules of the module 
are precisely the ideals of the ring , the preceding definition can be formulated
for rings as follows.

Definition A ring  is said to satisfy the ascending chain condition
( )abbreviated ACC  on ideals if any ascending sequence

of ideals of  is eventually constant, that is, there exists an index  for which

2

A ring that satisfies the ascending chain condition on ideals is called a
Noetherian ring.

The following theorem describes the relevance of this to the present discussion.

Theorem 5.7
1  An -module  is Noetherian if and only if every submodule of  is)

finitely generated.
2  In particular, a ring  is Noetherian if and only if every ideal of  is)

finitely generated.
Proof. Suppose that all submodules of  are finitely generated and that 
contains an infinite ascending sequence

3 ( )5.1

of submodules. Then the union
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is easily seen to be a submodule of . Hence,  is finitely generated, say
. Since , there exists an index  such that .

Therefore, if , we havemax

and so

which shows that the chain 5.1  is eventually constant.( )

For the converse, suppose that  satisfies the ACC on submodules and let  be
a submodule of . Pick  and consider the submodule 
generated by . If , then  is finitely generated. If , then there is
a . Now let , . If , then  is finitely generated.
If , then pick  and consider the submodule3

3 3, , .

Continuing in this way, we get an ascending chain of submodules

If none of these submodules were equal to , we would have an infinite
ascending chain of submodules, each properly contained in the next, which
contradicts the fact that  satisfies the ACC on submodules. Hence,

 for some  and so  is finitely generated.

Our goal is to find conditions under which all finitely generated -modules are
Noetherian. The very pleasing answer is that all finitely generated -modules
are Noetherian if and only if  is Noetherian as an -module, or equivalently,
as a ring.

Theorem 5.8 Let  be a commutative ring with identity.
1   is Noetherian if and only if every finitely generated -module is)

Noetherian.
2  Let  be a principal ideal domain. If an -module  is -generated, then)

any submodule of  is also -generated.
Proof.  For part 1 , one direction is evident. Assume that  is Noetherian and)
let  be a finitely generated -module. Consider the
epimorphism  defined by

Let  be a submodule of . Then
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is a submodule of  and . If every submodule of  is finitely
generated, then  is finitely generated and so .
Then  is finitely generated by . Thus, it is sufficient to prove the
theorem for , which we do by induction on .

If , any submodule of  is an ideal of , which is finitely generated by
assumption. Assume that every submodule of  is finitely generated for all

 and let  be a submodule of .

If , we can extract from  something that is isomorphic to an ideal of 
and so will be finitely generated. In particular, let  be the “last coordinates” in

, specifically, let

 for some 

The set  is isomorphic to an ideal of  and is therefore finitely generated, say
, where  is a finite subset of .

Also, let

 for some 

be the set of all elements of  that have last coordinate equal to . Note that 
is a submodule of  and is isomorphic to a submodule of . Hence, the
inductive hypothesis implies that  is finitely generated, say , where

 is a finite subset of .

By definition of , each  has the form

for  where there is a  of the form

Let . We claim that  is generated by the finite set .

To see this, let . Then  and so

for . Consider now the sum
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The last coordinate of this sum is

and so the difference  has last coordinate  and is thus in .
Hence

as desired.

For part 2 , we leave it to the reader to review the proof and make the necessary)
changes. The key fact is that  is isomorphic to an ideal of , which is
principal. Hence,  is generated by a single element of .

The Hilbert Basis Theorem
Theorem 5.8 naturally leads us to ask which familiar rings are Noetherian. The
following famous theorem describes one very important case.

Theorem 5.9 Hilbert basis theorem( ) If a ring  is Noetherian, then so is the
polynomial ring .
Proof. We wish to show that any ideal  in  is finitely generated. Let 
denote the set of all leading coefficients of polynomials in , together with the 
element of . Then  is an ideal of .

To see this, observe that if  is the leading coefficient of  and if
, then either  or else  is the leading coefficient of . In

either case, . Similarly, suppose that  is the leading coefficient of
. We may assume that  and , with . Thendeg deg

 is in , has leading coefficient  and has the same degree as
. Hence, either  is  or  is the leading coefficient of

. In either case .

Since  is an ideal of the Noetherian ring , it must be finitely generated, say
. Since , there exist polynomials  with leading

coefficient . By multiplying each  by a suitable power of , we may
assume that

deg max deg

for all .
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Now for  let  be the set of all leading coefficients of
polynomials in  of degree , together with the  element of . A similar
argument shows that  is an ideal of  and so  is also finitely generated.
Hence, we can find polynomials  in  whose
leading coefficients constitute a generating set for .

Consider now the finite set

If  is the ideal generated by , then . An induction argument can be
used to show that . If  has degree , then it is a linear
combination of the elements of  which are constants  and is thus in .( )
Assume that any polynomial in  of degree less than  is in  and let 
have degree .

If , then some linear combination  over  of the polynomials in 
has the same leading coefficient as  and if , then some linear
combination  of the polynomials

has the same leading coefficient as . In either case, there is a polynomial
 that has the same leading coefficient as . Since 

has degree strictly smaller than that of  the induction hypothesis implies that

and so

This completes the induction and shows that  is finitely generated.

Exercises
1. If  is a free -module and  is an epimorphism, then must 

also be free?
2. Let  be an ideal of . Prove that if  is a free -module, then  is the

zero ideal.
3. Prove that the union of an ascending chain of submodules is a submodule.
4. Let  be a submodule of an -module . Show that if  is finitely

generated, so is the quotient module .
5. Let  be a submodule of an -module. Show that if both  and  are

finitely generated, then so is .
6. Show that an -module  satisfies the ACC for submodules if and only if

the following condition holds. Every nonempty collection  of submodules
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of  has a maximal element. That is, for every nonempty collection  of
submodules of  there is an  with the property that

.
7. Let  be an -homomorphism.
 a  Show that if  is finitely generated, then so is .) im
 b  Show that if  and  are finitely generated, then) imker

ker  where  is a finitely generated submodule of .
Hence,  is finitely generated.

8. If  is Noetherian and  is an ideal of  show that  is also Noetherian.
9. Prove that if  is Noetherian, then so is .
10. Find an example of a commutative ring with identity that does not satisfy

the ascending chain condition.
11. a  Prove that an -module  is cyclic if and only if it is isomorphic to)

 where  is an ideal of .
 b  Prove that an -module  is   and  has no proper) (simple

nonzero submodules  if and only if it is isomorphic to  where  is)
a maximal ideal of .

 c  Prove that for any nonzero commutative ring  with identity, a simple)
-module exists.

12. Prove that the condition that  be a principal ideal domain in part 2  of)
Theorem 5.8 is required.

13. Prove Theorem 5.8 in the following way.
 a  Show that if  are submodules of  and if  and  are)

finitely generated, then so is .
 b  The proof is again by induction. Assuming it is true for any module)

generated by  elements, let  and let
. Then let  in part a .)

14. Prove that any -module  is isomorphic to the quotient of a free module
. If  is finitely generated, then  can also be taken to be finitely

generated.
15 Prove that if  and  are isomorphic submodules of a module  it does.

not necessarily follow that the quotient modules  and  are
isomorphic. Prove also that if  as modules it does not
necessarily follow that . Prove that these statements do hold if all
modules are free and have finite rank.



Chapter 6
Modules over a Principal Ideal Domain

We remind the reader of a few of the basic properties of principal ideal
domains.

Theorem 6.1  Let  be a principal ideal domain.
1  An element  is irreducible if and only if the ideal  is maximal.)
2  An element in  is prime if and only if it is irreducible.)
3   is a unique factorization domain.)
4   satisfies the ascending chain condition on ideals. Hence, so does any)

finitely generated -module . Moreover, if  is -generated, then any
submodule of  is -generated.

Annihilators and Orders
When  is a principal ideal domain, all annihilators are generated by a single
element. This permits the following definition.

Definition Let  be a principal ideal domain and let  be an -module.
1  If  is a submodule of , then any generator of  is called an ) ann order

of .
2  An  of an element  is an order of the submodule .) order

For readers acquainted with group theory, we mention that the order of a
module corresponds to the smallest exponent of a group,  to the order of thenot
group.

Theorem 6.2 Let  be a principal ideal domain and let  be an -module.
1  If  is an order of , then the orders of  are precisely the)

associates of . We denote any order of  by  and, as is customary,
refer to  as “the” order of .

2  If , then)

lcm
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that is, the orders of  are precisely the least common multiples of the
orders of  and .

Proof. We leave proof of part 1) for the reader. For part 2), suppose that

lcm

Then  and  imply that  and  and so . On the
other hand,  annihilates both  and  and therefore also . Hence,

 and so  is an order of .

Cyclic Modules
The simplest type of nonzero module is clearly a cyclic module. Despite their
simplicity, cyclic modules will play a very important role in our study of linear
operators on a finite-dimensional vector space and so we want to explore some
of their basic properties, including their composition and decomposition.

Theorem 6.3 Let  be a principal ideal domain.
1  If  is a cyclic -module with annihilator , then the multiplication)

map  defined by  is an -epimorphism with kernel .
Hence the induced map

defined by

is an isomorphism. In other words, cyclic -modules are isomorphic to
quotient modules of the base ring .

2  Any submodule of a cyclic -module is cyclic.)
3  If  is a cyclic submodule of  of order , then for ,)

gcd

Also,

Proof. We leave proof of part 1  as an exercise. For part 2 , let . Then) )
 is an ideal of  and so  for some . Thus,

For part 3 , we have  if and only if , that is, if and only if)
, which is equivalent to
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gcd

Thus,  if and only if  and so . For the secondann ann
statement, if  then there exist  for which  and so

and so . Of course, if  then . Finally, if
, then

gcd

and so .

The Decomposition of Cyclic Modules
The following theorem shows how cyclic modules can be composed and
decomposed.

Theorem 6.4 Let  be an -module.
1   If  have relatively prime) ( )Composing cyclic modules

orders, then

and

Consequently, if

where the submodules  have relatively prime orders, then the sum is
direct.

2   If  where the 's are) ( )Decomposing cyclic modules
pairwise relatively prime, then  has the form

where  and so

Proof. For part 1), let ,  and . Then
since  annihilates , the order of  divides . If  is a proper divisor of ,
then for some index , there is a prime  for which  annihilates . But

 annihilates each  for . Thus,
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Since  and  are relatively prime, the order of  is equal to
, which contradicts the equation above. Hence, .

It is clear that . For the reverse
inclusion, since  and  are relatively prime, there exist  for which

Hence

Similarly,  for all  and so we get the reverse inclusion.

Finally, to see that the sum above is direct, note that if

where , then each  must be , for otherwise the order of the sum on the
left would be different from .

For part 2 , the scalars  are relatively prime and so there exist )
for which

Hence,

Since  and since  and  are relatively prime,gcd
we have . The second statement follows from part 1 .)

Free Modules over a Principal Ideal Domain
We have seen that a submodule of a free module need not be free: The
submodule  of the module  over itself is not free. However, if 
is a principal ideal domain this cannot happen.

Theorem 6.5 Let  be a free module over a principal ideal domain . Then
any submodule  of  is also free and .rk rk
Proof. We will give the proof first for modules of finite rank and then
generalize to modules of arbitrary rank. Since  where  isrk
finite, we may in fact assume that . For each , let
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 for some 

Then it is easy to see that  is an ideal of  and so  for some .
Let

We claim that

 and 

is a basis for . As to linear independence, suppose that

and that

Then comparing the th coordinates gives  and since , it
follows that . In a similar way, all coefficients are  and so  is linearly
independent.

To see that  spans , we partition the elements  according to the largest
coordinate index  with nonzero entry and induct on . If , then

, which is in the span of . Suppose that all  with  are in
the span of  and let , that is,

where . Then  and so  and  for some .
Hence,  and so  and therefore .
Thus,  is a basis for .

The previous proof can be generalized in a more or less direct way to modules
of arbitrary rank. In this case, we may assume that  is the -module
of functions with finite support from  to , where  is a cardinal number. We
use the fact that  is a well-ordered set, that is,  is a totally ordered set in which
any nonempty subset has a smallest element. If , the  closed interval
is

Let . For each , let

supp

Then the set
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is an ideal of  and so  for some . We show that

is a basis for . First, suppose that

where  for . Applying this to  gives

and since  is an integral domain, . Similarly,  for all  and so  is
linearly independent.

To show that  spans , since any  has finite support, there is a largest
index  for which . Now, if , then since  is well-
ordered, we may choose a  for which  is as small as
possible. Then . Moreover, since , it follows that

 and  for some . Then

supp

and

and so , which implies that . But then

a contradiction. Thus,  is a basis for .

In a vector space of dimension , any set of  linearly independent vectors is a
basis. This fails for modules. For example,  is a -module of rank  but the
independent set  is not a basis. On the other hand, the fact that a spanning set
of size  is a basis does hold for modules over a principal ideal domain, as we
now show.

Theorem 6.6 Let  be a free -module of finite rank , where  is a principal
ideal domain. Let  be a spanning set for . Then  is a basis
for .
Proof. Let  be a basis for  and define the map  by

 and extending to a surjective -homomorphism. Since  is free,
Theorem 5.6 implies that

ker kerim

Since  is a submodule of the free module and since  is a principal idealker
domain, we know that  is free of rank at most . It follows thatker
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rk rk rkker

and so , that is, , which implies that  is an -rk ker ker
isomorphism and so  is a basis.

In general, a basis for a submodule of a free module over a principal ideal
domain cannot be extended to a basis for the entire module. For example, the set

 is a basis for the submodule  of the -module , but this set cannot be
extended to a basis for  itself. We state without proof the following result
along these lines.

Theorem 6.7 Let  be a free -module of rank , where  is a principal ideal
domain. Let  be a submodule of  that is free of rank . Then there is a
basis  for  that contains a subset  for which

 is a basis for , for some nonzero elements  of .

Torsion-Free and Free Modules
Let us explore the relationship between the concepts of torsion-free and free. It
is not hard to see that any free module over an integral domain is torsion-free.
The converse does not hold, unless we strengthen the hypotheses by requiring
that the module be finitely generated.

Theorem 6.8 A finitely generated module over a principal ideal domain is free
if and only if it is torsion-free.
Proof. We leave proof that a free module over an integral domain is torsion-free
to the reader. Let  be a generating set for . Consider first the
case , whence . Then  is a basis for  since singleton sets are
linearly independent in a torsion-free module. Hence,  is free.

Now suppose that  is a generating set with . If  is linearly
independent, we are done. If not, then there exist nonzero  for which

. It follows that  and so  is a submodule of a
free module and is therefore free by Theorem 6.5. But the map 
defined by  is an isomorphism because  is torsion-free. Thus  is
also free.

Now we can do the general case. Write

where  is a maximal linearly independent subset of . Note(
that  is nonempty because singleton sets are linearly independent.)

For each , the set  is linearly dependent and so there exist
 and  for which
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If , then

and since the latter is a free module, so is , and therefore so is .

The Primary Cyclic Decomposition Theorem
The first step in the decomposition of a finitely generated module  over a
principal ideal domain  is an easy one.

Theorem 6.9 Any finitely generated module  over a principal ideal domain 
is the direct sum of a finitely generated free -module and a finitely generated
torsion -module

free tor

The torsion part  is unique, since it must be the set of all torsion elements oftor
, whereas the free part  is unique only up to isomorphism, that is, thefree

rank of the free part is unique.
Proof. It is easy to see that the set of all torsion elements is a submodule oftor

 and the quotient  is torsion-free. Moreover, since  is finitelytor
generated, so is . Hence, Theorem 6.8 implies that  is free.tor tor
Hence, Theorem 5.6 implies that

tor

where  is free.tor

As to the uniqueness of the torsion part, suppose that  where  is
torsion and  is free. Then . But if  for  andtor tor

, then  and so  and . Thus, .tor tor

For the free part, since , the submodules  and tor tor
are both complements of  and hence are isomorphic.tor

Note that if  is a basis for  we can writefree

tor

where each cyclic submodule  has zero annihilator. This is a partial
decomposition of  into a direct sum of cyclic submodules.

The Primary Decomposition
In view of Theorem 6.9, we turn our attention to the decomposition of finitely
generated torsion modules over a principal ideal domain. The first step is to
decompose  into a direct sum of  submodules, defined as follows.primary
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Definition Let  be a prime in . A -  or just  module is aprimary primary( )
module whose order is a power of .

Theorem 6.10 The  primary decomposition theorem( ) Let  be a torsion
module over a principal ideal domain , with order

where the 's are distinct nonassociate primes in .
1   is the direct sum)

where

is a primary submodule of order . This decomposition of  into primary
submodules is called the  of .primary decomposition

2  The primary decomposition of  is unique up to order of the summands.)
That is, if

where  is primary of order  and  are distinct nonassociate
primes, then  and, after a possible reindexing, . Hence,

 and , for .
3  Two -modules  and  are isomorphic if and only if the summands in)

their primary decompositions are pairwise isomorphic, that is, if

and

are primary decompositions, then  and, after a possible reindexing,
 for .

Proof. Let us write  and show first that

Since , we have . On the other hand, since
 and  are relatively prime, there exist  for which

and so if  then
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Hence .

For part 1 , since , there exist scalars  for which) gcd

and so for any ,

Moreover, since the  and the 's are pairwise relatively prime, it
follows that the sum of the submodules  is direct, that is,

As to the annihilators, it is clear that . For the reverseann
inclusion, if , then  and so , that is,ann ann

 and so . Thus .ann

As to uniqueness, we claim that  is an order of . It is clear that 
annihilates  and so . On the other hand,  contains an element  of
order  and so the sum   has order , which implies that

. Hence,  and  are associates.

Unique factorization in  now implies that  and, after a suitable
reindexing, that  and  and  are associates. Hence,  is primary of
order . For convenience, we can write  as . Hence,

But if

and  for all , we must have  for all .

For part 3), if  and , then the map  defined by

is an isomorphism and so . Conversely, suppose that . Then
 and  have the same annihilators and therefore the same order

Hence, part 1) and part 2) imply that  and after a suitable reindexing,
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. Moreover, since

it follows that .

The Cyclic Decomposition of a Primary Module
The next step in the decomposition process is to show that a primary module
can be decomposed into a direct sum of cyclic submodules. While this
decomposition is not unique see the exercises , the set of annihilators is unique,( )
as we will see. To establish this uniqueness, we use the following result.

Lemma 6.11 Let  be a module over a principal ideal domain  and let
 be a prime.

1  If , then  is a vector space over the field  with scalar)
multiplication defined by

for all .
2  For any submodule  of  the set)

is also a submodule of  and if , then

Proof. For part 1 , since  is prime, the ideal  is maximal and so  is a)
field. We leave the proof that  is a vector space over  to the reader. For
part 2 , it is straightforward to show that  is a submodule of . Since)

 and  we see that . Also, if , then
. But  for some  and  and so .

Since   and  we deduce that , whence .
Thus, . But the reverse inequality is manifest.

Theorem 6.12 The cyclic decomposition theorem of a primary module( ) Let
 be a primary finitely generated torsion module over a principal ideal domain

, with order .
1   is a direct sum)

( )6.1

of cyclic submodules with annihilators , which can beann
arranged in ascending order

ann ann
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or equivalently,

2  As to uniqueness, suppose that  is also the direct sum)

of cyclic submodules with annihilators , arranged inann
ascending order

ann ann

or equivalently

Then the two chains of annihilators are identical, that is,  and

ann ann

for all . Thus,  and  for all .
3  Two -primary -modules)

and

are isomorphic if and only if they have the same annihilator chains, that is,
if and only if  and, after a possible reindexing,

ann ann

Proof. Let  have order equal to the order of , that is,

ann ann

Such an element must exist since  for all  and if this inequality
is strict, then  will annihilate .

If we show that  is complemented, that is,  for some
submodule , then since  is also a finitely generated primary torsion module
over , we can repeat the process to get

where . We can continue this decomposition:ann

as long as . But the ascending sequence of submodules
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must terminate since  is Noetherian and so there is an integer  for which
eventually , giving 6.1 .( )

Let . The direct sum  clearly exists. Suppose that the
direct sum

exists. We claim that if , then it is possible to find a submodule 
for which  and for which the direct sum  also
exists. This process must also stop after a finite number of steps, giving

 as desired.

If  and  let

for . Then  since . We wish to show that for some
, the direct sum

exists, that is,

Now, there exist scalars  and  for which

for  and so if we find a scalar  for which

(6.2)

then  implies that  and the proof of existence will be
complete.

Solving for  gives

so let us consider the ideal of all such scalars:

Since  and  is principal, we have

for some . Also,  since  implies that .
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Since , we have  and there exist  and  for which

Hence,

Now we need more information about . Multiplying the expression for  by
 gives

and since , it follows that . Hence, , that
is,  and so  for some . Now we can write

and so

Thus, we take  to get (6.2) and that completes the proof of existence.

For uniqueness, note first that  has orders  and  and so  and  are
associates and . Next we show that . According to part 2  of)
Lemma 6.10,

and

where all summands are nonzero. Since , it follows from Lemma
6.10 that  is a vector space over  and so each of the preceding
decompositions expresses  as a direct sum of one-dimensional vector
subspaces. Hence, .dim

Finally, we show that the exponents  and  are equal using induction on . If
, then  for all  and since , we also have  for all .

Suppose the result is true whenever  and let . Write

and
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Then

and

But  is a cyclic submodule of  with annihilator  and so
by the induction hypothesis

 and 

which concludes the proof of uniqueness.

For part 3), suppose that  and  has annihilator chain

ann ann

and  has annihilator chain

ann ann

Then

and so  and after a suitable reindexing,

ann ann ann

Conversely, suppose that

and

have the same annihilator chains, that is,  and

ann ann

Then

ann ann

The Primary Cyclic Decomposition
Now we can combine the various decompositions.

Theorem 6.13 The primary cyclic decomposition theorem( ) Let  be a
finitely generated torsion module over a principal ideal domain .
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1  If  has order)

where the 's are distinct nonassociate primes in , then  can be
uniquely decomposed up to the order of the summands  into the direct sum( )

where

is a primary submodule with annihilator . Finally, each primary
submodule  can be written as a direct sum of cyclic submodules, so that

where  and the terms in each cyclic decomposition canann
be arranged so that, for each ,

ann ann

or, equivalently,

2  As for uniqueness, suppose that)

is also a primary cyclic decomposition of . Then,
 a  The number of summands is the same in both decompositions; in fact,)

 and after possible reindexing,  for all .
 b  The primary submodules are the same; that is, after possible)

reindexing,  and 
 c  For each primary submodule pair , the cyclic submodules)

have the same annihilator chains; that is, after possible reindexing,

ann ann

for all .
 In summary, the primary submodules and annihilator chains are uniquely

determined by the module .
3  Two -modules  and  are isomorphic if and only if they have the same)

annihilator chains.
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Elementary Divisors
Since the chain of annihilators

ann

is unique except for order, the multiset  of generators is uniquely
determined up to associate. The generators  are called the elementary
divisors of . Note that for each prime , the elementary divisor  of largest
exponent is precisely the factor of  associated to .

Let us write  to denote the multiset of  elementary divisors ofElemDiv all
. Thus, if , then any associate of  is also in .ElemDiv ElemDiv

We can now say that  is a complete invariant for isomorphism.ElemDiv
Technically, the function  is the complete invariant, but thisElemDiv
hair is not worth splitting. Also, we could work with a system of distinct
representatives for the associate classes of the elementary divisors, but in
general, there is no way to single out a special representative.

Theorem 6.14 Let  be a principal ideal domain. The multiset  isElemDiv
a complete invariant for isomorphism of finitely generated torsion -modules,
that is,

ElemDiv ElemDiv

We have seen (Theorem 6.2) that if

then

lcm

Let us now compare the elementary divisors of  to those of  and .

Theorem 6.15 Let  be a finitely generated torsion module over a principal
ideal domain and suppose that

1  The primary cyclic decomposition of  is the direct sum of the primary)
cyclic decompositons of  and ; that is, if

and

are the primary cyclic decompositions of  and , respectively, then

M

is the primary cyclic decomposition of M.
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2  The elementary divisors of  are  )

ElemDiv ElemDiv ElemDiv

where the union is a multiset union; that is, we keep all duplicate
members.

The Invariant Factor Decomposition
According to Theorem 6.4, if  and  are cyclic submodules with relatively
prime orders, then  is a cyclic submodule whose order is the product of
the orders of  and . Accordingly, in the primary cyclic decomposition of ,

with elementary divisors  satisfying

( )6.3

we can combine cyclic summands with relatively prime orders. One judicious
way to do this is to take the leftmost highest-order  cyclic submodules from( )
each group to get

and repeat the process

Of course, some summands may be missing here since different primary
modules  do not necessarily have the same number of summands. In any
case, the result of this regrouping and combining is a decomposition of the form

which is called an  of .invariant factor decomposition

For example, suppose that

Then the resulting regrouping and combining gives

As to the orders of the summands, referring to 6.3 , if  has order , then( )
since the highest powers of each prime  are taken for , the second–highest
for  and so on, we conclude that
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( )6.4

or equivalently,

ann ann

The numbers  are called  of the decomposition.invariant factors

For instance, in the example above suppose that the elementary divisors are

Then the invariant factors are

The process described above that passes from a sequence  of elementary
divisors in order 6.3  to a sequence of invariant factors in order 6.4  is( ) ( )
reversible. The inverse process takes a sequence  satisfying 6.4 ,( )
factors each  into a product of distinct nonassociate prime powers with the
primes in the same order and then “peels off” like prime powers from the left.
( )The reader may wish to try it on the example above.

This fact, together with Theorem 6.4, implies that primary cyclic
decompositions and invariant factor decompositions are essentially equivalent.
Therefore, since the multiset of elementary divisors of  is unique up to
associate, the multiset of invariant factors of  is also unique up to associate.
Furthermore, the multiset of invariant factors is a complete invariant for
isomorphism.

Theorem 6.16 The invariant factor decomposition theorem( ) Let  be a
finitely generated torsion module over a principal ideal domain . Then

where D  is a cyclic submodule of , with order , where

This decomposition is called an  of  and theinvariant factor decomposition
scalars  are called the  of .invariant factors
1  The multiset of invariant factors is uniquely determined up to associate by)

the module .
2  The multiset of invariant factors is a complete invariant for isomorphism.)

The annihilators of an invariant factor decomposition are called the invariant
ideals of . The chain of invariant ideals is unique, as is the chain of
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annihilators in the primary cyclic decomposition. Note that  is an order of ,
that is,

ann

Note also that the product

of the invariant factors of  has some nice properties. For example,  is the
product of all the elementary divisors of . We will see in a later chapter that
in the context of a linear operator  on a vector space,  is the characteristic
polynomial of .

Characterizing Cyclic Modules
The primary cyclic decomposition can be used to characterize cyclic modules
via their elementary divisors.

Theorem 6.17 Let  be a finitely generated torsion module over a principal
ideal domain, with order

The following are equivalent:
1   is cyclic.)
2   is the direct sum)

of primary cyclic submodules  of order .
3  The elementary divisors of  are precisely the prime power factors of :)

ElemDiv

Proof. Suppose that  is cyclic. Then the primary decomposition of  is a
primary  decomposition, since any submodule of a cyclic module is cyclic.cyclic
Hence, 1) implies 2). Conversely, if 2) holds, then since the orders are relatively
prime, Theorem 6.4 implies that  is cyclic. We leave the rest of the proof to
the reader.

Indecomposable Modules
The primary cyclic decomposition of  is a decomposition of  into a direct
sum of submodules that cannot be further decomposed. In fact, this
characterizes the primary cyclic decomposition of . Before justifying these
statements, we make the following definition.

Definition A module  is  if it cannot be written as a directindecomposable
sum of proper submodules.
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We leave proof of the following as an exercise.

Theorem 6.18 Let  be a finitely generated torsion module over a principal
ideal domain. The following are equivalent:
1   is indecomposable)
2   is primary cyclic)
3   has only one elementary divisor:)

ElemDiv

Thus, the primary cyclic decomposition of  is a decomposition of  into a
direct sum of indecomposable modules. Conversely, if

is a decomposition of  into a direct sum of indecomposable submodules, then
each submodule  is primary cyclic and so this is the primary cyclic
decomposition of .

Indecomposable Submodules of Prime Order
Readers acquainted with group theory know that any group of prime order is
cyclic. However, as mentioned earlier, the order of a module corresponds to the
smallest exponent of a group, not to the order of a group. Indeed, there are
modules of prime order that are not cyclic. Nevertheless, cyclic modules of
prime order are important.

Indeed, if  is a finitely generated torsion module over a principal ideal
domain, with order , then each prime factor  of  gives rise to a cyclic
submodule  of  whose order is  and so  is also indecomposable.
Unfortunately,  need not be complemented and so we cannot use it to
decompose . Nevertheless, the theorem is still useful, as we will see in a later
chapter.

Theorem 6.19 Let  be a finitely generated torsion module over a principal
ideal domain, with order . If  is a prime divisor of , then  has a cyclic
( )equivalently, indecomposable  submodule  of prime order .
Proof. If , then there is a  for which  but .
Then  is annihilated by  and so . But  is prime and

 and so . Since  has prime order, Theorem 6.18 implies
that  is cyclic if and only if it is indecomposable.

Exercises
1. Show that any free module over an integral domain is torsion-free.
2. Let  be a finitely generated torsion module over a principal ideal domain.

Prove that the following are equivalent:
 a)  is indecomposable
 b)  has only one elementary divisor (including multiplicity)
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 c)  is cyclic of prime power order.
3. Let  be a principal ideal domain and  the field of quotients. Then  is

an -module. Prove that any nonzero finitely generated submodule of 
is a free module of rank .

4. Let  be a principal ideal domain. Let  be a finitely generated torsion-
free -module. Suppose that  is a submodule of  for which  is a free

-module of rank  and  is a torsion module. Prove that  is a free
-module of rank .

5. Show that the primary cyclic decomposition of a torsion module over a
principal ideal domain is not unique even though the elementary divisors(
are .)

6. Show that if  is a finitely generated -module where  is a principal
ideal domain, then the free summand in the decomposition tor
need not be unique.

7. If  is a cyclic -module of order  show that the map 
defined by  is a surjective -homomorphism with kernel  and so

8. If  is an integral domain with the property that all submodules of cyclic
-modules are cyclic, show that  is a principal ideal domain.

9. Suppose that  is a finite field and let  be the set of all nonzero elements
of .

 a  Show that if  is a nonconstant polynomial over  and if)
 is a root of , then  is a factor of .

 b  Prove that a nonconstant polynomial  of degree  can have)
at most  distinct roots in .

 c  Use the invariant factor or primary cyclic decomposition of a finite -)
module to prove that  is cyclic.

10. Let  be a principal ideal domain. Let  be a cyclic -module
with order . We have seen that any submodule of  is cyclic. Prove that
for each  such that  there is a unique submodule of  of order

.
11. Suppose that  is a free module of finite rank over a principal ideal

domain . Let  be a submodule of . If  is torsion, prove that
rk rk .

12. Let  be the ring of polynomials over a field  and let  be the ring
of all polynomials in  that have coefficient of  equal to . Then 
is an -module. Show that  is finitely generated and torsion-free
but not free. Is  a principal ideal domain?

13. Show that the rational numbers  form a torsion-free -module that is not
free.

More on Complemented Submodules
14. Let  be a principal ideal domain and let  be a free -module.
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 a  Prove that a submodule  of  is complemented if and only if )
is free.

 b  If  is also finitely generated, prove that  is complemented if and)
only if  is torsion-free.

15. Let  be a free module of finite rank over a principal ideal domain .
 a  Prove that if  is a complemented submodule of , then)

rk rk  if and only if .
 b  Show that this need not hold if  is not complemented.)
 c  Prove that  is complemented if and only if any basis for  can be)

extended to a basis for .
16. Let  and  be free modules of finite rank over a principal ideal domain

. Let  be an -homomorphism.
 a  Prove that  is complemented.) ker
 b  What about ?) im
 c  Prove that)

rk rk rk im rk rkker ker
ker

 d  If  is surjective, then  is an isomorphism if and only if)
rk rk .

 e  If  is a submodule of  and if  is free, then)

rk rk rk

17. A submodule  of a module  is said to be   if wheneverpure in
, then  for all nonzero .

 a  Show that  is pure if and only if  and  for  implies)
.

 b  Show that  is pure if and only if  is torsion-free.)
 c  If  is a principal ideal domain and  is finitely generated, prove that)

 is pure if and only if  is free.
 d  If  and  are pure submodules of , then so are  and .)

What about ?
 e  If  is pure in , then show that  is pure in  for any)

submodule  of .
18. Let  be a free module of finite rank over a principal ideal domain . Let

 and  be submodules of  with  complemented in . Prove that

rk rk rk rk



Chapter 7
The Structure of a Linear Operator

In this chapter, we study the structure of a linear operator on a finite-
dimensional vector space, using the powerful module decomposition theorems
of the previous chapter. Unless otherwise noted, all vector spaces will be
assumed to be finite-dimensional.

Let  be a finite-dimensional vector space. Let us recall two earler theorems
(Theorem 2.19 and Theorem 2.20).

Theorem 7.1 Let  be a vector space of dimension .
1  Two  matrices  and  are similar written  if and only if) ( )

they represent the same linear operator , but possibly with
respect to different ordered bases. In this case, the matrices  and 
represent exactly the same set of linear operators in .

2  Then two linear operators  and  on  are similar written  if and) ( )
only if there is a matrix  that represents both operators, but with
respect to possibly different ordered bases. In this case,  and  are
represented by exactly the same set of matrices in .

Theorem 7.1 implies that the matrices that represent a given linear operator are
precisely the matrices that lie in one similarity class. Hence, in order to uniquely
represent all linear operators on , we would like to find a set consisting of one
simple representative of each similarity class, that is, a set of simple canonical
forms for similarity.

One of the simplest types of matrix is the diagonal matrix. However, these are
too simple, since some operators cannot be represented by a diagonal matrix. A
less simple type of matrix is the upper triangular matrix. However, these are not
simple enough: Every operator (over an algebraically closed field) can be
represented by an upper triangular matrix but some operators can be represented
by more than one upper triangular matrix.
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This gives rise to two different directions for further study. First, we can search
for a characterization of those linear operators that can be represented by
diagonal matrices. Such operators are called . Second, we candiagonalizable
search for a different type of “simple” matrix that does provide a set of
canonical forms for similarity. We will pursue both of these directions.

The Module Associated with a Linear Operator
If , we will think of  not only as a vector space over a field  but
also as a module over , with scalar multiplication defined by

We will write  to indicate the dependence on . Thus,  and  are modules
with the same ring of scalars , although with different scalar multiplication
if .

Our plan is to interpret the concepts of the previous chapter for the module .
First, if , then . This implies that  is a torsiondim dim
module. In fact, the  vectors

are linearly dependent in , which implies that  for some nonzero
polynomial . Hence,  and so  is a nonzeroann ann
principal ideal of .

Also, since  is finitely generated as a vector space, it is, a fortiori, finitely
generated as an -module. Thus,  is a finitely generated torsion module
over a principal ideal domain  and so we may apply the decomposition
theorems of the previous chapter. In the first part of this chapter, we embark on
a “translation project” to translate the powerful results of the previous chapter
into the language of the modules .

Let us first characterize when two modules  and  are isomorphic.

Theorem 7.2 If , then

In particular,  is a module isomorphism if and only if  is a vector
space automorphism of  satisfying

Proof. Suppose that  is a module isomorphism. Then for ,

which is equivalent to
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and since  is bijective, this is equivalent to

that is, . Since a module isomorphism from  to  is a vector space
isomorphism as well, the result follows.

For the converse, suppose that  is a vector space automorphism of  and
, that is, . Then

and the -linearity of  implies that for any polynomial ,

Hence,  is a module isomorphism from  to .

Submodules and Invariant Subspaces
There is a simple connection between the submodules of the -module 
and the subspaces of the vector space . Recall that a subspace  of  is -
invariant if .

Theorem 7.3 A subset  is a submodule of  if and only if  is a -
invariant subspace of .

Orders and the Minimal Polynomial
We have seen that the annihilator of ,

ann

is a nonzero principal ideal of , say

ann

Since the elements of the base ring  of  are polynomials, for the first time
in our study of modules there is a logical choice among all scalars in a given
associate class: Each associate class contains exactly one  polynomial.monic

Definition Let . The unique monic order of  is called the minimal
polynomial for  and is denoted by  or . Thus,min

ann

In treatments of linear algebra that do not emphasize the role of the module ,
the minimal polynomial of a linear operator  is simply defined as the unique
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monic smallest degree polynomial  of  for which . This
definition is equivalent to our definition.

The concept of minimal polynomial is also defined for matrices. The minimal
polynomial  of matrix  is defined as the minimal polynomialA
of the multiplication operator . Equivalently,  is the unique monic
polynomial  of smallest degree for which .

Theorem 7.4
1  If  are similar linear operators on , then . Thus, the)

minimal polynomial is an invariant under similarity of operators.
2  If  are similar matrices, then . Thus, the minimal)

polynomial is an invariant under similarity of matrices.
3  The minimal polynomial of  is the same as the minimal)

polynomial of any matrix that represents .

Cyclic Submodules and Cyclic Subspaces
Let us now look at the cyclic submodules of :

which are -invariant subspaces of . Let  be the minimal polynomial of
 and suppose that . If , then writingdeg

where    givesdeg deg

and so

deg

Hence, the set

spans the  . To see that  is a basis for , note that any linearvector space
combination of the vectors in  has the form  for  and so isdeg
equal to  if and only if . Thus,  is an ordered basis for .

Definition Let . A -invariant subspace  of  is -  if  has acyclic
basis of the form

for some  and . The basis  is called a -  for .cyclic basis
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Thus, a cyclic submodule  of  with order  of degree  is a -cyclic
subspace of  of dimension . The converse is also true, for if

is a basis for a -invariant subspace  of , then  is a submodule of .
Moreover, the minimal polynomial of  has degree , since if

then  satisfies the polynomial

but none of smaller degree since  is linearly independent.

Theorem 7.5 Let  be a finite-dimenional vector space and let . The
following are equivalent:
1   is a cyclic submodule of  with order  of degree )
2   is a -cyclic subspace of  of dimension .)

We will have more to say about cyclic modules a bit later in the chapter.

Summary
The following table summarizes the connection between the module concepts
and the vector space concepts that we have discussed so far.

-  -  
Scalar multiplication: Action of : 
Submodule of -Invariant subspace of 
Annihil

Module Vector Space

ator: Annihilator:

Monic order  of : Minimal polynomial of :
ann ann

ann  has smallest deg with 
Cyclic submodule of : -cyclic subspace of :

deg deg deg

The Primary Cyclic Decomposition of 
We are now ready to translate the cyclic decomposition theorem into the
language of .

Definition Let .
1  The  and  of  are the ) elementary divisors invariant factors monic

elementary divisors and invariant factors, respectively, of the module .
We denote the multiset of elementary divisors of  by  and theElemDiv
multiset of invariant factors of  by .InvFact
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2  The  and  of a matrix  are the) elementary divisors invariant factors
elementary divisors and invariant factors, respectively, of the multiplication
operator :

ElemDiv ElemDiv InvFact InvFactand

We emphasize that the elementary divisors and invariant factors of an operator
or matrix are  by definition. Thus, we no longer need to worry aboutmonic
uniqueness up to associate.

Theorem 7.6   Let  be(The primary cyclic decomposition theorem for
finite-dimensional and let  have minimal polynomial

where the polynomials  are distinct monic primes.
1   The -module  is the direct sum) ( )Primary decomposition

where

is a primary submodule of  of order . In vector space terms,  is a
-invariant subspace of  and the minimal polynomial of  is

min

2   Each primary summand  can be decomposed) ( )Cyclic decomposition
into a direct sum

of -cyclic submodules  of order  with

In vector space terms,  is a -cyclic subspace of  and the minimal
polynomial of  is

min

3   This yields the decomposition of  into a) ( )The complete decomposition
direct sum of -cyclic subspaces

4   The multiset of elementary divisors) ( )Elementary divisors and dimensions
 is uniquely determined by . If , then the -deg
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cyclic subspace  has -cyclic basis

and . Hence,dim deg

dim deg

We will call the basis

for  the  for .elementary divisor basis

Recall that if  and if both  and  are -invariant subspaces of ,
the pair  is said to  . In module language, the pair  reducesreduce

 if  and  are submodules of  and

We can now translate Theorem 6.15 into the current context.

Theorem 7.7 Let  and let

1  The minimal polynomial of  is)

lcm

2  The primary cyclic decomposition of  is the direct sum of the primary)
cyclic decompositons of  and ; that is, if

and

are the primary cyclic decompositions of  and , respectively, then

is the primary cyclic decomposition of .
3  The elementary divisors of  are  )

ElemDiv ElemDiv ElemDiv

where the union is a multiset union; that is, we keep all duplicate
members.
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The Characteristic Polynomial
To continue our translation project, we need a definition. Recall that in the
characterization of cyclic modules in Theorem 6.17, we made reference to the
product of the elementary divisors, one from each associate class. Now that we
have singled out a special representative from each associate class, we can make
a useful definition.

Definition Let . The   of  is thecharacteristic polynomial
product of all of the elementary divisors of :

Hence,

deg dim

Similarly, the   of a matrix  is the product ofcharacteristic polynomial
the elementary divisors of .

The following theorem describes the relationship between the minimal and
characteristic polynomials.

Theorem 7.8 Let .
1   The minimal polynomial of  divides the) ( )The Cayley–Hamilton theorem

characteristic polynomial of :

Equivalently,  satisfies its own characteristic polynomial, that is,

2  The minimal polynomial)

and characteristic polynomial

of  have the same set of prime factors  and hence the same set of
roots not counting multiplicity .( )

We have seen that the multiset of elementary divisors forms a complete
invariant for similarity. The reader should construct an example to show that the
pair  is  a complete invariant for similarity, that is, this pair ofnot
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polynomials does not uniquely determine the multiset of elementary divisors of
the operator .

In general, the minimal polynomial of a linear operator is hard to find. One of
the virtues of the characteristic polynomial is that it is comparatively easy to
find and we will discuss this in detail a bit later in the chapter.

Note that since  and both polynomials are monic, it follows that

deg deg

Definition A linear operator  is  if its minimalnonderogatory
polynomial is equal to its characteristic polynomial:

or equivalently, if

deg deg

or if

deg dim

Similar statements hold for matrices.

Cyclic and Indecomposable Modules
We have seen (Theorem 6.17) that cyclic submodules can be characterized by
their elementary divisors. Let us translate this theorem into the language of 
(and add one more equivalence related to the characteristic polynomial).

Theorem 7.9 Let  have minimal polynomial

where  are distinct monic primes. The following are equivalent:
1   is cyclic.)
2   is the direct sum)

of -cyclic submodules  of order .
3  The elementary divisors of  are)

ElemDiv

4   is nonderogatory, that is,)
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Indecomposable Modules
We have also seen (Theorem 6.19) that, in the language of , each prime factor

 of the minimal polynomial  gives rise to a cyclic submodule  of 
of prime order .

Theorem 7.10 Let  and let  be a prime factor of . Then 
has a cyclic submodule  of prime order .

For a module of prime order, we have the following.

Theorem 7.11 For a module  of prime order , the following are
equivalent:
1   is cyclic)
2   is indecomposable)
3   is irreducible)
4   is nonderogatory, that is, )
5  .) dim deg

Our translation project is now complete and we can begin to look at issues that
are specific to the modules .

Companion Matrices
We can also characterize the cyclic modules  via the matrix representations of
the operator , which is obviously something that we could not do for arbitrary
modules. Let  be a cyclic module, with order

and ordered -cyclic basis

Then

for  and

and so
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2

This matrix is known as the  for the polynomial .companion matrix

Definition The  of a monic polyomialcompanion matrix

is the matrix

2

Note that companion matrices are defined only for  polynomials.monic
Companion matrices are nonderogatory. Also, companion matrices are precisely
the matrices that represent operators on -cyclic subspaces.

Theorem 7.12 Let .
1  A companion matrix  is nonderogatory; in fact,)

2   is cyclic if and only if  can be represented by a companion matrix, in)
which case the representing basis is -cyclic.

Proof. For part 1), let  be the standard basis for . Since
 for , it follows that for any polynomial ,

 for all 

If , then

and so , whence . Also, if

is nonzero and has degree , then



174 Advanced Linear Algebra

since  is linearly independent. Hence,  has smallest degree among all
polynomials satisfied by  and so . Finally,

deg deg deg

For part 2), we have already proved that if  is cyclic with -cyclic basis ,
then . For the converse, if , then part 1) implies
that  is nonderogatory. Hence, Theorem 7.11 implies that  is cyclic. It is
clear from the form of  that  is a -cyclic basis for .

The Big Picture
If , then Theorem 7.2 and the fact that the elementary divisors form
a complete invariant for isomorphism imply that

ElemDiv ElemDiv

Hence, the multiset of elementary divisors is a complete invariant for similarity
of operators. Of course, the same is true for matrices:

ElemDiv ElemDiv

where we write  in place of .

The connection between the elementary divisors of an operator  and the
elementary divisors of the matrix representations of  is described as follows. If

, then the coordinate map  is also a  isomorphismmodule
. Specifically, we have

and so  preserves -scalar multiplication. Hence,

 for some 

For the converse, suppose that . If we define  by ,
where  is the th standard basis vector, then  is an ordered
basis for  and  is the coordinate map for . Hence,  is a module
isomorphism and so

for all , that is,

which shows that .

Theorem 7.13 Let  be a finite-dimensional vector space over . Let
 and let .
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1  The multiset of elementary divisors or invariant factors  is a complete) ( )
invariant for similarity of operators, that is,

ElemDiv ElemDiv
InvFact InvFact

A similar statement holds for matrices:

ElemDiv ElemDiv
InvFact InvFact

2  The connection between operators and their representing matrices is  )

 for some 
ElemDiv ElemDiv
InvFact InvFact

Theorem 7.13 can be summarized in Figure 7.1, which shows the big picture.

similarity classes
of L(V)

V isomorphism classes
of F[x]-modulesV

{ED1}
Multisets of

elementary divisors{ED2}

[ ]B [ ]B
[ ]R [ ]R

Similarity classes
of matrices

Figure 7.1

Figure 7.1 shows that the similarity classes of  are in one-to-one
correspondence with the isomorphism classes of -modules  and that these
are in one-to-one correspondence with the multisets of elementary divisors,
which, in turn, are in one-to-one correspondence with the similarity classes of
matrices.

We will see shortly that any multiset of prime power polynomials is the multiset
of elementary divisors for some operator (or matrix) and so the third family in
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the figure could be replaced by the family of all multisets of prime power
polynomials.

The Rational Canonical Form
We are now ready to determine a set of canonical forms for similarity. Let

. The elementary divisor basis  for  that gives the primary cyclic
decomposition of ,

is the union of the bases

and so the matrix of  with respect to  is the block diagonal matrix

diag

with companion matrices on the block diagonal. This matrix has the following
form.

Definition A matrix  is in the  of elementary divisor form rational canonical
form if

diag

where the  are monic prime polynomials.

Thus, as shown in Figure 7.1, each similarity class  contains at least one matrix
in the elementary divisor form of rational canonical form.

On the other hand, suppose that  is a rational canonical matrix

diag

of size . Then  represents the matrix multiplication operator  under
the standard basis  on . The basis  can be partitioned into blocks 
corresponding to the position of each of the companion matrices on the block
diagonal of . Since

it follows from Theorem 7.12 that each subspace  is -cyclic with monic
order  and so Theorem 7.9 implies that the multiset of elementary
divisors of  is .

This shows two important things. First, any multiset of prime power
polynomials is the multiset of elementary divisors for some matrix. Second, 
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lies in the similarity class that is associated with the elementary divisors
. Hence, two matrices in the elementary divisor form of rational

canonical form lie in the same similarity class if and only if they have the same
multiset of elementary divisors. In other words, the elementary divisor form of
rational canonical form is a set of canonical forms for similarity, up to order of
blocks on the block diagonal.

Theorem 7.14 Let( )The rational canonical form: elementary divisor version  
 be a finite-dimensional vector space and let  have minimal

polynomial

where the 's are distinct monic prime polynomials.
1  If  is an elementary divisor basis for , then  is in the elementary)

divisor form of rational canonical form:

diag

where  are the elementary divisors of . This block diagonal matrix
is called an  of a  of .elementary divisor version rational canonical form

2  Each similarity class  of matrices contains a matrix  in the elementary)
divisor form of rational canonical form. Moreover, the set of matrices in 
that have this form is the set of matrices obtained from  by reordering the
block diagonal matrices. Any such matrix is called an elementary divisor
verison rational canonical form of a  of .

3  The dimension of  is the sum of the degrees of the elementary divisors of)
, that is,

dim deg

Example 7.1 Let  be a linear operator on the vector space  and suppose that7

 has minimal polynomial

Noting that  and  are elementary divisors and that the sum of the
degrees of all elementary divisors must equal , we have two possibilities:

1   1  )
2     1)

These correspond to the following rational canonical forms:
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1)

2)

The rational canonical form may be far from the ideal of simplicity that we had
in mind for a set of simple canonical forms. Indeed, the rational canonical form
can be important as a theoretical tool, more so than a practical one.

The Invariant Factor Version
There is also an invariant factor version of the rational canonical form. We
begin with the following simple result.

Theorem 7.15 If  are relatively prime polynomials, then

block

Proof. Speaking in general terms, if an  matrix  has minimal
polynomial

of degree equal to the size  of the matrix, then Theorem 7.14 implies that the
elementary divisors of  are precisely

Since the matrices  and  have the same sizediag
 and the same minimal polynomial  of degree , it follows that

they have the same multiset of elementary divisors and so are similar.

Definition A matrix  is in the  of invariant factor form rational canonical
form if
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diag

where  for .

Theorem 7.15 can be used to rearrange and combine the companion matrices in
an elementary divisor version of a rational canonical form  to produce an
invariant factor version of rational canonical form that is similar to . Also, this
process is reversible.

Theorem 7.16 The rational canonical form: invariant factor version  ( ) Let
dim  and suppose that  has minimal polynomial

where the monic polynomials  are distinct prime irreducible  polynomials( )
1   has an  , that is, a basis for which) invariant factor basis

diag

where the polynomials  are the invariant factors of  and
. This block diagonal matrix is called an invariant factor

version rational canonical form of a  of .
2  Each similarity class  of matrices contains a matrix  in the invariant)

factor form of rational canonical form. Moreover, the set of matrices in 
that have this form is the set of matrices obtained from  by reordering the
block diagonal matrices. Any such matrix is called an invariant factor
verison rational canonical form of a  of .

3  The dimension of  is the sum of the degrees of the invariant factors of ,)
that is,

dim deg

The Determinant Form of the Characteristic Polynomial
In general, the minimal polynomial of an operator  is hard to find. One of the
virtues of the characteristic polynomial is that it is comparatively easy to find.
This also provides a nice example of the theoretical value of the rational
canonical form.

Let us first take the case of a companion matrix. If  is the
companion matrix of a monic polynomial

then how can we recover  from  by arithmetic operations?
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When , we can write  as

which looks suspiciously like a determinant:

det

det

det

So, let us define

where  is an independent variable. The determinant of this matrix is a
polynomial in  whose degree equals the number of parameters .
We have just seen that

det

and this is also true for . As a basis for induction, if

det

then expanding along the first row gives

det

det det

det

We have proved the following.
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Lemma 7.17 For any ,

det

Now suppose that  is a matrix in the elementary divisor form of rational
canonical form. Since the determinant of a block diagonal matrix is the product
of the determinants of the blocks on the diagonal, it follows that

det

Moreover, if , say , then

det det
det
det det det
det

and so

det det

Hence, the fact that all matrices have a rational canonical form allows us to
deduce the following theorem.

Theorem 7.18 Let . If  is any matrix that represents , then

det

Changing the Base Field
A change in the base field will generally change the primeness of polynomials
and therefore has an effect on the multiset of elementary divisors. It is perhaps a
surprising fact that a change of base field has  on the invariant factors—no effect
hence the adjective .invariant

Theorem 7.19 Let  and  be fields with . Suppose that the elementary
divisors of a matrix  are

Suppose also that the polynomials  can be further factored over , say

where  is prime over . Then the prime powers

are the elementary divisors of  over .
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Proof. Consider the companion matrix  in the rational canonical form
of  over . This is a matrix over  as well and Theorem 7.15 implies that

diag

Hence,  is an elementary divisor basis for  over .

As mentioned, unlike the elementary divisors, the invariant factors are field
independent. This is equivalent to saying that the invariant factors of a matrix

 are polynomials over the  subfield of  that contains thesmallest
entries of 

Theorem 7.20 Let  and let  be the smallest subfield of 
that contains the entries of .
1  The invariant factors of  are polynomials over .)
2  Two matrices  are similar over  if and only if they are)

similar over .
Proof. Part 1  follows immediately from Theorem 7.19, since using either  or)

 to compute invariant factors gives the same result. Part 2) follows from the
fact that two matrices are similar over a given field if and only if they have the
same multiset of  over that field.invariant factors

Example 7.2 Over the real field, the matrix

is the companion matrix for the polynomial , and so

ElemDiv InvFact

However, as a complex matrix, the rational canonical form for  is

and so

ElemDiv InvFactand

Exercises
1. We have seen that any  can be used to make  into an -

module. Does every module  over  come from some ?
Explain.

2. Let  have minimal polynomial
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where  are distinct monic primes. Prove that the following are
equivalent:

 a   is -cyclic.)
 b  .) deg dim
 c  The elementary divisors of  are the prime power factors  and so)

is a direct sum of -cyclic submodules  of order .
3. Prove that a matrix  is nonderogatory if and only if it is similar

to a companion matrix.
4. Show that if  and  are block diagonal matrices with the same blocks, but

in possibly different order, then  and  are similar.
5. Let . Justify the statement that the entries of any invariant

factor version of a rational canonical form for  are “rational” expressions
in the coefficients of , hence the origin of the term rational canonical
form. Is the same true for the elementary divisor version?

6. Let  where  is finite-dimensional. If  is irreducible
and if  is not one-to-one, prove that  divides the minimal
polynomial of .

7. Prove that the minimal polynomial of  is the least common
multiple of its elementary divisors.

8. Let  where  is finite-dimensional. Describe conditions on the
minimal polynomial of  that are equivalent to the fact that the elementary
divisor version of the rational canonical form of  is diagonal. What can
you say about the elementary divisors?

9. Verify the statement that the multiset of elementary divisors or invariant(
factors  is a complete invariant for similarity of matrices.)

10. Prove that given any multiset of monic prime power polynomials

and given any vector space  of dimension equal to the sum of the degrees
of these polynomials, there is an operator  whose multiset of
elementary divisors is .

11. Find all rational canonical forms up to the order of the blocks on the
diagonal  for a linear operator on  having minimal polynomial) 6

1 1 .
12. How many possible rational canonical forms up to order of blocks  are( )

there for linear operators on  with minimal polynomial 1 1 ?6

13. a  Show that if  and  are  matrices, at least one of which is)
invertible, then  and  are similar.
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 b  What do the matrices)

and

have to do with this issue?
 c  Show that even without the assumption on invertibility the matrices)

 and  have the same characteristic polynomial. : WriteHint

where  and  are invertible and  is an  matrix that has the
 identity in the upper left-hand corner and 's elsewhere. Write

. Compute  and  and find their characteristic
polynomials.

14. Let  be a linear operator on  with minimal polynomial
1 2 . Find the rational canonical form for  if

,  or .
15. Suppose that the minimal polynomial of  is irreducible. What can

you say about the dimension of ?
16. Let  where  is finite-dimensional. Suppose that  is an

irreducible factor of the minimal polynomial  of . Suppose further
that  have the property that . Prove that

 for some polyjomial  if and only if  for some
polynomial .



Chapter 8
Eigenvalues and Eigenvectors

Unless otherwise noted, we will assume throughout this chapter that all vector
spaces are finite-dimensional.

Eigenvalues and Eigenvectors
We have seen that for any , the minimal and characteristic
polynomials have the same set of roots (but not generally the same  ofmultiset
roots). These roots are of vital importance.

Let  be a matrix that represents . A scalar  is a root of the
characteristic polynomial  if and only ifdet

det ( )8.1

that is, if and only if the matrix  is singular. In particular, if ,dim
then 8.1  holds if and only if there exists a nonzero vector  for which( )

or equivalently,

If , then this is equivalent to

or in operator language,

This prompts the following definition.

Definition Let  be a vector space over a field  and let .
1  A scalar  is an  or  of  if there) ( )eigenvalue characteristic value

exists a  vector  for whichnonzero
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In this case,  is called an  or  of eigenvector characteristic vector( )
associated with .

2  A scalar  is an  for a matrix  if there exists a ) eigenvalue nonzero
column vector  for which

In this case,  is called an  or  for eigenvector characteristic vector( )
associated with .

3  The set of all eigenvectors associated with a given eigenvalue , together)
with the zero vector, forms a subspace of , called the  of  andeigenspace
denoted by . This applies to both linear operators and matrices.

4  The set of all eigenvalues of an operator or matrix is called the ) spectrum
of the operator or matrix. We denote the spectrum of  by .Spec

Theorem 8.1 Let  have minimal polynomial  and characteristic
polynomial .
1  The spectrum of  is the set of all roots of  or of , not counting)

multiplicity.
2  The eigenvalues of a matrix are invariants under similarity.)
3  The eigenspace  of the matrix  is the solution space to the homogeneous)

system of equations

One way to compute the eigenvalues of a linear operator  is to first represent 
by a matrix  and then solve the characteristic equation

det

Unfortunately, it is quite likely that this equation cannot be solved when
dim . As a result, the art of approximating the eigenvalues of a matrix is
a very important area of applied linear algebra.

The following theorem describes the relationship between eigenspaces and
eigenvectors of distinct eigenvalues.

Theorem 8.2 Suppose that  are distinct eigenvalues of a linear
operator .
1  Eigenvectors associated with distinct eigenvalues are linearly independent;)

that is, if , then the set  is linearly independent.
2  The sum  is direct; that is,  exists.)
Proof. For part 1), if  is linearly dependent, then by renumbering if
necessary, we may assume that among all nontrivial linear combinations of
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these vectors that equal , the equation

( )8.2

has the fewest number of terms. Applying  gives

( )8.3

Multiplying (8.2) by  and subtracting from (8.3) gives

But this equation has fewer terms than (8.2) and so all of its coefficients must
equal . Since the 's are distinct,  for  and so  as well. This
contradiction implies that the 's are linearly independent.

The next theorem describes the spectrum of a polynomial  in .

Theorem 8.3 The   Let  be a vector space over( )spectral mapping theorem
an algebraically closed field . Let  and let . Then

Spec Spec Spec

Proof. We leave it as an exercise to show that if  is an eigenvalue of , then
 is an eigenvalue of . Hence, . For the reverseSpec Spec

inclusion, let , that is,Spec

for . If

where , then writing this as a product of (not necessarily distinct) linear
factors, we have

(The operator  is written  for convenience.) We can remove factors from
the left end of this equation one by one until we arrive at an operator  (perhaps
the identity) for which  but . Then  is an eigenvector
for  with eigenvalue . But since , it follows that

Spec Spec Spec. Hence, .

The Trace and the Determinant
Let  be algebraically closed and let  have characteristic
polynomial



188 Advanced Linear Algebra

where  are the eigenvalues of . Then

det

and setting  gives

det

Hence, if  is algebraically closed then, ,  is the constant termup to sign det
of  and the product of the eigenvalues of , including multiplicity.

The  of the eigenvalues of a matrix over an algebraically closed field is alsosum
an interesting quantity. Like the determinant, this quantity is one of the
coefficients of the characteristic polynomial (up to sign) and can also be
computed directly from the entries of the matrix, without knowing the
eigenvalues explicitly.

Definition The  of a matrix , denoted by , is the sum oftrace tr
the elements on the main diagonal of .

Here are the basic propeties of the trace. Proof is left as an exercise.

Theorem 8.4 Let .
1  A , for .) tr tr
2  .) tr tr tr
3  .) tr tr
4  . However,  may not equal) tr tr tr tr

tr .
5  The trace is an invariant under similarity.)
6  If  is algebraically closed, then  is the sum of the eigenvalues of ,) tr

including multiplicity, and so

tr

where .

Since the trace is invariant under similarity, we can make the following
definition.

Definition The  of a linear operator  is the trace of any matrixtrace
that represents .

As an aside, the reader who is familar with symmetric polynomials knows that
the coefficients of any polynomial
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are the  of the roots:elementary symmetric functions

The most important elementary symmetric functions of the eigenvalues are the
first and last ones:

tr and det

Geometric and Algebraic Multiplicities
Eigenvalues actually have two forms of multiplicity, as described in the next
definition.

Definition Let  be an eigenvalue of a linear operator .
1  The  of  is the multiplicity of  as a root of the) algebraic multiplicity

characteristic polynomial .
2  The  of  is the dimension of the eigenspace .) geometric multiplicity

Theorem 8.5 The geometric multiplicity of an eigenvalue  of  is less
than or equal to its algebraic multiplicity.
Proof. We can extend any basis  of  to a basis  for .
Since  is invariant under , the matrix of  with respect to  has the block
form

block

where  and  are matrices of the appropriate sizes and so

det
det det

det

( )Here  is the dimension of .  Hence, the algebraic multiplicity of  is at least
equal to the the geometric multiplicity  of .
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The Jordan Canonical Form
One of the virtues of the rational canonical form is that every linear operator on
a finite-dimensional vector space has a rational canonical form. However, as
mentioned earlier, the rational canonical form may be far from the ideal of
simplicity that we had in mind for a set of simple canonical forms and is really
more of a theoretical tool than a practical tool.

When the minimal polynomial  of  splits over ,

there is another set of canoncial forms that is arguably simpler than the set of
rational canonical forms.

In some sense, the complexity of the rational canonical form comes from the
choice of basis for the cyclic submodules . Recall that the -cyclic bases
have the form

where . With this basis, all of the complexity comes at the end,deg
so to speak, when we attempt to express

as a linear combination of the basis vectors.

However, since  has the form

any ordered set of the form

where  will also be a basis for . In particular, when deg
splits over , the elementary divisors are

and so the set

is also a basis for .

If we temporarily denote the th basis vector in  by , then for
,
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For , a similar computation, using the fact that

gives

Thus, for this basis, the complexity is more or less spread out evenly, and the
matrix of  with respect to  is the  matrix

which is called a  associated with the scalar . Note that a JordanJordan block
block has 's on the main diagonal, 's on the subdiagonal and 's elsewhere.
Let us refer to the basis

as a  for .Jordan basis

Theorem 8.6 The  Jordan canonical form( ) Suppose that the minimal
polynomial of  splits over the base field , that is,

where .
1  The matrix of  with respect to a Jordan basis  is)

diag

where the polynomials  are the elementary divisors of . This
block diagonal matrix is said to be in  and is calledJordan canonical form
the  .Jordan canonical form of

2  If  is algebraically closed, then up to order of the block diagonal)
matrices, the set of matrices in Jordan canonical form constitutes a set of
canonical forms for similarity.

Proof. For part 2), the companion matrix and corresponding Jordan block are
similar:
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since they both represent the same operator  on the subspace . It follows
that the rational canonical matrix and the Jordan canonical matrix for  are
similar.

Note that the diagonal elements of the Jordan canonical form  of  are
precisely the eigenvalues of , each appearing a number of times equal to its
algebraic multiplicity. In general, the rational canonical form does not “expose”
the eigenvalues of the matrix, even when these eigenvalues lie in the base field.

Triangularizability and Schur's Lemma
We have discussed two different canonical forms for similarity: the rational
canonical form, which applies in all cases and the Jordan canonical form, which
applies only when the base field is algebraically closed. Moreover, there is an
annoying sense in which these sets of canoncial forms leave something to be
desired: One is too complex and the other does not always exist.

Let us now drop the rather strict requirements of canonical forms and look at
two classes of matrices that are too large to be canonical forms (the upper
triangular matrices and the almost upper triangular matrices) and one class of
matrices that is too small to be a canonical form (the diagonal matrices).

The upper triangular matrices or lower triangular matrices  have some nice( )
algebraic properties and it is of interest to know when an arbitrary matrix is
similar to a triangular matrix. We confine our attention to upper triangular
matrices, since there are direct analogs for lower triangular matrices as well.

Definition A linear operator  is  if there is anupper triangularizable
ordered basis  of  for which the matrix  is upper
triangular, or equivalently, if

for all .

As we will see next, when the base field is algebraically closed, all operators are
upper triangularizable. However, since two distinct upper triangular matrices
can be similar, the class of upper triangular matrices is not a canonical form for
similarity. Simply put, there are just too many upper triangular matrices.

Theorem 8.7 ( )Schur's theorem  Let  be a finite-dimensional vector space
over a field .
1  If the characteristic polynomial or minimal polynomial  of  splits) ( )

over , then  is upper triangularizable.
2  If  is algebraically closed, then all operators are upper triangularizable.)
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Proof. Part 2) follows from part 1). The proof of part 1) is most easily
accomplished by matrix means, namely, we prove that every square matrix

 whose characteristic polynomial splits over  is similar to an upper
triangular matrix. If  there is nothing to prove, since all  matrices are
upper triangular. Assume the result is true for  and let .

Let  be an eigenvector associated with the eigenvalue  of  and extend
 to an ordered basis  for . The matrix of  with respect

to  has the form

block

for some . Since  and  are similar, we have

det det det

Hence, the characteristic polynomial of  also splits over  and the induction
hypothesis implies that there is an invertible matrix  for which

is upper triangular. Hence, if

block

then  is invertible and

is upper triangular.

The Real Case
When the base field is , an operator  is upper triangularizable if and
only if its characteristic polynomial splits over . (Why?) We can, however,
always achieve a form that is close to triangular by permitting values on the first
subdiagonal.

Before proceeding, let us recall Theorem 7.11, which says that for a module 
of prime order , the following are equivalent:

1   is cyclic)
2   is indecomposable)
3   is irreducible)
4   is nonderogatory, that is, )
5  .) dim deg
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Now suppose that  and  is an irreducible quadratic.
If  is a -cyclic basis for , then

However, there is a more appealing matrix representation of . To this end, let
 be the matrix above. As a complex matrix,  has two distinct eigenvalues:

Now, a matrix of the form

has characteristic polynomial  and eigenvalues . So
if we set

and

then  has the same two distinct eigenvalues as  and so  and  have the
same Jordan canonical form over . It follows that  and  are similar over 
and therefore also over , by Theorem 7.20. Thus, there is an ordered basis 
for which .

Theorem 8.8 If  and  is cyclic and , then there is andeg
ordered basis  for which

Now we can proceed with the real version of Schur's theorem. For the sake of
the exposition, we make the following definition.

Definition A matrix  is  if it has the formalmost upper triangular

block

where
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or

for . A linear operator  is  ifalmost upper triangularizable
there is an ordered basis  for which  is almost upper triangular.

To see that every real linear operator is almost upper triangularizable, we use
Theorem 7.19, which states that if  is a prime factor of , then  has a
cyclic submodule  of order . Hence,  is a -cyclic subspace of
dimension  and  has characteristic polynomial .deg

Now, the minimal polynomial of a real operator  factors into a product
of linear and irreducible quadratic factors. If  has a linear factor over ,
then  has a one-dimensional -invariant subspace . If  has an
irreducible quadratic factor , then  has a cyclic submodule  of order

 and so a matrix representation of  on  is given by the matrix

This is the basis for an inductive proof, as in the complex case.

Theorem 8.9  If  is a real vector space, then( )Schur's theorem: real case
every linear operator on  is almost upper triangularizable.
Proof. As with the complex case, it is simpler to proceed using matrices, by
showing that any  real matrix  is similar to an almost upper triangular
matrix. The result is clear if . Assume for the purposes of induction that
any square matrix of size less than  is almost upper triangularizable.

We have just seen that  has a one-dimensional -invariant subspace  or a
two-dimensional -cyclic subspace , where  has irreducible characteristic
polynomial on . Hence, we may choose a basis  for  for which the first
one or first two vectors are a basis for . Then

block

where

or

and  has size . The induction hypothesis applied to  gives an
invertible matrix  for which
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is almost upper triangular. Hence, if

block

then  is invertible and

is almost upper triangular.

Unitary Triangularizability
Although we have not yet discussed inner product spaces and orthonormal
bases, the reader may very well be familiar with these concepts. For those who
are, we mention that when  is a real or complex inner product space, then if an
operator  on  can be triangularized (or almost triangularized) using an
ordered basis , it can also be triangularized (or almost triangularized) using an
orthonormal ordered basis .

To see this, suppose we apply the Gram–Schmidt orthogonalization process to a
basis  that triangularizes (or almost triangularizes) . The
resulting ordered orthonormal basis  has the property that

for all . Since  is (almost) upper triangular, that is,

for all , it follows that

and so the matrix  is also (almost) upper triangular.

A linear operator  is  if there is an orderedunitarily upper triangularizable
orthonormal basis with respect to which  is upper triangular. Accordingly,
when  is an inner product space, we can replace the term “upper
triangularizable” with “unitarily upper triangularizable” in Schur's theorem. (A
similar statement holds for almost upper triangular matrices.)

Diagonalizable Operators
Definition A linear operator  is  if there is an ordereddiagonalizable
basis  of  for which the matrix  is diagonal, or
equivalently, if
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for all .

The previous definition leads immediately to the following simple
characterization of diagonalizable operators.

Theorem 8.10 Let . The following are equivalent:
1   is diagonalizable.)
2   has a basis consisting entirely of eigenvectors of .)
3   has the form)

where  are the distinct eigenvalues of .

Diagonalizable operators can also be characterized in a simple way via their
minimal polynomials.

Theorem 8.11 A linear operator  on a finite-dimensional vector space
is diagonalizable if and only if its minimal polynomial is the product of distinct
linear factors.
Proof. If  is diagonalizable, then

and Theorem 7.7 implies that  is the least common multiple of the
minimal polynomials  of  restricted to . Hence,  is a product of
distinct linear factors. Conversely, if  is a product of distinct linear
factors, then the primary decomposition of  has the form

where

and so  is diagonalizable.

Spectral Resolutions
We have seen (Theorem 2.25) that resolutions of the identity on a vector space

 correspond to direct sum decompositions of . We can do something similar
for any  linear operator  on  (not just the identity operator).diagonalizable
Suppose that  has the form

where  is a resolution of the identity and the  are
distinct. This is referred to as a  of .spectral resolution
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We claim that the 's are the eigenvalues of  and . Theorem 2.25im
implies that

im im

If , thenim

and so . Hence,  and soim

im im

which implies that  andim

The converse also holds, for if  and if  is projection onto
 along the direct sum of the other eigenspaces, then

and since , it follows that

Theorem 8.12 A linear operator  is diagonalizable if and only if it
has a spectral resolution

In this case,  is the spectrum of  and

im and ker

Exercises
1. Let  be the  matrix all of whose entries are equal to . Find the

minimal polynomial and characteristic polynomial of  and the
eigenvalues.

2. Prove that the eigenvalues of a matrix do not form a complete set of
invariants under similarity.

3. Show that  is invertible if and only if  is not an eigenvalue of .
4. Let  be an  matrix over a field  that contains all roots of the

characteristic polynomial of . Prove that  is the product of thedet
eigenvalues of , counting multiplicity.

5. Show that if  is an eigenvalue of , then  is an eigenvalue of , for
any polynomial . Also, if , then  is an eigenvalue for .

6. An operator  is  if  for some positive .nilpotent



Eigenvalues and Eigenvectors 199

 a  Show that if  is nilpotent, then the spectrum of  is .)
 b  Find a nonnilpotent operator  with spectrum .)
7. Show that if  and one of  and  is invertible, then 

and so  and  have the same eigenvalues, counting multiplicty.
8. Halmos( )
 a  Find a linear operator  that is not idempotent but for which)

.
 b  Find a linear operator  that is not idempotent but for which)

.
 c  Prove that if , then  is idempotent.)
9. An  is a linear operator  for which . If  is idempotentinvolution

what can you say about ? Construct a one-to-one correspondence
between the set of idempotents on  and the set of involutions.

10. Let  and suppose that  but
 and . Show that if  commutes with both  and ,

then  for some scalar .
11. Let  and let

be a -cyclic submodule of  with minimal polynomial  where 
is prime of degree . Let  restricted to . Show that  is the
direct sum of  -cyclic submodules each of dimension , that is,

Hint: For each , consider the set

12. Fix . Show that any complex matrix is similar to a matrix that looks
just like a Jordan matrix except that the entries that are equal to  are
replaced by entries with value , where  is any complex number. Thus, any
complex matrix is similar to a matrix that is “almost” diagonal. :Hint
consider the fact that

13. Show that the Jordan canonical form is not very robust in the sense that a
small change in the entries of a matrix  may result in a large jump in the
entries of the Jordan form . : consider the matrixHint

What happens to the Jordan form of  as ?
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14. Give an example of a complex nonreal matrix all of whose eigenvalues are
real. Show that any such matrix is similar to a real matrix. What about the
type of the invertible matrices that are used to bring the matrix to Jordan
form?

15. Let  be the Jordan form of a linear operator . For a given
Jordan block of  let  be the subspace of  spanned by the basis
vectors of  associated with that block.

 a  Show that  has a single eigenvalue  with geometric multiplicity .)
In other words, there is essentially only one eigenvector up to scalar(
multiple  associated with each Jordan block. Hence, the geometric)
multiplicity of  for  is the number of Jordan blocks for . Show that
the algebraic multiplicity is the sum of the dimensions of the Jordan
blocks associated with .

 b  Show that the number of Jordan blocks in  is the maximum number)
of linearly independent eigenvectors of .

 c  What can you say about the Jordan blocks if the algebraic multiplicity)
of every eigenvalue is equal to its geometric multiplicity?

16. Assume that the base field  is algebraically closed. Then assuming that the
eigenvalues of a matrix  are known, it is possible to determine the Jordan
form  of  by looking at the rank of various matrix powers. A matrix  is
nilpotent if  for some . The smallest such exponent is called
the .index of nilpotence

 a  Let  be a single Jordan block of size . Show that)
 is nilpotent of index . Thus,  is the smallest integer for

which .rk
 Now let  be a matrix in Jordan form but possessing only one eigenvalue

.
 b  Show that  is nilpotent. Let  be its index of nilpotence. Show)

that  is the maximum size of the Jordan blocks of  and that
rk  is the number of Jordan blocks in  of maximum size.

 c  Show that  is equal to  times the number of Jordan) rk
blocks of maximum size plus the number of Jordan blocks of size one
less than the maximum.

 d  Show that the sequence  for  uniquely) rk
determines the number and size of all of the Jordan blocks in , that is,
it uniquely determines  up to the order of the blocks.

 e  Now let  be an arbitrary Jordan matrix. If  is an eigenvalue for )
show that the sequence  for  where  is therk
first integer for which  uniquelyrk rk
determines  up to the order of the blocks.

 f  Prove that for any matrix  with spectrum  the sequence)
rk  for  and  where  is the first
integer for which  uniquelyrk rk
determines the Jordan matrix  for  up to the order of the blocks.

17. Let .
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 a  If all the roots of the characteristic polynomial of  lie in  prove that)
 is similar to its transpose . Hint: Let  be the matrix

with 's on the diagonal that moves up from left to right and 's
elsewhere. Let  be a Jordan block of the same size as . Show that

.
 b  Let . Let  be a field containing . Show that if  and)

 are similar over , that is, if  where , then
 and  are also similar over , that is, there exists  for

which .
 c  Show that any matrix is similar to its transpose.)

The Trace of a Matrix
18. Let . Verify the following statements.
 a) A , for .tr tr
 b) .tr tr tr
 c) .tr tr
 d) . Find an example to show thattr tr tr

tr tr may not equal .
 e) The trace is an invariant under similarity.
 f) If  is algebraically closed, then the trace of  is the sum of the

eigenvalues of .
19. Use the concept of the trace of a matrix, as defined in the previous exercise,

to prove that there are no matrices ,  for which

20. Let  be a function with the following properties. For all
matrices   and ,

 1  A)
 2  )
 3  )
 Show that there exists  for which tr , for all

.

Commuting Operators
Let

be a family of operators on a vector space . Then  is a  ifcommuting family
every pair of operators commutes, that is,  for all . A subspace



202 Advanced Linear Algebra

 of  is  if it is -invariant for every . It is often of interest-invariant
to know whether a family  of linear operators on  has a common
eigenvector, that is, a single vector  that is an eigenvector for every

 (the corresponding eigenvalues may be different for each operator,
however).

21. A pair of linear operators  is  ifsimultaneously diagonalizable
there is an ordered basis  for  for which  and  are both diagonal,
that is,  is an ordered basis of eigenvectors for both  and . Prove that
two diagonalizable operators  and  are simultaneously diagonalizable if
and only if they commute, that is, . : If , then theHint
eigenspaces of  are invariant under .

22. Let . Prove that if  and  commute, then every eigenspace of
 is -invariant. Thus, if  is a commuting family, then every eigenspace

of any member of  is -invariant.
23. Let  be a family of operators in  with the property that each operator

in  has a full set of eigenvalues in the base field , that is, the
characteristic polynomial splits over . Prove that if  is a commuting
family, then  has a common eigenvector .

24. What do the real matrices

 and 

have to do with the issue of common eigenvectors?

Geršgorin Disks
It is generally impossible to determine precisely the eigenvalues of a given
complex operator or matrix , for if , then the characteristic
equation has degree  and cannot in general be solved. As a result, the
approximation of eigenvalues is big business. Here we consider one aspect of
this approximation problem, which also has some interesting theoretical
consequences.

Let  and suppose that  where . Comparing
th rows gives

which can also be written in the form

If  has the property that  for all , we have
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and thus

( )8.7

The right-hand side is the sum of the absolute values of all entries in the th row
of  except the diagonal entry . This sum  is the th deleted absolute
row sum of . The inequality 8.7  says that, in the complex plane, the( )
eigenvalue  lies in the disk centered at the diagonal entry  with radius equal
to . This disk

GR

is called the  for the th row of . The union of all of theGeršgorin row disk
Geršgorin row disks is called the  for .Geršgorin row region

Since there is no way to know in general which is the index  for which
, the best we can say in general is that the eigenvalues of  lie in the

union of all Geršgorin row disks, that is, in the Geršgorin row region of .

Similar definitions can be made for columns and since a matrix has the same
eigenvalues as its transpose, we can say that the eigenvalues of  lie in the
Geršgorin column region of . The   of a matrixGeršgorin region

 is the intersection of the Geršgorin row region and the Geršgorin
column region and we can say that all eigenvalues of  lie in the Geršgorin
region of . In symbols, .

25. Find and sketch the Geršgorin region and the eigenvalues for the matrix

26. A matrix  is  if for each ,diagonally dominant

and it is  if strict inequality holds. Prove thatstrictly diagonally dominant
if  is strictly diagonally dominant, then it is invertible.

27. Find a matrix  that is diagonally dominant but not invertible.
28. Find a matrix  that is invertible but not strictly diagonally

dominant.



Chapter 9
Real and Complex Inner Product Spaces

We now turn to a discussion of real and complex vector spaces that have an
additional function defined on them, called an , as described in theinner product
following definition. In this chapter,  will denote either the real or complex
field. Also, the complex conjugate of  is denoted by .

Definition Let  be a vector space over  or . An inner product
on  is a function  with the following properties:
1   For all ,) ( )Positive definiteness

and

2  For  ) ( ): Conjugate symmetry

For : ( )Symmetry

3   For all  and ) ( )Linearity in the first coordinate

A real or complex  vector space , together with an inner product, is called a( )
real complex inner product space or  .( )

If , then we let

and

Note that a vector subspace  of an inner product space  is also an inner
product space under the restriction of the inner product of  to .
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We will study bilinear forms (also called ) on vector spaces overinner products
fields other than  or  in Chapter 11. Note that property 1) implies that 
is always real, even if  is a complex vector space.

If , then properties 2) and 3) imply that the inner product is linear in both
coordinates, that is, the inner product is . However, if , thenbilinear

This is referred to as  in the second coordinate. Specifically,conjugate linearity
a function  between complex vector spaces is  ifconjugate linear

and

for all  and . Thus, a complex inner product is linear in its first
coordinate and conjugate linear in its second coordinate. This is often described
by saying that a complex inner product is . (Sesqui means “one andsesquilinear
a half times.”)

Example 9.1
1) The vector space  is an inner product space under the standard inner

product dot product, or , defined by

The inner product space  is often called -dimensional Euclidean
space.

2) The vector space  is an inner product space under the standard inner
product defined by

This inner product space is often called .-dimensional unitary space
3) The vector space  of all continuous complex-valued functions on the

closed interval  is a complex inner product space under the inner
product

Example 9.2 One of the most important inner product spaces is the vector space
 of all real (or complex) sequences  with the property that
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under the inner product

Such sequences are called . Of course, for this inner productsquare summable
to make sense, the sum on the right must converge. To see this, note that if

, then

and so

which implies that . We leave it to the reader to verify that  is an
inner product space.

The following simple result is quite useful.

Lemma 9.1 If  is an inner product space and  for all ,
then .

The next result points out one of the main differences between real and complex
inner product spaces and will play a key role in later work.

Theorem 9.2 Let  be an inner product space and let .
1)

 for all 

2  If  is a complex inner product space, then)

 for all 

but this does not hold in general for real inner product spaces.
Proof. Part 1) follows directly from Lemma 9.1. As for part 2), let ,
for  and . Then

Setting  gives

and setting  gives
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These two equations imply that  for all  and so part 1)
implies that . For the last statement, rotation by  degrees in the real
plane  has the property that  for all .

Norm and Distance
If  is an inner product space, the , or  of  is defined bynorm length

( )9.1

A vector  is a  if . Here are the basic properties of the norm.unit vector

Theorem 9.3
1   and  if and only if .)
2  For all  and ,)

3   For all ,) ( )The Cauchy–Schwarz inequality

with equality if and only if one of  and  is a scalar multiple of the other.
4   For all ,) ( )The triangle inequality

with equality if and only if one of  and  is a scalar multiple of the other.
5  For all ,)

6  For all ,)

7   For all ,) ( )The parallelogram law

Proof. We prove only Cauchy–Schwarz and the triangle inequality. For
Cauchy–Schwarz, if either  or  is zero the result follows, so assume that

. Then, for any scalar ,

Choosing  makes the value in the square brackets equal to 
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and so

which is equivalent to the Cauchy–Schwarz inequality. Furthermore, equality
holds if and only if , that is, if and only if , which is
equivalent to  and  being scalar multiples of one another.

To prove the triangle inequality, the Cauchy–Schwarz inequality gives

from which the triangle inequality follows. The proof of the statement
concerning equality is left to the reader.

Any vector space , together with a function  that satisfies
properties 1), 2) and 4) of Theorem 9.3, is called a  and thenormed linear space
function  is called a . Thus, any inner product space is a normed linearnorm
space, under the norm given by 9.1 .( )

It is interesting to observe that the inner product on  can be recovered from the
norm. Thus, knowing the length of all vectors in  is equivalent to knowing all
inner products of vectors in .

Theorem 9.4 ( )The polarization identities
1  If  is a real inner product space, then)

2  If  is a complex inner product space, then)

The norm can be used to define the distance between any two vectors in an
inner product space.

Definition Let  be an inner product space. The   between anydistance
two vectors  and  in  is

( )9.2

Here are the basic properties of distance.
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Theorem 9.5
1   and  if and only if )
2) ( )Symmetry

3) ( )The triangle inequality

Any nonempty set , together with a function  that satisfies the
properties of Theorem 9.5, is called a  and the function  is calledmetric space
a  on . Thus, any inner product space is a metric space under the metricmetric
( )9.2 .

Before continuing, we should make a few remarks about our goals in this and
the next chapter. The presence of an inner product, and hence a metric, permits
the definition of a topology on , and in particular, convergence of infinite
sequences. A sequence  of vectors in   to  ifconverges

lim

Some of the more important concepts related to convergence are closedness and
closures, completeness and the continuity of linear operators and linear
functionals.

In the finite-dimensional case, the situation is very straightforward: All
subspaces are closed, all inner product spaces are complete and all linear
operators and functionals are continuous. However, in the infinite-dimensional
case, things are not as simple.

Our goals in this chapter and the next are to describe some of the basic
properties of inner product spaces—both finite and infinite-dimensional—and
then discuss certain special types of operators (normal, unitary and self-adjoint)
in the finite-dimensional case only. To achieve the latter goal as rapidly as
possible, we will postpone a discussion of convergence-related properties until
Chapter 12. This means that we must state some results only for the finite-
dimensional case in this chapter.

Isometries
An isomorphism of vector spaces preserves the vector space operations. The
corresponding concept for inner product spaces is the .isometry

Definition Let  and  be inner product spaces and let .
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1   is an  if it preserves the inner product, that is, if) isometry

for all .
2  A bijective isometry is called an . When ) isometric isomorphism

is an isometric isomorphism, we say that  and  are isometrically
isomorphic.

It is clear that an isometry is injective and so it is an isometric isomorphism
provided it is surjective. Moreover, if

dim dim

injectivity implies surjectivity and  is an isometry if and only if  is an
isometric isomorphism. On the other hand, the following simple example shows
that this is not the case for infinite-dimensional inner product spaces.

Example 9.3 The map  defined by

is an isometry, but it is clearly not surjective.

Since the norm determines the inner product, the following should not come as a
surprise.

Theorem 9.6 A linear transformation  is an isometry if and only if
it preserves the norm, that is, if and only if

for all .
Proof. Clearly, an isometry preserves the norm. The converse follows from the
polarization identities. In the real case, we have

and so  is an isometry. The complex case is similar.

Orthogonality
The presence of an inner product allows us to define the concept of
orthogonality.
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Definition Let  be an inner product space.
1  Two vectors  are , written , if) orthogonal

2  Two subsets  are , written , if ,) orthogonal
that is, if  for all  and . We write  in place of

.
3  The  of a subset  is the set) orthogonal complement

The following result is easily proved.

Theorem 9.7 Let  be an inner product space.
1  The orthogonal complement  of any subset  is a subspace of .)
2  For any subspace  of ,)

Definition An inner product space  is the  oforthogonal direct sum
subspaces  and  if

In this case, we write

More generally,  is the  of the subspaces ,orthogonal direct sum
written

if

and  for 

Theorem 9.8 Let  be an inner product space. The following are equivalent.
1)
2   and )
Proof. If , then by definition, . However, if , then

 where  and . Then  is orthogonal to both  and  and so 
is orthogonal to itself, which implies that  and so . Hence, .
The converse is clear.

Orthogonal and Orthonormal Sets
Definition A nonempty set  of vectors in an inner product
space is said to be an  if  for all . If, inorthogonal set
addition, each vector  is a unit vector, then  is an . Thus, aorthonormal set
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set is orthonormal if

for all , where  is the Kronecker delta function.

Of course, given any nonzero vector , we may obtain a unit vector  by
multiplying  by the reciprocal of its norm:

This process is referred to as  the vector . Thus, it is a simplenormalizing
matter to construct an orthonormal set from an orthogonal set of nonzero
vectors.

Note that if , then

and the converse holds if .

Orthogonality is stronger than linear independence.

Theorem 9.9 Any orthogonal set of nonzero vectors in  is linearly
independent.
Proof. If  is an orthogonal set of nonzero vectors and

then

and so , for all . Hence,  is linearly independent.

Gram–Schmidt Orthogonalization
The Gram–Schmidt process can be used to transform a sequence of vectors into
an orthogonal sequence. We begin with the following.

Theorem 9.10  Let  be an inner product( )Gram–Schmidt augmentation
space and let  be an orthogonal set of vectors in . If

, then there is a nonzero  for which  is
orthogonal and

In particular,
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where

if
if

Proof. We simply set

and force  for all , that is,

Thus, if , take  and if , take

The Gram–Schmidt augmentation is traditionally applied to a sequence of
linearly independent vectors, but it also applies to any sequence of vectors.

Theorem 9.11 The Gram–Schmidt orthogonalization process( ) Let
 be a sequence of vectors in an inner product space . Define a

sequence  by repeated Gram–Schmidt augmentation, that is,

where  and

if
if

Then  is an orthogonal sequence in  with the property that

for all . Also,  if and only if .
Proof. The result holds for . Assume it holds for . If

, then

Writing
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we have

if
if

Therefore,  when  and so . Hence,

If  then

Example 9.4 Consider the inner product space  of real polynomials, with
inner product defined by

Applying the Gram–Schmidt process to the sequence 
gives

3

4
3

3

and so on. The polynomials in this sequence are at least up to multiplicative(
constants  the .) Legendre polynomials

The QR Factorization
The Gram–Schmidt process can be used to factor any real or complex matrix
into a product of a matrix with orthogonal columns and an upper triangular
matrix. Suppose that  is an  matrix with columns

, where . The Gram–Schmidt process applied to these columns gives
orthogonal vectors  for which
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for all . In particular,

where

if
if

In matrix terms,

that is,  where  has orthogonal columns and  is upper triangular.
We may normalize the nonzero columns  of  and move the positive
constants to . In particular, if  for  and  for , then

and so

where the columns of  are orthogonal and each column is either a unit vector
or the zero vector and  is upper triangular with positive entries on the main
diagonal. Moreover, if the vectors  are linearly independent, then the
columns of  are nonzero. Also, if  and  is nonsingular, then  is
unitary/orthogonal.

If the columns of  are not linearly independent, we can make one final
adjustment to this matrix factorization. If a column  is zero, then we may
replace this column by any vector as long as we replace the th entry  in 
by . Therefore, we can take nonzero columns of , extend to an orthonormal
basis for the span of the columns of  and replace the zero columns of  by the
additional members of this orthonormal basis. In this way,  is replaced by a
unitary/orthogonal matrix  and  is replaced by an upper triangular matrix 
that has nonnegative entries on the main diagonal.
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Theorem 9.12 Let , where  or . There exists a
matrix  with orthonormal columns and an upper triangular
matrix  with nonnegative real entries on the main diagonal for
which

Moreover, if , then  is unitary/orthogonal. If  is nonsingular, then 
can be chosen to have positive entries on the main diagonal, in which case the
factors  and  are unique. The factorization  is called the 
factorization of the matrix . If  is real, then  and  may be taken to be
real.
Proof. As to uniqueness, if  is nonsingular and  then

and the right side is upper triangular with nonzero entries on the main diagonal
and the left side is unitary. But an upper triangular matrix with positive entries
on the main diagonal is unitary if and only if it is the identity and so 
and . Finally, if  is real, then all computations take place in the real
field and so  and  are real.

The  decomposition has important applications. For example, a system of
linear equations  can be written in the form

and since , we have

This is an upper triangular system, which is easily solved by back substitution;
that is, starting from the bottom and working up.

We mention also that the  factorization is associated with an algorithm for
approximating the eigenvalues of a matrix, called the . algorithm
Specifically, if  is an  matrix, define a sequence of matrices as
follows:

1) Let  be the  factorization of  and let .
2) Once  has been defined, let  be the  factorization of 

and let .

Then  is unitarily/orthogonally similar to , since

For complex matrices, it can be shown that under certain circumstances, such as
when the eigenvalues of  have distinct norms, the sequence  converges
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(entrywise) to an upper triangular matrix , which therefore has the eigenvalues
of  on its main diagonal. Results can be obtained in the real case as well. For
more details, we refer the reader to [48], page 115.

Hilbert and Hamel Bases
Definition A  in an inner product space  is called amaximal orthonormal set
Hilbert basis for .

Zorn's lemma can be used to show that any nontrivial inner product space has a
Hilbert basis. We leave the details to the reader.

Some care must be taken not to confuse the concepts of a basis for a vector
space and a Hilbert basis for an inner product space. To avoid confusion, a
vector space basis, that is, a maximal linearly independent set of vectors, is
referred to as a . We will refer to an orthonormal Hamel basis as anHamel basis
orthonormal basis.

To be perfectly clear, there are maximal linearly independent sets called
(Hamel) bases and maximal orthonormal sets (called Hilbert bases). If a
maximal linearly independent set (basis) is orthonormal, it is called an
orthonormal basis.

Moreover, since every orthonormal set is linearly independent, it follows that an
orthonormal basis is a Hilbert basis, since it cannot be properly contained in an
orthonormal set. For  inner product spaces, the two types offinite-dimensional
bases are the same.

Theorem 9.13 Let  be an inner product space. A finite subset
 of  is an orthonormal Hamel  basis for  if and only if it is( )

a Hilbert basis for .
Proof. We have seen that any orthonormal basis is a Hilbert basis. Conversely,
if  is a finite maximal orthonormal set and , where  is linearly
independent, then we may apply part 1) to extend  to a strictly larger
orthonormal set, in contradiction to the maximality of . Hence,  is maximal
linearly independent.

The following example shows that the previous theorem fails for infinite-
dimensional inner product spaces.

Example 9.5 Let  and let  be the set of all vectors of the form

where  has a  in the th coordinate and 's elsewhere. Clearly,  is an
orthonormal set. Moreover, it is maximal. For if  has the property
that , then
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for all  and so . Hence, no nonzero vector  is orthogonal to .
This shows that  is a Hilbert basis for the inner product space .

On the other hand, the vector space span of  is the subspace  of all
sequences in  that have finite support, that is, have only a finite number of
nonzero terms and since , we see that  is not a Hamelspan
basis for the vector space .

The Projection Theorem and Best Approximations
Orthonormal bases have a great practical advantage over arbitrary bases. From a
computational point of view, if  is a basis for , then each

 has the form

In general, determining the coordinates  requires solving a system of linear
equations of size .

On the other hand, if  is an orthonormal basis for  and

then the coefficients  are quite easily computed:

Even if  is not a basis (but just an orthonormal set), we can
still consider the expansion

Theorem 9.14 Let  be an orthonormal subset of an inner
product space  and let . The  with respect to  ofFourier expansion
a vector  is

Each coefficient  is called a  of  with respect to .Fourier coefficient
The vector  can be characterized as follows:
1   is the unique vector  for which .)
2   is the  to  from within , that is,  is the unique) best approximation

vector  that is closest to , in the sense that

for all .
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3   holds for all , that is) Bessel's inequality

Proof. For part 1), since

it follows that . Also, if  for , then  and

and so . For part 2), if , then  implies that
 and so

Hence,  is smallest if and only if  and the smallest value is
. We leave proof of Bessel's inequality as an exercise.

Theorem 9.15 The   If  is a finite-dimensional subspace( )projection theorem
of an inner product space , then

In particular, if , then

It follows that

dim dim dim

Proof. We have seen that  and so . But 
and so .

The following example shows that the projection theorem may fail if  is not
finite-dimensional. Indeed, in the infinite-dimensional case,  must be a
complete subspace, but we postpone a discussion of this case until Chapter 13.

Example 9.6 As in Example 9.5, let  and let  be the subspace of all
sequences with finite support, that is,  is spanned by the vectors

where  has a  in the th coordinate and 's elsewhere. If , then
 for all  and so . Therefore, . However,

The projection theorem has a variety of uses.
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Theorem 9.16 Let  be an inner product space and let  be a finite-
dimensional subspace of .
1)
2  If  and , then) dim

Proof. For part 1), it is clear that . On the other hand, if , then
the projection theorem implies that  where  and . Then

 is orthogonal to both  and  and so  is orthogonal to itself. Hence, 
and  and so . We leave the proof of part 2) as an exercise.

Characterizing Orthonormal Bases
We can characterize orthonormal bases using Fourier expansions.

Theorem 9.17 Let  be an orthonormal subset of an inner
product space  and let . The following are equivalent:
1   is an orthonormal basis for .)
2)
3  Every vector is equal to its Fourier expansion, that is, for all ,)

4   holds for all , that is,) Bessel's identity

5   holds for all , that is,) Parseval's identity

where

is the standard dot product in .
Proof. To see that 1) implies 2), if  is nonzero, then  is
orthonormal and so  is not maximal. Conversely, if  is not maximal, there is
an orthonormal set  for which . Then any nonzero  is in

. Hence, 2) implies 1). We leave the rest of the proof as an exercise.

The Riesz Representation Theorem
We have been dealing with linear maps for some time. We now have a need for
conjugate linear maps.

Definition A function  on complex vector spaces is conjugate linear
if it is additive,
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and

for all . A  is a bijective conjugate linear map.conjugate isomorphism

If , then the inner product function  defined by

is a linear functional on . Thus, the linear map  defined by

is conjugate linear. Moreover, since  implies , it follows
that  is injective and therefore a conjugate isomorphism (since  is finite-
dimensional).

Theorem 9.18 The  Riesz representation theorem( ) Let  be a finite-
dimensional inner product space.
1  The map  defined by)

is a conjugate isomorphism. In particular, for each , there exists a
unique vector  for which , that is,

for all . We call  the  for  and denote it by .Riesz vector
2  The map  defined by)

is also a conjugate isomorphism, being the inverse of . We will call this
map the .Riesz map

Proof. Here is the usual proof that  is surjective. If , then , so let
us assume that . Then  has codimension  and soker

for . Letting  for , we require that

and since this clearly holds for any , it is sufficient to show that it holds
for , that is,

Thus,  and
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For part 2), we have

for all  and so

Note that if , then , where  is the
standard basis for .

Exercises
1. Prove that if a matrix  is unitary, upper triangular and has positive entries

on the main diagonal, must be the identity matrix.
2. Use the QR factorization to show that any triangularizable matrix is

unitarily (orthogonally) triangularizable.
3. Verify the statement concerning equality in the triangle inequality.
4. Prove the parallelogram law.
5. Prove the Apollonius identity

6. Let  be an inner product space with basis . Show that the inner product
is uniquely defined by the values , for all .

7. Prove that two vectors  and  in a real inner product space  are
orthogonal if and only if

8. Show that an isometry is injective.
9. Use Zorn's lemma to show that any nontrivial inner product space has a

Hilbert basis.
10. Prove Bessel's inequality.
11. Prove that an orthonormal set  is a Hilbert basis for a finite-dimensional

vector space  if and only if  , for all .
12. Prove that an orthonormal set  is a Hilbert basis for a finite-dimensional

vector space  if and only if Bessel's identity holds for all , that is, if
and only if



224 Advanced Linear Algebra

for all .
13. Prove that an orthonormal set  is a Hilbert basis for a finite-dimensional

vector space  if and only if Parseval's identity holds for all , that
is, if and only if

for all .
14. Let  and  be in . The Cauchy–Schwarz

inequality states that

Prove that we can do better:

15. Let  be a finite-dimensional inner product space. Prove that for any subset
 of , we have .span

16. Let  be the inner product space of all polynomials of degree at most 3,3
under the inner product

Apply the Gram–Schmidt process to the basis , thereby
computing the first four  at least up to aHermite polynomials (
multiplicative constant .)

17. Verify uniqueness in the Riesz representation theorem.
18. Let  be a complex inner product space and let  be a subspace of .

Suppose that  is a vector for which  for all
. Prove that .

19. If  and  are inner product spaces, consider the function on 
defined by

Is this an inner product on ?
20. A  over  or  is a vector space over  or normed vector space ( )

together with a function  for which for all  and scalars 
we have

 a  )
 b  )
 c   if and only if )
 If  is a real normed space over  and if the norm satisfies the( )

parallelogram law
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prove that the polarization identity

defines an inner product on . : Evaluate  to showHint
that  and . Then complete the
proof that .

21. Let  be a subspace of a finite-dimensional inner product space . Prove
that each coset in  contains exactly one vector that is orthogonal to .

Extensions of Linear Functionals
22. Let  be a linear functional on a subspace  of a finite-dimensional inner

product space . Let . Suppose that  is an extension
of , that is, . What is the relationship between the Riesz vectors 
and ?

23. Let  be a nonzero linear functional on a subspace  of a finite-dimensional
inner product space  and let . Show that if  is anker
extension of , then . Moreover, for each vector

 there is exactly one scalar  for which the linear functional
 is an extension of .

Positive Linear Functionals on 
A vector  in  is  also called , writtennonnegative positive( )

, if  for all . The vector  is , written , if  isstrictly positive
nonnegative but not . The set  of all strictly positive vectors in  is called
the  in  The vector  is , writtennonnegative orthant strongly positive

, if  for all . The set , of all strongly positive vectors in  is
the  in strongly positive orthant

Let  be a linear functional on a subspace  of . Then  is
nonnegative also called , written , if( )positive

for all  and  is , written , ifstrictly positive

for all 

24. Prove that a linear functional  on  is positive if and only if  and
strictly positive if and only if . If  is a subspace of  is it true
that a linear functional  on  is nonnegative if and only if ?
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25. Let  be a strictly positive linear functional on a subspace  of .
Prove that  has a strictly positive extension to . Use the fact that if

, where

 all 

and  is a subspace of , then  contains a strongly positive vector.
26. If  is a real inner product space, then we can define an inner product on its

complexification  as follows this is the same formula as for the ordinary(
inner product on a complex vector space :)

Show that

where the norm on the left is induced by the inner product on  and the
norm on the right is induced by the inner product on .



Chapter 10
Structure Theory for Normal Operators

Throughout this chapter, all vector spaces are assumed to be finite-dimensional
unless otherwise noted. Also, the field  is either  or .

The Adjoint of a Linear Operator
The purpose of this chapter is to study the structure of certain special types of
linear operators on finite-dimensional real and complex inner product spaces. In
order to define these operators, we introduce another type of adjoint (different
from the operator adjoint of Chapter 3).

Theorem 10.1 Let  and  be finite-dimensional inner product spaces over 
and let . Then there is a unique function , defined by
the condition

for all  and . This function is in  and is called the adjoint
of .
Proof.  If  exists, then it is unique, for if

then  for all  and  and so .

We seek a linear map  for which

By way of motivation, the vector , if it exists, looks very much like a linear
map sending  to . The only problem is that  is supposed to be a
vector, not a linear map. But the Riesz representation theorem tells us that linear
maps can be represented by vectors.
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Specifically, for each , the linear functional  defined by

has the form

where  is the Riesz vector for . If  is defined by

where  is the Riesz map, then

Finally, since  is the composition of the Riesz map  and the map
 and since both of these maps are conjugate linear, their composition

is linear.

Here are some of the basic properties of the adjoint.

Theorem 10.2 Let  and  be finite-dimensional inner product spaces. For
every  and ,
1)
2)
3   and so)

4  If , then )
5  If  is invertible, then )
6  If  and , then .)

Moreover, if  and  is a subspace of , then
7   is -invariant if and only if  is -invariant.)
8   reduces  if and only if  is both -invariant and -invariant, in)

which case

Proof. For part 7), let  and  and write

Now, if  is -invariant, then  for all  and so  and
 is -invariant. Conversely, if  is -invariant, then  for all

 and so , whence  is -invariant.

The first statement in part 8) follows from part 7) applied to both  and . For
the second statement, since  is both -invariant and -invariant, if ,
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then

Hence, by definition of adjoint, .

Now let us relate the kernel and image of a linear transformation to those of its
adjoint.

Theorem 10.3 Let , where  and  are finite-dimensional inner
product spaces.
1)

ker kerim imand

and so

 surjective  injective
 injective  surjective

2)

ker ker ker kerand

3)

im im im imand

4)

Proof. For part 1),

ker

im

and so . The second equation in part 1) follows by replacing ker im
by  and taking complements.

For part 2), it is clear that . For the reverse inclusion, we haveker ker

and so . The second equation follows from the first byker ker
replacing  with . We leave the rest of the proof for the reader.
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The Operator Adjoint and the Hilbert Space Adjoint
We should make some remarks about the relationship between the operator
adjoint  of , as defined in Chapter 3 and the adjoint  that we have just
defined, which is sometimes called the . In the first place,Hilbert space adjoint
if , then  and  have different domains and ranges:

and

The two maps are shown in Figure 10.1, along with the conjugate Riesz
isomorphisms  and .

V
*

W

V W
x

* *

RV RW

Figure 10.1

The composite map  defined by

is linear. Moreover, for all  and ,

and so . Hence, the relationship between  and  is

Loosely speaking, the Riesz functions are like “change of variables” functions
from linear functionals to vectors, and we can say that  does to Riesz vectors
what  does to the corresponding linear functionals. Put another way (and just
as loosely),  and  are the same, up to conjugate Riesz isomorphism.

In Chapter 3, we showed that the matrix of the operator adjoint  is the
transpose of the matrix of the map . For Hilbert space adjoints, the situation is
slightly different (due to the conjugate linearity of the inner product). Suppose
that  and  are ordered orthonormal bases for 
and , respectively. Then
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and so  and  are conjugate transposes. The conjugate transpose of a
matrix  is

and is called the  of .adjoint

Theorem 10.4 Let , where  and  are finite-dimensional inner
product spaces.
1  The operator adjoint  and the Hilbert space adjoint  are related by)

where  and  are the conjugate Riesz isomorphisms on  and ,
respectively.

2  If  and  are ordered  for  and , respectively, then) orthonormal bases

In words, the matrix of the adjoint  is the adjoint conjugate transpose  of( )
the matrix of .

Orthogonal Projections
In an inner product space, we can single out some special projection operators.

Definition A projection of the form  is said to be .orthogonal
Equivalently, a projection  is orthogonal if .ker im

Some care must be taken to avoid confusion between orthogonal projections and
two projections that are orthogonal to each other, that is, for which

.

We have seen that an operator  is a projection operator if and only if it is
idempotent. Here is the analogous characterization of orthogonal projections.

Theorem 10.5 Let  be a finite-dimensional inner product space. The following
are equivalent for an operator  on :
1   is an orthogonal projection)
2   is idempotent and self-adjoint)
3   is idempotent and does not expand lengths, that is)

for all .
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Proof. Since

it follows that  if and only if , that is, if and only if  is
orthogonal. Hence, 1) and 2) are equivalent.

To prove that 1) implies 3), let . Then if  for  and
, it follows that

Now suppose that 3) holds. Then

im ker ker ker

and we wish to show that the first sum is orthogonal. If , thenim
, where  and . Hence,ker ker

and so the orthogonality of  and  implies that

Hence,  and so , which implies that .im imker ker

Orthogonal Resolutions of the Identity
We have seen (Theorem 2.25) that resolutions of the identity

on  correspond to direct sum decompositions of . If, in addition, the
projections are orthogonal, then the direct sum is an orthogonal sum.

Definition An  is a resolution of theorthogonal resolution of the identity
identity  in which each projection  is orthogonal.

The following theorem displays a correspondence between orthogonal direct
sum decompositions of  and orthogonal resolutions of the identity.

Theorem 10.6 Let  be an inner product space. Orthogonal resolutions of the
identity on  correspond to orthogonal direct sum decompositions of  as
follows:
1  If  is an orthogonal resolution of the identity, then)

im im

and  is orthogonal projection onto .im
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2  Conversely, if)

and if  is orthogonal projection onto , then  is an
orthogonal resolution of the identity.

Proof. To prove 1), if  is an orthogonal resolution of the
identity, Theorem 2.25 implies that

im im

However, since the 's are pairwise orthogonal and self-adjoint, it follows that

and so

im im

For the converse, Theorem 2.25 implies that  is a resolution of
the identity where  is projection onto  alongim

ker im im

Hence,  is orthogonal.

Unitary Diagonalizability
We have seen (Theorem 8.10) that a linear operator  on a finite-
dimensional vector space  is diagonalizable if and only if

Of course, each eigenspace  has an orthonormal basis , but the union of
these bases need not be an  basis for .orthonormal

Definition A linear operator  is  when  isunitarily diagonalizable (
complex  and  when  is real  if there is an) ( )orthogonally diagonalizable
ordered orthonormal basis  of  for which the matrix  is
diagonal, or equivalently, if

for all .

Here is the counterpart of Theorem 8.10 for inner product spaces.

Theorem 10.7 Let  be a finite-dimensional inner product space and let
. The following are equivalent:

1   is unitarily orthogonally  diagonalizable.) ( )
2   has an orthonormal basis that consists entirely of eigenvectors of .)
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3   has the form)

where  are the distinct eigenvalues of .

For simplicity in exposition, we will tend to use the term unitarily
diagonalizable for both cases. Since unitarily diagonalizable operators are so
well behaved, it is natural to seek a characterization of such operators.
Remarkably, there is a simple one, as we will see next.

Normal Operators
Operators that commute with their own adjonts are very special.

Definition
1  A linear operator  on an inner product space  is  if it commutes) normal

with its adjoint:

2  A matrix  is  if  commutes with its adjoint .) normal

If  is normal and  is an ordered orthonormal basis of , then

and

and so  is normal if and only if  is normal for some, and hence all,
orthonormal bases for . Note that this does not hold for bases that are not
orthonormal.

Normal operators have some very special properties.

Theorem 10.8 Let  be normal.
1  The following are also normal:)
 a  , if  reduces )
 b  )
 c  , if  is invertible)
 d  , for any polynomial )
2  For any ,  )

and, in particular, 
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and so

ker ker

3  For any integer , )

ker ker

4  The minimal polynomial  is a product of distinct prime monic)
polynomials.

5)

6  If  and  are submodules of  with relatively prime orders, then .)
7  If  and  are distinct eigenvalues of , then .)
Proof. We leave part 1) for the reader. For part 2), normality implies that

We prove part 3) first for the operator , which is , that is,self-adjoint

If  for , then

and so . Continuing in this way gives . Now, if  for
, then

and so . Hence,

and so .

For part 4 , suppose that)

where  is monic and prime. Then for any ,

and since  is also normal, part 3) implies that

for all . Hence, , which implies that . Thus, the prime
factors of  appear only to the first power.
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Part 5) follows from part 2):

ker ker ker

For part 6), if  and , then there are polynomials 
and  for which  and so

Now,  annihilates  and  annihilates . Therefore
 also annihilates  and so

Part 7) follows from part 6), since  and  are
relatively prime when . Alternatively, for  and , we have

and so  implies that .

The Spectral Theorem for Normal Operators
Theorem 10.8 implies that when , the minimal polynomial  splits
into distinct linear factors and so Theorem 8.11 implies that  is diagonalizable,
that is,

Moreover, since distinct eigenspaces of a normal operator are orthogonal, we
have

and so  is unitarily diagonalizable.

The converse of this is also true. If  has an orthonormal basis 
 of eigenvectors for , then since  and  are

diagonal, these matrices commute and therefore so do  and .

Theorem 10.9 ( )The spectral theorem for normal operators: complex case
Let  be a finite-dimensional complex inner product space and let .
The following are equivalent:
1   is normal.)
2   is unitarily diagonalizable, that is,)
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3   has an ) orthogonal spectral resolution

(10.1)

where  and  is orthogonal for all , in which case,
 is the spectrum of  and

im and ker

Proof. We have seen that 1) and 2) are equivalent. To see that 2) and 3) are
equivalent, Theorem 8.12 says that

if and only if

and in this case,

im and ker

But  for  if and only if

im ker

that is, if and only if each  is orthogonal. Hence, the direct sum 
 is an orthogonal sum if and only if each projection is

orthogonal.

The Real Case
If , then  has the form

where each  is an irreducible monic quadratic. Hence, the primary cyclic
decomposition of  gives

where  is cyclic with prime quadratic order . Therefore, Theorem 8.8
implies that there is an ordered basis  for which

Theorem 10.10  A( )The spectral theorem for normal operators: real case
linear operator  on a finite-dimensional real inner product space is normal if
and only if
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where  is the spectrum of  and each  is an indecomposable two-
dimensional -invariant subspace with an ordered basis  for which

Proof. We need only show that if  has such a decomposition, then  is normal.
But

and so  is normal. It follows easily that  is normal.

Special Types of Normal Operators
We now want to introduce some special types of normal operators.

Definition Let  be an inner product space.
1   is  also called  in the complex case and) (self-adjoint Hermitian

symmetric in the real case  if)

2   is  also called  in the) (skew self-adjoint skew-Hermitian
complex case and  in the real case  ifskew-symmetric )

3   is  in the complex case and  in the real case if) unitary orthogonal
 is invertible and

There are also matrix versions of these definitions, obtained simply by replacing
the operator  by a matrix . Moreover, the operator  is self-adjoint if and only
if any matrix that represents  with respect to an ordered  basis  isorthonormal
self-adjoint. Similar statements hold for the other types of operators in the
previous definition.

In some sense, square complex matrices are a generalization of complex
numbers and the adjoint (conjugate transpose) is a generalization of the complex
conjugate. In looking for a better analogy, we could consider just the diagonal
matrices, but this is a bit too restrictive. The next logical choice is the set  of
normal matrices.

Indeed, among the complex numbers, there are some special subsets: the real
numbers, the positive numbers and the numbers on the unit circle. We will soon
see that a complex matrix  is self-adjoint if and only if its complex eigenvalues
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are real. This would suggest that the analog of the set of real numbers is the set
of self-adjoint matrices. Also, we will see that a complex matrix is unitary if and
only if its eigenvalues have norm , so numbers on the unit circle seem to
correspond to the set of unitary matrices. This leaves open the question of which
normal matrices correspond to the positive real numbers. These are the positive
definite matrices, which we will discuss later in the chapter.

Self-Adjoint Operators
Let us consider the basic properties of self-adjoint operators. The quadratic
form associated with the linear operator  is the function  defined
by

We have seen (Theorem 9.2) that in a  inner product space,  if andcomplex
only if  but this does not hold, in general, for real inner product spaces.
However, it does hold for symmetric operators on a real inner product space.

Theorem 10.11 Let  be a finite-dimensional inner product space and let
.

1  If  and  are self-adjoint, then so are the following:)
 a  )
 b  , if  is invertible)
 c  , for any real polynomial )
2  A complex operator  is Hermitian if and only if  is real for all)

.
3  If  is a complex operator or a real symmetric operator, then)

4  The characteristic polynomial  of a self-adjoint operator  splits over)
, that is, all complex roots of  are real. Hence, the minimal

polynomial  of  is the product of distinct monic linear factors over
.

Proof. For part 2), if  is Hermitian, then

and so  is real. Conversely, if , then

and so .

For part 3), we need only prove that  implies  when . But if
, then
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and so .

For part 4), if  is Hermitian ( ) and , then

and so  is real. If  is symmetric ( ) , we must be a bit careful, since
a nonreal root of  is  an eigenvalue of . However, matrix techniquesnot
can come to the rescue here. If  for any ordered orthonormal basis 
for , then . Now,  is a real symmetric matrix, but can be
thought of as a complex Hermitian matrix with real entries. As such, it
represents a Hermitian linear operator on the complex space  and so, by what
we have just shown, all (complex) roots of its characteristic polynomial are real.
But the characteristic polynomial of  is the same, whether we think of  as a
real or a complex matrix and so the result follows.

Unitary Operators and Isometries
We now turn to the basic properties of unitary operators. These are the
workhorse operators, in that a unitary operator is precisely a normal operator
that maps orthonormal bases to orthonormal bases.

Note that  is unitary if and only if

for all .

Theorem 10.12 Let  be a finite-dimensional inner product space and let
.

1  If  and  are unitary/orthogonal, then so are the following:)
 a  , for )
 b  )
 c  , if  is invertible.)
2   is unitary/orthogonal if and only it is an isometric isomorphism.)
3   is unitary/orthogonal if and only if it takes some orthonormal basis to an)

orthonormal basis, in which case it takes all orthonormal bases to
orthonormal bases.

4  If  is unitary/orthogonal, then the eigenvalues of  have absolute value .)
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Proof. We leave the proof of part 1) to the reader. For part 2), a
unitary/orthogonal map is injective and since  is finite-dimensional, it is
bijective. Moreover, for a bijective linear map , we have

 is an isometry  for all 
 for all 

 is unitary/orthogonal

For part 3), suppose that  is unitary/orthogonal and that  is an
orthonormal basis for . Then

and so  is an orthonormal basis for . Conversely, suppose that  and 
are orthonormal bases for . Then

which implies that  for all  and so  is
unitary/orthogonal.

For part 4), if  is unitary and , then

and so , which implies that .

We also have the following theorem concerning unitary and orthogonal( )
matrices.

Theorem 10.13 Let  be an  matrix over  or .
1  The following are equivalent:)
 a   is unitary/orthogonal.)
 b  The columns of  form an orthonormal set in .)
 c  The rows of  form an orthonormal set in .)
2  If  is unitary, then . If  is orthogonal, then .) det det
Proof. The matrix  is unitary if and only if , which is equivalent to
the rows of  being orthonormal. Similarly,  is unitary if and only if

, which is equivalent to the columns of  being orthonormal. As for
part 2),

det det det det

from which the result follows.
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Unitary/orthogonal matrices play the role of change of basis matrices when we
restrict attention to orthonormal bases. Let us first note that if 
is an ordered orthonormal basis and

then

where the right hand side is the standard inner product in  and so  if
and only if . We can now state the analog of Theorem 2.9.

Theorem 10.14 If we are given any two of the following:
1  A unitary/orthogonal  matrix ,)
2  An ordered orthonormal basis  for ,)
3  An ordered orthonormal basis  for ,)
then the third is uniquely determined by the equation

Proof. Let  be a basis for . If  is an orthonormal basis for , then

where  is the th column of . Hence,  is unitary if and only if 
is orthonormal. We leave the rest of the proof to the reader.

Unitary Similarity
We have seen that the change of basis formula for operators is given by

where  is an invertible matrix. What happens when the bases are orthonormal?

Definition
1  Two complex matrices  and  are  also called) (unitarily similar

unitarily equivalent) if there exists a unitary matrix  for which

The equivalence classes associated with unitary similarity are called
unitary similarity classes.

2  Similarly, two real matrices  and  are  also called) (orthogonally similar
orthogonally equivalent) if there exists an orthogonal matrix  for which

The equivalence classes associated with orthogonal similarity are called
orthogonal similarity classes.
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The analog of Theorem 2.19 is the following.

Theorem 10.15 Let  be an inner product space of dimension . Then two
 matrices  and  are unitarily/orthogonally similar if and only if they

represent the same linear operator  with respect to possibly different( )
ordered orthonormal bases. In this case,  and  represent exactly the same
set of linear operators in  with respect to ordered  bases.orthonormal
Proof. If  and  represent , that is, if

and

for ordered orthonormal bases  and , then

and according to Theorem 10.14,  is unitary/orthogonal. Hence,  and 
are unitarily/orthogonally similar.

Now suppose that  and  are unitarily/orthogonally similar, say

where  is unitary/orthogonal. Suppose also that  represents a linear operator
 for some ordered orthonormal basis , that is,

Theorem 10.14 implies that there is a unique ordered orthonormal basis  for 
for which . Hence

and so  also represents . By symmetry, we see that  and  represent the
same set of linear operators, under all possible ordered orthonormal bases.

We have shown (see the discussion of Schur's theorem) that any complex matrix
 is unitarily similar to an upper triangular matrix, that is, that  is unitarily

upper triangularizable. However, upper triangular matrices do not form a set of
canonical forms under unitary similarity. Indeed, the subject of canonical forms
for unitary similarity is rather complicated and we will not discuss it in this
book, but instead refer the reader to the survey article [28].

Reflections
The following defines a very special type of unitary operator.
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Definition For a nonzero , the unique operator  for which

 for all 

is called a  or a .reflection Householder transformation

It is easy to verify that

Moreover,  for  if and only if  for some  and so
we can uniquely identify  by the behavior of the reflection on .

If  is a reflection and if we extend  to an ordered orthonormal basis  for ,
then  is the matrix obtained from the identity matrix by replacing the upper
left entry by ,

Thus, a reflection is both unitary and Hermitian, that is,

Given two nonzero vectors of equal length, there is precisely one reflection that
interchanges these vectors.

Theorem 10.16 Let  be distinct nonzero vectors of equal length. Then
 is the unique reflection sending  to  and  to .

Proof. If , then  and so

from which it follows that  and . As to uniqueness,
suppose  is a reflection for which . Since , we have

 and so

which implies that .

Reflections can be used to characterize unitary operators.

Theorem 10.17 Let  be a finite-dimensional inner product space. The
following are equivalent for an operator :
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1   is unitary/orthogonal)
2   is a product of reflections.)
Proof. Since reflections are unitary/orthogonal and the product of unitary/
orthogonal operators is unitary, it follows that 2) implies 1). For the converse,
let  be unitary. Let  be an orthonormal basis for . Then

and so if  then

that is,  is the identity on . Suppose that we have found
reflections  for which  is the identity on

. Then

Moreover, we claim that  for , since

Hence, if , then

and so  is the identity on . Thus, for  we
have  and so , as desired.

The Structure of Normal Operators
The following theorem includes the spectral theorems stated above for real and
complex normal operators, along with some further refinements related to self-
adjoint and unitary/orthogonal operators.

Theorem 10.18 ( )The structure theorem for normal operators
1   Let  be a finite-dimensional complex inner product) ( )Complex case

space.
 a  The following are equivalent for :)
  i   is normal)
  ii   is unitarily diagonalizable)
  iii   has an orthogonal spectral resolution)
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 b  Among the normal operators, the Hermitian operators are precisely)
those for which all complex eigenvalues are real.

 c  Among the normal operators, the unitary operators are precisely those)
for which all complex eigenvalues have norm .

2   Let  be a finite-dimensional real inner product space.) ( )Real case
 a   is normal if and only if)

where  is the spectrum of  and each  is a two-
dimensional indecomposable -invariant subspace with an ordered
basis  for which

 b  Among the real normal operators, the symmetric operators are those)
for which there are no subspaces  in the decomposition of part 2a .)
Hence, the following are equivalent for :

  i   is symmetric.)
  ii   is orthogonally diagonalizable.)
  iii   has the orthogonal spectral resolution)

 c  Among the real normal operators, the orthogonal operators are)
precisely those for which the eigenvalues are equal to  and the
matrices  described in part 2a  have rows and columns  of norm) ( )

, that is,

sin cos
cos sin

for some .
Proof. We have proved part 1a). As to part 1b), it is only necessary to look at a
diagonal matrix  representing . This matrix has the eigenvalues of  on its
main diagonal and so it is Hermitian if and only if the eigenvalues of  are real.
Similarly,  is unitary if and only if the eigenvalues of  have absolute value
equal to .

We have proved part 2a). Parts 2b) and 2c) follow by looking at the matrix
 where . This matrix is symmetric if and only if  is diagonal,

and  is orthogonal if and only if  and the matrices  have
orthonormal rows.

Matrix Versions
We can formulate matrix versions of the structure theorem for normal operators.
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Theorem 10.19 ( )The structure theorem for normal matrices
1) ( )Complex case
 a  A complex matrix  is normal if and only if it is unitarily)

diagonalizable, that is, if and only if there is a unitary matrix  for
which

diag

 b  A complex matrix  is Hermitian if and only if 1a  holds, where all) )
eigenvalues  are real.

 c  A complex matrix  is unitary if and only if 1a  holds, where all) )
eigenvalues  have norm .

2) ( )Real case
 a  A real matrix  is normal if and only if there is an orthogonal matrix)

 for which

diag

 b  A real matrix  is symmetric if and only if it is orthogonally)
diagonalizable, that is, if and only if there is an orthogonal matrix 
for which

diag

 c  A real matrix  is orthogonal if and only if there is an orthogonal)
matrix  for which

diag sin cos sin cos
cos sin cos sin

for some .

Functional Calculus
Let  be a normal operator on a finite-dimensional inner product space  and let

 have spectral resolution

Since each  is idempotent, we have  for all . The pairwise
orthogonality of the projections implies that

More generally, for any polynomial  over ,

Note that a polynomial of degree  is uniquely determined by specifying an
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arbitrary set of  of its values at the distinct points . This follows from
the Lagrange interpolation formula

Therefore, we can define a unique polynomial  by specifying the values
, for .

For example, for a given , if  is a polynomial for which

for , then

and so each projection  is a polynomial function of . As another example, if
 is invertible and , then

as can easily be verified by direct calculation. Finally, if , then since
each  is self-adjoint, we have

and so  is a polynomial in .

We can extend this idea further by , for  functiondefining any

the linear operator  by

For example, we may define    and so on. Notice, however, that
since the spectral resolution of  is a finite sum, we gain nothing (but
convenience) by using functions other than polynomials, for we can always find
a polynomial  for which  for  and so

. The study of the properties of functions of an operator  is
referred to as the  of .functional calculus

According to the spectral theorem, if  is complex and  is normal, then  is
a normal operator whose eigenvalues are . Similarly, if  is real and  is
symmetric, then  is symmetric, with eigenvalues .
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Commutativity
The functional calculus can be applied to the study of the commutativity
properties of operators. Here are two simple examples.

Theorem 10.20 Let  be a finite-dimensional complex inner product space.
For , we write  to denote the fact that  and  commute. Let

 and  have spectral resolutions

Then
1  For any ,)

 for all 

2)

, for all 

3  If  and  are injective functions,)
then

Proof. For 1), if  for all , then  and the converse follows from the
fact that  is a polynomial in . Part 2) is similar. For part 3),  clearly
implies . For the converse, let . Since  is
injective, the inverse function  is well-defined and

. Thus,  is a function of . Similarly,  is a function of .
It follows that  implies .

Theorem 10.21 Let  and  be normal operators on a finite-dimensional
complex inner product space . Then  and  commute if and only if they have
the form

where  and  are polynomials.
Proof.  If  and  are polynomials in , then they clearly commute.
For the converse, suppose that  and let

and

be the orthogonal spectral resolutions of  and .
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Then Theorem 10.20 implies that . Hence,

It follows that for any polynomial  in two variables,

So if we choose  with the property that  are distinct, then

and we can also choose  and  so that  for all  and
 for all . Then

and similarly, .

Positive Operators
One of the most important cases of the functional calculus is .
Recall that the quadratic form associated with a linear operator  is

Definition A self-adjoint linear operator  is
1   if  for all ) positive
2   if  for all .) positive definite

Theorem 10.22 A self-adjoint operator  on a finite-dimensional inner product
space is
1  positive if and only if all of its eigenvalues are nonnegative)
2  positive definite if and only if all of its eigenvalues are positive.)
Proof. If  and , then
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and so . Conversely, if all eigenvalues of  are nonnegative, then

and since ,

and so  is positive. Part 2) is proved similarly.

If  is a positive operator, with spectral resolution

then we may take the  of ,positive square root

where  is the nonnegative square root of . It is clear that

and it is not hard to see that  is the only positive operator whose square is .
In other words, every positive operator has a unique positive square root.
Conversely, if  has a positive square root, that is, if , for some positive
operator , then  is positive. Hence, an operator  is positive if and only if it
has a positive square root.

If  is positive, then  is self-adjoint and so

Conversely, if  for some operator , then  is positive, since it is clearly
self-adjoint and

Thus,  is positive if and only if it has the form  for some operator .
(A complex number  is nonnegative if and only if has the form  for
some complex number .)

Theorem 10.23 Let .
1   is positive if and only if it has a positive square root.)
2   is positive if and only if it has the form  for some operator .)

Here is an application of square roots.

Theorem 10.24 If  and  are positive operators and , then  is
positive.



252 Advanced Linear Algebra

Proof.  Since  is a positive operator, it has a positive square root , which is
a polynomial in . A similar statement holds for . Therefore, since  and 
commute, so do  and . Hence,

Since  and  are self-adjoint and commute, their product is self-adjoint
and so  is positive.

The Polar Decomposition of an Operator
It is well known that any nonzero complex number  can be written in the polar
form , where  is a positive number and  is real. We can do the same
for any nonzero linear operator  on a finite-dimensional complex inner product
space.

Theorem 10.25 Let  be a nonzero linear operator on a finite-dimensional
complex inner product space .
1  There exist a positive operator  and a unitary operator  for which)

. Moreover,  is unique and if  is invertible, then  is also unique.
2  Similarly, there exist a positive operator  and a unitary operator  for)

which . Moreover,  is unique and if  is invertible, then  is also
unique.

Proof.  Let us suppose for a moment that . Then

and so

Also, if , then

These equations give us a clue as to how to define  and .

Let us define  to be the unique positive square root of the positive operator
. Then

( )10.2

Define  on  byim

for all . Equation 10.2  shows that  implies that  and so( )
this definition of  on  is well-defined.im

Moreover,  is an isometry on , since 10.2  givesim ( )
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Thus, if  is an orthonormal basis for , thenim
 is an orthonormal basis for . Finally, weim im

may extend both orthonormal bases to orthonormal bases for  and then extend
the definition of  to an isometry on  for which .

As for the uniqueness, we have seen that  must satisfy  and since 
has a unique positive square root, we deduce that  is uniquely defined. Finally,
if  is invertible, then so is  since . Hence,  isker ker
uniquely determined by .

Part 2  can be proved by applying the previous theorem to the map , to get)

where  is unitary.

We leave it as an exercise to show that any unitary operator  has the form
, where  is a self-adjoint operator. This gives the following corollary.

Corollary 10.26  Let  be a nonzero linear operator on( )Polar decomposition
a finite-dimensional complex inner product space. Then there is a positive
operator  and a self-adjoint operator  for which  has the polar
decomposition

Moreover,  is unique and if  is invertible, then  is also unique.

Normal operators can be characterized using the polar decomposition.

Theorem 10.27 Let  be a polar decomposition of a nonzero linear
operator . Then  is normal if and only if .
Proof. Since

and

we see that  is normal if and only if
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or equivalently,

Now,  is a polynomial in  and  is a polynomial in  and so this holds if
and only if .

Exercises
1. Let . If  is surjective, find a formula for the right inverse of 

in terms of . If  is injective, find a formula for a left inverse of  in terms
of . : Consider  and .Hint

2. Let  where  is a complex vector space and let

 and 

Show that  and  are self-adjoint and that

 and 

What can you say about the uniqueness of these representations of  and
?

3. Prove that all of the roots of the characteristic polynomial of a skew-
Hermitian matrix are pure imaginary.

4. Give an example of a normal operator that is neither self-adjoint nor
unitary.

5. Prove that if  for all , where  is complex, then  is
normal.

6. Let  be a normal operator on a complex finite-dimensional inner product
space  or a self-adjoint operator on a real finite-dimensional inner product
space.

 a  Show that , for some polynomial .)
 b  Show that for any ,  implies . In other)

words,  commutes with all operators that commute with .
7. Show that a linear operator  on a finite-dimensional complex inner product

space  is normal if and only if whenever  is an invariant subspace under
, so is .

8. Let  be a finite-dimensional inner product space and let  be a normal
operator on .

 a  Prove that if  is idempotent, then it is also self-adjoint.)
 b  Prove that if  is nilpotent, then .)
 c  Prove that if , then  is idempotent.)
9. Show that if  is a normal operator on a finite-dimensional complex inner

product space, then the algebraic multiplicity is equal to the geometric
multiplicity for all eigenvalues of .

10. Show that two orthogonal projections  and  are orthogonal to each other
if and only if .im im
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11. Let  be a normal operator and let  be any operator on . If the
eigenspaces of  are -invariant, show that  and  commute.

12. Prove that if  and  are normal operators on a finite-dimensional complex
inner product space and if  for some operator  then .

13. Prove that if two normal  complex matrices are similar, then they are
unitarily similar, that is, similar via a unitary matrix.

14. If  is a unitary operator on a complex inner product space, show that there
exists a self-adjoint operator  for which .

15. Show that a positive operator has a unique positive square root.
16. Prove that if  has a square root, that is, if , for some positive

operator , then  is positive.
17. Prove that if  (that is,  is positive) and if  is a positive operator

that commutes with both  and  then .
18. Using the  factorization, prove the following result, known as the

Cholsky decomposition. An invertible linear operator  is positive
if and only if it has the form  where  is upper triangularizable.
Moreover,  can be chosen with positive eigenvalues, in which case the
factorization is unique.

19. Does every self-adjoint operator on a finite-dimensional real inner product
space have a square root?

20. Let  be a linear operator on  and let  be the eigenvalues of ,
each one written a number of times equal to its algebraic multiplicity. Show
that

tr

where  is the trace. Show also that equality holds if and only if  istr
normal.

21. If  where  is a real inner product space, show that the Hilbert
space adjoint satisfies .



Part II—Topics



Chapter 11
Metric Vector Spaces: The Theory of
Bilinear Forms

In this chapter, we study vector spaces over arbitrary fields that have a bilinear
form defined on them.

Unless otherwise mentioned, all vector spaces are assumed to be finite-
dimensional. The symbol  denotes an arbitrary field and  denotes a finite
field of size .

Symmetric, Skew-Symmetric and Alternate Forms
We begin with the basic definition.

Definition Let  be a vector space over . A mapping  is
called a  if it is linear in each coordinate, that is, ifbilinear form

and

A bilinear form is
1  if) symmetric

for all  .
2   or  if) ( )skew-symmetric antisymmetric

for all .
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3   or  if) ( )alternate alternating

for all .
A bilinear form that is either symmetric, skew-symmetric, or alternate is
referred to as an  and a pair , where  is a vector spaceinner product
and  is an inner product on , is called a  or metric vector space inner
product space. As usual, we will refer to  as a metric vector space when the
form is understood.
4  A metric vector space  with a symmetric form is called an ) orthogonal

geometry over .
5  A metric vector space  with an alternate form is called a ) symplectic

geometry over .

The term , from the Greek for “intertwined,” was introduced in 1939symplectic
by the famous mathematician Hermann Weyl in his book ,The Classical Groups
as a substitute for the term . According to the dictionary, symplecticcomplex
means “relating to or being an intergrowth of two different minerals.” An
example is , which is marble spotted with green serpentine.ophicalcite

Example 11.1   is the four-dimensional real orthogonalMinkowski space 4
geometry  with inner product defined by

3 3

4 4

 for 

where  is the standard basis for .4

As is traditional, when the inner product is understood, we will use the phrase
“let  be a metric vector space.”

The real inner products discussed in Chapter 9 are inner products in the present
sense and have the additional property of being —a notion thatpositive definite
does not even make sense if the base field is not ordered. Thus, a real inner
product space is an orthogonal geometry. On the other hand, the complex inner
products of Chapter 9, being sesquilinear, are not inner products in the present
sense. For this reason, we use the term  in this chapter, rathermetric vector space
than .inner product space

If  is a vector subspace of a metric vector space , then  inherits the metric
structure from . With this structure, we refer to  as a  of .subspace

The concepts of being symmetric, skew-symmetric and alternate are not
independent. However, their relationship depends on the characteristic of the
base field , as do many other properties of metric vector spaces. In fact, the
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next theorem tells us that we do not need to consider skew-symmetric forms per
se, since skew-symmetry is always equivalent to either symmetry or
alternateness.

Theorem 11.1 Let  be a vector space over a field .
1  If , then) char

alternate symmetric skew-symmetric

2  If , then) char

alternate skew-symmetric

Also, the only form that is both alternate and symmetric is the zero form:
 for all .

Proof. First note that for an alternating form over any base field,

and so

which shows that the form is skew-symmetric. Thus, alternate always implies
skew-symmetric.

If , then  and so the definitions of symmetric and skew-char
symmetric are equivalent, which proves 1 . If  and the form is) char
skew-symmetric, then for any , we have  or ,
which implies that . Hence, the form is alternate. Finally, if the form
is alternate and symmetric, then it is also skew-symmetric and so

 for all , that is,  for all .

Example 11.2 The standard inner product on , defined by

is symmetric, but not alternate, since

The Matrix of a Bilinear Form
If  is an ordered basis for a metric vector space , then a
bilinear form is completely determined by the  matrix of values

This is referred to as the  (or the matrix of ) with respect tomatrix of the form
the ordered basis . Moreover, any  matrix over  is the matrix of some
bilinear form on .
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Note that if  then

and

It follows that if , then

and this uniquely defines the matrix , that is, if  for all
, then .

A matrix is  if it is skew-symmetric and has 's on the main diagonal.alternate
Thus, we can say that a form is symmetric (skew-symmetric, alternate) if and
only if the matrix  is symmetric (skew-symmetric, alternate).

Now let us see how the matrix of a form behaves with respect to a change of
basis. Let  be an ordered basis for . Recall from Chapter 2 that
the change of basis matrix , whose th column is , satisfies

Hence,

   
   

and so

This prompts the following definition.

Definition Two matrices  are  if there exists ancongruent
invertible matrix  for which

The equivalence classes under congruence are called .congruence classes
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Thus, if two matrices represent the same bilinear form on , they must be
congruent. Conversely, if  represents a bilinear form on  and

where  is invertible, then there is an ordered basis  for  for which

and so

Thus,  represents the same form with respect to .

Theorem 11.2 Let  be an ordered basis for an inner product
space , with matrix

1  The form can be recovered from the matrix by the formula)

2  If  is also an ordered basis for , then)

where  is the change of basis matrix from  to .
3  Two matrices  and  represent the same bilinear form on a vector space)

 if and only if they are congruent, in which case they represent the same
set of bilinear forms on .

In view of the fact that congruent matrices have the same rank, we may define
the rank of a bilinear form (or of ) to be the rank of any matrix that represents
that form.

The Discriminant of a Form
If  and  are congruent matrices, then

det det det det

and so  and  differ by a square factor. The   of adet det discriminant
bilinear form is the set of determinants of all of the matrices that represent the
form. Thus, if  is an ordered basis for , then

det det
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Quadratic Forms
There is a close link between symmetric bilinear forms on  and quadratic
forms on .

Definition A  on a vector space  is a map  with thequadratic form
following properties:
1  For all  ,)

2  The map)

is a symmetric  bilinear form.( )

Thus, every quadratic form  on  defines a symmetric bilinear form 
on . Conversely, if  and if  is a symmetric bilinear form on ,char
then the function

is a quadratic form . Moreover, the bilinear form associated with  is the
original bilinear form:

Thus, the maps  and  are inverses and so there is a one-to-one
correspondence between symmetric bilinear forms on  and quadratic forms on

. Put another way, knowing the quadratic form is equivalent to knowing the
corresponding bilinear form.

Again assuming that , if  is an ordered basis for anchar
orthogonal geometry  and if the matrix of the symmetric form on  is

, then for ,

and so  is a homogeneous polynomial of degree 2 in the coordinates .
(The term “form” means —hence the term quadratichomogeneous polynomial
form.)
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Orthogonality
As we will see, not all metric vector spaces behave as nicely as real inner
product spaces and this necessitates the introduction of a new set of terminology
to cover various types of behavior. (The base field  is the culprit, of course.)
The most striking differences stem from the possibility that  for a
nonzero vector .

The following terminology should be familiar.

Definition Let  be a metric vector space. A vector  is  to a vectororthogonal
, written , if . A vector  is  to a subset  oforthogonal
, written , if  for all . A subset  of  is  to aorthogonal

subset  of , written , if  for all  and . The
orthogonal complement  of a subset  of  is the subspace

Note that regardless of whether the form is symmetric or alternate and hence(
skew-symmetric , orthogonality is a symmetric relation, that is,  implies)

. Indeed, this is precisely why we restrict attention to these two types of
bilinear forms.

There are two types of degenerate behaviors that a vector may possess: It may
be orthogonal to itself or, worse yet, it may be orthogonal to  vector in .every
With respect to the former, we have the following terminology.

Definition Let  be a metric vector space.
1  A nonzero  is  or  if ; otherwise it is) ( )isotropic null

nonisotropic.
2   is  if it contains at least one isotropic vector. Otherwise,  is) isotropic

nonisotropic anisotropic or .( )
3   is  that is, symplectic  if all vectors in  are) ( )totally isotropic

isotropic.

Note that if  is an isotropic vector, then so is  for all . This can be
expressed by saying that the set  of isotropic vectors in  is a  in . (Acone
cone in  is a nonempty subset that is closed under scalar multiplication.)

With respect to the more severe forms of degeneracy, we have the following
terminology.

Definition Let  be a metric vector space.
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1  A vector  is  if . The set  of all degenerate) degenerate
vectors is called the  of  and denoted by . Thus,radical rad

rad

2   is , or , if .) radnonsingular nondegenerate
3   is , or , if .) radsingular degenerate
4   is , or , if .) radtotally singular totally degenerate

Some of the above terminology is not entirely standard, so care should be
exercised in reading the literature.

Theorem 11.3 A metric vector space  is nonsingular if and only if all
representing matrices  are nonsingular.

A note of caution is in order. If  is a subspace of a metric vector space , then
rad rad denotes the set of vectors in  that are degenerate in , that is,  is
the radical of , as a metric vector space in its own right. However,  denotes
the set of all vectors in  that are orthogonal to . Thus,

rad

Note also that

rad rad

and so if  is singular, then so is .

Example 11.3 Recall that  is the set of all ordered -tuples whose
components come from the finite field . (See Example 11.2.) It is easy to see
that the subspace

of  has the property that . Note also that  is nonsingular
and yet the subspace  is  singular.totally

The following result explains why we restrict attention to symmetric or alternate
forms (which includes skew-symmetric forms).

Theorem 11.4 Let  be a vector space with a bilinear form. The following are
equivalent:
1  Orthogonality is a symmetric relation, that is,)

2  The form on  is symmetric or alternate, that is,  is a metric vector)
space.
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Proof. It is clear that orthogonality is symmetric if the form is symmetric or
alternate, since in the latter case, the form is also skew-symmetric.

For the converse, assume that orthogonality is symmetric. For convenience, let
 mean that  and let  mean that  for all
. If  for all , then  is orthogonal and we are done. So let us

examine vectors  with the property that .

We wish to show that

 is isotropic and (11.1)

Note that if the second conclusion holds, then since , it follows that  is
isotropic. So suppose that . Since , there is a  for which

 and so  if and only if

Now,

But reversing the coordinates in the last expression gives

and so the symmetry of orthogonality implies that the last expression is  and so
we have proven (11.1).

Let us assume that  is not orthogonal and show that all vectors in  are
isotropic, whence  is symplectic. Since  is not orthogonal, there exist

 for which  and so  and . Hence, the vectors  and 
are isotropic and for all ,

Since all vectors  for which  are isotropic, let . Then  and
 and so  and . Now write

where , since  is isotropic. Since the sum of two orthogonal
isotropic vectors is isotropic, it follows that  is isotropic if  is isotropic.
But
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and so , which implies that  is isotropic. Thus,  is also
isotropic and so all vectors in  are isotropic.

Orthogonal and Symplectic Geometries
If a metric vector space is both orthogonal and symplectic, then the form is both
symmetric and skew-symmetric and so

Therefore, when ,  is orthogonal and symplectic if and only if char
is totally degenerate.

However, if , then there are orthogonal symplectic geometries thatchar
are not totally degenerate. For example, let  be a two-span
dimensional vector space and define a form on  whose matrix is

Since  is both symmetric and alternate, so is the form.

Linear Functionals
The Riesz representation theorem says that every linear functional  on a finite-
dimensional real or complex inner product space  is represented by a Riesz
vector , in the sense that

for all . A similar result holds for  metric vector spaces.nonsingular

Let  be a metric vector space over . Let  and define the inner product
map  by

This is easily seen to be a linear functional and so we can define a linear map
 by

The bilinearity of the form ensures that  is linear and the kernel of  is

ker rad

Hence,  is injective (and therefore an isomorphism) if and only if  is
nonsingular.

Theorem 11.5 The Riesz representation theorem( ) Let  be a finite-
dimensional nonsingular metric vector space. The map  defined by



Metric Vector Spaces: The Theory of Bilinear Forms 269

is an isomorphism from  to . It follows that for each  there exists a
unique vector  for which

for all .

The requirement that  be nonsingular is necessary. As a simple example, if 
is totally singular, then no nonzero linear functional could possibly be
represented by an inner product.

The Riesz representation theorem applies to nonsingular metric vector spaces.
However, we can also achieve something useful for  subspaces  of asingular
nonsingular metric vector space. The reason is that any linear functional 
can be extended to a linear functional  on , where it has a Riesz vector, that
is,

Hence,  also has this form, where its “Riesz vector” is an element of , but is
not necessarily in .

Theorem 11.6 The Riesz representation theorem for subspaces( )  Let  be a
subspace of a metric vector space . If either  or  is nonsingular, the linear
map  defined by

is surjective and has kernel . Hence, for any linear functional , there
is a not necessarily unique  vector  for which  for all .( )
Moreover, if  is nonsingular, then  can be taken from , in which case it is
unique.

Orthogonal Complements and Orthogonal Direct Sums
Definition A metric vector space  is the  of theorthogonal direct sum
subspaces  and , written

if  and .

If  is a subspace of a real inner product space, the projection theorem says that
the orthogonal complement  of  is a true vector space complement of ,
that is,
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However, in general metric vector spaces, an orthogonal complement may not
be a vector space complement. In fact, Example 11.3 shows that in some cases

. In other cases, for example, if  is degenerate, then .
However, as we will see, the orthogonal complement of  is a vector space
complement if and only if either the sum is correct, , or the
intersection is correct, . Note that the latter is equivalent to the
nonsingularity of .

Many nice properties of orthogonality in real inner product spaces do carry over
to  metric vector spaces. Moreover, the next result shows that thenonsingular
restriction to nonsingular spaces is not that severe.

Theorem 11.7 Let  be a metric vector space. Then

rad

where  is nonsingular and  is totally singular.rad
Proof. If  is any vector space complement of , then  and sorad rad

rad

Also,  is nonsingular since .rad rad

Here are some properties of orthogonality in nonsingular metric vector spaces.
In particular, if either  or  is nonsingular, then the orthogonal complement of

 always has the expected dimension,

dim dim dim

even if  is not well behaved with respect to its intersection with .

Theorem 11.8 Let  be a subspace of a finite-dimensional metric vector space
.

1) If either  or  is nonsingular, then

dim dim dim

Hence, the following are equivalent:
 a  )
 b   is nonsingular, that is, )
 c  .)
2  If  is nonsingular, then)
 a  )
 b  ) rad rad
 c   is nonsingular if and only if  is nonsingular.)
Proof. For part 1), the map  of Theorem 11.6 is surjective and has
kernel . Thus, the rank-plus-nullity theorem implies that
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dim dim dim

However,  and so part 1) follows. For part 2), sincedim dim

rad rad

the nonsingularity of  implies the nonsingularity of . Then part 1) implies
that

dim dim dim

and

dim dim dim

Hence,  and .rad rad

The previous theorem cannot in general be strengthened. Consider the two-
dimensional metric vector space span  where

If , then . Now,  is nonsingular but  is singularspan span
and so 2c) does not hold. Also,  and  and so 2b)rad rad
fails. Finally,  and so 2a) fails.

Isometries
We now turn to a discussion of structure-preserving maps on metric vector
spaces.

Definition Let  and  be metric vector spaces. We use the same notation 
for the bilinear form on each space. A bijective linear map  is called
an  ifisometry

for all vectors  and  in . If an isometry exists from  to , we say that 
and  are  and write . It is evident that the set of allisometric
isometries from  to  forms a group under composition.

If  is a nonsingular orthogonal geometry, an isometry of  is called an
orthogonal transformation. The set  of all orthogonal transformations
on  is a group under composition, known as the  of .orthogonal group

If  is a nonsingular symplectic geometry, an isometry of  is called a
symplectic transformation. The set  of all symplectic transformations onSp

 is a group under composition, known as the  of .symplectic group
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Note that, in contrast to the case of real inner product spaces, we must include
the requirement that  be bijective since this does not follow automatically if 
is singular. Here are a few of the basic properties of isometries.

Theorem 11.9 Let  be a linear transformation between finite-
dimensional metric vector spaces  and .
1  Let  be a basis for . Then  is an isometry if and only if )

is bijective and

for all .
2  If  is orthogonal and , then  is an isometry if and only if it is) char

bijective and

for all .
3  Suppose that  is an isometry and)

and

If , then .
Proof. We prove part 3  only. To see that , if  and ,)
then since , we can write  for some  and so

whence . But since the dimensions are equal, it follows that
.

Hyperbolic Spaces
A special type of two-dimensional metric vector space plays an important role in
the structure theory of metric vector spaces.

Definition Let  be a metric vector space. A  is a pair ofhyperbolic pair
vectors  for which

Note that  if  is orthogonal and  if  is symplectic. In
either case, the subspace  is called a  and anyspan hyperbolic plane
space of the form

where each  is a hyperbolic plane, is called a . If  ishyperbolic space
a hyperbolic pair for , then we refer to the basis
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for  as a . In the symplectic case, the usual term ishyperbolic basis (
symplectic basis.)

Note that any hyperbolic space  is nonsingular.

In the orthogonal case, hyperbolic planes can be characterized by their degree of
isotropy, so to speak. In the symplectic case, all spaces are totally isotropic by(
definition.  Indeed, we leave it as an exercise to prove that a two-dimensional)
nonsingular orthogonal geometry  is a hyperbolic plane if and only if 
contains exactly two one-dimensional totally isotropic equivalently, totally(
degenerate  subspaces. Put another way, the cone of isotropic vectors is the)
union of two one-dimensional subspaces of .

Nonsingular Completions of a Subspace
Let  be a subspace of a nonsingular metric vector space . If  is singular, it
is of interest to find a  nonsingular subspace of  containing .minimal

Definition Let  be a nonsingular metric vector space and let  be a subspace
of . A subspace  of  for which  is called an  of . Aextension
nonsingular completion of  is an extension of  that is minimal in the family
of all nonsingular extensions of .

Theorem 11.10 Let  be a nonsingular finite-dimensional metric vector space
over . We assume that  when  is orthogonal.char
1  Let  be a subspace of . If  is isotropic and the orthogonal direct sum)

span

exists, then there is a hyperbolic plane  for whichspan

exists. In particular, if  is isotropic, then there is a hyperbolic plane
containing .

2  Let  be a subspace of  and let)

span

where  is nonsingular and  are linearly independent in
rad . Then there is a hyperbolic space  with
hyperbolic basis  for which

is a nonsingular proper extension of . If  is a basis for
rad , then

dim dim dim rad
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and we refer to  as a  of . If  is nonsingular, wehyperbolic extension
say that  is a hyperbolic extension of itself.

Proof. For part 1 , the nonsingularity of  implies that . Hence,)
 and so there is an  for which . If  is

symplectic, then all vectors are isotropic and so we can take . If
 is orthogonal, let . The conditions defining  as a hyperbolic

pair are since  is isotropic( )

and

Since , the first of these equations can be solved for  and since
char , the second equation can then be solved for . Thus, in either case,
there is a vector  for which  is hyperbolic. Hence,span

 and since  is nonsingular, that is, , we have
 and so  exists.

Part 2) is proved by induction on . Note first that all of the vectors  are
isotropic. If , then  exists and so part 1  implies that there isspan )
a hyperbolic plane  for which  exists.span

Assume that the result is true for independent sets of size less than . Since

span span

exists, part 1) implies that there exists a hyperbolic plane  forspan
which

span

exists. Since  are in the radical of , the inductivespan
hypothesis implies that there is a hyperbolic space  with
hyperbolic basis  for which the orthogonal direct sum

exists. Hence,  also exists.

We can now prove that the hyperbolic extensions of  are precisely the minimal
nonsingular extensions of .

Theorem 11.11  Let  be a subspace of a( )Nonsingular extension theorem
nonsingular finite-dimensional metric vector space . The following are
equivalent:
1   is a hyperbolic extension of )
2   is a minimal nonsingular extension of )
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3   is a nonsingular extension of  and)

dim dim dim rad

Thus, any two nonsingular completions of  are isometric.
Proof. If  where  is nonsingular, then we may apply Theorem
11.10 to  as a subspace of , to obtain a hyperbolic extension  of 
for which

Thus, every nonsingular extension of  contains a hyperbolic extension of .
Moreover, all hyperbolic extensions of  have the same dimension:

dim dim dim rad

and so no hyperbolic extension of  is properly contained in another hyperbolic
extension of . This proves that 1)–3) are equivalent. The final statement
follows from the fact that hyperbolic spaces of the same dimension are
isometric.

Extending Isometries to Nonsingular Completions
Let  and  be isometric nonsingular metric vector spaces and let

rad  be a subspace of , with nonsingular completion
.

If  is an isometry, then it is a simple matter to extend  to an
isometry  from  onto a nonsingular completion of . To see this, let

 be a hyperbolic basis for . Since  is a basis for
rad rad, it follows that  is a basis for .

Hence, we can hyperbolically extend  to getrad

where  has hyperbolic basis . To extend , simply set
 for all .

Theorem 11.12 Let  and  be isometric nonsingular metric vector spaces
and let   be a subspace of , with nonsingular completion . Any isometry

 can be extended to an isometry from  onto a nonsingular
completion of .

The Witt Theorems: A Preview
There are two important theorems that are quite easy to prove in the case of real
inner product spaces, but require more work in the case of metric vector spaces
in general. Let  and  be isometric nonsingular metric vector spaces over a
field . We assume that  if  is orthogonal.char
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The  says that if  is a subspace of , then any isometryWitt extension theorem

can be extended to an isometry from  to . The Witt cancellation theorem
says that if

and

then

We will prove these theorems in both the orthogonal and symplectic cases a bit
later in the chapter. For now, we simply want to show that it is easy to prove
one Witt theorem using the other.

Suppose that the Witt extension theorem holds and assume that

and

and . Then any isometry  can be extended to an isometry  from
 to . According to Theorem 11.9, we have  and so .

Hence, the Witt cancellation theorem holds.

Conversely, suppose that the Witt cancellation theorem holds and let
 be an isometry. Since  can be extended to a nonsingular

completion of , we may assume that  is nonsingular. Then

Since  is an isometry,  is also nonsingular and we can write

Since , Witt's cancellation theorem implies that . If
 is an isometry, then the map  defined by

for  and  is an isometry that extends . Hence Witt's extension
theorem holds.

The Classification Problem for Metric Vector Spaces
The  for a class of metric vector spaces such as theclassification problem (
orthogonal or symplectic spaces  is the problem of determining when two metric)
vector spaces in the class are isometric. The classification problem is considered
“solved,” at least in a theoretical sense, by finding a set of canonical forms or a
complete set of invariants for matrices under congruence.
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To see why, suppose that  is an isometry and  is an
ordered basis for . Then  is an ordered basis for  and

Thus, the congruence class of matrices representing  is identical to the
congruence class of matrices representing .

Conversely, suppose that  and  are metric vector spaces with the same
congruence class of representing matrices. Then if  is an
ordered basis for , there is an ordered basis  for  for which

Hence, the map  defined by  is an isometry from  to .

We have shown that two metric vector spaces are isometric if and only if they
have the same congruence class of representing matrices. Thus, we can
determine whether any two metric vector spaces are isometric by representing
each space with a matrix and determining whether these matrices are congruent,
using a set of canonical forms or a set of complete invariants.

Symplectic Geometry
We now turn to a study of the structure of orthogonal and symplectic geometries
and their isometries. Since the study of the structure and the structure itself  of( )
symplectic geometries is simpler than that of orthogonal geometries, we begin
with the symplectic case. The reader who is interested only in the orthogonal
case may omit this section.

Throughout this section, let  be a nonsingular symplectic geometry.

The Classification of Symplectic Geometries
Among the simplest types of metric vector spaces are those that possess an
orthogonal basis. However, it is easy to see that a symplectic geometry  has an
orthogonal basis if and only if it is totally degenerate and so no “interesting”
symplectic geometries have orthogonal bases.

Thus, in searching for an orthogonal decomposition of , we turn to two-
dimensional subspaces and this puts us in mind of hyperbolic spaces. Let  be
the family of all hyperbolic subspaces of , which is nonempty since the zero
subspace  is singular and so has a nonzero hyperbolic extension. Since  is
finite-dimensional,  has a maximal member . Since  is nonsingular, if

, then

where . But then if  is nonzero, there is a hyperbolic extension
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 of  containing , which contradicts the maximality of . Hence,
.

This proves the following structure theorem for symplectic geometries.

Theorem 11.13
1  A symplectic geometry has an orthogonal basis if and only if it is totally)

degenerate.
2  Any nonsingular symplectic geometry  is a hyperbolic space, that is,)

where each  is a hyperbolic plane. Thus, there is a hyperbolic basis for
, that is, a basis  for which the matrix of the form is

In particular, the dimension of  is even.
3  Any symplectic geometry  has the form)

rad

where  is a hyperbolic space and  is a totally degenerate space.rad
The rank of the form is  and  is uniquely determined up todim
isometry by its rank and its dimension. Put another way, up to isometry,
there is precisely one symplectic geometry of each rank and dimension.

Symplectic forms are represented by alternate matrices, that is, skew-symmetric
matrices with zero diagonal. Moreover, according to Theorem 11.13, each

 alternate matrix is congruent to a matrix of the form

block

Since the rank of  is , no two such matrices are congruent.

Theorem 11.14 The set of  matrices of the form  is a set of
canonical forms for alternate matrices under congruence.

The previous theorems solve the classification problem for symplectic
geometries by stating that the rank and dimension of  form a complete set of
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invariants under congruence and that the set of all matrices of the form 
is a set of canonical forms.

Witt's Extension and Cancellation Theorems
We now prove the Witt theorems for symplectic geometries.

Theorem 11.15 Witt's extension theorem( ) Let  and  be isometric
nonsingular symplectic geometries over a field . Then any isometry

on a subspace  of  can be extended to an isometry from  to .
Proof. According to Theorem 11.12, we can extend  to a nonsingular
completion of , so we may simply assume that  and  are nonsingular.
Hence,

and

To complete the extension of  to , we need only choose a hyperbolic basis

for  and a hyperbolic basis

for  and define the extension by setting  and .

As a corollary to Witt's extension theorem, we have Witt's cancellation theorem.

Theorem 11.16 Witt's cancellation theorem( ) Let  and  be isometric
nonsingular symplectic geometries over a field . If

and

then

The Structure of the Symplectic Group: Symplectic Transvections
Let us examine the nature of symplectic transformations (isometries) on a
nonsingular symplectic geometry . Recall that for a real vector space, an
isometric isomorphism, which corresponds to an isometry in the present context,
is the same as an orthogonal map and orthogonal maps are products of
reflections (Theorem 10.17). Recall also that a reflection  is defined as an
operator for which
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 for all 

and that

In the present context, we do not dare divide by , since all vectors are
isotropic. So here is the next-best thing.

Definition Let  be a nonsingular symplectic geometry over . Let  be
nonzero and let . The map  defined by

is called the  determined by  and .symplectic transvection

Note that if , then  and if , then  is the identity precisely
on the subspace  of codimension . In the case of a reflection,  is thespan
identity precisely on  andspan

span span

However, for a symplectic transvection,  is the identity precisely on
span span span (for ) but . Here are the basic properties of
symplectic transvections.

Theorem 11.17 Let  be a symplectic transvection on . Then
1   is a symplectic transformation isometry .) ( )
2   if and only if .)
3  If , then . For ,  if and only if .)
4  .)
5  .)
6  For any symplectic transformation ,)

7  For ,)

Note that if  is a subspace of  and if  is a symplectic transvection on ,
then, by definition, . However, the formula

also defines a symplectic transvection on , where  ranges over . Moreover,
for any , we have  and so  is the identity on .
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We now wish to prove that any symplectic transformation on a nonsingular
symplectic geometry  is the product of symplectic transvections. The proof is
not difficult, but it is a bit lengthy, so we break it up into parts. Our first goal is
to show that we can get from any hyperbolic pair to any other hyperbolic pair
using a product of symplectic transvections.

Let us say that two   and  are  if there is ahyperbolic pairs connected
product  of symplectic transvections that carries  to  and  to  and write

or . It is clear that connectedness is an equivalence relation on
the set of hyperbolic pairs.

Theorem 11.18 In a nonsingular symplectic geometry , every pair of
hyperbolic pairs are connected.
Proof. Note first that if , then  and so

Taking  gives . Therefore, if  is hyperbolic, then we
can always find a vector  for which

namely,  and  are hyperbolic, then. Also, if both 

since  and so .

Actually, these statements are still true if . For in this case, there is a
nonzero vector  for which  and . This follows from the fact
that there is an  for which  and  and so the Riesz vector 
is such a vector. Therefore, if  is hyperbolic, then

and if both  and  are hyperbolic, then

Hence, transitivity gives the same result as in the case .

Finally, if  and  are hyperbolic, then there is a  for which

and so transitivity shows that .
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We can now show that the symplectic transvections generate the symplectic
group.

Theorem 11.19 Every symplectic transformation on a nonsingular symplectic
geometry  is the product of symplectic transvections.
Proof. Let  be a symplectic transformation on . We proceed by induction on

dim . If , then  is a hyperbolic plane andspan
Theorem 11.18 implies that there is a product  of symplectic transvections on

 for which

This proves the result if . Assume that the result holds for all dimensions
less than  and let .dim

Now,

where  and  is a symplectic geometry of dimension less thanspan
that of . As before, there is a product  of symplectic transvections on  for
which

and so

Note that  and so Theorem 11.9 implies that .
Since , the inductive hypothesis applied to the symplecticdim dim
transformation  on  implies that there is a product  of symplectic
transvections on  for which . As remarked earlier,  is also a
product of symplectic transvections on  that is the identity on  and so

and  on 

Thus,  on both  and on  and so  is a product of symplectic
transvections on .

The Structure of Orthogonal Geometries: Orthogonal Bases
We have seen that no interesting that is, not totally degenerate  symplectic( )
geometries have orthogonal bases. By contrast, almost all interesting orthogonal
geometries  have orthogonal bases.

To understand why, it is convenient to group the orthogonal geometries into two
classes: those that are also symplectic and those that are not. The reason is that
all orthogonal  geometries have orthogonal bases, as we will see.nonsymplectic
However, an orthogonal  geometry has an orthogonal basis if andsymplectic
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only if it is totally degenerate. Furthermore, we have seen that if ,char
then all orthogonal symplectic geometries are totally degenerate and so all such
geometries have orthogonal bases. But if , then there are orthogonalchar
symplectic geometries that are not totally degenerate and therefore do not have
orthogonal bases.

Thus, if we exclude orthogonal symplectic geometries when , wechar
can say that every orthogonal geometry has an orthogonal basis.

If a metric vector space  has an orthogonal basis, the natural next step is to
look for an orthonormal basis. However, if  is singular, then there is a nonzero
vector  and such a vector can never be a linear combination of vectors
from an orthonormal basis , since the coefficients in such a linear
combination are .

However, even if  is nonsingular, orthonormal bases do not always exist and
the question of how close we can come to such an orthonormal basis depends on
the nature of the base field. We will examine this issue in three cases:
algebraically closed fields, the field of real numbers and finite fields.

We should also mention that even when  has an orthogonal basis, the Gram–
Schmidt orthogonalization process may not apply to produce such a basis,
because even nonsingular orthogonal geometries may have isotropic vectors,
and so division by  is problematic.

For example, consider an orthogonal hyperbolic plane  andspan
assume that . Thus,  and  are isotropic and .  Thechar
vector  cannot be extended to an orthogonal basis using the Gram–Schmidt
process, since  is orthogonal if and only if . However,  does
have an orthogonal basis, namely, .

Orthogonal Bases
Let  be an orthogonal geometry. As we have discussed, if  is also
symplectic, then  has an orthogonal basis if and only if it is totally degenerate.
Moreover, when , all orthogonal symplectic geometries are totallychar
degenerate and so all orthogonal symplectic geometries have an orthogonal
basis.

If  is orthogonal but not symplectic, then  contains a nonisotropic vector ,
the subspace  is nonsingular andspan

span

where . If  is not symplectic, then we may decompose it to getspan

span span
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This process may be continued until we reach a decomposition

span span

where  is symplectic as well as orthogonal. (This includes the case .)
Let .

If , then  is totally degenerate. Thus, if  is a basis for , then thechar
union  is an orthogonal basis for . If , thenchar

rad , where  is hyperbolic and so

span span rad

where  is totally degenerate and the  are nonisotropic. Ifrad
 is a hyperbolic basis for  and  is an

ordered basis for , then the unionrad

is an ordered orthogonal basis for . However, we can do better (in some
sense).

The following lemma says that when , a pair of isotropic basischar
vectors, such as , can be replaced by a pair of nonisotropic basis vectors,
when coupled with a nonisotropic basis vector, such as .

Lemma 11.20 Suppose that . Let  be a three-dimensionalchar
orthogonal geometry of the form

span span

where  is nonisotropic and  is a hyperbolic plane. Thenspan

span span span

where each  is nonisotropic.
Proof. It is straightforward to check that if , then the vectors

are linearly independent and mutually orthogonal. Details are left to the
reader.

Using the previous lemma, we can replace the vectors  with the
nonisotropic vectors , while retaining orthogonality. Moreover,
the replacement process can continue until the isotropic vectors are absorbed,
leaving an orthogonal basis of nonisotropic vectors.
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Let us summarize.

Theorem 11.21 Let  be an orthogonal geometry.
1  If  is also symplectic, then  has an orthogonal basis if and only if it is)

totally degenerate. When , all orthogonal symplecticchar
geometries have an orthogonal basis, but this is not the case when
char .

2  If  is not symplectic, then  has an ordered orthogonal basis)
 for which  and .

Hence,  has the diagonal form

with  nonzero entries on the diagonal.rk

As a corollary, we get a nice theorem about symmetric matrices.

Corollary 11.22 Let  be a symmetric matrix and assume that  is not
alternate if . Then  is congruent to a diagonal matrix.char

The Classification of Orthogonal Geometries: Canonical
Forms
We now want to consider the question of improving upon Theorem 11.21. The
diagonal matrices of this theorem do not form a set of canonical forms for
congruence. In fact, if  are nonzero scalars, then the matrix of  with
respect to the basis  is

( )11.2

Hence,  and  are congruent diagonal matrices. Thus, by a simple change
of basis, we can multiply any diagonal entry by a nonzero square in .

The determination of a set of canonical forms for symmetric nonalternate when(
char ) matrices under congruence depends on the properties of the base
field. Our plan is to consider three types of base fields: algebraically closed
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fields, the real field  and finite fields. Here is a preview of the forthcoming
results.

1  When the base field  is algebraically closed, there is an ordered basis )
for which

If  is nonsingular, then  is an identity matrix and  has an
orthonormal basis.

2  Over the real base field, there is an ordered basis  for which)

Z

3  If  is a finite field, there is an ordered basis  for which)

Z

where  is unique up to multiplication by a square and if , thenchar
we can take .

Now let us turn to the details.

Algebraically Closed Fields
If  is algebraically closed, then for every , the polynomial  has a
root in , that is, every element of  has a square root in . Therefore, we may
choose   in 11.2 , which leads to the following result.( )
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Theorem 11.23 Let  be an orthogonal geometry over an algebraically closed
field . Provided that  is not symplectic as well when , then char
has an ordered orthogonal basis  for which

 and . Hence,  has the diagonal form

with  ones and  zeros on the diagonal. In particular, if  is nonsingular,
then  has an orthonormal basis.

The matrix version of Theorem 11.23 follows.

Theorem 11.24 Let  be the set of all  symmetric matrices over an
algebraically closed field . If , we restrict  to the set of allchar
symmetric matrices with at least one nonzero entry on the main diagonal.
1  Any matrix  in  is congruent to a unique matrix of the form Z , in)

fact,  and .rk rk
2  The set of all matrices of the form Z  for  is a set of canonical)

forms for congruence on .
3  The rank of a matrix is a complete invariant for congruence on .)

The Real Field 

If , we can choose , so that all nonzero diagonal elements in
( )11.2  will be either ,  or .

Theorem 11.25 Sylvester's law of inertia( ) Any real orthogonal geometry 
has an ordered orthogonal basis

for which ,  and . Hence, the matrix  has
the diagonal form
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Z

with  ones,  negative ones and  zeros on the diagonal.

Here is the matrix version of Theorem 11.25.

Theorem 11.26 Let  be the set of all  symmetric matrices over the real
field .
1  Any matrix in  is congruent to a unique matrix of the form Z  for)

some   and .
2  The set of all matrices of the form Z  for  is a set of)

canonical forms for congruence on .
3  Let  and let  be congruent to . Then  is the rank of)

 and  is the  of  and the triple  is the signature inertia
of . The pair , or equivalently the pair , is a
complete invariant under congruence on .

Proof. We need only prove the uniqueness statement in part 1 . Let)

and

be ordered bases for which the matrices  and  have the form shown in
Theorem 11.25. Since the rank of these matrices must be equal, we have

 and so .

If  and , thenspan

On the other hand, if  and , thenspan

Hence, if  then . It follows thatspan
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span span

and so

that is, . By symmetry,  and so . Finally, since , it
follows that .

Finite Fields
To deal with the case of finite fields, we must know something about the
distribution of squares in finite fields, as well as the possible values of the
scalars .

Theorem 11.27 Let  be a finite field with  elements.
1  If , then every element of  is a square.) char
2  If , then exactly half of the nonzero elements of  are) char

squares, that is, there are  nonzero squares in . Moreover, if 
is any nonsquare in , then all nonsquares have the form , for some

.
Proof. Write , let  be the subgroup of all nonzero elements in  and
let

be the subgroup of all nonzero squares in . The Frobenius map
 defined by  is a surjective group homomorphism, with

kernel

ker

If , then  and so  is bijective and ,char ker
which proves part 1 . If , then  and so ,) char ker
which proves the first part of part 2 . We leave proof of the last statement to the)
reader.

Definition A bilinear form on  is  if for any nonzero  thereuniversal
exists a vector  for which .

Theorem 11.28 Let  be an orthogonal geometry over a finite field  with
char  and assume that  has a nonsingular subspace of dimension at
least . Then the bilinear form of  is universal.
Proof. Theorem 11.21 implies that  contains two linearly independent vectors

 and  for which
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Given any , we want to find  and  for which

or

If , then , since there are  nonzero
squares , along with . If , then for the same
reasons . It follows that  cannot be the empty set and so
there exist  and  for which .

Now we can proceed with the business at hand.

Theorem 11.29 Let  be an orthogonal geometry over a finite field  and
assume that  is not symplectic if . If , then let  be achar char
fixed nonsquare in . For any nonzero , write

where .rk
1  If , then there is an ordered basis  for which .) char
2  If , then there is an ordered basis  for which  equals) char

 or .
Proof. We can dispose of the case  quite easily: Referring to 11.2 ,char ( )
since every element of  has a square root, we may take .

If , then Theorem 11.21 implies that there is an ordered orthogonalchar
basis

for which  and . Hence,  has the diagonal form
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Now consider the nonsingular orthogonal geometry .span
According to Theorem 11.28, the form is universal when restricted to .
Hence, there exists a  for which .

Now,  for  not both , and we may swap  and  if
necessary to ensure that . Hence,

is an ordered basis for  for which the matrix  is diagonal and has a  in the
upper left entry. We can repeat the process with the subspace .span
Continuing in this way, we can find an ordered basis

for which  for some nonzero . Now, if  is a square in ,
then we can replace  by  to get a basis  for which . If

 is not a square in , then  for some  and so replacing  by
 gives a basis  for which .

Theorem 11.30 Let  be the set of all  symmetric matrices over a finite
field . If , we restrict  to the set of all symmetric matrices withchar
at least one nonzero entry on the main diagonal.
1  If , then any matrix in  is congruent to a unique matrix of the) char

form  and the matrices  form a set of
canonical forms for  under congruence. Also, the rank is a complete
invariant.

2  If , let  be a fixed nonsquare in . Then any matrix  is) char
congruent to a unique matrix of the form  or . The set

 is a set of canonical forms for congruence
on . Thus, there are exactly two congruence classes for each rank .( )

The Orthogonal Group
Having “settled” the classification question for orthogonal geometries over
certain types of fields, let us turn to a discussion of the structure-preserving
maps, that is, the isometries.

Rotations and Reflections
We begin by examining the matrix of an orthogonal transformation. If  is an
ordered basis for , then for any ,

and so if , then

Hence,  is an orthogonal transformation if and only if
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Taking determinants gives

det det det

Therefore, if  is nonsingular, then

det

Since the determinant is an invariant under similarity, we have the following
theorem.

Theorem 11.31 Let  be an orthogonal transformation on a nonsingular
orthogonal geometry .
1   is the same for all ordered bases  for  and) det

det

This determinant is called the  of  and denoted by .determinant det
2  If , then  is called a  and if , then  is) det detrotation

called a .reflection
3  The set  of rotations is a subgroup of the orthogonal group )

and the determinant map  is an epimorphism withdet
kernel . Hence, if , then  is a normal subgroupchar
of  of index .

Symmetries
Recall again that for a real inner product space, a reflection  is defined as an
operator for which

 for all 

and that

In particular, if  and  is nonisotropic, then  ischar span
nonsingular and so

span span

Then the reflection  is well-defined and, in the context of general orthogonal
geometries, is called the  determined by  and we will denote it bysymmetry

. We can also write , that is,

for all  and .span span
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For real inner product spaces, Theorem 10.16 says that if , then
 is the unique reflection sending  to , that is, . In the

present context, we must be careful, since symmetries are defined for
nonisotropic vectors only. Here is what we can say.

Theorem 11.32 Let  be a nonsingular orthogonal geometry over a field ,
with . If  are nonisotropic vectors with the same nonzerochar ( )
“length,” that is, if

then there exists a symmetry  for which
or

Proof. Since  and  are nonisotropic, one of  or  must also be
nonisotropic, for otherwise, since  and  are orthogonal, their sum 
would also be isotropic. If  is nonisotropic, then

and

and so . On the other hand, if  is nonisotropic, then

and

and so .

Recall that an operator on a real inner product space is unitary if and only if it is
a product of reflections. Here is the generalization to nonsingular orthogonal
geometries.

Theorem 11.33 Let  be a nonsingular orthogonal geometry over a field 
with . A linear transformation  on  is an orthogonalchar
transformation if and only if  is the product of symmetries on .
Proof. The proof is by induction on . If , then dim span
where . Let  for . Since  is unitary

and so . If , then  is the identity, which is equal to . On the
other hand, if  then . In either case,  is a product of symmetries.
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Assume now that the theorem is true for dimensions less than  and let
dim . Let  be nonisotropic. Since ,  Theorem
11.32 implies the existence of a symmetry  on  for which

where . Thus,  on . Sinc  implies thatspan e Theorem 11.9
span  is -invariant, we may apply the induction hypothesis to  on
span  to get

span

where  and each  is a symmetry on . But each  canspan span
be extended to a symmetry on  by setting . Assume that  is the
extension of  to , where  on . Hence,  on  andspan span

 on span .

If , then  on  and so , which completes the proof. If
, then  on  since  is the identity on andspan span

 on  on  and so  on span . Hence, .

The Witt Theorems for Orthogonal Geometries
We are now ready to consider the Witt theorems for orthogonal geometries.

Theorem 11.34 Witt's cancellation theorem( ) Let  and  be isometric
nonsingular orthogonal geometries over a field  with . Supposechar
that

and

Then

Proof. First, we prove that it is sufficient to consider the case . Suppose
that the result holds when  and that  is an isometry. Then

Furthermore, . We can therefore apply the theorem to  to get

as desired. To prove the theorem when , assume that

where  and  are nonsingular and . Let  be an isometry. We
proceed by induction on .dim



Metric Vector Spaces: The Theory of Bilinear Forms 295

Suppose first that  and that . Sincedim span

Theorem 11.32 implies that there is a symmetry  for which  where
. Hence,  is an isometry of  for which  and Theorem 11.9

implies that . Thus,  is the desired isometry.

Now suppose the theorem is true for  and let . Letdim dim
 be an isometry. Since  is nonsingular, we can choose a nonisotropic

vector  and write , where  is nonsingular. It followsspan
that

span

and

span

Now we may apply the one-dimensional case to deduce that

If  is an isometry, then

But  and since , the induction hypothesisdim dim
implies that .

As we have seen, Witt's extension theorem is a corollary of Witt's cancellation
theorem.

Theorem 11.35 Witt's extension theorem( ) Let  and  be isometric
nonsingular orthogonal geometries over a field , with . Supposechar
that  is a subspace of  and

is an isometry. Then  can be extended to an isometry from  to .

Maximal Hyperbolic Subspaces of an Orthogonal Geometry
We have seen that any orthogonal geometry  can be written in the form

rad

where  is nonsingular. Nonsingular spaces are better behaved than singular
ones, but they can still possess isotropic vectors.
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We can improve upon the preceding decomposition by noticing that if  is
isotropic, then Theorem 11.10 implies that  can be “captured” in aspan
hyperbolic plane . Then we can writespan

rad

where  is the orthogonal complement of  in  and has “one fewer”
isotropic vector. In order to generalize this process, we first discuss maximal
totally degenerate subspaces.

Maximal Totally Degenerate Subspaces
Let  be a nonsingular orthogonal geometry over a field , with .char
Suppose that  and  are maximal totally degenerate subspaces of . We
claim that . For if , then there is a vectordim dim dim dim
space isomorphism , which is also an isometry, since  and

 are totally degenerate. Thus, Witt's extension theorem implies the existence
of an isometry  that extends . In particular,  is a totally
degenerate space that contains  and so , which shows that
dim dim .

Theorem 11.36 Let  be a nonsingular orthogonal geometry over a field ,
with .char
1  All maximal totally degenerate subspaces of  have the same dimension,)

which is called the  of  and is denoted by .Witt index
2  Any totally degenerate subspace of  of dimension  is maximal.)

Maximal Hyperbolic Subspaces
We can prove by a similar argument that all maximal hyperbolic subspaces of 
have the same dimension. Let

and

be maximal hyperbolic subspaces of  and suppose that  andspan
span . We may assume that .dim dim

The linear map  defined by

is clearly an isometry from  to . Thus, Witt's extension theorem implies the
existence of an isometry  that extends . In particular,  is a
hyperbolic space that contains  and so . It follows that dim

dim .
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It is not hard to see that the maximum dimension  of a hyperbolic subspace
of  is , where  is the Witt index of . First, the nonsingular
extension of a maximal totally degenerate subspace  of  is a hyperbolic
space of dimension  and so . On the other hand, there is a
totally degenerate subspace  contained in any hyperbolic space  and so

, that is, . Hence  and sodim
.

Theorem 11.37 Let  be a nonsingular orthogonal geometry over a field ,
with .char
1  All maximal hyperbolic subspaces of  have dimension .)
2  Any hyperbolic subspace of dimension  must be maximal.)
3  The Witt index of a hyperbolic space  is .)

The Anisotropic Decomposition of an Orthogonal Geometry
If  is a maximal hyperbolic subspace of , then

Since  is maximal,  is anisotropic, for if  were isotropic, then the
nonsingular extension of  would be a hyperbolic space strictlyspan
larger than .

Thus, we arrive at the following decomposition theorem for orthogonal
geometries.

Theorem 11.38 The anisotropic decomposition of an orthogonal geometry( )
Let  be an orthogonal geometry over , with . Letrad char

 be a maximal hyperbolic subspace of , where  if  has no
isotropic vectors. Then

rad

where  is anisotropic,  is hyperbolic of dimension  and  israd
totally degenerate.

Exercises
1. Let  be subspaces of a metric vector space . Show that
 a  )
 b  )
 c  )
2. Let  be subspaces of a metric vector space . Show that
 a  )
 b  )
3. Prove that the following are equivalent:
 a   is nonsingular)
 b   for all  implies )
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4. Show that a metric vector space  is nonsingular if and only if the matrix
 of the form is nonsingular, for every ordered basis .

5. Let  be a finite-dimensional vector space with a bilinear form . We do
not assume that the form is symmetric or alternate. Show that the following
are equivalent:

 a   for all )
 b   for all )
 : Consider the singularity of the matrix of the form.Hint
6. Find a diagonal matrix congruent to

7. Prove that the matrices

 and   

are congruent over the base field  of rational numbers. Find an
invertible matrix  such that .

8. Let  be an orthogonal geometry over a field  with . Wechar
wish to construct an orthogonal basis  for , starting with
any generating set . Justify the following steps, essentially
due to Lagrange. We may assume that  is not totally degenerate.

 a  If  for some , then let . Otherwise, there are indices)
 for which . Let .

 b  Assume we have found an ordered set of vectors )
that form an orthogonal basis for a subspace  of  and that none of
the 's are isotropic. Then .

 c  For each , let)

Then the vectors  span . If  is totally degenerate, take any
basis for  and append it to . Otherwise, repeat step a  on  to)
get another vector  and let . Eventually, we
arrive at an orthogonal basis  for .

9. Prove that orthogonal hyperbolic planes may be characterized as two-
dimensional nonsingular orthogonal geometries that have exactly two one-
dimensional totally isotropic equivalently: totally degenerate  subspaces.( )

10. Prove that a two-dimensional nonsingular orthogonal geometry is a
hyperbolic plane if and only if its discriminant is .

11. Does Minkowski space contain any isotropic vectors? If so, find them.
12. Is Minkowski space isometric to Euclidean space ?



Metric Vector Spaces: The Theory of Bilinear Forms 299

13. If  is a symmetric bilinear form on  and , show thatchar
 is a quadratic form.

14. Let  be a vector space over a field , with ordered basis .
Let  be a  polynomial of degree  over , that is,homogeneous
a polynomial each of whose terms has degree . The  defined by -form
is the function from  to  defined as follows. If , then

( )We use the same notation for the form and the polynomial.  Prove that -
forms are the same as quadratic forms.

15. Show that  is an isometry on  if and only if  where  is
the quadratic form associated with the bilinear form on . Assume that(
char .

16. Show that a quadratic form  on  satisfies the parallelogram law:

17. Show that if  is a nonsingular orthogonal geometry over a field , with
char , then any totally isotropic subspace of  is also a totally
degenerate space.

18. Is it true that ?rad rad
19. Let  be a nonsingular symplectic geometry and let  be a symplectic

transvection. Prove that
 a  )
 b  For any symplectic transformation ,)

 c  For ,)

 d  For a fixed , the map  is an isomorphism from the)
additive group of  onto the group Sp .

20. Prove that if  is any nonsquare in a finite field , then all nonsquares
have the form , for some . Hence, the product of any two
nonsquares in  is a square.

21. Formulate Sylvester's law of inertia in terms of quadratic forms on .
22. Show that a two-dimensional space is a hyperbolic plane if and only if it is

nonsingular and contains an isotropic vector. Assume that .char
23. Prove directly that a hyperbolic plane in an orthogonal geometry cannot

have an orthogonal basis when .char
24. a  Let  be a subspace of . Show that the inner product)

 on the quotient space  is well-defined if
and only if .rad

 b  If , when is  nonsingular?) rad
25. Let , where  is a totally degenerate space.
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 a  Prove that  if and only if  is nonsingular.) rad
 b  If  is nonsingular, prove that .) rad
26. Let . Prove that  impliesdim dim rad rad

.
27. Let . Prove that
 a  ) rad rad rad
 b  ) rad rad rad
 c  ) rad rad raddim dim dim
 d   is nonsingular if and only if  and  are both nonsingular.)
28 Because the Riesz. Let  be a nonsingular metric vector space. 

representation theorem is valid in , we can define the adjoint  of a linear
map  exactly as in the case of real inner product spaces. Prove
that  is an isometry if and only if it is bijective and unitary that is,(

).
29. If , prove that  is an isometry if and only if it ischar

bijective and  for all .
30. Let  be a basis for . Prove that  is an

isometry if and only if it is bijective and  for all .
31. Let  be a linear operator on a metric vector space . Let 

be an ordered basis for  and let  be the matrix of the form relative to
. Prove that  is an isometry if and only if

32. Let  be a nonsingular orthogonal geometry and let  be an
isometry.

 a  Show that .) imdim ker dim
 b  Show that . How would you describe) imker

ker  in words?
 c  If  is a symmetry, what is ?) dim ker
 d  Can you characterize symmetries by means of ?) dim ker
33. A linear transformation  is called  if  is nilpotent.unipotent

Suppose that  is a nonisotropic metric vector space and that  is unipotent
and isometric. Show that .

34. Let  be a hyperbolic space of dimension  and let  be a hyperbolic
subspace of  of dimension . Show that for each , there is a
hyperbolic subspace  of  for which .

35. Let . Prove that if  is a totally degenerate subspace of anchar
orthogonal geometry , then .dim dim

36. Prove that an orthogonal geometry  of dimension  is a hyperbolic space
if and only if  is nonsingular,  is even and  contains a totally
degenerate subspace of dimension .

37. Prove that a symplectic transformation has determinant equal to .



Chapter 12
Metric Spaces

The Definition
In Chapter 9, we studied the basic properties of real and complex inner product
spaces. Much of what we did does not depend on whether the space in question
is finite-dimensional or infinite-dimensional. However, as we discussed in
Chapter 9, the presence of an inner product and hence a metric, on a vector
space, raises a host of new issues related to convergence. In this chapter, we
discuss briefly the concept of a metric space. This will enable us to study the
convergence properties of real and complex inner product spaces.

A metric space is not an algebraic structure. Rather it is designed to model the
abstract properties of distance.

Definition A  is a pair , where  is a nonempty set andmetric space
 is a real-valued function, called a  on , with themetric

following properties. The expression  is read “the distance from  to .”
1   For all ,) ( )Positive definiteness

and  if and only if .
2   For all ,) ( )Symmetry

3   For all ,) ( )Triangle inequality

As is customary, when there is no cause for confusion, we simply say “let  be
a metric space.”
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Example 12.1 Any nonempty set  is a metric space under the discrete
metric, defined by

if
if

Example 12.2
1  The set  is a metric space, under the metric defined for )

and  by

This is called the  on . We note that  is also a metricEuclidean metric
space under the metric

Of course,  and  are different metric spaces.
2  The set  is a metric space under the ) unitary metric

where  and  are in . 

Example 12.3
1  The set  of all real-valued or complex-valued  continuous functions) ( )

on  is a metric space, under the metric

sup

We refer to this metric as the .sup metric
2  The set  of all real-valued or complex-valued  continuous functions) )

on  is a metric space, under the metric

Example 12.4 Many important sequence spaces are metric spaces. We will
often use boldface italic letters to denote sequences, as in  and

.
1  The set  of all bounded sequences of real numbers is a metric space)

under the metric defined by

sup

The set  of all bounded complex sequences, with the same metric, is also
a metric space. As is customary, we will usually denote both of these spaces
by .
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2  For , let  be the set of all sequences  of real or complex) )
numbers for which

We define the  of  by-norm

Then  is a metric space, under the metric

The fact that  is a metric follows from some rather famous results about
sequences of real or complex numbers, whose proofs we leave as well-(
hinted  exercises.)

  Let  and . If  and ,Holder's inequality¨
then the product sequence  is in  and

that is,

A special case of this with 2  is the ( ) Cauchy–Schwarz inequality

Minkowski's inequality For , if  then the sum 
 is in  and

that is,
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If  is a metric space under a metric , then any nonempty subset  of  is
also a metric under the restriction of  to . The metric space  thus
obtained is called a  of .subspace

Open and Closed Sets
Definition Let  be a metric space. Let  and let  be a positive real
number.
1  The  centered at , with radius , is) open ball

2  The  centered at , with radius , is) closed ball

3  The  centered at , with radius , is) sphere

Definition A subset  of a metric space  is said to be  if each point of open
is the center of an open ball that is contained completely in . More
specifically,  is open if for all , there exists an  such that

. Note that the empty set is open. A set  is  if itsclosed
complement  in  is open.

It is easy to show that an open ball is an open set and a closed ball is a closed
set. If , we refer to any open set  containing  as an open
neighborhood of . It is also easy to see that a set is open if and only if it
contains an open neighborhood of each of its points.

The next example shows that it is possible for a set to be both open and closed,
or neither open nor closed.

Example 12.5 In the metric space  with the usual Euclidean metric, the open
balls are just the open intervals

and the closed balls are the closed intervals

Consider the half-open interval , for . This set is not open, since
it contains no open ball centered at  and it is not closed, since its
complement  is not open, since it contains no open ball
about .
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Observe also that the empty set is both open and closed, as is the entire space .
(Although we will not do so, it is possible to show that these are the only two
sets that are both open and closed in .

It is not our intention to enter into a detailed discussion of open and closed sets,
the subject of which belongs to the branch of mathematics known as .topology
In order to put these concepts in perspective, however, we have the following
result, whose proof is left to the reader.

Theorem 12.1 The collection  of all open subsets of a metric space  has the
following properties:
1  , )
2  If ,  then )
3  If  is any collection of open sets, then .)
These three properties form the basis for an axiom system that is designed to
generalize notions such as convergence and continuity and leads to the
following definition.

Definition Let  be a nonempty set. A collection  of subsets of  is called a
topology for  if it has the following properties:
1)
2  If   then )
3  If  is any collection of sets in , then .)

We refer to subsets in  as  and the pair  as a open sets topological
space.

According to Theorem 12.1, the open sets as we defined them earlier  in a( )
metric space  form a topology for , called the topology  by theinduced
metric.

Topological spaces are the most general setting in which we can define concepts
such as convergence and continuity, which is why these concepts are called
topological concepts. However, since the topologies with which we will be
dealing are induced by a metric, we will generally phrase the definitions of the
topological properties that we will need directly in terms of the metric.

Convergence in a Metric Space
Convergence of sequences in a metric space is defined as follows.

Definition A sequence  in a metric space   to , writtenconverges
, if

lim

Equivalently,  if for any , there exists an  such that
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or equivalently,

In this case,  is called the  of the sequence .limit

If  is a metric space and  is a subset of , by a  , we mean asequence in
sequence whose terms all lie in . We next characterize closed sets and
therefore also open sets, using convergence.

Theorem 12.2 Let  be a metric space. A subset  is closed if and only if
whenever  is a sequence in  and , then . In loose terms, a
subset  is closed if it is closed under the taking of sequential limits.
Proof. Suppose that  is closed and let , where  for all .
Suppose that . Then since  and  is open, there exists an  for
which . But this implies that

which contradicts the fact that . Hence, .

Conversely, suppose that  is closed under the taking of limits. We show that
 is open. Let  and suppose to the contrary that no open ball about  is

contained in . Consider the open balls , for all . Since none of
these balls is contained in , for each , there is an . It is
clear that  and so . But  cannot be in both  and . This
contradiction implies that  is open. Thus,  is closed.

The Closure of a Set
Definition Let  be any subset of a metric space . The  of , denotedclosure
by , is the smallest closed set containing .cl

We should hasten to add that, since the entire space  is closed and since the
intersection of any collection of closed sets is closed exercise , the closure of( )
any set  does exist and is the intersection of all closed sets containing . The
following definition will allow us to characterize the closure in another way.

Definition Let  be a nonempty subset of a metric space . An element 
is said to be a , or , of  if every open balllimit point accumulation point
centered at  meets  at a point other than  itself. Let us denote the set of all
limit points of  by .

Here are some key facts concerning limit points and closures.
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Theorem 12.3 Let  be a nonempty subset of a metric space .
1   if and only if there is a sequence  in  for which  for)

all  and .
2   is closed if and only if . In words,  is closed if and only if it)

contains all of its limit points.
3  .) cl
4   if and only if there is a sequence  in  for which .) cl
Proof. For part 1 , assume first that . For each , there exists a point)

 such that . Thus, we have

and so . For the converse, suppose that , where .
If  is any ball centered at , then there is some  such that 
implies . Hence, for any ball  centered at , there is a point

 such that . Thus,  is a limit point of .

As for part 2 , if  is closed, then by part 1 , any  is the limit of a) )
sequence  in  and so must be in . Hence, . Conversely, if

, then  is closed. For if  is any sequence in  and , then
there are two possibilities. First, we might have  for some , in which
case . Second, we might have  for all , in which case

 implies that . In either case,  and so  is closed
under the taking of limits, which implies that  is closed.

For part 3 , let . Clearly, . To show that  is closed, we)
show that it contains all of its limit points. So let . Hence, there is a
sequence  for which  and . Of course, each  is
either in , or is a limit point of . We must show that , that is, that  is
either in  or is a limit point of .

Suppose for the purposes of contradiction that  and . Then there
is a ball  for which . However, since , there
must be an . Since  cannot be in , it must be a limit point of .
Referring to Figure 12.1, if , then consider the ball

. This ball is completely contained in  and must contain
an element  of , since its center  is a limit point of . But then

, a contradiction. Hence,  or . In either case,
 and so  is closed.

Thus,  is closed and contains  and so . On the other hand,cl
cl cl and so .
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Figure 12.1

For part 4 , if , then there are two possibilities. If , then the) cl
constant sequence , with  for all , is a sequence in  that converges
to . If , then  and so there is a sequence  in  for which

 and . In either case, there is a sequence in  converging to .
Conversely, if there is a sequence  in  for which , then either

 for some , in which case , or else  for all , incl
which case .cl

Dense Subsets
The following concept is meant to convey the idea of a subset  being
“arbitrarily close” to every point in .

Definition A subset  of a metric space  is  in  if . Adense cl
metric space is said to be  if it contains a  dense subset.separable countable

Thus, a subset  of  is dense if every open ball about any point 
contains at least one point of .

Certainly, any metric space contains a dense subset, namely, the space itself.
However, as the next examples show, not every metric space contains a
countable dense subset.

Example 12.6
1  The real line  is separable, since the rational numbers  form a countable)

dense subset. Similarly,  is separable, since the set  is countable and
dense.

2  The complex plane  is separable, as is  for all .)
3  A discrete metric space is separable if and only if it is countable. We leave)

proof of this as an exercise.
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Example 12.7 The space  is not separable. Recall that  is the set of all
bounded sequences of real numbers or complex numbers  with metric( )

sup

To see that this space is not separable, consider the set  of all binary sequences

 or  for all 

This set is in one-to-one correspondence with the set of all subsets of  and so
is uncountable. It has cardinality 2 .  Now, each sequence in  is(
certainly bounded and so lies in . Moreover, if , then the two
sequences must differ in at least one position and so .

In other words, we have a subset  of  that is uncountable and for which the
distance between any two distinct elements is . This implies that the balls in the
uncountable collection  are mutually disjoint. Hence, no
countable set can meet every ball, which implies that no countable set can be
dense in .

Example 12.8 The metric spaces  are separable, for . The set  of all
sequences of the form

for all , where the 's are rational, is a countable set. Let us show that it is
dense in . Any  satisfies

Hence, for any , there exists an  such that

Since the rational numbers are dense in , we can find rational numbers  for
which

for all . Hence, if , then

which shows that there is an element of  arbitrarily close to any element of .
Thus,  is dense in  and so  is separable.



310 Advanced Linear Algebra

Continuity
Continuity plays a central role in the study of linear operators on infinite-
dimensional inner product spaces.

Definition Let  be a function from the metric space  to the
metric space . We say that  is   if for any ,continuous at
there exists a  such that

or, equivalently,

( )See Figure 12.2.  A function is  if it is continuous at everycontinuous
.

Figure 12.2

We can use the notion of convergence to characterize continuity for functions
between metric spaces.

Theorem 12.4 A function  is continuous if and only if whenever
 is a sequence in  that converges to , then the sequence 

converges to , in short,

Proof. Suppose first that  is continuous at  and let . Then, given
, the continuity of  implies the existence of a  such that

Since , there exists an  such that  for  and
so

Thus, .

Conversely, suppose that  implies . Suppose, for the
purposes of contradiction, that  is not continuous at . Then there exists an
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 such that for all ,

Thus, for all ,

and so we may construct a sequence  by choosing each term  with the
property that

, but 

Hence, , but  does not converge to . This contradiction
implies that  must be continuous at .

The next theorem says that the distance function is a continuous function in both
variables.

Theorem 12.5 Let  be a metric space. If  and , then
.

Proof. We leave it as an exercise to show that

But the right side tends to  as  and so .

Completeness
The reader who has studied analysis will recognize the following definitions.

Definition A sequence  in a metric space  is a  if forCauchy sequence
any , there exists an  for which

We leave it to the reader to show that any convergent sequence is a Cauchy
sequence. When the converse holds, the space is said to be .complete

Definition Let  be a metric space.
1   is said to be  if every Cauchy sequence in  converges in .) complete
2  A subspace  of  is  if it is complete as a metric space. Thus, ) complete

is complete if every Cauchy sequence  in  converges to an element in
.

Before considering examples, we prove a very useful result about completeness
of subspaces.
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Theorem 12.6 Let  be a metric space.
1  Any complete subspace of  is closed.)
2  If  is complete, then a subspace  of  is complete if and only if it is)

closed.
Proof. To prove 1 , assume that  is a complete subspace of . Let  be a)
sequence in  for which . Then  is a Cauchy sequence in 
and since  is complete,  must converge to an element of . Since limits of
sequences are unique, we have . Hence,  is closed.

To prove part 2 , first assume that  is complete. Then part 1  shows that  is) )
closed. Conversely, suppose that  is closed and let  be a Cauchy sequence
in . Since  is also a Cauchy sequence in the complete space , it must
converge to some . But since  is closed, we have . Hence,

 is complete.

Now let us consider some examples of complete and incomplete  metric spaces.( )

Example 12.9 It is well known that the metric space  is complete. However, a(
proof of this fact would lead us outside the scope of this book.  Similarly, the
complex numbers  are complete.

Example 12.10 The Euclidean space  and the unitary space  are complete.
Let us prove this for . Suppose that  is a Cauchy sequence in , where

Thus,

 as 

and so, for each coordinate position ,

which shows that the sequence  of th coordinates is a Cauchy2
sequence in . Since  is complete, we must have

 as 

If , then

 as 

and so . This proves that  is complete.
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Example 12.11 The metric space  of all real-valued or complex-(
valued  continuous functions on , with metric)

sup

is complete. To see this, we first observe that the limit with respect to  is the
uniform limit on , that is  if and only if for any , there is
an  for which

  for all 

Now let  be a Cauchy sequence in . Thus, for any , there is
an  for which

 for all 12.1( )

This implies that, for each , the sequence  is a Cauchy sequence
of real or complex  numbers and so it converges. We can therefore define a( )
function  on  by

lim

Letting  in 12.1 , we get( )

 for all 

Thus,  converges to  uniformly. It is well known that the uniform
limit of continuous functions is continuous and so . Thus,

 and so  is complete.

Example 12.12 The metric space  of all real-valued or complex-(
valued  continuous functions on , with metric)

is not complete. For convenience, we take  and leave the general
case for the reader. Consider the sequence of functions  whose graphs are
shown in Figure 12.3. The definition of  should be clear from the graph.(
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Figure 12.3

We leave it to the reader to show that the sequence  is Cauchy, but does
not converge in . The sequence converges to a function that is not(
continuous.)

Example 12.13 The metric space  is complete. To see this, suppose that 
is a Cauchy sequence in , where

2

Then, for each coordinate position , we have

sup  as 12.2( )

Hence, for each , the sequence  of th coordinates is a Cauchy sequence in
 or . Since  or  is complete, we have( ) ( )

 as 

for each coordinate position . We want to show that  and that
.

Letting  in 12.2  gives)

sup  as 12.3( )

and so, for some ,

 for all 

and so

 for all 

But since , it is a bounded sequence and therefore so is . That is,
. Since 12.3  implies that , we see that  is)

complete.
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Example 12.14 The metric space  is complete. To prove this, let  be a
Cauchy sequence in , where

2

Then, for each coordinate position ,

which shows that the sequence  of th coordinates is a Cauchy sequence in
 or . Since  or  is complete, we have( ) ( )

 as 

We want to show that  and that .

To this end, observe that for any , there is an  for which

for all . Now we let , to get

for all . Letting , we get, for any ,

which implies that  and so   and in
addition, .

As we will see in the next chapter, the property of completeness plays a major
role in the theory of inner product spaces. Inner product spaces for which the
induced metric space is complete are called .Hilbert spaces

Isometries
A function between two metric spaces that preserves distance is called an
isometry. Here is the formal definition.

Definition Let  and  be metric spaces. A function  is
called an  ifisometry
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for all . If  is a bijective isometry from  to , we say
that  and  are  and write .isometric

Theorem 12.7 Let  be an isometry. Then
1   is injective)
2   is continuous)
3   is also an isometry and hence also continuous.)
Proof. To prove 1 , we observe that)

To prove 2 , let  in . Then)

 as 

and so , which proves that  is continuous. Finally, we have

and so  is an isometry.

The Completion of a Metric Space
While not all metric spaces are complete, any metric space can be embedded in
a complete metric space. To be more specific, we have the following important
theorem.

Theorem 12.8 Let  be any metric space. Then there is a complete metric
space  and an isometry  for which  is dense in

. The metric space  is called a  of . Moreover,completion
 is unique, up to bijective isometry.

Proof. The proof is a bit lengthy, so we divide it into various parts. We can
simplify the notation considerably by thinking of sequences  in  as
functions , where .

Cauchy Sequences in 
The basic idea is to let the elements of  be equivalence classes of Cauchy
sequences in . So let  denote the set of all Cauchy sequences in . IfCS

CS , then, intuitively speaking, the terms  get closer together as
 and so do the terms . Therefore, it seems reasonable that

 should approach a finite limit as . Indeed, since

as  it follows that  is a Cauchy sequence of real
numbers, which implies that
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lim ( )12.4

(That is, the limit exists and is finite.

Equivalence Classes of Cauchy Sequences in 
We would like to define a metric  on the set  byCS

lim

However, it is possible that

lim

for distinct sequences  and , so this does not define a metric. Thus, we are led
to define an equivalence relation on  byCS

lim

Let  be the set of all equivalence classes of Cauchy sequences andCS
define, for  ,CS

lim ( )12.5

where  and .

To see that  is well-defined, suppose that  and . Then since
 and , we have

as . Thus,

 and lim lim

which shows that  is well-defined. To see that  is a metric, we verify the
triangle inequality, leaving the rest to the reader. If  and  are Cauchy
sequences, then

Taking limits gives

lim lim lim
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and so

Embedding  in 
For each , consider the constant Cauchy sequence , where 
for all . The map  defined by

is an isometry, since

lim

Moreover,  is dense in . This follows from the fact that we can
approximate any Cauchy sequence in  by a constant sequence. In particular,
let . Since  is a Cauchy sequence, for any , there exists an 
such that

Now, for the constant sequence  we have

lim

and so  is dense in .

 Is Complete
Suppose that

3

is a Cauchy sequence in . We wish to find a Cauchy sequence  in  for
which

lim  as 

Since  and since  is dense in , there is a constant sequence

for which
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We can think of  as a constant approximation to , with error at most .
Let  be the sequence of these constant approximations:

This is a Cauchy sequence in . Intuitively speaking, since the 's get closer
to each other as , so do the constant approximations. In particular, we
have

as . To see that  converges to , observe that

lim

lim

Now, since  is a Cauchy sequence, for any , there is an  such that

In particular,

lim

and so

which implies that , as desired.

Uniqueness
Finally, we must show that if  and  are both completions of

, then . Note that we have bijective isometries

 and 

Hence, the map

is a bijective isometry from  onto , where  is dense in . See
Figure 12.4.
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Figure 12.4

Our goal is to show that  can be extended to a bijective isometry  from  to
.

Let . Then there is a sequence  in  for which . Since
 is a Cauchy sequence in ,  is a Cauchy sequence in 

and since  is complete, we have  for some . Let us
define .

To see that  is well-defined, suppose that  and , where both
sequences lie in . Then

 as 

and so  and  converge to the same element of , which implies
that  does not depend on the choice of sequence in  converging to .
Thus,  is well-defined. Moreover, if , then the constant sequence 
converges to  and so lim , which shows that  is an
extension of .

To see that  is an isometry, suppose that  and . Then
 and  and since  is continuous, we have

lim lim

Thus, we need only show that  is surjective. Note first that
im im im. Thus, if  is closed, we can deduce from the fact

that  is dense in  that . So, suppose that  is aim
sequence in  and . Then  is a Cauchy sequence andim
therefore so is . Thus, . But  is continuous and so

, which implies that  and so . Hence,  isim
surjective and .
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Exercises
1. Prove the generalized triangle inequality

3

2. a  Use the triangle inequality to prove that)

 b  Prove that)

3. Let  be the subspace of all binary sequences sequences of 's and(
's . Describe the metric on .)

4. Let  be the set of all binary -tuples. Define a function
 by letting  be the number of positions in which  and

 differ. For example, . Prove that  is a metric. It(
is called the  and plays an important role inHamming distance function
the theory of error-correcting codes.

5. Let .
 a  If  show that )
 b  Find a sequence that converges to  but is not an element of any  for)

.
6. a  Show that if , then  for all .)
 b  Find a sequence  that is in  for , but is not in .)
7. Show that a subset  of a metric space  is open if and only if  contains

an open neighborhood of each of its points.
8. Show that the intersection of any collection of closed sets in a metric space

is closed.
9. Let  be a metric space. The  of a nonempty subset diameter

is

sup

A set  is  if .bounded
 a  Prove that  is bounded if and only if there is some  and )

for which .
 b  Prove that  if and only if  consists of a single point.)
 c  Prove that  implies .)
 d  If  and  are bounded, show that  is also bounded.)
10. Let  be a metric space. Let  be the function defined by



322 Advanced Linear Algebra

 a  Show that  is a metric space and that  is bounded under this)
metric, even if it is not bounded under the metric .

 b  Show that the metric spaces  and  have the same open)
sets.

11. If  and  are subsets of a metric space , we define the distance
between  and  by

 inf

 a  Is it true that  if and only if ? Is  a metric?)
 b  Show that  if and only if .) cl
12. Prove that  is a limit point of  if and only if every

neighborhood of  meets  in a point other than  itself.
13. Prove that  is a limit point of  if and only if every open ball

 contains infinitely many points of .
14. Prove that limits are unique, that is, ,  implies that

.
15. Let  be a subset of a metric space . Prove that  if and only ifcl

there exists a sequence  in  that converges to .
16. Prove that the closure has the following properties:
 a   ) cl
 b  ) cl cl
 c   ) cl cl cl
 d  ) cl cl cl
 Can the last part be strengthened to equality?
17. a  Prove that the closed ball  is always a closed subset.)
 b  Find an example of a metric space in which the closure of an open ball)

 is not equal to the closed ball .
18. Provide the details to show that  is separable.
19. Prove that  is separable.
20. Prove that a discrete metric space is separable if and only if it is countable.
21. Prove that the metric space  of all bounded functions on , with

metric

sup

is not separable.
22. Show that a function  is continuous if and only if the

inverse image of any open set is open, that is, if and only if
 is open in  whenever  is an open set

in .
23. Repeat the previous exercise, replacing the word open by the word closed.
24. Give an example to show that if  is a continuous

function and  is an open set in , it need not be the case that  is
open in .
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25. Show that any convergent sequence is a Cauchy sequence.
26. If  in a metric space , show that any subsequence  of 

also converges to .
27. Suppose that  is a Cauchy sequence in a metric space  and that some

subsequence  of  converges. Prove that  converges to the
same limit as the subsequence.

28. Prove that if  is a Cauchy sequence, then the set  is bounded. What
about the converse? Is a bounded sequence necessarily a Cauchy sequence?

29. Let  and  be Cauchy sequences in a metric space . Prove that the
sequence  converges.

30. Show that the space of all convergent sequences of real numbers or
complex numbers  is complete as a subspace of .)

31. Let  denote the metric space of all polynomials over , with metric

sup

Is  complete?
32. Let  be the subspace of all sequences with finite support that is,(

with a finite number of nonzero terms . Is  complete?)
33. Prove that the metric space  of all integers, with metric

, is complete.
34. Show that the subspace  of the metric space  under the sup metric( )

consisting of all functions  for which  is complete.
35. If  and  is complete, show that  is also complete.
36. Show that the metric spaces  and , under the sup metric, are

isometric.
37. Prove Hölder's inequality

    

as follows:
 a  Show that )
 b  Let  and  be positive real numbers and consider the rectangle  in)

 with corners , ,  and , with area . Argue
geometrically that is, draw a picture  to show that( )

and so

 c  Now let  and . Apply the results of)
part b  to)
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and then sum on  to deduce Hölder's inequality.
38. Prove Minkowski's inequality

   

as follows:
 a  Prove it for  first.)
 b  Assume . Show that)

 c  Sum this from  to  and apply Hölder's inequality to each sum on)
the right, to get

 Divide both sides of this by the last factor on the right and let  to
deduce Minkowski's inequality.

39. Prove that  is a metric space.



Chapter 13
Hilbert Spaces

Now that we have the necessary background on the topological properties of
metric spaces, we can resume our study of inner product spaces without
qualification as to dimension. As in Chapter 9, we restrict attention to real and
complex inner product spaces. Hence  will denote either  or .

A Brief Review
Let us begin by reviewing some of the results from Chapter 9. Recall that an
inner product space  over  is a vector space , together with an inner
product . If , then the inner product is bilinear and if

, the inner product is sesquilinear.

An inner product induces a norm on , defined by

We recall in particular the following properties of the norm.

Theorem 13.1
1   For all ,) ( )The Cauchy-Schwarz inequality

with equality if and only if  for some .
2   For all ,) ( )The triangle inequality

with equality if and only if  for some .
3) ( )The parallelogram law

We have seen that the inner product can be recovered from the norm, as follows.
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Theorem 13.2
1  If  is a real inner product space, then)

2  If  is a complex inner product space, then)

The inner product also induces a metric on  defined by

Thus, any inner product space is a metric space.

Definition Let  and  be inner product spaces and let .
1   is an  if it preserves the inner product, that is, if) isometry

for all .
2  A bijective isometry is called an . When ) isometric isomorphism

is an isometric isomorphism, we say that  and  are isometrically
isomorphic.

It is easy to see that an isometry is always injective but need not be surjective,
even if .

Theorem 13.3 A linear transformation  is an isometry if and only
if it preserves the norm, that is, if and only if

for all .

The following result points out one of the main differences between real and
complex inner product spaces.

Theorem 13.4 Let  be an inner product space and let .
1  If  for all  , then .)
2  If  is a complex inner product space and  for all)

, then .
3  Part 2  does not hold in general for real inner product spaces.) )

Hilbert Spaces
Since an inner product space is a metric space, all that we learned about metric
spaces applies to inner product spaces. In particular, if  is a sequence of
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vectors in an inner product space , then

 if and only if  as 

The fact that the inner product is continuous as a function of either of its
coordinates is extremely useful.

Theorem 13.5 Let  be an inner product space. Then
1)
2)

Complete inner product spaces play an especially important role in both theory
and practice.

Definition An inner product space that is complete under the metric induced by
the inner product is said to be a .Hilbert space

Example 13.1 One of the most important examples of a Hilbert space is the
space . Recall that the inner product is defined by

(In the real case, the conjugate is unnecessary.  The metric induced by this inner
product is

2

which agrees with the definition of the metric space  given in Chapter 12. In
other words, the metric in Chapter 12 is induced by this inner product. As we
saw in Chapter 12, this inner product space is complete and so it is a Hilbert
space. In fact, it is the prototype of all Hilbert spaces, introduced by David(
Hilbert in 1912, even before the axiomatic definition of Hilbert space was given
by John von Neumann in 1927.

The previous example raises the question whether the other metric spaces 
), with distance given by

 13.1( )

are complete inner product spaces. The fact is that they are not even inner
product spaces! More specifically, there is no inner product whose induced
metric is given by 13.1 . To see this, observe that, according to Theorem 13.1,( )
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any norm that comes from an inner product must satisfy the parallelogram law

But the norm in 13.1  does not satisfy this law. To see this, take( )
 and . Then

and

Thus, the left side of the parallelogram law is  and the right side is ,2

which equals  if and only if .

Just as any metric space has a completion, so does any inner product space.

Theorem 13.6 Let  be an inner product space. Then there exists a Hilbert
space  and an isometry  for which  is dense in . Moreover, 
is unique up to isometric isomorphism.
Proof. We know that the metric space , where  is induced by the inner
product, has a unique completion , which consists of equivalence classes
of Cauchy sequences in . If  and , then we
set

and

lim

It is easy to see that since  and  are Cauchy sequences, so are 
and . In addition, these definitions are well-defined, that is, they are
independent of the choice of representative from each equivalence class. For
instance, if , then

lim

and so

(The Cauchy sequence  is bounded.  Hence,

lim lim

We leave it to the reader to show that  is an inner product space under these
operations.
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Moreover, the inner product on  induces the metric , since

lim

lim

Hence, the metric space isometry  is an isometry of inner product
spaces, since

Thus,  is a complete inner product space and  is a dense subspace of 
that is isometrically isomorphic to . We leave the issue of uniqueness to the
reader.

The next result concerns subspaces of inner product spaces.

Theorem 13.7
1  Any complete subspace of an inner product space is closed.)
2  A subspace of a Hilbert space is a Hilbert space if and only if it is closed.)
3  Any finite-dimensional subspace of an inner product space is closed and)

complete.
Proof. Parts 1  and 2  follow from Theorem 12.6. Let us prove that a finite-) )
dimensional subspace  of an inner product space  is closed. Suppose that

 is a sequence in ,  and . Let  be an
orthonormal Hamel basis for . The Fourier expansion

in  has the property that  but

Thus, if we write  and , the sequence , which is
in , converges to a vector  that is orthogonal to . But this is impossible,
because  implies that

This proves that  is closed.

To see that any finite-dimensional subspace  of an inner product space is
complete, let us embed  as an inner product space in its own right  in its( )
completion . Then  or rather an isometric copy of  is a finite-dimensional( )
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subspace of a complete inner product space  and as such it is closed.
However,  is dense in  and so , which shows that  is complete.

Infinite Series
Since an inner product space allows both addition of vectors and convergence of
sequences, we can define the concept of infinite sums, or infinite series.

Definition Let  be an inner product space. The  of theth partial sum
sequence  in  is

If the sequence  of partial sums converges to a vector , that is, if

 as 

then we say that the series  to  and writeconverges

We can also define absolute convergence.

Definition A series  is said to be  if the seriesabsolutely convergent

converges.

The key relationship between convergence and absolute convergence is given in
the next theorem. Note that completeness is required to guarantee that absolute
convergence implies convergence.

Theorem 13.8 Let  be an inner product space. Then  is complete if and only
if absolute convergence of a series implies convergence.
Proof. Suppose that  is complete and that . Then the sequence 
of partial sums is a Cauchy sequence, for if , we have

Hence, the sequence  converges, that is, the series  converges.

Conversely, suppose that absolute convergence implies convergence and let
 be a Cauchy sequence in . We wish to show that this sequence

converges. Since  is a Cauchy sequence, for each , there exists an 



Hilbert Spaces 331

with the property that

Clearly, we can choose , in which case

and so

Thus, according to hypothesis, the series

converges. But this is a telescoping series, whose th partial sum is

and so the subsequence  converges. Since any Cauchy sequence that has a
convergent subsequence must itself converge, the sequence  converges and
so  is complete.

An Approximation Problem
Suppose that  is an inner product space and that  is a subset of . It is of
considerable interest to be able to find, for any , a vector in  that is
closest to  in the metric induced by the inner product, should such a vector
exist. This is the  for .approximation problem

Suppose that  and let

inf

Then there is a sequence  for which

as shown in Figure 13.1.
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Figure 13.1

Let us see what we can learn about this sequence. First, if we let ,
then according to the parallelogram law,

or

( )13.2

Now, if the set  is , that is, ifconvex

 for all 

( )in words,  contains the line segment between any two of its points , then
 and so

Thus, 13.2  gives( )

as . Hence, if  is convex, then the sequence  is a
Cauchy sequence and therefore so is .

If we also require that  be complete, then the Cauchy sequence  converges
to a vector  and by the continuity of the norm, we must have .
Let us summarize and add a remark about uniqueness.

Theorem 13.9 Let  be an inner product space and let  be a complete convex
subset of . Then for any , there exists a unique  for which

inf

The vector  is called the  to  in .best approximation
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Proof. Only the uniqueness remains to be established. Suppose that

Then, by the parallelogram law,

2

and so .

Since any subspace  of an inner product space  is convex, Theorem 13.9
applies to complete subspaces. However, in this case, we can say more.

Theorem 13.10 Let  be an inner product space and let  be a complete
subspace of . Then for any , the best approximation to  in  is the
unique vector  for which .
Proof. Suppose that , where . Then for any , we have

 and so

Hence  is the best approximation to  in . Now we need only show that
, where  is the best approximation to  in . For any , a little

computation reminiscent of completing the square gives
2

Now, this is smallest when
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in which case

Replacing  by  gives

But  is the best approximation to  in  and since  we must have

Hence,

or equivalently,

Hence, .

According to Theorem 13.9, if  is a complete subspace of an inner product
space , then for any , we may write

where  and . Hence,  and since ,
we also have . This is the projection theorem for arbitrary inner
product spaces.

Theorem 13.11 The projection theorem( ) If  is a complete subspace of an
inner product space , then

In particular, if  is a closed subspace of a Hilbert space , then

Theorem 13.12 Let ,  and  be subspaces of an inner product space .
1  If  then .)
2  If  then .)
Proof. If , then  by definition of orthogonal direct sum. On
the other hand, if , then , for some  and . Hence,
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and so , implying that . Thus, . Part 2  follows from part)
1 .)

Let us denote the closure of the span of a set  of vectors by .cspan

Theorem 13.13 Let  be a Hilbert space.
1  If  is a subset of , then)

cspan

2  If  is a subspace of , then)

cl

3  If  is a closed subspace of , then)

Proof. We leave it as an exercise to show that . Hencecspan

cspan cspan cspan

But since  is closed, we also have

and so by Theorem 13.12, . The rest follows easily from partcspan
1 .)

In the exercises, we provide an example of a closed subspace  of an inner
product space  for which . Hence, we cannot drop the requirement
that  be a Hilbert space in Theorem 13.13.

Corollary 13.14 If  is a  of a Hilbert space , then  is dense insubset span
 if and only if .

Proof. As in the previous proof,

cspan

and so  if and only if .cspan

Hilbert Bases
We recall the following definition from Chapter 9.

Definition A maximal orthonormal set in a Hilbert space  is called a Hilbert
basis for .

Zorn's lemma can be used to show that any nontrivial Hilbert space has a Hilbert
basis. Again, we should mention that the concepts of Hilbert basis and Hamel
basis a maximal linearly independent set  are quite different. We will show( )
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later in this chapter that any two Hilbert bases for a Hilbert space have the same
cardinality.

Since an orthonormal set  is maximal if and only if , Corollary
13.14 gives the following characterization of Hilbert bases.

Theorem 13.15 Let  be an orthonormal subset of a Hilbert space . The
following are equivalent:
1   is a Hilbert basis)
2)
3   is a  of , that is, .) cspantotal subset

Part 3  of this theorem says that a subset of a Hilbert space is a Hilbert basis if)
and only if it is a total orthonormal set.

Fourier Expansions
We now want to take a closer look at best approximations. Our goal is to find an
explicit expression for the best approximation to any vector  from within a
closed subspace  of a Hilbert space . We will find it convenient to consider
three cases, depending on whether  has finite, countably infinite, or
uncountable dimension.

The Finite-Dimensional Case
Suppose that  is an orthonormal set in a Hilbert space .
Recall that the Fourier expansion of any , with respect to , is given by

where  is the Fourier coefficient of  with respect to . Observe that

and so span . Thus, according to Theorem 13.9, the Fourier
expansion  is the best approximation to  in . Moreover, sincespan

, we have

and so

with equality if and only if , which happens if and only if .span
Let us summarize.
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Theorem 13.16 Let  be a finite orthonormal set in a Hilbert
space . For any , the Fourier expansion  of  is the best
approximation to  in . We also have span Bessel's inequality

or equivalently,

( )13.3

with equality if and only if .span

The Countably Infinite-Dimensional Case
In the countably infinite case, we will be dealing with infinite sums and so
questions of convergence will arise. Thus, we begin with the following.

Theorem 13.17 Let  be a countably infinite orthonormal set in
a Hilbert space . The series

( )13.4

converges in  if and only if the series

( )13.5

converges in . If these series converge, then they converge unconditionally
(that is, any series formed by rearranging the order of the terms also
converges . Finally, if the series 13.4  converges, then) ( )

Proof. Denote the partial sums of the first series by  and the partial sums of
the second series by . Then for 

Hence  is a Cauchy sequence in  if and only if  is a Cauchy sequence
in . Since both  and  are complete,  converges if and only if 
converges.

If the series 13.5  converges, then it converges absolutely and hence( )
unconditionally. A real series converges unconditionally if and only if it(
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converges absolutely.  But if 13.5  converges unconditionally, then so does( )
( )13.4 . The last part of the theorem follows from the continuity of the norm.

Now let  be a countably infinite orthonormal set in . The
Fourier expansion of a vector  is defined to be the sum

( )13.6

To see that this sum converges, observe that for any , 13.3  gives( )

and so

which shows that the series on the left converges. Hence, according to Theorem
13.17, the Fourier expansion 13.6  converges unconditionally.( )

Moreover, since the inner product is continuous,

and so . Hence,  is the best approximationspan cspan
to  in . Finally, since , we again havecspan

and so

with equality if and only if , which happens if and only if .cspan
Thus, the following analog of Theorem 13.16 holds.

Theorem 13.18 Let  be a countably infinite orthonormal set in
a Hilbert space . For any , the Fourier expansion

of  converges unconditionally and is the best approximation to  in .cspan
We also have Bessel's inequality
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or equivalently,

with equality if and only if .cspan

The Arbitrary Case
To discuss the case of an arbitrary orthonormal set , let us
first define and discuss the concept of the sum of an arbitrary number of terms.
(This is a bit of a digression, since we could proceed without all of the coming
details but they are interesting.

Definition Let  be an arbitrary family of vectors in an inner
product space . The sum

is said to  to a vector  and we writeconverge

( )13.7

if for any , there exists a finite set  for which

  finite

For those readers familiar with the language of convergence of nets, the set
 of all finite subsets of  is a  under inclusion for everydirected set (

 there is a  containing  and  and the function)

is a net in . Convergence of 13.7  is convergence of this net. In any case, we)
will refer to the preceding definition as the  of convergence.net definition

It is not hard to verify the following basic properties of net convergence for
arbitrary sums.

Theorem 13.19 Let  be an arbitrary family of vectors in an
inner product space . If

 and  

then
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1) ( )Linearity

for any 
2) ( )Continuity

 and 

The next result gives a useful “Cauchy-type” description of convergence.

Theorem 13.20 Let  be an arbitrary family of vectors in an
inner product space .
1  If the sum)

converges, then for any , there exists a finite set  such that

  finite

2  If  is a Hilbert space, then the converse of 1  also holds.) )
Proof. For part 1 , given , let ,  finite, be such that)

  finite
2

If ,  finite, then

2 2

As for part 2 , for each , let  be a finite set for which)

  finite

and let
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Then  is a Cauchy sequence, since

Since  is assumed complete, we have .

Now, given , there exists an  such that

2

Setting  gives for   finite,max

and so  converges to .

The following theorem tells us that convergence of an arbitrary sum implies that
only countably many terms can be nonzero so, in some sense, there is no such
thing as a nontrivial  sum.uncountable

Theorem 13.21 Let  be an arbitrary family of vectors in an
inner product space . If the sum

converges, then at most a countable number of terms  can be nonzero.
Proof. According to Theorem 13.20, for each , we can let , 
finite, be such that

  finite

Let . Then  is countable and

 for all  for all 
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Here is the analog of Theorem 13.17.

Theorem 13.22 Let  be an arbitrary orthonormal family of
vectors in a Hilbert space . The two series

 and 

converge or diverge together. If these series converge, then

Proof. The first series converges if and only if for every , there exists a
finite set  such that

  finite

or equivalently,

  finite

and this is precisely what it means for the second series to converge. We leave
proof of the remaining statement to the reader.

The following is a useful characterization of arbitrary sums of nonnegative real
terms.

Theorem 13.23 Let  be a collection of nonnegative real numbers.
Then

sup
finite

( )13.8

provided that either of the preceding expressions is finite.
Proof. Suppose that

sup
 finite

Then, for any , there exists a finite set  such that
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Hence, if  is a finite set for which , then since ,

and so

which shows that  converges to . Finally, if the sum on the left of 13.8( )
converges, then the supremum on the right is finite and so 13.8  holds.( )

The reader may have noticed that we have two definitions of convergence for
countably infinite series: the net version and the traditional version involving
the limit of partial sums. Let us write

 and 

for the net version and the partial sum version, respectively. Here is the
relationship between these two definitions.

Theorem 13.24 Let  be a Hilbert space. If , then the following are
equivalent:

1   converges net version  to ) ( )

2   converges unconditionally to )

Proof. Assume that 1  holds. Suppose that  is any permutation of . Given)
any , there is a finite set  for which

  finite

Let us denote the set of integers  by  and choose a positive integer 
such that . Then for  we have

and so 2  holds.)
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Next, assume that 2  holds, but that the series in 1  does not converge. Then) )
there exists an  such that for any finite subset , there exists a finite
subset  with  for which

From this, we deduce the existence of a countably infinite sequence  of
mutually disjoint finite subsets of  with the property that

max min

and

Now we choose any permutation  with the following properties
1)
2  if , then)

2

The intention in property 2  is that for each ,  takes a set of consecutive)
integers to the integers in .

For any such permutation , we have

which shows that the sequence of partial sums of the series

is not Cauchy and so this series does not converge. This contradicts 2  and)
shows that 2  implies at least that 1  converges. But if 1  converges to ,) ) )
then since 1  implies 2  and since unconditional limits are unique, we have) )

. Hence, 2  implies 1 .) )

Now we can return to the discussion of Fourier expansions. Let
 be an arbitrary orthonormal set in a Hilbert space . Given

any , we may apply Theorem 13.16 to all finite subsets of , to deduce
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that

sup
 finite

and so Theorem 13.23 tells us that the sum

converges. Hence, according to Theorem 13.22, the Fourier expansion

of  also converges and

Note that, according to Theorem 13.21,  is a countably infinite sum of terms of
the form  and so is in .cspan

The continuity of infinite sums with respect to the inner product Theorem(
13.19  implies that)

and so span cspan . Hence, Theorem 3.9 tells us that 
is the best approximation to  in . Finally, since , we againcspan
have

and so

with equality if and only if , which happens if and only if .cspan
Thus, we arrive at the most general form of a key theorem about Hilbert spaces.

Theorem 13.25 Let  be an orthonormal family of vectors in
a Hilbert space . For any , the Fourier expansion

of  converges in  and is the unique best approximation to  in .cspan
Moreover, we have Bessel's inequality
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or equivalently,

with equality if and only if .cspan

A Characterization of Hilbert Bases
Recall from Theorem 13.15 that an orthonormal set  in a
Hilbert space  is a Hilbert basis if and only if

cspan

Theorem 13.25, then leads to the following characterization of Hilbert bases.

Theorem 13.26 Let  be an orthonormal family in a Hilbert
space . The following are equivalent:
1   is a Hilbert basis a maximal orthonormal set) ( )
2)
3   is total that is, ) ( cspan )
4   for all )
5  Equality holds in Bessel's inequality for all , that is,)

for all 
6) Parseval's identity

holds for all , that is,

Proof. Parts 1 , 2  and 3  are equivalent by Theorem 13.15. Part 4  implies part) ) ) )
3 , since  and 3  implies 4  since the unique best approximation of) cspan ) )
any  is itself and so . Parts 3  and 5  are equivalent bycspan ) )
Theorem 13.25. Parseval's identity follows from part 4  using Theorem 13.19.)
Finally, Parseval's identity for  implies that equality holds in Bessel's
inequality.

Hilbert Dimension
We now wish to show that all Hilbert bases for a Hilbert space  have the same
cardinality and so we can define the Hilbert dimension of  to be that
cardinality.
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Theorem 13.27 All Hilbert bases for a Hilbert space  have the same
cardinality. This cardinality is called the  of , which weHilbert dimension
denote by .hdim
Proof. If  has a finite Hilbert basis, then that set is also a Hamel basis and so
all finite Hilbert bases have size . Suppose next that dim
and  are infinite Hilbert bases for . Then for each , we have

where  is the countable set . Moreover, since no  can be
orthogonal to every , we have . Thus, since each  is countable,
we have

By symmetry, we also have  and so the Schröder–Bernstein theorem
implies that .

Theorem 13.28 Two Hilbert spaces are isometrically isomorphic if and only if
they have the same Hilbert dimension.
Proof. Suppose that . Let  be ahdim hdim
Hilbert basis for  and  a Hilbert basis for . We may
define a map  as follows:

We leave it as an exercise to verify that  is a bijective isometry. The converse
is also left as an exercise.

A Characterization of Hilbert Spaces
We have seen that any vector space  is isomorphic to a vector space  of
all functions from  to  that have finite support. There is a corresponding
result for Hilbert spaces. Let  be any nonempty set and let

The functions in  are referred to as . We cansquare summable functions
also define a real version of this set by replacing  by .  We define an inner
product on  by

The proof that  is a Hilbert space is quite similar to the proof that
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 is a Hilbert space and the details are left to the reader. If we define
 by

if
if

then the collection

is a Hilbert basis for , of cardinality . To see this, observe that

and so  is orthonormal. Moreover, if , then  for only a
countable number of , say . If we define  by

then  and  for all , which implies that .cspan
This shows that  and so  is a total orthonormal set, that is, acspan
Hilbert basis for .

Now let  be a Hilbert space, with Hilbert basis . We define
a map  as follows. Since  is a Hilbert basis, any  has the
form

Since the series on the right converges, Theorem 13.22 implies that the series

converges. Hence, another application of Theorem 13.22 implies that the
following series converges:

It follows from Theorem 13.19 that  is linear and it is not hard to see that it is
also bijective. Notice that  and so  takes the Hilbert basis  for 
to the Hilbert basis  for .
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Notice also that

and so  is an isometric isomorphism. We have proved the following theorem.

Theorem 13.29 If  is a Hilbert space of Hilbert dimension  and if  is any
set of cardinality , then  is isometrically isomorphic to .

The Riesz Representation Theorem
We conclude our discussion of Hilbert spaces by discussing the Riesz
representation theorem. As it happens, not all linear functionals on a Hilbert
space have the form “take the inner product with ,” as in the finite-
dimensional case. To see this, observe that if , then the function

is certainly a linear functional on . However, it has a special property. In
particular, the Cauchy–Schwarz inequality gives, for all ,

or, for all ,

Noticing that equality holds if , we have

sup

This prompts us to make the following definition, which we do for linear
transformations between Hilbert spaces this covers the case of linear(
functionals .)

Definition Let  be a linear transformation from  to . Then  is
said to be  ifbounded

sup

If the supremum on the left is finite, we denote it by  and call it the  ofnorm
.
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Of course, if  is a bounded linear functional on , then

sup

The set of all bounded linear functionals on a Hilbert space  is called the
continuous dual space conjugate space, or , of  and denoted by . Note
that this differs from the algebraic dual of , which is the set of all linear
functionals on . In the finite-dimensional case, however, since all linear
functionals are bounded exercise , the two concepts agree. Unfortunately,( ) (
there is no universal agreement on the notation for the algebraic dual versus the
continuous dual. Since we will discuss only the continuous dual in this section,
no confusion should arise.

The following theorem gives some simple reformulations of the definition of
norm.

Theorem 13.30 Let  be a bounded linear transformation.
1) sup

2) sup

3   for all ) inf

The following theorem explains the importance of bounded linear
transformations.

Theorem 13.31 Let  be a linear transformation. The following are
equivalent:
1   is bounded)
2   is continuous at any point )
3   is continuous.)
Proof. Suppose that  is bounded. Then

as . Hence,  is continuous at . Thus, 1  implies 2 . If 2  holds, then) ) )
for any , we have

as , since  is continuous at  and  as . Hence, 
is continuous at any  and 3  holds. Finally, suppose that 3  holds. Thus, ) )
is continuous at  and so there exists a  such that
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In particular,

and so

Thus,  is bounded.

Now we can state and prove the Riesz representation theorem.

Theorem 13.32 The Riesz representation theorem( ) Let  be a Hilbert
space. For any bounded linear functional  on , there is a unique 
such that

for all . Moreover, .
Proof. If , we may take , so let us assume that . Hence,

ker  and since  is continuous,  is closed. Thus

Now, the first isomorphism theorem, applied to the linear functional ,
implies that  as vector spaces . In addition, Theorem 3.5 implies that( )

 and so . In particular, .dim

For any , we have

Since , all we need do is find  for whichdim

for then  for all , showing that
 for  as well.

But if , then

has this property, as can be easily checked. The fact that  has
already been established.
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Exercises
1. Prove that the sup metric on the metric space  of continuous

functions on  does not come from an inner product. Hint: let 
and a a  and consider the parallelogram law.

2. Prove that any Cauchy sequence that has a convergent subsequence must
itself converge.

3. Let  be an inner product space and let  and  be subsets of . Show
that

 a  )
 b   is a closed subspace of )
 c  ) cspan
4. Let  be an inner product space and . Under what conditions is

?
5. Prove that a subspace  of a Hilbert space  is closed if and only if

.
6. Let  be the subspace of  consisting of all sequences of real numbers

with the property that each sequence has only a finite number of nonzero
terms. Thus,  is an inner product space. Let  be the subspace of 
consisting of all sequences  in  with the property that

. Show that  is closed, but that . Hint: For the latter,
show that  by considering the sequences ,
where the term  is in the th coordinate position.

7. Let  be an orthonormal set in . If  converges,
show that

8. Prove that if an infinite series

converges absolutely in a Hilbert space , then it also converges in the
sense of the “net” definition given in this section.

9. Let  be a collection of nonnegative real numbers. If the sum
on the left below converges, show that

sup
 finite

10. Find a countably infinite sum of real numbers that converges in the sense of
partial sums, but not in the sense of nets.

11. Prove that if a Hilbert space  has infinite Hilbert dimension, then no
Hilbert basis for  is a Hamel basis.

12. Prove that  is a Hilbert space for any nonempty set .
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13. Prove that any linear transformation between finite-dimensional Hilbert
spaces is bounded.

14. Prove that if , then  is a closed subspace of .ker
15. Prove that a Hilbert space is separable if and only if .hdim
16. Can a Hilbert space have countably infinite Hamel dimension?
17. What is the Hamel dimension of ?
18. Let  and  be bounded linear operators on . Verify the following:
 a  )
 b  )
 c  )
19. Use the Riesz representation theorem to show that  for any Hilbert

space .



Chapter 14
Tensor Products

In the preceding chapters, we have seen several ways to construct new vector
spaces from old ones. Two of the most important such constructions are the
direct sum  and the vector space  of all linear transformations
from  to . In this chapter, we consider another very important construction,
known as the .tensor product

Universality
We begin by describing a general type of  that will help motivate theuniversality
definition of tensor product. Our description is strongly related to the formal
notion of a  in category theory, but we will be somewhat lessuniversal pair
formal to avoid the need to formally define categorical concepts. Accordingly,
the terminology that we shall introduce is not standard, but does not contradict
any standard terminology.

Referring to Figure 14.1, consider a set  and two functions  and , with
domain .

A

g

S

X

f

Figure 14.1

Suppose that there exists a function  for which this diagram
commutes, that is,

This is sometimes expressed by saying that  can be  . Whatfactored through
does this say about the relationship between the functions  and ?
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Let us think of the “information” about  contained in a function  as
the way in which   elements of  using  from . Thedistinguishes labels
relationship above implies that

and this can be phrased by saying that whatever ability  has to distinguish
elements of  is also possessed by . Put another way, except for labeling
differences, any information about  that is contained in  is also contained in

.

If  happens to be injective, then the  difference between  and  is theonly
values of the labels. That is, the two functions have the same information about

. However, in general,  is not required to be injective and so  may contain
more information than .

Now consider a family  of sets and a family

Assume that  and . If the diagram in Figure 14.1 commutes
for all , then the information contained in every function in  is also
contained in . Moreover, since , the function  cannot contain more
information than is contained in the entire family and so we conclude that 
contains exactly the same information as is contained in the entire family . In
this sense,  is  among all functions  in .universal

In this way, a single function , or more precisely, a single pair ,
can capture a mathematical concept as described by a family of functions. Some
examples from linear algebra are basis for a vector space, quotient space, direct
sum and bilinearity (as we will see).

Let us make a formal definition.

Definition Referring to Figure 14.2, let  be a set and let  be a family of sets.
Let

be a family of functions, all of which have domain  and range a member of .
Let

be a family of functions with domain and range in . We assume that  has the
following structure:
1   contains the identity function  for each member of .)
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2   is closed under composition of functions, which is an associative)
operation.

3  For any  and , the composition  is defined and belongs to)
.

A

S3
f3

S2f2

S1

f1

3

2
1

Figure 14.2

We refer to  as the  and its members as measuring family measuring
functions.

A pair , where  and  has the  foruniversal property
the family  , or is a  for , if for every as measured by universal pair

 in , there is a unique  in  for which the diagram in
Figure 14.1 commutes, that is, for which

or equivalently, any  can be  . The unique measuringfactored through
function  is called the  for .mediating morphism

Note the requirement that the mediating morphism  be unique. Universal pairs
are essentially unique, as the following describes.

Theorem 14.1 Let  and  be universal pairs for
. Then there is a bijective measuring function  for which .

In fact, the mediating morphism of  with respect to  and the mediating
morphism of  with respect to  are isomorphisms.
Proof. With reference to Figure 14.3, there are mediating morphisms 
and  for which

Hence,

However, referring to the third diagram in Figure 14.3, both  and
the identity map  are mediating morphisms for  and so the uniqueness
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of mediating morphisms implies that . Similarly  and so  and
 are inverses of one another, making  the desired bijection.

A

g

S

T

f
A

g

S

T

f

A
f

S

S

f

Figure 14.3

Examples of Universality
Now let us look at some examples of the universal property. Let  denoteVect
the family of all vector spaces over the base field . We use the term ( family
informally to represent what in set theory is formally referred to as a class. A
class is a “collection” that is too large to be considered a set. For example,
Vect ) is a class.

Example 14.1  Let  be a nonempty set and let( )Bases

1) Vect
2) set functions from  to members of 
3) linear transformations

If  is a vector space with basis , then the pair , where  is
the inclusion map , is universal for . To see this, note that the
condition that  can be factored through ,

is equivalent to the statement that  for each basis vector . But this
uniquely defines a linear transformation .

In fact, the universality of the pair  is  the statement that a linearprecisely
transformation  is uniquely determined by assigning its values arbitrarily on a
basis , the function  doing the arbitrary assignment in this context. Note also
that Theorem 14.1 implies that if  is also universal for ,
then there is a bijective mediating morphism from  to , that is,  and 
are isomorphic.

Example 14.2  Let  be a vector( )Quotient spaces and canonical projections
space and let  be a subspace of . Let

1) Vect
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2) linear maps with domain , whose kernels contain 
3) linear transformations

Theorem 3.4 says precisely that the pair , where  is the
canonical projection map, has the universal property for  as measured by .

Example 14.3  Let  and  be vector spaces over . Let( )Direct sums

1) Vect
2) ordered pairs  of linear transformations
3) linear transformations

Here we have a slight variation on the definition of universal pair: In this case,
 is a family of  of functions. For  and , we setpairs

Then the pair , where

and

are called the , has the universal property for . Tocanonical injections
see this, observe that for any pair  in , the condition

is equivalent to

or

and

But these conditions define a unique linear transformation .

Thus, bases, quotient spaces and direct sums are all examples of universal pairs
and it should be clear from these examples that the notion of universal property
is, well, universal. In fact, it happens that the most useful definition of tensor
product is through a universal property, which we now explore.

Bilinear Maps
The universality that defines tensor products rests on the notion of a bilinear
map.

Definition Let ,  and  be vector spaces over . Let  be the
cartesian product of  and  . A set functionas sets
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is  if it is linear in both variables separately, that is, ifbilinear

and

The set of all bilinear functions from  to  is denoted by
hom . A bilinear function  with values in the base
field  is called a  on .bilinear form

Note that bilinearity can also be expressed in matrix language as follows: If

and

then  is bilinear if

where .

It is important to emphasize that, in the definition of bilinear function,  is
the , not the direct product of vector spaces. In othercartesian product of sets
words, we do not consider any algebraic structure on  when defining
bilinear functions, so expressions like

and

are meaningless.

In fact, if  is a vector space, there are two classes of functions from  to
: the linear maps , where  is the direct

product of vector spaces, and the bilinear maps , where  ishom
just the cartesian product of sets. We leave it as an exercise to show that these
two classes have only the zero map in common. In other words, the only map
that is both linear and bilinear is the zero map.

We made a thorough study of bilinear forms on a finite-dimensional vector
space  in Chapter 11 although this material is not assumed here . However,( )
bilinearity is far more important and far-reaching than its application to metric
vector spaces, as the following examples show. Indeed, both multiplication and
evaluation are bilinear.

Example 14.4  If  is an algebra, the product map( )Multiplication is bilinear
 defined by
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is bilinear, that is, multiplication is linear in each position.

Example 14.5  If  and  are vector spaces, then the( )Evaluation is bilinear
evaluation map  defined by

is bilinear. In particular, the evaluation map  defined by
 is a bilinear form on .

Example 14.6 If  and  are vector spaces, and  and , then the
product map  defined by

is bilinear. Dually, if  and , then the map 
defined by

is bilinear.

It is precisely the tensor product that will allow us to generalize the previous
example. In particular, if  and , then we would like
to consider a “product” map  defined by

?

The tensor product is just the thing to replace the question mark, because it
has the desired bilinearity property, as we will see. In fact, the tensor product is
bilinear and nothing else, so it is  what we need!exactly

Tensor Products
Let  and  be vector spaces. Our guide for the definition of the tensor product

 will be the desire to have a universal property for bilinear functions, as
measured by linearity. Referring to Figure 14.4, we want to define a vector
space  and a bilinear map  so that any bilinear map  with
domain  can be factored through . Intuitively speaking,  is the most
“general” or “universal” bilinear map with domain : It is bilinear and
nothing more.
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W

f

bilinear

linear

TVU
t

bilinear

Figure 14.4

Definition Let  be the cartesian product of two vector spaces over . Let
Vect . Let

hom

be the family of all bilinear maps from  to any vector space . The
measuring family  is the family of all linear transformations.

A pair  is  if it is universal foruniversal for bilinearity
, that is, if for every bilinear map , there is a unique

linear transformation  for which

The map  is called the  for .mediating morphism

We can now define the tensor product via this universal property.

Definition Let  and  be vector spaces over a field . Any universal pair
 for bilinearity is called a  of  and . Thetensor product

vector space  is denoted by  and sometimes referred to by itself as the
tensor product. The map  is called the  and the elements of tensor map
are called .tensors

It is customary to use the symbol  to denote the image of any ordered pair
 under the tensor map, that is,

for any  and . A tensor of the form  is said to be
decomposable, that is, the decomposable tensors are the images under the
tensor map.

Since universal pairs are unique up to isomorphism, we may refer to “the”
tensor product of vector spaces. Note also that the tensor product  is not a
product in the sense of a binary operation on a set. In fact, even when ,
the tensor product  is not in , but rather in .
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As we will see, there are other, more constructive ways to define the tensor
product. Since we have adopted the universal pair definition, the other ways to
define tensor product are, for us, constructions rather than definitions. Let us
examine some of these constructions.

Construction I: Intuitive but Not Coordinate Free
The universal property for bilinearity captures the essence of bilinearity and the
tensor map is the most “general” bilinear function on . To see how this
universality can be achieved in a constructive manner, let  be a basis
for  and let  be a basis for . Then a bilinear map  on  is
uniquely determined by assigning arbitrary values to the “basis” pairs 
and extending by bilinearity, that is, if  and , then

Now, the tensor map , being the most general bilinear map, must do this and
nothing more. To achieve this goal, we define the tensor map  on the pairs

 in such a way that the images  , and then extenddo not interact
by bilinearity.

In particular, for each ordered pair , we invent a new formal symbol,
written , and define  to be the vector space with basis

The tensor map is defined by setting  and extending by
bilinearity. Thus,

To see that the pair  is the tensor product of  and , if  is
bilinear, the universality condition  is equivalent to

which does indeed uniquely define a  map . Hence,  haslinear
the universal property for bilinearity and so we can write  and refer
to  as the tensor map.

Note that while the set  is a basis for  (by definition), the set

of decomposable tensors spans , but is not linearly independent. This does
cause some initial confusion during the learning process. For example, one
cannot define a linear map on  by assigning values arbitrarily to the
decomposable tensors, nor is it always easy to tell when a tensor  is
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equal to . We will consider the latter issue in some detail a bit later in the
chapter.

The fact that  is a basis for  gives the following.

Theorem 14.2 For finite-dimensional vector spaces  and ,

dim dim dim

Construction II: Coordinate Free
The previous construction of the tensor product is reasonably intuitive, but has
the disadvantage of not being coordinate free. The following approach does not
require the choice of a basis.

Let  be the vector space over  with basis . Let  be the subspace
of  generated by all vectors of the form

( )14.1

and

( )14.2

where  and  and  are in the appropriate spaces. Note that these
vectors are precisely what we must “identify” as the zero vector in order to
enforce bilinearity. Put another way, these vectors are  if the ordered pairs are
replaced by tensors according to our previous construction.

Accordingly, the quotient space

is also sometimes taken as the definition of the tensor product of  and .
(Strictly speaking, we should not be using the symbol  until we have
shown that this is the tensor product.) The elements of  have the form

However, since  and , we can absorb
the scalar in either coordinate, that is,

and so the elements of  can be written simply as

It is customary to denote the coset  by , and so any element of
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 has the form

as in the previous construction.

The tensor map  is defined by

This map is bilinear, since

and similarly for the second coordinate.

We next prove that the pair  is universal for
bilinearity when  is defined as a quotient space .

Theorem 14.3 Let  and  be vector spaces. The pair

is the tensor product of  and .
Proof. Consider the diagram in Figure 14.5. Here  is the vector space with
basis .

F VU
j

W

f

VU VU

t

Figure 14.5

Since

we have

The universal property of vector spaces described in Example 14.1 implies that
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there is a unique linear transformation  for which

Note that  sends the vectors (14.1) and (14.2) that generate  to the zero vector
and so . For example,ker

and similarly for the second coordinate. Hence, Theorem 3.4 the universal(
property described in Example 14.2) implies that there exists a unique linear
transformation  for which

Hence,

As to uniqueness, if , then

and since the cosets  generate , we conclude that .
Thus,  is the mediating morphism and  is universal for bilinearity.

Let us take a moment to compare the two previous constructions. Let
 and  be bases for  and , respectively. Let  be

the tensor product as constructed using these two bases and let
 be the tensor product construction using quotient spaces.

Since both of these pairs are universal for bilinearity, Theorem 14.1 implies that
the mediating morphism  for  with respect to , that is, the map 
defined by

is a vector space isomorphism. Therefore, the basis  of  is sent to
the set , which is therefore a basis for .

In other words, given any two bases  and  for  and ,
respectively, the tensors  form a basis for , regardless of which
construction of the tensor product we use. Therefore, we are free to think of

 either as a formal symbol belonging to a basis for  or as the coset
 belonging to a basis for .
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Bilinearity on  Equals Linearity on 
The universal property for bilinearity says that to each  functionbilinear

, there corresponds a unique  function ,linear
called the mediating morphism for . Thus, we can define the mediating
morphism map

hom

by setting . In other words,  is the unique linear map for which

Observe that  is itself linear, since if , thenhom

and so  is the mediating morphism for , that is,

Also,  is surjective, since if  is any linear map, then
 is bilinear and has mediating morphism , that is,

. Finally,  is injective, for if , then . We have
established the following result.

Theorem 14.4 Let ,  and  be vector spaces over . Then the mediating
morphism map , where  is the uniquehom
linear map satisfying , is an isomorphism and so

hom

When Is a Tensor Product Zero?
Armed with the universal property of bilinearity, we can now discuss some of
the basic properties of tensor products. Let us first consider the question of
when a tensor  is zero.

The bilinearity of the tensor product gives

and so . Similarly, . Now suppose that

where we may assume that none of the vectors  and  are . Let
 be a bilinear map and let  be its mediating

morphism, that is, . Then
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The key point is that this holds for  bilinear function . Inany
particular, let  and and define  by

which is easily seen to be bilinear. Then the previous display becomes

If, for example, the vectors  are linearly independent, we can take  to be a
dual vector  to get

and since this holds for all linear functionals , it follows that . We
have proved the following useful result.

Theorem 14.5 If  are linearly independent vectors in  and
 are arbitrary vectors in , then

 for all 

In particular,  if and only if  or .

Coordinate Matrices and Rank
If  is a basis for  and  is a basis for , then
any vector  has a unique expression as a sum

where only a finite number of the coefficients  are nonzero. In fact, for a
fixed , we may reindex the bases so that

where none of the rows or columns of the matrix  consists only of 's.
The matrix  is called a  of  with respect to thecoordinate matrix
bases  and .

Note that a coordinate matrix  is determined only up to the order of its rows
and columns. We could remove this ambiguity by considering ordered bases,
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but this is not necessary for our discussion and adds a complication, since the
bases may be infinite.

Suppose that  and  are also bases for  and
, respectively, and that

where  is a coordinate matrix of  with respect to these bases. We
claim that the coordinate matrices  and  have the same rank, which can then
be defined as the  of the tensor .rank

Each  is a finite linear combination of basis vectors in , perhaps
involving some of  and perhaps involving other vectors in . We can
further reindex  so that each  is a linear combination of the vectors

, where  and set

span

Next, extend  to a basis  for .
(Since we no longer need the rest of the basis , we have commandeered the
symbols , for simplicity.  Hence)

 for 

where  is invertible of size .

Now repeat this process on the second coordinate. Reindex the basis  so that
the subspace span  contains  and extend to a basis

 for . Then

 for 

where  is invertible of size .

Next, write

by setting  for  or . Thus, the  matrix  comes
from  by adding  rows of 's to the bottom and then  columns of

's. In particular,  and  have the same rank.
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The expression for  in terms of the basis vectors  and  can
also be extended using  coefficients to

where the  matrix  has the same rank as .

Now at last, we can compute. First, bilinearity gives

and so

Thus

and so . Since  and  are invertible, we deduce that

rk rk rk rk

as desired. Moreover, in block matrix terms, we can write

block block
and

and if we write

block block
and

then  implies that
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We shall soon have use for the following special case. If

( )14.3

then  and so

 for 

and

 for 

where if  and , then

The Rank of a Decomposable Tensor
Recall that a tensor of the form  is said to be decomposable. If 
is a basis for  and  is a basis for , then any decomposable vector
has the form

Hence, the rank of a decomposable vector is , since the rank of a matrix whose
th entry is  is .

Characterizing Vectors in a Tensor Product
There are several useful representations of the tensors in .

Theorem 14.6 Let  be a basis for  and let  be a basis
for . By an “essentially unique” sum, we mean unique up to order and
presence of zero terms.
1  Every  has an essentially unique expression as a finite sum of)

the form

where  and the tensors  are distinct.
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2  Every  has an essentially unique expression as a finite sum of)
the form

where  and the 's are distinct.
3  Every  has an essentially unique expression as a finite sum of)

the form

where  and the 's are distinct.
4  Every nonzero  has an expression of the form)

where the 's are distinct, the 's are distinct and the sets  and
 are linearly independent. As to uniqueness,  is the rank of  and

so it is unique. Also, the equation

where the 's are distinct, the 's are distinct and  and
 are linearly independent, holds if and only if there exist invertible

 matrices  and  for which  and

and

for .
Proof. Part 1) merely expresses the fact that  is a basis for .
From part 2), we write

Uniqueness follows from Theorem 14.5. Part 3) is proved similarly.  As to part
4), we start with the expression from part 2):

where we may assume that none of the 's are . If the set  is linearly
independent, we are done. If not, then we may suppose (after reindexing if
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necessary) that

Then

But the vectors  are linearly independent. This
reduction can be repeated until the second coordinates are linearly independent.
Moreover, the identity matrix  is a coordinate matrix for  and so

rk rk . As to uniqueness, one direction was proved earlier; see
( )14.3  and the other direction is left to the reader.

The proof of Theorem 14.6 shows that if  and

where  and , then if the multiset  is not linearly
independent, we can rewrite  in the form

where  is linearly independent. Then we can do the same for the
second coordinate to arrive so at the representation

rk

where the multisets  and  are linearly independent sets. Therefore,
rk  and so the rank of  is the  integer  for which  can besmallest
written as a sum of  decomposable tensors. This is often taken as the
definition of the rank of a tensor.

However, we caution the reader that there is another meaning to the word rank
when applied to a tensor, namely, it is the number of indices required to write
the tensor. Thus, a scalar has rank , a vector has rank , the tensor  above has
rank  and a tensor of the form
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has rank .

Defining Linear Transformations on a Tensor Product
One of the simplest and most useful ways to define a linear transformation  on
the tensor product  is through the universal property, for this property
says precisely that a bilinear function  on  gives rise to a unique (and
well-defined) linear transformation on . The proof of the following
theorem illustrates this well.

Theorem 14.7 Let  and  be vector spaces. There is a unique linear
transformation

defined by  where

Moreover,  is an embedding and is an isomorphism if  and  are finite-
dimensional. Thus, the tensor product  of linear functionals is via this(
embedding  a linear functional on tensor products.)
Proof. Informally, for fixed  and , the function  is bilinear
in  and  and so there is a unique linear map  taking  to .
The function  is bilinear in  and  since

and so there is a unique linear map  taking  to .

More formally, for fixed  and , the map  defined by

is bilinear and so the universal property of tensor products implies that there
exists a unique  for which

Next, the map  defined by
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is bilinear since, for example,

which shows that  is linear in its first coordinate. Hence, the universal
property implies that there exists a unique linear map

for which

To see that  is an injection, if  is nonzero, then we may write  in
the form

where the  are nonzero and  is linearly
independent. If , then for any  and , we have

Hence, for each nonzero , the linear functional

is the zero map and so the linear independence of  implies that 
for all . Since  is arbitrary, it follows that  for all  and so .

Finally, in the finite-dimensional case, the map  is a bijection since

dim dim

Combining the isomorphisms of Theorem 14.4 and Theorem 14.7, we have, for
finite-dimensional vector spaces  and ,

hom

The Tensor Product of Linear Transformations
We wish to generalize Theorem 14.7 to arbitrary linear transformations. Let

 and . While the product  does not make
sense, the  product  does and is bilinear in  and , that is, thetensor
following function is bilinear:
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The same argument that we used in the proof of Theorem 14.7 will work here.
Namely, the map  from  to  is bilinear in  and
 and so there is a unique linear map  for which

The function

defined by

is bilinear, since

and similarly for the second coordinate. Hence, there is a unique linear
transformation

satisfying

that is,

To see that  is injective, if  is nonzero, then we may
write

where the  are nonzero and the set  is linearly
independent. If , then for all  and  we have

Since , it follows that  for some  and so we may choose a 
such that  for some . Moreover, we may assume, by reindexing if
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necessary, that the set  is a maximal linearly independent
subset of . Hence, for each , we have

and so

Thus, the linear independence of  implies that for each
,

for all  and so

But this contradicts the fact that the set  is linearly independent. Hence, it
cannot happen that  for  and so  is injective.

The embedding of  into  means that
each  can be thought of as the linear transformation  from  to

, defined by

In fact, the notation  is often used to denote both the tensor product of
vectors linear transformations  and the linear map , and we will do this as( )
well. In summary, we can say that the tensor product  of linear
transformations is (up to isomorphism) a linear transformation on tensor
products.
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Theorem 14.8 There is a unique linear transformation

defined by  where

Moreover,  is an embedding and is an isomorphism if all vector spaces are
finite-dimensional. Thus, the tensor product  of linear transformations is
( )via this embedding  a linear transformation on tensor products.

Let us note a few special cases of the previous theorem.

Corollary 14.9 Let us use the symbol  to denote the fact that there is an
embedding of  into  that is an isomorphism if  and  are finite-
dimensional.
1  Taking  gives)

where

for .
2  Taking  and gives)

where

3  Taking  and noting that  and  gives)
( )letting 

where

4  Taking  and  gives letting ) ( )

where
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Change of Base Field
The tensor product provides a convenient way to extend the base field of a
vector space that is more general than the complexification of a real vector
space, discussed earlier in the book. We refer to a vector space over a field  as
an  and write .-space

Actually, there are several approaches to “upgrading” the base field of a vector
space. For instance, suppose that  is an extension field of , that is, .
If  is a basis for , then every  has the form

where . We can define a -space  simply by taking all formal linear
combinations of the form

where . Note that the dimension of  as a -space is the same as the
dimension of  as an -space. Also,  is an -space just restrict the scalars(
to  and as such, the inclusion map  sending  to)

 is an -monomorphism.

The approach described in the previous paragraph uses an arbitrarily chosen
basis for  and is therefore not coordinate free. However, we can give a
coordinate-free approach using tensor products as follows. Since  is a vector
space over , we can form the tensor product

It is customary to include the subscript  on  to denote the fact that the
tensor product is taken with respect to the base field . (All relevant maps are

-bilinear and -linear.) However, since  is not a -space, the only tensor
product of  and  that makes sense is the -tensor product and so we will
drop the subscript .

The tensor product  is an -space by definition of tensor product, but we
can make it into a -space as follows. For , the temptation is to “absorb”
the scalar  into the first coordinate,

but we must be certain that this is well-defined, that is,

But for a fixed , the map  is bilinear and so the universal
property of tensor products implies that there is a unique linear map

, which we define to be scalar multiplication by .
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To be absolutely clear, we have two distinct vector spaces: the -space
 defined by the tensor product and the -space 

with scalar multiplication by elements of  defined as absorption into the first
coordinate. The spaces  and  are identical as sets and as abelian groups.
It is only the “permission to multiply by” that is different. Accordingly, we can
recover  from  simply by restricting scalar multiplication to scalars from

.

Thus, we can speak of “ -linear” maps  from  into , with the expected
meaning, that is,

for all scalars .

If the dimension of  as a vector space over  is , then

dim dim dim

As to the dimension of , it is not hard to see that if  is a basis for ,
then  is a basis for . Hence

dim dim

The map  defined by  is easily seen to be injective and
-linear and so  contains an isomorphic copy of . We can also think of 

as mapping  into , in which case  is called the  of .-extension map
This map has a universal property of its own, as described in the next theorem.

Theorem 14.10 The -linear -extension map  has the
universal property for the family of all -linear maps from  into a -space,
as measured by -linear maps. Specifically, for any -linear map ,
where  is a -space, there exists a unique -linear map  for
which the diagram in Figure 14.6 commutes, that is, for which

Proof. If such a -linear map  is to exist, then it must satisfy,
for any ,

This shows that if  exists, it is uniquely determined by . As usual, when
searching for a linear map  on a tensor product such as , we look for a
bilinear map. The map  defined by
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is bilinear and so there exists a unique -linear map  for which

It is easy to see that  is also -linear, since if , then

VFKVF

Y

f

Figure 14.6

Theorem 14.10 is the key to describing how to extend an -linear map to a -
linear map. Figure 14.7 shows an -linear map  between -spaces 
and . It also shows the -extensions for both spaces, where  and

 are -spaces.

V W

W

K V

V

K W

Figure 14.7

If there is a unique -linear map  that makes the diagram in Figure 14.7
commute, then this would be the obvious choice for the extension of the -
linear map  to a -linear map.

Consider the -linear map  into the -space
. Theorem 14.10 implies that there is a unique -linear map

 for which

that is,

Now,  satisfies
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and so .

Theorem 14.11 Let  and  be -spaces, with -extension maps  and
, respectively. See Figure 14.7.  Then for any -linear map , the( )

map  is the unique -linear map that makes the
diagram in Figure 14.7 commute, that is, for which

Multilinear Maps and Iterated Tensor Products
The tensor product operation can easily be extended to more than two vector
spaces. We begin with the extension of the concept of bilinearity.

Definition If  and  are vector spaces over , a function
 is said to be  if it is linear in each coordinatemultilinear

separately, that is, if

for all . A multilinear function of  variables is also referred to as
an . The set of all -linear functions as defined above will be-linear function
denoted by . A multilinear function from  tohom
the base field  is called a  or .multilinear form -form

Example 14.7
1  If  is an algebra, then the product map  defined by)

 is -linear.
2  The determinant function  is an -linear form on the columns) det

of the matrices in .

The tensor product is defined via its universal property.

Definition As pictured in Figure 14.8, let  be the cartesian
product of vector spaces over . A pair  is universal
for multilinearity if for every multilinear map , there is
a unique linear transformation  for which
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The map  is called the  for . If  is universal formediating morphism
multilinearity, then  is called the  of  and denoted bytensor product

. The map  is called the .tensor map

W

f

V1 Vn
tV1 Vn

Figure 14.8

As we have seen, the tensor product is unique up to isomorphism.

The basis construction and coordinate-free construction given earlier for the
tensor product of two vector spaces carry over to the multilinear case.

In particular, let  be a basis for  for . For each
ordered -tuple , construct a new formal symbol

 and define  to be the vector space with basis

The tensor map  is defined by setting

and extending by multilinearity. This uniquely defines a multilinear map  that is
universal for multilinear functions from .

Indeed, if  is multilinear, the condition  is
equivalent to

which uniquely defines a linear map . Hence,  has the universal
property for multilinearity.

Alternatively, we may take the coordinate-free quotient space approach as
follows.

Definition Let  be vector spaces over  and let  be the vector space
with basis . Let  be the subspace of  generated by all vectors of
the form
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for ,  and  for . The quotient space  is the
tensor product of  and the tensor map is the map

As before, we denote the coset  by  and so any
element of  is a sum of decomposable tensors, that is,

where the vector space operations are linear in each variable.

Here are some of the basic properties of multiple tensor products. Proof is left to
the reader.

Theorem 14.12 The tensor product has the following properties. Note that all
vector spaces are over the same field .
1   There exists an isomorphism) ( )Associativity

for which

In particular,

2   Let  be any permutation of the indices . Then) ( )Commutativity
there is an isomorphism

for which

3  There is an isomorphism  for which)

and similarly, there is an isomorphism  for which

Hence, .

The analog of Theorem 14.4 is the following.
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Theorem 14.13 Let  and  be vector spaces over . Then the
mediating morphism map

hom

defined by the fact that  is the unique mediating morphism for  is an
isomorphism. Thus,

hom

Moreover, if all vector spaces are finite-dimensional, then

dim hom dim dim

Theorem 14.8 and its corollary can also be extended.

Theorem 14.14 The linear transformation

defined by

is an embedding and is an isomorphism if all vector spaces are finite-
dimensional. Thus, the tensor product  of linear transformations is
( )via this embedding  a linear transformation on tensor products. Two important
special cases of this are

where

and

where

Tensor Spaces
Let  be a finite-dimensional vector space. For nonnegative integers  and ,
the tensor product
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 factors  factors

is called the space of , where  is the tensors of type contravariant type
and  is the . If , then , the base field. Herecovariant type
we use the notation  for the -fold tensor product of  with itself. We will
also write  for the -fold cartesian product of  with itself.

Since , we have

hom

which is the space of all multilinear functionals on

 factors  factors

In fact, tensors of type  are often defined as multilinear functionals in this
way.

Note that

dim dim

Also, the associativity and commutativity of tensor products allows us to write

at least up to isomorphism.

Tensors of type  are called contravariant tensors

 factors

and tensors of type  are called covariant tensors

 factors

Tensors with both contravariant and covariant indices are called .mixed tensors

In general, a tensor can be interpreted in a variety of ways as a multilinear map
on a cartesian product, or a linear map on a tensor product. Indeed, the
interpretation we mentioned above that is sometimes used as the definition is
only one possibility. We simply need to decide how many of the contravariant
factors and how many of the covariant factors should be “active participants”
and how many should be “passive participants.”
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More specifically, consider a tensor of type , written

where  and . Here we are choosing the first  vectors and the first
 linear functionals as active participants. This determines the number of

arguments of the map. In fact, we define a map from the cartesian product

 factors  factors

to the tensor product

 factors  factors

of the remaining factors by

In words, the first group  of (active) vectors interacts with the first
group  of arguments to produce the scalar . The first
group  of (active) functionals interacts with the second group

 of arguments to produce the scalar . The remaining
(passive) vectors  and functionals  are just
“copied” to the image tensor.

It is easy to see that this map is multilinear and so there is a unique linear map
from the tensor product

 factors  factors

to the tensor product

 factors  factors

defined by

Moreover, the map

defined by
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is an isomorphism, since if  is the zero map then

for all  and , which implies that

As usual, we denote the map  by

Theorem 11.15 For  and ,

When  and , we get

as before.

Let us look at some special cases. For  we have

where

When , we get for  and ,

where

and for  and ,

where

Finally, when , we get a multilinear form

Consider also a tensor  of type . When  we get a
multilinear functional  defined by
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This is just a bilinear form on .

Contraction
Covariant and contravariant factors can be “combined” in the following way.
Consider the map

defined by

This is easily seen to be multilinear and so there is a unique linear map

defined by

This is called the  in the contravariant index  and covariant indexcontraction
. Of course, contraction in other indices (one contravariant and one covariant)

can be defined similarly.

Example 14.8 Let  and consider the tensor space , which isdim
isomorphic to  via the map

For a “decomposable” linear operator of the form  as defined above with
 and , we have , which has codimension .ker ker

Hence, if , then

ker

where  is the eigenspace of  associated with the eigenvalue .

In particular, if , then

and so  is an eigenvector for the nonzero eigenvalue . Hence,

and so the trace of  is
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tr

where  is the contraction map.

The Tensor Algebra of 
Consider the contravariant tensor spaces

For  we take . The external direct sum

of these tensor spaces is a vector space with the property that

This is an example of a , where  are the elements of graded algebra grade
. The graded algebra  is called the  over . We willtensor algebra (

formally define graded structures a bit later in the chapter.)

Since

 factors

there is no need to look separately at .

Special Multilinear Maps
The following definitions describe some special types of multilinear maps.

Definition
1  A multilinear map  is  if interchanging any two) symmetric

coordinate positions changes nothing, that is, if

for any .
2  A multilinear map  is  or  if) antisymmetric skew-symmetric

interchanging any two coordinate positions introduces a factor of , that
is, if

for .
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3  A multilinear map  is  or  if) alternate alternating

 for some 

As in the case of bilinear forms, we have some relationships between these
concepts. In particular, if , thenchar

alternate symmetric skew-symmetric

and if , thenchar

alternate skew-symmetric

A few remarks about permutations are in order. A  of the setpermutation
 is a bijective function . We denote the group under(

composition  of all such permutations by . This is the  on ) symmetric group
symbols. A  of length  is a permutation of the form , whichcycle
sends  to  for  and also sends  to . All other elements
of  are left fixed. Every permutation is the product (composition) of disjoint
cycles.

A  is a cycle  of length . Every cycle and therefore everytransposition (
permutation  is the product of transpositions. In general, a permutation can be)
expressed as a product of transpositions in many ways. However, no matter how
one represents a given permutation as such a product, the number of
transpositions is either always even or always odd. Therefore, we can define the
parity of a permutation  to be the parity of the number of transpositions
in any decomposition of  as a product of transpositions. The  of asign
permutation is defined by

sg  has even parity
 has odd parity

If sg , then  is an  and if sg , then  is aneven permutation
odd permutation. The sign of  is often written .

With these facts in mind, it is apparent that  is symmetric if and only if

1)

for all permutations  and that  is skew-symmetric if and only if

1)

for all permutations .

A word of caution is in order with respect to the notation above, which is very
convenient albeit somewhat prone to confusion. It is intended that a permutation

 permutes the coordinate positions in , not the indices (despite appearances).
Suppose, for example, that  and that  is a basis for .
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If , then  applied to  gives  and not , since
 permutes the two coordinate positions in .

Graded Algebras
We need to pause for a few definitions that are useful in discussing tensor
algebras. An algebra  over  is said to be a  if as a vectorgraded algebra
space over ,  can be written in the form

for subspaces  of , and where multiplication behaves nicely, that is,

The elements of  are said to be  . If  is writtenhomogeneous of degree

for , , then  is called the  of  ofhomogeneous component
degree .

The ring of polynomials  provides a prime example of a graded algebra,
since

where  is the subspace of  consisting of all scalar multiples of .

More generally, the ring  of polynomials in several variables is a
graded algebra, since it is the direct sum of the subspaces of homogeneous
polynomials of degree . A polynomial is   if each( homogeneous of degree
term has degree . For example,  is homogeneous of degree

.)

The Symmetric and Antisymmetric Tensor Algebras
Our discussion of symmetric and antisymmetric tensors will benefit by a
discussion of a few definitions and setting a bit of notation at the outset.

Let  denote the vector space of all homogeneous polynomials of
degree  (together with the zero polynomial) in the independent variables

. As is sometimes done in this context, we denote the product in
 by , for example, writing  as . The algebra of

all polynomials in  is denoted by .
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We will also need the counterpart of  in which multiplication acts
anticommutatively, that is, .

Definition Let  be a sequence of independent variables. For
, let  be the vector space over  with basis

consisting of all words of length  over  that are in ascending order. Let
, which we identify with  by identifying  with .

Define a product on the direct sum

as follows. First, the product  of monomials  and
 is defined as follows:

1  If  has a repeated factor then .)
2  Otherwise, reorder  in ascending order, say , via the)

permutation  and set

Extend the product by distributivity to . The resulting product
makes  into a noncommutative  algebra over . This product is( )
called the  or  on .wedge product exterior product

For example, by definition of wedge product,

Let  be a basis for . It will be convenient to group the
decomposable basis tensors  according to their index multiset.
Specifically, for each multiset  with , let  be the
set of all tensors

where  is a permutation of . For example, if
, then

If  has the form

where , then let  be the subset of  whose elements appear
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in the sum for . For example, if

then

Let  denote the sum of the terms of  associated with . For
example,

Thus,  can be written in the form

where the sum is over a collection of multisets  with . Note also
that  since . Finally, let

be the unique member of  for which .

Now we can get to the business at hand.

Symmetric and Antisymmetric Tensors
Let  be the symmetric group on . For each , the multilinear
map  defined by

determines a unique linear operator  on  for which

For example, if  and , then

Let  be a basis for . Since  is a bijection of the basis

it follows that  is an isomorphism of . Note also that  is a
permutation of each , that is, the sets  are invariant under .

Definition Let  be a finite-dimensional vector space.
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1  A tensor  is  if) symmetric

for all permutations . The set of all symmetric tensors

 for all 

is a subspace of , called the  of degree symmetric tensor space
over .

2  A tensor  is  if) antisymmetric

The set of all antisymmetric tensors

 for all 

is a subspace of , called the  or antisymmetric tensor space exterior
product space of degree  over .

We can develop the theory of symmetric and antisymmetric tensors in tandem.
Accordingly, let us write (anti)symmetric to denote a tensor that is either
symmetric or antisymmetrtic.

Since for any , there is a permutation  taking  to , an
(anti)symmetric tensor  must have  and so

Since  is a permutation of , it follows that  is symmetric if and only if

for all  and this holds if and only if the coefficients  of  are
equal, say  for all . Hence, the symmetric tensors are precisely
the tensors of the form

The tensor  is antisymmetric if and only if

(14.4)

In this case, the coefficients  of  differ only by sign. Before examining
this more closely, we observe that  must be a set. For if  has an element 
of multiplicity greater than , we can split  into two disjoint parts:
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where  are the tensors that have  in positions  and :

position position 

Then  fixes each element of  and sends the elements of  to other
elements of . Hence, applying  to the corresponding decomposition of

:

gives

and so , whence . Thus,  is a set.

Now, since for any ,

equation (14.4) implies that

which holds if and only if , or equivalently,

for all  and . Choosing , where
, as standard-bearer, if  denotes the permutation for which

, then

Thus,  is antisymmetric if and only if it has the form

where  and the sum is over a family of .sets

In summary, the symmetric tensors are
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where  is a multiset and the antisymmetric tensors are

where  is a set.

We can simplify these expressions considerably by representing the inside sums
more succinctly. In the symmetric case, define a surjective linear map

by

and extending by linearity. Since  takes every member of  to the same
monomial , where , we have

In the antisymmetric case, define a surjective linear map

by

and extending by linearity. Since

we have
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Thus, in both cases,

where  with  and

or

depending on whether  is symmetric or antisymmetric. However, in either case,
the monomials  are linearly independent for distinct multisets/sets .
Therefore, if  then  for all multisets/sets . Hence, if
char , then  and so . This shows that the restricted maps

 and  are isomorphisms.

Theorem 14.16  Let  be a finite-dimensional vector space over a field  with
char .
1  The symmetric tensor space  is isomorphic to the algebra)

 of homogeneous polynomials, via the isomorphism

2  For , the antisymmetric tensor space  is isomorphic to the)
algebra  of anticommutative homogeneous polynomials of
degree  , via the isomorphism

The direct sum

is called the  of  and the direct sumsymmetric tensor algebra

is called the  or the  of . Theseantisymmetric tensor algebra exterior algebra
vector spaces are graded algebras, where the product is defined using the vector
space isomorphisms described in the previous theorem to move the products of

 and  to  and , respectively.

Thus, restricting the domains of the maps  gives a nice description of the
symmetric and antisymmetric tensor algebras, when . However,char
there are many important fields, such as finite fields, that have nonzero
characteristic. We can proceed in a different, albeit somewhat less appealing,



Tensor Products 399

manner that holds regardless of the characteristic of the base field. Namely,
rather than restricting the domain of  in order to get an isomorphism, we can
factor out by the kernel of .

Consider a tensor

Since  sends elements of different groups  to different
monomials in  or , it follows that  if andker
only if  for all , that is, if and only if

In the symmetric case,  is constant on  and so  if and only ifker

In the antisymmetric case,  where  and so
ker  if and only if

In both cases, we solve for  and substitute into . In the symmetric case,

and so

In the antisymmetric case,

and so

Since , it follows that  and therefore , is in the span of tensors of
the form  in the symmetric case and  in the
antisymmetric case, where  and .

Hence, in the symmetric case,

ker

and since , it follows that . In the antisymmetricker
case,
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ker

and since , it follows that .ker

We now have quotient-space characterizations of the symmetric and
antisymmetric tensor spaces that do not place any restriction on the
characteristic of the base field.

Theorem 14.17  Let  be a finite-dimensional vector space over a field .
1  The surjective linear map  defined by)

has kernel

and so

The vector space  is also referred to as the symmetric tensor
space of degree  of .

2  The surjective linear map  defined by)

has kernel

and so

The vector space  is also referred to as the antisymmetric tensor
space exterior product space or  of degree  of . 

The isomorphic exterior spaces  and  are usually denoted by
 and the isomorphic exterior algebras  and  are usually

denoted by .

Theorem 14.18 Let  be a vector space of dimension .
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1  The dimension of the symmetric tensor space  is equal to the)
number of monomials of degree  in the variables  and this is

dim

2  The dimension of the exterior tensor space  is equal to the number of)
words of length  in ascending order over the alphabet 
and this is

dim

Proof. For part 1), the dimension is equal to the number of multisets of size 
taken from an underlying set  of size . Such multisets correspond
bijectively to the solutions, in nonnegative integers, of the equation

where  is the multiplicity of  in the multiset. To count the number of
solutions, invent two symbols  and . Then any solution  to the
previous equation can be described by a sequence of 's and 's consisting of 

's followed by one , followed by  's and another , and so on. For example,
if  and , the solution  corresponds to the sequence

Thus, the solutions correspond bijectively to sequences consisting of  's and
 's. To count the number of such sequences, note that such a sequence can

be formed by considering  “blanks” and selecting  of these blanks for
the 's. This can be done in

ways.

The Universal Property
We defined tensor products through a universal property, which as we have seen
is a powerful technique for determining the properties of tensor products. It is
easy to show that the symmetric tensor spaces are universal for symmetric
multilinear maps and the antisymmetric tensor spaces are universal for
antisymmetric multilinear maps.

Theorem 14.19 Let  be a finite-dimensional vector space with basis
.

1  The pair , where  is the)
multilinear map defined by
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is universal for symmetric -linear maps with domain ; that is, for any
symmetric -linear map  where  is a vector space, there is a
unique linear map  for which

2  The pair , where  is the)
multilinear map defined by

is universal for antisymmetric -linear maps with domain ; that is, for
any antisymmetric -linear map  where  is a vector space,
there is a unique linear map  for which

Proof. For part 1), the property

does indeed uniquely define a linear transformation , provided that it is well-
defined. However,

if and only if the multisets  and  are the same, which
implies that , since  is symmetric.

For part 2), since  is antisymmetric, it is completely determined by the fact that
it is alternate and by its values on the basis of ascending words .
Accordingly, the condition

uniquely defines a linear transformation .

The Symmetrization Map
When , we can define a linear map , calledchar
the , bysymmetrization map

Since , we have
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and so  is symmetric. The reason for the factor  is that if  is a symmetric
tensor, then  and so

that is, the symmetrization map fixes all symmetric tensors. It follows that for
any tensor ,

Thus,  is idempotent and is therefore the projection map of  onto
im .

The Determinant
The universal property for antisymmetric multilinear maps has the following
corollary.

Corollary 14.20 Let  be a vector space of dimension  over a field . Let
 be an ordered basis for . Then there is at most one

antisymmetric -linear form  for which

Proof. According to the universal property for antisymmetric -linear forms, for
every antisymmetric -linear form  satisfying ,
there is a unique linear map  for which

But  has dimension  and so there is only one linear map 
with . Therefore, if  and  are two such forms, then

, from which it follows that

We now wish to construct an antisymmetric form , which is unique
by the previous theorem. Let  be a basis for . For any , write  for
the th coordinate of the coordinate matrix . Thus,

For clarity, and since we will not change the basis, let us write  for .
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Consider the map  defined by

Then  is multilinear since

( )

and similarly for any coordinate position.

To see that  is alternating, and therefore antisymmetric since ,char
suppose for instance that . For any permutation , let

Then  for  and

and

Hence, . Also, since , if the sets  and  intersect,
then they are identical. Thus, the distinct sets  form a partition of . It
follows that

pairs

But

and since , the sum of the two terms involving the pair 
is . Hence, . A similar argument holds for any coordinate
pair.
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Finally,

Thus, the map  is the unique antisymmetric -linear form on  for which
.

Under the ordered basis , we can view  as the space  of
coordinate vectors and view  as the space  of  matrices, via the
isomorphism

where all coordinate matrices are with respect to .

With this viewpoint,  becomes an antisymmetric -form on the columns of a
matrix  given by

This is called the  of the matrix .determinant

Properties of the Determinant
Let us explore some of the properties of the determinant function.

Theorem 14.21 If , then

Proof. We have

as desired.
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Theorem 14.22 If , then

Proof. Consider the map  defined by

We can consider  as a function on the columns of  and think of it as a
composition

Each step in this map is multilinear and so  is multilinear. It is also clear that
 is antisymmetric and so  is a scalar multiple of the determinant function,

say . Then

Setting  gives  and so

as desired.

Theorem 14.23 A matrix  is invertible if and only if  .
Proof. If  is invertible, then  and so

which shows that  and . Conversely, any matrix
 is equivalent to a diagonal matrix

where  and  are invertible and  is diagonal with 's and 's on the main
diagonal. Hence,

and so if , then , which happens if and only if ,
whence  is invertible.

Exercises
1. Show that if  is a linear map and  is bilinear,

then  is bilinear.
2. Show that the only map that is both linear and -linear for  is the( )

zero map.
3. Find an example of a bilinear map  whose image

im  is not a subspace of .



Tensor Products 407

4. Let  be a basis for  and let  be a basis
for . Show that the set

is a basis for  by showing that it is linearly independent and spans.
5. Prove that the following property of a pair  with 

bilinear characterizes the tensor product  up
to isomorphism, and thus could have been used as the definition of tensor
product: For a pair  with  bilinear if  is a basis
for  and  is a basis for , then  is a basis for .

6. Prove that .
7. Let  and  be nonempty sets. Use the universal property of tensor

products to prove that .
8. Let  and . Assuming that , show that

 if and only if  and , for .
9. Let  be a basis for  and  be a basis for . Show that any

function  can be extended to a linear function
. Deduce that the function  can be extended in a unique

way to a bilinear map . Show that all bilinear maps are
obtained in this way.

10. Let  be subspaces of . Show that

11. Let  and  be subspaces of vector spaces  and ,
respectively. Show that

12. Let  and  be subspaces of  and , respectively.
Show that

13. Find an example of two vector spaces  and  and a nonzero vector
 that has at least two distinct not including order of the terms( )

representations of the form

where the 's are linearly independent and so are the 's.
14. Let  denote the identity operator on a vector space . Prove that

.
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15. Suppose that   and  .
Prove that

16. Connect the two approaches to extending the base field of an -space  to
 at least in the finite-dimensional case  by showing that( )

.
17. Prove that in a tensor product  for which  not all vectorsdim

have the form  for some . : Suppose that  areHint
linearly independent and consider .

18. Prove that for the block matrix

block

we have .
19. Let . Prove that if either  or  is invertible, then the

matrices  are invertible except for a finite number of 's.

The Tensor Product of Matrices
20. Let  be the matrix of a linear operator  with respect to

the ordered basis . Let  be the matrix of a linear
operator  with respect to the ordered basis .
Consider the ordered basis  ordered lexicographically; that is

 if  or  and . Show that the matrix of
 with respect to  is

block

This matrix is called the ,  or tensor product Kronecker product direct
product of the matrix  with the matrix .

21. Show that the tensor product is not, in general, commutative.
22. Show that the tensor product  is bilinear in both  and .
23. Show that  if and only if  or .
24. Show that
 a  )
 b   when ) ( )
25. Show that if , then as row vectors  .( )
26. Suppose that  and  are matrices of the given sizes.

Prove that

Discuss the case .
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27. Prove that if  and  are nonsingular, then so is  and

28. Prove that .tr tr tr
29. Suppose that  is algebraically closed. Prove that if  has eigenvalues

 and  has eigenvalues , both lists including
multiplicity, then  has eigenvalues , again
counting multiplicity.

30. Prove that .det det det



Chapter 15
Positive Solutions to Linear Systems:
Convexity and Separation

It is of interest to determine conditions that guarantee the existence of positive
solutions to homogeneous systems of linear equations

where .

Definition Let .
1   is , written , if) nonnegative

 for all 

( )The term  is also used for this property.  The set of all nonnegativepositive
vectors in  is the  in nonnegative orthant

2   is , written , if  is nonnegative but not , that is, if) strictly positive

 for all  and  for some 

The set  of all strictly positive vectors in  is the strictly positive
orthant in 

3   is , written , if) strongly positive

 for all 

The set  of all strongly positive vectors in  is the strongly positive
orthant in 

We are interested in conditions under which the system  has strictly
positive or strongly positive solutions. Since the strictly and strongly positive
orthants in  are not subspaces of , it is difficult to use strictly linear
methods in studying this issue: we must also use geometric methods, in
particular, methods of convexity.
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Let us pause briefly to consider an important application of strictly positive
solutions to a system . If  is a strictly positive solution
to this system, then so is the vector

which is a , that is,  and . Moreover,probability distribution
if  is a strongly positive solution, then  has the property that each probability
is positive.

Now, the product  is the expected value of the columns of   with respect to
the probability distribution . Hence,  has a strictly (strongly) positive
solution if and only if there is a strictly (strongly) positive probability
distribution for which the columns of  have expected value . If each column
of  represents the possible payoffs from a game of chance, where each row is a
different possible outcome of the game, then the game is fair when the expected
value of the columns is . Thus,  has a strictly (strongly) positive
solution  if and only if the game with payoffs  and probabilities  is fair.

As another (related) example, in discrete option pricing models of mathematical
finance, the absence of arbitrage opportunities in the model is equivalent to the
fact that a certain vector describing the gains in a portfolio does not intersect the
strictly positive orthant in . As we will see in this chapter, this is equivalent
to the existence of a strongly positive solution to a homogeneous system of
equations. This solution, when normalized to a probability distribution, is called
a .martingale measure

Of course, the equation  has a strictly positive solution if and only if
ker  contains a strictly positive vector, that is, if and only if

ker RowSpace

meets the strictly positive orthant in . Thus, we wish to characterize the
subspaces  of  for which  meets the strictly positive orthant in , in
symbols,

for these are precisely the row spaces of the matrices  for which  has a
strictly positive solution. A similar statement holds for strongly positive
solutions.

Looking at the real plane , we can divine the answer with a picture. A one-
dimensional subspace  of  has the property that its orthogonal complement

 meets the strictly positive orthant quadrant  in  if and only if  is the -( )
axis, the -axis or a line with negative slope. For the case of the strongly
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positive orthant,  must have negative slope. Our task is to generalize this to
.

This will lead us to the following results, which are quite intuitive in  and :

(15.1)

and

(15.2)

Let us translate these statements into the language of the matrix equation
. If , then  and so we haveRowSpace ker

ker RowSpace

and

ker RowSpace

Now,

RowSpace

and

RowSpace

and so these statements become

 has a strongly positive solution

and

 has a strictly positive solution

We can rephrase these results in the form of a , thattheorem of the alternative
is, a theorem that says that exactly one of two conditions holds.

Theorem 15.1 Let .
1  Exactly one of the following holds:)
 a   for some strongly positive .)
 b   for some .)
2  Exactly one of the following holds:)
 a   for some strictly positive .)
 b   for some .)

Before proving Theorem 15.1, we require some background.

Convex, Closed and Compact Sets
We shall need the following concepts.
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Definition
1  Let . Any linear combination of the form)

where  and  is called a  ofconvex combination
the vectors .

2  A subset  is  if whenever , then the line segment) convex
between  and  also lies in , in symbols,

3  A subset  is  if whenever  is a convergent sequence of) closed
elements of , then the limit is also in .

4  A subset  is  if it is both closed and bounded.) compact
5  A subset  is a  if  implies that  for all .) cone

We will also have need of the following facts from analysis.

1  A continuous function that is defined on a compact set  in  takes on)
maximum and minimum values at some points within the set .

2  A subset  of  is compact if and only if every sequence in  has a)
subsequence that converges to a point in .

Theorem 15.2 Let  and  be subsets of . Define

1  If  and  are convex, then so is )
2  If  is compact and  is closed, then  is closed.)
Proof. For 1), let  and  be in . The line segment between
these two points is

for  and so  is convex.

For part 2), let  be a convergent sequence in . Suppose that
. We must show that . Since  is a sequence in the

compact set , it has a convergent subsequence  whose limit  lies in .
Since  and  we can conclude that . Since 
is closed, it follows that  and so .

Convex Hulls
We will also have use for the notion of the smallest convex set containing a
given set.
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Definition The  of a set  of vectors in  is theconvex hull
smallest convex set in  that contains . We will denote the convex hull of 
by .

Here is a characterization of convex hulls.

Theorem 15.3 Let  be a set of vectors in . Then the convex
hull  is the set  of all convex combinations of vectors in , that is,

Proof. Clearly, if  is a convex set that contains , then  also contains .
Hence . To prove the reverse inclusion, we need only show that  is
convex, since then  implies that . So let

be in . If  and  then

But this is also a convex combination of the vectors in , because

max max

and

Thus, .

Theorem 15.4 The convex hull  of a  set  of vectorsfinite
in  is a compact set.
Proof. The set

is closed and bounded in  and therefore compact. Define a function
 as follows: If , then

To see that  is continuous, let  and let . Givenmax
, if  then
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and so

Finally, since , it follows that  is compact.

Linear and Affine Hyperplanes
We next discuss hyperplanes in . A  in  is an -linear hyperplane
dimensional subspace of . As such, it is the solution set of a linear equation
of the form

or

where  is nonzero and . Geometrically
speaking, this is the set of all vectors in  that are perpendicular (normal) to
the vector .

An , or just , in  is a linear hyperplane that hasaffine hyperplane hyperplane
been translated by a vector. Thus, it is the solution set to an equation of the form

or equivalently,

where . We denote this hyperplane by

Note that the hyperplane

contains the point , which is the point of  closest to the origin,
since Cauchy's inequality gives

and so  for all .  Moreover, we leave it as an
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exercise to show that any hyperplane has the form  for an
appropriate vector .

A hyperplane defines two closed half-spaces

and two  disjoint open half-spaces

It is clear that

and that the sets ,  and  form a partition of .

If  and , we let

and write

to denote the fact that  for all .

Definition Two subsets  and  of  are  by a hyperplanestrictly separated
 if  lies in one open half-space determined by  and  lies in

the other open half-space; in symbols, one of the following holds:
1)
2)

Note that 1) holds for  and  if and only if 2) holds for  and , and so we
need only consider one of the conditions to demonstrate that two sets  and 
are  strictly separated. Specifically, if 1) fails for all  and , then thenot
condition

also fails for all  and  and so 2) also fails for all  and , whence  and 
are not strictly separated.

Definition Two subsets  and  of  are  by a hyperplanestrongly separated
 if there is an  for which one of the following holds:

1)
2)
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As before, we need only consider one of the conditions to show that two sets are
not strongly separated. Note also that if

for , then  and  are stongly separated by the hyperplane

Separation
Now that we have the preliminaries out of the way, we can get down to some
theorems. The first is a well-known  that is the basis forseparation theorem
many other separation theorems. It says that if a closed convex set  does
not contain a vector , then  can be  separated from .strongly

Theorem 15.5 Let  be a closed convex subset of .
1   contains a  vector  of minimum norm, that is, there is a unique) unique

vector  for which

for all .
2  If , then  lies in the closed half-space)

that is,

where  is the unique vector of minimum norm in the closed convex set

Hence,  and  are strongly separated by the hyperplane

Proof. For part 1), if  then this is the unique vector of minimum norm, so
we may assume that . It follows that no two distinct elements of  can be
negative scalar multiples of each other. For if  and  were in , where 
then taking  gives

which is false.
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We first show that  contains a vector  of minimum norm. Recall that the
Euclidean norm (distance) is a continuous function. Although  need not be
compact, if we choose a real number  such that the closed ball

intersects , then that intersection  is both closed and bounded
and so is compact. The norm function therefore achieves its minimum on ,
say at the point . It is clear that if  for some , then

, in contradiction to the minimality of . Hence,  is a vector of
minimum norm in .

We establish uniqueness first for closed line segments  in . If 
where , then

is smallest when  for  and  for . Assume that  and  are
not scalar multiples of each other and suppose that  in  have
minimum norm . If  then since  and  are also not scalar
multiples of each other, the Cauchy-Schwarz inequality is strict and so

which contradicts the minimality of . Thus,  has a unique point of
minimum norm.

Finally, if  also has minimum norm, then  and  are points of minimum
norm in the line segment  and so . Hence,  has a unique
element of minimum norm.

For part 2), suppose the result is true when . Then  implies that
 and so if  has smallest norm, then

Therefore,

and so  and  are strongly separated by the hyperplane
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Thus, we need only prove part 2) for , that is, we need only prove that

If there is a nonzero  for which

then  and

for some . Then for the open line segment  with
, we have

Let  denote the final expression above, which is a quadratic in . It is easy to
see that  has its minimum at the interior point of the line segment 
corresponding to

and so , which is a contradiction.

The next result brings us closer to our goal by replacing a single vector  with a
subspace  disjoint from . However, we must also require that  be bounded,
and therefore compact.

Theorem 15.6 Let  be a compact convex subset of  and let  be a subspace
of  such that . Then there exists a nonzero  such that

for all . Hence, the hyperplane  strongly separates  and
.

Proof. Theorem 15.2 implies that the set  is closed and convex.
Furthermore,  implies that  and so Theorem 15.5 implies
that  can be strongly separated from the origin. Hence, there is a nonzero

 such that
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for all  and . But if  for some , then we can replace
 by an appropriate scalar multiple of  in order to make the left side of this

inequality negative, which is impossible. Hence,  for all , that
is,  and

We can now prove (15.1) and (15.2).

Theorem 15.7 Let  be a subspace of .
1   if and only if )
2   if and only if )
Proof. In both cases, one direction is easy. It is clear that there cannot exist
vectors  and  that are orthogonal. Hence,  and

 cannot both be nonempty and so  implies
. Also,  and  cannot both be nonempty and so

 implies that .

For the converse in part 1), to prove that

a good candidate for an element of  would be a normal to a
hyperplane that separates  from a subset of . Note that our separation
theorems do not allow us to separate  from , because  is not compact. So
consider instead the convex hull  of the standard basis vectors  in

:

which is compact. Moreover,  implies that  and so Theorem
15.6 implies that there is a nonzero vector  such that

for all Taking  gives

and so , which is therefore nonempty.

To prove part 2 , again we note that there cannot exist orthogonal vectors)
 and  and so  and  cannot both be nonempty.

Thus,  implies that .
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To finish the proof of part 2), we must prove that

Let  be a basis for . Then  if and
only if  for all . In matrix terms, if

has rows , then  if and only if , that is,

Now,  contains a strictly positive vector  if and only if this
equation holds, where  for all  and  for some . Moreover, we may
assume without loss of generality that , or equivalently, that  is in the
convex hull  of the row space of . Hence,

Thus, we wish to prove that

or equivalently,

Now we have something to separate. Since  is closed and convex, Theorem
15.5 implies that there is a nonzero vector  for which

Consider the vector

The th coordinate of  is

and so  is strongly positive. Hence, , which is therefore
nonempty.

Inhomogeneous Systems
We now turn our attention to inhomogeneous systems

The following lemma is required.
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Lemma 15.8 Let . Then the set

is a closed, convex cone.
Proof. We leave it as an exercise to prove that  is a convex cone and omit the
proof that  is closed.

Theorem 15.9  Let  and let  be( )Farkas's lemma
nonzero. Then exactly one of the following holds:
1  There is a strictly positive solution  to the system .)
2  There is a vector  for which  and .)
Proof. Suppose first that 1) holds. If 2) also holds, then

However,  and  imply that . This contradiction implies
that 2) cannot hold.

Assume now that 1) fails to hold. By Lemma 15.8, the set

is closed and convex. The fact that 1) fails to hold is equivalent to .
Hence, there is a hyperplane that strongly separates  and . All we require is
that  and  be strictly separated, that is, for some  and ,

 for all 

Since , it follows that  and so . Also, the first inequality is
equivalent to , that is,

for all . We claim that this implies that  cannot have any
positive coordinates and thus . For if the th coordinate  is
positive, then taking  for  we get

which does not hold for large . Thus, 2) holds.

In the exercises, we ask the reader to show that the previous result cannot be
improved by replacing  in statement 2) with .

Exercises
1. Show that any hyperplane has the form  for an appropriate

vector .
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2. If  is an  matrix prove that the set  is a
convex cone in .

3. If  and  are strictly separated subsets of  and if  is finite, prove that
 and  are strongly separated as well.

4. Let  be a vector space over a field  with . Show that achar
subset  of  is closed under the taking of convex combinations of any
two of its points if and only if  is closed under the taking of arbitrary
convex combinations, that is, for all ,

5. Explain why an -dimensional subspace of  is the solution set of a
linear equation of the form .

6  Show that

and that ,  and  are pairwise disjoint and

7. A function  is  if it has the form  foraffine
, where . Prove that if  is convex, then so is

.
8. Find a cone in  that is not convex. Prove that a subset  of  is a

convex cone if and only if  implies that  for all
.

9. Prove that the convex hull of a set  in  is bounded, without
using the fact that it is compact.

10. Suppose that a vector  has two distinct representations as convex
combinations of the vectors . Prove that the vectors

 are linearly dependent.
11. Suppose that  is a nonempty convex subset of  and that  is a

hyperplane disjoint from . Prove that  lies in one of the open half-spaces
determined by .

12. Prove that the conclusion of Theorem 15.6 may fail if we assume only that
 is closed and convex.

13. Find two nonempty convex subsets of  that are strictly separated but not
strongly separated.

14. Prove that  and  are strongly separated by  if and only if

 for all  and  for all 

where  and  and where  is the
closed unit ball.
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15. Show that Farkas's lemma cannot be improved by replacing  in
statement 2  with . : A nice counterexample exists for) Hint

.



Chapter 16
Affine Geometry

In this chapter, we will study the geometry of a finite-dimensional vector space
, along with its structure-preserving maps. Throughout this chapter, all vector

spaces are assumed to be finite-dimensional.

Affine Geometry
The cosets of a quotient space have a special geometric name.

Definition Let  be a subspace of a vector space . The coset

is called a  in  with   and  . We also refer toflat base flat representative
 as a  of . The set  of all flats in  is called the translate affine

geometry dimension of . The   of  is defined to be .dim dim

While a flat may have many flat representatives, it only has one base since
 implies that  and so ,

whence .

Definition The  of a flat  is . A flat of dimension  isdimension dim
called a . A -flat is a , a -flat is a  and a -flat is a . A flat-flat point line plane
of dimension  is called a .dim hyperplane

Definition Two flats  and  are said to be  ifparallel
 or . This is denoted by .

We will denote subspaces of  by the letters  and flats in  by
.

Here are some of the basic intersection properties of flats.
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Theorem 16.1 Let  and  be subspaces of  and let  and
 be flats in .

1  The following are equivalent:)
 a  some translate of  is in :  for some )
 b  some translate of  is in :  for some )
 c  )
2  The following are equivalent:)
 a   and  are translates:  for some )
 b   and  are translates:  for some )
 c  )
3)
4)
5  If  then ,  or )
6   if and only if some translation of one of these flats is contained in)

the other.
Proof. If 1a) holds, then  and so 1b) holds. If 1b) holds,
then  and so  and so 1c) holds. If 1c) holds, then

 and so 1a) holds. Part 2) is proved in a
similar manner.

For part 3),  implies that  for some  and so if
 then  and so , which implies that .

Conversely, if  then part 1) implies that . Part 4) follows similarly.
We leave proof of 5) and 6) to the reader.

Affine Combinations
Let  be a nonempty subset of . It is well known that

1)  is a subspace of  if and only if  is closed under linear combinations,
or equivalently,  is closed under linear combinations of any two vectors
in .

2) The smallest subspace of  containing  is the set of all linear
combinations of elements of . In different language, the  of linear hull
is equal to the  of .linear span

We wish to establish the corresponding properties of affine subspaces of ,
beginning with the counterpart of a linear combination.

Definition Let  be a vector space and let . A linear combination

where  and  is called an  of the vectors .affine combination

Let us refer to a nonempty subset  of  as  if  is closed underaffine closed
any affine combination of vectors in  and  if  is closedtwo-affine closed
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under affine combinations of any two vectors in . These are not standard
terms.

The  containing two distinct vectors  is the setline

of all affine combinations of  and . Thus, a subset  of  is two-affine closed
if and only if contains the line through any two of its points.

Theorem 16.2 Let  be a vector space over a field  with . Then achar
subset  of  is affine closed if and only if it is two-affine closed.
Proof. The theorem is proved by induction on the number  of terms in an
affine combination. The case  holds by assumption. Assume the result true
for affine combinations with fewer than  terms and consider the affine
combination

where . There are two cases to consider. If either of  and  is not equal
to , say , write

and if , then since 2, we may writechar

3 3

In either case, the inductive hypothesis applies to the expression inside the
square brackets and then to .

The requirement  is necessary, for if , then the subsetchar

of  is two-affine closed but not affine closed. We can now characterize flats.

Theorem 16.3 A nonempty subset  of a vector space  is a flat if and only if
 is affine closed. Moreover, if , then  is a flat if and only if  ischar

two-affine closed.
Proof. Let  be a flat and let , where . If

, then

and so  is affine closed. Conversely, suppose that  is affine closed, let
 and let . If  and  then
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for . Since the sum of the coefficients of ,  and  in the last
expression is , it follows that

and so . Thus,  is a subspace of  and  is
a flat. The rest follows from Theorem 16.2.

Affine Hulls
The following definition is the analog of the subspace spanned by a collection
of vectors.

Definition Let  be a nonempty set of vectors in .
1  The  of , denoted by , is the smallest flat containing) affhullaffine hull

.
2  The  of , denoted by , is the set of all affine) affspanaffine span

combinations of vectors in .

Theorem 16.4 Let  be a nonempty subset of . Then

affhull affspan span

or equivalently, for a subspace  of ,

affspan span

Also,

dim dimaffspan span

Proof. Theorem 16.3 implies that  and so it isaffspan affhull
sufficient to show that  is a flat, or equivalently, that for anyaffspan

, the set  is a subspace of . To this end, let

Then any two elements of  have the form  and , where

and 2

are in . But if , then
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2

2

which is in , since the last sum is an affine sum. Hence,  is a
subspace of . We leave the rest of the proof to the reader.

The Lattice of Flats
The intersection of subspaces is a subspace, although it may be trivial. For flats,
if the intersection is not empty, then it is also a flat. However, since the
intersection of flats may be empty, the set  does not form a lattice under
intersection. However, we can easily fix this.

Theorem 16.5 Let  be a vector space. The set

of all flats in , together with the empty set, is a complete lattice in which meet
is intersection. In particular:
1   is closed under arbitrary intersection. In fact, if)

 has nonempty intersection, then

for some . In other words, the base of the intersection is the
intersection of the bases.

2  The join  of the family  is the intersection of all)
flats containing the members of . Also,

affhull

3  If  and  are flats in , then)

If , then

Proof. For part 1), if

then  for all  and so
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We leave proof of part 2) to the reader.

For part 3), since , it follows that

for some subspace  of . Thus, . Also,  implies that
 and similarly , whence  and so if 

, then . Hence, . On the
other hand,

and

and so . Thus, .

If , then we may take the flat representatives for  and  to be any
element , in which case part 1) gives

and since , we also have .

We can now describe the dimension of the join of two flats.

Theorem 16.6 Let  and  be flats in .
1  If , then)

dim dim dim dim dim

2  If , then)

dim dim

Proof. We have seen that if , then

and so

dim dim

On the other hand, if , then

and since , we getdim
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dim dim

Finally, we have

dim dim dim dim

and Theorem 16.5 implies that

dim dim

Affine Independence
We now discuss the affine counterpart of linear independence.

Theorem 16.7 Let  be a nonempty set of vectors in . The following are
equivalent:
1  For all , the set)

is linearly independent.
2  For all ,)

affhull

3  For any vectors ,)

 for all 

4  For affine combinations of vectors in ,)

 for all 

5  When  is finite, )

dim affhull

A set  of vectors satisfying any any hence all  of these conditions is said to be( )
affinely independent.
Proof. If 1) holds but there is an affine combination equal to ,

where  for all , then



434 Advanced Linear Algebra

Since  is nonzero for some , this contradicts 1). Hence, 1) implies 2). Suppose
that 2) holds and

where . If some , say , is nonzero then

affhull

which contradicts 2) and so  for all . Hence, 2) implies 3).

If 3) holds and the affine combinations satisfy

then

and since , it follows that  for all . Hence, 4)
holds. Thus, it is clear that 3) and 4) are equivalent. If 3) holds and

for , then

and so 3) implies that  for all .

Finally, suppose that . Since

dim dimaffhull

it follows that 5) holds if and only if , which has size , is
linearly independent.

Affinely independent sets enjoy some of the basic properties of linearly
independent sets. For example, a nonempty subset of an affinely independent set
is affinely independent. Also, any nonempty set  contains an affinely
independent set.

Since the affine hull  of an affinely independent set  is not theaffhull
affine hull of any proper subset of , we deduce that  is a minimal affine
spanning set of its affine hull.
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Affine Bases and Barycentric Coordinates
We have seen that a set  is affinely independent if and only if the set

is linearly independent. We have also seen that for a subsapce  of ,

affspan span

Therefore, if by analogy, we define a subset  of a flat  to be an
affine basis for  if  is affinely independent and , then  is anaffspan
affine basis for  if and only if  is a basis for .

Theorem 16.8 Let  be a flat of dimension . Let  be
an ordered basis for  and let  be an
ordered affine basis for . Then every  has a unique expression as an
affine combination

The coefficients  are called the  of  with respect tobarycentric coordinates
the ordered affine basis .

For example, in , a plane is a flat of the form  where
 is an ordered basis for a two-dimensional subspace of . Then

are barycentric coordinates for the plane, that is, any  has the form

where .

Affine Transformations
Now let us discuss some properties of maps that preserve affine structure.

Definition A function  that preserves affine combinations, that is, for
which

is called an  or , or .affine transformation affine map affinity( )

We should mention that some authors require that  be bijective in order to be
an affine map. The following theorem is the analog of Theorem 16.2.
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Theorem 16.9 If , then a function  is an affinechar
transformation if and only if it preserves affine combinations of every pair of its
points, that is, if and only if

Thus, if , then a map  is an affine transformation if and only if itchar
sends the line through  and  to the line through  and . It is clear that
linear transformations are affine transformations. So are the following maps.

Definition Let . The affine map  defined by

for all , is called  by .translation

It is not hard to see that any composition , where , is affine.
Conversely, any affine map must have this form.

Theorem 16.10 A function  is an affine transformation if and only if
it is a linear operator followed by a translation,

where  and .
Proof. We leave proof that  is an affine transformation to the reader. Let 
be an affine map and suppose that . Then . Moreover,
letting , we have

and so  is linear.

Corollary 16.11
1  The composition of two affine transformations is an affine transformation.)
2  An affine transformation  is bijective if and only if  is bijective.)
3  The set  of all bijective affine transformations on  is a group under) aff

composition of maps, called the  of .affine group

Let us make a few group-theoretic remarks about . The set  of allaff trans
translations of  is a subgroup of . We can define a functionaff

aff  by
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It is not hard to see that  is a well-defined group homomorphism from aff
onto , with kernel . Hence,  is a normal subgroup oftrans trans
aff  and

aff
trans

Projective Geometry
If , the join affine hull  of any two distinct points in  is a line. Ondim ( )
the other hand, it is not the case that the intersection of any two lines is a point,
since the lines may be parallel. Thus, there is a certain asymmetry between the
concepts of points and lines in . This asymmetry can be removed by
constructing the . Our plan here is to very briefly describe oneprojective plane
possible construction of projective geometries of all dimensions.

By way of motivation, let us consider Figure 16.1.

Figure 16.1

Note that  is a hyperplane in a 3-dimensional vector space  and that .
Now, the set  of all flats of  that lie in  is an affine geometry of
dimension . According to our definition of affine geometry,  must be a(
vector space in order to define . However, we hereby extend the definition
of affine geometry to include the collection of all flats contained in a flat of .

Figure 16.1 shows a one-dimensional flat  and its linear span , as well as a
zero-dimensional flat  and its span . Note that, for any flat  in , we
have

dim dim

Note also that if  and  are any two distinct lines in , the corresponding
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planes  and  have the property that their intersection is a line through
the origin, . We are now ready to define projectiveeven if the lines are parallel
geometries.

Let  be a vector space of any dimension and let  be a hyperplane in  not
containing the origin. To each flat  in , we associate the subspace  of 
generated by . Thus, the linear span function  maps affine
subspaces  of  to subspaces  of . The span function is not surjective:
Its image is the set of all subspaces that are  contained in the base subspacenot

 of the flat .

The linear span function is one-to-one and its inverse is intersection with ,

for any subspace  not contained in .

The affine geometry  is, as we have remarked, somewhat incomplete. In
the case , every pair of points determines a line but not every pairdim
of lines determines a point.

Now, since the linear span function  is injective, we can identify  with
its image , which is the set of all subspaces of  not contained in the
base subspace . This view of  allows us to “complete”  by
including the base subspace . In the three-dimensional case of Figure 16.1, the
base plane, in effect, adds a projective line at infinity. With this inclusion, every
pair of lines intersects, parallel lines intersecting at a point on the line at infinity.
This two-dimensional projective geometry is called the .projective plane

Definition Let  be a vector space. The set  of all subspaces of  is
called the  of . The   ofprojective geometry projective dimension pdim

 is defined as

pdim dim

The  of  is defined to be . Aprojective dimension pdim dim
subspace of projective dimension  is called a  and a subspaceprojective point
of projective dimension  is called a .projective line

Thus, referring to Figure 16.1, a projective point is a line through the origin and,
provided that it is not contained in the base plane , it meets  in an affine
point. Similarly, a projective line is a plane through the origin and, provided that
it is not , it will meet  in an affine line. In short,

span
span

affine point line through the origin projective point
affine line plane through the origin projective line

The linear span function has the following properties.
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Theorem 16.12 The linear span function  from the affine
geometry  to the projective geometry  defined by 
satisfies the following properties:
1  The linear span function is injective, with inverse given by)

for all subspaces  not contained in the base subspace  of .
2  The image of the span function is the set of all subspaces of  that are not)

contained in the base subspace  of .
3   if and only if )
4  If  are flats in  with nonempty intersection, then)

span span

5  For any collection of flats in ,)

span span

6  The linear span function preserves dimension, in the sense that)

pdim span dim

7   if and only if one of  and  is contained in the)
other.

Proof. To prove part 1 , let  be a flat in . Then  and so)
, which implies that . Note also that  and

for some ,  and . This implies that , which
implies that either  or . But  implies  and so ,
which implies that . In other words,

Since the reverse inclusion is clear, we have

This establishes 1 .)

To prove 2 , let  be a subspace of  that is not contained in . We wish to)
show that  is in the image of the linear span function. Note first that since

 and , we have  and sodim dim

dim dim dim dim dim
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Now let . Then

 for some  

Thus,  for some . Hence, the flat  lies in 
and

dim dim dim

which implies that  lies in  and hasspan
the same dimension as . In other words,

span

We leave proof of the remaining parts of the theorem as exercises.

Exercises
1. Show that if , then the set  is a

subspace of .
2. Prove that if  is nonempty then

affhull

3. Prove that the set    in  is closed under the
formation of lines, but not affine hulls.

4. Prove that a flat contains the origin  if and only if it is a subspace.
5. Prove that a flat  is a subspace if and only if for some  we have

 for some .
6. Show that the join of a collection  of flats in  is the

intersection of all flats that contain all flats in .
7. Is the collection of all flats in  a lattice under set inclusion? If not, how

can you “fix” this?
8. Suppose that  and . Prove that if dim dim

and , then .
9. Suppose that  and  are disjoint hyperplanes in .

Show that .
10. (The parallel postulate) Let  be a flat in  and . Show that there is

exactly one flat containing , parallel to  and having the same dimension
as .

11. a  Find an example to show that the join  of two flats may not be)
the set of all lines connecting all points in the union of these flats.

 b  Show that if  and  are flats with , then  is the)
union of all lines  where  and .

12. Show that if  and , then

dim max dim dim
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13. Let . Prove the following:dim
 a  The join of any two distinct points is a line.)
 b  The intersection of any two nonparallel lines is a point.)
14. Let . Prove the following:dim
 a  The join of any two distinct points is a line.)
 b  The intersection of any two nonparallel planes is a line.)
 c  The join of any two lines whose intersection is a point is a plane.)
 d  The intersection of two coplanar nonparallel lines is a point.)
 e  The join of any two distinct parallel lines is a plane.)
 f  The join of a line and a point not on that line is a plane.)
 g  The intersection of a plane and a line not on that plane is a point.)
15. Prove that  is a surjective affine transformation if and only if

 for some  and .
16. Verify the group-theoretic remarks about the group homomorphism

aff trans aff and the subgroup  of .



Chapter 17
Singular Values and the Moore–Penrose
Inverse

Singular Values
Let  and  be finite-dimensional inner product spaces over  or  and let

. The spectral theorem applied to  can be of considerable help
in understanding the relationship between  and its adjoint . This relationship
is shown in Figure 17.1. Note that  and  can be decomposed into direct sums

and

in such a manner that  and  act symmetrically in the sense
that

and

Also, both  and  are zero on  and , respectively.

We begin by noting that  is a positive Hermitian operator. Hence, if
rk rk , then  has an ordered orthonormal basis

of eigenvectors for , where the corresponding eigenvalues can be arranged
so that

The set  is an ordered orthonormal basis for ker ker
and so  is an ordered orthonormal basis for .ker im
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(uk)=skvk
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Figure 17.1

For , the positive numbers  are called the singular values
of . If we set  for , then

for . We can achieve some “symmetry” here between  and  by
setting  for each , giving

and

The vectors  are orthonormal, since if , then

Hence,  is an orthonormal basis for , which can beim ker
extended to an orthonormal basis  for , the extension

 being an orthonormal basis for . Moreover, sinceker

the vectors  are eigenvectors for  with the same eigenvalues
 as for . This completes the picture in Figure 17.1.
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Theorem 17.1 Let  and  be finite-dimensional inner product spaces over 
or  and let  have rank . Then there are ordered orthonormal
bases  and  for  and , respectively, for which

ONB for ONB for im ker

and

ONB for ONB for im ker

Moreover, for ,

where  are called the  of , defined bysingular values

for . The vectors  are called the  for  andright singular vectors
the vectors  are called the  for .left singular vectors

The matrix version of the previous discussion leads to the well-known singular-
value decomposition of a matrix. Let  and let 
and  be the orthonormal bases from  and , respectively, in
Theorem 17.1, for the operator . Then

diag

A change of orthonormal bases from the standard bases to  and  gives

where  and  are unitary/orthogonal. This is the singular-
value decomposition of .

As to uniqueness, if , where  and  are unitary and  is diagonal,
with diagonal entries , then

and since  , it follows that the 's are eigenvalues ofdiag
, that is, they are the squares of the singular values along with a sufficient

number of 's. Hence,  is uniquely determined by , up to the order of the
diagonal elements.

Singular Values and the Moore–Penrose Inverse
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We state without proof the following uniqueness facts and refer the reader to
[48] for details. If  and if the eigenvalues  are distinct, then  is
uniquely determined up to multiplication on the right by a diagonal matrix of the
form  with . If , then  is never uniquelydiag
determined. If , then for any given  there is a unique . Thus, we
see that, in general, the singular-value decomposition is not unique.

The Moore–Penrose Generalized Inverse
Singular values lead to a generalization of the inverse of an operator that applies
to all linear transformations. The setup is the same as in Figure 17.1. Referring
to that figure, we are prompted to define a linear transformation  by

for
for

since then

and

Hence, if , then . The transformation  is called the
Moore–Penrose generalized inverse Moore–Penrose pseudoinverse or  of .
We abbreviate this as MP inverse.

Note that the composition  is the identity on the largest possible subspace of
 on which any composition of the form  could be the identity, namely, the

orthogonal complement of the kernel of . A similar statement holds for the
composition . Hence,  is as “close” to an inverse for  as is possible.

We have said that if  is invertible, then . More is true: If  is
injective, then  and so  is a left inverse for . Also, if  is surjective,
then  is a right inverse for . Hence the MP inverse  generalizes the one-
sided inverses as well.

Here is a characterization of the MP inverse.

Theorem 17.2 Let . The MP inverse  of  is completely
characterized by the following four properties:
1)
2)
3   is Hermitian)
4   is Hermitian)
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Proof. We leave it to the reader to show that  does indeed satisfy conditions
1)–4) and prove only the uniqueness. Suppose that  and  satisfy 1)–4) when
substituted for . Then

and

which shows that .

The MP inverse can also be defined for matrices. In particular, if ,
then the matrix operator  has an MP inverse . Since this is a linear
transformation from  to , it is just multiplication by a matrix .
This matrix  is the  for  and is denoted by .MP inverse

Since  and , the matrix version of Theorem 17.2 implies
that  is completely characterized by the four conditions

1)
2)
3   is Hermitian)
4   is Hermitian)

Moreover, if

is the singular-value decomposition of , then

Singular Values and the Moore–Penrose Inverse



448 Advanced Linear Algebra

where  is obtained from  by replacing all nonzero entries by their
multiplicative inverses. This follows from the characterization above and also
from the fact that for ,

and for ,

Least Squares Approximation
Let us now discuss the most important use of the MP inverse. Consider the
system of linear equations

where . As usual,  or .  This system has a solution( )
if and only if . If the system has no solution, then it is of considerableim
practical importance to be able to solve the system

where  is the unique vector in  that is closest to , as measured by theim
unitary or Euclidean  distance. This problem is called the ( ) linear least squares
problem. Any solution to the system  is called a least squares solution
to the system . Put another way, a least squares solution to  is a
vector  for which  is minimized.

Suppose that  and  are least squares solutions to . Then

and so . We will write  for .  Thus, if  is a particular leastker ( )
squares solution, then the set of all least squares solutions is .ker
Among all solutions, the most interesting is the solution of minimum norm.
Note that if there is a least squares solution  that lies in , then for anyker

ker , we have

and so  will be the unique least squares solution of minimum norm.

Before proceeding, we recall Theorem 9.14  that if  is a subspace of a finite-( )
dimensional inner product space , then the best approximation to a vector

 from within  is the unique vector  for which . Now we
can see how the MP inverse comes into play.
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Theorem 17.3 Let . Among the least squares solutions to the
system

there is a unique solution of minimum norm, given by , where  is the MP
inverse of .
Proof. A vector  is a least squares solution if and only if . Using the
characterization of the best approximation , we see that  is a solution to

 if and only if

im

Since  this is equivalent toim ker

or

This system of equations is called the  for . Itsnormal equations
solutions are precisely the least squares solutions to the system .

To see that  is a least squares solution, recall that, in the notation of
Figure 17.1,

and so

and since  is a basis for , we conclude that  satisfies the
normal equations. Finally, since , we deduce by the precedingker
remarks that  is the unique least squares solution of minimum norm.

Exercises
1. Let . Show that the singular values of  are the same as those of

.
2. Find the singular values and the singular value decomposition of the matrix

Find .
3. Find the singular values and the singular value decomposition of the matrix

Singular Values and the Moore–Penrose Inverse
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Find . : Is it better to work with  or ?Hint
4. Let  be a column matrix over . Find a singular-value

decomposition of .
5. Let  and let  be the square matrix

block

Show that, counting multiplicity, the nonzero eigenvalues of  are
precisely the singular values of  together with their negatives. : LetHint

 be a singular-value decomposition of  and try factoring 
into a product  where  is unitary. Do not read the following second
hint unless you get stuck. : Verify the block factorizationSecond Hint

What are the eigenvalues of the middle factor on the right? Try (
and .)

6. Use the results of the previous exercise to show that a matrix
, its adjoint , its transpose  and its conjugate  all have

the same singular values. Show also that if  and  are unitary, then 
and  have the same singular values.

7. Let  be nonsingular. Show that the following procedure
produces a singular-value decomposition  of .

 a  Write  where  and the 's are) diag
positive and the columns of  form an orthonormal basis of
eigenvectors for . We never said that this was a practical procedure.( )

 b  Let  where the square roots are nonnegative.) diag
Also let  and U .

8. If  is an  matrix, then the  of  isFrobenius norm

Show that  is the sum of the squares of the singular values of
.



Chapter 18
An Introduction to Algebras

Motivation
We have spent considerable time studying the structure of a linear operator

 on a finite-dimensional vector space  over a field . In our
studies, we defined the -module  and used the decomposition theorems
for modules over a principal ideal domain to dissect this module. We
concentrated on an individual operator , rather than the entire vector space

. In fact, we have made relatively little use of the fact that  is an
algebra under composition. In this chapter, we give a brief introduction to the
theory of algebras, of which  is the most general, in the sense of Theorem
18.2 below.

Associative Algebras
An algebra is a combination of a ring and a vector space, with an axiom that
links the ring product with scalar multiplication.

Definition associative An    over a field , or an , is a( ) algebra -algebra
nonempty set , together with three operations, called  denoted byaddition (

) ( ) (,  denoted by juxtaposition  and  alsomultiplication scalar multiplication
denoted by juxtaposition , for which the following properties hold:)
1   is a vector space over  under addition and scalar multiplication.)
2   is a ring with identity under addition and multiplication.)
3  If  and , then)

An algebra is  if it is finite-dimensional as a vector space. Anfinite-dimensional
algebra is  if  is a commutative ring. An element  iscommutative
invertible if there is  for which .

Our definition requires that  have a multiplicative identity. Such algebras are
called . Algebras without unit are also of great importance, butunital algebras
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we will not study them here. Also, in this chapter, we will assume that all
algebras are associative. Nonassociative algebras, such as Lie algebras and
Jordan algebras, are important as well.

The Center of an Algebra
Definition The  of an -algebra  is the setcenter

 for all 

of all elements of  that commute with every element of .

The center of an algebra is never trivial since it contains a copy of :

Definition An -algebra  is  if its center is as small as possible, thatcentral
is, if

From a Vector Space to an Algebra
If  is a vector space over a field  and if  is a basis for ,
then it is natural to wonder whether we can form an -algebra simply by
defining a product for the basis elements and then using the distributive laws to
extend the product to . In particular, we choose a set of constants  with the
property that for each pair , only finitely many of the  are nonzero. Then
we set

and make multiplication bilinear, that is,

and

for . It is easy to see that this does define a nonunital associative algebra
 provided that
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for all  and that  is commutative if and only if

for all . The constants  are called the  for thestructure constants
algebra . To get a unital algebra, we can take for a given , the structure
constants to be

in which case  is the multiplicative identity. An alternative is to adjoin a new(
element to the basis and define its structure constants in this way.)

Examples
The following examples will make it clear why algebras are important.

Example 18.1 If  are fields, then  is a vector space over . This vector
space structure, along with the ring structure of , is an algebra over .

Example 18.2 The ring  of polynomials is an algebra over .

Example 18.3 The ring  of all  matrices over a field  is an
algebra over , where scalar multiplication is defined by

Example 18.4 The set  of all linear operators on a vector space  over a
field  is an -algebra, where addition is addition of functions, multiplication is
composition of functions and scalar multiplication is given by

The identity map  is the multiplicative identity and the zero map
 is the additive identity. This algebra is also denoted by ,End

since the linear operators on  are also called endomorphisms of .

Example 18.5 If  is a group and  is a field, then we can form a vector space
 over  by taking all formal -linear combinations of elements of  and

treating  as a basis for . This vector space can be made into an -algebra
where the structure constants are determined by the group product, that is, if

, then . The group identity  is the algebra identity
since  and so  and similarly, .

The resulting associative algebra  is called the  over .group algebra
Specifically, the elements of  have the form
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where  and . If

then we can include additional terms with  coefficients and reindex if
necessary so that we may assume that  and  for all . Then the sum
in  is given by

Also, the product is given by

and the scalar product is

The Usual Suspects
Algebras have substructures and structure-preserving maps, as do groups, rings
and other algebraic structures.

Subalgebras
Definition Let  be an -algebra. A  of  is a subset  of  that issubalgebra
a subring of  with the same identity as  and a subspace of .( )

The intersection of subalgebras is a subalgebra and so the family of all
subalgebras of  is a complete lattice, where meet is intersection and the join of
a family  of subalgebras is the intersection of all subalgebras of  that contain
the members of .

The  by a nonempty subset  of an algebra  is thesubalgebra generated
smallest subalgebra of  that contains  and is easily seen to be the set of all
linear combinations of finite products of elements of , that is, the subspace
spanned by the products of finite subsets of elements of :

alg

Alternatively,  is the set of all polynomials in the variables in . Inalg
particular, the algebra generated by a single element  is the set of all
polynomials in  over .
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Ideals and Quotients
In defining the notion of an ideal of an algebra , we must consider the fact that

 may be noncommutative.

Definition two-sided A   of an associative algebra  is a nonempty( ) ideal
subset  of  that is closed under addition and subtraction, that is,

and also left and right multiplication by elements of , that is,

The  by a nonempty subset  of  is the smallest idealideal generated
containing  and is equal to

ideal

Definition An algebra  is  ifsimple
1  The product in  is not trivial, that is,  for at least one pair of)

elements
2   has no proper nonzero ideals.)

Definition If  is an ideal in , then the  is the quotientquotient algebra
ring/quotient space

with operations

where  and . These operations make  an -algebra.

Homomorphisms
Definition If  and  are -algebras a map  is an algebra
homomorphism if it is a ring homomorphism as well as a linear
transformation, that is,

and

for .
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The usual terms monomorphism, epimorphism, isomorphism, embedding,
endomorphism and automorphism apply to algebras with the analogous meaning
as for vector spaces and modules.

Example 18.6 Let  be an -dimensional vector space over . Fix an ordered
basis  for . Consider the map  defined by

where  is the matrix representation of  with respect to the ordered basis .
This map is a vector space isomorphism and since

it is also an algebra isomorphism.

Another View of Algebras
If  is an algebra over , then  contains a copy of . Specifically, we define a
function  by

for all , where  is the multiplicative identity. The elements  are in
the center of , since for any ,

and

Thus, . To see that  is a ring homomorphism, we have

Moreover, if  and , then

and so provided that  in , we have . Thus,  is an embedding.

Theorem 18.1
1  If  is an associative algebra over  and if  in , then the map)

 defined by

is an embedding of the field  into the center  of the ring . Thus, 
can be embedded as a subring of .
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2  Conversely, if  is a ring with identity and if  is a field, then )
is an -algebra with scalar multiplication defined by the product in .

One interesting consequence of this theorem is that a ring  whose center does
not contain a field is not an algebra over  field . This happens, for example,any
with the ring .

The Regular Representation of an Algebra
An algebra homomorphism  is called a  of therepresentation
algebra  in . A representation  is  if it is injective, that is, if faithful
is an embedding. In this case,  is isomorphic to a subalgebra of .

Actually, the endomorphism algebras  are the most general algebras
possible, in the sense that any algebra  has a faithful representation in some
endomorphism algebra.

Theorem 18.2 Any associative -algebra  is isomorphic to a subalgebra of
the endomorphism algebra . In fact, if  is the left multiplication map
defined by

then the map  is an algebra embedding, called the left regular
representation of .

When , we can select an ordered basis  for  and representdim
the elements of  by matrices. This gives an embedding of  into the
matrix algebra , called the  of left regular matrix representation
with respect to the ordered basis .

Example 18.7 Let  be a finite cyclic group. Let

be an ordered basis for the group algebra . The multiplication map  that
is multiplcation by  is a shifting of  with wraparound  and so the matrix( )
representation of  is the matrix whose columns are obtained from the identity
matrix by shifting  columns to the right with wrap around . For example,( )

These matrices are called .circulant matrices
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Since the endomorphism algebras  are of obvious importance, let us
examine them a bit more closely.

Theorem 18.3 Let  be a vector space over a field .
1  The algebra  has center)

and so  is central.
2  The set  of all elements of  that have finite rank is an ideal of)

 and is contained in all other ideals of .
3   is simple if and only if  is finite-dimensional.)
Proof. We leave the proof of parts 1) and 3) as exercises. For part 2), we leave
it to the reader to show that  is an ideal of . Let  be a nonzero ideal of

. Let  have rank . Then there is a basis  (a
disjoint union) and a nonzero  for which  is a finite set, 
and  for all . Thus,  is a linear combination over  of
endomorphisms  defined by

Hence, we need only show that .

If  is nonzero, then there is an  for which . If 
is defined by

and  is defined by

then

and so .

Annihilators and Minimal Polynomials
If  is an -algebra an  , then it may happen that  satisfies a nonzero
polynomial . This always happens, in particular, if  is finite-
dimensional, since in this case the powers

must be linearly dependent and so there is a nonzero polynomial in  that is
equal to .

Definition Let  be an -algebra. An element  is  if there is aalgebraic
nonzero polynomial  for which . If  is algebraic, the
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monic polynomial  of smallest degree that is satisfied by  is called the
minimal polynomial of .

If  is algebraic over , then the subalgebra generated by  over  is

deg deg

and this is isomorphic to the quotient algebra

where  is the ideal generated by the minimal polynomial of . We leave
the details of this as an exercise.

The minimal polynomial can be used to tell when an element is invertible.

Theorem 18.4
1  The minimal polynomial  of  generates the  of ,) annihilator

that is, the ideal

ann

of all polynomials that annihilate .
2  The element  is invertible if and only if  has nonzero constant)

term.
Proof. We prove only the second statement. If  is invertible but

then . Multiplying by  gives , which contradicts
the minimality of . Conversely, ifdeg

where , then

and so

and so
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Theorem 18.5 If  is a finite-dimensional -algebra, then every element of 
is algebraic. There are infinite-dimensional algebras in which all elements are
algebraic.
Proof. The first statement has been proved. To prove the second, let us consider
the complex field  as a -algebra. The set  of algebraic elements of  is a
field, known as the field of . These are the complex numbersalgebraic numbers
that are roots of some nonzero polynomial with rational or integral( )
coefficients.

To see this, if , then the subalgebra  is finite-dimensional. Also, 
is a field. To prove this, first note that since  is a field, the minimal polynomial
of any nonzero  is irreducible, for if , then

 and so one of  and  is , which implies that
 or . Since  is irreducible, it has nonzero

constant term and so the inverse of  is a polynomial in , that is, .
Of course,  is closed under addition and multiplication and so  is a
subfield of .

Thus,  is an algebra over . By similar reasoning, if , then the
minimal polynomial of  over  is irreducible and so . Since

 is the set of all polynomials in the “variables”  and , it is
closed under addition and multiplication as well. Hence,  is a finite-
dimensional algebra over , as well as a subfield of . Now,

dim dim dim

and so  is finite-dimensional over . Hence, the elements of  are
algebraic over , that is, . But  contains  and

 and so  is a field.

We claim that  is not finite-dimensional over . This follows from the fact
that for every prime , the polynomial  is irreducible over  by(
Eisenstein's criterion . Hence, if  is a complex root of , then  has)
minimal polynomial  over  and so the dimension of  over  is .
Hence,  cannot be finite-dimensional.

The Spectrum of an Element
Let  be an algebra. A nonzero element  is a  if left zero divisor
for some  and a  if  for some . In theright zero divisor
exercises, we ask the reader to show that an  element is a left zeroalgebraic
divisor if and only if it is a right zero divisor.

Theorem 18.6 Let  be a algebra. An algebraic element  is invertible if
and only if it is not a zero divisor.
Proof.  If  is invertible and , then multiplying by  gives .
Conversely, suppose that  is not invertible but  implies . Then



An Introduction to Algebras 461

 for some nonzero polynomial  and so , which
implies that , a contradiction to the minimality of .

We have seen that the eigenvalues of a linear operator  on a finite-dimensional
vector space are the roots of the minimal polynomial of , or equivalently, the
scalars  for which  is not invertible. By analogy, we can define the
eigenvalues of an element  of an algebra .

Theorem 18.7 Let  be an algebra and let  be algebraic. An element
 is a root of the minimal polynomial  if and only if  is not

invertible in .
Proof. If  is not invertible, then

and since  is satisfied by , it follows that

Hence, . Alternatively, if  is not invertible, then there is
a nonzero  such that , that is, . Hence, for any
polynomial  we have . Setting  gives

.

Conversely, if , then  and so
, which shows that  is a zero divisor and therefore not

invertible.

Definition Let A be an -algebra and let  be algebraic. The roots of the
minimal polynomial of  are called the  of . The set of alleigenvalues
eigenvalues of 

Spec

is called the  of .spectrum

Note that  is invertible if and only if .Spec

Theorem 18.8 The   Let  be an algebra over an( )spectral mapping theorem
algebraically closed field . Let  and let . Then

Spec Spec Spec

Proof. We leave it as an exercise to show that . ForSpec Spec
the reverse inclusion, let  and suppose thatSpec

Then



462 Advanced Linear Algebra

and since the left-hand side is not invertible, neither is one of the factors
, whence . ButSpec

and so . Hence, .Spec Spec Spec

Theorem 18.9 Let  be an algebra over an algebraically closed field . If
, then

Spec Spec

Proof. If , then  is invertible and a simple computationSpec
gives

and so  is invertible and . If , then  isSpec Spec
invertible. We leave it as an exercise to show that this implies that  is also
invertible and so . Thus,  and by symmetry,Spec Spec Spec
equality must hold.

Division Algebras
Some important associative algebras  have the property that all nonzero
elements are invertible and yet  is not a field since it is not commutative.

Definition An associative algebra  over a field  is a  ifdivision algebra
every nonzero element has a multiplicative inverse.

Our goal in this section is to classify all finite-dimensional division algebras
over the real field , over any algebraically closed field  and over any finite
field. The classification of finite-dimensional division algebras over the rational
field  is quite complicated and we will not treat it here.

The Quaternions
Perhaps the most famous noncommutative division algebra is the following.
Define a real vector space  with basis

To make  into an -algebra, define the product of basis vectors as follows:

1   for all )
2)
3)
4)
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Note that 3  can be stated as follows: The product of two consecutive elements)
 is the next element with wraparound . Also, 4  says that  for( ) )

. This product is extended to all of  by distributivity.

We leave it to the reader to verify that  is a division algebra, called Hamilton's
quaternions, after their discoverer William Rowan Hamilton 1805-1865 .( )
(Readers familiar with group theory will recognize the quaternion group 

.  The quaternions have applications in geometry, computer)
science and physics.

Finite-Dimensional Division Algebras over an Algebraically Closed
Field
It happens that there are no interesting finite-dimensional division algebras over
an algebraically closed field.

Theorem 18.10 If  is a finite-dimensional division algebra over an
algebraically closed field  then .
Proof. Let  have minimal polynomial . Since a division algebra has
no zero divisors,  must be irreducible over  and so must be linear.
Hence,  and so .

Finite-Dimensional Division Algebras over a Finite Field
The finite-dimensional division algebras over a finite field are also easily
described: they are all commutative and so are finite fields. The proof, however,
is a bit more challenging. To understand the proof, we need two facts: the class
equation and some information about the complex roots of unity. So let us
briefly describe what we need.

The Class Equation
Those who have studied group theory have no doubt encountered the famous
class equation. Let  be a finite group. Each  can be thought of as a
permutation  of  defined by

for all . The set of all conjugates  of  is denoted by  and so

This set is also called a  in . Now, the following areconjugacy class
equivalent:
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where

is the  of . But  if and only if  and  are in the samecentralizer
coset of . Thus, there is a one-to-one correspondence between the
conjugates of  and the cosets of . Hence,

Since the distinct conjugacy classes form a partition of  (because conjugacy is
an equivalence relation), we have

where  is a set consisting of exactly one element from each conjugacy class
. Note that a conjugacy class  has size  if and only if  for

all , that is,  for all  and these are precisely the elements in
the center  of . Hence, the previous equation can be written in the form

where  is a set consisting of exactly one element from each conjugacy class
 of size greater than . This is the  for .class equation

The Complex Roots of Unity
If  is a positive integer, then the complex th  are the complexroots of unity
solutions to the equation

The set  of complex th roots of unity is a cyclic group of order . To see
this, note first that  is an abelian group since  implies that 
and . Also, since  has no multiple roots,  has order .

Now, in any finite abelian group , if  is the maximum order of all elements
of , then  for all . Thus, if no element of  has order , then

 and every  satisfies the equation , which has fewer
than  solutions. This contradiction implies that some element of  must have
order  and so  is cyclic.
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The elements of  that generate , that is, the elements of order  are called
the  th roots of unity. We denote the set of primitive th roots ofprimitive
unity by . Hence, if , then

has size , where  is the Euler phi function. The value  is defined to(
be the number of positive integers less than or equal to  and relatively prime to

.)

The th  is defined bycyclotomic polynomial

Thus,

deg

Since every th root of unity is a primitive th root of unity for some  and
since every primitive th root of unity for  is also an th root of unity, we
deduce that

where the union is a disjoint one. It follows that

Finally, we show that  is monic and has integer coefficients by induction
on . It is clear from the definition that  is monic. Since ,
the result is true for . If  is a prime, then all nonidentity th roots of unity
are primitive and so

2

and the result holds for . Assume the result holds for all proper divisors of
. Then

By the induction hypothesis,  has integer coefficients and it follows that
 must also have integer coefficients.

Wedderburn's Theorem
Now we can prove Wedderburn's theorem.
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Theorem 18.11  If  is a finite division algebra, then( )Wedderburn's theorem
 is a field.

Proof. We must show that  is commutative. Let  be the multiplicative
group of all nonzero elements of . The class equation is

where the sum is taken over one representative  from each conjugacy class of
size greater than . If we assume for the purposes of contradiction that  is not
commutative, that is, that , then the sum on the far right is not an
empty sum and so  for some .

The sets  and  are subalgebras of  and, in fact,  is a
commutative division algebra; that is, a field. Let . Since

, we may view  and  as vector spaces over  and so

and

for integers . The class equation now gives

and since , it follows that .

If  is the th cyclotomic polynomial, then  divides . But
 also divides each summand on the far right above, since its roots are not

roots of . It follows that . On the other hand,

and since  implies that , we have a contradiction. Hence
 and  is commutative, that is,  is a field.

Finite-Dimensional Real Division Algebras
We now consider the finite-dimensional division algebras over the real field .
In 1877, Frobenius proved that there are only three such division algebras.

Theorem 18.12  If  is a finite-dimensional division algbera( )Frobenius, 1877
over , then

or

Proof. Note first that the minimal polynomial  of any  is either
linear, in which case  or irreducible quadratic  with

. Completing the square gives
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Hence, any  has the form

where  and either  or . Hence,  but . Thus, every
element of  is the sum of an element of  and an element of the set

that is, as sets:

Also, . To see that  is a subspace of , let . We wish
to show that . If  for some , then

. So assume that  and  are linearly independent. Then
 and  are nonzero and so also nonreal.

Now,  and  cannot both be real, since then  and  would be real. We
have seen that

and

where , at least one of  or  is nonzero and . Then

and so

Collecting the real part on one side gives

Now, if we knew that  and  were linearly independent over  we could
conclude that  and so

and

which shows that  and  are in .

To see that  is linearly independent, it is equivalent to show that
 is linearly independent. But if
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for , then

and since , it follows that  and so  or . But  since
 and  since  are linearly independent.

Thus,  is a subspace of  and

We now look at , which is a real vector space. If , then  and
we are done, so assume otherwise. If  is nonzero, then  where

. Hence,  satisfies . If

then  and we are done. If not, then  is a proper subspace of
.

In the quaternion field, there is an element  for which . So we seek a
 with this property. To this end, define a bilinear form on  by

Then it is easy to see that this form is a real inner product on  positive(
definite, symmetric and bilinear . Hence, if  is a proper subspace of , then)

where  denotes the orthogonal direct sum. If  is nonzero, then
 for  and so if , then

and

Now,  is a subspace of  and so

Setting , we have

and

and so  and we can write



An Introduction to Algebras 469

Now, if , then there is a  for which  and

The third equation is  and so

whence , which is false. Hence,  and

This completes the proof.

Exercises
1. Prove that the subalgebra generated by a nonempty subset  of an algebra

 is the subspace spanned by the products of finite subsets of elements of
:

alg

2. Verify that the group algebra  is indeed an associative algebra over .
3. Show that the kernel of an algebra homomorphism is an ideal.
4. Let  be a finite-dimensional algebra over  and let  be a subalgebra.

Show that if  is invertible, then .
5. If  is an algebra and  is nonempty, define the   ofcentralizer

 to be the set of elements of  that commute with all elements of . Prove
that  is a subalgebra of .

6. Show that  is not an algebra over any field.
7. Let  be the algebra generated over  by a single algebraic element

. Show that  is isomorphic to the quotient algebra , where
 is the ideal generated by . What can you say about

? What is the dimension of ? What happens if  is not algebraic?
8. Let  be a finite group. For  of the form

let . Prove that  is an algebra
homomorphism, where  is an algebra over itself.

9. Prove the  of algebras: A homomorphismfirst isomorphism theorem
 of -algebras induces an isomorphism ker im

defined by .ker
10. Prove that the quaternion field is an -algebra and a field. : ForHint
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( ) consider

11. Describe the left regular representation of the quaternions using the ordered
basis .

12. Let  be the group of permutations bijective functions  of the ordered set( )
, under composition. Verify the following statements.

Each  defines a linear isomorphism  on the vector space  with
basis  over a field . This defines an algebra homomorphism

 with the property that . What does the matrix
representation of a  look like? Is the representation  faithful?

13. Show that the center of the algebra  is

14. Show that  is simple if and only if .dim
15. Prove that for , the matrix algebras  are central and simple.
16. An element  is  if there is a  for which , inleft-invertible

which case  is called a  of . Similarly,  is left inverse right-
invertible if there is a  for which , in which case  is called a
right inverse one-sided inverses of . Left and right inverses are called 
and an ordinary inverse is called a . Let  betwo-sided inverse
algebraic over .

 a  Prove that  for some  if and only if  for some .)
Does  necessarily equal ?

 b  Prove that if  has a one-sided inverse , then  is a two-sided inverse.)
Does this hold if  is not algebraic? : Consider the algebraHint

.
 c  Let  be algebraic. Show that  is invertible if and only if )

and  are invertible, in which case  is also invertible.



Chapter 19
The Umbral Calculus

In this chapter, we give a brief introduction to an area called the umbral
calculus. This is a linear-algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject, emphasizing the algebraic aspects
rather than the applications. For more on the umbral calculus, may we suggest
The Umbral Calculus, by Roman 1984 ?

One bit of notation: The  are defined bylower factorial numbers

Formal Power Series
We begin with a few remarks concerning formal power series. Let  denote the
algebra of formal power series in the variable , with complex coefficients.
Thus,  is the set of all formal sums of the form

( )19.1

where  the complex numbers . Addition and multiplication are purely( )
formal:

and

The   of  is the smallest exponent of  that appears with a nonzeroorder
coefficient. The order of the zero series is defined to be . Note that a series



472 Advanced Linear Algebra

 has a multiplicative inverse, denoted by , if and only if . We
leave it to the reader to show that

and

 min

If  is a sequence in  with  as , then for any series

we may substitute  for  to get the series

which is well-defined since the coefficient of each power of  is a finite sum. In
particular, if , then  and so the composition

is well-defined. It is easy to see that .

If , then  has a compositional inverse, denoted by  and satisfying

A series  with  is called a .delta series

The sequence of powers  of a delta series  forms a  for , in thepseudobasis
sense that for any , there exists a unique sequence of constants  for
which

Finally, we note that the formal derivative of the series 19.1  is given by( )

The operator  is a derivation, that is,
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The Umbral Algebra
Let  denote the algebra of polynomials in a single variable  over the
complex field. One of the starting points of the umbral calculus is the fact that
any formal power series in  can play three different roles: as a formal power
series, as a linear functional on  and as a linear operator on . Let us first
explore the connection between formal power series and linear functionals.

Let  denote the vector space of all linear functionals on . Note that  is the
algebraic dual space of , as defined in Chapter 2. It will be convenient to
denote the action of  on  by

( )This is the “bra-ket” notation of Paul Dirac.  The vector space operations on 
then take the form

and

Note also that since any linear functional on  is uniquely determined by its
values on a basis for  the functional  is uniquely determined by the
values  for .

Now, any formal series in  can be written in the form

!

and we can use this to define a linear functional  by setting

for . In other words, the linear functional  is defined by

!

where the expression  on the left is just a formal power series. Note in
particular that

!

where  is the Kronecker delta function. This implies that

and so  is the functional “ th derivative at .” Also,  is evaluation at .
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As it happens, any linear functional  on  has the form . To see this, we
simply note that if

!

then

for all  and so as linear functionals, .

Thus, we can define a map  by .

Theorem 19.1 The map  defined by  is a vector space
isomorphism from  onto .
Proof. To see that  is injective, note that

 for all 

Moreover, the map  is surjective, since for any , the linear functional
 has the property that . Finally,

!

! !

From now on, we shall identify the vector space  with the vector space ,
using the isomorphism . Thus, we think of linear functionals on 
simply as formal power series. The advantage of this approach is that  is more
than just a vector space—it is an algebra. Hence, we have automatically defined
a multiplication of linear functionals, namely, the product of formal power
series. The algebra , when thought of as both the algebra of formal power
series and the algebra of linear functionals on , is called the .umbral algebra

Let us consider an example.

Example 19.1 For , the   is defined byevaluation functional



The Umbral Calculus 475

In particular,  and so the formal power series representation for
this functional is

! !

which is the exponential series. If  is evaluation at , then

and so the product of evaluation at  and evaluation at  is evaluation at
.

When we are thinking of a delta series  as a linear functional, we refer to
it as a . Similarly, an invertible series  is referred to as andelta functional
invertible functional. Here are some simple consequences of the development
so far.

Theorem 19.2
1  For any ,)

2  For any ,)

3  For any ,)

4) deg
5  If  for all , then)

where the sum on the right is a finite one.
6  If  for all , then)

 for all 

7  If   for all , then) deg

 for all 
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Proof. We prove only part 3 . Let)

! !
 and 

Then

!

and applying both sides of this as linear functionals  to  gives)

The result now follows from the fact that part 1  implies  and)
.

We can now present our first “umbral” result.

Theorem 19.3 For any  and ,

Proof. By linearity, we need only establish this for . But if

!

then

!

!

Let us consider a few examples of important linear functionals and their power
series representations.

Example 19.2
1  We have already encountered the  , satisfying) evaluation functional
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2  The  is the delta functional ,) forward difference functional
satisfying

3  The  is the delta functional e , satisfying) Abel functional

e

4  The invertible functional  satisfies)

as can be seen by setting  and expanding the expression
.

5  To determine the linear functional  satisfying)

we observe that

!

The inverse  of this functional is associated with the Bernoulli
polynomials, which play a very important role in mathematics and its
applications. In fact, the numbers

are known as the .Bernoulli numbers

Formal Power Series as Linear Operators
We now turn to the connection between formal power series and linear
operators on . Let us denote the th derivative operator on  by . Thus,

We can then extend this to formal series in ,

!
19.2( )
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by defining the linear operator  by

! !

the latter sum being a finite one. Note in particular that

( )19.3

With this definition, we see that each formal power series  plays three
roles in the umbral calculus, namely, as a formal power series, as a linear
functional and as a linear operator. The two notations  and

 will make it clear whether we are thinking of  as a functional or as an
operator.

It is important to note that  in  if and only if  as linear functionals,
which holds if and only if  as linear operators. It is also worth noting that

and so we may write  without ambiguity. In addition,

for all  and .

When we are thinking of a delta series  as an operator, we call it a delta
operator. The following theorem describes the key relationship between linear
functionals and linear operators of the form .

Theorem 19.4 If , then

for all polynomials .
Proof. If  has the form 19.2 , then by 19.3 ,( ) ( )

( )19.4

By linearity, this holds for  replaced by any polynomial . Hence,
applying this to the product  gives

Equation 19.4  shows that applying the linear functional  is equivalent to( ) (
applying the operator  and then following by evaluation at .
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Here are the operator versions of the functionals in Example 19.2.

Example 19.3
1  The operator  satisfies)

!

and so

for all . Thus  is a .translation operator
2  The  is the delta operator , where) forward difference operator

)

3  The  is the delta operator e , where) Abel operator

e

4  The invertible operator  satisfies)

5  The operator  is easily seen to satisfy) )

We have seen that all linear functionals on  have the form , for .
However, not all linear operators on  have this form. To see this, observe that

deg deg

but the linear operator  defined by  does not have
this property.

Let us characterize the linear operators of the form . First, we need a lemma.

Lemma 19.5 If  is a linear operator on  and  for some delta
series , then .deg deg
Proof. For any ,

deg deg deg

and so
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deg deg

Since  we have the basis for an induction. When deg
we get . Assume that the result is true for . Thendeg

deg deg

Theorem 19.6 The following are equivalent for a linear operator .
1   has the form , that is, there exists an  for which , as)

linear operators.
2   commutes with the derivative operator, that is, .)
3   commutes with any delta operator , that is, .)
4   commutes with any translation operator, that is, .)
Proof. It is clear that 1  implies 2 . For the converse, let) )

!

Then

Now, since  commutes with , we have

and since this holds for all  and  we get . We leave the rest of the
proof as an exercise.

Sheffer Sequences
We can now define the principal object of study in the umbral calculus. When
referring to a sequence  in , we shall always assume that  deg
for all .

Theorem 19.7 Let  be a delta series, let  be an invertible series and consider
the geometric sequence

in . Then there is a unique sequence  in  satisfying the orthogonality
conditions
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(19.5)

for all .
Proof. The uniqueness follows from Theorem 19.2. For the existence, if we set

and

where , then 19.5  is( )

Taking  we get

For  we have

and using the fact that  we can solve this for . By
successively taking  we can solve the resulting
equations for the coefficients  of the sequence .

Definition The sequence  in 19.5  is called the  for the( ) Sheffer sequence
ordered pair . We shorten this by saying that  is Sheffer for

.

Two special types of Sheffer sequences deserve explicit mention.

Definition The Sheffer sequence for a pair of the form  is called the
associated sequence for . The Sheffer sequence for a pair of the form

 is called the  for .Appell sequence
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Note that the sequence  is Sheffer for  if and only if

which is equivalent to

which, in turn, is equivalent to saying that the sequence  is
the associated sequence for .

Theorem 19.8 The sequence  is Sheffer for  if and only if the
sequence  is the associated sequence for .

Before considering examples, we wish to describe several characterizations of
Sheffer sequences. First, we require a key result.

Theorem 19.9 The expansion theorems( ) Let  be Sheffer for .
1  For any ,)

!

2  For any ,)

!

Proof. Part 1  follows from Theorem 19.2, since)

! !
!

Part 2  follows in a similar way from Theorem 19.2.)

We can now begin our characterization of Sheffer sequences, starting with the
generating function. The idea of a generating function is quite simple. If  is
a sequence of polynomials, we may define a formal power series of the form

!

This is referred to as the   for the sequence( )exponential generating function
. The term exponential refers to the presence of ! in this series. When(

this is not present, we have an ordinary generating function.  Since the series is
a formal one, knowing  is equivalent in theory, if not always in practice( )
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to knowing the polynomials . Moreover, a knowledge of the generating
function of a sequence of polynomials can often lead to a deeper understanding
of the sequence itself, that might not be otherwise easily accessible. For this
reason, generating functions are studied quite extensively.

For the proofs of the following characterizations, we refer the reader to Roman
1984 .

Theorem 19.10 Generating function( )
1  The sequence  is the associated sequence for a delta series  if and)

only if

!

where  is the compositional inverse of .
2  The sequence  is Sheffer for  if and only if)

!

The sum on the right is called the  of .generating function
Proof. Part 1  is a special case of part 2 . For part 2 , the expression above is) ) )
equivalent to

!

which is equivalent to

!

But if  is Sheffer for , then this is just the expansion theorem
for . Conversely, this expression implies that

!

and so , which says that  is Sheffer for
.

We can now give a representation for Sheffer sequences.

Theorem 19.11 Conjugate representation( )
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1  A sequence  is the associated sequence for  if and only if)

2  A sequence  is Sheffer for  if and only if)

Proof. We need only prove part 2 . We know that  is Sheffer for)
 if and only if

!

But this is equivalent to

!

Expanding the exponential on the left gives

!

Replacing  by  gives the result.

Sheffer sequences can also be characterized by means of linear operators.

Theorem 19.12 Operator characterization)
1  A sequence  is the associated sequence for  if and only if)
 a  )
 b   for )
2  A sequence  is Sheffer for  for some invertible series  if)

and only if

for all .
Proof. For part 1 , if  is associated with , then)

and
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and since this holds for all  we get 1b . Conversely, if 1a  and 1b  hold,) ) )
then

and so  is the associated sequence for .

As for part 2 , if  is Sheffer for , then)

and so , as desired. Conversely, suppose that

and let  be the associated sequence for . Let  be the invertible linear
operator on  defined by

Then

and so Lemma 19.5 implies that  for some invertible series . Then

and so  is Sheffer for .

We next give a formula for the action of a linear operator  on a Sheffer
sequence.
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Theorem 19.13 Let  be a Sheffer sequence for  and let 
be associated with . Then for any  we have

Proof. By the expansion theorem

!

we have

!

!

which is the desired formula.

Theorem 19.14
1   A sequence  is the associated sequence for a) ( )The binomial identity

delta series  if and only if it is of , that is, if and only if itbinomial type
satisfies the identity

for all .
2   A sequence  is Sheffer for  for) ( )The Sheffer identity

some invertible  if and only if

for all , where  is the associated sequence for .
Proof. To prove part 1 , if  is an associated sequence, then taking)

 in Theorem 19.13 gives the binomial identity. Conversely, suppose
that the sequence  is of binomial type. We will use the operator
characterization to show that  is an associated sequence. Taking

 we have for ,

and so . Also,
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and so . Assuming that  for  we have

and so . Thus, .

Next, define a linear functional  by

Since  and  we deduce
that  is a delta series. Now, the binomial identity gives

and so

and since this holds for all , we get . Thus,  is the
associated sequence for .

For part 2 , if  is a Sheffer sequence, then taking  in Theorem)
19.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity
holds, where  is the associated sequence for . It suffices to show that

 for some invertible . Define a linear operator  by

Then

and by the Sheffer identity,

and the two are equal by part 1 . Hence,  commutes with  and is therefore)
of the form , as desired.
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Examples of Sheffer Sequences
We can now give some examples of Sheffer sequences. While it is often a
relatively straightforward matter to verify that a given sequence is Sheffer for a
given pair , it is quite another matter to find the Sheffer sequence for
a given pair. The umbral calculus provides two formulas for this purpose, one of
which is direct, but requires the usually very difficult computation of the series

. The other is a recurrence relation that expresses each  in terms
of previous terms in the Sheffer sequence. Unfortunately, space does not permit
us to discuss these formulas in detail. However, we will discuss the recurrence
formula for associated sequences later in this chapter.

Example 19.4 The sequence  is the associated sequence for the delta
series . The generating function for this sequence is

and the binomial identity is the well-known binomial formula

Example 19.5 The lower factorial polynomials

form the associated sequence for the forward difference functional

discussed in Example 19.2. To see this, we simply compute, using Theorem
19.12. Since  is defined to be , we have . Also,

The generating function for the lower factorial polynomials is

log
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which can be rewritten in the more familiar form

Of course, this is a formal identity, so there is no need to make any restrictions
on . The binomial identity in this case is

which can also be written in the form

This is known as the .Vandermonde convolution formula

Example 19.6 The Abel polynomials

form the associated sequence for the Abel functional

e

also discussed in Example 19.2. We leave verification of this to the reader. The
generating function for the Abel polynomials is

Taking the formal derivative of this with respect to  gives

which, for , gives a formula for the compositional inverse of the series
,

Example 19.7 The famous   form the AppellHermite polynomials
sequence for the invertible functional
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We ask the reader to show that  is the Appell sequence for  if and only
if . Using this fact, we get

The generating function for the Hermite polynomials is

and the Sheffer identity is

We should remark that the Hermite polynomials, as defined in the literature,
often differ from our definition by a multiplicative constant.

Example 19.8 The well-known and important  Laguerre polynomials
of order  form the Sheffer sequence for the pair

It is possible to show although we will not do so here  that

The generating function of the Laguerre polynomials is

As with the Hermite polynomials, some definitions of the Laguerre polynomials
differ by a multiplicative constant.

We presume that the few examples we have given here indicate that the umbral
calculus applies to a significant range of important polynomial sequences. In
Roman 1984 , we discuss approximately 30 different sequences of polynomials
that are or are closely related to  Sheffer sequences.( )

Umbral Operators and Umbral Shifts
We have now established the basic framework of the umbral calculus. As we
have seen, the umbral algebra plays three roles: as the algebra of formal power
series in a single variable, as the algebra of all linear functionals on  and as the
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algebra of all linear operators on  that commute with the derivative operator.
Moreover, since  is an algebra, we can consider geometric sequences

in , where  and . We have seen by example that the
orthogonality conditions

define important families of polynomial sequences.

While the machinery that we have developed so far does unify a number of
topics from the classical study of polynomial sequences for example, special(
cases of the expansion theorem include Taylor's expansion, the Euler–
MacLaurin formula and Boole's summation formula , it does not provide much)
new insight into their study. Our plan now is to take a brief look at some of the
deeper results in the umbral calculus, which center on the interplay between
operators on  and their adjoints, which are operators on the umbral algebra

.

We begin by defining two important operators on  associated with each
Sheffer sequence.

Definition Let  be Sheffer for . The linear operator
 defined by

is called the  for the pair , or for the sequenceSheffer operator
. If  is the associated sequence for , the Sheffer operator

is called the  for , or for .umbral operator

Definition Let  be Sheffer for . The linear operator
 defined by

is called the  for the pair , or for the sequence . IfSheffer shift
 is the associated sequence for , the Sheffer operator

is called the  for , or for .umbral shift
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It is clear that each Sheffer sequence uniquely determines a Sheffer operator and
vice versa. Hence, knowing the Sheffer operator of a sequence is equivalent to
knowing the sequence.

Continuous Operators on the Umbral Algebra
It is clearly desirable that a linear operator  on the umbral algebra  pass
under infinite sums, that is, that

( )19.6

whenever the sum on the left is defined, which is precisely when 
as . Not all operators on  have this property, which leads to the
following definition.

Definition A linear operator  on the umbral algebra  is  if itcontinuous
satisfies .19.6)

The term continuous can be justified by defining a topology on . However,
since no additional topological concepts will be needed, we will not do so here.
Note that in order for 19.6  to make sense, we must have . It( )
turns out that this condition is also sufficient.

Theorem 19.15 A linear operator  on  is continuous if and only if

( )19.7

Proof. The necessity is clear. Suppose that 19.7  holds and that .( )
For any , we have

( )19.8

Since

( )19.7  implies that we may choose  large enough that

and

 for 
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Hence, 19.8  gives( )

which implies the desired result.

Operator Adjoints
If  is a linear operator on , then its operator  adjoint  is an( )
operator on  defined by

In the symbolism of the umbral calculus, this is

(We have reduced the number of parentheses used to aid clarity.

Let us recall the basic properties of the adjoint from Chapter 3.

Theorem 19.16 For ,
1)
2   for any )
3)
4   for any invertible  )

Thus, the map  that sends  to its adjoint 
is a linear transformation from  to . Moreover, since  implies
that  for all  and , which in turn implies
that , we deduce that  is injective. The next theorem describes the range
of .

Theorem 19.17 A linear operator  is the adjoint of a linear operator
 if and only if  is continuous.

Proof. First, suppose that  for some  and let . If
, then for all  we have

and so it is only necessary to take  large enough that   fordeg
all , whence
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for all  and so . Thus,  and  is
continuous.

For the converse, assume that  is continuous. If  did have the form , then

and since

we are prompted to   bydefine

This makes sense since  as  and so the sum on the right is a
finite sum. Then

which implies that  for all . Finally, since  and  are both
continuous, we have .

Umbral Operators and Automorphisms of the Umbral Algebra
Figure 19.1 shows the map , which is an isomorphism from the vector space

 onto the space of all continuous linear operators on . We are interested
in determining the images under this isomorphism of the set of umbral operators
and the set of umbral shifts, as pictured in Figure 19.1.
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Figure 19.1

Let us begin with umbral operators. Suppose that  is the umbral operator for
the associated sequence , with delta series . Then

for all  and . Hence,  and the continuity of  implies that

More generally, for any ,

( )19.9

In words,  is composition by .

From 19.9 , we deduce that  is a vector space isomorphism and that( )

Hence,  is an automorphism of the umbral algebra . It is a pleasant fact that
this characterizes umbral operators. The first step in the proof of this is the
following, whose proof is left as an exercise.

Theorem 19.18 If  is an automorphism of the umbral algebra, then 
preserves order, that is, . In particular,  is continuous.

Theorem 19.19 A linear operator  on  is an umbral operator if and only if
its adjoint is an automorphism of the umbral algebra . Moreover, if  is an
umbral operator, then
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for all . In particular, .
Proof. We have already shown that the adjoint of  is an automorphism
satisfying 19.9 . For the converse, suppose that  is an automorphism of .( )
Since  is surjective, there is a unique series  for which .
Moreover, Theorem 19.18 implies that  is a delta series. Thus,

which shows that  is the associated sequence for  and hence that  is an
umbral operator.

Theorem 19.19 allows us to fill in one of the boxes on the right side of Figure
19.1. Let us see how we might use Theorem 19.19 to advantage in the study of
associated sequences.

We have seen that the isomorphism  maps the set  of umbral operators
on  onto the set  of automorphisms of . But  is a groupaut aut
under composition. So if

 and 

are umbral operators, then since

is an automorphism of , it follows that the composition  is an umbral
operator. In fact, since

we deduce that . Also, since

we have .

Thus, the set  of umbral operators is a group under composition with

and

Let us see how this plays out with respect to associated sequences. If the
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associated sequence for  is

then  and so  is the umbral operator for the
associated sequence

This sequence, denoted by

( )19.10

is called the  of  with . The umbral operatorumbral composition
 is the umbral operator for the associated sequence 

where

and so

Let us summarize.

Theorem 19.20
1  The set  of umbral operators on  is a group under composition, with)

and

2  The set of associated sequences forms a group under umbral composition)

In particular, the umbral composition  is the associated sequence
for the composition , that is,

The identity is the sequence  and the inverse of  is the associated
sequence for the compositional inverse .
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3  Let  and . Then as operators,)

4  Let  and . Then)

Proof. We prove 3  as follows. For any  and ,)

which gives the desired result. Part 4  follows immediately from part 3  since ) )
is composition by .

Sheffer Operators
If  is Sheffer for , then the linear operator  defined by

is called a . Sheffer operators are closely related to umbralSheffer operator
operators, since if  is associated with , then

and so

It follows that the Sheffer operators form a group with composition

and inverse

From this, we deduce that the umbral composition of Sheffer sequences is a
Sheffer sequence. In particular, if  is Sheffer for  and

 is Sheffer for , then
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is Sheffer for .

Umbral Shifts and Derivations of the Umbral Algebra
We have seen that an operator on  is an umbral operator if and only if its
adjoint is an automorphism of . Now suppose that  is the umbral
shift for the associated sequence , associated with the delta series

. Then

1)

and so

( )19.11

This implies that

( )19.12

and further, by continuity, that

( )19.13

Let us pause for a definition.

Definition Let  be an algebra. A linear operator  on  is a  ifderivation

b

for all .

Thus, we have shown that the adjoint of an umbral shift is a derivation of the
umbral algebra . Moreover, the expansion theorem and 19.11  show that ( )
is surjective. This characterizes umbral shifts. First we need a preliminary result
on surjective derivations.
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Theorem 19.21 Let  be a surjective derivation on the umbral algebra . Then
c  for any   and f , if . Inconstant

particular,  is continuous.
Proof. We begin by noting that

and so  for all constants . Since  is surjective, there must
exist an  for which

Writing , we have

which implies that . Finally, if , then ,
where  and so

Theorem 19.22 A linear operator  on  is an umbral shift if and only if its
adjoint is a surjective derivation of the umbral algebra . Moreover, if  is an
umbral shift, then  is derivation with respect to , that is,

for all . In particular, .
Proof. We have already seen that  is derivation with respect to . For the
converse, suppose that  is a surjective derivation. Theorem 19.21 implies that
there is a delta functional  such that . If  is the associated
sequence for , then

1)

Hence, , that is,  is the umbral shift for .

We have seen that the fact that the set of all automorphisms on  is a group
under composition shows that the set of all associated sequences is a group
under umbral composition. The set of all surjective derivations on  does not
form a group. However, we do have the chain rule for derivations
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Theorem 19.23 The chain rule( ) Let  and  be surjective derivations on .
Then

Proof. This follows from

and so continuity implies the result.

The chain rule leads to the following umbral result.

Theorem 19.24 If  and  are umbral shifts, then

Proof. Taking adjoints in the chain rule gives

We leave it as an exercise to show that . Now, by taking
 in Theorem 19.24 and observing that  and so  is

multiplication by , we get

Applying this to the associated sequence  for  gives the following
important recurrence relation for .

Theorem 19.25 The recurrence formula( ) Let  be the associated
sequence for . Then
1)
2)
Proof. The first part is proved. As to the second, using Theorem 19.20 we have

Example 19.9 The recurrence relation can be used to find the associated
sequence for the forward difference functional . Since ,
the recurrence relation is

1)
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Using the fact that , we have

3

and so on, leading easily to the lower factorial polynomials

Example 19.10 Consider the delta functional

log

Since  is the forward difference functional, Theorem 19.20 implies
that the associated sequence  for  is the inverse, under umbral
composition, of the lower factorial polynomials. Thus, if we write

then

The coefficients  in this equation are known as the Stirling numbers of
the second kind and have great combinatorial significance. In fact,  is
the number of partitions of a set of size  into  blocks. The polynomials 
are called the .exponential polynomials

The recurrence relation for the exponential polynomials is

Equating coefficients of  on both sides of this gives the well-known formula
for the Stirling numbers

Many other properties of the Stirling numbers can be derived by umbral
means.

Now we have the analog of part 3  of Theorem 19.20.)

Theorem 19.26 Let  be an umbral shift. Then
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Proof. We have

from which the result follows.

If , then is multiplication by  and  is the derivative with respect to
 and so the previous result becomes

as operators on . The right side of this is called the  ofPincherle derivative
the operator . See [104].( )

Sheffer Shifts
Recall that the linear map

where  is Sheffer for  is called a Sheffer shift. If  is
associated with , then  and so

and so

From Theorem 19.26, the recurrence formula and the chain rule, we have

We have proved the following.
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Theorem 19.27 Let  be a Sheffer shift. Then
1)

2)

The Transfer Formulas
We conclude with a pair of formulas for the computation of associated
sequences.

Theorem 19.28 The ( )transfer formulas  Let  be the associated sequence
for . Then

1)

2)
Proof. First we show that 1  and 2  are equivalent. Write . Then) )

To prove 1 , we verify the operation conditions for an associated sequence for)
the sequence . First, when  the fourth equality
above gives

If , then , and so in general, we have  as
required.

For the second required condition,

Thus,  is the associated sequence for .
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A Final Remark
Unfortunately, space does not permit a detailed discussion of examples of
Sheffer sequences nor the application of the umbral calculus to various classical
problems. In [105], one can find a discussion of the following polynomial
sequences:

The lower factorial polynomials and Stirling numbers
The exponential polynomials and Dobinski's formula
The Gould polynomials
The central factorial polynomials
The Abel polynomials
The Mittag-Leffler polynomials
The Bessel polynomials
The Bell polynomials
The Hermite polynomials
The Bernoulli polynomials and the Euler–MacLaurin expansion
The Euler polynomials
The Laguerre polynomials
The Bernoulli polynomials of the second kind
The Poisson–Charlier polynomials
The actuarial polynomials
The Meixner polynomials of the first and second kinds
The Pidduck polynomials
The Narumi polynomials
The Boole polynomials
The Peters polynomials
The squared Hermite polynomials
The Stirling polynomials
The Mahler polynomials
The Mott polynomials

and more. In [105], we also find a discussion of how the umbral calculus can be
used to approach the following types of problems:

The connection constants problem
Duplication formulas
The Lagrange inversion formula
Cross sequences
Steffensen sequences
Operational formulas
Inverse relations
Sheffer sequence solutions to recurrence relations
Binomial convolution
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Finally, it is possible to generalize the classical umbral calculus that we have
described in this chapter to provide a context for studying polynomial sequences
such as those of the names Gegenbauer, Chebyshev and Jacobi. Also, there is a
q-version of the umbral calculus that involves the  alsoq-binomial coefficients (
known as the Gaussian coefficients)

in place of the binomial coefficients. There is also a logarithmic version of the
umbral calculus, which studies the  and sequences ofharmonic logarithms
logarithmic type. For more on these topics, please see [103], [106] and [107].

Exercises
1. Prove that , for any .
2. Prove that min , for any .
3. Show that any delta series has a compositional inverse.
4. Show that for any delta series , the sequence  is a pseudobasis.
5. Prove that  is a derivation.
6. Show that  is a delta functional if and only if  and

.
7. Show that  is invertible if and only if .
8. Show that  for any a ,  and

.
9. Show that e a  for any polynomial .
10. Show that  in  if and only if  as linear functionals, which

holds if and only if  as linear operators.
11. Prove that if  is Sheffer for , then .

Hint: Apply the functionals  to both sides.
12. Verify that the Abel polynomials form the associated sequence for the Abel

functional.
13. Show that a sequence  is the Appell sequence for  if and only if

.
14. If  is a delta series, show that the adjoint  of the umbral operator  is a

vector space isomorphism of .
15. Prove that if  is an automorphism of the umbral algebra, then  preserves

order, that is, . In particular,  is continuous.
16. Show that an umbral operator maps associated sequences to associated

sequences.
17. Let  and  be associated sequences. Define a linear operator  by

. Show that  is an umbral operator.
18. Prove that if  and  are surjective derivations on , then

.
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Index of Symbols

: the companion matrix of 
: characteristic polynomial of 

crk : column rank of 
cs : column space of 
diag : a block diagonal matrix with 's on the block diagonal
ElemDiv : the multiset of elementary divisors
InvFact : the multiset of invariant factors of 

: Jordan block
: minimal polynomial of 

null : the nullity of 
: canonical projection modulo 
: Riesz vector for 

rk : the rank of 
rrk : row rank of 
rs : row space of 

: projection onto  along 
: the multiplication by  operator

supp : the support of a function
: the -vector space/ -module where 
: the complexification of 
: assignment, for example,  means that  stands for 
: subspace or submodule
: proper subspace or proper submodule
: subspace/ideal spanned by 
: submodule spanned by 
an embedding that is an isomorphism when all is finite-dimensional.

: similarity of matrices or operators, associate in a ring.
: cartesian product
: orthogonal direct sum
: external direct product
: external direct sum
: internal direct sum
:  means 
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: wedge product
: tensor product
: -fold tensor product
: -fold cartesion product

:  and  are relatively prime
: affine combination

Index of Symbols
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Abel functional, 477, 489
Abel operator, 479
Abel polynomials, 489
abelian, 17
absolutely convergent, 330
accumulation point, 306
adjoint, 227, 231
affine basis, 435
affine closed, 428
affine combination, 428
affine geometry, 427
affine group, 436
affine hull, 430
affine hyperplane, 416
affine map, 435
affine span, 430
affine subspace, 57
affine transformation, 435
affine, 424
affinely independent, 433
affinity, 435
algebra homomorphism, 455
algebra, 31, 451
algebraic, 100, 458
algebraic closure, 30
algebraic dual space, 94
algebraic multiplicity, 189
algebraic numbers, 460
algebraically closed, 30
algebraically reflexive, 101
algorithm, 217
almost upper triangular, 194
along, 73
alternate, 260, 262, 391
alternating, 260, 391
ancestor, 14
anisotropic, 265
annihilator, 102, 115, 459
antisymmetric, 259, 390, 395

antisymmetric tensor algebra, 398
antisymmetric tensor space, 395, 400
antisymmetry, 10
Apollonius identity, 223
Appell sequence, 481
approximation problem, 331
as measured by, 357
ascending chain condition, 26, 133
associate classes, 27
associated sequence, 481
associates, 26
automorphism, 60

barycentric coordinates, 435
base ring, 110
base, 427
basis, 47, 116
Bernoulli numbers, 477
Bernstein theorem, 13
Bessel's identity, 221
Bessel's inequality, 220, 337, 338, 345
best approximation, 219, 332
bijection, 6
bijective, 6
bilinear form, 259, 360
bilinear, 206, 360
binomial identity, 486
binomial type, 486
block diagonal matrix, 3
block matrix, 3
blocks, 7
bottom, 10
bounded, 321, 349

canonical form, 8
canonical injections, 359
canonical map, 100
canonical projection, 89
Cantor's theorem, 13



516 Index

cardinal number, 13
cardinality, 12, 13
cartesian product, 14
Cauchy sequence, 311
Cauchy–Schwarz inequality, 208, 303, 325
Cayley-Hamilton theorem, 170
center, 452
central, 452
centralizer, 464, 469
chain, 11
chain rule, 501
change of basis matrix, 65
change of basis operator, 65
change of coordinates operator, 65
characteristic, 30
characteristic equation, 186
characteristic polynomial, 170
characteristic value, 185
characteristic vector, 186
Cholsky decomposition, 255
circulant matrices, 457
class equation, 464
classification problem, 276
closed ball, 304
closed half-spaces, 417
closed interval, 143
closed, 304, 414
closure, 306
codimension, 93
coefficients, 36
column equivalent, 9
column rank, 52
column space, 52
common eigenvector, 202
commutative, 17, 19, 451
commutativity, 15, 35, 384
commuting family, 201
compact, 414
companion matrix, 173
complement, 42, 120
complemented, 120
complete, 40, 311
complete invariant, 8
complete system of invariants, 8
completion, 316
complex operator, 59

complex vector space, 36
complexification, 53, 54, 82
complexification map, 54
composition, 472
cone, 265, 414
congruence classes, 262
congruence relation, 88
congruent modulo, 21, 87
congruent, 9, 262
conjugacy class, 463
conjugate isomorphism, 222
conjugate linear, 206, 221
conjugate linearity, 206
conjugate representation, 483
conjugate space, 350
conjugate symmetry, 205
connected, 281
continuity, 340
continuous, 310, 492
continuous dual space, 350
continuum, 16
contraction, 389
contravariant tensors, 386
contravariant type, 386
converge, 339, 210, 305, 330
convex combination, 414
convex, 332, 414
convex hull, 415
coordinate map, 51
coordinate matrix, 52, 368
correspondence theorem, 90, 118
coset, 22, 87, 118
coset representative, 22, 87
countable, 13
countably infinite, 13
covariant tensors, 386
covariant type, 386
cycle, 391
cyclic basis, 166
cyclic decomposition, 149, 168
cyclic group generated by, 18
cyclic group of order, 18
cyclic submodule, 113
cyclotomic polynomial, 465

decomposable, 362
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degenerate, 266
degree, 5
deleted absolute row sum, 203
delta functional, 475
delta operator, 478
delta series, 472
dense, 308
derivation, 499
descendants, 13
determinant, 292, 405
diagonal, 4
diagonalizable, 196
diagonally dominant, 203
diameter, 321
dimension, 50, 427
direct product, 41, 408
direct sum, 41, 73, 119
direct summand, 42, 120
discrete metric, 302
discriminant, 263
distance, 209, 322
divides, 5, 26
division algebra, 462
division algorithm, 5
domain, 6
dot product, 206
double, 100
dual basis, 96
dual space, 59, 100

eigenspace, 186
eigenvalue, 185, 186, 461
eigenvector, 186
elementary divisor basis, 169
elementary divisor form, 176
elementary divisor version, 177
elementary divisors, 155, 167, 168
elementary divisors and dimensions, 168
elementary matrix, 3
elementary symmetric functions, 189
embedding, 59, 117
endomorphism, 59, 117
epimorphism, 59, 117
equivalence class, 7
equivalence relation, 7
equivalent, 9, 69

essentially unique, 45
Euclidean metric, 302
Euclidean space, 206
evaluation at, 96, 100
evaluation functional, 474, 476
even permutation, 391
even weight subspace, 38
exponential polynomials, 502
exponential, 482
extension by, 103
extension, 6, 273
exterior algebra, 398
exterior product, 393
exterior product space, 395, 400
external direct sum, 40, 41, 119

factored through, 355, 357
factorization, 217
faithful, 457
Farkas's lemma, 423
field of quotients, 24
field, 19, 29
finite support, 41
finite, 1, 12, 18
finite-dimensional, 50, 451
finitely generated, 113
first isomorphism theorem, 92, 118, 469
flat representative, 427
flat, 427
form, 299, 382
forward difference functional, 477
forward difference operator, 479
Fourier coefficient, 219
Fourier expansion, 219, 338, 345
free, 116
Frobenius norm, 450, 466
functional calculus, 248
functional, 94

Gaussian coefficients, 57, 506
generating function, 482, 483
geometric multiplicity, 189
Geršgorin region, 203
Geršgorin row disk, 203
Geršgorin row region, 203
graded algebra, 392



518 Index

Gram-Schmidt augmentation, 213
Gram-Schmidt orthogonalization process, 214
greatest common divisor, 5
greatest lower bound, 11
group algebra, 453
group, 17

Hamel basis, 218
Hamming distance function, 321
Hermite polynomials, 224, 489
Hermitian, 238
Hilbert basis theorem, 136
Hilbert basis, 218, 335
Hilbert dimension, 347
Hilbert space adjoint, 230
Hilbert space, 315, 327
Hölder's inequality, 303
homogeneous, 392
homomorphism, 59, 117
Householder transformation, 244
hyperbolic basis, 273
hyperbolic extension, 274
hyperbolic pair, 272
hyperbolic plane, 272
hyperbolic space, 272
hyperplane, 416, 427

ideal generated by, 21, 455
ideal, 20, 455
idempotent, 74, 125
identity, 17
image, 6, 61
imaginary part, 54
indecomposable, 158
index of nilpotence, 200
induced, 305
inertia, 288
infinite, 13
infinite-dimensional, 50
injection, 6, 117
inner product, 205, 260
inner product space, 205, 260
integral domain, 23
invariant, 8, 73, 83, 165
invariant factor basis, 179
invariant factor decomposition, 157

invariant factor form, 178
invariant factor version, 179
invariant factors, 157, 167, 168
invariant factor decomposition theorem, 157
invariant ideals, 157
invariant under, 73
inverses, 17
invertible functional, 475
involution, 199
irreducible, 5, 26, 83
isometric isomorphism, 211, 326
isometric, 271, 316
isometrically isomorphic, 211, 326
isometry, 211, 271, 315, 326
isomorphic, 59, 62, 117
isotropic, 265

join, 40
Jordan basis, 191
Jordan block, 191
Jordan canonical form, 191

kernel, 61
Kronecker delta function, 96
Kronecker product, 408

Lagrange interpolation formula, 248
Laguerre polynomials, 490
largest, 10
lattice, 39, 40
leading coefficient, 5
leading entry, 3
least, 10
least squares solution, 448
least upper bound, 11
left inverse, 122, 470
left regular matrix representation, 457
left regular representation, 457
left singular vectors, 445
left zero divisor, 460
left-invertible, 470
Legendre polynomials, 215
length, 208
limit, 306
limit point, 306
line, 427, 429



Index 519

linear code, 38
linear combination, 36, 112
linear function, 382
linear functional, 59, 94
linear hyperplane, 416
linear least squares, 448
linear operator, 59
linear transformation, 59
linearity, 340
linearity in the first coordinate, 205
linearly dependent, 45, 114
linearly independent, 45, 114
linearly ordered set, 11
lower bound, 11
lower factorial numbers, 471
lower factorial polynomials, 488
lower triangular, 4

main diagonal, 2
matrix, 64
matrix of, 66
matrix of the form, 261
maximal element, 10
maximal ideal, 23
maximal orthonormal set, 218
maximum, 10
measuring family, 357
measuring functions, 357
mediating morphism map, 367
mediating morphism, 357, 362, 383
meet, 40
metric, 210, 301
metric space, 210, 301
metric vector space, 260
mimimum, 10
minimal element, 11
minimal polynomial, 165, 166, 459
Minkowski space, 260
Minkowski's inequality, 37, 303
mixed tensors, 386
modular law, 56
module, 109, 133, 167
modulo, 22, 87, 118
monic, 5
monomorphism, 59, 117
Moore-Penrose generalized inverse, 446

Moore-Penrose pseudoinverse, 446
MP inverse, 447
multilinear, 382
multilinear form, 382
multiplicity, 1
multiset, 1

natural map, 100
natural projection, 89
natural topology, 80, 82
negative, 17
net definition, 339
nilpotent, 198, 200
Noetherian, 133
nondegenerate, 266
nonderogatory, 171
nonisotropic, 265
nonnegative orthant, 225, 411
nonnegative, 225, 411
nonsingular, 266
nonsingular completion, 273
nonsingular extension theorem, 274
nontrivial, 36
norm, 208, 209, 303, 349
normal equations, 449
normal, 234
normalizing, 213
normed linear space, 209, 224
null, 265
nullity, 61

odd permutation, 391
one-sided inverses, 122, 470
one-to-one, 6
onto, 6
open ball, 304
open half-spaces, 417
open neighborhood, 304
open rectangles, 79
open sets, 305
operator adjoint, 104
operator characterization, 484
order, 18, 101, 139, 471
order ideals, 115
ordered basis, 51
order-reversing, 102
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orthogonal complement, 212, 265
orthogonal direct sum, 212, 269
orthogonal geometry, 260
orthogonal group, 271
orthogonal resolution of the identity, 232
orthogonal set, 212
orthogonal similarity classes, 242
orthogonal spectral resolution, 237
orthogonal transformation, 271
orthogonal, 75, 212, 231, 238, 265
orthogonality conditions, 480
orthogonally diagonalizable, 233
orthogonally equivalent, 242
orthogonally similar, 242
orthonormal basis, 218
orthonormal set, 212

parallel, 427
parallelogram law, 208, 325
parity, 391
Parseval's identity, 221, 346
partial order, 10
partially ordered set, 10
partition, 7
permutation, 391
Pincherle derivative, 503
plane, 427
point, 427
polar decomposition, 253
polarization identities, 209
posets, 10
positive definite, 205, 250, 301
positive square root, 251
power of the continuum, 16
power set, 13
primary, 147
primary cyclic decomposition theorem, 153, 168
primary decomposition theorem, 147
primary decomposition, 147, 168
prime subfield, 97
prime, 26
primitive, 465
principal ideal domain, 24
principal ideal, 24
product, 15
projection modulo, 89

projection theorem, 220, 334
projection, 73
projective dimension, 438
projective geometry, 438
projective line, 438
projective plane, 438
projective point, 438
proper subspace, 37
properly divides, 27
pseudobasis, 472
pure in, 161

q-binomial coefficients, 506
quadratic form, 239, 264
quaternions, 463
quotient algebra, 455
quotient field, 24
quotient module, 118
quotient ring, 22
quotient space, 87, 89

radical, 266
range, 6
rank, 53, 61, 129, 369
rank plus nullity theorem, 63
rational canonical form, 176–179
real operator, 59
real part, 54
real vector space, 36
real version, 53
recurrence formula, 501
reduce, 169
reduced row echelon form, 3, 4
reflection, 244, 292
reflexivity, 7, 10
relatively prime, 5, 27
representation, 457
resolution of the identity, 76
restriction, 6
retract, 122
retraction map, 122
Riesz map, 222
Riesz representation theorem, 222, 268, 351
Riesz vector, 222
right inverse, 122, 470
right singular vectors, 445
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right zero divisor, 460
right-invertible, 470
ring, 18
ring homomorphism, 19
ring with identity, 19
roots of unity, 464
rotation, 292
row equivalent, 4
row rank, 52
row space, 52

scalar multiplication, 31, 35, 451
scalars, 2, 35, 109
Schröder, 13
Schur's theorem, 192, 195
second isomorphism theorem, 93, 119
self-adjoint, 238
separable, 308
sesquilinear, 206
Sheffer for, 481
Sheffer identity, 486
Sheffer operator, 491, 498
Sheffer sequence, 481
Sheffer shift, 491
sign, 391
signature, 288
similar, 9, 70, 71
similarity classes, 70, 71
simple, 138, 455
simultaneously diagonalizable, 202
singular, 266
singular values, 444, 445
singular-value decomposition, 445
skew self-adjoint, 238
skew-Hermitian, 238
skew-symmetric, 2, 238, 259, 390
smallest, 10
span, 45, 112
spectral mapping theorem, 187, 461
spectral theorem for normal operators, 236, 237
spectral resolution, 197
spectrum, 186, 461
sphere, 304
split, 5
square summable, 207
square summable functions, 347

standard basis, 47, 62, 131
standard inner product, 206
standard topology, 79
standard vector, 47
Stirling numbers of the second kind, 502
strictly diagonally dominant, 203
strictly positive orthant, 411
strictly positive, 225, 411
strictly separated, 417
strongly positive orthant, 225, 411
strongly positive, 56, 225, 411
strongly separated, 417
structure constants, 453
structure theorem for normal matrices, 247
structure theorem for normal operators, 245
subalgebra, 454
subfield, 57
subgroup, 18
submatrix, 2
submodule, 111
subring, 19
subspace spanned, 44
subspace, 37, 260, 304
sup metric, 302
support, 6, 41
surjection, 6
surjective, 6
Sylvester's law of inertia, 287
symmetric, 2, 238, 259, 390, 395
symmetric group, 391
symmetric tensor algebra, 398
symmetric tensor space, 395, 400
symmetrization map, 402
symplectic basis, 273
symplectic geometry, 260
symplectic group, 271
symplectic transformation, 271
symplectic transvection, 280

tensor algebra, 390
tensor map, 362, 383
tensor product, 362, 383, 408
tensors of type, 386
tensors, 362
theorem of the alternative, 413
third isomorphism theorem, 94, 119
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top, 10
topological space, 305
topological vector space, 79
topology, 305
torsion element, 115
torsion module, 115
torsion-free, 115
total subset, 336
totally degenerate, 266
totally isotropic, 265
totally ordered set, 11
totally singular, 266
trace, 188
transfer formulas, 504
transitivity, 7, 10
translate, 427
translation operator, 479
translation, 436
transpose, 2
transposition, 391
triangle inequality, 208, 210, 301, 325
trivial, 36
two-affine closed, 428
two-sided inverse, 122, 470

umbral algebra, 474
umbral composition, 497
umbral operator, 491
umbral shift, 491
uncountable, 13
underlying set, 1
unipotent, 300
unique factorization domain, 28
unit vector, 208
unit, 26
unital algebras, 451
unitarily diagonalizable, 233
unitarily equivalent, 242
unitarily similar, 242
unitarily upper triangularizable, 196
unitary, 238
unitary metric, 302
unitary similarity classes, 242
unitary space, 206
universal, 289
universal for bilinearity, 362

universal for multilinearity, 382
universal pair, 357
universal property, 357
upper bound, 11
upper triangular, 4
upper triangularizable, 192

Vandermonde convolution formula, 489
Vector Space, 167
vector space, 35
vectors, 35

Wedderburn's Theorem, 465, 466
wedge product, 393
weight, 38
well ordering, 12
Well-ordering principle, 12
with respect to the bases, 66
Witt index, 296
Witt's cancellation theorem, 279, 294
Witt's extension theorem, 279, 295

zero divisor, 23
zero element, 17
zero subspace, 37
Zorn's lemma, 12
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