$$
\begin{aligned}
& \text { NP-Completeness } \\
& \text { Sadoon Azizi } \\
& \text { s.azizi@uok.ac.ir }
\end{aligned}
$$

Department of Computer Engineering and IT

Spring 2019

Classification of the Problems

\square Unsolvable: There is no algorithm to solve them (Halting Problem)
\square Intractable: As they grow large, we are unable to solve them in reasonable time (Hamiltonian Cycle)
\square Tractable: We are able to solve them in reasonable time (Sorting)
Q: What constitutes reasonable time?
A: Standard working definition: polynomial time

- On an input of size n, the worst-case running time is $\mathrm{O}\left(n^{k}\right)$ for some constant k
- Polynomial time: $\mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}\left(\mathrm{n}^{3}\right), \mathrm{O}(1), \mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Not in polynomial time: $\mathrm{O}\left(2^{n}\right), \mathrm{O}\left(n^{\mathrm{n}}\right), \mathrm{O}(n!)$

P vs. NP

\square P: The class of problems, for which a Polynomial-time algorithm exists.

- Ex: fractional knapsack, finding maximum subarray, rod cutting, etc.
\square NP: The class of problems for which a solution can be verified in polynomial time
- Ex: Hamiltonian cycle, graph coloring, 3SAT, etc.

Decision vs. Optimization

\square Decision problem: a decision problem is a problem that can be posed as a yes-no question of the input values.
\square Optimization problem: optimization problems are concerned with finding the best answer to a particular input.

Decision vs. Optimization

Example (Knapsack Problem)

Suppose that we have n objects, say $o_{i}(i=1,2, \cdots, n)$, each with corresponding weight (w_{i}) and profit (p_{i}), and a weight bound b.

- Optimization: Find an $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ that maximize $\sum_{i=1}^{n} x_{i} p_{i}$ with respect to $\sum_{i=1}^{n} x_{i} w_{i} \leq b$.
- Decision: For a given k, is there a feasible solution, say $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, where $\sum_{i=1}^{n} x_{i} p_{i} \geq k$?

Decision vs. Optimization

Example (Max-Clique Problem)

Suppose that a graph $G=(V, E)$ is given.

- Optimization: Find a maximal subset $V^{\prime} \subseteq V$, such that the induced graph by V^{\prime} is complete graph (The clique is a complete subgraph).
- Decision: For a given k, is there a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \geq k$, such that the induced graph by V^{\prime} is complete graph (a clique of size at least $k)$?

Decision vs. Optimization

Decision vs. Optimization

Example (Min-Vertex Cover Problem)

Suppose that a graph $G=(V, E)$ is given.

- Optimization: Find a minimal subset $V^{\prime} \subseteq V$, such that for each $e=\left(v_{1}, v_{2}\right) \in E$, either $v_{1} \in V^{\prime}$ or $v_{2} \in V^{\prime}\left(V^{\prime}\right.$ covers the $\left.E\right)$.
- Decision: For a given k, is there a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq k$, such that V^{\prime} covers the E ?

Decision vs. Optimization

The principle of Reduction

Definition

Suppose that A and B are two decision problems. We say that A is reduced to B (denoted by $A \preccurlyeq P B$), if there exists a polynomial algorithm, say f, such that:

- $x \in \operatorname{Instance}(A) \Longrightarrow f(x) \in \operatorname{Instance}(B)$.
- x is a yes-instance of $A \Longleftrightarrow f(x)$ is a yes-instance of B.

Application of reduction
The reduction defines an order over the decision problems with respect to their level of difficulties.

- If B is easy to solve, then A is also easy.
- Conversely, If A is hard to solve, then B is also hard.

The theory of NP-Completness

Definition

A problem L is called $N P-$ Hard if all $N P$ problems are reduced to L, i.e.

$$
L \in N P-\text { Hard } \Longleftrightarrow \forall L^{\prime} \in N P: L^{\prime} \preccurlyeq P L .
$$

Definition

A problem L is called $N P$-Complete if all $N P$ problems are reduced to L and $L \in N P$, i.e.
$L \in N P$ - Complete $\Longleftrightarrow L \in N P \cap N P$ - Hard.

The theory of NP-Completness

The theory of NP-Completness

- NP-Complete problems are the "hardest" problems in NP:
- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ... and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
- Thus: solve Hamiltonian-cycle in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich $\&$ famous.

Travelling Salesman Problem (TSP)

\square The travelling salesman problem (TSP) asks the following question:

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
\square A very important question:
\square Which complexity class does the TSP belong to? (NP-complete or NP-hard?)

