

NP-Completeness

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Classification of the Problems

- **Unsolvable:** There is no algorithm to solve them (Halting Problem)
- □ **Intractable:** As they grow large, we are unable to solve them in reasonable time (Hamiltonian Cycle)
- **Tractable:** We are able to solve them in reasonable time (Sorting)
- **Q:** What constitutes reasonable time?
- A: Standard working definition: *polynomial time*
 - On an input of size *n*, the worst-case running time is $O(n^k)$ for some constant *k*
 - Polynomial time: O(n²), O(n³), O(1), O(n lg n)
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

P vs. NP

- **P:** The class of problems, for which a Polynomial-time algorithm exists.
 - Ex: fractional knapsack, finding maximum subarray, rod cutting, etc.
- **NP:** The class of problems for which a solution can be *verified* in polynomial time
 - Ex: Hamiltonian cycle, graph coloring, 3SAT, etc.

- Decision problem: a decision problem is a problem that can be posed as a yes-no question of the input values.
- Optimization problem: optimization problems are concerned with finding the best answer to a particular input.

Example (Knapsack Problem)

Suppose that we have *n* objects, say o_i ($i = 1, 2, \dots, n$), each with corresponding weight (w_i) and profit (p_i), and a weight bound *b*.

- Optimization: Find an X = (x₁, x₂, · · · , x_n) that maximize ∑ⁿ_{i=1} x_ip_i with respect to ∑ⁿ_{i=1} x_i w_i ≤ b.
- Decision: For a given k, is there a feasible solution, say $X = (x_1, x_2, \dots, x_n)$, where $\sum_{i=1}^n x_i p_i \ge k$?

Example (Max-Clique Problem)

Suppose that a graph G = (V, E) is given.

- Optimization: Find a maximal subset V' ⊆ V, such that the induced graph by V' is complete graph (The clique is a complete subgraph).
- Decision: For a given k, is there a subset V' ⊆ V with |V'| ≥ k, such that the induced graph by V' is complete graph (a clique of size at least k)?

Example (Min-Vertex Cover Problem)

Suppose that a graph G = (V, E) is given.

- Optimization: Find a minimal subset V' ⊆ V, such that for each e = (v₁, v₂) ∈ E, either v₁ ∈ V' or v₂ ∈ V' (V' covers the E).
- Decision: For a given k, is there a subset V' ⊆ V with |V'| ≤ k, such that V' covers the E?

The principle of Reduction

Definition

Suppose that A and B are two decision problems. We say that A is reduced to B (denoted by $A \preccurlyeq_P B$), if there exists a polynomial algorithm, say f, such that:

- $x \in Instance(A) \Longrightarrow f(x) \in Instance(B)$.
- x is a yes-instance of $A \iff f(x)$ is a yes-instance of B.

Application of reduction

The reduction defines an order over the decision problems with respect to their level of difficulties.

- If B is easy to solve, then A is also easy.
- Conversely, If A is hard to solve, then B is also hard.

The theory of NP-Completness

Definition

A problem *L* is called *NP*-Hard if all *NP* problems are reduced to *L*, i.e.

$$L \in NP - Hard \iff \forall L' \in NP : L' \preccurlyeq_P L.$$

Definition

A problem L is called NP–Complete if all NP problems are reduced to L and $L \in NP$, i.e.

 $L \in NP - Complete \iff L \in NP \cap NP - Hard.$

The theory of NP-Completness

The theory of NP-Completness

□ NP-Complete problems are the "hardest" problems in NP:

- If any one NP-Complete problem can be solved in polynomial time...
- ...then *every* NP-Complete problem can be solved in polynomial time...
- ...and in fact *every* problem in NP can be solved in polynomial time (which would show P = NP)
- Thus: solve Hamiltonian-cycle in $O(n^{100})$ time, you've proved that P = NP. Retire rich & famous.

Travelling Salesman Problem (TSP)

- □ The **travelling salesman problem** (**TSP**) asks the following question:
- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
- A very important question:
- Which complexity class does the TSP belong to? (NP-complete or NP-hard?)