Dynamic Programming

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

\square Divide and Conquer
\square Dynamic Programming
\square Greedy Algorithms
\square Backtracking Algorithms
\square Branch and Bound Algorithms

The main idea of dynamic programming

\square Dynamic Programming (DP), like the Divide-and-Conquer (D\&C) method, solves problems by combining the solutions to subproblems.
\square Since there are a lot of common subproblems, therefore by using divide and conquer approach we have to solve all of them and this cause the exponential time complexity.
\square Instead, we can solve each subproblem exactly once and save its answer for the future usage.
\square We typically apply dynamic programming to optimization problems.

Fibonacci Sequence (D\&C)

$$
f(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f(n-1)+f(n-2) & \text { if } n \geq 2\end{cases}
$$

The time complexity of this approach is exponential !

Fibonacci Sequence (DP)

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 |

```
Fibo(n) \{
int A[0..n], i;
\(\mathrm{A}[0]=0\);
\(\mathrm{A}[1]=1\);
for ( \(\mathrm{i}=2 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++\) )
    \(\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}-1]+\mathrm{A}[\mathrm{i}-2]\);
```

return $\mathrm{A}[\mathrm{n}]$;
\}

Time complexity: O(n) Space complexity: O(n)
Q: Can we reduce Space complexity?

Choosing k objects among n objects (D\&C)

$$
\binom{n}{k}= \begin{cases}0 & \text { if } n<k \\ 1 & \text { if } k=0 \text { or } k=n \\ \binom{n-1}{k}+\binom{n-1}{k-1} & \text { otherwise }\end{cases}
$$

Choosing k objects among n objects (DP)

$$
B[i][j]= \begin{cases}0 & \text { if } j<i \\ 1 & \text { if } j=0 \text { or } j=i \\ B[i-1][j]+B[i-1][j-1] & 0<\mathrm{j}<\mathrm{i}\end{cases}
$$

	0	1	2	3	4
0	1	0	0	0	0
1	1	1	0	0	0
2	1	2	1	0	0
3	1	3	3	1	0
4	1	4	6	4	1
5	1	5	10	10	5
6	1	6	15	20	15
7	1	7	21	35	35
8	1	8	28	56	70

Choosing k objects among n objects (DP)

$$
B[i][j]= \begin{cases}0 & \text { if } j<i \\ 1 & \text { if } j=0 \text { or } j=i \\ B[i-1][j]+B[i-1][j-1] & 0<\mathrm{j}<\mathrm{i}\end{cases}
$$

Choose(k,n) \{
int i,j,B[0..n][0..k];
for $(\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)

$$
\text { for }(\mathrm{j}=0 ; \mathrm{j}<=\min (\mathrm{i}, \mathrm{k}) ; \mathrm{j}++)
$$

$$
\text { if }(j==0 \| j==i)
$$

$$
\mathrm{B}[\mathrm{i}][\mathrm{j}]=1 ;
$$

else

$$
\mathrm{B}[\mathrm{i}][\mathrm{j}]=\mathrm{B}[\mathrm{i}-1][\mathrm{j}]+\mathrm{B}[\mathrm{i}-1][\mathrm{j}-1] ;
$$

return $\mathrm{B}[\mathrm{n}][\mathrm{k}] ;$ \}

Time complexity: O(nk) Space complexity: $\mathrm{O}(\mathrm{nk})$

Q: Can we reduce Space complexity?

The rod-cutting problem

\square The rod-cutting problem is the following:
\square Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$.
\square Determine the maximum revenue r_{n} obtainable by cutting up the rod and selling the pieces.

The rod-cutting problem

\square Example:

length of piece i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
price p_{i}	1	5	8	9	10	17	17	20	24	30

$0^{1} 00^{1} 0^{5}$
(e)
(f)

(b)
(c)

(g)

(d)

(h)

The rod-cutting problem

\square Q: How many ways are there to cut up a rod of length n ?
$\square \mathbf{A}: 2^{\mathrm{n}-1}$ (why?)

The rod-cutting problem

\square Provide a recursive relationship to the problem

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

\square Set $r_{0}=0$
\square Cut a piece of length i, with remainder of length $n-i$
\square Only the remainder may be further divided

The rod-cutting problem

\square Example ($\mathrm{n}=4$):

The rod-cutting problem

\square After solving a subproblem, store the solution

- Next time you encounter same subproblem, lookup the solution, instead of solving it again
- Uses space to save time
\square Two main methodologies: top-down and bottom-up
- Corresponding algorithms have the same asymptotic cost, but bottom-up is usually faster in practice
\square Main idea of bottom-up
- Don't wait until subproblem is encountered.
- Sort the subproblems by size; solve smallest subproblems first
- Combine solutions of small subproblems to solve larger ones

The rod-cutting problem (top-down)

Memoized-Cut-Rod (p, n)
1 let $r[0 \ldots n]$ be a new array
2 for $i=0$ to n
$r[i]=-\infty$
4 return Memoized-Cut-Rod-Aux (p, n, r)
$\operatorname{Memoized}-C u t-R o d-A U X(p, n, r)$
1 if $r[n] \geq 0$
2 return $r[n]$
if $n==0$
$q=0$
else $q=-\infty$
$6 \quad$ for $i=1$ to n
$7 \quad q=\max (q, p[i]+\operatorname{MEMOIZED}-\operatorname{CuT}-\operatorname{RoD}-\operatorname{Aux}(p, n-i, r))$
$8 \quad r[n]=q$
9 return q

The rod-cutting problem (bottom-up)

```
Bottom-Up-Cut-Rod \((p, n)\)
1 let \(r[0 \ldots n]\) be a new array
\(2 r[0]=0\)
3 for \(j=1\) to \(n\)
\(4 \quad q=-\infty\)
\(5 \quad\) for \(i=1\) to \(j\)
6
\(7 \quad r[j]=q\)
8 return \(r[n]\)
```


مسئله برش مياه

\square The time complexity of MEMOIZED-CUT-ROD (top-down)

$$
\theta\left(n^{2}\right)
$$

\square The time complexity of BOTTOM-UP-CUT-ROD

$$
\theta\left(n^{2}\right)
$$

The rod-cutting problem (Reconstructing a solution)

```
Extended-Bottom-Up-Cut-Rod ( \(p, n\) )
    1 let \(r[0 \ldots n]\) and \(s[0 \ldots n]\) be new arrays
    \(r[0]=0\)
    3 for \(j=1\) to \(n\)
    \(4 \quad q=-\infty\)
        for \(i=1\) to \(j\)
            if \(q<p[i]+r[j-i]\)
                            \(q=p[i]+r[j-i]\)
                        \(s[j]=i\)
        \(r[j]=q\)
    return \(r\) and \(s\)
\begin{tabular}{c|ccccccccccc}
\(i\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(r[i]\) & 0 & 1 & 5 & 8 & 10 & 13 & 17 & 18 & 22 & 25 & 30 \\
\(s[i]\) & 0 & 1 & 2 & 3 & 2 & 2 & 6 & 1 & 2 & 3 & 10
\end{tabular}
* for \(\mathrm{n}=10\), would print just 10
    * for \(\mathrm{n}=7\), would print 1 and 6
```

Print-Cut-Rod-Solution (p, n)
$1(r, s)=$ Extended-Bottom-Up-Cut-Rod (p, n)
2 while $n>0$
3 print $s[n]$
$4 \quad n=n-s[n]$

