
Dynamic Programming

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

 Divide and Conquer

 Dynamic Programming

 Greedy Algorithms

 Backtracking Algorithms

 Branch and Bound Algorithms

2

The main idea of dynamic programming

 Dynamic Programming (DP), like the Divide-and-Conquer

(D&C) method, solves problems by combining the solutions to

subproblems.

 Since there are a lot of common subproblems, therefore by

using divide and conquer approach we have to solve all of

them and this cause the exponential time complexity.

 Instead, we can solve each subproblem exactly once and save

its answer for the future usage.

 We typically apply dynamic programming to optimization

problems.

3

Fibonacci Sequence (D&C)

𝑓 𝑛 = ൞

0 𝑖𝑓 𝑛 = 0
1 𝑖𝑓 𝑛 = 1

𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 𝑖𝑓 𝑛 ≥ 2

4

The time complexity of this
approach is exponential !

Fibonacci Sequence (DP)

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Fibo(n) {

int A[0..n], i;

A[0]=0;

A[1]=1;

for (i=2; i<=n; i++)

A[i]=A[i-1]+A[i-2];

return A[n];

}

Time complexity: O(n)
Space complexity: O(n)

Q: Can we reduce Space
complexity?

Choosing k objects among n objects (D&C)

𝑛
𝑘

=

0 if 𝑛 < 𝑘
1 if 𝑘 = 0 or 𝑘 = 𝑛
𝑛 − 1
𝑘

+
𝑛 − 1
𝑘 − 1

otherwise

6

Choosing k objects among n objects (DP)

7

𝐵 𝑖 [𝑗] = ൞

0 if 𝑗 < 𝑖
1 if 𝑗 = 0 or 𝑗 = 𝑖

𝐵 𝑖 − 1 [𝑗] + 𝐵[𝑖 − 1][𝑗 − 1] 0 < j < i

j

0 1 2 3 4

0 1 0 0 0 0

1 1 1 0 0 0

2 1 2 1 0 0

3 1 3 3 1 0

i 4 1 4 6 4 1

5 1 5 10 10 5

6 1 6 15 20 15

7 1 7 21 35 35

8 1 8 28 56 70

Choosing k objects among n objects (DP)

8

𝐵 𝑖 [𝑗] = ൞

0 if 𝑗 < 𝑖
1 if 𝑗 = 0 or 𝑗 = 𝑖

𝐵 𝑖 − 1 [𝑗] + 𝐵[𝑖 − 1][𝑗 − 1] 0 < j < i

Choose(k,n) {

int i,j,B[0..n][0..k];

for(i=0; i<=n; i++)

for(j=0; j<=min(i,k); j++)

if(j==0 || j==i)

B[i][j]=1;

else

B[i][j]=B[i-1][j]+B[i-1][j-1];

return B[n][k]; }

Time complexity: O(nk)
Space complexity: O(nk)

Q: Can we reduce Space
complexity?

The rod-cutting problem

 The rod-cutting problem is the following:

 Given a rod of length n inches and a table of prices pi for

i=1,2, …, n .

 Determine the maximum revenue rn obtainable by cutting up

the rod and selling the pieces.

9

The rod-cutting problem

 Example:

10

length of piece i 1 2 3 4 5 6 7 8 9 10

price 𝒑𝒊 1 5 8 9 10 17 17 20 24 30

The rod-cutting problem

 Q: How many ways are there to cut up a rod of length n?

 A: 2n-1 (why?)

11

The rod-cutting problem

 Provide a recursive relationship to the problem

𝑟𝑛 = max
1≤𝑖≤𝑛

(𝑝𝑖 + 𝑟𝑛−𝑖)

 Set r0 = 0

 Cut a piece of length i , with remainder of length n-i

 Only the remainder may be further divided

12

The rod-cutting problem

 Example (n=4):

13

The rod-cutting problem

 After solving a subproblem, store the solution

 Next time you encounter same subproblem, lookup the solution, instead of
solving it again

 Uses space to save time

 Two main methodologies: top-down and bottom-up

 Corresponding algorithms have the same asymptotic cost, but bottom-up is
usually faster in practice

 Main idea of bottom-up

 Don't wait until subproblem is encountered.

 Sort the subproblems by size; solve smallest subproblems first

 Combine solutions of small subproblems to solve larger ones

14

The rod-cutting problem (top-down)

 bottom-up

15

The rod-cutting problem (bottom-up)

16

مسئله برش میله

 The time complexity of MEMOIZED-CUT-ROD (top-down)

𝜃(𝑛2)

 The time complexity of BOTTOM-UP-CUT-ROD

𝜃(𝑛2)

17

The rod-cutting problem (Reconstructing a solution)

* for n=10, would print just 10

* for n=7, would print 1 and 6

18

