

Dynamic Programming

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

- Divide and Conquer
- **Dynamic Programming**
- Greedy Algorithms
- Backtracking Algorithms
- Branch and Bound Algorithms

The main idea of dynamic programming

- Dynamic Programming (DP), like the Divide-and-Conquer (D&C) method, solves problems by combining the solutions to subproblems.
- ❑ Since there are a lot of common subproblems, therefore by using divide and conquer approach we have to solve all of them and this cause the exponential time complexity.
- □ Instead, we can solve each subproblem **exactly once** and **save** its answer for the future usage.
- We typically apply dynamic programming to **optimization problems**.

Fibonacci Sequence (D&C)

$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ f(n-1) + f(n-2) & \text{if } n \ge 2 \end{cases}$$

The time complexity of this approach is **exponential** !

Fibonacci Sequence (DP)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610

```
Fibo(n) {

int A[0..n], i;

A[0]=0;

A[1]=1;

for (i=2; i<=n; i++)

A[i]=A[i-1]+A[i-2];

return A[n];
```

Time complexity: O(n) Space complexity: O(n)

Q: Can we reduce Space complexity?

Choosing k objects among n objects (D&C)

$$\binom{n}{k} = \begin{cases} 0\\1\\\binom{n-1}{k} + \binom{n-1}{k-1} \end{cases}$$

if n < kif k = 0 or k = notherwise

Choosing k objects among n objects (DP)

$B[i][j] = \begin{cases} 0 & \text{if } j < i \\ 1 & \text{if } j = 0 \text{ or } j = \\ B[i-1][j] + B[i-1][j-1] & 0 < j < i \end{cases}$										
		0	1	2	3	4				
	0	1	0	0	0	0				
	1	1	1	0	0	0				
	2	1	2	1	0	0				
	3	1	3	3	1	0				
i	4	1	4	6	4	1				
	5	1	5	10	10	5				
	6	1	6	15	20	15				
	7	1	7	21	35	35				
	8	1	8	28	56	70				

7

Choosing k objects among n objects (DP)

```
if j < i
             B[i][j] = \begin{cases} 0 & \text{if } j < 0 \\ 1 & \text{if } j = 0 \text{ or } j = i \\ B[i-1][j] + B[i-1][j-1] & 0 < j < i \end{cases}
Choose(k,n) {
                                                   Time complexity: O(nk)
  int i,j,B[0..n][0..k];
                                                   Space complexity: O(nk)
  for(i=0; i<=n; i++)
    for(j=0; j <= min(i,k); j++)
                                                    Q: Can we reduce Space
      if(j==0 || j==i)
                                                   complexity?
        B[i][j]=1;
      else
        B[i][j]=B[i-1][j]+B[i-1][j-1];
  return B[n][k]; }
```

- □ The *rod-cutting problem* is the following:
- Given a rod of length *n* inches and a table of prices p_i for i=1,2, ..., n.
- Determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Example:

length of piece <i>i</i>	1	2	3	4	5	6	7	8	9	10
price <i>p_i</i>	1	5	8	9	10	17	17	20	24	30

Q: How many ways are there to cut up a rod of length n?

A: 2^{n-1} (why?)

Provide a recursive relationship to the problem

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

- $\Box \quad \text{Set } r_0 = 0$
- **Cut** a piece of length i, with remainder of length n-i
- Only the remainder may be further divided

□ Example (n=4):

- After solving a subproblem, store the solution
 - Next time you encounter same subproblem, lookup the solution, instead of solving it again
 - Uses space to save time
- Two main methodologies: top-down and bottom-up
 - Corresponding algorithms have the same asymptotic cost, but bottom-up is usually faster in practice
- Main idea of bottom-up
 - Don't wait until subproblem is encountered.
 - Sort the subproblems by size; solve smallest subproblems first
 - Combine solutions of small subproblems to solve larger ones

The rod-cutting problem (top-down)

MEMOIZED-CUT-ROD(p, n)

- 1 let r[0...n] be a new array
- 2 **for** i = 0 **to** n

3
$$r[i] = -\infty$$

4 **return** MEMOIZED-CUT-ROD-AUX(p, n, r)

MEMOIZED-CUT-ROD-AUX(p, n, r)

```
if r[n] \geq 0
3.021
   return r[n]
2
3 if n == 0
   q = 0
4
5
  else q = -\infty
6
       for i = 1 to n
            q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
7
   r[n] = q
8
   return q
9
```

The rod-cutting problem (bottom-up)

BOTTOM-UP-CUT-ROD(p, n)let r[0...n] be a new array 1 r[0] = 02 3 for j = 1 to n4 $q = -\infty$ 5 for i = 1 to j6 $q = \max(q, p[i] + r[j - i])$ 7 r[i] = q8 return r[n]

□ The time complexity of MEMOIZED-CUT-ROD (top-down) $\theta(n^2)$

□ The time complexity of BOTTOM-UP-CUT-ROD $\theta(n^2)$

The rod-cutting problem (Reconstructing a solution)

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

- 1 let $r[0 \dots n]$ and $s[0 \dots n]$ be new arrays 2 r[0] = 0
- 3 **for** j = 1 **to** n
- $\begin{array}{ll}
 4 & q = -\infty \\
 5 & \text{for } i = 1 \text{ to } j \\
 6 & \text{if } q < p[i] + r[j i] \\
 7 & q = p[i] + r[j i] \\
 8 & s[j] = i \\
 9 & r[j] = q \\
 \end{array}$
- 10 **return** r and s

i	0	1	2	3	4	5	6	7	8	9	10
$\overline{r[i]}$	0	1	5	8	10	13	17	18	22	25	30
$\frac{r[i]}{s[i]}$	0	1	2	3	2	2	6	1	2	3	10

* for n=10, would print just 10

* for n=7, would print 1 and 6

PRINT-CUT-ROD-SOLUTION(p, n)

- 1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p,n)
- 2 while n > 0
- 3 print s[n]
- $4 \qquad n = n s[n]$