
Dynamic Programming

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

 Divide and Conquer

 Dynamic Programming

 Greedy Algorithms

 Backtracking Algorithms

 Branch and Bound Algorithms

2

The main idea of dynamic programming

 Dynamic Programming (DP), like the Divide-and-Conquer

(D&C) method, solves problems by combining the solutions to

subproblems.

 Since there are a lot of common subproblems, therefore by

using divide and conquer approach we have to solve all of

them and this cause the exponential time complexity.

 Instead, we can solve each subproblem exactly once and save

its answer for the future usage.

 We typically apply dynamic programming to optimization

problems.

3

Fibonacci Sequence (D&C)

𝑓 𝑛 = ൞

0 𝑖𝑓 𝑛 = 0
1 𝑖𝑓 𝑛 = 1

𝑓 𝑛 − 1 + 𝑓 𝑛 − 2 𝑖𝑓 𝑛 ≥ 2

4

The time complexity of this
approach is exponential !

Fibonacci Sequence (DP)

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Fibo(n) {

int A[0..n], i;

A[0]=0;

A[1]=1;

for (i=2; i<=n; i++)

A[i]=A[i-1]+A[i-2];

return A[n];

}

Time complexity: O(n)
Space complexity: O(n)

Q: Can we reduce Space
complexity?

Choosing k objects among n objects (D&C)

𝑛
𝑘

=

0 if 𝑛 < 𝑘
1 if 𝑘 = 0 or 𝑘 = 𝑛
𝑛 − 1
𝑘

+
𝑛 − 1
𝑘 − 1

otherwise

6

Choosing k objects among n objects (DP)

7

𝐵 𝑖 [𝑗] = ൞

0 if 𝑗 < 𝑖
1 if 𝑗 = 0 or 𝑗 = 𝑖

𝐵 𝑖 − 1 [𝑗] + 𝐵[𝑖 − 1][𝑗 − 1] 0 < j < i

j

0 1 2 3 4

0 1 0 0 0 0

1 1 1 0 0 0

2 1 2 1 0 0

3 1 3 3 1 0

i 4 1 4 6 4 1

5 1 5 10 10 5

6 1 6 15 20 15

7 1 7 21 35 35

8 1 8 28 56 70

Choosing k objects among n objects (DP)

8

𝐵 𝑖 [𝑗] = ൞

0 if 𝑗 < 𝑖
1 if 𝑗 = 0 or 𝑗 = 𝑖

𝐵 𝑖 − 1 [𝑗] + 𝐵[𝑖 − 1][𝑗 − 1] 0 < j < i

Choose(k,n) {

int i,j,B[0..n][0..k];

for(i=0; i<=n; i++)

for(j=0; j<=min(i,k); j++)

if(j==0 || j==i)

B[i][j]=1;

else

B[i][j]=B[i-1][j]+B[i-1][j-1];

return B[n][k]; }

Time complexity: O(nk)
Space complexity: O(nk)

Q: Can we reduce Space
complexity?

The rod-cutting problem

 The rod-cutting problem is the following:

 Given a rod of length n inches and a table of prices pi for

i=1,2, …, n .

 Determine the maximum revenue rn obtainable by cutting up

the rod and selling the pieces.

9

The rod-cutting problem

 Example:

10

length of piece i 1 2 3 4 5 6 7 8 9 10

price 𝒑𝒊 1 5 8 9 10 17 17 20 24 30

The rod-cutting problem

 Q: How many ways are there to cut up a rod of length n?

 A: 2n-1 (why?)

11

The rod-cutting problem

 Provide a recursive relationship to the problem

𝑟𝑛 = max
1≤𝑖≤𝑛

(𝑝𝑖 + 𝑟𝑛−𝑖)

 Set r0 = 0

 Cut a piece of length i , with remainder of length n-i

 Only the remainder may be further divided

12

The rod-cutting problem

 Example (n=4):

13

The rod-cutting problem

 After solving a subproblem, store the solution

 Next time you encounter same subproblem, lookup the solution, instead of
solving it again

 Uses space to save time

 Two main methodologies: top-down and bottom-up

 Corresponding algorithms have the same asymptotic cost, but bottom-up is
usually faster in practice

 Main idea of bottom-up

 Don't wait until subproblem is encountered.

 Sort the subproblems by size; solve smallest subproblems first

 Combine solutions of small subproblems to solve larger ones

14

The rod-cutting problem (top-down)

 bottom-up

15

The rod-cutting problem (bottom-up)

16

مسئله برش میله

 The time complexity of MEMOIZED-CUT-ROD (top-down)

𝜃(𝑛2)

 The time complexity of BOTTOM-UP-CUT-ROD

𝜃(𝑛2)

17

The rod-cutting problem (Reconstructing a solution)

* for n=10, would print just 10

* for n=7, would print 1 and 6

18

