OLlewd,s o 5Ll 0?)0

Dynamic Programming

Sadoon Azizi

s.azizi(@uok.ac.ir
Department of Computer Engineering and IT

Spring 2019

~ Technigues for the design of Algorithms J

3 Divide and Conquer

2 Dynamic Programming
a Greedy Algorithms

a Backtracking Algorithms

d Branch and Bound Algorithms

he main idea of dynamic programming

=

Dynamic Programming (DP), like the Divide-and-Conquer
(D&C) method, solves problems by combining the solutions to
subproblems.

Since there are a lot of common subproblems, therefore by
using divide and conquer approach we have to solve all of
them and this cause the exponential time complexity.

Instead, we can solve each subproblem exactly once and save
Its answer for the future usage.

We typically apply dynamic programming to optimization
problems.

Fibonacci Sequence (D&C)

f(n) =+

0 ifn=0
1 ifn=1

“*The time complexity of this
approach is exponential !

Kf(n—1)+f(n—2) ifn=2

/ e //

Fibonacci Sequence (DP)

0 1 1 2 3 5 8 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610

Fibo(n) { Time complexity: O(n)

int A[0..n], i; Space complexity: O(n)

A[0]=0;

A[1]=1; Q: Can we reduce Space

for (i=2; i<=n; i++) complexity?
A[i]=A[i-1]+A[i-2];

return A[n];

¥

~Choosing k objects among n objects (D&C)|

(0 ifn <k
(n)=< 1 ifk=0o0rk=n
k L(n ; 1) L (Tkl - D otherwise

LI [_J[iJ [_][_J

ﬁsing k objects among n objects (DP)|

0 ~NOO Ul WNPFP O

{ ifj <i
ifj=0o0rj=1
Bli—1[j]+Bli—1][i—1] 0<j<i
J

0 1 2 3 4
1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1
1 3) 10 10 3)
1 6 15 20 15
1 7 21 35 35
1 8 28 56 70

Choosing k objects among n objects (DP)
{0 ifj < i
Bli][j]=1 1 ifj=0o0rj=i
Bli —1][j]+B[i—-1][j—-1] 0<j<i

Choose(k,n) {
int i,j,B[0..n][0..k];
for(i=0; i<=n; i++)
for(j=0; j<=min(i,k); j++)

Time complexity: O(nk)
Space complexity: O(nk)

Q: Can we reduce Space
if(j==0 || j==i) complexity?
Bli]0]=1;
else
Bli]0]=B[I-1]b]+Bl-1]0-1];
return B[n][K]; }

The rod-cutting problem |

The rod-cutting problem is the following:

Given a rod of length n inches and a table of prices p; for
=12,...,n.

Determine the maximum revenue r, obtainable by cutting up
the rod and selling the pieces.

The rod-cutting problem ‘

- Example:

-----ﬂ-ﬂﬂ
9 10 17 17 20 24 30

9 1 8 5 5 8 1
Q))) 0O) Q)0) Q110

(a) (b) (©) (d

ODOID QDO OO0 DOOO

(©) ® 64 (h)

10

/

The rod-cutting problem |

- Q: How many ways are there to cut up a rod of length n?

2 A: 2™ (why?)

= T rod-cutting problem |

Provide a recursive relationship to the problem

T, = max (pi + 1n=i)

Setry=0
Cut a piece of length i, with remainder of length n-i

Only the remainder may be further divided

The rod-cutting problem

2 Example (n=4):

The rod-cutting problem

After solving a subproblem, store the solution

= Next time you encounter same subproblem, lookup the solution, instead of
solving it again

= Uses space to save time

Two main methodologies: top-down and bottom-up

= Corresponding algorithms have the same asymptotic cost, but bottom-up is
usually faster in practice

Main idea of bottom-up

= Don't wait until subproblem is encountered.

= Sort the subproblems by size; solve smallest subproblems first
= Combine solutions of small subproblems to solve larger ones

14

\/’

4& rod-cutting problem (top-down) |

MEMOIZED-CUT-ROD (p, 1)

1 letr[0..n]be anew array

2 fori =0ton

3 rli] = —o0

4 return MEMOIZED-CUT-ROD-AUX (p,n, 1)

MEMOIZED-CUT-ROD-AUX (p, 7, 1)
if [n] > 0

return 7 [#]
if n==0

g =20
elseg = —o0

fori = 1ton

g = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))

rin] =g
return g

O 00 ~1 N BN

15

4 rod-cutting problem (bottom-up)

BoTtTOM-UP-CUT-ROD (p,)

let [0 ..n] be a new array
rl0] =0
for j = 1ton
g = —0
fori = 1toj
g = max(q, pli] +r[j —i])
rljil = ¢
return r[#]

o0 ~]1 O\ W B o N =

*

The time complexity of MEMOIZED-CUT-ROD (top-down)
6(n?)

The time complexity of BOTTOM-UP-CUT-ROD
6(n?)

17

e

~ The rod-cutting problem (Reconstructing a solution)

EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)

1 letr[0..n]and s[0..n]be new arrays

2 r[0] =0

3 forj = lton i |01 23 4 5 6 7 8 9 10
4 g = —00 ri][0 1 5 8 10 13 17 18 22 25 30
5 fori = 1toj sgljjo 123 2 2 6 1 2 3 10
6 if g < pli]+r[j —i]

7 g = plil +rl[j —i] G

: sl = i * for n=10, would print just 10
9 rljl=gq :

10 return r and s * for n=7, would print 1 and 6

PRINT-CUT-ROD-SOLUTION(p, #)

1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD (p,)
2 whilen > 0

3 print s[7]

4 n =n—sln|

18

