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ABSTRACT
With the Internet of Things (IoT) becoming part of our daily life
and our environment, we expect rapid growth in the number of
connected devices. IoT is expected to connect billions of devices and
humans to bring promising advantages for us. With this growth,
fog computing, along with its related edge computing paradigms,
such as multi-access edge computing (MEC) and cloudlet, are seen
as promising solutions for handling the large volume of security-
critical and time-sensitive data that is being produced by the IoT.
In this paper, we first provide a tutorial on fog computing and its
related computing paradigms, including their similarities and dif-
ferences. Next, we provide a taxonomy of research topics in fog
computing, and through a comprehensive survey, we summarize
and categorize the efforts on fog computing and its related comput-
ing paradigms. Finally, we provide challenges and future directions
for research in fog computing.
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1 INTRODUCTION
In today’s information technology age, data is the main commodity,
and possessing more data typically generates more value in data-
driven businesses. According to the International Data Corporation
(IDC), the amount of digital data generated surpassed 1 zettabyte
in 2010 [1]. Furthermore, 2.5 exabytes of new data is generated
each day since 2012 [2]. Cisco estimates that there will be around
50 billion connected devices by 2020 [3]. These connected devices
constitute the Internet of Things (IoT) and possibly generate a
massive amount of data. With this astronomical amount of data, the
current mobile network architectures will have trouble managing
the momentum and magnitude of data. In current implementations
of cloud-based applications, most data that needs storage, analysis,
and decision making is sent to the data centers in the cloud [4].

∗A complete list of conferences, journals, and magazines that publish state-of-the-art
research papers on fog computing and its related edge computing paradigms is available
at https://anrlutdallas.github.io/resource/projects/fog-computing-conferences.html.
We have included papers from the above list in this survey.
†The data (categories and features/objectives of the papers) of this survey are available
at https://github.com/ashkan-software/fog-survey-data
‡ashkan@utdallas.edu

As the data velocity and volume increases, moving the big data
from IoT devices to the cloudmight not be efficient, or might be even
infeasible in some cases due to bandwidth constraints. On the other
hand, as time-sensitive and location-aware applications emerge
(such as patient monitoring, real-time manufacturing, self-driving
cars, flocks of drones, or cognitive assistance), the distant cloud
will not be able to satisfy the ultra-low latency requirements of
these applications, provide location-aware services, or scale to the
magnitude of the data that these applications produce [5]. Moreover,
in some applications, sending the data to the cloud may not be a
feasible solution due to privacy concerns.

In order to address the issues of high-bandwidth, geographically-
dispersed, ultra-low latency, and privacy-sensitive applications,
there is a quintessential need for a computing paradigm that takes
place closer to connected devices. Fog computing has been proposed
by both industry and academia [6, 7] to address the above issues and
to quench the need for computing paradigm closer to connected
devices. Fog computing bridges the gap between the cloud and
IoT devices by enabling computing, storage, networking, and data
management on the network nodes within the close vicinity of
IoT devices. Therefore, computation, storage, networking, decision
making, and data management occur along the path between IoT
devices and the cloud, as data moves to the cloud from the IoT
devices. Other similar computing paradigms to fog computing such
as edge computing, mist computing, cloud of things, and cloudlets,
have been proposed by the research community to address the
mentioned issues. In this survey, we compare fog computing with
other related computing paradigms, and argue that fog computing is
a more general form of computing, mainly due to its comprehensive
definition scope and flexibility.

In this article, we present a comprehensive survey on fog comput-
ing, and discuss how fog computing can meet the growing demand
of applications with strict latency, privacy, and bandwidth require-
ments. A comparison of the related survey papers in the area of
fog computing is included in Section 2. To gain a thorough under-
standing of fog computing, in Section 3, we will first look at cloud
computing, then discuss how fog computing extends cloud comput-
ing to address the above issues of cloud, and finally, compare fog
computing to other similar computing paradigms. Next, in Section
4, we describe our taxonomy of research topics in fog computing.
Later, in a comprehensive survey, we summarize and categorize
the efforts on fog computing and its related computing paradigms.
In Section 5, we present the challenges and limitations in the fog
computing area and provide future directions and potential starting
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points for those challenges. Finally, Section 6 concludes the paper.
Fig. 1 shows the structure of the survey and a reading map for the
reader.

2 RELATED SURVEYS
There are are some existing related studies in the area of fog com-
puting that have attempted to provide a survey of the papers in
the field of fog computing, edge computing, or MEC. The authors
in [8] present a comprehensive review of current literature in fog
computing with a focus on architectures and algorithms in fog sys-
tems. They further sketch the prospects of fog computing in terms
of emerging technologies with a focus on Tactile Internet. Cihat et
al. [9] state the importance of cooperation between edge and cloud
computing, and motivate how edge computing can benefit from
Software Defined Networking (SDN). They note the technical chal-
lenges in edge computing and propose using SDN as a solution for
implementing edge computing infrastructure. The authors survey
publications primarily on edge computing and SDN to support their
argument and give future directions for SDN developments. The
authors in [10] compile a comprehensive survey of recent efforts
in fog-enabled network architectures, and provide various network
applications of fog computing.

The recent survey in [11] focuses on connectivity and device
configuration aspects of the fog computing and identifies major
features that fog computing platforms need to build infrastructure
for smart city applications. They further review existing approaches
that have been proposed to tackle the challenges in fog computing
for building such smart city infrastructure. Comparably, the authors
of [12] focus on architecture design and system management of
edge computing to provide a detailed and focused survey in the
edge computing field. They also characterize fog and edge comput-
ing by comparing a list of related computing concepts, including
peer-to-peer computing, mobile grid computing, and mobile crowd
computing. The authors in [13] take a closer look at fog-assisted IoT
applications, discuss security and privacy challenges in fog com-
puting, and review and analyze promising techniques to resolve
security and privacy issues in fog-assisted IoT applications.

There are a number of surveys in the area of MEC that also
discuss similar concepts to fog computing and summarize papers
applicable to fog computing research. The survey in [14] introduces
a survey on MEC and focuses on the fundamental key enabling
technologies in MEC. The paper also analyzes the MEC reference
architecture, overviews the current standardization activities, and
introduces main deployment scenarios. Similarly, the survey in [15]
provides a survey of the recent state of MEC research with a focus
on joint radio and computation resource management.

2.1 Contribution
Different from thementioned surveys, the contribution of this paper
is three-fold: (1) We provide a detailed tutorial on fog computing,
how it is defined, and how it is related to or different from other
similar computing paradigms, such as cloud computing, cloudlets,
edge computing, and MEC (2) We propose an exhaustive taxonomy
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Figure 1: The structure of the survey.

of research topics in the area of fog computing, and present a com-
prehensive survey on fog computing.1 (3) We have compiled a list
of challenges and future directions for research in fog computing.

3 A COMPARISON OF FOG COMPUTING AND
RELATED COMPUTING PARADIGMS

This section focuses on the comparison of fog computing and re-
lated computing paradigms to demonstrate the value of fog comput-
ing in a variety of use cases. Moreover, this section provides a better
understanding of how these computing paradigms can benefit the
current and future landscape of connected devices. We compare
fog computing with cloud computing as well as other related com-
puting paradigms and summarize this information in Tables 2 and
3.

3.1 Cloud Computing
Cloud computing has been instrumental in expanding the reach
and capabilities of computing, storage, and networking infrastruc-
ture to the applications. The National Institute of Standards and
Technology (NIST) defines cloud computing as a model that pro-
motes ubiquitous, on-demand network access to shared computing

1We compiled a comprehensive list of conferences, journals, andmagazines that publish
state-of-the-art research papers on fog computing and its related edge computing
paradigms The list is available at
https://anrlutdallas.github.io/resource/projects/fog-computing-conferences.html
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resources [16]. Cloud data centers are large pools of highly accessi-
ble virtualized resources that can be dynamically reconfigured for
a scalable workload; this reconfigurability is beneficial for clouds
services that are offered with a pay-as-you-go cost model [17]. The
pay-as-you-go cost model allows users to conveniently access re-
mote computing resources and data management services, while
only being charged for the amount of resources they use. Cloud
providers, such as Google, IBM, Microsoft, and Amazon provide and
provision large data centers to host these cloud-based resources.

3.1.1 Cloud Services. Cloud offers infrastructure, platform, and
software as services (IaaS, PaaS, SaaS). Application developers can
use a variety of these services depending on the needs of the appli-
cations they develop. Infrastructure as a service (IaaS) allows cloud
consumers to directly access IT infrastructures for processing, stor-
age, and networking resources [18]. Suppose Sam wants to set up a
high-tech agricultural system that utilizes IoT devices to monitor
the condition of crops. Sam contacts a cloud provider and acquires
an IaaS for development of his system. Sam now can configure the
IaaS (often offered as a standalone VM) in terms of hardware and
corresponding software for his need. Control over infrastructure
(IaaS) allows Sam to customize hardware configuration, such as the
number of CPU cores and RAM capacity, in addition to systems-
level software. Sam can obtain an IaaS from Amazon Web Services
(AWS), Microsoft Azure, or Google Compute Engine (GCE).

On the other hand, platform as a service (PaaS) allows cloud con-
sumers to develop software and fully supports software lifecycle –
often with the help of a middleware – for software management
and configuration. If Sam does not need to configure the infras-
tructure of the cloud, managing and configuration of hardware and
software may detract from the productivity of Sam’s business. Now,
Sam could consider using PaaS offered by Apache Stratos, Azure
App Services, or Google App Engine for his business. PaaS man-
ages the underlying low-level processes and allows Sam to focus
on managing software for his IoT-specific interactions. Moreover,
PaaS providers often include tools for convenient management of
databases and scaling applications.

Now suppose Sam is willing to spend more money and likes to
get full software packages, and he does not want to take care of
software issues, such as database scalability, socket management,
etc. Software as a service (SaaS) provides Sam an environment to
centrally host his applications and removes the need for him to
install software manually. Sam’s client software now can be hosted
on Google Apps or as a Web application.

As demonstrated by these examples, cloud services can be uti-
lized for distinct use cases for a variety of end users. Figure 2
illustrates the relationship among IaaS, PaaS, and SaaS with the
underlying cloud infrastructure, and illustrates what portion of the
application stack is managed by cloud providers.

3.1.2 Cloud Resource Provisioning. Since the demand for cloud
resources is not fixed and can change over time, setting a fixed
amount of resources results in either over-provisioning or under-
provisioning, as depicted in Fig. 3. A foundation of cloud computing
is based on provisioning only the required resources for the demand.
This includes the use of virtualization for on-demand application
deployment, and the use of resource provisioning to manage hard-
ware and software in cloud data centers. Provisioning resources
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Figure 2: Common cloud service models and their classifica-
tions relative what portion of the application stack is man-
aged by cloud providers.

is an important topic in cloud computing that is widely explored.
Since it is difficult to estimate service usage from tenants, most
cloud providers have a pay-as-you-go payment scheme. As a result,
providers can be more flexible on how to provision resources, and
clients only pay for the amount of resources they actually use.

3.1.3 Types of Cloud. There are four types of cloud deployments:
private cloud, community cloud, public cloud, and hybrid cloud [16].
Private clouds are designed for use by a singular entity and ensure
high privacy and configurability. Private clouds are a good choice
for organizations that require an infrastructure for their applica-
tions. This type of deployment is similar to traditional company-
owned server farms and often do not benefit from a pay-as-you-go
cost model. Community clouds are used by a community of users,
and the infrastructure is shared between several organizations. A
community cloud results in decentralized ownership of the cloud
by multiple organizations within the community without relying
on a large cloud vendor for the IT infrastructure. Public clouds are
the typical model of cloud computing, where the cloud services are
offered by cloud service providers, such as Amazon, IBM, Google,
Microsoft, etc. Public clouds are generally more popular, easy-to-
maintain, and cost-effective compared to private clouds. In contrast
to private clouds, public clouds may benefit from the pay-as-you-go
pricing model. However, public clouds do not always offer users
complete customization of hardware, middleware, network, and
security settings. Hybrid clouds are simply a combination of the
cloud types mentioned above. Hybrid clouds allow users to have
finer control over virtualized infrastructure, and combining the ca-
pabilities from different types of cloud deployments is accomplished
through standardized or proprietary technology [19].

The cloud computing paradigm was initially established to al-
low users to access a pool of computing resources for ubiquitous
computing. Even though cloud computing has helped bring forth
accessible computing, the time required to access cloud-based ap-
plications may be too high and may not be practical for some
mission-critical applications, or applications with ultra-low latency
requirements. Also, the rapid growth in the amount of data gener-
ated at the network edge by an increasing number of connected
devices requires cloud resources to be closer to where the data is
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Figure 3: Cloud provisioning is done based on the applica-
tion demand [22].

generated. Greater demand for high-bandwidth, geographically-
dispersed, low-latency, and privacy-sensitive data processing has
emerged – a quintessential need for computing paradigms that
take place closer to connected devices and that support low-latency,
high-bandwidth, decentralized applications. To address these needs,
fog computing has been proposed by both industry and academia
[6, 7]. In order to provide a detailed comparison among fog comput-
ing related paradigms, we introduce various computing paradigms,
starting with fog computing.

3.2 Fog Computing
Fog computing bridges the gap between the cloud and end devices
(e.g., IoT nodes) by enabling computing, storage, networking, and
data management on network nodes within the close vicinity of IoT
devices. Consequentially, computation, storage, networking, deci-
sion making, and data management not only occur in the cloud, but
also occur along the IoT-to-Cloud path as data traverses to the cloud
(preferably close to the IoT devices). For instance, compressing the
GPS data can happen at the edge before transmission to the cloud
in Intelligent Transportation Systems (ITS) [20]. Fog computing is
defined by the OpenFog Consortium [6] as “a horizontal system-
level architecture that distributes computing, storage, control and
networking functions closer to the users along a cloud-to-thing
continuum.” The “horizontal” platform in fog computing allows
computing functions to be distributed between different platforms
and industries, whereas a vertical platform promotes siloed appli-
cations [21]. A vertical platform may provide strong support for a
single type of application (silo), but it does not account for platform-
to-platform interaction in other vertically focused platforms. In
addition to facilitating a horizontal architecture, fog computing pro-
vides a flexible platform to meet the data-driven needs of operators
and users. Fog computing is intended to provide strong support for
the Internet of Things.

3.2.1 Fog vs. Cloud. A common example that is often used to dis-
tinguished fog and cloud computing is whether latency-sensitive
applications can be supported while maintaining satisfactory qual-
ity of service (QoS). Fog nodes can be placed close to IoT source
nodes, allowing latency to be noticeably reduced compared to tra-
ditional cloud computing. While this example gives an intuitive
motivation for fog, latency-sensitive applications are only one of
the many applications that warrant the need for fog computing.
Nodes in fog computing are generally deployed in less centralized
locations compared to centralized cloud data centers. Fog nodes are
wide-spread and geographically available in large numbers. In fog
computing, security must be provided at the edge or in the dedi-
cated locations of fog nodes, as opposed to the centrally-developed

security mechanisms in dedicated buildings for cloud data centers.
The decentralized nature of fog computing allows devices to either
serve as fog computing nodes themselves (e.g. a car acts as a fog
node for onboard sensors) or use fog resources as the clients of the
fog.

The majority of differences between cloud and fog computing
are attributed to the scale of hardware components associated with
these computing paradigms. Cloud computing provides high avail-
ability of computing resources at relatively high power consump-
tion, whereas fog computing provides moderate availability of com-
puting resources at lower power consumption [23]. Cloud comput-
ing typically utilizes large data centers, whereas fog computing
utilizes small servers, routers, switches, gateways, set-top boxes, or
access points. Since hardware for fog computing occupies much less
space than that of cloud computing, hardware can be located closer
to users. Fog computing can be accessed through connected devices
from the edge of the network to the network core, whereas cloud
computing must be accessed through the network core. Moreover,
continuous Internet connectivity is not essential for the fog-based
services to work. That is, the services can work independently with
low or no Internet connectivity and send necessary updates to the
cloud whenever the connection is available. Cloud computing, on
the other hand, requires devices to be connected when the cloud
service is in progress.

Fog helps devices measure, monitor, process, analyze, and react,
and distributes computation, communication, storage, control, and
decision making closer to IoT devices [6] (refer to fig. 5). Many
industries could use fog to their benefit: energy, manufacturing,
transportation, healthcare, smart cities, to mention a few.

3.2.2 Fog-Cloud Federation. There are clear differences and trade-
offs between cloud and fog computing, and one might ask which
one to choose. However, fog and cloud complement each other;
one cannot replace the need of the other. By coupling cloud and
fog computing, the services that connected devices use can be
optimized even further. Federation between fog and cloud allows
enhanced capabilities for data aggregation, processing, and storage.
For instance, in a stream processing application, the fog could filter,
preprocess, and aggregate traffic streams from source devices, while
queries with heavy analytical processing, or archival results could
be sent to the cloud. An orchestrator could handle the cooperation
between cloud and fog. Specifically, a fog orchestrator could provide
an interoperable resource pool, deploy and schedule resources to
application workflows, and control QoS [24]. Through the use of
SDN, fog service providers will have greater control over how the
network is configuredwith a large number of fog nodes that transfer
data between the cloud and IoT devices.

3.2.3 Fog RAN. Fog computing can be integrated into mobile tech-
nologies in the form of radio access networks (RAN), to form what
is referred to as fog RAN (F-RAN). Computing resources on F-RANs
may be used for caching at the edge of the network, which enables
faster retrieval of content and a lower burden on the front-haul.
F-RAN can be implemented through 5G related mobile technologies
[25]. On the other hand, cloud RAN (C-RAN) provides centralized
control over F-RAN nodes. C-RAN takes advantage of virtualization,
and decouples the base stations within a cell of the mobile network
from its baseband functions by virtualizing those functions [26]. In
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C-RAN a large number of low-cost Remote Radio Heads (RRHs)
are randomly deployed and connected to the Base Band Unit (BBU)
pool through the front-haul links. Both F-RAN and C-RAN are
suited for mobile networks with base stations and are candidates
for 5G deployments. Also, the use of F-RAN and C-RAN brings a
more energy efficient form of network operation. We encourage
the motivated reader to refer to reference [27] for more information
about F-RAN.

Figure 4 shows a classification of computing paradigms related
to fog computing and their overlap in terms of their scope. The
figure illustrates our comparison of fog computing and its related
computing paradigms. Table 1 lists the acronyms used for this figure
and in the paper. We discuss the related computing paradigms in
the order of their trend and show how some paradigms resulted in
the emergence of others.

3.3 Mobile Computing
The advancement in fog and cloud computing is influenced by the
groundwork set forth by the development of mobile computing.
Mobile computing, or nomadic computing, is when computing is
performed via mobile, portable devices, such as laptops, tablets, or
mobile phones. Mobile computing can be utilized to create pervasive
context-aware applications, such as location-based reminders.

At the heart of mobile computing is the vision for adaptation in
an environment of low processing power and intermittent, sparse
network connectivity. The peak of mobile computing technologies
precedes cloud computing. A large number of fundamental chal-
lenges (such as user mobility, network heterogeneity, and low band-
width) in mobile computing have been addressed in the literature
before 2000. These issues have been addressed by advancements
such as robust caching, transmission hardware and protocols, and
compression algorithms [28]. Due to the evolving requirements
of connected consumer devices, mobile computing alone is not
suitable for many recent computing challenges.

With fog and cloud computing, computation is no longer tied
to a local network; fog and cloud computing expand the scale and
scope of mobile computing. The only type of hardware that mobile
computing requires are mobile devices, which can be connected
through Bluetooth, WiFi, ZigBee, and other cellular protocols. In
contrast, fog and cloud computing require more resource-rich hard-
ware with virtualization capabilities. Security in mobile computing
must be provided on the mobile device itself. Compared to fog and
cloud computing, mobile computing is more resource-constrained,
but in recent years, advancements in mobile hardware and wireless
protocols have significantly reduced this gap.

The power of mobile computing is from its distributed computing
architecture. Distributed applications benefit from this architecture
because mobile machines do not need a centralized location to
operate. Mobile computing, however, comes with many drawbacks
such as poor-resource constraints, the balance between autonomy
and interdependence (prevalent in all distributed architectures),
communication latency, and the need formobile clients to efficiently
adapt to changing environments [29]. These drawbacks often make
mobile computing unsuitable for current applications that require
low-latency or robustness, or that need large amounts of data to be
generated, processed, and stored on devices.

CCmist
MC

MEC

cloudlet

FC

MACC

EC

MCC

CoT

Figure 4: A classification of scope of fog computing and its
related computing paradigms. (Intersection of cloud com-
puting and mist computing is Cloud of Things, and inter-
section ofmobile computing and cloud computing is mobile
cloud computing.)

Table 1: A list of computing paradigm acronyms used in
this section.

IoT Internet of Things CC Cloud Computing
MC Mobile Computing FC Fog Computing

EC Edge Computing MEC Multi-access
Edge Computing

MCC Mobile Cloud Com-
puting

MACC Mobile ad hoc Cloud
Computing

CoT Cloud of Things mist Mist Computing

3.4 Mobile Cloud Computing
As cloud computing matured, it became a valuable complement
to mobile computing. This combination resulted in mobile cloud
computing (MCC), which is defined as an infrastructure where
both the data storage and data processing occur outside of the
mobile device, bringing mobile computing applications to not just
smartphone users but a much broader range of mobile subscribers
[30]. NIST extends this definition to include mobile devices: cloud
computing is the synergy between IoT devices, mobile devices, and
cloud computing that enables data-intensive and CPU-intensive
applications for IoT environments [31]. Some of these applications
in MCC include crowdsourcing, healthcare, sensor data processing
(such as optical character recognition and image processing), and
task offloading [32, 33]. Mobile applications can be partitioned
at runtime so that computationally intensive components of the
application can be handled through adaptive offloading [34].

In mobile cloud computing, resource contained mobile devices
can leverage resource-rich cloud services. MCC shifts the majority
of computation from mobile devices to the cloud. MCC helps to run
computation-intensive applications and to increase the battery life
of mobile devices. MCC shares a blend of capabilities and charac-
teristics in mobile computing and cloud computing. By adopting a
combination of mobile computing and cloud computing objectives,
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high availability of computing resources is present in MCC as op-
posed to resource-constrained mobile computing. This allows for
the emergence of high computation applications, such as mobile
augmented reality. Also, the availability of cloud-based services in
MCC is considerably higher than that of mobile computing. Sim-
ilar to cloud computing and fog computing, MCC relies on cloud
services for operating high-computation services. Computation
in MCC can also be operated by mobile devices. Similar to cloud
computing, security in MCC must be provisioned in both mobile
devices and in the cloud. The authors in [35] design and implement
an Android app that helps drivers find parking space availability
using MCC.

MCC also suffers from the same limitations of mobile computing
and cloud computing. First, while a centralized architecture in MCC
is great for sharing a pool of computation resources, this may not
be well suited for applications where pervasiveness of devices is
desired. Second, since both cloud computing and MCC require
cloud-based services, and as access to those services is through
the network core by WAN connection, applications running on
these platforms require connection to the Internet all the time.
MCC shifts the majority of computation from mobile devices to the
cloud, and this introduces connectivity challenges that were not
present in mobile computing. Finally, offloading computation to the
cloud causes the latency to be relatively high for delay-sensitive
applications. The authors in [36] design a food recognition system
based onMCC that distributes the data analytics between themobile
devices and the servers in the cloud. Mobile phones can perform
light-weight computation on food images for food recognition,
which allows the system to overcome some inherent limitations of
traditional MCC paradigm, such as high latency and low battery
life of mobile devices.

3.5 Mobile ad hoc Cloud Computing
Despite the pervasive nature of MCC, this computing paradigm
is not always suitable for scenarios in which there is a lack of
infrastructure or a centralized cloud. An ad hoc mobile network
consists of nodes that form a temporary, dynamic network through
routing and transport protocols; it is the most decentralized form
of a network [37]. Mobile devices in an ad hoc mobile network
form a highly dynamic network topology; the network formed
by the mobile devices is highly dynamic and must accommodate
for devices that continuously join or leave the network. Ad hoc
mobile devices can form clouds that can be used for networking,
storage, and computing. MACC could include use cases such as
disaster relief, group live video streaming, and unmanned vehicular
systems.

3.5.1 MACC vs. Cloud Computing. Mobile ad hoc cloud computing
(MACC) is fundamentally different from cloud computing, mainly
due to the ad hoc nature of the resources. MACC involves mobile
devices that function as data providers, storage, and processing
devices. Mobile devices in a mobile ad hoc cloud network are also
responsible for routing traffic among themselves, because of the
lack of network infrastructure. By pooling local mobile resources
to form an ad hoc cloud, MACC offers reasonably high computa-
tion. These attributes differ from the target users, architecture, and
connectivity in cloud computing. In a study done by researchers

of Carnegie Mellon University [38], there is a tradeoff between
offloading computation to distant clouds (labeled as “infrastructure
cloud”) versus running them on nearby mobile devices (labeled as
“mobile edge-clouds,” but in this paper we call them “mobile ad hoc
clouds”). The authors compare the performance of executing some
applications on a traditional infrastructure cloud versus running
them in mobile ad hoc clouds.

3.5.2 MACC vs. MCC. MACC is also different from MCC in the
hardware, service access method, and the distance from users, since
computation is done on mobile devices in MACC, whereas it is far
from mobile devices in MCC. MACC only requires mobile devices
to operate, whereas MCC requires large-scale data centers used
for cloud computing in addition to mobile devices. This results in
high computation power, but also higher latency in MCC. Security
in MACC must be provided only in mobile devices, but ensuring
trust may be challenging in MACC without a secure collaboration
framework. Finally, in MACC, services are only accessed through
mobile devices that are connected via Bluetooth, WiFi, and other
cellular protocols.

3.5.3 MACC vs. Fog. Although fog computing can be performed
across a variety of resource-rich and resource deficient devices, mo-
bile ad hoc cloud computing is better suited for highly decentralized,
dynamic network topologies in which Internet connection is not
guaranteed. Connected devices in MACC are more decentralized
compared to fog computing, and this allows the devices to form a
more dynamic network in places of sparely connected devices or
a constantly changing network. An example of this is an ad hoc
network for peer-to-peer file sharing [39].

3.5.4 MACC vs. MANET. A similar concept to MACC is a mobile
ad hoc network (MANET). MANETs consist of mobile host devices
that are connected to each other with single hop without base
stations [40]. MANET devices form dynamic networks but do not
necessarily form a cloud. In other words, the computing or storage
resource pools are not necessary for MANETs. However, many
solutions to MANETS, such as redundancy and broadcasting, can
be applied to MACC. In a resource-constrained environment, peers
may want to pool resources together to achieve a computationally
demanding task that may not be feasible on a single mobile device.
A use case for this is an unmanned vehicular system that consists
of multiple unmanned vehicles and traffic devices.

3.6 Edge Computing
Similar to howMCC extends the capabilities of mobile devices, edge
computing also enhances the management, storage, and processing
power of data generated by connected devices. Unlike MCC, edge
computing is located at the edge of the network close to IoT devices;
note that the edge is not located on the IoT devices, but as close
as one hop to them. It is worth noting that the edge can be more
than one hop away from IoT devices in the local IoT network.
OpenEdge Computing defines edge computing as computation
done at the edge of the network through small data centers that
are close to users [41]. The original vision for edge computing is to
provide compute and storage resources close to the user in open
standards and ubiquitous manner [41]. Edge computing is a crucial
computing paradigm in the current landscape of IoT devices; it
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Figure 5: Fog brings several benefits for the application developers, applications, and different industries by distributing the
core functions.

integrates the IoT devices with the cloud by filtering, preprocessing,
and aggregating IoT data intelligently via cloud services deployed
close to IoT devices [42].

Some issues that edge computing is well equipped to handle are
privacy, latency, and connectivity. Due to its proximity to the users,
latency in edge computing is typically lower than in MCC and cloud
computing, if enough local computation power is provided; latency
in edge computing can be slower than cloud or MCC if the local
computation unit is not powerful enough. Service availability is also
higher in edge computing because connected devices do not have
to wait for a highly centralized platform to provide a service, nor
are connected devices limited by the limited resources in traditional
mobile computing. Compared to MACC, edge computing has small
data centers, whereas MACC fundamentally does not need data
centers. As a result, edge computing has higher service availability.
Edge computing also can expand with broader computing capabili-
ties than MACC by forming hybrid architectures with peer-to-peer
and cloud computing models [43].

3.6.1 Edge Computing vs. Fog Computing. Although fog comput-
ing and edge computing both move the computation and storage to
the edge of the network and closer to end-nodes, these paradigms
are not identical. In fact, the OpenFog Consortium states that edge
computing is often erroneously called fog computing; OpenFog
Consortium makes the distinction that fog computing is hierarchi-
cal and it provides computing, networking, storage, control, and
acceleration anywhere from cloud to things; while, edge computing
tends to be limited to computing at the edge [6]. (Refer to Fig. 6.)
Moreover, in a tutorial article [44] about fog and edge, the authors
explain that “fog is inclusive of cloud, core, metro, edge, clients, and
things,” and “fog seeks to realize a seamless continuum of comput-
ing services from the cloud to the things rather than treating the

network edges as isolated computing platforms,” and “fog envisions
a horizontal platform that will support the common fog computing
functions for multiple industries and application domains, including
but not limited to traditional telco services.” [44]

3.6.2 Where is edge? It is worth mentioning that edge computing,
cloudlets, fog computing, and mist computing (to be discussed in
Section 3.9) are used interchangeably in some papers, as they all
have “edge” as a common term. The term edge used by the telecom-
munications industry usually refers to 4G/5G base stations, RANs,
and ISP (Internet Service Provider) access/edge networks. Yet, the
term edge that is recently used in the IoT landscape [42, 45] refers
to the local network where sensors and IoT devices are located.
In other words, the edge is the immediate first hop from the IoT
devices (not the IoT nodes themselves), such as the WiFi access
points or gateways. If the computation is done on IoT devices them-
selves, this computing paradigm is referred to as mist computing
(see Section 3.9). General Electric notes that fog computing focuses
on interactions between edge devices (e.g., RANs, base stations, or
edge routers), whereas edge computing focuses on the technology
attached to the connected things (e.g., WiFi access points) [45].

3.7 Multi-access Edge Computing
Mobile cloud computing is an extension ofmobile computing through
cloud computing. Analogously, multi-access edge (MEC) computing
is an extension of mobile computing through edge computing. ETSI
defines MEC as a platform that provides IT and cloud-computing
capabilities within the Radio Access Network (RAN) in 4G and 5G,
in close proximity to mobile subscribers [46]. Multi-access edge
computing was previously referred to as “mobile edge computing,”
but the paradigm has been expanded to include a broader range
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Figure 6: Comparison of fog computing and its related computing paradigms in terms of their location and distance from the
core clouds.

of applications beyond mobile device-specific tasks. Examples of
multi-access edge computing applications include video analytics,
connected vehicles, health monitoring, and augmented reality.

MEC extends edge computing by providing compute and stor-
age resources near low energy, low resource mobile devices. MEC
allows RAN operators to add edge computing functionality to ex-
isting base stations. Similar to edge computing, small-scale data
centers with virtualization capacity can also be used in MEC. Due to
underlying hardware used in MEC and edge computing, available
computing resources is moderate, in comparison to cloud comput-
ing. Furthermore, low-latency applications can be supported in
MEC. MEC applications can benefit from real-time radio and net-
work information hence can offer a personalized and contextualized
experience to the mobile subscriber.

Both edge computing and MEC computing services operate from
the edge of the Internet and can function with little to no Internet
connectivity. MEC, however, establishes connectivity through a
WAN, WiFi, and cellular connections, whereas edge computing
generally can establish any form of connectivity (e.g., LAN, WiFi,
cellular). MEC also primarily differs from MCC in its operations:
Research in MCC focuses on the relationship between cloud service
users (on mobile devices) and cloud service providers, whereas
research in MEC focuses on (RAN-based) network infrastructure
providers. MEC is expected to benefit significantly from the up-
and-coming 5G platform [47]. Likewise, 5G is seen as an enabler of

MEC as it allows for lower latency and higher bandwidth among
mobile devices, and it supports a wide range of mobile devices with
finer granularity.

MEC allows edge computing to be accessible to a wide range of
mobile devices with reduced latency and more efficient mobile core
networks [14]. MEC also allows for mission-critical delay-sensitive
applications over the mobile network [47]. It has also incorpo-
rated the use of SDN and network function virtualization (NFV)
capabilities, in addition to 5G technologies. SDN allows for virtual
networking devices to be easily managed through software APIs
[48], and NFV allows for reduced deployment times for networking
services through virtualized infrastructure. Moreover, through SDN
and NFV, network engineers and possibly enterprise application
developers can develop their own orchestrator, whose goal is to
coordinate the resource provisioning across multiple layers [49].

3.8 Cloudlet Computing
Proposed by Carnegie Mellon University, cloudlet computing is
another direction in mobile computing that shares many traits with
MCC and MEC. In fact, it addresses some of the disadvantages of
MCC. A cloudlet is a trusted resource-rich computer or a cluster of
computers with strong connection to the Internet that is utilized by
nearby mobile devices [50]. Cloudlets are small data centers (minia-
ture clouds, as the name suggests) that are typically one hop away
frommobile devices. The idea is to offload computation frommobile
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devices to VM-based cloudlets located on the network edge [51].
Although academia mostly drives current studies in cloudlet com-
puting, it has high potential in domains such as wearable cognitive
assistance and web applications companies.

Cloudlet is the middle tier of a 3-tier continuum: mobile device-
cloudlet-cloud. Given the nature of cloudlets as a small cloud close
to mobile devices, operators for cloudlet computing could be cloud
service providers who want their services to be accessible closer to
mobile devices. Network infrastructure owners (e.g., AT&T, Nokia,
etc.) can enable cloudlets with virtualization capacity to be situated
closer to mobile devices, in smaller hardware footprints compared
to the massive data centers used in cloud computing. The small
footprint of cloudlets result in more moderate computing resources,
but lower latency and energy consumption compared to cloud
computing. Cloudlet computing is intended to serve devices in the
local area.

Just as MACC greatly differs from cloud computing, it also highly
differs from cloudlet computing. Cloudlet needs infrastructure
with virtualization in the form of virtual machine (VM) capability,
whereas MACC does not require such infrastructure. MACC and
cloudlet computing both support mobility, but MACC is resource
constrained and lacks virtualization support for real-time IoT ap-
plications. Cloudlets support local services for mobile clients by
dividing tasks among cloudlet nodes in the proximity of mobile
devices [52]. Although cloudlet computing fits well with the mobile-
cloudlet-cloud framework [53], fog computing offers a more generic
alternative that natively supports large amounts of traffic, and al-
lows resources to be anywhere along the thing-to-cloud continuum.
The concept of mobile cloudlets is similar to cloudlets, in which the
cloudlets are a group of nearby mobile devices that are connected
wirelessly, e.g., using WiFi or Bluetooth [54]. In mobile cloudlets,
mobile devices can be providers as well as clients of computing
service.

3.9 Mist Computing
Recently, mist computing has been introduced to capture a more
extreme edge – the endpoints – of connected devices [55]. This
computing paradigm describes dispersed computing at the extreme
edge (the IoT devices themselves) and has been proposedwith future
self-aware and autonomic systems in mind [56]. Mist computing
could be seen as the first computing location in the IoT-fog-cloud
continuum; it can be informally labeled as “IoT computing” or
“things computing.” An IoT device may be wearable, a mobile device,
a smart watch, or a smart fridge. Mist computing extends compute,
storage, and networking across the fog through the things. In a
sense, mist computing is a superset of MACC; since in mist, the
networking may not be necessarily ad hoc, and the devices may
not be mobile devices (refer to Fig. 4).

The authors in [57] introduce the idea of using mobile devices in
the vicinity as a cloud computing environment for storage, caching,
and computing purposes. They study the use of mist computing
to reduce the load in traditional WiFi infrastructures for video
dissemination applications. In this study, the spectators of a sport
event organize themselves into WiFi-Direct groups and exchange
video replays whenever possible, bypassing the central server and
access points. This study is also another example of mist computing,

in which IoT devices act not only as “thin clients,” but also as “thin
servers.” Some other uses of mist computing are to preserve the
privacy of users’ data via local processing [58], and to efficiently
deploy virtualized instances on single-board computers [59].

3.10 Other Similar Computing Paradigms
3.10.1 Micro Data Center. Cloudlet is sometimes referred to as
micro data center (MDC) in some studies [60]. The term micro data
center (MDC) was proposed by Microsoft Research in 2015 [60]
and is defined as “an extension of traditional data centers used in
cloud computing.” An MDC can be an edge node or a cloudlet that
is deployed between IoT devices and the cloud.

3.10.2 Cloud of Things. Another similar concept to mist comput-
ing is the Cloud of Things (CoT) [61], where IoT devices form a
virtualized cloud infrastructure. In mist computing computation is
done on IoT devices, possibly via message exchange, and not neces-
sarily in a cloud of pooled resources. However, in Cloud of Things,
computation is done over the cloud that is formed by pooled re-
sources of IoT devices. Abdelwahab et al. [61] introduce the notion
of Cloud of Things for sensing-as a service, which uses edge nodes
as cloud agents sitting close to IoT nodes. The authors propose the
idea of dynamically scaling up existing cloud resources (compute,
storage, and network) by using the sensing capability of IoT devices.
Edge nodes are used as cloud agents near the edge to discover, virtu-
alize, and form a cloud network of IoT devices (CoT). This network
is a geographically distributed infrastructure, in which cloud agents
constantly discover resources of IoT devices and pool them as cloud
resources. CoT enables remote sensing and in-network distributed
processing of data. For instance, a cloud user can view pollution
levels in cities from real-time temperature and CO2 concentration
sensors in vehicles with defined accuracy. The CoT framework is
scalable to IoT networks, supports heterogeneity of IoT devices and
edge computing nodes, and provides a foundation of sensing-as a
service using fog computing.

Similar to CoT, the authors in [62] propose the concept of PClouds
(personal clouds), which are distributed networked resources that
are from both local/personal and remote/public devices and ma-
chines. PCloud can service end users even when remote cloud
resources are not present or difficult to access due to insufficient
network connectivity. Another novel idea similar to Cloud of Things
and MACC is the work of the authors in [63], where they propose
Cloudrone, an idea of deploying ad hoc micro cloud infrastructures
in the sky using low-cost drones, single-board computers, and light-
weight OS virtualization technologies. The drones in this scheme
form a cloud computing cluster in the sky, which provisions the
cloud services nearer to the user, even in the absence of a terrestrial
infrastructure to access the remote cloud.

Similar to the concept of Cloud of Things, Femtoclouds have been
proposed to tap into the computational capability and pervasive-
ness of underutilized mobile devices. Femtoclouds take advantage
of clusters of devices that tend to be co-located in places such as
schools, public transit, or malls. A hybrid edge-cloud workload man-
agement scheme is proposed in [64] for management of resources
and tasks in femtoclouds, to provide low latency.
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Table 2: Attributes of fog-computing related paradigms

Attribute CC MC FC EC MCC MACC MEC cC mist

Users General Mobile General General Mobile Mobile Mobile Mobile General

General Use
Cases

Scalable data
storage,

virtualized
apps,

distributed
computing
for large data
sets (Google
MapReduce)

Mobile sales
transactions,
location
dependent
queries
(travel

recommen-
dations),

multimedia
applications
on mobile
devices

IoT,
Connected
vehicles,
smart

grid/smart
city, health
care, smart
delivery

(high-scale
package
drone

delivery),
real-time
subsurface
imaging,
video

surveillance

Local video
surveillance,

video
caching,
traffic
control

Social
networking,
sensor data
processing,
health care

(tele-
monitoring

and
tele-surgery)

Networking
and

computing
for disaster
relief, group
live video
streaming,
unmanned
vehicular
system

Content
Delivery,
Video

analytics,
connected
vehicles,
health

monitoring,
augmented
reality

Optical
character
recognition

(OCR),
wearable
cognitive
assistance
(Google
Glass)

Parallel
computation

on IoT
devices,

autonomous
vehicles,
privacy-

preserving
local

processing

Operators Cloud
service
providers

Self-
organized

Users and
cloud service
providers

Network in-
frastructure
providers or

local
businesses

Users and
cloud service
providers

Self-
organized

Network in-
frastructure
providers

(RAN-based)

Cloud
service
providers

and network
infrastruc-

ture
providers

Self-
organized or

local
businesses

Service Type Global Local Less global Local Local Local Less global Local Local

Hardware Large-scale
data centers
with devices
with virtual-

ization
capacity

Mobile
devices

Devices with
virtualiza-

tion capacity
(servers,
routers,
switches,
access
points)

Edge devices
with

computing
capability

Mobile
devices or
large-scale
data centers
with devices
with virtual
capability

Mobile
devices

Small-scale
data centers
with devices
with virtual-

ization
capacity,

RAN in 4G
and 5G

Devices with
virtualiza-

tion
capability
(micro and
nano data
centers)

IoT devices
(e.g. sensors,
cell phones,

home
appliance
devices)

Available
Computing
Resources

High Limited Moderate Moderate High Relatively
less limited

Moderate Moderate Limited

Main Driver Academia/
industry

Academia Academia/
industry

Academia/
industry

Academia Academia Academia/
industry

Academia Academia

Distance
from Users

Far Very close Relatively
close

Close Far Very close Close Close Very close

Main
Standardization
Entity

CSA, DMFT,
NIST, OCC,
GICTF

MobileInfo OpenFog
Consortium,

IEEE

— NIST — ETSI, 3GPP,
ITU-T

OpenEdge —

Application
Type

Ample
computation

Distributed
and mobile
processing

High
computation
with lower
latency

Low latency
computation

High
computation

High
computation
with lower
latency

Low latency
computation

High
computation
with lower
latency

Distributed
processing
on IoT
devices

Architecture Centralized/
hierarchical

Distributed Decentralized/
hierarchical

Localized/
distributed

Central
cloud with
distributed
mobile
devices

Distributed Localized/
hierarchical

Localized Localized/
distributed
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Attribute CC MC FC EC MCC MACC MEC cC mist

Availability High Low High Average High Low Average High Low

Latency Relatively
high

Moderate Low Low Relatively
high

Moderate Low Low Moderate

Security Must be
provided

along cloud-
to-things
continuum

Must be
provided on

mobile
devices

Must be
provided on
participant

nodes

Must be
provided on
edge devices

Must be
provided

along cloud-
to-things
continuum
and on
mobile
devices

Must be
provided on

mobile
devices

Must be
provided on
edge network
equipment
(RAN, AP)

Must be
provided on
participant

nodes

Must be
provided on
IoT devices

Server
Location

Installed in
large

dedicated
buildings

— Can be
installed at
the edge or
in dedicated
locations

Near edge
devices

Installed in
large

dedicated
buildings

— Can be
installed at
the edge

Near mobile
devices

—

Power
Consumption

Relatively
high

— Low Low Low on
mobile
devices

Low High Moderate Low

Internet
Connectivity

Must be
connected to
the Internet

for the
duration of
services

Can operate
with low or
intermittent
Internet

connectivity

Can operate
au-

tonomously
with no or
intermittent
Internet

connectivity

Can operate
au-

tonomously
with no or
intermittent
Internet

connectivity

Requires
Internet

connection
for offloading

tasks or
obtaining

computation
results from
the cloud

Can operate
au-

tonomously
with no or
intermittent
the Internet

May operate
au-

tonomously
or connect to
the Internet
through RAN

Can operate
with no or
intermittent
Internet

connectivity;
often

requires
connection

to the
Internet

Can operate
with low or
intermittent
Internet

connectivity

Hardware
Connectivity

WAN Bluetooth,
WiFi, cellular,

ZigBee

WAN, LAN,
WLAN, WiFi,

cellular

WAN, LAN,
WLAN, WiFi,

cellular,
ZigBee

WAN Bluetooth,
WiFi, cellular,

ZigBee

WAN,
cellular

WAN, LAN,
WLAN, WiFi,

cellular

LAN,
Bluetooth,

WiFi, cellular,
ZigBee

Service
Access

Through core Through
mobile
devices

Through
connected

devices from
the edge to
the core

At the edge
of the
Internet

Through core Through
mobile
devices

At the edge
of the
Internet

Through
resource-rich
computers at
the edge of
the Internet

Through IoT
devices

3.10.3 Edge Cloud. When we talk about cloud computing, we
mainly talk about “core” or “distant” clouds, which are far from the
user or devices. Core clouds are further from connected things and
are responsible for heavy computation. In contrast, “edge” clouds
are smaller scale compared to core clouds and are closer to the
devices. The concept of edge cloud [65] is similar to edge com-
puting. The edge cloud extends cloud capabilities at the edge by
leveraging user or operator-contributed compute nodes at the edge
of the network. Similar to fog, in edge clouds the ability to run an
application in a coordinated manner in both edge and the distant
cloud is envisaged. Edge clouds are nodes at the edge, such as micro
data centers, cloudlets, and MEC. [66].

Researchers have begun studying federation of both edge clouds
and core clouds, and proposed the “osmotic computing” paradigm
[67, 68]. Osmotic computing implies “the dynamic management

of services and micro-services across cloud and edge data centers,
addressing issues related to deployment, networking, and security”
[67]. Osmotic computing utilizes both edge and cloud resources,
each contained in two separate layers. Application delivery follows
an osmotic behavior where virtualized micro-services are deployed
opportunistically either in the cloud or edge layers. The ability
to control how micro-services can be balanced between edge and
cloud is a significant advantage of osmotic computing.

3.11 Concluding Remarks
The previous discussion about fog computing and related paradigms
demonstrate the importance of understanding the characteristics
of these platforms in the changing IT landscape. As demonstrated
by the strength and weaknesses attributed to these computing
paradigms, some paradigms may be better suited for a particular

11



A. Yousefpour et al.

Table 3: Features of fog-computing related paradigms

Feature CC MC FC EC MCC MACC MEC cC mist

Heterogeneity support ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Infrastructure need ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Geographically distributed ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Location awareness ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Ultra-low latency ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Mobility support ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Real-time application support ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Large-scale application support ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Standardized ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

Multiple IoT Applications ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Virtualization support ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗

use case than others. Even so, fog computing is suited for a large
number of use cases in the current landscape of IoT and connected
devices. The versatility of fog computing makes it suitable for many
cases of data-driven computing and low-latency applications, even
though it may not be suitable for a few extreme applications, such
as disaster zones or sparse network topologies where ad hoc com-
puting (e.g., MACC) or extreme edge clouds (e.g., mist, CoT) may be
a better fit. Nonetheless, fog computing is considered a more gen-
eral form of computing when compared to other similar paradigms
(e.g., EC, MEC, cloudlet), because of its comprehensive definition
scope, generality, and extensive presence along the thing-to-cloud
continuum. Tables 2 and 3 summarize these characteristics. Fog
computing offers a bright future for an open-standards environment
of connected devices, as it is evident by IEEE Standard’s adoption
of OpenFog Reference Architecture [69].

There does not yet exist a globally unanimous distinction be-
tween fog computing and related computing paradigms, such as
edge computing, mist computing, and cloudlets across researchers
and industries, as shown in the previous sections of this paper. We
attempt in this survey paper to clarify the distinctions between fog
computing and the related computing paradigms. A comparison
of the underlying infrastructure of fog computing and its related
computing paradigms from the networking perspective is shown in
Fig. 7. In the rest of this paper, we will mainly survey and discuss
the recent literature on fog computing, but mention the studies on
other related computing paradigms that could be easily extended
or directly applied in fog.

4 TAXONOMY OF FOG COMPUTING
In this section, we will introduce a taxonomy of the research in
fog computing that is the basis of this survey2. This taxonomy
categorizes the research articles that focus primarily on fog com-
puting from the networking perspective. We have also included
research articles from other similar computing paradigms, such

2The data (categories and features/objectives of the papers) of this survey are available
in the form of several datasets at https://github.com/ashkan-software/fog-survey-data

as edge computing, if the article is relevant and general enough
that it could be easily extended to fog computing. The taxonomy is
shown in Fig. 8, and the papers on fog computing, edge comput-
ing, cloudlet, etc. that are referenced in this survey are categorized
into different categories in Table 4. We will discuss the literature
on fog computing in this section, and we categorize the research
papers according to this taxonomy. Moreover, we have rigorously
checked the objectives of papers (e.g., QoS improvement) and the
features they provide (e.g., scalability), and we summarize them
in Table 6. The explanation of the features and objectives along
with several examples for each objective/feature are included in
Table 5. We extract these objectives/features such that they are
comprehensive and useful for a fog system design, and are also
closely in compliance with the pillars of OpenFog architecture [6].

The “Foundation” category consists of the research papers that
either survey the fog computing area, or try to define and standard-
ize the field of fog computing. The “Frameworks and Programming
Model” category is where the reader can find research articles that
introduce frameworks, architectures, and programming models
for fog, or that use fog computing to introduce a new concept
(such a vehicular fog computing). The next category is “Design
and Planning,” which includes the papers that discuss the design
and planning of the network and computing infrastructure. The
“Resource Management and Provisioning” category consists of the
research papers that study the management and provisioning of the
resources (e.g., service provisioning, VM placement, control and
monitoring). The category “Operation” includes the papers that
discuss operational aspects of fog computing systems (e.g., task
scheduling, load balancing, and resource discovery). Each of the
mentioned categories has subcategories, and we will discuss each
subcategory in the following subsections. The category “Software
and Tools” will list papers that focus on software, simulators, and
tools for fog computing. Likewise, the “Hardware and Protocol
Stack” category showcases articles that propose a protocol stack
or introduce particular hardware for fog computing. Papers that
focus on developing testbeds or doing extensive experiments for
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Figure 7: Comparison of the infrastructure of fog computing and its related computing paradigms from the networking per-
spective.

fog are summarized under the “Testbeds and Experiments” cate-
gory. Finally, papers discussing security and privacy aspects of fog
computing are included under the “Security and Privacy” category.

Note that the three categories Design and Planning, Resource
Management and Provisioning, and Operation reflect conventional
steps in design and operation of distributed computing systems and
computer networks. First, in the Design and Planning step, network
designers estimate and analyze the required resources for a given
network, design the infrastructure and topology of the network, and
determine the hardware and resources that must be placed in a par-
ticular design. Next, in the Resource Management and Provisioning
step, network operators try to manage and provision the resources
for better utility and efficiency. For instance, service orchestration
and migration methods are used to intelligently allocate and pro-
vision the available resources of the network nodes; monitoring
techniques are used to monitor the resource usage of the nodes, for
instance for placement decisions (e.g., VM or container placement).
Finally, in the Operation step, the final improvements for resource
usage and efficiency are performed, such as task offloading and
scheduling, load balancing, and efficient resource discovery.

4.1 Foundations: Definition and Standards
In this subsection, we survey the articles that are concerned with
defining and standardizing fog computing and concepts related
to fog computing. The very definition of fog computing and fog
nodes is a topic of ongoing discussion, and there is no common
consensus on what a fog node is [70]. There are some early efforts
to define fog and fog nodes [6, 70]. OpenFog Consortium is one
of the pioneers in standardizing and defining fog computing. The
OpenFog architecture is established to provide a nonproprietary fog

architecture and standard to support current cloud computing in
addition to diverse IoT and edge-oriented ecosystems. The white pa-
per introduces security, scalability, openness, agility, among other
“pillars” of an open fog architecture [6]. Later, IEEE Standards Asso-
ciation adopted OpenFog Consortium’s reference architecture as a
standard for fog computing through IEEE 1934 [69].

Vaquero et al. [71] take into account mobile device ubiquity,
network management, fog network connectivity, and privacy to
propose their definition for fog: a large amount of heterogeneous,
ubiquitous, and decentralized devices that can cooperate to form a
network for storage and processing without third-party intervention.
The authors in [72] focused on the theoretical modeling and per-
formance metrics of the fog computing architecture. They propose
a mathematical formulation for fog computing by defining its com-
ponents for a generic fog architecture.

Current communication technologies and standards that could
be used in fog networks are presented in [73]. In the paper, a clas-
sification of layers and technology settings related to IoT and fog
computing is described. On the other hand, the authors in [74]
define “class of service” for fog applications, a classification of fog
services according to their QoS requirements. They also introduce a
mapping between certain classes of services and the corresponding
processing layers of the fog computing reference architecture.

With emerging availability of IoT devices and their large volume
of data that they produce, timely and reliable transfer of large
data streams to a centralized location is a requirement of deep
learning models. The authors in [68] introduce “deep osmosis” and
analyze the research challenges involved with developing edge-
cloud-based holistic distributed deep learning algorithms and their
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corresponding resource models and architecture for cloud and fog
computing.

The study in [75] defines the concept of “content island” for
fog computing, which interconnects groups of devices to inter-
change data and processing among themselves and with other
content islands. The islands are based on the integration of a pub-
lish/subscribe system with disruption-tolerant network (DTN) tech-
niques to provide higher flexibility with respect to data and com-
putation sharing. Another definition in fog computing area is the
“reliability factor” of a node, which defines the probability of a node
being online or available, and is defined in [76]. In [77] ten eco-
nomic aspects of fog computing (referred to as fogonomics) are
introduced.

4.2 Foundations: Surveys
In this section, we discuss the previous work in the fog computing
domain that are of survey or tutorial nature. Several comprehensive
survey papers are already discussed in Section 2; in this subsection,
we will discuss some other survey papers that are not as compre-
hensive as the ones discussed in Section 2. Klas from the Vodafone
Group presents a clear picture of edge computing and its benefits
[78]. This paper highlights relevant edge computing applications
and similar research areas (e.g., fog and cloudlet), surveys the latest
industrial efforts and available edge computing technologies, and
discusses edge computing’s potential to improve the telecommuni-
cations industry.

Historically, the field of computing has seen cycles between
decentralization and centralization [43]. The authors of [43], in a
survey study, advocate for edge-centric computing, a more decen-
tralized paradigm that utilizes peer to peer (P2P) networking at the
edge of the network while maintaining access to the cloud.

The authors in [79] present a comprehensive study of edge com-
puting, starting with the factors leading up to its development, the
advantages of edge computing, requirements for successful imple-
mentation, application use-cases, and challenges. Several use cases,
such as, gaming, real-time image processing, smart grid, smart
transportation, are used to emphasize the range of problems that
edge computing can help alleviate. Weisong et al. define edge com-
puting and survey its use cases, research issues, and future research
directions in [80]. A recent survey on MEC can be found in [81].

Stojmenovic and Wen in [82] highlight privacy and security
concerns of fog computing gateways as major issues. These issues
include man-in-the-middle attacks and lack of encryption in gate-
ways that serve as fog nodes. The study in [83] surveys the main
features of fog computing, describes its architecture and design
goals, and discusses some potential issues of fog computing in 5G.
One of the early surveys in fog architecture and taxonomy is the
work of Zhang and Chiang [84]. The authors further describe the
IoT challenges for which fog computing can provide solutions. The
survey in [85] distinguishes and explains edge computing, fog com-
puting, and cloud computing. The study reviews various system
architectures, application characteristics, and platform abstractions
of fog, edge, and cloud.

In the paper [86], the authors overview fog computing model
architecture, key technologies, and applications. They present the
hierarchical architecture of fog computing and its characteristics

and compare it with cloud computing and edge computing. Then,
the key technologies for fog are introduced to see how they support
fog computing deployments.

4.3 Frameworks and Programming Models:
Architectures and Frameworks for Fog

Many researchers have independently proposed various architec-
tures and frameworks for fog computing. In this section, we sum-
marize the previous work that have proposed general architectures
or frameworks for fog computing.

4.3.1 General Architecture for Fog Computing. A recent study sug-
gests an architectural model for combining MEC and fog computing
for 5G networks [87]. The authors claim that fog computing and
MEC separately have weaknesses and incompleteness; they further
claim the need for convergence of the two computing paradigms
for overcoming such limitations. A three-layer general logical archi-
tecture for fog computing is introduced in [88] and [89]. The layers
are IoT, fog, and cloud, where each layer is partitioned into domains.
Similarly, a three-layer architecture including the cloud, MEC, and
IoT is proposed in [90]. In the three-layer architecture proposed,
the user plane consists of mobile users and IoT devices, the edge
computing plane consists of edge servers in close proximity to the
users, and the cloud computing plane is the core of the network
and contains multiple cloud servers and data centers. Comparably,
we propose our three-layer architecture for fog computing in Fig.
9.

The authors in [91] propose a fog-to-cloud architecture, con-
sisting of a layered management structure that can bring together
different heterogeneous cloud/fog layers into a hierarchical architec-
ture. The paper [92] designs a hierarchical edge cloud architecture,
to efficiently utilize the cloud resources for serving the peak loads
from mobile users. The proposed architecture consists of servers at
the edge, which directly receive workloads from mobile devices via
wireless links. These edge servers are connected to higher tiers of
edge cloud servers and remote data centers through the Internet
backbone. Different from directly using a flat collection of edge
cloud servers, the proposed architecture aggregates the peak loads
that exceed the capacities of lower tiers of edge cloud servers to
other servers at higher tiers in the edge cloud hierarchy.

4.3.2 Fog Computing Resource Model. One challenge in fog com-
puting is defining who the fog resource providers are. Is it the case
that fog service providers must provide fog resources? Can end
users can bring their devices and share their resources? Do network
providers offer their edge resources for renting? The articles [93]
and [94] present a unified computing, caching, and communica-
tion (3C) solution for 5G that allow service, content, and function
providers to deploy their services/content/functions near the end
users. The solution also allows for the exploitation of extreme edge
resources by enabling their owners to form virtual fogs (vFogs)
cooperatively; that is, end users will have the ability to become 3C
resource providers to the 5G ecosystem. The authors also propose
their architecture for fog computing, which consists of vFogs, hy-
per fogs (constellations of vFog networks to facilitate processing
and data exchange that requires resources from more than one
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Figure 8: Taxonomy of fog computing that is used in this survey.

vFog), super extreme edge node, regular extreme edge node, and
orchestrator.

One of the many efforts to design a reference framework and
infrastructure for the fog-based IoT that considers resource sharing
of consumers is Indie Fog [95]. The Indie Fog infrastructure uti-
lizes consumers’ equipment (e.g., WiFi access points) to provide fog
services for IoT devices. The authors suggest that network infras-
tructure providers or cloud service providers can make use of the
consumer premises equipment to provide their fog-based services.
Under this model, they claim that consumers will be willing to share
their equipment with the providers for offering their services. Indie
Fog uses the general fog architecture proposed by the OpenFog
Consortium [6] and adds the Indie Fog services to it, which are
interconnected via virtual connections to private and public fog
networks.

4.3.3 Fog Architecture Design Decisions. In an article from Cisco
[96], the author proposes a general high-level architecture for fog
networks, fog software, and fog nodes. This paper is an early at-
tempt to review and characterize the design/decision parameters
of fog networks. The author names these decision criteria “fog
architectural imperatives,” and discusses them in detail. The fog ar-
chitectural imperatives are decisions related to design requirements
that are difficult to implement on networks with sole reliance on

cloud or IoT devices, and that can only be satisfied by using fog
resources [96].

4.3.4 Fog Architectures for 5G and IoV. Fog computing is seen as
a promising enabler for some of the emerging paradigms, such as
5G, autonomous cars, and Internet of Vehicles (IoV). In their article
[158], the authors propose an SDN-based framework for cloud-
fog interoperation in 5G wireless networks. Vilalta et al. propose
TelcoFog - a fog computing architecture that is deployed at the
network edge for telecom operators to provide cost-effective 5G
services for low latency and scalability [135]. TelcoFog consists of
three main types of components: scalable TelcoFog nodes, Telco-
Fog controller, and TelcoFog services. The paper [145] introduces
the challenges of handling big data in the IoV environments. The
authors emphasize on the role of fog servers and describe a re-
gional cooperative fog computing (CFC) architecture to support IoV
applications. The proposed CFC-IoV architecture consists of two
layers - the fog layer and edge layer. The fog layer is a federation
of geographically distributed fog servers, a coordinator server, and
the cloud servers, whereas the edge layer includes the vehicular ad
hoc network (VANET), IoT applications, and mobile cellular net-
works. Other effort suggesting fog architectures for 5G or IoV are
[83, 87, 93, 128, 134].

4.3.5 ICN-based Fog Architecture. The study in [143] brings to-
gether fog computing and information-centric networking (ICN),
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Table 4: Overall categories of the papers cited in this survey

Category Subcategory Papers

Foundations
Surveys [8, 9, 13, 43, 67, 71, 78–86, 97–105]

Definitions & Standards [6, 66, 68, 70–77, 85, 87, 106–123]

Frameworks and
Programming Models

Architectures and Frameworks
for Fog [6, 27, 70–72, 75, 77, 83, 87–96, 106, 109, 110, 112, 115, 124–170]

Concepts and Frameworks
using Fog [61, 64, 118, 123, 171–193]

Programming Models
and Data Modeling [98, 107, 132, 134, 135, 143, 184, 194–209]

Design and Planning
Infrastructure Design [27, 121, 128–130, 134, 210–220]

Resource Analysis
and Estimation [23, 76, 113, 117, 119, 121, 211, 216, 221–230]

Resource Management
and Provisioning

Service Provisioning
(Orchestration & Migration) [24, 126, 132, 135, 138, 139, 145, 156, 162, 169, 179, 197, 217, 231–254]

Placement
(VM/Service) [92, 110, 149, 155, 157, 166–168, 174, 184, 217, 255–278]

Control and Monitoring [9, 54, 106, 127, 129, 130, 134, 135, 137, 151, 160, 238, 239, 245, 259, 279–287]

Operation

Scheduling, Offloading,
and Load Balancing

[54, 64, 88, 90, 111, 124, 131, 140, 145, 160, 163, 164, 186, 210, 212, 218, 219, 230, 235, 255, 262,
286, 288–321]

Resource Discovery [61, 116, 123, 138, 143, 196, 197, 204, 221, 239, 290, 310, 322–329]

Applications [20, 51, 61, 100, 154, 159, 174, 175, 190, 191, 247, 263, 271, 276, 287, 306, 320, 321, 323, 330–379]

Software & Tools [66, 150, 195, 207, 240, 322, 344, 355, 380–396]

Testbeds & Experiments [123, 139, 142, 169, 173, 185, 193, 348, 376, 386, 394, 397–418]

Security & Privacy [66, 82, 99, 102, 104, 105, 108, 114, 163, 165, 178, 282, 283, 304, 313, 326, 337, 339, 341, 349, 364,
368, 371, 373, 389, 419–433]

Hardware & Protocol Stack [27, 75, 116, 122, 128–131, 146, 152, 158, 164, 170, 171, 176, 179, 200, 212, 214, 219, 266, 322,
384, 408, 409, 434, 435]

which enables flexible and efficient data distribution at the network
layer. In the introduced ICN-Fog architecture, at the lowest layer
are heterogeneous end devices that connect to fog nodes, which
run ICN-specific protocols to communicate with other fog nodes.
Apart from connecting to other fog nodes, each fog node is also
connected to the cloud. The authors note that ICN-Fog relies on
the principles of ICN for building smart, horizontal fog-to-fog data
communication that leads to reducing the application’s dependency
on the cloud and distributed processing in the fog. Similarly, the
authors of [100] explore the idea of combining Information-Centric
Networking(ICN) with MEC to address mobility related issues in
theMEC approach that relies heavily on the underlying host-centric
networking model.

4.3.6 Resource Allocation Frameworks. Sun and Ansari introduced
EdgeIoT, a hierarchical architecture that aims to allocate resources
through the use of VMs while maintaining user privacy [106]. Sun
and Nirwan use OpenFlow SDN switches to provide network man-
agement for aggregated data from IoT devices. The authors of [110]
propose a hierarchical MEC architecture for resource allocation
in MEC. The architecture introduces the notion of field, shallow,

and deep cloudlets, where the field cloudlets are collocated with
the base stations, the shallow cloudlets are at aggregation points,
and the deep cloudlet is at the mobile backhaul. The architecture
can handle peak loads efficiently by utilizing the shallow and deep
computing facilities at higher levels when the computing capac-
ity of a field cloudlet is not enough to handle the loads from its
corresponding mobile users.

Lingen et al. [134] focus on a unified approach for computing
in fog and cloud computing. They argue that fog computing and
cloud computing should not be complementary paradigms, but
instead should be fused together. As a result, through the authors’
architecture, compute nodes in the fog and cloud have the same
architecture, and resources are managed in a unified way. The
architecture is extended from the European Telecommunications
Standards Institute (ETSI)’s standardized reference architecture for
NVF management and orchestration (MANO).
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4.4 Frameworks and Programming Models:
Concepts and Frameworks using Fog

Several studies utilized the concept of fog computing to propose
new concepts, ideas, and frameworks based on fog computing.

4.4.1 Vehicular Fog Computing. The authors in [172, 176] proposed
the idea of vehicular fog computing (VFC) by utilizing vehicles
as the infrastructures for communication and computation. VFC
takes advantage of a dynamic group of vehicles to help increase
computational power and decrease latency issues. Different from
the vehicular cloud computing, the proposed VFC supports geo-
distribution, local decision making, and real-time load-balancing.
Moreover, VFC depends on the collaboration of near-located vehi-
cles, instead of relying on the remote servers, which reduces the
deployment costs and delay.

An architecture for VFC is presented in [176] and is comprised of
three layers: the application and services layer, the policy manage-
ment layer, and the abstraction layer. The application and services
layer offers a variety of real-time applications as well as new ser-
vices to users, whereas the policy management layer is responsible
for allocating resources to the tasks and handling basic issues such
as monitoring system state dynamically. The abstraction layer is
responsible for managing, provisioning, and interfacing with the
physical resources and for the security and privacy of the VFC ar-
chitecture. The benefits, architecture, use cases, and potential issues
of VFC are presented in [178]. The authors proposed a high-level
architecture of vehicular fog computing, which comprises of three
types of entities, namely smart vehicles as the data generation layer,
roadside units/fog nodes as the fog layer, and cloud servers as the
cloud layer.

Similar to VFC, unmanned aerial vehicles (UAVs) have been
considered as means to provide computing capabilities [186]. In this
model, UAVs act as fog nodes and provide computing capabilities
with enhanced coverage for IoT nodes. Similarly, the concept of
vehicular micro clouds based on map information is introduced,
and, by a simulation study, investigated in [183]. Vehicular micro
clouds are virtual edge servers and are essentially clusters of cars
that help to aggregate and preprocess data that is transferred to the
cloud.

The study in [177] argues that cloud and fog computing using
the current mobile networks may not be ideally suited to provide
the desired levels of QoS for moving electric vehicles in vehicle-to-
grid (V2G) services. They propose a hybrid computing model called
“Foud,” in which the cloud and fog come together and are made
available to the V2G systems. In the proposed model, the cloud
allows virtualized computing, storage, and network resources to be
available to the V2G system entities, whereas the fog temporarily
integrates the stationary and mobile computing resources located
at the edge of V2G networks to expand the computing capacity.

4.4.2 Beyond Conventional Fog Nodes. Prazeres et al. [173] pro-
posed a new paradigm called fog of things (FoT) which uses fog
computing platforms for the IoT. The authors note that, in the pro-
posed FoT, IoT services are defined at the edge of the network and
are distributed through message and service-oriented middleware.
Additionally, fog of things is self-organized, consists of FoT devices,
FoT gateways, and FoT servers, and can deliver IoT services in a

distributed manner. With the described FoT paradigm, the authors
further propose a platform for the actual implementation of the
FoT paradigm. The authors in [185] propose human-driven edge
computing (HEC) as a new model to ease the provisioning and to
extend the coverage of traditional fixed MEC solutions by utilizing
devices that humans carry.

The study in [175] looks at the latency issues that may be expe-
rienced by delay-sensitive IoT applications due to the geographical
distances between the physical IoT devices and the data centers.
The authors consider the mobile IoT federation as a service (MIFaaS)
paradigm that leverages the pool of devices managed by individual
cloud providers as a whole in order to help support delay-sensitive
applications. The network model considered is a cellular IoT envi-
ronment with multiple LTE femtocells as the network edge nodes
that supports the MIFaaS paradigm.

4.4.3 Fog for Transparent Computing. The paper [179] examines
the question of how to leverage transparent computing to build scal-
able IoT platforms and proposes a tailored, transparent computing
architecture for IoT applications. Transparent computing eliminates
the dependency of hardware and software and allows the provision-
ing of cross-platform and on-demand services on lightweight IoT
devices. The proposed architecture consists of several layers - end
user layer, edge server layer, core network layer, cloud layer, and
the management and interface layer. The end user layer consists of
a variety of IoT devices, and the edge server layer is responsible for
distributing computing, control, and storage functions to end user
devices at the edge of the network. The core network layer is the
core of the Internet, and the cloud layer is composed of a cluster of
servers with massive computing and storage resources.

4.4.4 Volunteer Edge Computing. Researchers from the University
of Minnesota studied the possibility of using volunteer resources
near the edge for both computing and storage, and proposed Nebula.
Some existing systems that exploit volunteer edge computing and
data sharing are Grid and peer-to-peer systems such as BitTorrent,
BOINC [436], and SETI@home [437]. While these volunteer plat-
forms either are for compute-intensive applications (such as BOINC
and SETI), or file-sharing systems (e.g., BitTorrent), Nebula supports
distributed data-intensive applications through a close interaction
between compute and storage resources [182]. Nebula utilizes edge
resources for in-situ data-intensive computing, through location-
aware data and computation placement, replication, and recovery.

4.4.5 Path Computing. Path computing is paradigm based on the
fog computing paradigm, where a multi-tier cloud architecture is
deployed over the geographic span of the network. Path comput-
ing provides storage and compute resources along a succession of
data centers of increasing size, located between the IoT devices
and the cloud data centers, and enables the deployment of a multi-
level hierarchy of data centers along the path that traffic follows
[184]. The authors in [184] propose path computing and Cloud-
Path (a platform for path computing). CloudPath enables dynamic
installation of light-weight stateless functions, and a distributed
eventual consistent storage system. CloudPath also automatically
migrates application data across data centers to minimize latency
and bandwidth usage.
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Figure 9: Our three-layer architecture for IoT-fog-cloud ecosystem.

4.4.6 Fog Nodes as IoT Hubs. A proposed application of fog nodes
to allow for the interoperability of heterogeneous IoT devices is
presented in [171]. These specialized fog nodes are referred to as
“IoT Hubs.” IoT devices have different computational power and
different energy requirements; thus they are restricted to different
communication protocols. The IoT Hub serves as a bridge between
all the different physical networks and then merges them all using
an all-IP network.

4.5 Frameworks and Programming Models:
Programming Models and Data Modeling

In this subsection, we survey the studies that introduce and propose
programming models or data modeling tools for fog computing.

4.5.1 Distributed Data Modeling and Frameworks. With the rise of
IoT, the demand for distributed big data analytics follows; however,
data is rarely shared between stakeholders due to resource, security,
and privacy concerns. Zhang et al. [194] proposed a new program-
ming model, called Firework, that takes advantage of fog computing
to enable safe and reliable distributed data sharing between stake-
holders. Firework merges geographically distributed data through
the creation of virtually shared data views that end users can access
via interfaces defined by the data owners. An example use case of
Firework proposed by Zhang et al. is the shared data from security
cameras. Security cameras from different sources in a common
geographical location can be a part of a single Firework instance.
Police departments can then request access to a specific footage
at a particular time from the datasets in the Firework instance to
track a person or object of interest.

One fundamental question in fog computing is the distribution
of tasks between fog nodes and the cloud. How should the workload
be balanced? Should the user be able to choose the balance? If yes,

how so? The authors in [98] propose the design of WM-FOG, a
flexible software architecture that allows developers to customize
policies regarding the workflow. WM-FOG allows the developer to
define the synchronization policy, to choose how much data is sent
to the back-end cloud and how much data is sent to the fog node.

The study in [198] focuses on the distributed deployment of
process-aware IoT applications. The authors propose a mechanism
to design a distributed IoT application in one place and annotate
the different components of the application which are supposed to
be deployed at different edge nodes with their location information.
After defining deployment locations, the model identifies applica-
tion fragments which need to be deployed in different locations,
and annotates each fragment with the deployment location. It then
decomposes the process-aware IoT application into a set of frag-
ments based on the annotated locations. Crystal [205] provides an
abstraction for fault-tolerant and distributed fog application devel-
opment. A fog application using Crystal can take full advantage
of location transparency, self-healing, auto-scaling, and mobility
support.

4.5.2 Fog ProgrammingModels. The paper [107] studiedQoS-aware
application deployment in fog infrastructure from the programming
perspective. They present a prototype to support application de-
ployment in the IoT-fog-cloud scenario3. As a future direction, one
could consider other QoS attributes and include cost information
to get a richer classification of eligible fog deployments. Moreover,
one could account for multiple and multi-tenant deployments on
the same fog infrastructure. Renart et al. proposed an edge-based
programming framework that enables users to define data-driven
reactive behaviors based on the content and source of data streams

3Available at https://github.com/di-unipi-socc/FogTorch

18



All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

[202]. Users define how data stream must be processed on the edge
based on their content and the location of the data source.

Saurez et al. propose Foglets, a programming model that fa-
cilitates distributed programming across fog nodes [197]. Foglets
provides APIs for spatio-temporal data abstraction for storing and
retrieving application-generated data on the local nodes. Through
the Foglets API, Foglets processes are set for a certain geospatial
region and Foglets manages the application components on the Fog
nodes. Foglets is implemented through container-based visualiza-
tion. The Foglets API takes into account QoS and load balancing
when migrating persistent (stateful) data between fog nodes.

4.5.3 Fog Software Stack for Android. The authors in [195] have de-
veloped a software stack for Android to implement fog computing
by using smartphones as fog nodes. To do this, several challenges
need to be considered. For example, mobile operating systems typi-
cally do not have priorities when dealing with memory allocation,
it is hard to track the resources used by each app, and it is difficult
to ensure adaptability with current software. The proposed soft-
ware stack is split into four components, each handling the above
challenges.

4.5.4 PaaS for Fog. Current platform as a service (PaaS) models
are intended for traditional cloud applications that are not latency-
sensitive nor large-scale. However, using fog computing can be
difficult due to the orchestration of highly dynamic and heteroge-
neous fog resources. Hong et al. [199] propose a PaaS model called
Mobile Fog that provides a programming abstraction and allows
applications to easily use fog resources while supporting dynamic
scaling at runtime. The Mobile Fog communication API is com-
posed of event handlers that must be implemented and standard
functions that can be called by the application. The same code can
be run on a different device like smartphones, vehicles, or cameras;
the developer only needs to write the code once.

Similarly, the authors in [132] have proposed a PaaS architec-
ture for automating application provisioning in hybrid fog/cloud
environment. To extend existing PaaS, the authors used Cloud
Foundry droplets (an open-source PaaS service), Docker contain-
ers, and REST to provide interactions between PaaS and the fog.
This enabled their architecture to provide development, deploy-
ment, and management phases of hybrid cloud/fog applications. In
the proposed architecture, the controller exposes an API for PaaS
users to allocate resources for their applications in the deployment
phase. The Cloud Foundry droplets are responsible for running the
applications in the management phase.

4.5.5 Service Modeling. Lingen et al. [134] used the YANG mod-
eling language to model fog services and devices, which allows
for better resource orchestration and system design. In addition,
modeling services and devices using YANG allows the authors to
transform service intention into service instantiation in their ar-
chitecture. The authors then break down the complexity of service
modeling for reuse and building higher-level services for better over-
all service management. Through the YANG modeling language,
the authors in [135] are able to effectively model IoT services de-
scription for their proposed controller to handle a large volume of
data. By using the YANG modeling language, the controller can
optimally allocate resources across multiple networks.

4.6 Design and Planning: Infrastructure Design
Network planning and design of fog networks is an important
research topic, and yet not many studies are performed in this area.
This is due to lack of standardized protocols and definitions for
fog in general. Nevertheless, there are some early efforts, and we
discuss them in this subsection. The authors of [214] propose a
framework for cloudlet-based network design and planning. The
goal of the study is to design a network based on time division
multiplexed passive optical networks (TDM-PON) to optimize the
network infrastructure cost while satisfying latency constraints.
Fan et al. address the problem of placing the cloudlets to minimize
the deployment cost of cloudlet providers and to minimize the end-
to-end delay of user requests [210]. Since the total deployment cost
of a cloudlet provider depends on the location of cloudlets and the
amount of resources for cloudlets, cloudlet providers must take
into account both the end-to-end delay of user requests and the
deployment cost.

4.6.1 Virtualization-based Infrastructure. The paper [213] addresses
the tradeoff between computing and communication and propose
an architecture based on F-RAN. The F-RAN-based architecture
consists of radio access equipment, F-RAN nodes that provide the
computing resources, end devices, and an F-RAN controller that
is in charge of receiving service requests and distributing tasks to
fog nodes. The authors observe that this architecture can meet the
demands of ultra-low latency applications by relying on front-haul
wireless communications and distributing computation tasks to
multiple F-RAN nodes near the end users.

Fog networks can be implemented by SDN and virtualization to
reduce the management costs, and to improve the scalability and
resource utilization. The authors in [130] propose an integrated
network architecture for software-defined and virtualized radio
access networks with fog computing. The proposed architecture
is hierarchical and has two control levels: the higher level that is
the SDN controller and the lower layer that is the local controller,
which could be collocated with fog nodes. The SDN controller
instructs the local controllers how to process specific applications
or requests. The authors further introduce a SaaS called OpenPine
that enables virtualization at the network level and user control of
network operation.

4.6.2 Capacity Planning. The authors of [216] address the ques-
tions of where the edge data centers must be located and how
much compute capacity needs to be allocated to each DC for cost-
effectiveness while also satisfying the bandwidth and performance
requirements of applications. They conclude that adding edge layer
data centers results in high-cost savings for network-intensive ap-
plications while adding an intermediate data center close to the
root data center is beneficial for medium to low demand compute-
intensive applications. Noreikis et al. improve edge resource uti-
lization by taking advantage of network resources such as GPUs
in addition to CPUs [211]. Their study includes initial capacity
planning in edge nodes to meet QoS requirements.
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Table 5: Objectives of the papers and their corresponding explanation.

Objective Explanation Example

QoS
The proposed scheme deals with improving the Quality of Service
or quality of experience (e.g., by minimizing or controlling latency
or success rate) in the fog.

Algorithms for enabling real-time applications, migration engines,
task offloading, dynamic fog service provisioning.

Cost The work considers cost parameters, such as operational cost or
capital cost, in the proposed scheme.

Cost-aware replica placement, cost estimation or capacity planning
for designing a fog network.

Energy The authors analyze the energy consumption or power in the
paper.

Energy-aware computation offloading, energy-aware mobility
management, federation of constrained devices.

Bandwidth (efficiency) The paper discusses and proposes algorithms that affect
bandwidth and throughput using fog computing.

Fog resource sharing, in-network processing, edge analytics,
capacity planning for designing a fog network.

Security
Security and privacy aspects of fog computing are considered in
these studies. These include vulnerabilities, security mechanisms,
privacy issues, and security protocols (e.g.authentication).

Anomaly detection using fog, location privacy, authentication
schemes for fog nodes.

Foundation The fundamental and foundations of fog computing are discussed
in these papers.

Surveys, standards, reference architectures, reference frameworks,
new concepts based on fog.

RAS

Reliability, Availability, Survivability. The proposed scheme
improves the reliability, availability or survivability of the fog, or
uses fog to provide/improve the reliability, availability or
survivability, in the event of a network/node failure.

Survivable replica placement, availability analysis of fog services,
availability-aware VM placement.

Mobility The paper considers the mobility of IoT devices or fog nodes. Mobility-aware fog node placement, service migration based on
mobility. mobility-aware service placement.

Scalability The proposed scheme can efficiently scale to the large magnitude
of IoT networks.

Edge analytics, scalable IoT node management, computation
offloading and task assignment (not per task).

Heterogeneity
The paper discusses heterogeneity or proposes frameworks that
handle heterogeneity of devices. The algorithms and frameworks
in the paper do not assume any particular type of node or network.

Cloud of things, computation offloading among fog nodes,
federation of fog nodes or IoT nodes.

Management
The paper proposes management, monitoring, or federation
schemes, where fog nodes, (or IoT nodes) are managed, monitored
or federated using some method of management (e.g., SDN).

SDN-enabled control of fog nodes, fog operating system,
orchestration of IoT services on fog nodes, orchestration of fog
nodes.

Programmability The proposed framework is a programming language,
programming framework or data modeling for fog computing.

Fog YANG models, distributed data flow for fog, data modeling and
labeling.

4.7 Design and Planning: Resource Analysis
and Estimation

As many publications on fog computing highlight the importance
of this technology for ubiquitous access, service provisioning, and
service discovery, several studies also focus on the resource pricing,
estimation, and analysis of fog computing. In this subsection, we
describe these studies.

4.7.1 Fog Resource Pricing. In fog computing, fog service providers
aim to offer their services to their customers as close as possi-
ble to the customers’ locations. On the other hand, infrastructure
providers try to maximize their infrastructure utility by renting
their edge resources to the cloud/fog service providers. An attempt
to model the edge resource pricing and auction between service and
content providers and edge infrastructure providers is described in
[113]. Aazam and Huh in [221] formulated an estimation for pricing
of fog services based on CPU, memory, storage, and bandwidth.
Their pricing model also includes incentivized pricing for active

customers and takes into account fog device mobility and customer
history to determine a more fair price.

4.7.2 Fog Energy Estimation. Centralized data centers consume a
significant amount of energy compared to small distributed servers,
or nano data centers. Jalali et al. identify applications that are more
energy-efficient when implemented on nano data centers than cen-
tralized data centers [23]. In their models, Jalali et al. use a “flow-
based” energy consumption model for equipment shared by many
users and services, while for network equipment close to end-users,
the authors use a “time-based” energy consumption model based
on the amount of time the equipment needs to provide access to
services. The authors conclude the best energy savings with nano
data centers is in applications that generate and distribute a large
quantity of data near end-users that is not frequently accessed (e.g.,
local video surveillance in homes).

Similar to the above study, the study in [222] focuses on the
energy consumption of IoT applications using both fog and cloud.
To increase the power efficiency of IoT applications, Jalali et al.
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propose the use of both fog and microgrids [222]. In their paper, the
authors find that if a centralized grid provides power, fog computing
is more energy efficient if there is little computation to be done
with the data. However, cloud computing is more efficient if high
data processing is required.

4.7.3 Fog Resource Estimation. The allocated resources to fog nodes
must be elastic, scalable, and dynamic, because heterogeneous IoT
nodes forming IoT networks are highly dynamic, both spatially and
temporally. To address this challenge, the authors in [223] propose
an analytical model that analyzes the required fog resources for
some offered IoT workload and scales fog nodes according to in-
coming IoT workloads. Dynamic scaling of fog nodes is scaling up
or down allocated resources according to the incoming IoT work-
load. Ideally, when the workload is high, more fog nodes (or more
resources on the fog nodes) are provisioned, whereas when the
workload is low, it may be possible to free up some fog nodes or
release the allocated fog resources.

Similarly, the authors in [224] take a close look at server uti-
lization. Specifically, the paper studies the relationship between
the extent to which MEC is deployed and the resulting average
server utilization and latency. The metric for latency is defined as
the distance between the base stations and the servers processing
the traffic, and the efficiency metric for server deployment and
utilization is defined as the ratio between the average and peak
traffic processed by the servers.

4.7.4 Estimating Load and Response Time. Fog computing can re-
duce the web response times of modern websites by enabling the
generation of dynamic web contents at edge nodes close to end
users. In [225], the authors proposed a simple formula to estimate
the lower bound of this reduction of response time. Moreover, they
measured the response times of about 1000 popular web pages from
12 locations across the world to evaluate whether edge computing
is suitable for offering dynamic web content. Based on their experi-
ments, edge computing can reduce web responses across the world
except in North America and Europe where the round-trip times
are considerably short. In [226], a location-aware load prediction
for edge data centers is proposed. For each edge data center, the
load is predicted using its historical load time series and those of
its neighboring data centers.

4.8 Resource Management and Provisioning:
Service Provisioning (Orchestration and
Migration)

Due to the limited storage capacity of fog nodes, proper resource
utilization of fog nodes has a significant impact on their perfor-
mance.

4.8.1 Service Provisioning. The study in [248] focuses on dynamic
service provisioning in edge clouds from a theoretical perspective.
The model in the study captures the limited capacity of fog nodes,
the unknown arrival process of requests, the cost of forwarding re-
quests to the remote cloud, and the cost of onloading a new service
on a fog node. In a simulation study, the authors of [126] suggest
a conceptual framework for fog resource provisioning. They in-
troduce the concept of “fog cell,” which is a software component
running on fog devices that controls and monitors a particular

group of IoT devices. Using this and other related concepts, they
model orchestration of IoT devices using a hierarchical cloud/fog re-
source control and provide a suitable resource provisioning solution
for distributing tasks among them. Recently, researchers in [169]
present the Red Wedding Problem, a real-world scenario motivating
the need for stateful computations at the edge. They implement
a prototype database for operation at the edge that addresses the
issues presented in the Red Wedding Problem.

4.8.2 Service Migration. The authors of [232] study the service mi-
gration problem in edge clouds, in response to user movement and
network performance. The solution is based on based on Markov
Decision Process (MDP) that considers network state and server
response time in making migration decisions. In [249], it is sug-
gested to use multi-path TCP for live migration of VMs across edge
nodes to improve VM migration time and network transparency of
applications.

Farris et al. define two integer linear programming (ILP) opti-
mization schemes to minimize QoE degradation and cost of replica
deployment in service replication for MEC [234]. They distinguish
classic reactive service migration from proactive migration: reactive
service migration is dependent on user movement and accommo-
dates this movement by locating the most suitable target edge and
then starting the process for migration; however, proactive service
migration deploys multiple replicas of the user service to neigh-
boring nodes. As a future direction, one could study path-oriented
proactive migration and trade-offs between the probability of reac-
tive migration and the cost of service replications.

4.8.3 Orchestration Frameworks. To align deployed applications
in distributed systems, Wen et al. underscore the importance of fog
orchestration [24]. The authors develop methodologies for studying
fog orchestration systems with a focus on challenges in reliability,
scalability, and security for fog orchestration. Another effort for ser-
vice orchestration is the work of the authors in [233] called “Foggy.”
Foggy is a framework for continuous and automated application
deployment in the fog. It facilitates dynamic resource provisioning
and automated IoT application deployment in fog architectures.
Foggy assumes that IoT nodes can host Docker containers. De-
velopers push their containerized application package and their
requirement specification to an orchestration center, which is a
central authority that is in charge of monitoring each IoT node’s
resources and deploying services on IoT nodes.

The authors in [239] propose a service-oriented middleware that
aims to distribute services over fog nodes for scalability, and with
the help of SDN, performs QoS-aware orchestration by scheduling
flows between services. The architecture proposed mainly con-
sists of two components - the service-oriented middleware and
the distributed service orchestration engine. The service-oriented
middleware abstracts device functionalities, allowing all the nodes
to act as service hosting platforms, whereas the distributed ser-
vice orchestration performs orchestration. Similarly, the authors
in [132] proposed a Platform as a service (PaaS) architecture for
automating application provisioning and orchestration in hybrid
fog/cloud environments.

4.8.4 Virtualization Technologies for Fog Computing. The study
in [236] explores container-oriented operational frameworks for
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IoT from the perspective of how lightweight virtualization can
help exploit the resources offered by IoT devices. The authors pro-
pose to use Docker-based service provisioning in wireless resource-
constrained IoT environments. To analyze and identify the impact
of Docker management, the authors consider two use cases, based
on which they propose two distinct approaches to container-based
IoT service provisioning.

In their proposed framework called FADES, researchers from
TUM advertise the use of unikernels (single-purpose standalone
kernels) to isolate and embed application logic into bootable images
[245]. FADES is a modular orchestration architecture for handling
heavy computation from IoT devices to edge nodes. Each FADES
unit supervises a subset of IoT devices. When needed, FADES pulls
the necessary application/service from the cloud to handle the
requests of IoT devices. Similar to MCC, IoT devices resort to com-
putational resources of edge nodes to handle heavy computations.
In this sense, FADES is an orchestration framework for pulling
required services for IoT devices from the cloud.

4.8.5 Provisioning of Resource-limited IoT Devices. To satisfy QoS
requirements in an edge cloud built by single-board devices (e.g.,
Raspberry Pi), the University of Cambridge researchers in [240]
present a platform, PiCasso4, for service deployment based on the
service specifications and the status of the resources at the host-
ing devices. The architecture of PiCasso consists of edge nodes
and a service orchestrator. Similar to PiCasso, an edge node re-
source management framework with provisioning and deployment
capability is introduced in [242]. The framework integrates a fog
node with a cloud server and supports auto-scaling to manage edge
resources dynamically. The framework is developed for resource-
limited environments and hence is shown to be simple. The authors
then validate the proposed framework on a location-aware and
latency-sensitive online game use case (PokeMon Go).

4.8.6 Handover. Handover issues of mobile IoT devices between
access points should be considered in designing orchestration or
migration frameworks. In a recent study, it is shown that VM hand-
off in the edge across cloudlets is more than an order of magnitude
faster than live migration methods currently used in data centers,
for typical WAN bandwidths [250]. The authors in [243] observe
that traditional mobile network handover mechanisms cannot han-
dle the demands of fog computation resources and the low-latency
requirements of mobile IoT applications. The authors propose Fol-
low Me Fog framework to guarantee service continuity and reduce
latency during handovers. The key idea proposed is to continuously
monitor the received signal strength of the fog nodes at the mobile
IoT device, and to trigger pre-migration of computation jobs before
disconnecting the IoT device from the existing fog node. Compara-
bly, the authors in [244] use Docker container migration between
edge nodes for service handoff.

4.9 Resource Management and Provisioning:
Placement (VM and Service)

In this subsection, we survey research articles that address place-
ment problems (e.g., service placement, VM placement, content
placement, and caching) in fog networks.
4Available at https://github.com/AdL1398/PiCasso

4.9.1 Application (Service) Placement. Gu et al. developed a lin-
ear programming-based two-phase heuristic algorithm to compute
an optimal solution for service placement in fog computing med-
ical cyber-physical systems [255]. The authors formulate service
placement problem based on user association, task distribution, VM
placement, and QoS constraints. Souza et al. also formulate service
allocation in a combined fog-cloud ecosystem in [256]. The authors
in [274] address the problem of multi-component application place-
ment on fog nodes. Each application could be modeled as a graph,
where each node is a component of the application, and the edges
indicate the communication between them.

The researchers in [258] investigate the problem of optimal re-
source provisioning and fog service placement while taking into
account their QoS requirements. The authors define the fog service
placement problem and formulate it as an integer linear program-
ming problem with the objective of maximizing the utilization of
the fog landscape. As a research direction, we motivate the reader
to consider other constraints such as the availability of resources,
the reliability of services, and the cost of resources. Similarly, an
uncoordinated strategy for service placement in edge-clouds is
studied in [273].

Virtual network functions (VNFs) are network services that pro-
vide some network functionality and provide flexible ways to de-
ploy network services [438]. The study in [257] focuses on the
QoS-aware VNF placement and provisioning problem over an edge-
cloud infrastructure. They propose a strategy to determine the
required resources and placement of VNFs in the two-tier carrier
cloud infrastructure while considering SLA requirements. They
formulate the VNF placement problem as Mixed Integer Linear
Program (MILP).

The paper [260] addresses the problem of allocating computing
resources (specifically, containers) in edge networks. The authors
introduce a contract model between cloud service providers and
edge infrastructure providers for resource sharing. Based on the
contract, service providers can provision their services on the micro
data centers owned by edge infrastructure provides. This essentially
decouples the management of the edge infrastructures with that of
the service placement performed by service providers.

4.9.2 VM Placement. The paper [261] analyzes the VM placement
problem in fog radio access networks (F-RANs) with the objective
to minimize the overall back-haul traffic. The back-haul traffic is
incurred in two ways: the VM replication and data transmission
to the cloud. When a user connects to a fog node and requests an
application service, there is no back-haul bandwidth consumption
if the fog node has the application VM. Otherwise, the VM has to
be replicated on the fog node, or the request is forwarded to the
cloud. They formulate the replica-based VM placement problem by
considering the computing and storage of fog nodes, the user service
constraint, as well as the edge bandwidth constraint. Similarly, the
study [265] addresses the issues of launching VM replicas and
migrating them for latency-sensitive, computation and memory
intensive applications in a MEC environment.

Guaranteeing availability in a fog network needs a careful de-
sign, as fog nodes are presumed to be less reliable than always-
provisioned cloud data centers. The authors in [268] study VM
placement in MEC with respect to availability. The goal is to find
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placement strategies for different types of multi-access edge appli-
cations with low cost while satisfying the availability requirements
of an application. Comparably, the traffic-aware VM placement
problem in the cloudlet mesh with the objective of minimizing the
total inter-cloudlet communication traffic is studied in [272]. The
study in [264] proposes a messaging method with low overhead
that notifies fog nodes about nearby replica nodes so that the replica
nodes can be used for handling requests instead of depending on
cloud storage.

4.9.3 Caching. Analogous to service placement, caching data on
fog nodes can also considerably reduces the data retrieval delay
compared to solely relying on a central data store. In [267], the au-
thors propose a cache grouping mechanism for managing content
in edge clouds. They also present a cache coherency mechanism
to ensure data consistency within a cache group. Another study
on cache placement is discussed in [149], where cache placement
is done via the MEC paradigm in wireless networks to satisfy the
demands of automated driving services. The service requests sub-
mitted by autonomous vehicles are first processed by the edge
server to determine if they can be processed locally or need to be
handed to the remote cloud.

In their recent study, the authors of [269] study the cache place-
ment problem in F-RANs and consider flexible physical-layer trans-
mission schemes. They develop centralized and distributed cache
placement strategies to minimize users’ average download delay
while meeting the fog storage capacity constraints. Similar to cache
placement, the cloudlet placement problem is of prominent im-
portance. [270] introduces the concept of movable cloudlets and
explores the problem of how to cost-effectively deploy these mov-
able cloudlets to enhance cloud services for dynamic context-aware
mobile applications. To this end, the authors propose an adaptive
cloudlet placement method for mobile applications. Another use of
edge caching may be for 360-degree vedeo streaming. Streaming
high-quality 360-degree video is challenging due to high bandwidth
and low latency requirements [439]. In [440] a probabilistic model
of common field of view (FoV) for 360-degree video based on pre-
vious users’ viewing histories to improve caching performance at
the edge is introduced.

4.10 Resource Management and Provisioning:
Control and Monitoring

4.10.1 Control and Monitoring of Fog-based Networks. The tradi-
tional network architecture was not designed with high levels of
scalability of IoT devices in mind. Tomovic et al. [127] and Xu et
al. [281] propose a control and monitoring framework for the fog-
based IoT network that utilizes SDN. Using SDN allows a system
to know the requirements of the network and all of the resources it
has, giving it the ability to handle large waves of data [443]. In the
proposed model, a global view of the network allows for easy fog
orchestration. The SDN controller controls fog orchestration as it
can see all the available fog nodes and their resources such as RAM,
storage, and software applications. The authors of [281] use the
message queuing telemetry transport (MQTT) protocol in addition
to SDN to enable effective and reliable delivery of IoT data. The
SDN controller is a fog node that is the broker for MQTT clients.

The study [137] explores the idea of implementing a wide area
SDN controller for fog and cloud while also taking into consider-
ation the problem of minimizing the overall carbon footprint of
data centers. The paper [280] proposed an SDN-enabled wireless
fog architecture by combining Openflow and distributed wireless
protocols. The architecture deploys a hybrid SDN control plane
to address the limitations of both the centralized and distributed
SDN controllers. In case of a controller failure or overhead, ad-
ditional controllers are added at runtime as required to balance
the network performance. Likewise, the study [9] motivates how
edge computing can benefit from SDN, proposes a collaboration
model between SDN and edge computing through practical archi-
tectures, and shows that SDN can feasibly operate within the edge
computing infrastructures.

4.10.2 Virtualization for Control and Monitoring. Some studies
suggest bringing virtualization of network services to the edge
devices. The authors in [238] argue that the heavy footprint of
today’s virtualization platforms is responsible for preventing them
from being utilized at the network edge. They present Glasgow Net-
work Functions (GNF), a container-based NFV platform that runs
and orchestrates lightweight VNFs. They show that the presented
framework has low VNF instantiation time and memory require-
ments as compared with other existing virtualization technologies,
making it suited to run on a variety of edge devices. On the other
hand, the TelcoFog controller [135] extends the functionalities of an
NFV orchestrator for dynamic deployment of virtualized functions.
The main component in the TelcoFog controller is the Resource
Orchestration, which defines and enforces orchestration logic based
on fog node status provided by the Resource monitoring module.

4.10.3 Control and Monitoring Other Networks via Fog. Vehicular
ad hoc networks (VANETs) face many issues such as unreliable
connectivity, delay constraints, and poor scalability. The authors
of [279] suggest that using principles of fog computing along with
SDN could solve many of the current problems with VANETs. In
their architecture, the vehicles, which act as end-users, are SDN
wireless nodes. These wireless nodes send their data to Road Side
Units (RSUs) which are installed alongside road systems. Once
the data is sent to an RSU, it is then sent to an RSU controller
(RSUC) which is a cluster of RSUs connected by broadband. The
RSUC is capable of data storage and processing. Finally, the RSUCs
communicate with the SDN controller, which has global knowledge
of the VANET system.

4.11 Operation: Scheduling, offloading, and
Load Balancing

In this subsection, we survey the studies that address job scheduling,
job dispatching, task offloading, and load balancing in fog networks.

4.11.1 Offline vs. Online. It is worth mentioning that we discuss
several candidate papers among all of the papers in this area since
there are a large number of papers in this area and most of them
study “centralized” (referred to as offline) scheduling, dispatching,
offloading, and load balancing. In centralized settings, either full
information about the tasks, network, or nodes is known; or a cen-
tralized entity decides where each task could be sent. Even though
there is a large body of research in this area, a more challenging
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Wen et al. [24] ✓ ✓

Jayaraman et al. [333] ✓ ✓ ✓ ✓

Zao et al. [334] ✓

Li et al. [133] ✓
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Jalali et al. [23] ✓ ✓

Jalali et al. [222] ✓

Peng et al. [27] ✓ ✓

Bruneo et al. [381] ✓
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Abdelwahab et al. [61] ✓ ✓ ✓
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van Lingen et al. [134] ✓ ✓ ✓ ✓ ✓
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24



All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

Paper Q
oS

Co
st

En
er
gy

Ba
nd

w
id
th

Se
cu
rit
y

Fo
un

da
tio

n

RA
S

M
ob
ili
ty

Sc
al
ab
ili
ty

H
et
er
og

en
ei
ty

M
an
ag
em

en
t

Pr
og

ra
m
m
ab
ili
ty

Hu et al. [337] ✓ ✓
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Li et al. [282] ✓ ✓ ✓

Wang et al. [242] ✓ ✓ ✓ ✓

Tao et al. [177] ✓ ✓ ✓ ✓

Nan et al. [140] ✓ ✓ ✓

Azimi et al. [340] ✓ ✓ ✓ ✓
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Zhao et al. [265] ✓ ✓ ✓ ✓

Chang et al. [305] ✓ ✓

Tinini et al. [266] ✓ ✓ ✓ ✓

Shen et al. [341] ✓ ✓ ✓
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Li et al. [143] ✓ ✓ ✓ ✓

Yu et al. [144] ✓ ✓

Basudan et al. [423] ✓ ✓ ✓

Nikoloudakis et al. [343] ✓ ✓
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Guevara et al. [74] ✓

Desikan et al. [307] ✓ ✓ ✓

Shih et al. [213] ✓ ✓ ✓ ✓ ✓

Zhang et al. [145] ✓ ✓ ✓ ✓ ✓ ✓

Ren et al. [179] ✓ ✓ ✓ ✓

Zhang et al. [146] ✓ ✓ ✓

Lorenzo et al. [147] ✓ ✓ ✓ ✓ ✓

Chen et al. [434] ✓

Tang and He [308] ✓ ✓

Grewe et al. [100] ✓ ✓

Mohan et al. [267] ✓ ✓ ✓

Cozzolino et al. [245] ✓ ✓ ✓ ✓

Giri et al. [427] ✓ ✓

Mondal et al. [214] ✓ ✓ ✓ ✓ ✓

Zhu and Huang [268] ✓ ✓ ✓ ✓

Malandrino et al. [224] ✓ ✓

Lyu et al. [90] ✓ ✓ ✓ ✓ ✓

Suganuma et al. [148] ✓ ✓

Yuan et al. [149] ✓ ✓ ✓ ✓

Cho et al. [322] ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [269] ✓ ✓ ✓ ✓

Kiani and Ansari [110] ✓ ✓ ✓ ✓ ✓

Sun and Ansari [246] ✓ ✓ ✓ ✓ ✓ ✓

Xiang et al. [270] ✓ ✓

Kamiyama et al. [225] ✓ ✓

Perera et al. [101] ✓

Pahl et al. [401] ✓ ✓

Lin and Shen [323] ✓ ✓ ✓ ✓ ✓
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Schäfer et al. [324] ✓ ✓

Teerapittayanon et al. [344] ✓ ✓

Li et al. [111] ✓ ✓ ✓ ✓

Abdallah et al. [402] ✓ ✓ ✓

Hoque et al. [403] ✓

He et al. [428] ✓

Drolia et al. [271] ✓ ✓ ✓ ✓

Gedeon et al. [325] ✓ ✓ ✓

Yousefpour et al. [88] ✓ ✓ ✓

Vallati et al. [215] ✓ ✓

Farris et al. [112] ✓ ✓ ✓ ✓

Kamath et al. [345] ✓ ✓

Lebre et al. [150] ✓ ✓ ✓ ✓ ✓

Bellavista et al. [87] ✓ ✓

Lopes et al. [385] ✓ ✓ ✓ ✓

Ismail et al. [404] ✓ ✓ ✓

Confais et al. [386] ✓ ✓ ✓

Hong et al. [346] ✓ ✓ ✓

Santoro et al. [405] ✓ ✓

Li and Nabrzyski [272] ✓ ✓ ✓

Khan and Freitag [387] ✓

Ascigil et al. [273] ✓ ✓ ✓

Abderrahim et al. [151] ✓ ✓ ✓ ✓

Mehta et al. [216] ✓ ✓ ✓ ✓

Garcia-Perez and Merino [152] ✓ ✓ ✓ ✓ ✓ ✓

Dhakal and Ramakrishnan [347] ✓

Le Tan et al. [226] ✓ ✓ ✓

Sonmez et al. [388] ✓ ✓ ✓

Alonso-Monsalve et al. [180] ✓ ✓ ✓ ✓ ✓

Beraldi et al. [309] ✓ ✓

Le et al. [153] ✓ ✓ ✓ ✓

Baresi et al. [406] ✓ ✓

Lujic et al. [154] ✓ ✓ ✓

Li et al. [181] ✓ ✓ ✓

Mangiante et al. [348] ✓ ✓ ✓

Tärneberg et al. [155] ✓ ✓ ✓ ✓ ✓

Shekhar et al. [156] ✓ ✓ ✓ ✓

Jonathan et al. [310] ✓ ✓ ✓ ✓

Gosain et al. [407] ✓ ✓ ✓ ✓ ✓

Bhardwaj et al. [66] ✓ ✓ ✓ ✓ ✓ ✓

Renart et al. [202] ✓ ✓ ✓ ✓

Echeverría et al. [389] ✓ ✓ ✓

Ni et al. [349] ✓ ✓ ✓ ✓

Helmer et al. [408] ✓ ✓ ✓ ✓ ✓

Morshed et al. [68] ✓ ✓

Prasad et al. [113] ✓ ✓

Li et al. [350] ✓ ✓ ✓

Yoon et al. [351] ✓ ✓ ✓ ✓

Zhang et al. [247] ✓ ✓ ✓ ✓ ✓ ✓

Manzoni et al. [75] ✓ ✓ ✓ ✓

Bhardwaj et al. [352] ✓ ✓ ✓ ✓

Jang et al. [353] ✓ ✓ ✓

Naas et al. [157] ✓ ✓ ✓

Qi et al. [354] ✓ ✓

Sajjad et al. [355] ✓ ✓ ✓ ✓

Jonathan et al. [76] ✓ ✓ ✓

Lee et al. [356] ✓ ✓ ✓

Singh et al. [311] ✓ ✓ ✓ ✓ ✓

Mei et al. [357] ✓

Fricker et al. [312] ✓ ✓

Varshney and Simmhan [85] ✓

Hao et al. [51] ✓ ✓ ✓ ✓

Chen and Xu [313] ✓ ✓ ✓ ✓ ✓ ✓
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Weinman [77] ✓

Hou et al. [248] ✓ ✓ ✓

Yang et al. [158] ✓ ✓ ✓ ✓

Habak et al. [64] ✓ ✓ ✓ ✓

Bahreini and Grosu [274] ✓ ✓ ✓ ✓ ✓

Ryden et al. [182] ✓ ✓ ✓ ✓ ✓

Hadžić et al. [409] ✓

Hagenauer et al. [183] ✓ ✓ ✓ ✓ ✓

Ni et al. [102] ✓ ✓

Drolia et al. [358] ✓ ✓ ✓

Gia et al. [359] ✓ ✓ ✓ ✓

Marín-Tordera et al. [70] ✓ ✓

Chaufournier et al. [249] ✓ ✓ ✓ ✓ ✓ ✓

Mortazavi et al. [184] ✓ ✓ ✓ ✓ ✓

Chen et al. [410] ✓ ✓

Chen et al. [360] ✓

Tang et al. [159] ✓ ✓ ✓ ✓

Ha et al. [250] ✓ ✓ ✓ ✓

Sha et al. [429] ✓ ✓ ✓

Kar et al. [361] ✓ ✓ ✓

Yu et al. [314] ✓ ✓ ✓ ✓

Mahmud et al. [103] ✓

Hu et al. [86] ✓

Kimovski et al. [442] ✓ ✓ ✓

Naas et al. [390] ✓ ✓ ✓ ✓

Lujic et al. [362] ✓ ✓

Su et al. [203] ✓ ✓ ✓ ✓

Buzachis et al. [411] ✓ ✓

Nguyen et al. [227] ✓ ✓

Bailas et al. [412] ✓

Machen et al. [251] ✓ ✓ ✓ ✓

Bellavista et al. [185] ✓ ✓

He et al. [160] ✓ ✓ ✓ ✓ ✓

Cheng et al. [204] ✓ ✓ ✓ ✓ ✓

Zhang et al. [104] ✓ ✓

Abbas et al. [81] ✓

Ali et al. [363] ✓ ✓

Abeshu and Chilamkurti [364] ✓ ✓ ✓

Ceselli et al. [217] ✓ ✓ ✓ ✓

Amadeo et al. [326] ✓ ✓

Cao et al. [365] ✓ ✓ ✓

Shirazi et al. [105] ✓ ✓

Plumb and Stutsman [413] ✓ ✓

Oteafy and Hassanein [161] ✓

Muhammad et al. [366] ✓ ✓

Tanganelli et al. [327] ✓ ✓ ✓

Li et al. [162] ✓ ✓ ✓ ✓ ✓

Sharma et al. [283] ✓ ✓ ✓ ✓ ✓

Jia et al. [218] ✓ ✓ ✓

Cui et al. [54] ✓ ✓ ✓ ✓ ✓ ✓

Shen et al. [430] ✓

Rausch et al. [284] ✓ ✓ ✓ ✓

Bi et al. [285] ✓ ✓ ✓ ✓

Yaghmaee and Leon-Garcia [367] ✓ ✓ ✓ ✓ ✓ ✓

Rimal et al. [219] ✓ ✓ ✓ ✓ ✓

Puthal et al. [163] ✓ ✓ ✓ ✓

Lyu et al. [315] ✓ ✓ ✓

Bavier et al. [414] ✓ ✓ ✓

Lyu et al. [316] ✓ ✓ ✓ ✓ ✓

He et al. [431] ✓

Jeong et al. [186] ✓ ✓ ✓

Li et al. [317] ✓ ✓ ✓ ✓

Carrega et al. [415] ✓ ✓ ✓ ✓
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Rafetseder et al. [391] ✓ ✓ ✓

Jeong et al. [205] ✓ ✓ ✓ ✓ ✓

Varadi et al. [114] ✓ ✓

Chen and Hao [286] ✓ ✓ ✓ ✓

Acharya and Gaur [20] ✓

Raagaard et al. [164] ✓ ✓ ✓

Anglano et al. [228] ✓ ✓ ✓

Yannuzzi et al. [115] ✓

Nasr et al. [187] ✓ ✓

Moustafa et al. [188] ✓

Lera et al. [275] ✓ ✓

Gupta and Ramachandran [206] ✓ ✓ ✓ ✓ ✓

Mayer et al. [392] ✓ ✓

Pahl et al. [165] ✓

Ahn et al. [368] ✓ ✓

Harchol et al. [116] ✓ ✓ ✓

Mohan et al. [166] ✓ ✓ ✓ ✓ ✓

Xu et al. [189] ✓ ✓ ✓ ✓ ✓

Wang et al. [369] ✓ ✓

Kastanakis et al. [276] ✓ ✓ ✓

Zhang et al. [416] ✓ ✓

Silvestro et al. [167] ✓ ✓ ✓ ✓ ✓

Németh et al. [252] ✓ ✓ ✓

Körner et al. [393] ✓ ✓ ✓ ✓ ✓

Zhao et al. [207] ✓ ✓ ✓

Wang et al. [277] ✓ ✓ ✓ ✓ ✓

Hao et al. [318] ✓ ✓ ✓

Corneo and Gunningberg [370] ✓ ✓

Wen et al. [190] ✓ ✓ ✓ ✓

Noghabi et al. [208] ✓ ✓ ✓ ✓

Bhardwaj et al. [371] ✓ ✓

Ge and Wang [372] ✓ ✓

Okada et al. [328] ✓ ✓ ✓

Giang et al. [394] ✓

Mao et al. [373] ✓ ✓

Nguyen et al. [319] ✓ ✓ ✓ ✓

Biookaghazadeh et al. [435] ✓ ✓ ✓ ✓

Garg et al. [168] ✓ ✓ ✓ ✓ ✓

Li et al. [374] ✓ ✓ ✓

Coutinho et al. [395] ✓ ✓ ✓

Mortazavi et al. [253] ✓ ✓ ✓ ✓ ✓ ✓

Elias et al. [375] ✓ ✓

Sathiaseelan and Secker [191] ✓ ✓ ✓ ✓

Zang et al. [117] ✓ ✓

Hung et al. [278] ✓ ✓ ✓ ✓

Deyannis et al. [320] ✓ ✓ ✓

Jeong et al. [321] ✓ ✓

Psaras et al. [118] ✓ ✓

Kim et al. [119] ✓ ✓ ✓

Yekta and Lu [432] ✓ ✓ ✓

Cherrueau et al. [120] ✓

Venanzi et al. [329] ✓

Anglano et al. [229] ✓ ✓ ✓ ✓ ✓

Akrivopoulos et al. [417] ✓ ✓ ✓

Meiklejohn et al. [169] ✓ ✓ ✓ ✓

Ran et al. [376] ✓ ✓ ✓ ✓ ✓

Li et al. [170] ✓ ✓

Kim et al. [433] ✓

Gedeon et al. [220] ✓ ✓

Talagala et al. [287] ✓ ✓

Liu et al. [377] ✓ ✓ ✓

Zeng et al. [230] ✓ ✓ ✓ ✓

Skarin et al. [418] ✓ ✓ ✓
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Syamkumar et al. [121] ✓ ✓

Benson et al. [192] ✓ ✓ ✓ ✓

Liu et al. [396] ✓ ✓ ✓ ✓

Gupta et al. [209] ✓ ✓ ✓ ✓ ✓

Bruschi et al. [254] ✓ ✓ ✓ ✓
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Tao and Li [378] ✓ ✓ ✓

Chang et al. [122] ✓ ✓

Carmo et al. [193] ✓ ✓ ✓

Xu et al. [379] ✓ ✓ ✓ ✓ ✓

Abdelwahab et al. [123] ✓ ✓ ✓ ✓

setting is the “distributed” version of the problem (referred to as
online) where there is no central authority knowledgeable of the
tasks, nor is the full information about the tasks, network, or nodes
known. Note that, in the online scenario, information on each job
is unknown before its release.

4.11.2 Cooperative Offloading and Load Sharing. The authors in
[88] propose a delay-minimizing collaboration and offloading policy
for fog-capable devices that aims to reduce the service delay for IoT
applications. They also develop an analytical model to evaluate the
policy and show how the proposed framework helps to reduce IoT
service delay. In [310], the authors proposed a locality-aware work-
load sharing scheme for mobile edge computing environments.
In the proposed scheme, each node is aware of its neighboring
nodes and their current workloads and utilizes such information
for workload sharing in case of high workload. Another distributed
latency-aware task processing and offloading model is proposed in
the study [307]. In this model, gateways, which act as fog nodes,
dynamically exchange their processing and storage capability in-
formation. Based on this information, fog nodes probabilistically
forward their task to their neighboring fog nodes or the cloud,
when there is a limit in local processing or storage.

The authors in [358] argue that offloading computation-intensive
tasks, such as those of image recognition, to fog nodes is not always
a right decision. The last-mile network latency due to the wireless
communication may not be tolerable for some applications; also,
the fog nodes themselves may become the bottleneck of processing
delay, if many tasks are offloaded to them. Hence, they propose to
use the available resources on edge devices and propose Precog,
a collaborative scheme between edge devices and fog nodes to
prefetch parts of the trained models of image recognition onto
the device. Comparably, the authors in [313] introduce the notion
of edge computing coalition, which is a collaborative edge-based
resource pool of small cell base stations with cloud computing
capabilities to serve computation requests. The collaborative edge
computing scheme accommodates more computation workloads
by offloading workload from overloaded nodes to lightly-loaded
nodes. The coalition framework is based on coalition game theory,
which follows a payment-based incentive mechanism to form stable
groups, and which builds a social trust network for managing risks
among edge nodes.

The authors in [309] propose and formulate a cooperative of-
floading policy between two edge data centers for load balancing.
The model is based on a simple rule: if a service request arrives at
one data center when its buffer is full, the request is offloaded to
the other cooperating data center and served by that data center.
On the other hand, the study in [312] analyzes an offloading policy

between multiple fog data centers installed at the edge of the net-
work in a ring topology. The study also quantitatively models and
estimates the gain achieved via cooperation between neighboring
fog data centers in a ring topology.

4.11.3 Offloading in Dynamic/Uncertain Fog Networks. Lee et al.
study the problem of fog network formation and task distribution
in a hybrid cloud-fog architecture [296]. Their framework differs
from other studies on task allocation for fog nodes by accounting
for the dynamic formation of a fog network. Since the locations
fog node neighbors is an uncertainty, the authors use an online
approach for quickly obtaining information of the fog network
and minimizing computational latency accordingly. Their online k-
secretary algorithm allows a given fog node to observe its unknown
environment and determine how to offload computational tasks.
A recent study that investigates the computation offloading in an
uncertain wireless environment is the work of authors in [308].
The authors study the computation offloading when the mobile
users’ behavior is subjective and may deviate from rationality. In
this framework, which is modeled as a non-cooperative game, users
compete for limited communication resources.

4.11.4 Fog Offloading for Robotics. The study [292] proposes a
scheme to estimate the processing time of robotic tasks in fog
networks. They use OS profiling tools to roughly measure the
execution times of runtime task on heterogeneous hardware. Based
on the estimated computation time, the robot can decide (using
a basic offloading condition) whether to do the computation task
locally or offload to a nearby fog node. The authors also profile
conventional robotic runtime algorithms to estimate computational
times more accurately. To do so, they estimate processing time
of multiple image, video, and map processing algorithms using
OpenCV. In their other study, the authors investigate the problem
of computation offloading in fog computing [293]. An optimization
formulation is presented conserving the computation, energy, and
communication overheads when making an offloading decision.
Networked robotics is proposed as the motivating example, where
the objective is to perform a computationally intensive task over
the collected data by robots, to actuate in a short time.

4.11.5 Privacy-aware Offloading and Scheduling. Privacy protec-
tion is also a challenge when offloading tasks in fog networks. The
authors in [304] consider a system in which the mobile device
generates tasks and the objective of the mobile device is to find
a scheduling policy that minimizes expected long-term cost. The
authors observe that in their formulated problem, the privacy issues
of location and usage pattern are ignored. To this end, they propose
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a heuristic privacy metric that jointly quantifies location and usage
pattern.

4.11.6 Energy-aware Offloading and Scheduling. Deng et al. fo-
cused on investigating power consumption and network delay
tradeoff in cloud-fog services by developing a computation-based
framework and workload scheduling [124]. Similarly, Xiao et al.
study the workload offloading problem in fog networks [295]. In
their scheme, fog nodes in their scheme can process or offload to
other fog nodes part of the workload that was initially sent to the
cloud. Fog nodes decide to either offload the workload to neighbors
or locally process it, under a given power constraint. The authors
study the tradeoff between quality of service and power efficiency
when considering fog offloading. They propose a distributed opti-
mization algorithm that solves the problem of optimal workload
allocation to maximize QoS in terms of response time.

4.11.7 Quality of Results in Offloading. The authors of [111] pro-
pose a systematic optimization framework with the key idea that
relaxing Quality of Results (QoR) in applications where a perfect
result is not always necessary. Relaxing QoR alleviates the required
computation workload and enables a significant reduction of re-
sponse time and energy consumption. For the proposed framework,
the authors consider a mobile edge environment where the com-
puting tasks can be divided, offloaded, and processed in parallel
by distributed edge nodes. Thus, the goal of the framework is to
minimize both response time and energy consumption by jointly
optimizing the selection of edge nodes’ QoR levels and task assign-
ments to all edges.

4.11.8 Scalability Issues in Task Scheduling and Dispatching. The
problem of task scheduling and dispatching in edge clouds has been
studied extensively by several researchers in the area [231, 262, 288,
303, 311]. One example is the work of Tan et al. [303], where they
formulate the problem of online job scheduling and dispatching in
edge clouds. According to this study, the job scheduling problem is
to determine which task should be served first, and the job dispatch-
ing problem is to determine where to send the job, based on latency,
required resources, etc. As a future direction for task scheduling
and dispatching, it is suggested to investigate the scalability of the
proposed frameworks. Often, the framework fails to scale to the
large magnitude of edge cloud networks, since, for example, when
an IoT device generates a job, it has to be sent to all edge cloud
nodes, or all edge cloud nodes need to calculate some function and
inform the IoT device about the suitable edge cloud. Often, this has
to be done for every job of every IoT device; hence the scalability
and communication overhead are the two major issues associated
with the proposed algorithms.

4.12 Operation: Resource Discovery
In this subsection, we summarize the studies that have investigated
the problem of resource discovery or selection in fog computing.
By “resources,” we mean resources in the fog networks such as IoT
nodes, fog nodes, nearby devices, fog services, etc.

4.12.1 IoT Resource Discovery and Selection. The goal in IoT re-
source discovery and selection is to provide applications with global
discovery and access of IoT resources irrespective of their location

[327]. In order to preserve the distributed nature of the federation
of IoT devices, in [327] the service is realized by IoT gateways (fog
nodes) through a P2P overlay. The service is implemented using a
distributed hash table (DHT), where information about all available
IoT resources is stored for global lookup store.

ACACIA [322] uses context awareness and employs LTE-direct
for service discovery, which is a proximity service discovery tech-
nique using D2D communication in IoT. In [61], edge computing
nodes are used as cloud agents near the edge to discover, virtu-
alize, and form a cloud network of IoT devices, named Cloud of
Things. This network is a geographically distributed infrastructure,
in which cloud agents continuously discover resources of IoT de-
vices and pool them as cloud resources. Similarly, in FocusStack
[138], IoT devices can be selected and orchestrated using their
geolocation information. Comparably, in [444] a semantic-based
and space-efficient routing protocol for IoT service discovery is
proposed.

4.12.2 Fog Resource Discovery and Selection. The paper [325] exam-
ines the problem of discovering surrogates, which are micro-clouds,
fog nodes, or cloudlets, used by client devices to offload compu-
tation tasks in a fog computing environment. In order to enable
the discovery and selection of available surrogates, the authors
propose a brokering mechanism in which available surrogates ad-
vertise themselves to the broker. The broker receives client requests
and considers a number of attributes such as network informa-
tion, hardware capabilities, and distance to find the best available
surrogate for the client. The proposed mechanism is implemented
on off-the-shelf home routers. The authors in [196] discuss a com-
prehensive architecture for resource (container) selection in fog
nano data centers. They introduced a 5-layered framework for task
scheduling over containers, which selects a container based on
energy-efficiency to meet the users’ SLA requirements. Container
selection and task scheduling occur through a cooperative game
between special middle entities called brokers. For container sched-
uling and migration, Docker is used, which also helps schedule
tasks over containers.

4.13 Operation: Applications
In this subsection, we survey the papers related to fog computing
that have used the concept of fog to develop and propose new
applications in other domains.

4.13.1 Data Stream Processing. Cloud-based data stream process-
ing applications are not able to keep up with geo-distributed IoT sys-
tems. Cheng et al. designed GeeLytics, an edge analytics platform, to
process real-time data streams from network edges and in the cloud
[336]. To process IoT data streams, the authors design their platform
to account for unstructured stream data that is constantly gener-
ated, mobility and colocation of sensors, low latency, heterogeneity,
and ubiquity. Jayaraman et al. propose a context-aware real-time
data analytics platform, CARDAP, to enable energy-efficient data
delivery strategies in mobile crowdsourcing applications [333].

Microsoft Research in their paper [335] has developed a real-
time video analytics system which relies on edge computing. The
proposed system processes live camera feeds from the traffic in-
tersections in the city of Bellevue, Washington, and raises alerts
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on anomalous traffic patterns. The system could be expanded to
operate in other cities and can identify dangerous traffic patterns
to reduce traffic casualties eventually. Similarly, Yang in the article
[332] describes general model and architecture of fog data stream
processing and analytics. The framework in [331] enables fog nodes
to support query evaluations, specifically with weather data, in a
federated environment in which high data volume is expected. The
authors in their study [361] propose the use of vehicles as fog
nodes, to process live video streams from the in-vehicle dashboard-
mounted cameras; unlike smartphones that are constrained in com-
pute resources, vehicles can support efficient computing platforms.

4.13.2 Bandwidth Savings. The authors of [349] propose a fog-
based crowdsourcing framework for precise task allocation and
secure data deduplication. Fog nodes in their scheme can detect
and erase the repeated data in crowdsourced reports without de-
ducing any information. Fog helps in data size reduction by erasing
duplicate data. The researchers from Georgia Institute of Technol-
ogy built AppFlux, a novel mobile app streaming system based on
edge-clouds, for fast and efficient delivery of mobile apps and their
updates [352]. This approach also relieves users from having to
deal with app updates and could potentially save bytes on their
mobile plans. EdgeCourier proposed in [51] uses edge computing to
address the bandwidth issues caused by cloud-based office applica-
tions. In a measurement study, they show that contemporary cloud
storage office services (e.g., word editor, or spreadsheet) consume
unnecessary bandwidth since they transmit the whole file when an
update happens. They design an effective office-document-aware
incremental sync approach, and EdgeCourier, that uses edge-hosted
unikernels for low-bandwidth mobile document synchronization
in cloud storage services.

4.13.3 Data Analytics. Another study to make use of edge com-
puting is the work in [354] that introduces a Wi-Fi-based in-bus
monitoring and tracking system that observes mobile devices and
provides analytics about people both within and outside the vehi-
cle. The system can further use the data that is collected by the
vehicle-mounted wireless device to track passenger movements,
detect pedestrian flows, and evaluate how external factors impact
human mobility, which provides useful analytics to transit opera-
tors. Another use of resources near the edge and edge computing
is in vehicular applications [356], shown by the researchers of the
University of Michigan. Edge computing is used to do some analysis
on the user’s interactions with the car’s application, to determine
what priority the current interaction should have and how much
of the driver’s attention should be demanded.

4.13.4 Healthcare. Several studies have considered the use of fog
in healthcare [340, 359]. In [359] the authors introduce processing
ECG features using fog nodes, which results in low-bandwidth and
low-latency data processing. In [340], the authors present a hier-
archical fog-assisted computing architecture for remote IoT-based
patient monitoring systems. The hierarchical computing scheme
enables partitioning of analytics and decision making between
the fog and the cloud and deploys. The idea is based on mapping
the heavy training procedures in the cloud while outsourcing the
trained hypothesis to the fog nodes periodically, and exploiting the
knowledge at the edge.

Through the utilization of the MQTT publish/subscribe protocol
and fog computing paradigm, Zao et al. implemented a pervasive
neuroimaging system to demonstrate the benefits of fog computing
[334]. They used mobile devices to act as an interface, fog servers
for brain state classification, and cloud servers for further brain
state analysis and archiving. Thus, the authors were able to take
advantage of fog computing to classify brain states in real-time.
Other researchers introduced the use of fog computing in mea-
suring ultraviolet (UV) radiation via smartphones [357]. Due to
the sensitivity of CMOS sensors in mobile phone cameras to UV,
the researchers have found that mobile phones have potential to
measure UV radiation. Through fog servers, UV measurement re-
sults can be gathered and improved to provide more accurate UV
measurements.

4.13.5 Video andGameAnalytics. Video analytics are either computation-
intensive or bandwidth hungry. Even with mobile cloud computing,
there are still issues of unpredictable latency, unexpected service
outage, and limited bandwidth. To address this, the authors in [306]
present an edge computing platform called Latency-Aware Video
Edge Analytics (LAVEA) to provide low-latency video analytics at
places closer to the users. Cloud gaming comes with disadvantages
such as long response latency, user coverage, QoS, and bandwidth
cost. The authors in [323] explore approaches to deal with the
challenges of thin-client massively multiplayer online gaming and
propose a lightweight fog-based system called CloudFog. Fog is
formed by idle machines that are close to the end-users and connect
to the cloud. In CloudFog, the intensive computation of the new
game state of the virtual world is conducted in the cloud which
then sends update messages to fog nodes. The fog nodes update
the virtual world, render game videos, and stream videos to the
players.

4.13.6 Image and Face Recognition. The authors of [271] focus
on image recognition based mobile applications that are latency
sensitive and are soft real-time in nature. They present the idea
of using an edge server as a cache with computing resources. The
authors show that using an edge server as a typical web cache does
not reduce latencies much, and therefore propose Cachier. Cachier
is an image recognition cache that leverages the spatiotemporal
locality of requests by storing appropriate requests locally and
minimizes expected latency by dynamically adjusting its cache size.

Traditionally, face recognition includes face identification and
resolution, and requires performing computation-intensive tasks in
the cloud and transmitting raw facial images to the cloud, which is
bandwidth intensive. The authors in [342] observe that migrating
part of the resolution tasks to fog nodes and transmitting only the
feature value to the cloud can significantly reduce network traffic.
To this end, they propose fog-based face identification and face
resolution frameworks.

4.13.7 Artificial Intelligence and Machine Learning. [345] presents
edge stochastic gradient descent (EdgeSGD), a decentralized SGD
algorithm for solving linear regression problem with the objective
of estimating the feature vector on the edge node. EdgeSGD is used
to predict subsurface seismic anomaly via real-time imaging. The
edge nodes form a mesh network, and the algorithm obtains the
image by collaboratively optimizing the objective function over the
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edge network. The proposed algorithm is entirely decentralized and
does not require synchronization. Comparably, an edge-assisted
adaptive deep learning framework for mobile object recognition is
introduced in [350].

4.14 Software and Tools
In this subsection, we describe the software and tools that are
developed for fog computing.

4.14.1 Simulation and Emulation. Gupta et al. focused on imple-
menting resource management techniques in fog computing to
measure latency and throughput, and implemented iFogSim5, a
Java-based tool for simulation of fog networks [380]. iFogSim re-
lies on CloudSim, a cloud simulation tool that enables modeling
and simulation of cloud systems and application provisioning envi-
ronments. iFogSim supports cloud-only placement and edge-ward
placement to demonstrate the scalability of fog-based applications.
An extension6 of iFogSim to support mobility through migration of
VMs between cloudlets is implemented in [385]. Another extension
is proposed in [390] to simulate scenarios with strategies aiming to
optimize data placement7.

Similarly, the authors in [388] propose another edge comput-
ing simulation environment, EdgeCloudSim8, that considers both
network and computational resources and covers all aspects of
edge computing simulation modeling, including network and com-
putational modeling. Similar to iFogSim, EdgeCloudSim relies on
CloudSim as well. Additionally, EdgeCloudSim provides a modular
architecture to provide support for a variety of critical function-
ality and supports simulating multi-tier scenarios where multiple
edge servers are running in coordination with upper layer cloud
solutions.

Nevertheless, compared to simulation, emulation supports both
repeatable and controllable experiments with real applications. The
authors in [392] propose their software implementation of Emu-
Fog9, an extensible emulation framework for fog computing. Emu-
Fog enables the user to design network topologies, embed fog nodes
in the topology, and run Docker-based applications on those nodes
connected by an emulated network. Themodules of EmuFog are eas-
ily extensible, although EmuFog provides a default implementation
for them [392]. Another emulation environment for fog computing
is FogBed10 that is based on Mininet and Docker [395].

4.14.2 Edge Computing Middleware. One of the software imple-
mentations for fog is developed by the researchers of the University
of Wisconsin, named ParaDrop [383]. ParaDrop is an edge com-
puting platform that runs on WiFi access points to enable edge
computing at the extreme edge of the network. Developers can use
this edge computing platform to deploy services, which should be
based on Docker containers, on the WiFi access points. ParaDrop is
available as an open source project11, along with the documents and
tutorials. ParaDrop has three components: ParaDrop access points,

5Available at https://github.com/cloudslab/ifogsim
6Available at http://www.lrc.ic.unicamp.br/fogcomputing/
7Available at https://github.com/medislam/iFogSimWithDataPlacement
8Available at https://github.com/CagataySonmez/EdgeCloudSim
9Available at https://github.com/emufog/emufog
10Available at https://github.com/fogbed/fogbed
11Available at https://paradrop.org

the ParaDrop controller, and the ParaDrop API. Using ParaDrop
API, cloud services could be dynamically deployed on access points
using the ParaDrop controller, which is a back-end controller that
developers interact with to develop their desired services.

Analogous to offloading computation and task to either cloud or
fog, a group of researchers from Georgia Institute of Technology
argue the utility of “onloading” cloud services to the edge of the
network to address the bandwidth and latency challenges of IoT net-
works [66]. They view the cyber-foraging (e.g., code/task offloading)
research domain as client-based methodology, while their proposed
approach is “backend-based” cyber foraging or onloading. They de-
fine onloading specific services (e.g., caching, or aggregating traffic)
near end-users, with a goal of minimizing user-perceived latency.
They propose AirBox, a software platform based on containers for
fast, scalable and secure onloading of edge services.

Bruneo et al. designed Stack4Things12, a framework based on
OpenStack IaaS middleware that adopts a cloud-oriented model
for IoT resource provisioning [381]. Their framework allows in-
jected code at runtime through the cloud, which they define as
“contextualization.” Similarly, the authors in [150] revise OpenStack
Nova service for compatibility with fog/edge systems, by leverag-
ing a distributed key/value store instead of the centralized SQL
backend13.

One commercial edge computing platform for IoT gateways is the
Everyware Software Framework recently developed by Eurotech14.
Similarly, EdgeX Foundry15 is a vendor-neutral open source project
building a common open framework for edge computing. UC Berke-
ley researchers also implemented a generic and platform-agnostic
open source edge computing framework16 called Open Carrier
Interface (OCI) [393].

4.14.3 Edge-based Data Analytics. Xu et al. proposed edge ana-
lytics as a service (EAaaS) to promote a lightweight, scalable, and
low-latency service model for IoT devices [382]. The primary moti-
vations for EAaaS are the lack of desired real-time responsiveness,
a pricy pay-as-you-go model, and data privacy concerns associated
with cloud-centered IoT analytic services. EAaaS provides RESTful
interfaces for outside applications, an edge analytics agent on the
gateway side, and an edge analytics SDK to allow users to develop
methods for integrating with devices. EAaaS is provided as a part
of IBM Watson IoT platform on IBM Bluemix Cloud. In their work,
the authors plan to provide software upgrade capabilities as part
of the existing RESTful services and utilize machine learning for
existing analytic models. Comparably, SpanEdge17 provides a pro-
gramming environment that allows programmers to specify parts
of their applications that need to be close to the data source, without
knowledge of the number of data sources and their geographical
distributions [355].

4.14.4 Distributed Deep Learning. Harvard University researchers
recently proposed a framework and its software implementation18
for distributed deep neural networks (DDNN), that can span over
12Available at http://stack4things.unime.it
13More information and code available at http://beyondtheclouds.github.io
14Available at https://esf.eurotech.com
15Available at https://www.edgexfoundry.org
16Available at https://github.com/marckoerner/oci
17Available at https://github.com/Telolets/StormOnEdge
18Available at https://github.com/kunglab/ddnn
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cloud, fog, and end devices [344]. The framework map sections
of a deep neural network (DNN) onto a distributed computing
graph. While the resulting DDNN allows for deep inferences in
the cloud, it accommodates fast and localized inference via some
shallow layers of the DNN at the edge and end devices. DDNN
inherently enhances sensor fusion, data privacy, and fault tolerance
for DNN applications. According to this study, DDNN can reduce
the communication overhead by a factor of 20x, compared with the
traditional method of sending raw sensor data to the cloud.

4.14.5 Trust Establishment. A traditional solution for establishing
trust between two entities is to create and share credentials in
advance, and then to use a third-party to validate the credentials of
the nodes. Nevertheless, the characteristics of some environments
(e.g., environments with intermittent or no Internet connectivity),
do not consistently provide access to third-party authority. A team
of researchers from CMU designed and implemented a system for
establishing a trusted identity solution based on cloudlets [389].
The authors discuss a software implementation19 of an in-the-field
solution for establishing trusted identities in disconnected edge
environments.

4.15 Testbeds and Experiments
Several studies in the fog computing research area implement
testbeds or conduct experiments to verify the concepts and ideas
experimentally. In this subsection, we look at such studies.

4.15.1 Where is The Edge? One might ask “Where is the edge of
the network?” Edge computing or MEC as general concepts do not
restrict the specific location of the edge compute and storage nodes,
and most researchers assume they are “at the edge of the network”
or “in the users’ proximity.” A recent measurement study by Bell
Labs researchers [409] shed light on actual values of delay and
provided a realistic picture of LTE deployments for edge computing.
They found that the first hop (UE to base station) imposes latency
of 10-12 ms and adds a sawtooth pattern with an amplitude of about
40 ms. They also found that in some cases the latency of the first
aggregation stage dominates the end-to-end latency.

4.15.2 Experiments with Single-board Computers as Enablers of
Fog Computing. In [401], the authors proposed a container-based
architecture for edge-based PaaS, in which applications are or-
chestrated between nodes at the edge. To show that the proposed
architecture can meet the requirements of edge computing, such
as cost-efficiency, and low power consumption, the researchers
implemented their solution on a cluster of Raspberry Pi (RPi) de-
vices, which are resource-limited devices. Researchers in [408] have
looked at the problem of bringing cloud services to rural and remote
areas in developing countries, where building large and expensive
data centers may not be feasible. They propose a hardware platform
based on a cluster of single-board computer (e.g., RPi) for making
cloudlet nodes in rural and remote areas that offer cloud services.

Elkhatib et al. [398] propose the use of micro-clouds, which
are small deployable computational infrastructures, to deploy fog
networks. A device as small as an RPi can be used to create a

19Available at https://github.com/SEI-TTG/pycloud/wiki

micro-cloud. The authors note that, unlike mini data centers, micro-
clouds are portable, easy to set up, low cost, and can be deployed in
rougher environments. They run tests to compare the traditional
cloud architecture to the micro-clouds and concluded that micro-
clouds are more suitable for scenarios where the cloud server is
far away, suffering from high latency. Besides, the boot time of
micro-clouds is significantly faster than cloud. New RPi models are
capable of booting up 40% faster than an Amazon EC2.

4.15.3 Experiments with Lightweight Virtualization Technologies as
Enablers of Fog Computing. In [403], the authors evaluated three
container orchestration tools, namely Google Kubernetes, Docker
Swarm and Apache Marathon, to study their applicability for IoT
networks. To do so, they defined three requirements that an effective
container orchestration solution for such an environment must
meet. First, adding/removing a new fog node to a cluster must be
seamless, requiring a minimal software package installation on
that node. Second, scheduling an application to a specific fog node
must be possible. Third, all available hardware resources on a fog
node must be accessible by the container on top of it. Therefore,
they proposed a new container orchestration framework based on
Docker Swarm for fog computing environment that can meet all of
the requirements above.

Similarly, The paper [404] presents an evaluation of Docker as a
container to host applications at the edge for enabling edge com-
puting. The evaluation is based on four fundamental requirements
for edge computing, namely, deployment and termination, resource
and service management, fault tolerance, and caching. To evaluate
and examine Docker as a candidate for edge computing, a testbed
with a data center and three edge sites is simulated, and the four
requirements of edge are evaluated in this testbed. Authors in [445]
study how lightweight virtualization technologies, such as contain-
ers and unikernels, can be integrated with edge architectures and
be suitable for IoT pervasive environments. They present three IoT
use cases, in which lightweight virtualization solutions can bring
benefits and desirable design flexibility.

4.15.4 Experiments with High Computation Applications. Interac-
tive wearable cognitive assistance application is often considered a
killer app for edge computing and cloudlets [410]. In an empirical
study on latency [410], the performance of several such applica-
tions is evaluated. The authors in [406] proposed a new serverless
architecture for MEC environments, in which mobile app compu-
tation is offloaded among edge nodes to reach high throughput
while keeping the latency low. To evaluate their architecture, they
studied a mobile augmented reality application, in which captured
frames from camera must be analyzed to detect the point of interest
of objects. The authors in their recent study [413] investigate the
benefits game developers may obtain by exploring emerging edge
cloud technology, specifically use of Google’s Edge Network. They
demonstrate how massively multiplayer online games benefit from
this new system through simulations. Another recent experimental
study is the work in [416] where authors compare the performance
of machine learning packages on the edges, including TensorFlow,
Caffe2, MXNet, PyTorch, and TensorFlow Lite.

31



A. Yousefpour et al.

4.16 Hardware and Protocol Stack
In this subsection, we summarize the literature that introduced
specific hardware for implementation of fog computing, cloudlet,
F-RAN, etc., or that proposed a protocol stack for fog.

4.16.1 Hardware. Intel recently has released a documentation for
Fog Reference Unit, a reference design in a self-contained enclosed
chassis for testing and demonstration of fog use cases [446]. In-
tel’s Fog Reference Unit can be seen as a generic fog node. The
authors of [212] propose to use optical fiber networks with MEC
and present a generic fiber-wireless (FiWi) architecture for IoT. The
network architecture consists of two parts: the backbone network
for connecting to centralized cloud servers, and the FiWi network
for providing MEC services for IoT devices. The authors in [214]
propose the use of time division multiplexed passive optical net-
works (TDM-PON) and optical network units (ONUs) for designing
a cloudlet-based network. The architecture for fog computing in
[128] is based on the general-purpose processor (GPP) platform,
which allows the architecture for processing general and shared
resources.

In [434], the authors focus on the requirements of an industrial
IoT (IIoT) gateway with respect to heterogeneous network commu-
nication, management, big data, and other services. They describe
the advantages of using a multi-Microcontroller architecture. Their
architecture incorporates a high-speed parallel bridge controller
using a reconfigurable field programmable gate array (FPGA) to
overcome the serial communication bottlenecks in a traditional
MCU architecture. The proposed architecture of the IIoT multi-
Microcontroller gateway consists of three major modules: a master
controller for the cloud, a high-speed bridge controller for data and
instruction exchange, and slave controllers for IoT management
and database operations. The high-speed bridge controller module
is the core of the IIoT gateway and is responsible for packaging
tasks and controlling communication with the other modules.

The paper [266] proposed a Cloud-Fog Radio Access Network
(CF-RAN) by jointly considering the fog computing paradigm over
a Time and Wavelength-Division Multiplexing Passive Optical Net-
works (TWDM-PON). The proposed CF-RAN can place services
provided by the cloud onto the fog nodes by adopting NFV to
process the baseband signals sent from the RRHs. Similarly, [146]
focuses on interference mitigation, resource optimization, and mo-
bility management in F-RAN. The authors first present the system
architecture that illustrates how the various components in F-RAN,
such as macro RRHs (MRRHs), small RRHs (SRRHs), fog comput-
ing access points (F-APs), and smart user equipment (F-UE), work
together for the successful implementation of F-RAN. The MRRHs,
SRRHs and the F-APs connect to the BBU pool which supports
resource optimization and provides centralized storage and com-
munications in F-RAN.

4.16.2 Protocol Stack. The IoT hub proposed in [171] introduces
a protocol stack for an IoT gateway (e.g., fog node) that interacts
with the smart object devices using a variety of network protocols
such as IEEE 802.15.4, IEEE 802.11, or Bluetooth Low-Energy. The
job of the application layer includes service and resource discov-
ery, maintaining a resource directory, acting as an origin server,
and providing a CoAP-to-CoAP/HTTP-to-CoAP Proxy and cache.

The network and physical/link layer both work together to pro-
vide border router functionality, allowing the IoT Hub to act as a
gateway/bridge between multiple constrained networks.

Another protocol stack for fog is introduced as FogOS [200].
The authors view the entire IoT ecosystem as a computer and
utilize operating system concepts to create FogOS to manage this
abstract computer. FogOS is composed of four main layers: service
abstraction layer, application manager layer, resource manager
layer, and device abstraction layer. The role of the service and device
abstraction component is to provide a service APIs and device data
model, respectively. Resource management then pools or slices
resources of the fog and devices as needed. The applicationmanager
manages IoT applications, finds the proper edge resource for a
service request, and resources of currently running applications.

4.17 Security and Privacy
In this subsection, we discuss the studies that consider and address
security and privacy issues in fog computing or utilize fog comput-
ing to improve current security systems and protocols. In [99], the
authors discussed various privacy and security challenges in fog
computing and surveyed the existing literature addressing these
problems. Alrawis et al. [422] explain security concerns with cur-
rent IoT environments. They proposed a scheme that utilizes fog
computing to address the security issues faced in IoT environments,
specifically the distribution of certificate revocation information.
Security and privacy issues of vehicular crowdsensing (VFCS) are
discussed in [102].

4.17.1 Location Privacy. Ting et al. [428] proposed several strate-
gies that can be utilized to prevent cyber eavesdroppers from track-
ing a user’s location by observing the user’s service migrations
across edge clouds. The underlying idea is to use chaff services,
or fake services, in addition to the real services and move them
between the edge clouds to confuse eavesdroppers. The authors
showed that by carefully moving the chaff services in conjunction
with the real ones, tracking accuracy could be close to zero when the
entropy of the user movement between edge clouds is sufficiently
high.

To protect the privacy of users using applications with location-
based services, several private proximity detection algorithms exist.
However, these algorithms fall short in the vicinity range and come
with high communication and computation costs. [339] presents a
secure homomorphic protocol for private proximity detection in
applications of location-based services that addresses the drawbacks
of existing approaches. To achieve privacy in the data transmission
process, the authors propose to use a homomorphic encryption
scheme that provides fast encryption and decryption of data.

4.17.2 Data Privacy. The authors in [421] propose a privacy-preserving
protocol for vehicular road surface condition monitoring. They pro-
pose a certificate-less signcryption scheme and a data transmission
protocol for road surface condition monitoring that provides confi-
dentiality, mutual authenticity, integrity, privacy, and anonymity.
In [425], the authors proposed a new privacy-preserving scheme
based on differential privacy technology for fog computing. The
primary goal in this scheme is to prevent colluded nodes in a fog
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Table 7: Summary of challenges and future research directions

Challenge Current Limitation Research Direction or Potential Solution
Related
Features or
Objectives

Related Categories

Fog service SLA
SLAs are not defined for fog systems.
Current SLAs are defined for cloud
services or network infrastructure.

• Define new and compatible SLA for fog systems. • Design
SLA management techniques and framework for fog
computing. • Support for multi-vendor or provider SLA for
fog systems

QoS, Cost
Architectures and
Frameworks for Fog; Control
and Monitoring

Multi-objective
fog system
design

Many schemes (e.g., offloading, load
balancing) consider few objectives and
ignore other objectives.

• Propose schemes that consider multiple objectives (e.g.,
latency, bandwidth, energy) simultaneously (e.g., an efficient
task offloading scheme that considers bandwidth, waiting
time, availability, security, and energy).

QoS, Cost,
Energy,
Bandwidth

Resource Analysis and
Estimation; Scheduling,
offloading, and Load
Balancing; Testbeds and
Experiments

Bandwidth-
aware fog
system design

Few works consider bandwidth savings
through the use of fog computing, even
though one of the promising features of
fog computing is to reduce bandwidth
usage of the core.

• Need more studies on bandwidth savings through the use
of fog computing. • Perform measurement studies to capture
the actual bandwidth usage in the presence of fog.

Bandwidth

Testbeds and Experiments;
Scheduling, offloading, and
Load Balancing; Control and
Monitoring; Resource
Analysis and Estimation;
Infrastructure Design

Scalable design
of fog schemes

Many of the existing schemes and
algorithms for fog do not scale to the
magnitude of IoT networks.

• Design scalable algorithms and schemes for fog systems,
e.g., online task offloading scheme that does not consider
individual IoT nodes for decision making • Verify scalability
of the algorithm and schemes by actual implementation.

Scalability

Service Provisioning;
Placement; Scheduling,
offloading, and Load
Balancing; Applications

Mobile fog
computing

Most of the existing literature assumes fog
nodes are fixed, or focus on the mobility of
IoT devices. If fog nodes are mobile,
resource availability, offloading, and
resources provisioning will be more
challenging.

• Propose mobile fog computing, where fog nodes can move.
• Scheme for management or federation of mobile fog nodes.
• Provisioning method for mobile fog services to keep the
service always-available for IoT nodes. • Design of
mobility-aware task offloading and scheduling schemes
when fog nodes are mobile.

Mobility,
Management

Resource Discovery; Concepts
and Frameworks using Fog;
Programming Models and
Data Modeling; Service
Provisioning; Security and
Privacy; Scheduling,
offloading, and Load
Balancing

Fog resource
monitoring

Few studies address monitoring of fog
resources. Monitoring is more challenging
if multiple operators use a fog node.

•Multi-operator fog resource monitoring techniques. •
SDN-based monitoring software for resource monitoring and
resource advertisement.

Management,
programmabil-
ity

Control and Monitoring;
Software and Tools

Green fog
computing

Improving the overall energy consumption
of fog has not been well studied (literature
considered energy-aware computation
offloading, energy-aware mobility
management, and federation of IoT
devices to improve energy consumption).

• Use of energy harvesters and battery storages for IoT
devices and sensors. • Energy-aware fog node placement,
e.g., close to renewable energy resources (solar, wind, or
vibration)

Energy
Infrastructure Design;
Resource Analysis and
Estimation

Support of
high-speed users

Current communication protocols do not
support high-speed users.

• Develop fast or stateless handshake protocols for
high-speed users, e.g., users in vehicles or for automotive
communication. • Develop machine-learning-based mobility
prediction algorithms.

Mobility, RAS

Architectures and
Frameworks for Fog; Service
Provisioning; Resource
Discovery

Fog node
security

Fog nodes normally are located close to
users, e.g., at the base stations, routers, or
even at extreme network edge such as
WiFi access points. This makes their
security challenging.

• Design of physically secure fog nodes against site attacks •
Design secure hardware, safe against physical damage,
jamming, etc. • Design strong access-control policies for fog
nodes.

Security,
Heterogeneity

Security and Privacy;
Infrastructure Design;
Hardware and Protocol Stack

SDN support for
fog

SDN does not have native support for fog
computing.

• Enhancing and standardizing SDN (e.g., OpenFlow
northbound, southbound, east-west bound interface) for fog
use cases.

Foundation, pro-
grammability

Definition and Standards;
Software and Tools

Fog node site
selection

Few studies address the fog node site
selection problem, which is a design
problem for finding appropriate locations
for deploying for nodes.

• Developing fog node site selection strategies that considers
communication, storage, and computing (a communication
hotspot may not be a storage or computing hotspot). •
Considering cost in fog node site selection strategies (e.g.,
deploying fog nodes in Manhattan may be a good decision
concerning latency and bandwidth, but may not be a good
decision with respect to rental costs).

Cost, RAS, QoS,
Energy

Infrastructure Design;
Resource Analysis and
Estimation

Resilient fog
system design

Current fog networks do not consider
failure or fault in the network. Also, denial
of service (DoS) attacks are more possible
on fog nodes, since they are more
resource-constrained than cloud servers.

• Fault detection, fault prevention, and fault recovery in
fog-based networks • DoS-resilient fog system design •
Design a coordinated protection mechanism that considers
fog and cloud to guarantee availability.

RAS, Security

Control and Monitoring;
Infrastructure Design; Service
Provisioning; Security and
Privacy

Fog federation
There is no fog federation framework or
software similar to that of hybrid cloud
federation schemes.

• Design new schemes for the federation of fog nodes, across
different operating domains. • Design resource sharing
models for fog nodes from different vendors/operators •
Define new pricing models for federated fog resource
sharing schemes

Management,
programmabil-
ity

Placement; Software and
Tools; Resource Discovery.
Service Provisioning
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Challenge Current Limitation Research Direction or Potential Solution Related
Features or
Objectives

Related Categories

Trust and
authentication in
heterogeneous
fog systems

Heterogeneity of fog nodes and IoT nodes
makes the conventional trust and
authentication protocols unsuitable for fog
systems.

• Design new authentication and trust mechanisms that
could cope with heterogeneity of fog nodes and IoT nodes. •
Design authentication protocols for fog nodes of different
vendors/operators.

Heterogeneity,
Security

Definition and Standards;
Security and Privacy;
Hardware and Protocol Stack

Secure fog
offloading

Offloading tasks to fog nodes might incur
some security and privacy risks.

• Design secure and private offloading and load balancing
schemes. • A mechanism for receivers to verify the
correctness and integrity of the offloaded task.

Security, QoS Scheduling, offloading, and
Load Balancing; Security and
Privacy

PaaS for fog
computing

Lack of a PaaS for fog systems, where
developers can easily develop software
across fog, IoT, and cloud.

• Developing a PaaS for fog computing, which is transparent
to users and supports different communication- and
application-level protocols and APIs. • Developing plugins
for PaaS for different fog computing applications

programmability,
Management

Software and Tools; Service
Provisioning; Programming
Models and Data Modeling

Standardizing
fog computing

Many independent definitions for fog (and
fog-related computing paradigms) are
being proposed.

• Unanimous and universally-agreed on the definition of fog
computing.

Foundation Definition and Standards

Hardware
technologies for
fog

Most studies do not use new available
hardware or communication technologies.

• Use of new hardware and communication technologies,
such as non-volatile storage technologies, optical networks,
and FPGAs.

Scalability Hardware and Protocol Stack

network from learning the data shared by the IoT devices, thus pre-
serving their privacy. The underlying idea is to introduce artificial
noise to the data before outsourcing, such that the colluded node
cannot infer the original data by conducting statistical analysis.

A lightweight privacy-preserving data aggregation scheme for
IoT networks is proposed in [424]. The scheme enables a control
center to compute the average and variance of data collected by
various types of IoT sensors while preserving their privacy; fog
nodes and control centers cannot learn the original data collected
by devices. In this scheme, IoT devices are authenticated by the
fog nodes. Also, the scheme is fault tolerant in the sense that if
some IoT devices malfunction, the control center still can calculate
the correct average and variance of the remaining devices with-
out breaching their privacy. Similarly, for information sharing, a
lightweight privacy-preserving fog-assisted information sharing
scheme for health data collected by medical IoT devices is proposed
in [341].

4.17.3 Intrusion Detection. Although utilizing SDN switches as
fog nodes seems promising (as discussed in Section 4.10), it can
increase the security risks in SDN networks. The attacker who
compromises a fog node can also attempt to take advantage of the
SDN switch to control the network. In [282], the authors described a
man-in-the-middle attack on SDN networks relying only on the TLS
protocol to secure their control channels between SDN switches
and controllers. They also proposed a lightweight countermeasure
utilizing Bloom Filters to detect such an attempt. Fog can be used to
improve the current security system. In [426], the authors propose
a new fog-based intrusion system.

4.17.4 Secure Protocols and Secure Data Transfer. A recent study in
[427] investigates secure data transmission between IoT nodes and
fog nodes. The study analytically models a threat model and some
possible attacks; it then provides the necessary proofs to show
that the framework is secure against the discussed attacks. The
authors of [420] propose constructing leakage-resilient functional
encryption schemes for the fog that provide privacy, fine-grained
access control, and security against side channel attacks.

Identification and resolution of human subjects are crucial in
cyber-physical systems where humans are involved. Hu et al. [337]
proposed a new face identification and resolution framework that
utilizes fog computing to address bandwidth issues that arise in con-
ventional cloud-based schemes. In [337], they provided the details of
the security protocols that they devised to address the security and
privacy concerns that arise in their system, such as confidentiality
and integrity.

5 CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

In this section, we discuss the current challenges and limitations
of the research in the fog computing area, and we provide future
directions and potential starting points for those challenges. The
summary of the challenges and future research directions are in-
cluded in Table 7. Fig. 10 shows the number of research articles
in this survey that fall under each category of our taxonomy. Fig.
11 illustrates the number of research articles in this survey paper
that address/support a particular objective/feature. The number of
research articles may be an indicator of potential future research
directions.

5.0.1 Fog Service SLA. Service level agreements (SLAs) are not
currently defined for fog systems. Current SLAs that are used for
fog systems are defined for cloud services (e.g., 99.99% availability
guarantee for cloud services) or network infrastructure. Moreover, a
fog system may have multiple providers/operators and span across
multiple operating domains. A potential research direction is defin-
ing new and compatible SLA for fog systems (e.g., guaranteeing
latency and bandwidth). Additionally, designing SLA management
techniques and framework for fog computing that supports for
multi-vendor or provider is another potential direction.

5.0.2 Multi-objective Fog SystemDesign. Most of the existing schemes
that are proposed for fog systems, such as offloading, load balanc-
ing, or service provisioning, only consider few objectives (e.g., QoS,
cost) and assume other objectives do not affect the problem (e.g.,
[107, 239, 257, 295, 305]). A new research direction will be to de-
sign schemes that consider many objectives (e.g., QoS, bandwidth,
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energy, cost) simultaneously. For instance, developing an efficient
task offloading scheme that considers bandwidth, waiting time,
availability, security, and energy at the same time is a promising
direction.

5.0.3 Bandwidth-aware Fog System Design. Few studies consider
bandwidth savings through the use of fog computing (e.g., [51]),
even though one of the promising features of fog computing is
to reduce bandwidth usage in the core of the Internet. There is
a need for more research on bandwidth savings through the use
of fog computing. These studies could be measurement studies
that capture the actual bandwidth usage in the presence of fog
computing.

5.0.4 Scalable Design of Fog Schemes. Many of the existing schemes
and algorithms for fog do not scale to the magnitude of IoT net-
works, since the authors neglect scalability in their fundamental
design. We believe scalability is critical in designing fog systems;
fog systems should be scalable so that they could be implemented
in IoT networks. For instance, a scalable algorithm for fog offload-
ing is an online offloading scheme that does not need information
of individual IoT nodes for decision making (e.g., [88, 312, 313]).
We encourage researchers in the fog computing area to verify the
scalability of their proposed algorithms and schemes (e.g., by an
actual implementation).

5.0.5 Mobile Fog Computing. Most of the existing literature as-
sumes that the fog nodes are fixed, or only considers the mobility
of IoT devices (e.g., [146, 291]). Less attention has been paid to mo-
bile fog computing and how the mobile fog nodes can improve the
QoS, cost, and energy consumption. When fog nodes are mobile,
fog resource availability, resource discovery, task offloading, and
resources provisioning will be more challenging. Mobile fog com-
puting, where fog nodes can move and form new networks, is an
interesting and challenging research direction. Moreover, design-
ing a scheme for management or federation of mobile fog nodes is
another possible direction. Along with mobile fog computing, there
needs to exist new provisioning methods for mobile fog services,
such that fog services are available for IoT nodes and users. Sim-
ilarly, one could design a task offloading and scheduling scheme
when fog nodes are mobile. An early effort for mobile fog nodes
can be found in [160].

5.0.6 Fog Resource Monitoring. Few studies in the literature pro-
pose monitoring schemes for fog resources [151]. Monitoring is
useful when multiple operators use a fog node, or when a fog node
is located in a location where many users use the fog node. A possi-
ble direction is developing fog resource monitoring techniques that
support multi-operator access. Use of SDN-based monitoring soft-
ware for fog resource monitoring and fog resource advertisement
is also a promising approach.

5.0.7 Green Fog Computing. Few studies in the reviewed litera-
ture have addressed the energy criterion in their system design
(e.g. [23, 196, 294, 295, 333, 384]). Most of the studies on energy
are about energy-aware computation offloading, energy-aware mo-
bility management, and federation of IoT devices to improve the
energy consumption of fog systems. However, improving the over-
all energy consumption of fog has not been well studied. Energy

Figure 10: A bar chart showing the number of research ar-
ticles in this survey paper under each category of our pro-
posed taxonomy.

consumption of a fog network includes three major portions: (1)
energy consumption of IoT devices sending data to the fog, (2) en-
ergy consumption of the network interconnecting IoT devices and
the fog nodes, and (3) energy consumption of the fog nodes.

To reduce the energy consumption of IoT devices, use of energy
harvesters and battery storage for IoT devices and sensors are
potential research directions. Energy harvesters can improve energy
consumptions while bringing new challenges to the system, such
as uncertainty and unpredictability. In order to reduce the energy
consumption of the network interconnecting IoT devices and the
fog nodes, one of the potential research directions is to identify
where to put fog nodes and how close they should be to the end
users. Mobile fog nodes is also a compelling use case for energy
consumption. To reduce the energy consumption of fog nodes, one
potential research direction is to reduce the distance between fog
servers and local renewable energy sources (such as solar, wind,
or vibration). This problem can be addressed in different ways:
the traffic from IoT devices can be rerouted to the nearest fog
node that is powered by renewable energy. The other way is for
telecommunication companies to identify the location of fog nodes
that need the high amount of power to serve the traffic, and to
encourage people to use their local renewable energy for their local
micro-grid to power up their local fog nodes.

5.0.8 SDN Support for Fog. SDN software does not have native
support for fog computing. SDN is mostly commercially viable
inside large data centers or campus networks [9]. Enhancing and
standardizing SDN software (e.g., OpenFlow northbound, south-
bound, east-west bound interface) for fog use cases is a direction
we believe will ease the development of fog computing software.
Moreover, with multiple vendors/operators in fog systems, there
will be a need for new SDN architectures with multiple domains
and hierarchies of SDN controllers.
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5.0.9 Support of High-speed Users. Current communication proto-
cols that are proposed for fog computing environments do not sup-
port high-speed users, such as users in cars, users on trains, and ve-
hicular computing. A research direction is to develop quick or state-
less handshake and authentication protocols for high-speed users
and automotive communication. Note that there have been already
some early efforts in this field, such as the articles [100, 145, 172];
nevertheless, we are still far from having a working and resilient
communication protocol for high-speed users and automotive com-
munication for fog computing. One can usemachine-learning-based
mobility prediction algorithms in the design of the handshake and
authentication protocols, to predict the location of the high-speed
users and analyze their mobility patterns for fog computing.

In addition to handshake and authentication protocols for high-
speed users, fog service provisioning for IoT applications is required
to be dynamic and proactive due to the rapid changes (such as
connectivity, bandwidth fluctuations, or failure) in mobile and high-
speed IoT environments. To address dynamic and proactive fog
service provisioning, predicting the behavior and location of IoT
devices and high-speed users based on historical data or machine
learning methods is another potential solution that requires further
investigation.

5.0.10 Fog Node Security. Fog nodes are going to be placed near
users, in locations such as on the base stations, or routers, or even
at the extreme network edge on WiFi access points. This makes it
challenging to provide security for fog nodes. Site attacks are more
possible on the fog nodes than cloud data centers. A research direc-
tion may be designing secure fog node sites, safe against physical
damage, jamming, etc. Also, another direction may be to design-
ing strong access-control policies for fog nodes, so that they are
secure in the presence of malicious users in the vicinity. A potential
starting point for access control in fog computing can be found in
[104, 420].

5.0.11 Fog Node Site Selection. Few studies address the fog node
site selection problem, which is a design problem for finding ap-
propriate locations for deploying nodes. Fog node site selection
strategies should consider communication, storage, and computing
at the same time for finding an appropriate location (a commu-
nication hotspot may not necessarily be a storage or computing
hotspot). Moreover, cost should also be a deciding factor in fog
node site selection strategies; deploying fog nodes in Manhattan
may be a good decision concerning reduction in latency and band-
width, but may not be a good decision with respect to rental costs.
Furthermore, fog node security considerations that are discussed in
“Fog Node Security” previously could also affect the fog node site
selection decision. We refer the interested reader to the recent arti-
cle [447] that describes the security requirements and approaches
of an open fog architecture.

5.0.12 Resilient Fog System Design. From the reliability and avail-
ability perspective, fog services and fog networks bring new chal-
lenges to the current network and service provisioning methods.
To guarantee the availability and reliability of the fog services, a
coordinated service provisioning mechanism that considers both
fog and cloud computing is needed. For example, if a fog service
needs some functions to process a stream of data, providing extra

replicas of those functions can improve the availability of the ser-
vice. On the other hand, due to the limited computing resources
of the fog nodes compared to the cloud data centers, allocation of
the function replicas to provide availability and reliability is not a
straightforward decision. As a future direction, availability may be
considered in addition to constraints, such as latency, throughput,
and security when designing provisioning methods for fog services.

Most of the articles in the literature about fog computing do not
consider failure or fault in the fog network. Another research direc-
tion is to provide different protection and restoration mechanism
across different layers. In addition, failure detection, prevention,
and recovery are efficient ways to improve the availability of the
fog services. Additionally, fog nodes are more prone to denial of ser-
vice (DoS) attacks, since they are more resource-constrained than
adequately-secure cloud data centers; also, recently compromising
IoT nodes and embedded systems are becoming new sources of
distributed DoS attacks [448]. Novel classes of proactive defense
techniques based on moving target defense paradigm (sometimes
referred to as address mutation/randomization) could be used to
thwart DoS attacks [449, 450]. Researchers of UC Berkeley recently
have proposed a resilient edge computing framework [116], which
is a good starting point in the direction of resilient fog system
design.

5.0.13 Fog Federation. Currently, there is no fog federation frame-
work or software (similar to that of hybrid cloud federation schemes),
which controls and federates fog resources across multiple operat-
ing domains. There is a need for new schemes for the federation of
fog nodes, especially when they belong to different operating do-
mains. The federation scheme should account for resource sharing
models for fog nodes from different vendors/operators. Similarly,
one can define new pricing models for federated fog resources.
Finally, one can propose policies for new fog resource sharing
schemes (e.g., P2P fog computing resource sharing model) under
the federation framework. The recent article in [228] might be a
good start for potential research about fog federation.

5.0.14 Trust and Authentication in Heterogenous Fog Systems. In ad-
dition to mobility that is discussed in “Support of High-speed Users,”
heterogeneity of fog nodes and IoT devices makes the conventional
trust and authentication protocols unsuitable for fog systems. Also,
fog nodes may belong to different vendors and operators. Hence, we
need to design new authentication and trust mechanisms for new
fog systems that could cope with the heterogeneity of fog nodes and
IoT devices. Some researchers have started to address heterogeneity
in their fog system design, such as the articles [171, 324].

5.0.15 Secure Fog Offloading. Offloading tasks among fog nodes
might incur some security and privacy risks. The risk is when tasks
containing security- and privacy-critical information is offloaded.
Also, a security risk might be when a fog node becomes over-loaded
(e.g., by the requests sent by a malicious user) and starts offloading
security- and privacy-critical information to other fog nodes (which
may be accessible to themalicious user). A research direction, hence,
is to design and implement secure offloading and load balancing
schemes. An early effort for privacy-aware offloading in MEC is
included in [304]. Furthermore, designing a lightweight and efficient
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mechanism for IoT receivers to verify the correctness and integrity
of the offloaded tasks.

5.0.16 PaaS for Fog Computing. There are not any solid imple-
mentations of a PaaS for fog systems, where developers can easily
develop software across fog, IoT, and cloud. [132, 401] are some of
the very few efforts in this direction. Developing a PaaS for fog
computing can ease the general development and acceptability of
fog computing. The future PaaS for fog computing should hide the
fog configuration specification (e.g., location of fog nodes, their in-
terconnection, their capacity) for users, provision applications, and
services proactively and automatically with minimal effort from
developers, and support different communication- and application-
level protocols and APIs. Once this PaaS is available, its modular
design could also be taken into account so that various plugins for
different fog computing applications and services could be easily
integrated with the PaaS.

5.0.17 Standardizing Fog Computing. Different research teams are
proposing many independent definitions of fog (and fog-related
computing paradigms, such as edge computing). In Section 3 we
saw that the definitions of fog computing and its related computing
paradigms are not completely standardized. We believe there is a
research gap in the definitions and standards for fog computing and
other fog-related computing paradigms that needs to be filled by
standards and universally-agreed definitions. Once the definitions
are agreed upon, researchers become more clear when defining
problems, and there will be more agreement among researchers
and industry about these paradigms. Organizations such as Open-
Fog Consortium and OpenEdge Computing are already developing
standards and definitions for fog computing and edge computing.

5.0.18 Hardware Technologies for Fog. Most studies in the area of
fog computing or edge computing do not make use of new hard-
ware or communication technologies, such as non-volatile storage
technologies, optical networks, fiber-wireless (FiWi), or FPGAs. Use
of new hardware and communication technologies for the design

of fog networks, (e.g., fog-to-cloud interconnection) is a direction
worth exploring.

6 CONCLUSION
The Internet of Things accelerates digital transformation and pro-
vides benefits to many industries, including manufacturing, energy,
transportation, smart cities, education, retail, healthcare, and gov-
ernment. Due to IoT’s fundamental benefits, the number of con-
nected devices and the IoT networks is on the rise, as individuals
and companies deploy more and more IoT devices. IoT is expected
to connect billions of devices and humans to bring promising ad-
vantages for us. Fog computing is one of the promising solutions
for handling the big data that is being produced by the IoT, which is
often security-critical and time-sensitive. In this paper, we provided
a tutorial on what fog computing is and how it relates to or differs
from other computing paradigms, such as cloudlets, MEC, and edge
computing. Next, we provided a taxonomy of research topics in
fog computing and summarized the relevant papers on fog com-
puting and its related computing paradigms. Finally, we provided
challenges and future directions for research in fog computing.
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