Backtracking and Branch \& Bound

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

\square Divide and Conquer
\square Dynamic Programming
\square Greedy Algorithms
\square Backtracking Algorithms
\square Branch and Bound Algorithms

Backtracking Algorithms

\square In general, we assume our solution is a vector $\mathbf{s}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{\mathbf{n}}\right)$.
\square At each step, we try to extend a partial solution $\mathrm{s}_{\mathrm{k}}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{k}}\right)$ by adding another element at the end.
\square Then we test whether what we now have is a solution: if so, we should print it or count it.
\square If not, we check whether the partial solution is still potentially extendible to some complete solution.
\square Backtracking algorithm is modeled by a tree of partial solutions, where each node represents a partial solution.

Backtracking Algorithms (space state tree)

n-Queens Problem

\square The n Queen is the problem of placing n chess queens on an $n \times n$ chessboard so that no two queens attack each other.

n-Queens Problem

We can use different approaches:
\square Search all the solution space of size: $\binom{n^{2}}{n}$
\square Using eight loops, each is inside the other: n^{n}
\square Using 1-dimensional array in order to remove more conflicts and reducing the search space.

n-Queens Problem

\square A portion of the state space tree for the instance of the n-Queens problem in which $n=4$.

n-Queens Problem

\square A portion of the pruned state space tree produced when backtracking is used to solve the instance of the n-Queens problem in which $n=4$.

n-Queens Problem

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

	咅		
			E
若			
		E	

n-Queens Problem

void expand (nocle v)
$\{$
node u;
for (each child u of v)
if (promising(u))
if (there is a solution at u)
write the solution;
else
expand (u);
\}

Knapsack Problem (Review)

Definition

Suppose that we have n objects, say $o_{i}(i=1,2, \cdots, n)$, each with corresponding weight (w_{i}) and profit (p_{i}), and a weight bound b. The goal of this problem is to find an $X=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ that maximize $\sum_{i=1}^{n} x_{i} p_{i}$ with respect to $\sum_{i=1}^{n} x_{i} w_{i} \leq b$.

- if $x_{i} \in\{0,1\}$ the this problem is called 0/1-Knapsack.
- if $x_{i} \in[0,1]$ the this problem is called fractional-Knapsack.

0/1-Knapsack

\square To design a backtracking algorithm for this problem, we should generate all subsets of $\{0,1\}^{\mathrm{n}}$ and check which one is optimal.

0/1-Knapsack (Backtracking Algorithm)

```
Backtrack-Knapsack( \(X\), opt \(X\), opt \(P, \ell)\{\)
    if \(\ell=n+1\) then \(\{\)
        if \(\sum_{i=1}^{n} x_{i} w_{i} \leq b\) then \(\{\)
        cur \(P \leftarrow \sum_{i=1}^{n} x_{i} p_{i} ;\)
        if cur \(P \geq o p t P\) then \(\{\)
            opt \(P \leftarrow\) cur \(P\);
            opt \(X \leftarrow\left[x_{1}, x_{2}, \cdots, x_{n}\right] ;\)
            \}
    \}
    \(\}\)
    else\{
        \(x_{I} \leftarrow 1 ;\)
        Backtrack-Knapsack( \(X\), opt \(X\), opt \(P, \ell+1\) );
        \(x_{I} \leftarrow 0\);
        Backtrack-Knapsack( \(X\), opt \(X\), opt \(P, \ell+1\) );
    \(\}\)
\}
```


Branch \& Bound Algorithms

Branch \& Bound Algorithms

\square Branch-and-Bound is based on backtracking, which is an exhaustive searching technique in the space of all feasible solutions.
\square The cardinality of the sets of feasible solutions are typically as large as $2^{\mathrm{n}}, \mathrm{n}!$, or even n^{n} for inputs of size n .
\square The idea of the branch-and-bound technique is to speed up backtracking by omitting the search in some parts of the space of feasible solutions, because one is already able to recognize that these parts do not contain any optimal solution in the moment when the exhaustive search would start to search in these parts.
\square The branch-and-bound is based on some pre-computation of a bound on the cost of an optimal solution (a lower bound for maximization problems and an upper bound for minimization problems).

0/1-Knapsack (B\&B-Knapsack1)

```
B\&B-Knapsack1 \((X\), opt \(X\), opt \(P, \ell\), curW \()\{\)
    if \(\ell=n+1\) then \(\{\)
        if \(\sum_{i=1}^{n} x_{i} p_{i} \geq o p t P\) then \(\{\)
        opt \(P \leftarrow \sum_{i=1}^{n} x_{i} p_{i}\);
        opt \(X \leftarrow\left[x_{1}, x_{2}, \cdots, x_{n}\right] ;\)
    \}
    \}
    else\{
        if curW \(+w_{\ell} \leq b\) then \(C_{\ell} \leftarrow\{1,0\}\);
        else \(C_{\ell} \leftarrow\{0\}\);
    \}
    for each \(x \in C_{\ell}\) do \(\{\)
        \(x_{I} \leftarrow x ;\)
        Backtrack-Knapsack \(\left(X\right.\), opt \(X\), opt \(\left.P, \ell+1, \operatorname{cur} W+x_{\ell} w_{\ell}\right)\);
    \}
\}
```


0/1-Knapsack (B\&B-Knapsack2)

```
B\&B-Knapsack2( \(X\), opt \(X\), opt \(P, \ell\), curW \()\{\)
    if \(\ell=n+1\) then \(\{\)
        if \(\sum_{i=1}^{n} x_{i} p_{i} \geq o p t P\) then \(\{\)
            opt \(P \leftarrow \sum_{i=1}^{n} x_{i} p_{i} ;\)
            opt \(X \leftarrow\left[x_{1}, x_{2}, \cdots, x_{n}\right]\);
    \}
\}
else\{
            if curW \(+w_{\ell} \leq b\) then \(C_{\ell} \leftarrow\{1,0\}\);
        else \(C_{\ell} \leftarrow\{0\}\);
    \}
    \(B \leftarrow \sum_{i=1}^{l-1} x_{i} p_{i}+G F K\left(p_{\ell}, p_{\ell+1}, \cdots, p_{n}, w_{\ell}, w_{\ell+1}, \cdots, w_{n}, b-c u r W\right)\);
    if \(B \leq o p t P\) then return;
    for each \(x \in C_{\ell}\) do \(\{\)
        \(X_{I} \leftarrow x ;\)
        Backtrack-Knapsack \(\left(X, o p t X, o p t P, \ell+1, c u r W+x_{\ell} W_{\ell}\right)\);
    \}

\section*{0/1-Knapsack (Branch\&Bound Algorithm-2)}
\(\square\) Example: Suppose that \(\mathrm{P}=[23,24,15,13,16]\), \(\mathrm{W}=[11,12,8,7,9]\), and \(\mathrm{b}=26\). The algorithm \(\mathrm{B} \& \mathrm{~B}-\) Knapsack2 works as follows:


\section*{Comparison of the algorithms}
\(\square\) The following table represents the worse case size of search space of random instances executed for 5 times.
\begin{tabular}{|c|c|c|c|}
\hline\(n\) & Backtrack-Knapsack & B\&B-Knapsack1 & B\&B-Knapsack2 \\
\hline 8 & 511 & 333 & 78 \\
\hline 12 & 8191 & 4988 & 195 \\
\hline 16 & 131071 & 78716 & 601 \\
\hline 20 & 2097151 & 1257745 & 480 \\
\hline 24 & 33554431 & 19814875 & 755 \\
\hline
\end{tabular}```

