OLlewd,s o 5Ll 0?)0
Backtracking and Branch & Bound

Sadoon Azizi

s.azizi(@uok.ac.ir
Department of Computer Engineering and IT

Spring 2019

Techniques for the design of Algorithms

3 Divide and Conquer

a Dynamic Programming

a Greedy Algorithms

1 Backtracking Algorithms

- Branch and Bound Algorithms

P —

Backtracking Algorithms

In general, we assume our solution Is a vector s=(a,,a,...,a,).

At each step, we try to extend a partial solution s,=(a,,a,,...,a,) by
adding another element at the end.

Then we test whether what we now have is a solution: If so, we
should print it or count it.

If not, we check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking algorithm is modeled by a tree of partial solutions,
where each node represents a partial solution.

U'

| Backtracking Algorithms (space state tree) |

n-Queens Problem

The n Queen is the problem of placing n chess gueens on an nxn
chessboard so that no two queens attack each other.
1 2 3 4 2 6 f 8

1 *
2| |k
3 *

n-Queens Problem

We can use different approaches:

2
Search all the solution space of size: (n)
n

Using eight loops, each is inside the other: n™

Using 1-dimensional array in order to remove more conflicts and
reducing the search space.

.. i

. n-Queens Problem |

A portion of the state space tree for the instance of the n-Queens
problem in which n=4.

N/'

. n-Queens Problem |

A portion of the pruned state space tree produced when
backtracking is used to solve the instance of the n-Queens problem
In which n=4.

n-Queens Problem

KX [X|X

(d)

(c)

(b)

(2)

K| X

A XXX

K| A

(h)

(2)

(f)

(e)

ALK &

i

AKX | &

n-Queens Problem

void ezpand(node w)

{

node w;

for (each child = of w)
if (promising{u))
if (there is a solution at u)
write the solution;
else
expand () ;

10

Knapsack Problem (Review)

Definition
Suppose that we have n objects, say o; (1 =1.2.---.n), each with

corresponding weight (w;) and profit (p;), and a weight bound b. The
goal of this problem is to find an X = (xq.X».--- . X,) that maximize

YL, xipi with respect to Y1, xjw; < b.
@ if x; € {0.1} the this problem is called 0/1-Knapsack.
@ if x; € [0.1] the this problem is called fractional-Knapsack.

11

0/1-Knapsack |

To design a backtracking algorithm for this problem, we should
generate all subsets of {0,1}" and check which one is optimal.

N, i

mapsack (Backtracking Algorithm) |

Backtrack-Knapsack(X, optX, optP, £){
if { = n+1 then{
if ¥, xiw; < bthen{
curP < Y.L Xipr;
if curP > opiP then{

optP <+ curP;
optX <+ [x1,Xx2, - , Xnl;
}
}
}
else{
Xy 1;
Backirack-Knapsack(X, optX, optP, £+ 1);
Xy +— 0;
Backirack-Knapsack(X, optX, optP, £+ 1);
}

13

/_\ x
Branch & Bound Algorithms

Backtracking Reducing the search space Branch and Bound
Algorithms Algorithms

»

Branch & Bound Algorithms

Branch-and-Bound 1Is based on backtracking, which is an
exhaustive searching technigue in the space of all feasible solutions.

The cardinality of the sets of feasible solutions are typically as large
as 2", n!, or even n" for inputs of size n.

The 1dea of the branch-and-bound technique Is to speed up
backtracking by omitting the search in some parts of the space of
feasible solutions, because one iIs already able to recognize that
these parts do not contain any optimal solution in the moment when
the exhaustive search would start to search in these parts.

The branch-and-bound is based on some pre-computation of a
bound on the cost of an optimal solution (a lower bound for
maximization problems and an upper bound for minimization
problems).

15

e

4-Knapsack (B&B-Knapsack1) |

B&B-Knapsack1(X, optX, optP, £, curW){
if £=n+1then{
if Y14 x;p; > optP then{
optP + YiL; Xipi;

Dptx — [X1 :J‘."E; T 1xﬂ];
}
}
else{
if curW 4+ wy < bthen Gy + {1,0};
else Cy + {0};
}
for each x € Cy do {
Xj 4 X;
Backirack-Knapsack(X, optX, optP, £+ 1, curW + xgwy);
}

4-Knapsack (B&B-Knapsack?2) |

B&B-Knapsack2(X, optX, opiP, £, curW){
if {=n+1then{
if ¥, x;p; > optP then{
OptP < Y.iL ¢ Xipi;

optX [x1,Xo,- -+ , Xp);
}
}
else{
if curW +wy < bthen Gy + {1,0};
else Gy + {0};
}

B+ Y1 Xipi -+ GFK (e, Prat, -+ , Pry We, Wet, -+ , Wn, b— curW);
if B < optP then return;
for each x € Cy do {
Xp 4 X;
Backirack-Knapsack(X, optX, optP, £+ 1, curlW + xpwy);
¥
} 17

0/1-Knapsack (Branch&Bound Algorithm-2) |

Example: Suppose that P=[23,24,15,13,16], W=[11,12,8,7,9], and
b = 26. The algorithm B&B-Knapsack2 works as follows:

&) (X =[1,1,0,0,0] @ X =[1,0,1,1,0] ~
P =d7= optP =47 P =51 > gptP = gptP = 5l
curil =23) curl = 26

18

Comparison of the algorithms

=

The following table represents the worse case size of search space
of random instances executed for 5 times.

n | Backtrack-Knapsack | B&B-Knapsackl | B&B-Knapsack2
8 511 333 78

12 8191 4988 195

16 131071 78716 601

20 2097151 1257745 480

24 33554431 19814875 735

19

