
Backtracking and Branch & Bound

Sadoon Azizi

s.azizi@uok.ac.ir

Department of Computer Engineering and IT

Spring 2019



Techniques for the design of Algorithms

 Divide and Conquer

 Dynamic Programming

 Greedy Algorithms

 Backtracking Algorithms

 Branch and Bound Algorithms

2



Backtracking Algorithms

 In general, we assume our solution is a vector s=(a1,a2,…,an).

 At each step, we try to extend a partial solution sk=(a1,a2,…,ak) by

adding another element at the end.

 Then we test whether what we now have is a solution: if so, we

should print it or count it.

 If not, we check whether the partial solution is still potentially

extendible to some complete solution.

 Backtracking algorithm is modeled by a tree of partial solutions,

where each node represents a partial solution.

3



Backtracking Algorithms (space state tree)

4



n-Queens Problem

 The n Queen is the problem of placing n chess queens on an n×n
chessboard so that no two queens attack each other.

5



n-Queens Problem

We can use different approaches:

 Search all the solution space of size:
𝑛2

𝑛

 Using eight loops, each is inside the other: 𝑛𝑛

 Using 1-dimensional array in order to remove more conflicts and

reducing the search space.

6



n-Queens Problem

 A portion of the state space tree for the instance of the n-Queens

problem in which n=4.

7



n-Queens Problem

 A portion of the pruned state space tree produced when

backtracking is used to solve the instance of the n-Queens problem

in which n=4.

8



n-Queens Problem

9



n-Queens Problem

10



Knapsack Problem (Review)

11



0/1-Knapsack

 To design a backtracking algorithm for this problem, we should

generate all subsets of {0,1}n and check which one is optimal.

12



0/1-Knapsack (Backtracking Algorithm)

13



Branch & Bound Algorithms

14



Branch & Bound Algorithms

15

 Branch-and-Bound is based on backtracking, which is an
exhaustive searching technique in the space of all feasible solutions.

 The cardinality of the sets of feasible solutions are typically as large
as 2n, n!, or even nn for inputs of size n.

 The idea of the branch-and-bound technique is to speed up
backtracking by omitting the search in some parts of the space of
feasible solutions, because one is already able to recognize that
these parts do not contain any optimal solution in the moment when
the exhaustive search would start to search in these parts.

 The branch-and-bound is based on some pre-computation of a
bound on the cost of an optimal solution (a lower bound for
maximization problems and an upper bound for minimization
problems).



0/1-Knapsack (B&B-Knapsack1)

16



0/1-Knapsack (B&B-Knapsack2)

17



0/1-Knapsack (Branch&Bound Algorithm-2)

18

 Example: Suppose that P=[23,24,15,13,16], W=[11,12,8,7,9], and

b = 26. The algorithm B&B-Knapsack2 works as follows:



Comparison of the algorithms

19

 The following table represents the worse case size of search space

of random instances executed for 5 times.


